WO2013039191A1 - 電流電圧変換器 - Google Patents

電流電圧変換器 Download PDF

Info

Publication number
WO2013039191A1
WO2013039191A1 PCT/JP2012/073593 JP2012073593W WO2013039191A1 WO 2013039191 A1 WO2013039191 A1 WO 2013039191A1 JP 2012073593 W JP2012073593 W JP 2012073593W WO 2013039191 A1 WO2013039191 A1 WO 2013039191A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
voltage
measured
voltage converter
connection
Prior art date
Application number
PCT/JP2012/073593
Other languages
English (en)
French (fr)
Inventor
正明 貫洞
Original Assignee
Kando Masaaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kando Masaaki filed Critical Kando Masaaki
Publication of WO2013039191A1 publication Critical patent/WO2013039191A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts

Definitions

  • the present invention is a current-voltage converter that is connected in series to a circuit to be measured and converts the current to be measured into a voltage in order to measure the current to be measured flowing through the circuit to be measured, and measures the voltage
  • the present invention relates to a current-voltage converter that makes it possible to determine the current to be measured.
  • a moving coil type ammeter in the case of direct current, a moving coil type ammeter is generally known, and in the case of alternating current, a movable iron piece type, a rectifying type, a thermocouple type ammeter, etc. are generally known. These are connected in series to a circuit under measurement to measure the current under measurement.
  • a current transformer when measuring the current of power transmission lines, distribution lines, etc., a current transformer (CT) is used because the voltage becomes high.
  • the basic circuit in this case is shown in FIG.
  • the current transformer has a primary side coil and a secondary side coil provided in the circuit to be measured, and depends on the ratio of the number of turns of the primary side coil and the number of turns of the secondary side coil and the indicated value of the secondary side ammeter.
  • a current to be measured which is a primary current is measured.
  • the upper limit of the frequency is about 1 kHz due to the magnetic saturation of the internal iron core, which is inappropriate for measurement in the high frequency region.
  • it since it is large and requires a safe separation distance in relation to the operating voltage, there is a problem that a large installation area is required for installation.
  • Rogowski coils are widely used as non-contact measuring devices for the circuit under test. This requires an auxiliary device such as an integration circuit, an oscilloscope, and a measurement cable, and has a problem that the maximum peak current also depends on the frequency characteristics of the circuit to be measured.
  • Some current measurement devices using electromagnetic coupling include a conductor through which the current to be measured flows inserted inside the coil of the detection element, and a change in the magnetic field generated from the conductor through which the current to be measured flows is detected by the outer coil. It is like that. However, it may be difficult to insert into the coil depending on the size and shape of the conductor.
  • a clamp-type ammeter in which a conductor through which a current to be measured flows is sandwiched between open / close bars. This is to detect the magnetic field generated by the current to be measured with the coil built in the bar and the high permeability member, measure it with the internal circuit of the main body, and display the current, which is widely used in portable applications Yes.
  • the conductor through which the current to be measured flows is large and the shape of the conductor is various.
  • each current measuring instrument has its own frequency characteristics, and in the case of the electromagnetic induction type, only a maximum of about 200 MHz can be used.
  • the present invention has been made in view of such a conventional problem, and while being connected in series to a circuit to be measured, there is no danger as in the prior art, and the installation area may be small and downsized. It is an object of the present invention to provide a current-voltage converter that can be used regardless of whether it is direct current or alternating current, can measure a large current, and can also measure a pulsed current with good responsiveness. .
  • the present invention is a current-voltage converter connected in series to a circuit under test, There are two conductors with different conductivities arranged adjacent to each other across the boundary surface, and the two conductors have two currents to be measured connected to the circuit to be measured and flowing between them.
  • An input / output connection and two detection connections to which a measuring instrument capable of measuring voltage is connected are provided, The two input / output connections are any two different points in the conductor; The two detection connections are any two different points in the conductor;
  • the resistance between the two input / output connection parts is smaller than the input impedance of the measuring instrument, and the voltage between the two detection connecting parts can be measured by the measuring instrument, and the voltage is the current to be measured. It is characterized by having a proportional relationship.
  • the present invention it is possible to measure between two points serving as two input / output connections and between two points serving as two detection connections by arranging two conductors having different conductivities adjacent to each other. Since a voltage drop occurs and these voltages are in a proportional relationship, the current to be measured can be measured from the voltage measured between the two detection connections.
  • the structure is simple, there are no moving parts, and it is robust and reliable, it is safe and can be configured in a small size without requiring a large installation area.
  • the phase difference between the voltage and current can be handled as almost zero with only a resistance component, so there is little frequency dependence, and the current to be measured can be measured from DC to high frequency. It can be measured with almost no attenuation, and pulsed current can be analyzed.
  • FIG. (A) is a plan view showing one connection example of the current-voltage converter of the present invention
  • (b) is a plan view showing the flow of the current to be measured
  • (c) is an equivalent circuit.
  • (A) is a top view showing another example of connection of the current-voltage converter of this invention
  • (b) is a top view showing the flow of a to-be-measured current. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention.
  • (A) is a top view showing another example of connection of the current-voltage converter of this invention
  • (b) is a top view showing the flow of a to-be-measured current. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention. It is a top view showing another example of connection of the current-voltage converter of the present invention.
  • (A) is a top view showing other embodiment of the current-voltage converter by this invention
  • (b) is the front view.
  • (A) is an exploded plan view showing other embodiment of the current-voltage converter by this invention
  • (b) is a top view. It is a perspective view showing other embodiment of the current-voltage converter by this invention. It is a perspective view showing other embodiment of the current-voltage converter by this invention. It is a perspective view showing other embodiment of the current-voltage converter by this invention. It is a perspective view showing other embodiment of the current-voltage converter by this invention. It is a perspective view showing other embodiment of the current-voltage converter by this invention. It is a figure showing the application example using the current-voltage converter by this invention. It is a figure showing the application example using the current-voltage converter by this invention. It is a figure showing the application example using the current-voltage converter by this invention. It is a figure showing the application example using the current-voltage converter by this invention. It is a figure showing the application example using the current-voltage converter by this invention. It is a figure showing the application example using the current-voltage converter by this invention.
  • the current-voltage converter 10 has two conductors 12 (conductivity ⁇ 1) and 14 (conductivity ⁇ 2) having different conductivities.
  • the two conductors 12 and 14 have a rectangular shape in a plan view, and are formed in a flat plate shape having a large planar dimension with respect to the wall thickness. They are arranged adjacent to each other across the surface 13.
  • connection portions 12a, 12b, 14a, and 14b are provided with connecting portions 12a, 12b, 14a, and 14b at positions separated in a direction parallel to the boundary surface 13.
  • the number of connection portions is two, but the number of connection portions is not limited to this, and it is sufficient that there is at least one, or three or more, which are suitable as described later. You may make it select and use a connection part.
  • the arrangement of the connection portions is not limited to the illustrated example, but in this example, the connection portions are formed at both ends of the main bodies of the rectangular conductors 12 and 14.
  • the connecting portions are extended from both ends of the main bodies of the rectangular conductors 12 and 14, but the present invention is not limited to this, and the conductors are not necessarily provided as the extending portions.
  • a part of the main body of 12 and 14 can also be used as a connection part.
  • the two conductors 12 and 14 can be produced by cutting or cutting a plate-like or block-like material into a predetermined shape, or can be produced by etching or vapor deposition. In addition, it is preferable to use a conductor having a relatively high conductivity as the two conductors 12 and 14 in order to prevent loss due to Joule heat. As an example, one of the two conductors 12 and 14 is copper and the other is aluminum. These two different metals can be used.
  • These conductors 12 and 14 can be arranged adjacent to each other by bonding, and as a bonding method, pressure welding is preferable, and it is preferable to perform a process of flowing a large current to the boundary surface in a state where pressure is applied to the two conductors. As a result, the alloy layer can be removed, the boundary surface can be made uniform, and a decrease in mechanical strength at the boundary surface can be prevented.
  • connection portions 12a, 12b, 14a, and 14b becomes an input connection portion, an output connection portion, and two detection connection portions, and these connection portions are connected to each other at an input connection portion and an output connection portion that are at different positions.
  • Two detection connections at different positions can be arbitrarily selected and connected.
  • the input / output connection part and the two detection connection parts can also be used together.
  • FIG. 3 shows one connection example of the current-voltage converter of the present invention.
  • one of the connection portion 12a of the conductor 12 with high conductivity and the connection portion 14b of the conductor 14 with low conductivity that is diagonally opposite to the connection portion 12a is an input connection portion, and the other is an output connection portion.
  • the current to be measured flows between the connection portion 12a and the connection portion 14b.
  • the connection portions 14a and 14b of the conductor 14 serve as detection connection portions, and a measuring instrument capable of measuring a voltage between the detection connection portions 14a and 14b (an instrument including an oscilloscope, an A / D converter, and a microprocessor) : Same below) 16 is connected.
  • the connection portion 14b serves as a common terminal, while the connection portion 12b is open and can be omitted.
  • the input impedance of the measuring instrument 16 is sufficiently larger than the resistance (less than 1 ⁇ ) between the input / output connection parts 12a and 14b.
  • the current to be measured is measured by measuring the voltage. be able to.
  • FIG. 25 is a graph showing the relationship between the current to be measured (alternating current) and the voltage measured by the measuring instrument 16, and it can be seen that a proportional relationship is established between the two.
  • FIG. 25 shows the case of alternating current, but the same proportional relationship holds for direct current.
  • the measuring instrument 16 uses the voltage of the order of 10 ⁇ 3. Can be measured as
  • FIG. 3C shows an equivalent circuit of the current-voltage converter 10.
  • the resistance r 0 and the resistance r 1 are determined by the conductors 12 and 14 to be used.
  • the phase difference between voltage and current can be handled as almost zero with almost only a resistance component, so there is little frequency dependence, and the measured current is almost attenuated from DC to high frequency. It can be measured without a pulse current.
  • the current-voltage converter 10 is connected in series to the circuit to be measured, but is safe and has a large installation area because it is simple in structure, has no moving parts, is robust and reliable. And can be made compact.
  • connection portions 12a and 12b of the conductor 12 having high conductivity serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12a and 12b.
  • connection portion 12b of the conductor 12 and the connection portion 14a of the conductor 14 serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12b and 14a.
  • FIG. 4A unlike FIG. 3, the connection portions 12a and 12b of the conductor 12 having high conductivity serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12a and 12b.
  • connection portion 12b of the conductor 12 and the connection portion 14a of the conductor 14 serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12b and 14a.
  • connection part 12b of the conductor 12 and the connection part 14b of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12b and 14b.
  • connection part 12a of the conductor 12 and the connection part 14a of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12a and 14a.
  • connection part 12a of the conductor 12 and the connection part 14b of the conductor 14 serve as the input / output connection part and the detection connection part, and the measuring instrument 16 capable of measuring the voltage between the detection connection parts 12a and 14b is provided. Connected.
  • the proportionality constant is not necessarily the same as in the case of FIG. 3, but the voltage measured by the measuring instrument 16 and the current flowing between the input / output connections 12a and 14b satisfy the proportional relationship. Can be operated in the same manner as in the example of FIG.
  • FIG. 5 shows still another connection example of the current-voltage converter of the present invention.
  • one of the connection part 12a of the conductor 12 with high conductivity and the connection part 14a of the conductor 14 with low conductivity facing the connection part 12a is used as an input connection part and the other as an output connection part.
  • a current flows between the connecting portion 12a and the connecting portion 14a.
  • the connection parts 14a and 14b of the conductor 14 become a detection connection part, and the measuring device 16 which can measure a voltage is connected between these detection connection parts 14a and 14b.
  • the connecting portion 14a serves as a common terminal, while the connecting portion 12b is open and can be omitted.
  • the proportionality constant is not necessarily the same as in the case of FIG. 3, but the voltage measured by the measuring instrument 16 and the current flowing between the input / output connections 12a and 14a satisfy the proportional relationship. However, it can be operated in the same manner as in the example of FIG.
  • connection portions 12a and 12b of the conductor 12 having high conductivity serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12a and 12b.
  • connection portion 12b of the conductor 12 and the connection portion 14a of the conductor 14 serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12b and 14a.
  • FIG. 6A unlike FIG. 5, the connection portions 12a and 12b of the conductor 12 having high conductivity serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12a and 12b.
  • connection portion 12b of the conductor 12 and the connection portion 14a of the conductor 14 serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12b and 14a.
  • connection part 12b of the conductor 12 and the connection part 14b of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12b and 14b.
  • connection part 12a of the conductor 12 and the connection part 14a of the conductor 14 serve as an input / output connection part and a detection connection part, and the measuring instrument 16 capable of measuring a voltage between the detection connection parts 12a and 14a is provided.
  • the connection part 12a of the conductor 12 and the connection part 14b of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12a and 14b.
  • the proportionality constant is not necessarily the same as in the case of FIG. 3, but the voltage measured by the measuring instrument 16 and the current flowing between the input / output connections 12a and 14a satisfy the proportional relationship. However, it can be operated in the same manner as in the example of FIG.
  • FIG. 7 shows still another connection example of the current-voltage converter of the present invention.
  • one of the connection part 12a and the connection part 12b of the conductor 12 having high conductivity is used as an input connection part, and the other is used as an output connection part.
  • the current to be measured is between the connection part 12a and the connection part 12b. It comes to flow.
  • the connection parts 14a and 14b of the conductor 14 with low conductivity become a detection connection part, and the measuring instrument 16 capable of measuring the voltage is connected between the detection connection parts 14a and 14b.
  • connection portions 12a and 12b of the conductor 12 having high conductivity also serve as an input / output connection portion and a detection connection portion, and a voltage can be measured between the detection connection portions 12a and 12b.
  • a measuring instrument 16 is connected.
  • the connection part 12b of the conductor 12 and the connection part 14a of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12b and 14a.
  • connection part 12b of the conductor 12 and the connection part 14b of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12b and 14b.
  • connection part 12a of the conductor 12 and the connection part 14a of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12a and 14a.
  • connection part 12a of the conductor 12 and the connection part 14b of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12a and 14b.
  • the proportionality constant is not necessarily the same as in FIG. 3, but the voltage measured by the measuring instrument 16 and the current flowing between the input / output connections 12 a and 12 b have a proportional relationship. It does not change that it is satisfied, and it can be operated in the same manner as in the example of FIG.
  • FIG. 9 shows still another connection example of the current-voltage converter of the present invention.
  • one of the connection part 14a and the connection part 14b of the conductor 14 with low conductivity is used as an input connection part, and the other is used as an output connection part.
  • the current to be measured is between the connection part 14a and the connection part 14b. It comes to flow.
  • the connection portions 14a and 14b of the conductor 14 also serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 14a and 14b.
  • connection portions 12a and 12b of the conductor 12 having high conductivity serve as detection connection portions, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12a and 12b.
  • connection part 12b of the conductor 12 and the connection part 14a of the conductor 14 serve as a detection connection part, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12b and 14a.
  • connection part 12b of the conductor 12 and the connection part 14b of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12b and 14b.
  • connection portion 12a of the conductor 12 and the connection portion 14a of the conductor 14 serve as an input / output connection portion and a detection connection portion, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection portions 12a and 14a.
  • connection part 12a of the conductor 12 and the connection part 14b of the conductor 14 serve as detection connection parts, and a measuring instrument 16 capable of measuring a voltage is connected between the detection connection parts 12a and 14b.
  • the proportionality constant is not necessarily the same as in FIG. 3, but the voltage measured by the measuring instrument 16 and the current flowing between the input / output connections 12 a and 12 b have a proportional relationship. It does not change that it is satisfied, and it can be operated in the same manner as in the example of FIG.
  • the current-voltage converter shown in FIGS. 3 and 4 having a total length of about 200 mm is formed using a conductor having a cross-sectional area of 5 mm ⁇ 20 mm (thickness: 5 mm, width: 20 mm), with the conductor 12 being copper and the conductor 14 being aluminum. Then, when a 5 A alternating current was passed between the input / output connection parts 12a and 14b and the voltage between the detection connection parts when the detection connection part was set to the following was measured, it was as follows.
  • the resistance value is in the range of 0.2 to 3.2 m ⁇ , which is a value suitable for voltage measurement. If a device with a resistance in this range is made up of copper-only or aluminum-only conductors with the same cross-sectional area, the conductivity of these conductors is very high and the resistance is very low. The total length of about 100 times is required, and the apparatus becomes very large, making it difficult to configure with only the resistance component, or if it is to be configured with the same total length, the cross-sectional area must be reduced to 1/100. The current cannot flow.
  • the input / output connection portion and the detection connection portion are also used. Therefore, at first glance, the configuration is not different from the case where only the conductor 12 or the conductor 14 is configured. However, if only the conductor 12 or only the conductor 14 is to be configured, since the conductivity is very high and the resistance is very small as described above, it is not possible to generate a measurable voltage drop. Have difficulty. However, by placing conductors of different conductivity adjacent to each other, a current wrap around the interface between the two conductors occurs, which causes a voltage drop between the two points, resulting in a measurable voltage drop. Can be generated.
  • conductor 12 is copper and conductor 14 is aluminum and has a cross-sectional area of 5 mm ⁇ 20 mm (thickness: 5 mm, width: 20 mm).
  • the current-voltage converter shown in the figure was constructed, and a 10 A AC current was passed through the input / output connection, and the voltage between the detection connections when the detection connection was set to the following was measured.
  • the current-voltage converter of the present invention can secure a cross-sectional area for flowing a large current and keep the overall size very small by arranging two different conductors adjacent to each other. Can do.
  • a current of up to 100 kA can be passed.
  • the adjacent arrangement of the two conductors 12 and 14 in addition to the above-described joining, as shown in FIG. 11, they can be overlapped, that is, simply contacted.
  • pressure holding means (not shown) may be provided on the boundary surface 13 so that the contact pressure is kept constant.
  • the conductors 12 and 14 are used as the pressure holding means.
  • the proportionality constant When the overlapping area, that is, the area of the boundary surface 13 is changed, the proportionality constant also changes. Therefore, as shown in FIG. 12, by configuring the conductors 12 and 14 to be slidable relative to each other, the proportionality constant can be arbitrarily set. Can also be adjusted.
  • engagement portions 17 and 18 that can be engaged with each other are provided at portions corresponding to the boundary surfaces 13 of the respective conductors 12 and 14. It is possible to reinforce the tensile strength by engaging the portions 17 and 18 with each other.
  • the conductors 12 and 14 in addition to the flat plate shape as described above, the conductors 12 and 14 have a rod shape as shown in FIGS. 14A and 14B, or a solid shape as shown in FIGS. 15 and 16. Is also possible.
  • the thin conductors 12 and 14 are joined at the boundary surface 13 and then rounded to form a three-dimensional shape.
  • the conductors 12 and 14 are produced in the form of a four-legged desk, and the top surfaces of the conductors 12 and 14 are joined as a boundary surface 13.
  • connection portion selected from the corresponding connection portions 12a to 12d and 14a to 14d is used as the input connection portion, and the connection portions 14a to 14d and 12a to 12d corresponding to the legs of the other conductors 14 and 12 are selected.
  • the connected portion is used as an output connecting portion, a current to be measured is passed between the input connecting portion and the output connecting portion, and any two pairs of connecting portions selected from the connecting portions 12a to 12d and 14a to 14d are connected.
  • the current to be measured can be measured by measuring the voltage between the two detection connection portions with the measuring instrument 16 as the detection connection portion.
  • FIG. 17 shows a current voltage of the present invention for measuring a load current in a basic circuit that uses a semiconductor element in a three-phase power supply circuit and controls the phase to make the three-phase circuit a direct current and supply it to a load (for example, a motor).
  • a load for example, a motor
  • the converter 10 is connected in series to a load circuit. Thereby, distortion, fluctuation, direct current component, high frequency component and the like of the load current can be measured and observed as voltage waveforms.
  • the current-voltage converter 10 when measuring a current to be measured in the circuit network, is: Since it is strong against vibration and the frequency measurement range includes a relatively high band, extremely reliable measurement can be performed. Similarly, it is also effective in a multiphase power supply circuit used for a marine vessel having a large vibration.
  • FIG. 18A is an example in which the detection connection portion of the current-voltage converter 10 is connected to the measuring device 26 capable of measuring the voltage via the photocoupler 20.
  • the light emitting diode 22 of the photocoupler 20 is connected between the detection connection portions of the current-voltage converter 10, the light from the light emitting diode 22 is received by the light receiving element 24 of the photocoupler 20, and the change of the current flowing through the light receiving element 24 is changed.
  • Measurement is performed by a measuring instrument 26 including a voltmeter, an oscilloscope, or an A / D converter and including a microprocessor.
  • two photocouplers 20 are connected in parallel between the detection connection portions so that the light emitting diodes 22 are opposite to each other in the forward direction. Then, a change in the current flowing through the light receiving element 24 of each photocoupler 20 is measured by a measuring instrument 26 including a voltmeter, an oscilloscope, or an A / D converter and including a microprocessor.
  • FIG. 18C it is possible to measure the current to be measured at a long distance using an optical cable 28 between the light emitting diode 22 and the light receiving element 24.
  • This example has an advantage that measurement can be performed safely particularly in measurement in high-voltage equipment.
  • FIG. 18D when the current to be measured is small and the voltage generated between the detection connection portions of the current-voltage converter 10 is small, it is possible to provide an amplifier 30 to amplify the voltage and measure it. It is. Similarly, in the example of FIGS. 18A and 18B, the amplifier 30 can be similarly provided.
  • the transmitter 40, the transmission antenna 42, the reception antenna 44, and the receiver 46 are included as measuring instruments that can measure the voltage.
  • the voltage generated between the detection connection parts is subjected to voltage / frequency conversion, or the voltage is modulated by the transmitter 40, and is transmitted by radio waves from the transmission antenna 42, and is received by the reception antenna 44 and received.
  • By performing signal processing with the machine 46 it is possible to measure the measured current remotely.
  • the current-voltage converter 10 of the present invention can be connected in series to each power line with respect to a three-phase alternating current, and detection of each current-voltage converter 10 connected in series to each power line.
  • the voltage generated between the connecting portions is measured by the digital measuring instrument 50, then input to the logic circuit 52, converted into a current, and then the currents are added and / or compared, whereby A of the three-phase alternating current is obtained. It is possible to detect that a leakage has occurred in any of the power lines of B, C, and C phases. As a result, a leakage detecting function can be provided, and a small and easily configured leakage detector can be realized.
  • the current-voltage converter 10 of the present invention is connected to the measurement of each current I 1 , I 2 , I 3.
  • the voltage generated between the detection connection portions of each current-voltage converter 10 is converted into a current by a measuring instrument 54 including an A / D converter 54-1, an arithmetic processing section 54-2, and a display 54-3.
  • a measuring instrument 54 including an A / D converter 54-1, an arithmetic processing section 54-2, and a display 54-3.
  • a nanosecond partial discharge pulse can be obtained by using the current-voltage converter 10 of the present invention for each detection impedance of a balanced detection circuit used for suppressing external noise in the partial discharge detection circuit. Current can be measured.
  • the sample Cx generates a partial discharge at a certain voltage or higher.
  • Reference numeral 56 denotes a measuring instrument such as an oscilloscope including an arithmetic unit.
  • Reference numeral 56 denotes a measuring instrument such as an oscilloscope including an arithmetic unit.
  • connection part 12a of the conductor 12 was used as an input connection part
  • connection part 14b of the conductor 14 was used as an output connection part
  • connection parts 14a and 14b of the conductor 14 were used as detection connection parts.
  • a current to be measured was passed between the input connection portion 12a and the output connection portion 14b, and the voltage between the detection connection portions 14a and 14b was measured.
  • the current-voltage converter 10 can measure a large current to be measured, and is configured to be robust, resistant to vibration, highly reliable, wide in frequency band, lightweight, and compact. Therefore, it is suitable for placement in a limited space such as an electric railway, a magnetic levitation railway (linear motor car), and an electric vehicle. Alternatively, a substation supplying electric power to the electric railway supplies a large current of the sum of the railway vehicles. If the current-voltage converter 10 according to the present invention is used, the current to be measured, that is, the total current is measured. Can be measured easily.
  • the current-voltage converter 10 is used to measure currents in electrical circuits such as electrical engineering, communication engineering, control engineering, robotics, railways, aircraft, ships, and medical engineering. Applicable. Specifically, current measurement of railway vehicles, current measurement in complex multipurpose buildings, current measurement of buses in substations, motors of rolling mills, drive current measurement in electric vehicles, measurement of lightning current, measurement of line current of power transmission lines Suitable for current measurement in switching stations. Further, the current-voltage converter 10 is composed only of a conductor, and since the phase difference between the current to be measured and the measurement voltage is almost zero, it can be applied as a trigger signal device.
  • the current-voltage converter 10 of the present invention has a wide frequency band, it is suitable for analysis of a transient current change (for example, a pulsed current due to switching), and deterioration of an insulating material used in a power device or the like. It can be used to elucidate the mechanism.
  • a transient current change for example, a pulsed current due to switching
  • deterioration of an insulating material used in a power device or the like It can be used to elucidate the mechanism.
  • the measurement of power flow will play an increasingly important role for each large and small consumer (including ordinary households).
  • the measurement of each load current is extremely important in controlling the flexibility of power
  • the current-voltage converter 10 of the present invention is robust, reliable, has no moving parts, and has a wide frequency band. Suitable for use.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

 被測定回路に直列に接続されるものでありながら、従来のような危険性がなく、且つ、設置面積が小さくてよく小型化することができ、直流・交流に拘わらず使用することができ、大電流も測定することができると共にパルス性電流も応答性よく測定することができる電流電圧変換器を提供する。 境界面(13)を挟んで隣接して配置された導電率の異なる2つの導体(12,14)を有し、2つの導体(12、14)には、被測定回路に直列に接続されて計測するべき被測定電流がそれらの間を流れる2つの入出力接続部(12a、14b)と、電圧を計測可能な計測器16が接続される2つの検出接続部(14a、14b)とが設けられる。計測器(16)で2つの検出接続部(14a、14b)間の電圧が計測可能となっており、該電圧が前記被測定電流と比例関係を持つ。

Description

電流電圧変換器
 本発明は、被測定回路を流れる被測定電流を計測するために、被測定回路に直列に接続されると共に被測定電流を電圧に変換する電流電圧変換器であって、該電圧を計測することで被測定電流を求めることを可能にする電流電圧変換器に関する。
 従来、送配電線、電力機器、制御機器、情報通信機器、計測機器等の状態監視や計測のために、被測定回路の被測定電流を計測する電流計測機器としては、被測定電流の周波数特性に応じて、様々な電流計が用いられている。
 例えば、直流の場合、可動コイル型電流計が一般的に知られており、交流の場合、可動鉄片型、整流型、熱電対型電流計などが一般的に知られている。これらは、被測定回路に直列に接続されて被測定電流の計測を行うものである。
 また、送電線、配電線等の電流を測定する場合には、電圧が高電圧になるので、変流器(CT)が用いられている。この場合の基本回路を図26に示す。変流器は、被測定回路に設けられる一次側コイルと二次側コイルとを有し、一次側コイルの巻き数と二次側コイル巻き数との比率と二次側電流計の指示値によって一次電流である被測定電流を計測するようになっている。この場合、内部鉄心の磁気飽和のため周波数の上限が1kHzほどであるため、高周波領域の測定には不適当である。また、大型でかつ使用電圧との関係で安全離隔距離が必要なため、設置に際し、広い設置面積を必要とするという問題がある。
 また以上のように被測定回路に直列に計測機器を接続する場合、課電中(電圧印加中)に計測機器を取り外すことは、両端に過電圧またはアーク放電あるいは双方が発生し極めて危険であり被測定回路に支障をきたすことになり、且つこの危険を回避するための設備費用が高額であるため、通常、計測機器は据え付けの状態で使用されている。しかしながら、計測機器に故障が発生した場合には、計測機器の両端に高電圧が印加することになるので、依然として危険であるという問題がある。
 一方、被測定回路に対して非接触で測定を行うものとしては、ロゴスキーコイルが広く用いられている。これは、積分回路、オシロスコープ、測定用ケーブルなどの付属装置が必要となり、最大ピーク電流も被測定回路の周波数特性に依存するという問題がある。
 また、パルス性電流を測定する場合、電磁結合を利用した素子(カーレントプローブなど)が広く用いられている。
 電磁結合を利用した電流計測機器としては、被測定電流の流れる導体を検出素子のコイル内の内側に挿入したものがあり、被測定電流の流れる導体から生じる磁場の変化を外側のコイルで検出するようになっている。しかしながら、導体の大きさ、形状によってコイル内に挿入することの困難を生じる場合がある。
 この困難さを解消したものとして、図27に示すように、被測定電流の流れる導体を開閉式のバーで挟み込んだクランプ式の電流計が知られている。これは、被測定電流によって発生する磁界をバーに内蔵されているコイルと高透磁率の部材で検出し、本体内部回路で計測し電流を表示するものであり、携帯の用途で広く用いられている。しかしながら、大電流を計測する場合、被測定電流の流れる導体は大きく、かつ導体の形状が多種多様であるため、クランプ式の電流計の製作は困難であるという問題がある。
 さらに、各電流計測計器はそれぞれに固有の周波数特性があり、電磁誘導式の場合、最大200MHz位しか使えない。
 このように従来の電流計測機器は、その種類に応じて以上の諸問題を抱えており、さらには、各用途によって広い設置面積の必要性、被測定電流の流れている部材の形状および寸法によって測定の困難さを生じるという問題があり、機器の小型化が求められている。
 本発明はかかる従来の課題に鑑みなされたもので、被測定回路に直列に接続されるものでありながら、従来のような危険性がなく、且つ、設置面積が小さくてよく小型化することができ、直流・交流に拘わらず使用することができ、大電流も測定することができると共にパルス性電流も応答性よく測定することができる電流電圧変換器を提供することを本発明の目的とする。
 上記の課題を解決するために、本発明は、被測定回路に対して直列に接続される電流電圧変換器であって、
 境界面を挟んで隣接して配置された導電率の異なる2つの導体を有し、該2つの導体には、被測定回路に接続されて計測するべき被測定電流がそれらの間を流れる2つの入出力接続部と、電圧を計測可能な計測器が接続される2つの検出接続部とが設けられており、
 前記2つの入出力接続部は、前記導体内の異なる任意の2点であり、
 前記2つの検出接続部は、前記導体内の異なる任意の2点であり、
 前記2つの入出力接続部間の抵抗は、前記計測器の入力インピーダンスよりも小さく、前記計測器によって前記2つの検出接続部間の電圧が計測可能となっており、該電圧が前記被測定電流と比例関係を持つ、ことを特徴とする。
 本発明によれば、導電率の異なる2つの導体を隣接して配置することによって、2つの入出力接続部となる2点間及び2つの検出接続部となる2点間には、計測可能な電圧降下が発生し、且つ、それらの電圧は比例関係にあるために、2つの検出接続部間で計測された電圧から被測定電流を計測することができる。
 本発明によれば、構成が簡単で可動部分もなく、堅牢で信頼性があるために、安全であり、大きな設置面積を要せずに小型に構成することができる。
 また、導体を使用することで、ほぼ抵抗成分のみで、電圧と電流との位相差はほぼ零として扱うことができるので、周波数依存性も少なく、周波数領域が直流から高周波まで、被測定電流をほとんど減衰なしで計測でき、パルス性電流も解析することができる。
本発明の実施形態に係る電流電圧変換器の主要部を表す平面図である。 図1の電流電圧変換器の斜視図である。 (a)は本発明の電流電圧変換器の一つの接続例を表す平面図、(b)は被測定電流の流れを表す平面図、(c)は等価回路である。 本発明の電流電圧変換器の別の接続例を表す平面図である。 本発明の電流電圧変換器の別の接続例を表す平面図である。 本発明の電流電圧変換器の別の接続例を表す平面図である。 本発明の電流電圧変換器の別の接続例を表す平面図である。 本発明の電流電圧変換器の別の接続例を表す平面図である。 (a)は本発明の電流電圧変換器のさらに別の接続例を表す平面図、(b)は被測定電流の流れを表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 (a)は本発明の電流電圧変換器のさらに別の接続例を表す平面図、(b)は被測定電流の流れを表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 (a)は本発明による電流電圧変換器の他の実施形態を表す平面図、(b)は、その正面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 本発明の電流電圧変換器のさらに別の接続例を表す平面図である。 (a)は本発明による電流電圧変換器の他の実施形態を表す平面図、(b)はその正面図である。 図11の電流電圧変換器において、境界面の面積を可変とした場合を表す平面図である。 (a)は本発明による電流電圧変換器の他の実施形態を表す分解平面図、(b)は平面図である。 本発明による電流電圧変換器の他の実施形態を表す斜視図である。 本発明による電流電圧変換器の他の実施形態を表す斜視図である。 本発明による電流電圧変換器の他の実施形態を表す斜視図である。 本発明による電流電圧変換器の他の実施形態を表す斜視図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明による電流電圧変換器を用いた応用例を表す図である。 本発明の実施例で用いた電流電圧変換器の寸法を表す斜視図である。 実施例の回路構成を表す回路図である。 被測定電流と計測電圧との関係を表すグラフである。 従来の電流測定を行う変流器の構成を表す図である。 従来のクランプ式電流計の構成を表す図である。
 以下、図面を用いて本発明の実施形態を説明する。
 図1及び図2は、本発明の実施形態に係る電流電圧変換器10の主要部の構成を表している。図において、電流電圧変換器10は、導電率の異なる2つの導体12(導電率ρ1),14(導電率ρ2)を有している。2つの導体12、14は、この例では、平面視で矩形形状をなし、肉厚に対して平面寸法が大きい平板状となっており、それらの一辺が隣接した境界面13となり、互いの境界面13を挟んで隣接して配置されている。
 そして、各導体12、14には、境界面13に平行な方向において離間した位置に、接続部12a、12b、14a、14bが設けられている。接続部の数は、図示した例では、2つずつとなっているが、これに限るものではなく、少なくとも1つあればよく、または3つ以上あってもよく、後述のように、適した接続部を選択して使用するようにしてもよい。また、接続部の配置も、図示した例に限定されるものではないが、この例では、矩形形状の導体12、14の本体の両端部に各接続部が形成されている。また、この例では、矩形形状の導体12,14の本体の両端部から接続部が延設されるようになっているが、これに限るものではなく、必ずしも延設部として設けずに、導体12,14の本体の一部を接続部とすることも可能である。
 2つの導体12、14は、板状またはブロック状材料を所定の形に切断または切削することで作製することができ、またはエッチングや蒸着によって作製することも可能である。また、2つの導体12、14としては、導電率が比較的高いものを用いることが、ジュール熱による損失を防ぐために好ましく、一例として、2つの導体12、14の一方を銅とし、他方をアルミニウムとした2つの異種金属を使用することができる。
 これら導体12、14は、接合によって隣接配置することができ、接合方法としては、圧接接合が好ましく、さらに2つの導体に圧力をかけた状態で境界面に大電流を流す処理を行うとよい。これにより、合金層の除去ができ、境界面を一様な状態にすることが可能となり、境界面における機械的強度の低下を防ぐことができる。
 以上の接続部12a、12b、14a、14bのいずれかが入力接続部、出力接続部、2つの検出接続部となり、これら接続部は、互いに異なる位置にある入力接続部と出力接続部と、互いに異なる位置にある2つの検出接続部とを、任意に選択して接続可能である。但し、入出力接続部と2つの検出接続部は兼用することも可能である。
 図3に、本発明の電流電圧変換器の一つの接続例を示す。この例では、導電率の高い導体12の接続部12a及び接続部12aに対して斜め向かいにあって導電率の低い導体14の接続部14bのいずれか一方を入力接続部、他方を出力接続部としており、被測定電流が接続部12aと接続部14bとの間を流れるようになっている。そして、導体14の接続部14a、14bが検出接続部となり、この検出接続部14a、14b間に電圧を計測可能な計測器(オシロスコープ、A/D変換器を含みマイクロプロセッサを含んだ計測器等:以下同じ)16が接続される。この場合、接続部14bは共通端子となる一方で、接続部12bは開放となっており省略することも可能である。
 計測器16の入力インピーダンスは、入出力接続部12a、14b間の抵抗(1Ω未満)に比較して、十分大きくなっている。
 計測器16で計測される検出接続部14a、14b間の電圧は、入力接続部12aと出力接続部14aとを流れる電流に比例するので、該電圧を計測することで、被測定電流を計測することができる。
 図25は、被測定電流(交流電流)と計測器16で計測される電圧との関係を表すグラフであり、両者の間には、比例関係が成り立つことが分かる。図25は交流電流の場合であるが、直流電流においても、同様な比例関係が成り立つ。また、電圧が、電流(A)に対して10-3のオーダ(mV)で得られるために、被測定電流が大電流であったとしても、計測器16でその10-3のオーダの電圧として計測することができるようになる。
 このように、導電率の高い導体を使用することで損失がほとんどなく、しかしながら境界面13を設けることで、本来であればほとんど電位差が発生しない筈の導体の2点間に、計測可能な電圧を発生させることが可能になる。そして、その電圧が被測定電流と比例関係にあるので、予めその比例定数を求めておくことで、計測器16の計測値と比例定数から被測定電流を算出し計測できるようになる。2つの導体間で発生する電圧は2つの導体間のフェルミ準位の差に起因するものと推測される。図3(c)は電流電圧変換器10の等価回路を表す。この抵抗rおよび抵抗rは使用する導体12、14によって決まるものである。
 導体を使用することで、ほぼ抵抗成分のみで、電圧と電流との位相差はほぼ零として扱うことができるので、周波数依存性も少なく、周波数領域が直流から高周波まで、被測定電流をほとんど減衰なしで計測でき、パルス性電流も解析することができる。
 この電流電圧変換器10は、被測定回路に直列に接続されるものであるが、構成が簡単で可動部分もなく、堅牢で信頼性があるために、安全であり、大きな設置面積を要せずに小型に構成することができる。
 図4A~図4Eは、本発明の電流電圧変換器の別の接続例を示す。図4Aでは、図3と異なり、導電率の高い導体12の接続部12a、12bが検出接続部となり、この検出接続部12a、12b間に電圧を計測可能な計測器16が接続される。図4Bでは、導体12の接続部12bと導体14の接続部14aが検出接続部となり、この検出接続部12b、14a間に電圧を計測可能な計測器16が接続される。図4Cでは、導体12の接続部12bと導体14の接続部14bが検出接続部となり、この検出接続部12b、14b間に電圧を計測可能な計測器16が接続される。図4Dでは、導体12の接続部12aと導体14の接続部14aが検出接続部となり、この検出接続部12a、14a間に電圧を計測可能な計測器16が接続される。図4Eでは、導体12の接続部12aと導体14の接続部14bが入出力接続部と検出接続部とを兼ねており、この検出接続部12a、14b間に電圧を計測可能な計測器16が接続される。
 いずれも場合も、比例定数は、図3の場合と必ずしも同じではないが、計測器16で計測される電圧と、入出力接続部12a、14b間を流れる電流とが比例関係を満足することには変わりなく、図3の例の場合と同様に作用させることができる。
 図5は、本発明の電流電圧変換器のさらに別の接続例を示す。この例では、導電率の高い導体12の接続部12a及び接続部12aに対向した導電率の低い導体14の接続部14aのいずれか一方を入力接続部、他方を出力接続部としており、被測定電流が接続部12aと接続部14aとの間を流れるようになっている。そして、導体14の接続部14a、14bが検出接続部となり、この検出接続部14a、14b間に電圧を計測可能な計測器16が接続される。この場合、接続部14aは共通端子となる一方で、接続部12bは開放となっており省略することも可能である。
 この場合でも、比例定数は図3の場合と必ずしも同じではないが、計測器16で計測される電圧と、入出力接続部12a、14a間を流れる電流とが比例関係を満足することには変わりなく、図3の例の場合と同様に作用させることができる。
 図6A~図6Eは、本発明の電流電圧変換器のさらに別の接続例を示す。図6Aでは、図5と異なり、導電率の高い導体12の接続部12a、12bが検出接続部となり、この検出接続部12a、12b間に電圧を計測可能な計測器16が接続される。図6Bでは、導体12の接続部12bと導体14の接続部14aが検出接続部となり、この検出接続部12b、14a間に電圧を計測可能な計測器16が接続される。図6Cでは、導体12の接続部12bと導体14の接続部14bが検出接続部となり、この検出接続部12b、14b間に電圧を計測可能な計測器16が接続される。図6Dでは、導体12の接続部12aと導体14の接続部14aが入出力接続部と検出接続部とを兼ねており、この検出接続部12a、14a間に電圧を計測可能な計測器16が接続される。図6Eでは、導体12の接続部12aと導体14の接続部14bが検出接続部となり、この検出接続部12a、14b間に電圧を計測可能な計測器16が接続される。
 この場合でも、比例定数は図3の場合と必ずしも同じではないが、計測器16で計測される電圧と、入出力接続部12a、14a間を流れる電流とが比例関係を満足することには変わりなく、図3の例の場合と同様に作用させることができる。
 図7は、本発明の電流電圧変換器のさらに別の接続例を示す。この例では、導電率の高い導体12の接続部12a及び接続部12bのいずれか一方を入力接続部、他方を出力接続部としており、被測定電流が接続部12aと接続部12bとの間を流れるようになっている。そして、導電率の低い導体14の接続部14a、14bが検出接続部となり、この検出接続部14a、14b間に電圧を計測可能な計測器16が接続される。
 図8A~図8Eは、本発明の電流電圧変換器のさらに別の接続例を示す。図8Aでは、図7と異なり、導電率の高い導体12の接続部12a、12bが入出力接続部と検出接続部とを兼ねており、この検出接続部12a、12b間に電圧を計測可能な計測器16が接続される。図8Bでは、導体12の接続部12bと導体14の接続部14aが検出接続部となり、この検出接続部12b、14a間に電圧を計測可能な計測器16が接続される。図8Cでは、導体12の接続部12bと導体14の接続部14bが検出接続部となり、この検出接続部12b、14b間に電圧を計測可能な計測器16が接続される。図8Dでは、導体12の接続部12aと導体14の接続部14aが検出接続部となり、この検出接続部12a、14a間に電圧を計測可能な計測器16が接続される。図8Eでは、導体12の接続部12aと導体14の接続部14bが検出接続部となり、この検出接続部12a、14b間に電圧を計測可能な計測器16が接続される。
 これら図7及び図8の場合でも、比例定数は図3の場合と必ずしも同じではないが、計測器16で計測される電圧と、入出力接続部12a、12b間を流れる電流とが比例関係を満足することには変わりなく、図3の例の場合と同様に作用させることができる。
 図9は、本発明の電流電圧変換器のさらに別の接続例を示す。この例では、導電率の低い導体14の接続部14a及び接続部14bのいずれか一方を入力接続部、他方を出力接続部としており、被測定電流が接続部14aと接続部14bとの間を流れるようになっている。そして、導体14の接続部14a、14bが検出接続部も兼ねており、この検出接続部14a、14b間に電圧を計測可能な計測器16が接続される。
 図10A~図10Eは、本発明の電流電圧変換器のさらに別の接続例を示す。図10Aでは、図9と異なり、導電率の高い導体12の接続部12a、12bが検出接続部となり、この検出接続部12a、12b間に電圧を計測可能な計測器16が接続される。図10Bでは、導体12の接続部12bと導体14の接続部14aが検出接続部となり、この検出接続部12b、14a間に電圧を計測可能な計測器16が接続される。図10Cでは、導体12の接続部12bと導体14の接続部14bが検出接続部となり、この検出接続部12b、14b間に電圧を計測可能な計測器16が接続される。図10Dでは、導体12の接続部12aと導体14の接続部14aが入出力接続部と検出接続部となり、この検出接続部12a、14a間に電圧を計測可能な計測器16が接続される。図10Eでは、導体12の接続部12aと導体14の接続部14bが検出接続部となり、この検出接続部12a、14b間に電圧を計測可能な計測器16が接続される。
 これら図9及び図10の場合でも、比例定数は図3の場合と必ずしも同じではないが、計測器16で計測される電圧と、入出力接続部12a、12b間を流れる電流とが比例関係を満足することには変わりなく、図3の例の場合と同様に作用させることができる。
 以上の構成の中から適した比例定数を示す構成を選択して、計測を容易にすることが可能である。
 本発明によれば、大電流を流すことができるにも拘わらず、非常に小型で抵抗が小さく、ほぼ抵抗成分のみを持つ電流電圧変換器とすることが可能である。導体12を銅とし、導体14をアルミニウムとして、5mm×20mm(厚み:5mm、幅:20mm)の断面積を持つ導体を用いて全長約200mmの図3及び図4に示す電流電圧変換器を構成し、入出力接続部12a、14b間に5Aの交流電流を流し、検出接続部を以下にしたときの検出接続部間の電圧を計測すると、次のようになった。
Figure JPOXMLDOC01-appb-T000001
 比例定数(=計測電圧/5A)である抵抗値は0.2~3.2mΩの範囲を示し、電圧計測に好適な範囲の値となっている。仮に、このような範囲の抵抗値を持つ装置を、同じ断面積を持つ銅のみまたはアルミニウムのみの導体で構成しようとする場合、これらの導体の導電率は非常に高く抵抗は非常に小さいことから、約100倍の全長が必要となり装置が非常に大型化し抵抗成分だけで構成することは困難となり、または、同じ全長で構成しようとすれば、断面積を1/100にする必要があり、大電流を流すことができなくなる。
 また、図8Aや図9の例では、入出力接続部と検出接続部とが兼用されており、従って、一見すると、導体12のみまたは導体14のみで構成されている場合と変わりない構成となっているが、仮に導体12のみまたは導体14のみだけで構成しようとする場合には、上述のように導電率が非常に高く抵抗が非常に小さいために、計測可能な電圧降下を発生させることは困難である。しかしながら、異なる導電率の導体を隣接して配置することによって、2つの導体の境界面を通過する電流の回り込みが発生し、これが2点間の電圧降下を引き起こすことにより、計測可能な電圧降下を発生させることができる。
 上述と同じ条件、即ち、導体12を銅とし、導体14をアルミニウムとして、5mm×20mm(厚み:5mm、幅:20mm)の断面積を持つ導体を用いて全長約200mmの図7-図10に示す電流電圧変換器を構成し、入出力接続部に10Aの交流電流を流し、検出接続部を以下にしたときの検出接続部間の電圧を計測すると、次のようになった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上表から、通常では考えられない導体内の2点において計測可能で且つ被測定電流に比例する電圧を発生させることができることが分かる。
 このように、本発明の電流電圧変換器は、2つの異なる導体を隣接して配置することで、大電流を流すための断面積を確保することができると共に全体の寸法を非常に小さく抑えることができる。本発明の電流電圧変換器では、100kAまでの電流を流すことが可能である。
 2つの導体12、14の隣接配置としては、上述の接合による他に、図11に示すように、重ね合わせ、すなわち単に接触させるだけとすることも可能である。この重ね合わせ配置を行う場合には、境界面13において、接触圧力が一定に保持されるように圧力保持手段(図示略)を設けるとよく、圧力保持手段として具体的には、導体12、14を互いに圧着するボルト、スプリングワッシャー、ナット、クランプ器材等とすることができる。
 重ね合わせる面積、即ち境界面13の面積を変化させると、比例定数も変化するので、図12に示すように、導体12、14を互いに相対的にスライド可能に構成することで、比例定数の任意の調整を可能にすることもできる。
 また、2つの導体12、14の隣接配置として図13に示すように、各導体12、14の境界面13に相当する部分に互いに係合可能な係合部17、18を設けて、係合部17、18を互いに係合させることで、引張り強さを補強するように構成することも可能である。
 導体12、14の形状としては、以上に示したような平板状とする他に、図14A、図14Bに示すような棒状形状とし、または図15及び図16に示すような立体形状とすることも可能である。図15においては、薄肉の各導体12、14を境界面13で接合した後、これを丸めて立体形状にしている。また、図16においては、各導体12,14を4本脚の机のような形態で作製して、互いの頂面を境界面13として接合し、いずれか一方の導体12、14の脚に相当する接続部12a~12d、14a~14dの中から選択された接続部を入力接続部とし、他方の導体14、12の脚に相当する接続部14a~14d、12a~12dの中から選択された接続部を出力接続部とし、入力接続部及び出力接続部間に被測定電流を流し、また、接続部12a~12d、14a~14dの中から選択された任意の2つの接続部のペアを検出接続部として、2つの検出接続部の間の電圧を計測器16で計測することで、被測定電流を測定できる。
 次に、本発明の電流電圧変換器を用いた様々な応用について説明する。
 図17は、三相電源回路において半導体素子を用い、位相制御して三相回路を直流にして負荷(例えば、電動機)に供給する基本回路において、負荷電流を計測するために本発明の電流電圧変換器10を負荷回路に直列に接続した例である。これによって、負荷電流の歪、変動、直流分、高周波分などを電圧波形として測定及び観測できる。
 図17の例では、三相電源としたが、航空機などに用いられているような多相電源回路において、その回路網における被測定電流を計測する場合、本発明による電流電圧変換器10は、振動に対して強固で、周波数測定範囲が比較的高帯域までを含むため、信頼性が極めて高い計測を行うことができる。同様に、振動の大きい海上の船舶などに用いられる多相電源回路においても有効である。
 さらに、図18Aは、電流電圧変換器10の検出接続部間をフォトカプラ20を介して電圧を計測可能な計測器26に接続した例である。フォトカプラ20の発光ダイオード22を電流電圧変換器10の検出接続部間に接続し、発光ダイオード22からの光をフォトカプラ20の受光素子24で受光し、その受光素子24に流れる電流の変化を、電圧計、オシロスコープ、またはA/D変換器を含みマイクロプロセッサを含んだ計測器26で計測する。
 または、図18Bに示すように検出接続部間に2つのフォトカプラ20を並列に接続し、互いの発光ダイオード22が正方向と逆方向になるようにする。そして、それぞれのフォトカプラ20の受光素子24に流れる電流の変化を、電圧計、オシロスコープ、またはA/D変換器を含みマイクロプロセッサを含んだ計測器26で計測する。
 または、図18Cに示すように、発光ダイオード22と受光素子24の間に光ケーブル28を用いて、遠距離での被測定電流の計測をすることも可能である。この例は、特に、高電圧機器における計測において、安全に計測できる利点がある。
 または、図18Dに示すように、被測定電流が小さく、電流電圧変換器10の検出接続部間に発生する電圧が小さいときには、その電圧を増幅させるために増幅器30を設け、計測することも可能である。同様に、図18A、図18Bの例においても同様に増幅器30を設けることも可能である。
 または、図18Eに示すように、電圧を計測可能な計測器として、送信機40と、送信アンテナ42と、受信アンテナ44と、受信機46とを含み、送信機40で電流電圧変換器10の検出接続部間に発生する電圧を電圧/周波数変換をし、または、送信機40で電圧を変調して、それを送信アンテナ42から電波で送信し、これを受信アンテナ44で受信して、受信機46で信号処理することにより、遠隔での被測定電流の測定を行うことが可能である。
 または、図19に示すように、三相交流電流に対し、それぞれの電力線に本発明の電流電圧変換器10を直列接続することができ、各電力線に直列接続した各電流電圧変換器10の検出接続部間に発生する電圧をディジタル測定器50で計測した後、論理回路52に入力して、電流に変換した後、それぞれの電流の加算及び/又は比較することで、3相交流電流のA、B、C相のうちのいずれかの電力線に漏電が発生していることを検出することができる。これによって、漏電検出機能を持たせることができ、小型で簡単に構成可能な漏電検出器を実現できる。
 または、図20に示すように、交流電流計を3台用いる三電流計法による電力計測において、各電流I1、I2、I3の計測に、本発明の電流電圧変換器10を接続することができ、各電流電圧変換器10の検出接続部間に発生する電圧をA/D変換器54-1、演算処理部54-2及び表示器54-3を含む計測器54で電流に変換して、負荷の消費電力を演算することができる。
 または、図21に示すように、部分放電検出回路において外部雑音を抑制するために用いられる平衡検出回路の各検出インピーダンスに本発明の電流電圧変換器10を用いることで、ナノ秒の部分放電パルス電流の計測が可能である。試料Cxは、ある電圧以上で部分放電が発生するものである。符号56は、演算器を含むオシロスコープ等の計測器である。
 または、図22に示すように、本発明の電流電圧変換器10を用いて、絶縁破壊試験における放電電流の検出が可能である。符号56は、演算器を含むオシロスコープ等の計測器である。
 異なる導電率を有する導体(導体12:銅、導体14:アルミニウム)を接合させて、図23に示した寸法(単位はmm)の電流電圧変換器10を作製した。
 そして、導体12の接続部12aを入力接続部とし、導体14の接続部14bを出力接続部とし、導体14の接続部14a、14bを検出接続部とした。
 図24に示すように、商用周波交流電源を用いて、被測定電流を入力接続部12aと出力接続部14b間に流し、検出接続部14a、14b間の電圧を計測した。電流電圧変換器10の被測定電流と計測電圧との関係を図25に示す。この図25から被測定電流Ii[A]と測定電圧Vo[mV]との関係が線形で比例関係にあり、約Vo[mV]=k・Ii[A] で表示することができることが判る。ただし、kは電流電圧変換器の部材の種類、形状、寸法等で決まる比例定数となる。
 本発明による電流電圧変換器10は、大電流の被計測電流を計測することができ、且つ、堅牢で振動に強く、信頼性が高く、周波数帯域が広く、且つ軽量、小型に構成することができるため、電気鉄道、磁気浮上鉄道(リニアーモータカー)、電気自動車などの限られた空間に配置するのに好適である。または、電気鉄道に電力を供給している変電所では各鉄道車両の総和の大電流を供給しているが、本発明による電流電圧変換器10を用いれば、その被測定電流すなわち総和電流の計測を容易に測定できる。
 本発明による電流電圧変換器10は、周波数帯域が広範囲なため電気工学分野、通信工学分野、制御工学、ロボット工学、鉄道、航空機、船舶、医療工学など各分野の電気回路網における電流を計測に適用できる。具体的に、鉄道車両の電流計測、複合多目的ビルにおける電流計測、変電所の母線の電流計測、圧延機のモータ、電気自動車における駆動電流計測、雷電流の計測、送電配電線の線電流の計測、開閉所における電流計測に好適である。更に、この電流電圧変換器10は導体のみで構成されており、被測定電流と測定電圧の間における位相差がほぼ零であるため、トリガー信号の装置として応用することが可能である。
 また、本発明の電流電圧変換器10は、周波数帯域が広範囲なため、過渡的な電流変化(例えば、スイッチングによるパルス性電流)の解析に適し、電力機器などに用いられている絶縁材料の劣化機構の解明に供することができる。
 また、再生可能エネルギーの利用によるエネルギーの効率的な利用目的のためのスマートグリッドにおいて、電力の潮流の計測が益々重要な役割を果たすことになり、各大小の需要家(一般家庭も含む)の各負荷電流の計測は電力の融通性の制御において極めて重要となるが、本発明の電流電圧変換器10は、強靭で、信頼性があり、可動部分がなく、周波数帯域が広範囲なため、かかる用途に好適である。
10 電流電圧変換器
12、14 導体
13 境界面
12a~12d、14a~14d 接続部
16、26、40~46、50、54、56 計測器

Claims (1)

  1.  被測定回路に対して直列に接続される電流電圧変換器であって、
     境界面を挟んで隣接して配置された導電率の異なる2つの導体を有し、該2つの導体には、被測定回路に接続されて計測するべき被測定電流がそれらの間を流れる2つの入出力接続部と、電圧を計測可能な計測器が接続される2つの検出接続部とが設けられており、
     前記2つの入出力接続部は、前記導体内の異なる任意の2点であり、
     前記2つの検出接続部は、前記導体内の異なる任意の2点であり、
     前記2つの入出力接続部間の抵抗は、前記計測器の入力インピーダンスよりも小さく、前記計測器によって前記2つの検出接続部間の電圧が計測可能となっており、該電圧が前記被測定電流と比例関係を持つ、ことを特徴とする電流電圧変換器。
PCT/JP2012/073593 2011-09-14 2012-09-14 電流電圧変換器 WO2013039191A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-200796 2011-09-14
JP2011200796A JP6030293B2 (ja) 2011-09-14 2011-09-14 電流電圧変換器

Publications (1)

Publication Number Publication Date
WO2013039191A1 true WO2013039191A1 (ja) 2013-03-21

Family

ID=47883407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073593 WO2013039191A1 (ja) 2011-09-14 2012-09-14 電流電圧変換器

Country Status (2)

Country Link
JP (1) JP6030293B2 (ja)
WO (1) WO2013039191A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654999A (zh) * 2015-01-20 2015-05-27 中国石油大学(华东) 用于防止工程车辆接近高压电线的装置和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014015805B3 (de) * 2014-10-24 2016-02-18 Isabellenhütte Heusler Gmbh & Co. Kg Widerstand, Herstellungsverfahren dafür und Verbundmaterialband zum Herstellen des Widerstands

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378272U (ja) * 1989-11-30 1991-08-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378272U (ja) * 1989-11-30 1991-08-07

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAAKI KANDO ET AL.: "Ishu Kinzoku ni yoru Bunryuki no Kaihatsu", NATIONAL CONVENTION RECORD I.E.E. JAPAN, vol. 2011, no. 1, 5 March 2011 (2011-03-05), pages 151 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654999A (zh) * 2015-01-20 2015-05-27 中国石油大学(华东) 用于防止工程车辆接近高压电线的装置和方法

Also Published As

Publication number Publication date
JP6030293B2 (ja) 2016-11-24
JP2013061282A (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
EP2965096B1 (en) Method for sensing current in a conductor
US20140167786A1 (en) Current Sensor For Power Measurement Applications
US20160131682A1 (en) Current sensor arrangement
US9995772B2 (en) Current measurement device and current calculation method
CN103185825A (zh) 电流监控装置
Raven Experimental measurements of the skin effect and internal inductance at low frequencies
US20160124025A1 (en) Current sensor arrangement with measuring coils
JP6030293B2 (ja) 電流電圧変換器
CN101650383A (zh) 大电流传感器
EP2884503A1 (en) Power induction device and method for implementing shunting measurement through inductive winding
US11515801B2 (en) Shield in a power conversion device
CN117590161A (zh) 用于测量多个插座上的负载的绝缘状态的电气装置和方法
CN202471801U (zh) 电流监控装置
CN106841808B (zh) 中频变压器绕组交流电阻的辅助绕组测量方法
US6566895B2 (en) Unbalanced three phase delta power measurement apparatus and method
US11585836B2 (en) Current sensing in a wireless power transfer system
Sanoh et al. A calibration method for a commercial coaxial shunt at high pulse current
CN205246705U (zh) 一种用于电力变压器自动化检测的分线夹具
US20230105687A1 (en) Current sensing in a wireless power transfer system
JP2015091001A (ja) 分電盤
CN203595734U (zh) 一种10kV直接接入式高压电能表
Bae et al. ICT Diagnosis Technology of the Electrical Equipment Using Magnetic Energy Harvesting (MEH)
JP6127349B2 (ja) 分電盤
US20230194579A1 (en) Current Sampling System and Method for Magnetic Component, Magnetic Component, and Power Converter
Ali et al. Design & implementation of a 3-phase energy efficient switchable transformer controller using the PIC18F8720 microcontroller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831052

Country of ref document: EP

Kind code of ref document: A1