WO2013039514A1 - Positional input systems and methods - Google Patents

Positional input systems and methods Download PDF

Info

Publication number
WO2013039514A1
WO2013039514A1 PCT/US2011/051968 US2011051968W WO2013039514A1 WO 2013039514 A1 WO2013039514 A1 WO 2013039514A1 US 2011051968 W US2011051968 W US 2011051968W WO 2013039514 A1 WO2013039514 A1 WO 2013039514A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarized light
display
polarization state
detector
polarizing elements
Prior art date
Application number
PCT/US2011/051968
Other languages
French (fr)
Inventor
Fred Charles THOMAS III
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to EP11872488.9A priority Critical patent/EP2756373B1/en
Priority to US13/980,884 priority patent/US9223166B2/en
Priority to PCT/US2011/051968 priority patent/WO2013039514A1/en
Priority to JP2014508332A priority patent/JP5813862B2/en
Priority to BR112013020986A priority patent/BR112013020986A2/en
Priority to CN2011800693211A priority patent/CN103415831A/en
Priority to TW101133460A priority patent/TWI588715B/en
Publication of WO2013039514A1 publication Critical patent/WO2013039514A1/en
Priority to US14/947,050 priority patent/US10191593B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface
    • G06F3/0321Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface by optically sensing the absolute position with respect to a regularly patterned surface forming a passive digitiser, e.g. pen optically detecting position indicative tags printed on a paper sheet
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133538Polarisers with spatial distribution of the polarisation direction

Definitions

  • a touchscreen can be formed by placing a transparent overlay proximate the display surface.
  • Such overlays typically detect the presence and location of input (i.e., a "touch") based upon a change in electrical properties of the overlay. While the level of touch accuracy and resolution using such devices is sufficient for many consumer electronics, the accuracy and resolution are frequently insufficient for use in professional applications requiring a high degree of touch accuracy and resolution.
  • FIG. 1 is a block diagram depicting a sample positional input system using a polarized light source, according to an embodiment described herein;
  • FIG. 2 is a flow diagram depicting a sample positional input method using an internal first polarized light source, according to an embodiment described herein;
  • Fig. 3 is a flow diagram depicting another sample positional input method using the first polarized light source as a liquid crystal display (LCD) backlight, according to an embodiment described herein;
  • LCD liquid crystal display
  • FIG. 4 is a block diagram depicting another sample positional input system using an external second polarized light source, according to an embodiment described herein;
  • FIG. 5 is a flow diagram depicting a sample positional input method using an external second polarized light source, according to an embodiment described herein;
  • FIG. 8 is a flow diagram depicting a sample positional input method used as an input to an external computing device, according to an embodiment described herein.
  • Display based input devices find increasing acceptance and use within both industry and the home. While conventional resistive and capacitive touch based input systems have found widespread use and acceptance within the consumer and commercial market space, the difficulty in providing an accurate, high resolution, touch based input limits the acceptance of such devices within the professional and commercial market spaces. Increasingly sophisticated demands within the consumer and commercial market space are also receptive to higher resolution, higher accuracy, touch-based displays.
  • Capacitive and resistive touch sensors have seen use in display devices ranging from small screen cell phones and portable media players to large cinema or multi-screen "touchwall" displays. Such technology has the advantage of providing only a minimal impact on the appearance of the data provided by the display, however the inherent limitations of electrical based touch technology used to provide resistive and capacitive touch sensors serves to restrict the resolution and accuracy of such devices. [0012] Providing a visually transparent input system and method having a high resolution and increased accuracy would enable the use of touch-based displays in professional applications and in an increasing number of consumer and commercial applications.
  • Detection based technologies using a detector and predetermined series of elements usually in the form of elements, dots, or similar marks can provide systems and methods for providing a high-accuracy and high-resolution input to a display device.
  • Providing a detectable, yet visually transparent carrier having a predetermined pattern of visually transparent elements, dots, or marks on its surface provides a system and method for using a display device as a highly accurate input device having a high degree of contact point positional input resolution.
  • An example predetermined pattern is that provided by Anoto Group AB (Lund, Sweden).
  • a detector can determine its location with respect to the pattern when placed proximate the pattern.
  • a visibly transparent, predetermined, element pattern disposed in, on, or about a visibly transparent carrier provides input systems and methods having a high degree of accuracy and resolution. The transparency of the elements and carrier permits the use of such systems and methods with display devices.
  • An illustrative positional input method can include passing a polarized light generated by a source through a predetermined pattern of visibly transparent polarizing state altering elements disposed on the surface of a display device. The method further includes detecting a change in the polarization state of the polarized light corresponding to a location on the display device.
  • the term light refers to electromagnetic radiation failing within the spectrum visible to humans - the spectrum extends from 400 nanometers (violet) to 800 nanometers (red).
  • the term light may also include electromagnetic radiation falling within the infrared spectrum, extending from 800 nanometers to 3000 nanometers.
  • An illustrative positional input system can include a polarized light source and a predetermined pattern of visibly transparent polarizing state altering elements to change the polarization state of the polarized light.
  • the system can further include a detector to determine a location based upon the encoded element pattern with high resolution positional information being discriminated from their background via the contrast provided by differing polarization state between the position encoding element pattern and its background.
  • Another illustrative positional input system can include a liquid crystal display (“LCD”) including a linearly polarized backlight and a plurality of visibly transparent polarizing state altering elements disposed in a predetermined pattern on an exterior surface of the liquid crystal display.
  • LCD liquid crystal display
  • Each of the visibly transparent polarizing altering elements can change in the polarization state of the linear polarized light to 1 ⁇ 2 wave retarded light of a particular circular polarization handedness.
  • the system can further include a handheld member including: a detector, with a element discriminating circular polarizing element, to determine a location on the LCD based upon the information encoded in the discriminated element pattern with changed polarization state from the original input linear polarized light; and a transmitter to transmit the location of the handheld member to a computing device communicatively coupled to the handheld member.
  • Fig. 1 is a block diagram depicting a sample positional input system 100 using a polarized light source 105, according to an embodiment.
  • the system 100 can include a polarized light source 105 providing light having a polarization state 1 10.
  • the polarized light source 105 can be within or proximate to a display device including a display 1 15 having a surface 120.
  • a carrier 125 having a predetermined pattern of visibly transparent polarization altering elements 130 can be disposed proximate the surface 120 to change or otherwise alter the polarization state 1 10 of at least a portion of the incident light produced by the polarized light source 105 to provide light having a changed polarization state 135,
  • the polarization state of light passing through the carrier 125 but NOT passing through a polarizing element 130 is changed to a polarization state 140 that differs in one or more characteristics from light having polarization state 1 10 (i.e., light from the source 105) and light having changed polarization state 135 (i.e., light exiting from one of the polarizing elements 125).
  • the differing changed polarization states 135, 140 of the light exiting the display 1 15 enables the "reading" of the pattern of polarizing elements 130 using a detector 145 capable of distinguishing the changed polarization states 135, 140. Reading the pattern of polarizing elements is possible based upon the detectors ability to discern the changed polarization state 135 of light exiting the polarizing elements 130 from the background changed polarization state 140 of light exiting the carrier 125.
  • the detector can determine its location on the surface 120 of the display 1 15.
  • the pattern and density of the visibly transparent polarizing elements 130 contributes to the accuracy of the detector 145 in determining its location with respect to the display 1 15.
  • a higher density pattern of visibly transparent polarizing elements 130 disposed across the surface 120 of the display 1 15 generally improves the accuracy of the location determination by the detector 145.
  • an extremely precise determination of detector 145 location with respect to the pattern of polarizing elements 130 is possible.
  • the polarization state 1 10 may include a plurality of polarization states.
  • the light can be provided using a polarized light source 105 generating light having ONLY the polarization state 1 10 (e.g., a linear polarized light source producing only one of a vertically polarized light or a horizontally polarized light).
  • the light may be provided using a non-specific polarized light source 105 generating light having a plurality of polarization states (e.g. , a polarized light source 1 05 producing at least two of vertically, horizontally, or circularly polarized light).
  • the light produced using a non-specific polarized light source 105 can be filtered or similarly adjusted to provide light having only the polarization state 1 10.
  • the polarized light source 1 05 can include any number of individual polarized light sources.
  • the display 1 1 5 can have a surface 120 from which light having the polarization state 1 10 exits or is otherwise emitted.
  • the display 1 15 may incorporate any technology, for example liquid crystal display (LCD) technology; light emitting diode (LED); organic LED (OLED); active matrix OLED (A OLED); or any other display technology.
  • the polarized light source 105 may be incorporated into the display 1 1 5, for example the independent LEDs forming an LED display 1 1 5 may each be considered a polarized light source 105.
  • LCD displays emit linear polarized light via their inherent design.
  • a carrier 125 having predetermined pattern of visibly transparent polarizing elements 130 disposed therein can be disposed proximate the surface 120 to change or otherwise alter the polarization state 1 10 to provide light having a changed polarization states 135 (for light passing through the polarizing element 130) and 140 (for light passing through the carrier 125).
  • the predetermined pattern of visibly transparent polarizing elements 125 may be applied directly to the surface 120 of the display 1 15. However, in other embodiments, the predetermined pattern of visibly transparent polarizing elements 125 may be applied to a substrate or carrier, for example a material that does not affect the polarization state of light transiting the substrate or carrier, that can in turn be applied to the surface 120 of the display 1 15 via a bonding agent.
  • each the transparent polarizing elements 130 disposed on the surface 120 of the display 1 15 can be altered or otherwise changed based upon polarizing element 130 physical characteristics, composition, or any combination thereof.
  • Each of the transparent polarizing elements 130 can be composed of a material, for example a polymeric material, capable of transforming or otherwise altering the polarization state of light passing through the polarizing element.
  • linear vertically polarized light generated by a source and passing through a polarizing element 130 may be phase retarded 1 ⁇ 2 wave in one direction, for example left or right, while the linear polarized light passing through only the carrier 125 may be phase retarded 1 ⁇ 4 wave in the opposite direction.
  • any polarized light source 105 may be used such that the changed polarization state 135 of the light passing only through the polarizing elements 130 is distinguishable from the changed polarization state 140 of the light passing only through the carrier 125.
  • An example polymeric material capable of providing the transparent polarizing elements 130 can include, but is not limited to, a photo-aligned, anisotropic optical thin film such as that produced by Roiic ® Research Ltd., although other materials and other manufacturers capable of providing similar polarization based filtering capabilities may be substituted.
  • Rolic ® provides a curable, liquid, light controlled molecular orientation ("LC O") polymeric material suitable for photo lithographically producing the polarizing elements 130 within the carrier 125.
  • LC O liquid, light controlled molecular orientation
  • LCMO aligns molecules, for example the molecules forming the polarizing elements 130, in a predefined way in photo alignment layers by irradiating them with ultraviolet polarized light. Based upon the choice of materials and the direction of incidence and polarization of the light used to form the polarizing elements 130, it is possible for the molecules forming the polarizing elements 130 to be aligned in any direction of the three-dimensional space. An index of refraction birefringence maybe introduced in the material hence producing these polarization altering phase retarding elements.
  • the visibly transparent polarizing elements 130 are not visible to the naked eye when back- illuminated (for example, when back illuminated by the polarized light source 105).
  • the visibly transparent polarizing elements 125 can be deposited on or otherwise formed within the substrate using any method or system, including but not limited to, photolithography and conventional printing technologies.
  • the polarizing elements 130 can be disposed within the carrier 130 in a unique, specific, spatial or positional pattern. The use of such a pattern creates a geographic relationship between the polarizing elements 130 and their location on the display 1 15. The geographic relationship between the polarizing elements 130 and the display 1 15 permit the ability to determine the location of the detector 145 sensitive to the changed polarization state 130 of the light emitted by the polarizing elements 130 when the detector 145 is disposed proximate the display 1 15.
  • the pattern of light having the changed polarization state 130 sensed by the detector 145 permits the precise determination of the physical location of the detector 145 on the display 1 15.
  • Increasing the number or density of the polarizing elements 130 enhances the location detection capability of the detector 145.
  • the size of each of the polarizing elements can vary based on factors such as desired resolution, mastering technique, and the overall size of the display 1 15 however in general the size of the polarizing elements 130 is on the order of 40 microns and can be as small 5 to 10 microns diameter.
  • An example pattern capable of providing unique encoded absolute positional information between the visibly transparent polarizing elements 130 is the Anoto dot pattern described above. Disposing the polarizing elements 130 in an Anoto compliant pattern provides a unique location identification system using the detector 145 capable of detecting the changed polarization state 135 of the light passing through the polarizing elements 130.
  • the Anoto dot pattern is used as an illustrative example, any comparable predetermined pattern capable of providing unique encoded absolute positional information between the visibly transparent polarizing elements 130 may be similarly employed to dispose or locate the polarizing elements 130 in, on, or about the carrier 125.
  • the ability to provide location based data to the detector 145 while simultaneously providing a minimally impaired view of the display 1 15 to the user provides the display with the ability to contemporaneously function as both an input device (i.e., a device capable of detecting location based input via the detector 145) and an output device (i.e. , a display capable of displaying data).
  • an input device i.e., a device capable of detecting location based input via the detector 1405
  • an output device i.e. , a display capable of displaying data.
  • An example of the utility of such a device can be found in a display based input tablet - such a tablet would enable easy, customizable, user configuration of various tiles and input designators on the tablet surface.
  • the detector 145 can include any device, system, or combination of systems and devices suitable for detecting the changed polarization 135 of the light exiting the polarizing element 130.
  • a detector 145 sensitive to the changed polarization state 135 of the light exiting the polarizing elements 130 can incorporate a Woliaston prism, similar in technology to that used in magneto-optical data storage devices, to identify light having the changed ⁇ 1 re
  • a circular polarizer of appropriate handedness could be used to discriminate patterns that use 1 ⁇ 4 wave polarizing elements 130.
  • Other polarization sensitive technologies with similar performance can be used as the basis for the detector 145.
  • the detector 145 will be used as an input device to a tablet or where the detector 145 will be used similar to a drafting pen, physical displacement of the detector 145 across the surface 120 of the display 1 15 affects the scan rate, exposure, and blur reduction capabilities of the detector 145 to properly discern the pattern of polarizing dots 135. Additional logic can therefore be incorporated into the detector 145 to increase or decrease the detector scan rate based at least in part upon the velocity with which the detector is moved across the surface 120 of the display 1 15. Similarly, the logic providing for exposure compensation and blur reduction can also be incorporated into the detector 145 based at least in part upon the velocity with which the detector is moved across the surface 120 of the display 1 15.
  • FIG. 2 is a flow diagram depicting a sample positional input method 200 using an internal first polarized light source 105, according to an embodiment.
  • a polarized light having the polarization state 1 10 can be passed through a carrier 125 containing a predetermined pattern of transparent polarizing elements 130.
  • a detector 145 having the capability of distinguishing the changed polarization state 135 of light passing through the polarizing element 130 from the changed polarization state 140 of light passing through the carrier 125.
  • a portion of light generated by the polarized light source 105 and having the polarization state 1 10 can pass through the carrier 125, while the remaining portion of the light generated by the polarized light source 105 and having the polarization state 1 10 can pass through the visually transparent polarizing elements 125 disposed on a surface 120 of a display device 1 15.
  • the polarization state 1 10 can include light having a single polarization state, multiple polarization states, or no polarization state. Where light having multiple polarization states or no polarization state is used, the polarization state 1 10 may be a single polarization state provided using a filter disposed between the source 105 and the display 1 15.
  • the changed polarization state 135 of the light exiting the polarizing elements 130 is detected.
  • the unique encoded absolute positional information between the visibly transparent polarizing elements 130 corresponds to a unique physical location of the detector 145 on the surface 120 of the display 1 15.
  • Fig. 3 is a flow diagram depicting another sample positional input method 300 using the polarized light source 105 as a liquid crystal display (LCD) backlight, according to an embodiment.
  • a linearly polarized light source 105 is used in conjunction with a liquid crystal display (LCD) display 1 15. While a linearly polarized light source is described in the context of Fig. 3, a similar polarized light source or sources 105 having any polarization state 1 10 may be similarly substituted.
  • light having the polarization state 1 10 is generated using a polarized light source 105 serving at least in part as an LCD panel backlight.
  • the polarized light source 105 is located on the non-viewable, or reverse, side of the display 1 15, in this example an LCD panel.
  • the linearly polarized light 1 10 generated by the polarized light source 105 can pass through the display 1 15, exiting the surface 120 of the LCD display.
  • the linearly polarized light provided by the display is passed through the LCD panel (i.e., the display 1 15) and exits the surface 120 of the LCD panel remaining in a linear polarization state 1 10 but 90 degrees rotated or orthogonal to the polarized light sources linear polarization.
  • a portion of the linearly polarized light 1 10 passes through the carrier 125, while the remaining portion of linearly polarized light 1 10 passes through the polarizing elements 130.
  • the polarization state of the linear polarized light 1 10 passing through the polarizing elements 130 attains a changed polarization state 135, while the polarization state of the linear polarized light 1 10 passing through the carrier 125 attains a changed polarization state 140.
  • Fig. 4 is a block diagram depicting another sample positional input system 400 using an external second polarized light source 410, according to an embodiment.
  • a second polarized light source 410 can be disposed external to the display 1 15, for example within a handheld member useful for data input.
  • two polarized light sources are used, the polarized light source 105 used as a backlight for the display 1 15, and the second polarized light source 410 positioned external the display 1 15.
  • the polarized light source 105, 410 use differing polarization states, wavelengths or polarization states and wavelengths.
  • the display 1 15 may have a translucent, reflective, material 425 disposed proximate the carrier 125 containing the pattern of transparent polarizing elements 130.
  • the translucent, reflective, material 425 can permit the passage of the polarized light 1 10 from the surface 120 of the display 1 15, while reflecting at least a portion of the second polarized light 415 provided by the second polarized light source 410.
  • the inbound light provided by the second polarized light source 410 and having the second polarization state 415 falls upon the carrier 125 and polarizing elements 130. A portion of the light passes through the carrier 125 resulting in a changed polarization state 420. The remaining portion of the light passes through the polarizing elements 130 resulting in a changed polarization state 430.
  • 1 ⁇ 2 wave retardation other changes in polarization are possible with comparable performance.
  • the changed polarization state 430 of the second polarized light 415 allows the determination of the detector 145 location on the surface 120 of the display 1 15.
  • the second polarized light source 410 can be co-located with the detector 145, for example both can be disposed within a single member that comfortably fits within a user's hand. In other embodiments, the second polarized light source 410 can be Iocated separate or at a distance from the detector 145, for example where the second polarized light source 410 is used for general or area illumination and the detector 145 is disposed within a handheld member.
  • the second polarized light source 410 may generate a second polarized light 415 invisible to the naked eye, for example a polarized near infrared light.
  • An example second polarized light source 415 is a near-IR light emitting diode (LED).
  • the second polarized light source 410 provides light having the second poiarization state 415.
  • the wavelength of the light produced by the second polarized light source 410 differs from the wavelength of the light produced by the polarized light source 105.
  • the polarization state 415 may include a plurality of polarization states.
  • the light can be provided using a polarized light source 410 generating light having ONLY the second polarization state 415 (e.g., a linear polarized light source producing only one of a vertically polarized light or a horizontally polarized light).
  • the light may be provided using a non-specific polarized light source 410 generating light having a plurality of polarization states (e.g., a polarized light source 410 producing at least two of vertically, horizontally, or circularly polarized light).
  • the light produced using a non-specific polarized light source 410 can be filtered or similarly adjusted to provide light having only the second polarization state 415.
  • the polarized light source 410 can include any number of individual polarized light sources.
  • the translucent, reflective, material 425 is disposed at or near the surface 120 of the display 1 15. Sn some embodiments, the material 425 may be partially or completely incorporated into the carrier 125. In other embodiments, the material 425 can be disposed between the carrier 125 and the surface 120 of the display 1 15.
  • the translucent, reflective, material 425 may not affect the polarization state 1 10 of the light provided by the polarized light source 105 and passing through the display 1 15. Since the translucent, reflective, material 425 does not affect passage of the light provided by the polarized light source 105, data displayed on the display 1 15 will be legible to a user.
  • the translucent, reflective, material 425 may include any form of metallic or non-metallic material capable of reflecting all or a portion of the light provided by the second polarized light source 410 that is incident upon the surface 120 of the display 1 15.
  • the translucent, reflective, material 425 may be incorporated directly into the display 1 15 to provide appropriate reflective properties to the display.
  • Fig. 5 is a flow diagram depicting a sample positional input method 500 using an external second polarized light source 410, according to an embodiment. At 510 the second polarized light source 410 is positioned external to the display 1 15.
  • the second polarized light source 410 can generate light having a second polarization state 415, for example a linearly polarized light with at least one wavelength differing from the light having the polarization state 1 10 provided by the polarized light source 105.
  • the differing wavelengths of light between the polarized source 105 and the second polarized source 410 allow the detector to distinguish light generated by each source 105, 410. At least a portion of the light provided by the second polarized light source 410 falls incident upon the display 1 15.
  • a portion of the second polarized light 415 passes through the polarizing elements 130 while the remaining portion of the second polarized light 415 passes through only the carrier 125. Regardless of the passage through either the carrier 125 or the polarizing elements 130, at least a portion of the light provided by the second polarized light source 410 that is incident upon the display 1 15 is reflected by the translucent, reflective, material 425.
  • the translucent, reflective, material 425 reflects the incident light at least provided by the second polarized light source 410. Recall that at least a portion of the light provided by the second polarized light source 410 is in an intermediate polarized state as a consequence of having passed through the polarizing element. At least a portion of both the light having the second polarization state 410 (i.e., light provided by the second polarized light source 410 and NOT incident upon or passing through a polarizing element 125) and the intermediate polarized light (i.e., light provided by the second polarized light source 410, incident upon, and passing through a polarizing element 125) are reflected by the translucent, reflective, material 425.
  • the intermediate polarized light reflected from the material 425 may or may not pass e-
  • light exiting the display may have any one of a number of polarization states:
  • Source 105 through carrier 125 1 ⁇ 2 CCW phase retardation (e.g., polarization state 140).
  • Source 105 through polarizing element 130 1 ⁇ 2 CW phase retardation (e.g. , polarization state 135).
  • Source 410 through carrier 125 inbound and reflected ⁇ 1 ⁇ 2 CCW (inbound) + 1 ⁇ 2 CCW (reflected) 1 ⁇ 4 CCW phase retardation (e.g., polarization state 420).
  • a total of five polarization states may be emitted from the display 1 15 when using the second polarized light source 410.
  • FIG. 8 is a flow diagram depicting a sample positional input method 800 used as an input to an external computing device, according to an embodiment.
  • Communicatively coupling the detector 145 to a computing device permits the transmission of input data related at least in part to the location of the detector 145 on the surface 120 of the display 1 15 to the computing device.
  • Such data may be used, for example, where the display 1 15 functions at least in part as a data entry device such as a tablet.
  • a display device as a tablet readily permits the reconfiguration of the display to meet user requirements.
  • the detector 145 serving at least in part as an input device, can be coupled to a computing device.
  • the location of the detector 145 on the display 1 1 5 can be transmitted to the computing device.

Abstract

Positional input systems and methods are provided. A positional input method can include passing (210) a polarized light generated by a source through a predetermined pattern of visibly transparent polarizing elements disposed on the surface of a display device. The method further includes detecting (220) a change in the polarization state of the polarized light corresponding to a location on the display device.

Description

POSITIONAL INPUT SYSTEMS AND METHODS
BACKGROUND OF THE INVENTION
Description of the Related Art
[0001] Modern industrial design continues to increase reliance on combined input output devices. Devices such as capacitive or resistive touch screens provide an elegant, simple, and industrially "clean" design for providing both input (touch) and output (display) capabilities. A touchscreen can be formed by placing a transparent overlay proximate the display surface. Such overlays typically detect the presence and location of input (i.e., a "touch") based upon a change in electrical properties of the overlay. While the level of touch accuracy and resolution using such devices is sufficient for many consumer electronics, the accuracy and resolution are frequently insufficient for use in professional applications requiring a high degree of touch accuracy and resolution.
[0002] Providing a high resolution touch and/or positional based input device acceptable to professional or commercial users presents a challenge. A system providing the expected level of accuracy and resolution demanded by professionals frequently provides an unacceptabiy opaque or "window-screen- iike" appearance when disposed proximate a display.
BRIEF DESCRIPTION OF THE DRAWINGS
[0003] Advantages of one or more disclosed embodiments may become apparent upon reading the following detailed description and upon reference to the drawings in which:
[0004] Fig. 1 is a block diagram depicting a sample positional input system using a polarized light source, according to an embodiment described herein;
[0005] Fig. 2 is a flow diagram depicting a sample positional input method using an internal first polarized light source, according to an embodiment described herein; [0006] Fig. 3 is a flow diagram depicting another sample positional input method using the first polarized light source as a liquid crystal display (LCD) backlight, according to an embodiment described herein;
[0007] Fig. 4 is a block diagram depicting another sample positional input system using an external second polarized light source, according to an embodiment described herein;
[0008] Fig. 5 is a flow diagram depicting a sample positional input method using an external second polarized light source, according to an embodiment described herein; and
[0009] Fig. 8 is a flow diagram depicting a sample positional input method used as an input to an external computing device, according to an embodiment described herein.
DETAILED DESCRIPTION
[0010] Display based input devices find increasing acceptance and use within both industry and the home. While conventional resistive and capacitive touch based input systems have found widespread use and acceptance within the consumer and commercial market space, the difficulty in providing an accurate, high resolution, touch based input limits the acceptance of such devices within the professional and commercial market spaces. Increasingly sophisticated demands within the consumer and commercial market space are also receptive to higher resolution, higher accuracy, touch-based displays.
[0011] Capacitive and resistive touch sensors have seen use in display devices ranging from small screen cell phones and portable media players to large cinema or multi-screen "touchwall" displays. Such technology has the advantage of providing only a minimal impact on the appearance of the data provided by the display, however the inherent limitations of electrical based touch technology used to provide resistive and capacitive touch sensors serves to restrict the resolution and accuracy of such devices. [0012] Providing a visually transparent input system and method having a high resolution and increased accuracy would enable the use of touch-based displays in professional applications and in an increasing number of consumer and commercial applications. Detection based technologies using a detector and predetermined series of elements usually in the form of elements, dots, or similar marks can provide systems and methods for providing a high-accuracy and high-resolution input to a display device. Providing a detectable, yet visually transparent carrier having a predetermined pattern of visually transparent elements, dots, or marks on its surface provides a system and method for using a display device as a highly accurate input device having a high degree of contact point positional input resolution.
[0013] An example predetermined pattern is that provided by Anoto Group AB (Lund, Sweden). Using a unique, predetermined element pattern such as that offered by Anoto, a detector can determine its location with respect to the pattern when placed proximate the pattern. By increasing the density of the elements (i.e., increasing the dot density by decreasing the distance between the elements, and possibly be decreasing the size of the elements themselves) the location resolution capability of the detector is commensurately increased. A visibly transparent, predetermined, element pattern disposed in, on, or about a visibly transparent carrier provides input systems and methods having a high degree of accuracy and resolution. The transparency of the elements and carrier permits the use of such systems and methods with display devices.
[0014] Positional input systems and methods are provided. An illustrative positional input method can include passing a polarized light generated by a source through a predetermined pattern of visibly transparent polarizing state altering elements disposed on the surface of a display device. The method further includes detecting a change in the polarization state of the polarized light corresponding to a location on the display device.
[0015] As used herein, the term light" refers to electromagnetic radiation failing within the spectrum visible to humans - the spectrum extends from 400 nanometers (violet) to 800 nanometers (red). The term light" may also include electromagnetic radiation falling within the infrared spectrum, extending from 800 nanometers to 3000 nanometers.
[0016] An illustrative positional input system can include a polarized light source and a predetermined pattern of visibly transparent polarizing state altering elements to change the polarization state of the polarized light. The system can further include a detector to determine a location based upon the encoded element pattern with high resolution positional information being discriminated from their background via the contrast provided by differing polarization state between the position encoding element pattern and its background.
[0017] Another illustrative positional input system can include a liquid crystal display ("LCD") including a linearly polarized backlight and a plurality of visibly transparent polarizing state altering elements disposed in a predetermined pattern on an exterior surface of the liquid crystal display. Each of the visibly transparent polarizing altering elements can change in the polarization state of the linear polarized light to ½ wave retarded light of a particular circular polarization handedness.--.- The system can further include a handheld member including: a detector, with a element discriminating circular polarizing element, to determine a location on the LCD based upon the information encoded in the discriminated element pattern with changed polarization state from the original input linear polarized light; and a transmitter to transmit the location of the handheld member to a computing device communicatively coupled to the handheld member.
[0018] Fig. 1 is a block diagram depicting a sample positional input system 100 using a polarized light source 105, according to an embodiment. The system 100 can include a polarized light source 105 providing light having a polarization state 1 10. The polarized light source 105 can be within or proximate to a display device including a display 1 15 having a surface 120. A carrier 125 having a predetermined pattern of visibly transparent polarization altering elements 130 can be disposed proximate the surface 120 to change or otherwise alter the polarization state 1 10 of at least a portion of the incident light produced by the polarized light source 105 to provide light having a changed polarization state 135, The polarization state of light passing through the carrier 125 but NOT passing through a polarizing element 130 is changed to a polarization state 140 that differs in one or more characteristics from light having polarization state 1 10 (i.e., light from the source 105) and light having changed polarization state 135 (i.e., light exiting from one of the polarizing elements 125).
[0019] The differing changed polarization states 135, 140 of the light exiting the display 1 15 enables the "reading" of the pattern of polarizing elements 130 using a detector 145 capable of distinguishing the changed polarization states 135, 140. Reading the pattern of polarizing elements is possible based upon the detectors ability to discern the changed polarization state 135 of light exiting the polarizing elements 130 from the background changed polarization state 140 of light exiting the carrier 125.
[0020] Based upon the unique encoded absolute positional information between the visibly transparent polarizing elements 130, the detector can determine its location on the surface 120 of the display 1 15. The pattern and density of the visibly transparent polarizing elements 130 contributes to the accuracy of the detector 145 in determining its location with respect to the display 1 15. A higher density pattern of visibly transparent polarizing elements 130 disposed across the surface 120 of the display 1 15 generally improves the accuracy of the location determination by the detector 145. Based upon the unique encoded absolute positional information between the visibly transparent polarizing elements 130, an extremely precise determination of detector 145 location with respect to the pattern of polarizing elements 130 is possible.
[0021] The polarization state 1 10 may include a plurality of polarization states. However, in some embodiments, the light can be provided using a polarized light source 105 generating light having ONLY the polarization state 1 10 (e.g., a linear polarized light source producing only one of a vertically polarized light or a horizontally polarized light). Sn yet other embodiments, the light may be provided using a non-specific polarized light source 105 generating light having a plurality of polarization states (e.g. , a polarized light source 1 05 producing at least two of vertically, horizontally, or circularly polarized light). The light produced using a non-specific polarized light source 105 can be filtered or similarly adjusted to provide light having only the polarization state 1 10. The polarized light source 1 05 can include any number of individual polarized light sources.
[0022] The display 1 1 5 can have a surface 120 from which light having the polarization state 1 10 exits or is otherwise emitted. The display 1 15 may incorporate any technology, for example liquid crystal display (LCD) technology; light emitting diode (LED); organic LED (OLED); active matrix OLED (A OLED); or any other display technology. Although not depicted as such in Fig.1 , the polarized light source 105 may be incorporated into the display 1 1 5, for example the independent LEDs forming an LED display 1 1 5 may each be considered a polarized light source 105. Alternately, LCD displays emit linear polarized light via their inherent design.
[0023] A carrier 125 having predetermined pattern of visibly transparent polarizing elements 130 disposed therein can be disposed proximate the surface 120 to change or otherwise alter the polarization state 1 10 to provide light having a changed polarization states 135 (for light passing through the polarizing element 130) and 140 (for light passing through the carrier 125). The predetermined pattern of visibly transparent polarizing elements 125 may be applied directly to the surface 120 of the display 1 15. However, in other embodiments, the predetermined pattern of visibly transparent polarizing elements 125 may be applied to a substrate or carrier, for example a material that does not affect the polarization state of light transiting the substrate or carrier, that can in turn be applied to the surface 120 of the display 1 15 via a bonding agent. [0024] The polarization state of light passing through each the transparent polarizing elements 130 disposed on the surface 120 of the display 1 15 can be altered or otherwise changed based upon polarizing element 130 physical characteristics, composition, or any combination thereof. Each of the transparent polarizing elements 130 can be composed of a material, for example a polymeric material, capable of transforming or otherwise altering the polarization state of light passing through the polarizing element. For example, linear vertically polarized light generated by a source and passing through a polarizing element 130 may be phase retarded ½ wave in one direction, for example left or right, while the linear polarized light passing through only the carrier 125 may be phase retarded ¼ wave in the opposite direction. Other changes in polarization state of the light passing through the carrier 125, the polarizing elements 130, or both may be used. Similarly, any polarized light source 105 may be used such that the changed polarization state 135 of the light passing only through the polarizing elements 130 is distinguishable from the changed polarization state 140 of the light passing only through the carrier 125.
[0025] An example polymeric material capable of providing the transparent polarizing elements 130 can include, but is not limited to, a photo-aligned, anisotropic optical thin film such as that produced by Roiic® Research Ltd., although other materials and other manufacturers capable of providing similar polarization based filtering capabilities may be substituted. Rolic® provides a curable, liquid, light controlled molecular orientation ("LC O") polymeric material suitable for photo lithographically producing the polarizing elements 130 within the carrier 125. Through the use of LCMO materials it is possible to create structured optical elements on a microscopic or macroscopic scale using light-induced spatial alignment of molecules within the LCMO material. LCMO aligns molecules, for example the molecules forming the polarizing elements 130, in a predefined way in photo alignment layers by irradiating them with ultraviolet polarized light. Based upon the choice of materials and the direction of incidence and polarization of the light used to form the polarizing elements 130, it is possible for the molecules forming the polarizing elements 130 to be aligned in any direction of the three-dimensional space. An index of refraction birefringence maybe introduced in the material hence producing these polarization altering phase retarding elements.
[0028] When disposed upon or formed within a suitable carrier 125, the visibly transparent polarizing elements 130 are not visible to the naked eye when back- illuminated (for example, when back illuminated by the polarized light source 105). The visibly transparent polarizing elements 125 can be deposited on or otherwise formed within the substrate using any method or system, including but not limited to, photolithography and conventional printing technologies.
[0027] The polarizing elements 130 can be disposed within the carrier 130 in a unique, specific, spatial or positional pattern. The use of such a pattern creates a geographic relationship between the polarizing elements 130 and their location on the display 1 15. The geographic relationship between the polarizing elements 130 and the display 1 15 permit the ability to determine the location of the detector 145 sensitive to the changed polarization state 130 of the light emitted by the polarizing elements 130 when the detector 145 is disposed proximate the display 1 15.
[0028] The pattern of light having the changed polarization state 130 sensed by the detector 145 permits the precise determination of the physical location of the detector 145 on the display 1 15. Increasing the number or density of the polarizing elements 130 (for example by forming greater numbers of physically smaller, closer grouped polarizing elements 130) enhances the location detection capability of the detector 145. The size of each of the polarizing elements can vary based on factors such as desired resolution, mastering technique, and the overall size of the display 1 15 however in general the size of the polarizing elements 130 is on the order of 40 microns and can be as small 5 to 10 microns diameter.
[0029] An example pattern capable of providing unique encoded absolute positional information between the visibly transparent polarizing elements 130 is the Anoto dot pattern described above. Disposing the polarizing elements 130 in an Anoto compliant pattern provides a unique location identification system using the detector 145 capable of detecting the changed polarization state 135 of the light passing through the polarizing elements 130. Although the Anoto dot pattern is used as an illustrative example, any comparable predetermined pattern capable of providing unique encoded absolute positional information between the visibly transparent polarizing elements 130 may be similarly employed to dispose or locate the polarizing elements 130 in, on, or about the carrier 125.
[0030] Since changes in the polarization state of light are imperceptible to the human eye, the light emitted by the display 1 15 will appear uniform across the display regardless of the changed polarization state 135, 140 of the light. The ability to provide a visually transparent carrier 125 containing visually transparent polarizing elements 130 enables the use of a defector 145 sensitive to the changed polarization state 135 of the light passing through the polarizing elements 130 to determine the physical location or position of the detector 145 on the display 1 15 while at the same time providing minimal impairment of the users view of the display 1 15. The ability to provide location based data to the detector 145 while simultaneously providing a minimally impaired view of the display 1 15 to the user provides the display with the ability to contemporaneously function as both an input device (i.e., a device capable of detecting location based input via the detector 145) and an output device (i.e. , a display capable of displaying data). An example of the utility of such a device can be found in a display based input tablet - such a tablet would enable easy, customizable, user configuration of various tiles and input designators on the tablet surface.
[0031] The detector 145 can include any device, system, or combination of systems and devices suitable for detecting the changed polarization 135 of the light exiting the polarizing element 130. For example, a detector 145 sensitive to the changed polarization state 135 of the light exiting the polarizing elements 130 can incorporate a Woliaston prism, similar in technology to that used in magneto-optical data storage devices, to identify light having the changed ~1 re
polarization state 135. Alternatively, a circular polarizer of appropriate handedness could be used to discriminate patterns that use ¼ wave polarizing elements 130. Other polarization sensitive technologies with similar performance can be used as the basis for the detector 145.
[0032] Where the detector 145 will be used as an input device to a tablet or where the detector 145 will be used similar to a drafting pen, physical displacement of the detector 145 across the surface 120 of the display 1 15 affects the scan rate, exposure, and blur reduction capabilities of the detector 145 to properly discern the pattern of polarizing dots 135. Additional logic can therefore be incorporated into the detector 145 to increase or decrease the detector scan rate based at least in part upon the velocity with which the detector is moved across the surface 120 of the display 1 15. Similarly, the logic providing for exposure compensation and blur reduction can also be incorporated into the detector 145 based at least in part upon the velocity with which the detector is moved across the surface 120 of the display 1 15.
[0033] Fig. 2 is a flow diagram depicting a sample positional input method 200 using an internal first polarized light source 105, according to an embodiment. A polarized light having the polarization state 1 10 can be passed through a carrier 125 containing a predetermined pattern of transparent polarizing elements 130. A detector 145 having the capability of distinguishing the changed polarization state 135 of light passing through the polarizing element 130 from the changed polarization state 140 of light passing through the carrier 125.
[0034] At 210 a portion of light generated by the polarized light source 105 and having the polarization state 1 10 can pass through the carrier 125, while the remaining portion of the light generated by the polarized light source 105 and having the polarization state 1 10 can pass through the visually transparent polarizing elements 125 disposed on a surface 120 of a display device 1 15. The polarization state 1 10 can include light having a single polarization state, multiple polarization states, or no polarization state. Where light having multiple polarization states or no polarization state is used, the polarization state 1 10 may be a single polarization state provided using a filter disposed between the source 105 and the display 1 15.
[0035] At 220 the changed polarization state 135 of the light exiting the polarizing elements 130 is detected. The unique encoded absolute positional information between the visibly transparent polarizing elements 130 corresponds to a unique physical location of the detector 145 on the surface 120 of the display 1 15.
[0036] Fig. 3 is a flow diagram depicting another sample positional input method 300 using the polarized light source 105 as a liquid crystal display (LCD) backlight, according to an embodiment. In the example provided by Fig. 3, a linearly polarized light source 105 is used in conjunction with a liquid crystal display (LCD) display 1 15. While a linearly polarized light source is described in the context of Fig. 3, a similar polarized light source or sources 105 having any polarization state 1 10 may be similarly substituted.
[0037] At 310 light having the polarization state 1 10 is generated using a polarized light source 105 serving at least in part as an LCD panel backlight. The polarized light source 105 is located on the non-viewable, or reverse, side of the display 1 15, in this example an LCD panel.
[0038] At 320 the linearly polarized light 1 10 generated by the polarized light source 105 can pass through the display 1 15, exiting the surface 120 of the LCD display. The linearly polarized light provided by the display is passed through the LCD panel (i.e., the display 1 15) and exits the surface 120 of the LCD panel remaining in a linear polarization state 1 10 but 90 degrees rotated or orthogonal to the polarized light sources linear polarization. After exiting the LCD panel 1 15, a portion of the linearly polarized light 1 10 passes through the carrier 125, while the remaining portion of linearly polarized light 1 10 passes through the polarizing elements 130. The polarization state of the linear polarized light 1 10 passing through the polarizing elements 130 attains a changed polarization state 135, while the polarization state of the linear polarized light 1 10 passing through the carrier 125 attains a changed polarization state 140.
[0039] Fig. 4 is a block diagram depicting another sample positional input system 400 using an external second polarized light source 410, according to an embodiment. At times, a second polarized light source 410 can be disposed external to the display 1 15, for example within a handheld member useful for data input. In the example depicted in Fig. 4, two polarized light sources are used, the polarized light source 105 used as a backlight for the display 1 15, and the second polarized light source 410 positioned external the display 1 15. The polarized light source 105, 410 use differing polarization states, wavelengths or polarization states and wavelengths. Since the detector 145 relies upon light emitted from the display 1 15, the display 1 15 may have a translucent, reflective, material 425 disposed proximate the carrier 125 containing the pattern of transparent polarizing elements 130. The translucent, reflective, material 425 can permit the passage of the polarized light 1 10 from the surface 120 of the display 1 15, while reflecting at least a portion of the second polarized light 415 provided by the second polarized light source 410.
[0040] The inbound light provided by the second polarized light source 410 and having the second polarization state 415 falls upon the carrier 125 and polarizing elements 130. A portion of the light passes through the carrier 125 resulting in a changed polarization state 420. The remaining portion of the light passes through the polarizing elements 130 resulting in a changed polarization state 430.
[0041] Regardless of whether the inbound light strikes the carrier 125 or the polarizing elements 130, light having the changed polarization states 420, 430 is reflected by the material 425 disposed between the carrier 125 and the surface 120 of the display 1 15. Since reflection does not affect the polarization of light, the outbound/reflected light retains the changed polarization states 420, 430. The reflected light will however be affected by the outbound/reflected passage through the carrier 125 or polarization elements 130. [0042] For example, if the carrier 125 retards the polarization of incident light by ½ wave counterclockwise and the polarization elements 130 retard the polarization of incident light by ½ wave clockwise, the polarization of light having polarization state 415 will be retarded ¾ wave counterclockwise by passing through the carrier 125; upon reflection from material 425, the reflected light will again be retarded ½ wave counterclockwise as it reflects back through the material 425, for a total changed polarization state 420 of ½ (inbound) + ½ wave (reflected) = ½ wave counterclockwise (total). Similarly, inbound light incident upon the polarization element 130 will be retarded ½ wave clockwise by passage through the polarization element 130, and upon reflection from the material 425, the reflected light will again pass through the polarization element 130 where it will be further retarded by ½ wave clockwise for a total changed polarization state 430 of ½ wave (inbound) + ½ wave (outbound) = ¼ wave clockwise (total). Although illustrated using ½ wave retardation, other changes in polarization are possible with comparable performance.
[0043] Thus, by using the second polarized light source 410, the changed polarization state 430 of the second polarized light 415 allows the determination of the detector 145 location on the surface 120 of the display 1 15.
[0044] Disposed external to the display 1 15, the second polarized light source 410 can be co-located with the detector 145, for example both can be disposed within a single member that comfortably fits within a user's hand. In other embodiments, the second polarized light source 410 can be Iocated separate or at a distance from the detector 145, for example where the second polarized light source 410 is used for general or area illumination and the detector 145 is disposed within a handheld member. The second polarized light source 410 may generate a second polarized light 415 invisible to the naked eye, for example a polarized near infrared light. An example second polarized light source 415 is a near-IR light emitting diode (LED).
[0045] Similar to the polarized light source 105 described above with reference to Fig 1 , the second polarized light source 410 provides light having the second poiarization state 415. The wavelength of the light produced by the second polarized light source 410 differs from the wavelength of the light produced by the polarized light source 105. The polarization state 415 may include a plurality of polarization states. However, in some embodiments, the light can be provided using a polarized light source 410 generating light having ONLY the second polarization state 415 (e.g., a linear polarized light source producing only one of a vertically polarized light or a horizontally polarized light). In yet other embodiments, the light may be provided using a non-specific polarized light source 410 generating light having a plurality of polarization states (e.g., a polarized light source 410 producing at least two of vertically, horizontally, or circularly polarized light). The light produced using a non-specific polarized light source 410 can be filtered or similarly adjusted to provide light having only the second polarization state 415. The polarized light source 410 can include any number of individual polarized light sources.
[0046] The translucent, reflective, material 425 is disposed at or near the surface 120 of the display 1 15. Sn some embodiments, the material 425 may be partially or completely incorporated into the carrier 125. In other embodiments, the material 425 can be disposed between the carrier 125 and the surface 120 of the display 1 15. The translucent, reflective, material 425 may not affect the polarization state 1 10 of the light provided by the polarized light source 105 and passing through the display 1 15. Since the translucent, reflective, material 425 does not affect passage of the light provided by the polarized light source 105, data displayed on the display 1 15 will be legible to a user.
[0047] The translucent, reflective, material 425 may include any form of metallic or non-metallic material capable of reflecting all or a portion of the light provided by the second polarized light source 410 that is incident upon the surface 120 of the display 1 15. The translucent, reflective, material 425 may be incorporated directly into the display 1 15 to provide appropriate reflective properties to the display. [0048] Fig. 5 is a flow diagram depicting a sample positional input method 500 using an external second polarized light source 410, according to an embodiment. At 510 the second polarized light source 410 is positioned external to the display 1 15. The second polarized light source 410 can generate light having a second polarization state 415, for example a linearly polarized light with at least one wavelength differing from the light having the polarization state 1 10 provided by the polarized light source 105. The differing wavelengths of light between the polarized source 105 and the second polarized source 410 allow the detector to distinguish light generated by each source 105, 410. At least a portion of the light provided by the second polarized light source 410 falls incident upon the display 1 15.
[0049] A portion of the second polarized light 415 passes through the polarizing elements 130 while the remaining portion of the second polarized light 415 passes through only the carrier 125. Regardless of the passage through either the carrier 125 or the polarizing elements 130, at least a portion of the light provided by the second polarized light source 410 that is incident upon the display 1 15 is reflected by the translucent, reflective, material 425.
[0050] At 520 the translucent, reflective, material 425 reflects the incident light at least provided by the second polarized light source 410. Recall that at least a portion of the light provided by the second polarized light source 410 is in an intermediate polarized state as a consequence of having passed through the polarizing element. At least a portion of both the light having the second polarization state 410 (i.e., light provided by the second polarized light source 410 and NOT incident upon or passing through a polarizing element 125) and the intermediate polarized light (i.e., light provided by the second polarized light source 410, incident upon, and passing through a polarizing element 125) are reflected by the translucent, reflective, material 425.
[0051] Having already passed once through the polarizing element on its journey from the second polarized light source 410 to the display 1 15, the intermediate polarized light reflected from the material 425 may or may not pass e-
back though the polarizing element 130. Because of the varied effects on polarization states due attributable to the carrier 125 and the polarizing elements, light exiting the display may have any one of a number of polarization states:
[0052] Source 105 through carrier 125 = ½ CCW phase retardation (e.g., polarization state 140).
[0053] Source 105 through polarizing element 130 = ½ CW phase retardation (e.g. , polarization state 135).
[0054] Source 410 through carrier 125 inbound and reflected ~ ½ CCW (inbound) + ½ CCW (reflected) = ¼ CCW phase retardation (e.g., polarization state 420).
[0055] Source 410 through polarizing element 130 inbound and reflected = '½ CW (inbound) + ½ CW (reflected) = ¼ CW phase retardation (e.g., polarization state 430).
[0058] Source 410 through carrier 125 inbound and through polarizing element 130 reflected = YB CCW (inbound) + ¼ CW (reflected) = no retardation (e.g. , polarization state 415).
[0057] Source 41 o through polarizing element 130 inbound and through carrier 125 reflected ~ ½ CW (inbound) + ½ CCW (reflected) ~ no retardation (e.g., polarization state 415).
[0058] Thus, a total of five polarization states may be emitted from the display 1 15 when using the second polarized light source 410. The use of a detector 130 sensitive to only one of the five polarization states, for example sensitive only to polarized light having a ¼ CW phase retardation, enables the precise determination of detector location on the surface 120 of the dispiay 1 15.
[0059] Fig. 8 is a flow diagram depicting a sample positional input method 800 used as an input to an external computing device, according to an embodiment. Communicatively coupling the detector 145 to a computing device permits the transmission of input data related at least in part to the location of the detector 145 on the surface 120 of the display 1 15 to the computing device. Such data may be used, for example, where the display 1 15 functions at least in part as a data entry device such as a tablet. The use of a display device as a tablet readily permits the reconfiguration of the display to meet user requirements.
[0060] At 610 the detector 145, serving at least in part as an input device, can be coupled to a computing device. At 820 the location of the detector 145 on the display 1 1 5 can be transmitted to the computing device.

Claims

What is claimed is:
1 . ) A positional input method, comprising:
passing (210) a polarized light generated by a source through a predetermined pattern of visibly transparent polarizing elements disposed on a surface of a display; and
detecting (220) a change in the polarization state of the polarized light corresponding to a location on the surface.
2. ) The method of claim 1 , further comprising:
positioning the source external to the display;
generating a circularly polarized light using the source; and reflecting at least a portion of the circularly polarized light from the surface.
The method of claim 1 , further comprising:
generating a linearly polarized light using a liquid crystal display backlight as the source; and
passing the linearly polarized light through the LCD display prior to passing the linear polarized light through the pattern of visibly transparent polarizing elements disposed on the surface of the display.
The method of claim 1 , further comprising:
communicatively coupling a computing device to the detector; and transmitting the location of the detected change in the polarization state of the polarized light on the surface from the detector to the computing device.
The method of claim 4, wherein transmitting the location of the detected change in the polarization state of the polarized light on the surface from the detector to the computing device comprises one of:
transmitting the location data wireiessiy from a detector to the computing device; or transmitting the location data from the detector to the computing device via one or more conductors.
The method of claim 1 , the change in polarization state consisting of changing at least a portion of the polarized light passing through at least a portion of the visibly transparent polarizing elements from a linearly polarized light to circularly polarized light.
A positional input system, comprising:
a polarized light source (105);
a predetermined pattern of visibly transparent polarizing elements (130) to change the polarization state of the polarized light; and
a detector (145) to determine a location based upon the change in the polarization state of the polarized light.
The system of claim 7, further comprising:
a display (1 15);
the pattern of visibly transparent polarizing elements to change the polarization state of the polarized light disposed on a viewable portion of a surface (120) of the display.
The system of claim 8, the display device comprising:
a liquid crystal display (LCD); and
the polarized light source consisting of a linearly polarized LCD backlight.
The system of claim 8, further comprising:
a surface (425) to reflect at least a portion of light incident thereupon, disposed between the predetermined pattern of visibly transparent polarizing elements to change in the polarization state of the polarized light and the viewable portion of the surface of the display. The system of claim 10, further comprising: ~2Q~ a handheld member housing the polarized light source and the detector;
the polarized light source consisting of a circularly polarized light source.
The system of claim 7, further comprising:
a handheld member housing the detector;
the polarized light source consisting of a linearly polarized light source.
The system of claim 7, wherein an visibly masked programmable phase retarder fiim provides the pattern of visibly transparent polarizing elements.
A positional input system, comprising:
a liquid crystal display ("LCD") including a linearly polarized backlight; a plurality of visibly transparent polarizing elements disposed in a predetermined pattern on an exterior surface of the liquid crystal display;
each of the visibly transparent polarizing elements to change in the polarization state of the linear polarized light to circularly polarized; and
a handheld member including:
a detector to determine a location on the LCD based upon the change in the polarization state of the linear polarized light; and
a transmitter to transmit the location of the handheld member to a computing device communicatively coupled to the handheld member. The system of claim 14, wherein the transmitter comprises one of:
a transmitter wireiessiy coupled to the computing device;
a transmitter coupled to the computing device via one or more conductors.
PCT/US2011/051968 2011-09-16 2011-09-16 Positional input systems and methods WO2013039514A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP11872488.9A EP2756373B1 (en) 2011-09-16 2011-09-16 Positional input systems and methods
US13/980,884 US9223166B2 (en) 2011-09-16 2011-09-16 Positional input systems and methods
PCT/US2011/051968 WO2013039514A1 (en) 2011-09-16 2011-09-16 Positional input systems and methods
JP2014508332A JP5813862B2 (en) 2011-09-16 2011-09-16 Position input system and method
BR112013020986A BR112013020986A2 (en) 2011-09-16 2011-09-16 positional input method and positional input system.
CN2011800693211A CN103415831A (en) 2011-09-16 2011-09-16 Positional input systems and methods
TW101133460A TWI588715B (en) 2011-09-16 2012-09-13 Positional input systems and methods
US14/947,050 US10191593B2 (en) 2011-09-16 2015-11-20 Positional input systems and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/051968 WO2013039514A1 (en) 2011-09-16 2011-09-16 Positional input systems and methods

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/980,884 A-371-Of-International US9223166B2 (en) 2011-09-16 2011-09-16 Positional input systems and methods
US14/947,050 Continuation US10191593B2 (en) 2011-09-16 2015-11-20 Positional input systems and methods

Publications (1)

Publication Number Publication Date
WO2013039514A1 true WO2013039514A1 (en) 2013-03-21

Family

ID=47883585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/051968 WO2013039514A1 (en) 2011-09-16 2011-09-16 Positional input systems and methods

Country Status (7)

Country Link
US (2) US9223166B2 (en)
EP (1) EP2756373B1 (en)
JP (1) JP5813862B2 (en)
CN (1) CN103415831A (en)
BR (1) BR112013020986A2 (en)
TW (1) TWI588715B (en)
WO (1) WO2013039514A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3149561A4 (en) * 2014-05-30 2018-01-17 Hewlett-Packard Development Company, L.P. Positional input on displays
US10088917B2 (en) 2014-07-30 2018-10-02 Hewlett-Packard Development Company, L.P. Detector for a display

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813862B2 (en) * 2011-09-16 2015-11-17 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Position input system and method
US10318014B2 (en) 2014-01-31 2019-06-11 Hewlett-Packard Development Company, L.P. Optical pointer illumination
US10528157B2 (en) * 2015-01-30 2020-01-07 Hewlett Packard Development Company, L.P. Digital pen
CN108983999B (en) * 2017-06-05 2021-10-22 奇象光学有限公司 Digital pen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081633A2 (en) * 1999-08-31 2001-03-07 Daicel Chemical Industries, Ltd. Touch panel and display device using the same
US6538644B1 (en) * 1999-11-19 2003-03-25 Fujitsu Takamisawa Component Ltd. Touch panel
US20040239647A1 (en) * 2003-05-26 2004-12-02 Fujitsu Component Limited Touch panel and display device
JP2005135329A (en) * 2003-10-31 2005-05-26 Calsonic Kansei Corp Optical touch panel

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230897A (en) 1993-02-01 1994-08-19 Fuji Xerox Co Ltd Position indicator
JP3819654B2 (en) * 1999-11-11 2006-09-13 株式会社シロク Optical digitizer with indicator identification function
JP2001243006A (en) 2000-02-25 2001-09-07 Ricoh Elemex Corp Device and method for inputting coordinate
US6816261B2 (en) 2001-05-15 2004-11-09 Optellios, Inc. Polarization analysis unit, calibration method and optimization therefor
US20060209239A1 (en) 2005-03-18 2006-09-21 Toppoly Optoelectronics Corporation Anti-reflective polarizing plate and uses thereof
CN102298235B (en) 2006-01-26 2015-05-27 夏普株式会社 Production method of liquid crystal display device and liquid crystal display device
JP4866129B2 (en) 2006-04-03 2012-02-01 日本発條株式会社 Identification medium, identification method, and identification apparatus
JP2008108236A (en) * 2006-05-30 2008-05-08 Dainippon Printing Co Ltd Pattern printed sheet
US9213929B2 (en) 2006-05-30 2015-12-15 Dai Nippon Printing Co., Ltd. Pattern printed sheet
JP2008077451A (en) 2006-09-22 2008-04-03 Dainippon Printing Co Ltd Method for reading coordinate information pattern
KR20080056687A (en) 2006-12-18 2008-06-23 롬 앤드 하스 덴마크 파이낸스 에이에스 Shaped article with polymer domains and process
JP4973248B2 (en) * 2007-03-12 2012-07-11 大日本印刷株式会社 Reflective pattern printing transparent sheet
US8212792B2 (en) 2007-08-14 2012-07-03 Tyco Electronics Corporation Touchscreen using oriented microscopic linear conductive elements
TWI363909B (en) 2008-05-30 2012-05-11 Au Optronics Corp Methods for manufacturing retarder and liquid crystal display panel using the same
WO2010079647A1 (en) * 2009-01-09 2010-07-15 シャープ株式会社 Area sensor, liquid crystal display unit, and position detection method
TW201027125A (en) 2009-01-13 2010-07-16 Chi Mei Optoelectronics Corp Display device
KR101354329B1 (en) 2009-04-17 2014-01-22 엘지디스플레이 주식회사 Image display device
US20100283885A1 (en) 2009-05-11 2010-11-11 Shih-Schon Lin Method for aligning pixilated micro-grid polarizer to an image sensor
RU2011128784A (en) * 2009-05-15 2013-06-20 Шарп Кабушики Каиша DISPLAY DEVICE
CN101930321B (en) 2009-06-19 2013-04-10 鸿富锦精密工业(深圳)有限公司 Optical touch device and electronic device employing same
US8614665B2 (en) * 2010-11-19 2013-12-24 Qualcomm Innovation Center, Inc. Touch screen
JP5813862B2 (en) * 2011-09-16 2015-11-17 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Position input system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081633A2 (en) * 1999-08-31 2001-03-07 Daicel Chemical Industries, Ltd. Touch panel and display device using the same
US6538644B1 (en) * 1999-11-19 2003-03-25 Fujitsu Takamisawa Component Ltd. Touch panel
US20040239647A1 (en) * 2003-05-26 2004-12-02 Fujitsu Component Limited Touch panel and display device
JP2005135329A (en) * 2003-10-31 2005-05-26 Calsonic Kansei Corp Optical touch panel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKITO HYAKUTAKE ET AL.: "3-D interaction with a large wall display using transparent markers", PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED VISUAL INTERFACES, AVI '10, 1 January 2010 (2010-01-01), pages 97, XP055093061, DOI: doi:10.1145/1842993.1843011
See also references of EP2756373A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3149561A4 (en) * 2014-05-30 2018-01-17 Hewlett-Packard Development Company, L.P. Positional input on displays
US10353488B2 (en) 2014-05-30 2019-07-16 Hewlett-Packard Development Company, L.P. Positional input on displays
US10088917B2 (en) 2014-07-30 2018-10-02 Hewlett-Packard Development Company, L.P. Detector for a display

Also Published As

Publication number Publication date
EP2756373A4 (en) 2016-03-02
US10191593B2 (en) 2019-01-29
US20130308066A1 (en) 2013-11-21
EP2756373B1 (en) 2017-11-22
EP2756373A1 (en) 2014-07-23
CN103415831A (en) 2013-11-27
JP2014512631A (en) 2014-05-22
US9223166B2 (en) 2015-12-29
US20160077669A1 (en) 2016-03-17
JP5813862B2 (en) 2015-11-17
TW201319897A (en) 2013-05-16
TWI588715B (en) 2017-06-21
BR112013020986A2 (en) 2018-07-10

Similar Documents

Publication Publication Date Title
US10191593B2 (en) Positional input systems and methods
US11410585B2 (en) Optically determining messages on a display
EP3175326B1 (en) Detector for a display
KR101285524B1 (en) Input device
KR20180062202A (en) Thin Flat Type Optical Imaging Sensor And Flat Panel Display Embedding Optical Imaging Sensor
US20220057335A1 (en) Optical state monitor with an indicator-sensor
JP2008077451A (en) Method for reading coordinate information pattern
US10468053B2 (en) Verifying messages projected from an intelligent audible device
TWI639103B (en) Digital pen
KR20140016537A (en) Optical film and digital pen system using the same
US10353488B2 (en) Positional input on displays
TWI285277B (en) Touch-input-integrated LCD
WO2022045294A1 (en) Aerial image forming device, aerial input device, display device with aerial image forming device, mobile object, and hologram imaging lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980884

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011872488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011872488

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014508332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013020986

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013020986

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130816