WO2013039153A1 - Respiratory protective tool provided with electric fan - Google Patents

Respiratory protective tool provided with electric fan Download PDF

Info

Publication number
WO2013039153A1
WO2013039153A1 PCT/JP2012/073482 JP2012073482W WO2013039153A1 WO 2013039153 A1 WO2013039153 A1 WO 2013039153A1 JP 2012073482 W JP2012073482 W JP 2012073482W WO 2013039153 A1 WO2013039153 A1 WO 2013039153A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric fan
sensor
fan according
pressure
respiration sensor
Prior art date
Application number
PCT/JP2012/073482
Other languages
French (fr)
Japanese (ja)
Inventor
幸典 三崎
宏行 藤井
智博 大西
聡一郎 田井
Original Assignee
独立行政法人国立高等専門学校機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人国立高等専門学校機構 filed Critical 独立行政法人国立高等専門学校機構
Publication of WO2013039153A1 publication Critical patent/WO2013039153A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/006Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort with pumps for forced ventilation

Definitions

  • the present invention relates to a respirator with a full-surface or half-surface electric fan used for the purpose of dust prevention, poisoning, and the like, and more specifically, for example, controls the operation of the electric fan according to a pressure change in the face.
  • the present invention relates to a respiratory protective device with an electric fan.
  • a dust mask In an environment where dust that is harmful to the human body is present, the user wears a dust mask and breathes air with dust removed by a filter.
  • the filter usually has a problem that the greater the purification effect, the greater the ventilation resistance.
  • the filter feels stuffy for the ventilation resistance of the filter.
  • a dust mask having a high resistance filter is provided with a blower (electric fan) that assists in breathing.
  • blower mask device that constantly supplies a certain amount of air without being linked to the breathing of the wearer is likely to wear out the filter, the pressure in the mask increases, and the resistance during exhaust (exhalation) increases, power consumption
  • a breathing-linked type blower mask device has been proposed in which the blower air volume is increased during intake while the wearer's breathing is increased, while the blower air volume is decreased during exhaust (see, for example, Patent Document 1). ).
  • This blower mask device detects the movement of the exhaust valve or intake valve with an optical sensor, controls the blower according to the signal from the sensor, stops and decelerates the blower during exhaust, and exhausts the filter, exhaust resistance and power consumption I try to suppress it.
  • Patent Document 2 proposes a breathing interlock type blower mask in which a non-optical sensor is provided on an exhaust valve.
  • the non-optical sensor include a temperature sensor, a humidity sensor, a carbon dioxide gas sensor, and an oxygen gas sensor.
  • the temperature sensor has a problem that it does not function in an environment where the temperature of the outside air is about the same as the body temperature.
  • the humidity sensor also has a problem that it does not function in an environment where the humidity of the outside air is about the same as that of a breath exhaled by a human. Gas sensors are expensive and have a problem that their circuit configuration is complicated and miniaturization is difficult.
  • Patent Document 3 proposes a respiratory monitoring device having a diaphragm covering an opening formed in a face piece, a magnet attached to the diaphragm, and a Hall element attached to the face piece facing the magnet. Since the Hall element is a magnetic sensor, even if fine dust or water droplets contained in the air in the face body are attached, the detection accuracy is unlikely to be lowered compared to the optical sensor.
  • Patent Document 1 Since the apparatus of Patent Document 1 uses an optical sensor, there is a problem such as malfunction due to external light.
  • the devices of Patent Documents 1 and 2 have a problem that the sensor is contaminated by fine dust and moisture contained in the exhaust gas, and the detection accuracy is likely to deteriorate with time, and the detection accuracy is deteriorated due to deterioration of the exhaust valve with time.
  • the device of Patent Document 3 has a problem of deterioration in accuracy over time, if not as much as that of an optical sensor, because the sensor unit is exposed to air in the face.
  • due to the structure using the diaphragm and the Hall element there are restrictions on the reduction in size and weight of the breathing detection means.
  • An object of the present invention is to provide a respirator with an electric fan that can solve the above-mentioned problems.
  • the first invention includes a face covering the nostril and mouth of the wearer, an air inlet provided with a filter, an electric fan that sends outside air into the face through the air inlet, an air outlet, a pressure measuring unit, A respiratory protective device with an electric fan comprising a control unit for controlling the number of rotations of the electric fan, wherein the pressure measuring unit deforms in response to a pressure change in the body and follows the movement of the film member
  • the respiratory protective device with an electric fan is characterized in that the control unit controls the electric fan according to an output signal from the pressure measuring unit.
  • the respiration sensor is constituted by a strain gauge.
  • the strain gauge is composed of an even number of sheets and has a function of canceling a voltage generated by heat.
  • the respiration sensor is constituted by a piezoelectric sensor.
  • the piezoelectric sensor is formed of a PVDF film.
  • a sixth invention is the fourth or fifth invention, wherein the respiration sensor has substantially the same shape and substantially the same element capacitance as the first element (A) and the first element (A). The first element (A) and the second element (B) disposed opposite to each other, and having a function of canceling a voltage generated by heat applied to the first and second elements.
  • a seventh invention is characterized in that, in any one of the first to sixth inventions, the membrane member is fixed to the face body via a fixing material made of a vibration absorbing material.
  • An eighth invention is characterized in that, in any one of the first to seventh inventions, the respiration sensor is arranged outside the membrane member.
  • a ninth invention is characterized in that, in any one of the first to eighth inventions, the respiration sensor is configured in an elongated shape having one end fixed to the membrane member and the other end fixed to the fixing member. To do.
  • a 910th invention is characterized in that, in any one of the first to ninth inventions, the control unit reduces the rotational speed of the electric fan during exhausting compared to during intake.
  • the respirator with a respiration following type electric fan provided with the new respiration detection means called a respiration sensor. Since this new respiration detection means is a respiration sensor that deforms following the movement of the membrane member, the pressure measuring unit can be made smaller and lighter. Furthermore, in the configuration in which the respiration sensor is disposed outside the membrane member, since the respiration sensor is not exposed to the air in the face body, there is an effect that it is difficult for the detection accuracy to decrease with time.
  • FIG. 1 It is a perspective view which shows the aspect of the dust mask of this invention. It is a figure which shows the pressure change in the face body in a dust mask, (a) when there is no electric fan, (b) When the electric fan which operates continuously is provided, (c) provides the electric fan which operates only at the time of intake FIG. It is a figure which shows the state of the pressure measurement part by respiration, (a) is the state at the time of exhaust, (b) is the state at the time of inhalation. (A) is a figure which shows the state of the electric charge produced when a temperature change is simultaneously given to the surface of piezoelectric film A and the back surface of piezoelectric film B, (a) is piezoelectric film A, B of the same arrangement
  • FIG. 6 is a configuration diagram of laminated structure sheets A, B, and C according to Example 2.
  • FIG. 6 is a cross-sectional view of laminated structure sheets A, B, and C according to Example 2.
  • FIG. It is a figure which shows the measurement result of the pressure change in the face body which arises by a person's breathing in the state which turned on an electric fan, (i) is the case of the comparative example 1, (ii) is the case of the sheet
  • the dust mask 1 of the present invention includes a face piece 2, an electric fan unit 3 provided at the center of the front face of the face piece 2, and a pair of exhausts provided facing the side face of the face piece 2.
  • the mouth 4, the pressure measurement unit 5, and the control unit 6 are main components.
  • the face piece 2 is formed in a size capable of covering the nostril and mouth of the face of the mask wearer.
  • the electric fan unit 3 includes a blade member and a motor, a detachable filter (filter material) provided detachably, and an intake check valve that closes during exhaust and opens during intake.
  • the exhaust port 4 includes an exhaust check valve that opens during exhaust and closes during intake. The number and positions of the exhaust ports 4 are not limited to those shown in the figure, and for example, one may be provided above or below the electric fan unit 3.
  • the pressure measurement unit 5 includes a membrane member 51, a piezoelectric sensor 52 that constitutes a respiration sensor, an air passage 53 that communicates with the internal space of the face piece 2, and fixing members 54 and 55 (FIG. 3). reference).
  • the membrane member 51 is a sheet made of a flexible material, for example, a silicon rubber sheet, which is deformed by a pressure change in the face due to breathing, and is stretched so as to expand outward during exhaust and contract inward during intake.
  • the fixing members 54 and 55 that support the membrane member 51 are made of a vibration absorbing material.
  • a soft material including an elastic body such as rubber or a cell (may be a liquid cell) such as polystyrene foam is used. Can do.
  • the piezoelectric sensor 52 is, for example, a flexible sheet-like member, and has one end fixed to the film member 51 and the other end fixed to the fixing member 55 so as to follow the movement of the film member 51. It is fixed to.
  • the piezoelectric sensor 52 is preferably disposed outside the membrane member 51 so as not to be affected by heat, moisture, dust, and the like due to the wearer's breathing. In order to prevent dust or the like outside the face from adhering to the piezoelectric sensor 52, it is preferable to cover the piezoelectric sensor 52 with a protective member (cover) in which ventilation is ensured.
  • the position of the pressure measuring unit 5 is not limited to the illustrated one, and can be installed at any location, but it is preferably installed at a location where the wind from the wearer's breathing is not directly applied. A plurality of pressure measuring units 5 may be provided.
  • the piezoelectric sensor 52 may be one that exhibits a piezo effect, such as a piezoelectric ceramic or piezoelectric ceramic thin film made of PVDF (Polyvinylidene fluoride), barium titanate, lead zirconate titanate (PZT), or the like. Is done.
  • PVDF Polyvinylidene fluoride
  • PZT lead zirconate titanate
  • fine powders of inorganic piezoelectric materials such as Pb (Zr ⁇ Ti) O 3 , PbTiO 3 , (Pb, La) (ZR, Ti) O 3 are put into polymer materials such as thermoplastic resins and thermosetting resins. A dispersed one may be used.
  • a PVDF film that is lightweight, flexible, and has good workability is used.
  • PVDF also has the characteristics that the response band is extremely wide and it is difficult to have a specific resonance frequency.
  • the PVDF film can be used as a sandwich structure in which the film is sandwiched between aluminum foil electrodes, and lead wires are bonded to the electrodes with a conductive adhesive or the like.
  • the control unit 6 grasps the wearer's breathing state based on the voltage signal generated by the piezoelectric sensor 52 according to the strain caused by the stress applied by the wearer's breathing, and controls the rotational speed of the motor that drives the electric fan. Do. If there is no breathing for a certain time, the electric fan may be stopped.
  • the control unit 6 (not shown) may be provided on the dust mask 1 itself, but is preferably provided separately from the dust mask 1 from the viewpoint of weight. For example, it is a box-like body in which a computer connected to the cable 61 is housed, and is configured to be attached to the wearer's waist.
  • FIG.2 (a) is a figure which shows the pressure change in the face body in the dust mask without an electric fan.
  • the dust mask tends to have a negative pressure in the mask face compared to the environmental pressure due to the ventilation resistance of the filter.
  • FIG.2 (b) is a figure which shows the pressure change in a face body at the time of providing the electric fan which operates continuously.
  • FIG. 3A is a diagram illustrating a state of the pressure measurement unit 5 during exhaust (when exhaling).
  • the membrane member 51 fixed by the fixing member 54 is in a state of being expanded and deformed outward (on the side opposite to the wearer) in response to an increase in the pressure of the air passage 53.
  • the piezoelectric sensor 52 has one end fixed to the fixing member 55 and the other end fixed to the film member 51. In this state, the piezoelectric sensor 52 is slightly warped outward.
  • FIG. 3B is a diagram illustrating the state of the pressure measurement unit 5 during inspiration (when inhaling).
  • the membrane member 51 is in a state of being depressed and deformed by being pulled inward (wearer side) after the pressure of the air passage 53 is lowered.
  • the piezoelectric sensor 52 is greatly curved inward. Since the piezoelectric sensor 52 only needs to be distorted by the intake air, the film member 51 does not necessarily have to be deformed in a concave shape, and may have a horizontal or gentle arch shape. As described above, the piezoelectric sensor 52 is distorted outward and inward due to the breathing of the wearer, so that an electric charge corresponding to the distortion is induced. Contrary to FIG. 3, the piezoelectric sensor 52 may be configured to be greatly warped outward during exhaust and bend slightly horizontally or inward during intake.
  • control is performed to increase the rotational speed of the electric fan as compared with the normal time. Also good.
  • a temperature canceling function may be provided by arranging a pair of piezoelectric sensors 52 side by side.
  • the temperature canceling function utilizes a phenomenon in which when the piezoelectric film is heated, the front side is positively charged and the back side is negatively charged.
  • FIG. 4A is a diagram illustrating a state of electric charges generated when a temperature change is simultaneously applied to the surface of the piezoelectric film A and the back surface of the piezoelectric film B.
  • FIG. 4A when heat is applied to the juxtaposed piezoelectric films A and B from the same direction, it can be confirmed that each front surface side is positively charged and each back surface side is negatively charged.
  • FIG. 4A is a diagram showing a state of electric charges generated when stress is simultaneously applied from the same direction to the piezoelectric films A and B having the same arrangement as FIG. 4A, when stress is applied to the piezoelectric films A and B, the surface on which the stress is applied is positively charged regardless of whether the piezoelectric film is from the front side or the back side. It can be confirmed that the opposite surface is negatively charged.
  • FIG. 5 is a diagram showing a circuit configuration for canceling an output generated by heat applied from the same direction.
  • FIG. 6A shows a charged state when a temperature change occurs
  • FIG. 6A shows a charged state when a stress is applied.
  • the electric charge generated by the temperature change is not output because it moves between the piezoelectric elements A and B.
  • the output of the electric charges generated by the stress is detected by a measuring device (not shown) connected to the conductive wire. In this way, by placing the pair of piezoelectric sensors 52 whose upper surfaces are opposite to each other on the pressure measuring unit 5, it is possible to cancel the temperature change and detect only the strain given by respiration.
  • the respiration sensor may be constituted by a strain gauge 56 instead of the piezoelectric sensor 52.
  • the configuration in this case is as shown in FIG.
  • the strain gauge is a mechanical sensor for measuring strain, and is used for, for example, stress measurement and a load gauge.
  • an etching technique is used to form a pattern having a grid portion that is a linear portion aligned in parallel and an end tab portion that is a folded portion of the grid portion on a metal foil adhered on a resin film that is a base material. Formed and configured.
  • a respiration sensor can be configured by a plurality of strain gauges.
  • the respiration sensor may be configured by two strain gauges (see FIG. 16) or four strain gauges (see FIG. 17). If a respiration sensor is constituted by a plurality of strain gauges, a large output can be obtained and a change in temperature can be canceled.
  • the strain gauge has no back and front. The influence of temperature is generated from the grid part for measurement, and if a strain gauge is placed on each of the non-diagonal sides (adjacent two sides) constituting the bridge to cancel it, the temperature change is canceled due to the characteristics of the bridge circuit. (See FIG. 18).
  • the structure of FIG. 17 has a temperature cancellation function.
  • the strain gauge described above is advantageous for control because an absolute value is output instead of a differential value like a piezoelectric film.
  • the dust mask of the present invention can be realized even if the respiration sensor is constituted by a strain gauge.
  • the pressure measuring unit 5 is attached to the cheek part of a commercially available dust mask, and an improvement is made in conjunction with the motor for the electric fan (see FIG. 1).
  • the pressure measuring unit 5 is configured as shown in FIG. 3, the film member 51 is a silicon rubber sheet, and the piezoelectric sensor 52 is a PVDF film.
  • the PVDF film is a rectangular piezoelectric film that outputs a signal corresponding to the strain in the longitudinal direction, and a piezoelectric film manufactured by Tokyo Sensor Co., Ltd. was used.
  • the main specifications of the piezoelectric film used in Example 1 are as follows.
  • Fig.7 (a) is a figure which shows the measurement result of the pressure change in the face body by respiration in the case of turning off the electric fan.
  • the portion surrounded by a dotted line is a voltage change due to inspiration
  • the portion surrounded by a solid line is a voltage change due to expiration.
  • FIG. 7B is a diagram illustrating a measurement result of pressure change in the face due to respiration when the electric fan is turned on.
  • the portion surrounded by a dotted line is a voltage change due to inspiration
  • the portion surrounded by a solid line is a voltage change due to expiration.
  • noise output from the electric fan is also seen, but it is sufficiently possible to determine the expiration state and the inhalation state.
  • the electric fan motor is controlled according to the change in the expiration state or the inspiration state. Is possible.
  • the electric fan motor is controlled by supplying power so that the motor normally operates during intake, and supplying power so that the motor stops or the rotation speed decreases during exhaust.
  • the rotational speed of the electric fan is controlled by lowering the supply voltage of the DC motor.
  • FIG. 8 is a diagram showing a change in the pressure in the mask due to respiration.
  • the upper waveform is when the electric fan is continuously operated without controlling the electric fan
  • the lower waveform is when the rotational speed of the electric fan is controlled. From the figure, by controlling the electric fan, it is possible to reduce the mask internal pressure compared to the case where it is not controlled, and to control the mask internal pressure within a range sufficiently higher than the environmental pressure (approximately 10 to 40 Pa). I was able to confirm that there was.
  • the dust mask of Example 2 is obtained by improving the film member 51 in the dust mask of Example 1.
  • the film member 51 has a laminated structure, and the noise problem is solved by measuring at the central thin portion while reducing the noise at the surrounding thick portion.
  • Example 2 a laminated structure sheet composed of three layers of silicon rubber sheets was prepared, and the noise reduction effect was confirmed.
  • the sheet A includes a first film member (upper layer) having a thickness of 0.1 mm, a second film member (lower layer) having a thickness of 0.1 mm, and a third film member (middle layer) having a thickness of 0.1 mm.
  • the first membrane member (upper layer) and the second membrane member (lower layer) are provided with a hole having a diameter of 10 mm in the center portion.
  • a cross-sectional view when the center of the sheet A is cut is shown in the upper part of FIG.
  • the sheet B includes a first film member (upper layer) having a thickness of 0.1 mm, a second film member (lower layer) having a thickness of 0.1 mm, and a third film member (middle layer) having a thickness of 0.05 mm.
  • the first membrane member (upper layer) and the second membrane member (lower layer) are provided with a hole having a diameter of 10 mm in the center portion.
  • a cross-sectional view when the center of the sheet B is cut is shown in FIG.
  • the sheet C is composed of a 0.05 mm thick first film member (upper layer), a 0.05 mm thick second film member (lower layer), and a 0.05 mm thick third film member (middle layer).
  • the first membrane member (upper layer) and the second membrane member (lower layer) are provided with a hole having a diameter of 10 mm in the center portion.
  • a cross-sectional view when the center of the sheet C is cut is shown in the lower part of FIG.
  • FIG. 11 is a diagram showing measurement results of pressure changes in the face caused by human breathing with the electric fan turned on.
  • (I) is for Comparative Example 1 and (ii) is for Example 2.
  • (iii) is the case of the sheet B according to the second embodiment
  • (iii) is the case of the sheet C according to the second embodiment.
  • FIG. 12 is a diagram showing measurement results of pressure changes in the face caused by human breathing with the electric fan turned off.
  • (I) is for Comparative Example 1
  • (ii) is for Example 2.
  • (iii) is the case of the sheet B according to the second embodiment
  • (iii) is the case of the sheet C according to the second embodiment.
  • Comparing (i) in FIG. 11 and FIG. 12 it can be seen that noise is generated by the electric fan in Comparative Example 1. Comparing (ii) of FIG. 11 and FIG. 12, seat A can barely recognize the presence or absence of breathing when the electric fan is OFF, but can recognize the presence or absence of breathing when the electric fan is ON. I understand that it is not. Comparing (iii) of FIG. 11 and FIG. 12, it can be confirmed that the noise of the electric fan can be suppressed in the seat B. When comparing (iv) in FIG. 11 and FIG. 12, it can be confirmed that the noise of the electric fan can be suppressed in the sheet C.
  • the reason why the respiration was not sufficiently detected by the sheet A was that the third film member (middle layer) having a thickness of 0.1 mm was too thick. From this, it is considered preferable to set the thickness of the third film member (intermediate layer) within a range of 0.3 mm to 0.9 mm, for example.
  • Dust mask Face body 3 Electric fan unit (intake port) 4 exhaust port 5 pressure measurement unit 6 control unit 51 membrane member 52 piezoelectric sensor (respiration sensor) 53 Ventilation channels 54, 55 Fixing member 56 Strain gauge (respiration sensor) 61 cable

Abstract

[Problem] To provide a respiratory protective tool provided with an electric fan capable of resolving the problems where detection accuracy declines over time and where degradation of an exhalation valve over time causes a decline in detection accuracy. [Solution] A respiratory protective tool provided with an electric fan, the tool comprising: a surface body for covering a wearer's nostrils and mouth; an inlet to which a filter is provided; an electric fan for sending outer breath into the surface body, by way of the inlet; an outlet; a pressure measurement unit; and a control unit for controlling the rotational speed of the electric fan; wherein the tool is characterized in that the pressure measurement unit is configured to comprise a film member for deforming in accordance with a change of pressure inside the surface body, and a respiration sensor for deforming so as to follow the movement of the film member, and the control unit controls the electric fan in accordance with an output signal from the pressure measurement unit.

Description

電動ファン付き呼吸用保護具Breathing protection with electric fan
 本発明は、防塵・防毒などを目的として使用される全面形ないし半面形の電動ファン付き呼吸用保護具に関し、より詳細には、例えば、面体内の圧力変化に応じて電動ファンの動作を制御することができる電動ファン付き呼吸用保護具に関する。 The present invention relates to a respirator with a full-surface or half-surface electric fan used for the purpose of dust prevention, poisoning, and the like, and more specifically, for example, controls the operation of the electric fan according to a pressure change in the face. The present invention relates to a respiratory protective device with an electric fan.
 人体に有害な粉塵が存在する環境下では、ユーザーは防塵マスクを装着し、フィルタで粉塵を除去した空気を呼吸する。フィルタは、浄化作用の大きいものほど通気抵抗が増大するのが通常であるところ、フィルタの通気抵抗の分だけ息苦しさを感じるという問題がある。また、通気抵抗によりマスク面体内が環境圧力と比べ陰圧になると、マスクと顔の間の隙間から、粉塵が侵入するという問題がある。そこで、抵抗の大きいフィルタを備える防塵マスクには、呼吸の補助を行うブロワー(電動ファン)が設けられている。 In an environment where dust that is harmful to the human body is present, the user wears a dust mask and breathes air with dust removed by a filter. The filter usually has a problem that the greater the purification effect, the greater the ventilation resistance. However, there is a problem that the filter feels stuffy for the ventilation resistance of the filter. In addition, when the pressure inside the mask surface becomes negative compared with the environmental pressure due to ventilation resistance, there is a problem that dust enters from the gap between the mask and the face. Therefore, a dust mask having a high resistance filter is provided with a blower (electric fan) that assists in breathing.
 しかしながら、着用者の呼吸に連動せず常に一定量の送気を行うブロワーマスク装置は、フィルタが消耗しやすい、マスク内の圧力が高まり排気時(呼気時)の抵抗が大きくなる、電力消費量が多く駆動時間が短いなどの問題があった。そこで、着用者の呼吸に連動して吸気時にブロワーの送風量を増やす一方、排気時にはブロワーの送風量を減らすようにした呼吸連動型のブロワーマスク装置が提案されている(例えば、特許文献1参照)。このブロワーマスク装置は、排気弁または吸気弁の動きを光学式センサで検知し、センサからの信号によってブロワーを制御し、排気時にはブロワーを停止・減速して、フィルタの消耗、排気抵抗および消費電力を抑えるようにしている。
 しかしながら、光学式センサを採用した構成においては、センサの受光素子が太陽光などの外光を受光すると、排気弁の動きを正確に検知できなくなり、ブロワーの制御が不正確となるという問題がある。光学式センサに対して外光を遮断するためには、例えば排気弁カバーを長くしてその先端の排気口に対してセンサを遠ざけ、更に排気口を狭くして外光がセンサに届かないようにする必要があるが、このようにすると、マスクが嵩張り、排気口の開口面積が狭くなって排気抵抗が増すので、着用感が悪くなるなどの問題が生じる。
However, a blower mask device that constantly supplies a certain amount of air without being linked to the breathing of the wearer is likely to wear out the filter, the pressure in the mask increases, and the resistance during exhaust (exhalation) increases, power consumption However, there were many problems such as short drive time. Accordingly, a breathing-linked type blower mask device has been proposed in which the blower air volume is increased during intake while the wearer's breathing is increased, while the blower air volume is decreased during exhaust (see, for example, Patent Document 1). ). This blower mask device detects the movement of the exhaust valve or intake valve with an optical sensor, controls the blower according to the signal from the sensor, stops and decelerates the blower during exhaust, and exhausts the filter, exhaust resistance and power consumption I try to suppress it.
However, in the configuration employing the optical sensor, when the light receiving element of the sensor receives external light such as sunlight, there is a problem that the movement of the exhaust valve cannot be accurately detected and the control of the blower becomes inaccurate. . To block external light from the optical sensor, for example, lengthen the exhaust valve cover to keep the sensor away from the exhaust port at the tip, and further narrow the exhaust port so that external light does not reach the sensor. However, if this is done, the mask becomes bulky, the opening area of the exhaust port becomes narrower, and the exhaust resistance increases, which causes problems such as poor wearing feeling.
 特許文献2では、非光学式センサを排気弁に設けた呼吸連動型ブロワーマスクが提案されている。ここで、非光学式のセンサとしては、温度センサ、湿度センサ、炭酸ガスセンサ、酸素ガスセンサが例示されている。しかしながら、排気流路にセンサを設置すると、排気に含まれる微細な粉塵や湿気によりセンサが汚れ、検知精度が経時低下しやすいという問題がある。また、温度センサは、外気の温度が体温と同程度の環境下においては、機能しなくなるという問題がある。湿度センサについても、外気の湿度が人間の吐いた息と同程度の環境下においては、機能しなくなるという問題がある。ガスセンサは高価であり、回路構成が複雑で小型化が難しいという問題がある。 Patent Document 2 proposes a breathing interlock type blower mask in which a non-optical sensor is provided on an exhaust valve. Here, examples of the non-optical sensor include a temperature sensor, a humidity sensor, a carbon dioxide gas sensor, and an oxygen gas sensor. However, when a sensor is installed in the exhaust flow path, there is a problem that the sensor is contaminated by fine dust and moisture contained in the exhaust, and the detection accuracy is likely to deteriorate with time. Further, the temperature sensor has a problem that it does not function in an environment where the temperature of the outside air is about the same as the body temperature. The humidity sensor also has a problem that it does not function in an environment where the humidity of the outside air is about the same as that of a breath exhaled by a human. Gas sensors are expensive and have a problem that their circuit configuration is complicated and miniaturization is difficult.
 特許文献3では、面体に形成された開口を覆うダイアフラムと、ダイアフラムに取り付けられた磁石と、磁石に対峙して面体に取り付けられたホール素子とを有する呼吸モニター装置が提案されている。ホール素子は磁気センサなので、面体内の空気に含まれる微細な塵埃や水滴が付着しても、光センサに比べて検知精度は低下し難いようである。 Patent Document 3 proposes a respiratory monitoring device having a diaphragm covering an opening formed in a face piece, a magnet attached to the diaphragm, and a Hall element attached to the face piece facing the magnet. Since the Hall element is a magnetic sensor, even if fine dust or water droplets contained in the air in the face body are attached, the detection accuracy is unlikely to be lowered compared to the optical sensor.
特許第3726886号公報Japanese Patent No. 3726886 特開2008-289600号公報JP 2008-289600 A 特開2009-136521号公報JP 2009-136521 A
 特許文献1の装置は、光学式センサを用いるので、外光による誤動作等の問題がある。また、特許文献1および2の装置は、排気に含まれる微細な粉塵や湿気によりセンサが汚れ、検知精度が経時低下しやすく、排気弁の経時劣化により検知精度が低下するという問題がある。
 特許文献3の装置は、センサ部が、面体内の空気に曝されるため、光センサほどではないにしろ精度の経時低下の問題がある。また、ダイアフラムとホール素子を用いる構造上、呼吸検知手段の小型化・軽量化には制約がある。
Since the apparatus of Patent Document 1 uses an optical sensor, there is a problem such as malfunction due to external light. In addition, the devices of Patent Documents 1 and 2 have a problem that the sensor is contaminated by fine dust and moisture contained in the exhaust gas, and the detection accuracy is likely to deteriorate with time, and the detection accuracy is deteriorated due to deterioration of the exhaust valve with time.
The device of Patent Document 3 has a problem of deterioration in accuracy over time, if not as much as that of an optical sensor, because the sensor unit is exposed to air in the face. In addition, due to the structure using the diaphragm and the Hall element, there are restrictions on the reduction in size and weight of the breathing detection means.
 本発明は、上記課題を解決することができる電動ファン付き呼吸用保護具を提供することを目的とする。 An object of the present invention is to provide a respirator with an electric fan that can solve the above-mentioned problems.
 第1の発明は、着用者の鼻孔と口許とを覆う面体と、フィルタが設けられた吸気口と、吸気口を通して外息を面体内に送り込む電動ファンと、排気口と、圧力測定部と、電動ファンの回転数を制御する制御部とを備える電動ファン付き呼吸用保護具であって、前記圧力測定部が、面体内の圧力変化に応じて変形する膜部材と、膜部材の動きに追従して変形する呼吸センサとを含んで構成され、前記制御部が、圧力測定部からの出力信号に応じて、電動ファンを制御することを特徴とする電動ファン付き呼吸用保護具である。
 第2の発明は、第1の発明において、呼吸センサが、ストレインゲージにより構成されることを特徴とする。
 第3の発明は、第2の発明において、前記ストレインゲージが偶数枚からなり、熱により生じる電圧をキャンセルする機能を有することを特徴とする。
 第4の発明は、第1の発明において、呼吸センサが、圧電センサにより構成されことを特徴とする。
 第5の発明は、第4の発明において、前記圧電センサが、PVDFフィルムにより構成されることを特徴とする。
 第6の発明は、第4または5の発明において、前記呼吸センサが、第1の素子(A)と、第1の素子(A)と実質的に同一形状かつ実質的に同一素子容量であり、第1の素子(A)と表裏反対に配置された第2の素子(B)と、を備え、第1および第2の素子に与えられた熱により生じる電圧をキャンセルする機能を有することを特徴とする。
 第7の発明は、第1ないし6のいずれかの発明において、前記膜部材が、振動吸収材料で構成された固定材を介して前記面体に固定されていることを特徴とする。
 第8の発明は、第1ないし7のいずれかの発明において、前記呼吸センサが、膜部材の外方に配置されることを特徴とする。
 第9の発明は、第1ないし8のいずれかの発明において、前記呼吸センサが、一端が膜部材に固定され、他端が固定部材に固定された長尺形状に構成されることを特徴とする。
 第910の発明は、第1ないし9のいずれかの発明において、前記制御部が、排気時の電動ファンの回転数を吸気時と比べ低下させることを特徴とする。
The first invention includes a face covering the nostril and mouth of the wearer, an air inlet provided with a filter, an electric fan that sends outside air into the face through the air inlet, an air outlet, a pressure measuring unit, A respiratory protective device with an electric fan comprising a control unit for controlling the number of rotations of the electric fan, wherein the pressure measuring unit deforms in response to a pressure change in the body and follows the movement of the film member The respiratory protective device with an electric fan is characterized in that the control unit controls the electric fan according to an output signal from the pressure measuring unit.
According to a second invention, in the first invention, the respiration sensor is constituted by a strain gauge.
According to a third invention, in the second invention, the strain gauge is composed of an even number of sheets and has a function of canceling a voltage generated by heat.
In a fourth aspect based on the first aspect, the respiration sensor is constituted by a piezoelectric sensor.
According to a fifth invention, in the fourth invention, the piezoelectric sensor is formed of a PVDF film.
A sixth invention is the fourth or fifth invention, wherein the respiration sensor has substantially the same shape and substantially the same element capacitance as the first element (A) and the first element (A). The first element (A) and the second element (B) disposed opposite to each other, and having a function of canceling a voltage generated by heat applied to the first and second elements. Features.
A seventh invention is characterized in that, in any one of the first to sixth inventions, the membrane member is fixed to the face body via a fixing material made of a vibration absorbing material.
An eighth invention is characterized in that, in any one of the first to seventh inventions, the respiration sensor is arranged outside the membrane member.
A ninth invention is characterized in that, in any one of the first to eighth inventions, the respiration sensor is configured in an elongated shape having one end fixed to the membrane member and the other end fixed to the fixing member. To do.
A 910th invention is characterized in that, in any one of the first to ninth inventions, the control unit reduces the rotational speed of the electric fan during exhausting compared to during intake.
 本発明によれば、呼吸センサという新規な呼吸検知手段を備えた呼吸追従型電動ファン付き呼吸用保護具を提供することが可能となる。この新規な呼吸検知手段は、膜部材の動きに追従して変形する呼吸センサであるので、圧力測定部の小型化・軽量化が可能である。
 さらには、呼吸センサが膜部材の外方に配置される構成においては、呼吸センサが面体内の空気に曝されないため、検知精度の経時低下が生じ難いという効果が奏される。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the respirator with a respiration following type electric fan provided with the new respiration detection means called a respiration sensor. Since this new respiration detection means is a respiration sensor that deforms following the movement of the membrane member, the pressure measuring unit can be made smaller and lighter.
Furthermore, in the configuration in which the respiration sensor is disposed outside the membrane member, since the respiration sensor is not exposed to the air in the face body, there is an effect that it is difficult for the detection accuracy to decrease with time.
本発明の防塵マスクの態様を示す斜視図である。It is a perspective view which shows the aspect of the dust mask of this invention. 防塵マスクにおける面体内の圧力変化を示す図であり、(a)は電動ファンが無い場合、(b)連続稼動する電動ファンを設けた場合、(c)は吸気時のみ稼動する電動ファンを設けた場合の図である。It is a figure which shows the pressure change in the face body in a dust mask, (a) when there is no electric fan, (b) When the electric fan which operates continuously is provided, (c) provides the electric fan which operates only at the time of intake FIG. 呼吸による圧力測定部の状態を示す図であり、(a)は排気時の状態、(b)は吸気時の状態である。It is a figure which shows the state of the pressure measurement part by respiration, (a) is the state at the time of exhaust, (b) is the state at the time of inhalation. (ア)は圧電フィルムAの表面と圧電フィルムBの裏面に、同時に温度変化を与え際に生じる電荷の状態を示す図であり、(イ)は(ア)と同じ配置の圧電フィルムA、Bに同じ方向から同時に応力を与えた際に生じる電荷の状態を示す図である。(A) is a figure which shows the state of the electric charge produced when a temperature change is simultaneously given to the surface of piezoelectric film A and the back surface of piezoelectric film B, (a) is piezoelectric film A, B of the same arrangement | positioning as (a). It is a figure which shows the state of the electric charge which arises when stress is simultaneously given from the same direction. 同一方向から印加された熱により生じる出力をキャンセルする回路構成を示す図である。It is a figure which shows the circuit structure which cancels the output which arises with the heat applied from the same direction. 図5の回路において、(ア)同一方向から温度が印加された際の荷電状態を示した図、(イ)同一方向から応力が印加された際の荷電状態を示した図である。In the circuit of FIG. 5, (a) a diagram illustrating a charged state when a temperature is applied from the same direction, and (a) a diagram illustrating a charged state when a stress is applied from the same direction. 呼吸による面体内の圧力変化の測定結果を示す図であり、(a)は電動ファンをOFFとした場合、(b)は電動ファンをONとした場合である。It is a figure which shows the measurement result of the pressure change in the body by respiration, (a) is a case where an electric fan is turned OFF, (b) is a case where an electric fan is turned ON. 電動ファンの制御がある場合とない場合における呼吸によるマスク内圧力の変化を示す図である。It is a figure which shows the change of the pressure in a mask by respiration with and without the control of an electric fan. 実施例2に係る積層構造シートA、BおよびCの構成図である。6 is a configuration diagram of laminated structure sheets A, B, and C according to Example 2. FIG. 実施例2に係る積層構造シートA、BおよびCの断面図である。6 is a cross-sectional view of laminated structure sheets A, B, and C according to Example 2. FIG. 電動ファンをONとした状態で人の呼吸により生じる面体内の圧力変化の測定結果を示す図であり、(i)は比較例1の場合、(ii)は実施例2に係るシートAの場合、(iii)は実施例2に係るシートBの場合、(iii)は実施例2に係るシートCの場合である。It is a figure which shows the measurement result of the pressure change in the face body which arises by a person's breathing in the state which turned on an electric fan, (i) is the case of the comparative example 1, (ii) is the case of the sheet | seat A which concerns on Example 2. , (Iii) is the case of the sheet B according to the second embodiment, and (iii) is the case of the sheet C according to the second embodiment. 電動ファンをOFFとした状態で人の呼吸により生じる面体内の圧力変化の測定結果を示す図であり、(i)は比較例1の場合、(ii)は実施例2に係るシートAの場合、(iii)は実施例2に係るシートBの場合、(iii)は実施例2に係るシートCの場合である。It is a figure which shows the measurement result of the pressure change in the face body which arises by a person's respiration in the state which turned off the electric fan, (i) is the case of the comparative example 1, (ii) is the case of the sheet | seat A which concerns on Example 2. , (Iii) is the case of the sheet B according to the second embodiment, and (iii) is the case of the sheet C according to the second embodiment. 呼吸センサにストレインゲージを用いた場合の圧力測定部の状態を示す図であり、(a)は排気時の状態、(b)は吸気時の状態である。It is a figure which shows the state of the pressure measurement part at the time of using a strain gauge for a respiration sensor, (a) is the state at the time of exhaust, (b) is the state at the time of inhalation. ストレインゲージの構成図である。It is a block diagram of a strain gauge. 1枚のストレインゲージによる回路図である。It is a circuit diagram by one strain gauge. 2枚のストレインゲージによる回路図である。It is a circuit diagram by two strain gauges. 4枚のストレインゲージによる回路図である。It is a circuit diagram by four strain gauges. 温度キャンセル機能を有する2枚のストレインゲージによる回路図である。It is a circuit diagram by two strain gauges which have a temperature cancellation function.
 本発明を実施するための形態を、電動ファン付き防塵マスクの例で説明する。 DETAILED DESCRIPTION A mode for carrying out the present invention will be described using an example of a dust mask with an electric fan.
《構成》
 図1に示すように、本発明の防塵マスク1は、面体2と、面体2の前部中央に設けられた電動ファンユニット3と、面体2の側方に対向して設けられた一対の排気口4と、圧力測定部5と、制御部6(図示せず)とを主要な構成要素とする。
"Constitution"
As shown in FIG. 1, the dust mask 1 of the present invention includes a face piece 2, an electric fan unit 3 provided at the center of the front face of the face piece 2, and a pair of exhausts provided facing the side face of the face piece 2. The mouth 4, the pressure measurement unit 5, and the control unit 6 (not shown) are main components.
 面体2は、マスク着用者の顔面の鼻孔と口許とを覆うことが可能な大きさに形成されている。電動ファンユニット3は、羽根部材およびモータと、着脱自在に設けられた防塵用のフィルタ(濾過材)と、排気時に閉じ、吸気時に開く吸気用逆止弁とを備える。排気口4は、排気時に開き、吸気時に閉じる排気用逆止弁を備える。排気口4の数および位置は、図示のものに限定されず、例えば、電動ファンユニット3の上方または下方に1つ設けてもよい。 The face piece 2 is formed in a size capable of covering the nostril and mouth of the face of the mask wearer. The electric fan unit 3 includes a blade member and a motor, a detachable filter (filter material) provided detachably, and an intake check valve that closes during exhaust and opens during intake. The exhaust port 4 includes an exhaust check valve that opens during exhaust and closes during intake. The number and positions of the exhaust ports 4 are not limited to those shown in the figure, and for example, one may be provided above or below the electric fan unit 3.
 本実施形態に係る圧力測定部5は、膜部材51と、呼吸センサを構成する圧電センサ52と、面体2の内部空間と連通する通気路53と、固定部材54,55とを備える(図3参照)。膜部材51は呼吸に伴う面体内の圧力変化で変形する可撓性材料からなるシート、例えば、シリコンゴムシートであり、排気時に外方へ膨張し、吸気時に内方へ収縮するように張設されている。膜部材51を支持する固定部材54,55は、振動吸収材料で構成されており、例えば、ゴム等の弾性体、発泡スチロール等のセル(液体セルであってもよい)を含む軟質材を用いることができる。
 圧電センサ52は、例えば、可撓性のあるシート状部材であり、膜部材51の動きに追従するように、一方の端部が膜部材51に固設され、他方の端部が固定部材55に固定されている。圧電センサ52は、着用者の呼吸による熱、湿気、粉塵等の影響を受けないよう、膜部材51の外方に配置することが好ましい。圧電センサ52に面体外の粉塵等が付着することを防ぐべく、圧電センサ52を通気が確保された保護部材(カバー)で覆うことが好ましい。
 圧力測定部5の位置は、図示のものに限定されず、任意の場所に設置することができるが、着用者の呼吸による風が直接当たらない場所に設置するのが好ましい。また、圧力測定部5は、複数個設けてもよい。
The pressure measurement unit 5 according to the present embodiment includes a membrane member 51, a piezoelectric sensor 52 that constitutes a respiration sensor, an air passage 53 that communicates with the internal space of the face piece 2, and fixing members 54 and 55 (FIG. 3). reference). The membrane member 51 is a sheet made of a flexible material, for example, a silicon rubber sheet, which is deformed by a pressure change in the face due to breathing, and is stretched so as to expand outward during exhaust and contract inward during intake. Has been. The fixing members 54 and 55 that support the membrane member 51 are made of a vibration absorbing material. For example, a soft material including an elastic body such as rubber or a cell (may be a liquid cell) such as polystyrene foam is used. Can do.
The piezoelectric sensor 52 is, for example, a flexible sheet-like member, and has one end fixed to the film member 51 and the other end fixed to the fixing member 55 so as to follow the movement of the film member 51. It is fixed to. The piezoelectric sensor 52 is preferably disposed outside the membrane member 51 so as not to be affected by heat, moisture, dust, and the like due to the wearer's breathing. In order to prevent dust or the like outside the face from adhering to the piezoelectric sensor 52, it is preferable to cover the piezoelectric sensor 52 with a protective member (cover) in which ventilation is ensured.
The position of the pressure measuring unit 5 is not limited to the illustrated one, and can be installed at any location, but it is preferably installed at a location where the wind from the wearer's breathing is not directly applied. A plurality of pressure measuring units 5 may be provided.
 圧電センサ52には、ピエゾ効果を示すものを用いることができ、PVDF(Polyvinylidene fluoride:ポリフッ化ビリニデン)やチタン酸バリウム、チタン酸ジルコン酸鉛(PZT)などからなる圧電セラミックまたは圧電セラミック薄膜が例示される。また、Pb(Zr・Ti)O3、PbTiO3、(Pb,La)(ZR,Ti)O3等の無機圧電材料の微粉末を熱可塑性樹脂や熱硬化性樹脂等の高分子材料中に分散させたものを用いてもよい。好ましくは、軽量で柔軟性に富み、加工性がよいPVDFフィルムを用いる。PVDFは応答帯域がきわめて広く、固有の共振周波数を持ちにくいという特徴も有する。PVDFフィルムを、アルミ箔状の電極によりフィルムを挟んだサンドイッチ構造とし、この電極にリード線を導電性の接着剤等で接着して用いることができる。 The piezoelectric sensor 52 may be one that exhibits a piezo effect, such as a piezoelectric ceramic or piezoelectric ceramic thin film made of PVDF (Polyvinylidene fluoride), barium titanate, lead zirconate titanate (PZT), or the like. Is done. In addition, fine powders of inorganic piezoelectric materials such as Pb (Zr · Ti) O 3 , PbTiO 3 , (Pb, La) (ZR, Ti) O 3 are put into polymer materials such as thermoplastic resins and thermosetting resins. A dispersed one may be used. Preferably, a PVDF film that is lightweight, flexible, and has good workability is used. PVDF also has the characteristics that the response band is extremely wide and it is difficult to have a specific resonance frequency. The PVDF film can be used as a sandwich structure in which the film is sandwiched between aluminum foil electrodes, and lead wires are bonded to the electrodes with a conductive adhesive or the like.
 制御部6は、着用者の呼吸により加えられた応力による歪みに応じて圧電センサ52が発生させた電圧信号に基づき着用者の呼吸状態を把握し、電動ファンを駆動するモータの回転数制御を行う。一定時間呼吸が無い場合には、電動ファンを停止させるようにしてもよい。制御部6(図示せず)は、防塵マスク1自体に設けてもよいが重量の観点からは、防塵マスク1とは別個に設けることが好ましい。例えば、ケーブル61に接続されるコンピュータが収納された箱状体とし、着用者の腰部に取り付けられるように構成する。 The control unit 6 grasps the wearer's breathing state based on the voltage signal generated by the piezoelectric sensor 52 according to the strain caused by the stress applied by the wearer's breathing, and controls the rotational speed of the motor that drives the electric fan. Do. If there is no breathing for a certain time, the electric fan may be stopped. The control unit 6 (not shown) may be provided on the dust mask 1 itself, but is preferably provided separately from the dust mask 1 from the viewpoint of weight. For example, it is a box-like body in which a computer connected to the cable 61 is housed, and is configured to be attached to the wearer's waist.
《作動》
 図2(a)は、電動ファンが無い防塵マスクにおける面体内の圧力変化を示す図である。防塵マスクは、フィルタの通気抵抗によりマスク面体内が環境圧力と比べ陰圧になる傾向があるが、マスクと顔面に隙間があると面体内に粉塵が侵入する危険がある。そこで、面体内圧力が常に環境圧力と比べ陽圧になるように、電動ファンを設けることが好ましい。図2(b)は、連続稼動する電動ファンを設けた場合の面体内の圧力変化を示す図である。このように、電動ファン(制御なし)を設けることにより、呼気時と吸気時の圧力差を変えることなく、常に面体内圧力が環境圧力と比べ陽圧とすることが可能である。
<Operation>
Fig.2 (a) is a figure which shows the pressure change in the face body in the dust mask without an electric fan. The dust mask tends to have a negative pressure in the mask face compared to the environmental pressure due to the ventilation resistance of the filter. However, if there is a gap between the mask and the face, there is a risk that dust may enter the face. Therefore, it is preferable to provide an electric fan so that the in-plane pressure is always positive as compared with the environmental pressure. FIG.2 (b) is a figure which shows the pressure change in a face body at the time of providing the electric fan which operates continuously. Thus, by providing an electric fan (no control), the in-plane pressure can always be positive compared with the environmental pressure without changing the pressure difference between expiration and inspiration.
 しかしながら、上述したように、常に一定量の送気を行うと、マスク内の圧力が高まり排気時(呼気時)の抵抗が大きくなる、電力消費量が多く駆動時間が短いなどの問題がある。そこで、電動ファンの回転数を制御することにより、面体内の圧力を環境圧力より高い範囲内で低下させることにより、排気抵抗を減少させる。具体的には、吸気時にはモータが通常動作するように電力を供給し、排気時にはモータが停止或いは回転数が減少するように電力を供給することにより、排気抵抗を減少させる(図2(c)参照)。 However, as described above, if a constant amount of air is constantly supplied, there are problems such as an increase in the pressure in the mask and an increase in resistance during exhaust (during expiration), a large amount of power consumption, and a short drive time. Therefore, by controlling the rotational speed of the electric fan, the exhaust resistance is reduced by reducing the pressure in the face within a range higher than the environmental pressure. Specifically, power is supplied so that the motor normally operates during intake, and power is supplied so that the motor stops or the number of revolutions decreases during exhaust, thereby reducing the exhaust resistance (FIG. 2C). reference).
 図3(a)は、排気時(息を吐いた時)の圧力測定部5の状態を示す図である。固定部材54により固定された膜部材51は、通気路53の圧力が高まったのをうけ、外方(着用者と反対側)へ膨張変形した状態にある。圧電センサ52は、一方の端部が固定部材55に固定され、他方の端部が膜部材51に固定されており、この状態では僅かに外方へ反っている。
 図3(b)は、吸気時(息を吸った時)の圧力測定部5の状態を示す図である。膜部材51は、通気路53の圧力が低下したのをうけ、内方(着用者側)へ引っ張られ陥没変形した状態にある。この状態では、圧電センサ52は、内方へ大きく湾曲している。なお、吸気により圧電センサ52に歪みが生じればよいので、膜部材51は必ずしも陥没変形する必要はなく、水平ないし緩やかなアーチ形状であってもよい。
 このように、着用者の呼吸により、圧電センサ52が外方および内方に歪むことにより、歪みに応じた電荷が誘起される。図3とは逆に、圧電センサ52が、排気時に外方へ大きく反り、吸気時に水平ないし内方へ僅かに湾曲するように構成してもよい。また、フィルタの目詰まり等により、面体内圧が負圧になったことを圧電センサ52の出力の変化により検知した際には、通常時と比べ電動ファンの回転数を上げるような制御をしてもよい。
FIG. 3A is a diagram illustrating a state of the pressure measurement unit 5 during exhaust (when exhaling). The membrane member 51 fixed by the fixing member 54 is in a state of being expanded and deformed outward (on the side opposite to the wearer) in response to an increase in the pressure of the air passage 53. The piezoelectric sensor 52 has one end fixed to the fixing member 55 and the other end fixed to the film member 51. In this state, the piezoelectric sensor 52 is slightly warped outward.
FIG. 3B is a diagram illustrating the state of the pressure measurement unit 5 during inspiration (when inhaling). The membrane member 51 is in a state of being depressed and deformed by being pulled inward (wearer side) after the pressure of the air passage 53 is lowered. In this state, the piezoelectric sensor 52 is greatly curved inward. Since the piezoelectric sensor 52 only needs to be distorted by the intake air, the film member 51 does not necessarily have to be deformed in a concave shape, and may have a horizontal or gentle arch shape.
As described above, the piezoelectric sensor 52 is distorted outward and inward due to the breathing of the wearer, so that an electric charge corresponding to the distortion is induced. Contrary to FIG. 3, the piezoelectric sensor 52 may be configured to be greatly warped outward during exhaust and bend slightly horizontally or inward during intake. In addition, when detecting that the in-plane pressure has become negative due to clogging of the filter or the like due to a change in the output of the piezoelectric sensor 52, control is performed to increase the rotational speed of the electric fan as compared with the normal time. Also good.
《温度キャンセル機能》
 圧電センサ52は、温度変化により余分な電気出力が生じ、これがノイズ出力になるという問題がある。そこで、一対の圧電センサ52を並べて配置することにより、温度キャンセル機能を持たせるようにしてもよい。温度キャンセル機能は、圧電フィルムに熱を与えた際に、表面側が正に荷電し、各裏面側が負に荷電する現象を利用したものである。
《Temperature cancel function》
The piezoelectric sensor 52 has a problem that an extra electrical output is generated due to a temperature change, which becomes a noise output. Therefore, a temperature canceling function may be provided by arranging a pair of piezoelectric sensors 52 side by side. The temperature canceling function utilizes a phenomenon in which when the piezoelectric film is heated, the front side is positively charged and the back side is negatively charged.
 図4(ア)は、圧電フィルムAの表面と圧電フィルムBの裏面に、同時に温度変化を与え際に生じる電荷の状態を示す図である。図4(ア)から、並置された圧電フィルムA、Bに同じ方向から熱を付与した際には、各表面側が正に荷電し、各裏面側が負に荷電することが確認できる。
 図4(イ)は、図4(ア)と同じ配置の圧電フィルムA、Bに同じ方向から同時に応力を与えた際に生じる電荷の状態を示す図である。図4(イ)から、圧電フィルムA、Bに応力が与えられた際には、圧電フィルムの表面側からか裏面側からかにかかわらず、応力が与えられた側の面が正に荷電し、その反対面が負に荷電することが確認できる。
FIG. 4A is a diagram illustrating a state of electric charges generated when a temperature change is simultaneously applied to the surface of the piezoelectric film A and the back surface of the piezoelectric film B. FIG. 4A, when heat is applied to the juxtaposed piezoelectric films A and B from the same direction, it can be confirmed that each front surface side is positively charged and each back surface side is negatively charged.
FIG. 4A is a diagram showing a state of electric charges generated when stress is simultaneously applied from the same direction to the piezoelectric films A and B having the same arrangement as FIG. 4A, when stress is applied to the piezoelectric films A and B, the surface on which the stress is applied is positively charged regardless of whether the piezoelectric film is from the front side or the back side. It can be confirmed that the opposite surface is negatively charged.
 図5は、同一方向から印加された熱により生じる出力をキャンセルする回路構成を示す図である。図5の回路において、温度変化が生じた際の荷電状態を示したのが図6(ア)であり、応力が印加された際の荷電状態を示したのが図6(イ)である。図6(ア)に示すように、温度変化により生じた電荷については、圧電素子A、B間を移動するため出力が生じない。他方、図6(イ)に示すように、応力により生じた電荷については、導電線に接続された図示しない測定装置により出力が検出される。このように、圧力測定部5に、上面を表裏反対とする一対の圧電センサ52を並置することにより、温度変化をキャンセルし、呼吸により与えられた歪みのみを検出することが可能となる。 FIG. 5 is a diagram showing a circuit configuration for canceling an output generated by heat applied from the same direction. In the circuit of FIG. 5, FIG. 6A shows a charged state when a temperature change occurs, and FIG. 6A shows a charged state when a stress is applied. As shown in FIG. 6A, the electric charge generated by the temperature change is not output because it moves between the piezoelectric elements A and B. On the other hand, as shown in FIG. 6A, the output of the electric charges generated by the stress is detected by a measuring device (not shown) connected to the conductive wire. In this way, by placing the pair of piezoelectric sensors 52 whose upper surfaces are opposite to each other on the pressure measuring unit 5, it is possible to cancel the temperature change and detect only the strain given by respiration.
《ストレインゲージ》
 呼吸センサを圧電センサ52に替えてストレインゲージ56により構成してもよい。この場合の構成は、図13のとおりとなる。 
 ストレインゲージは、ひずみを測定するための力学的センサであり、例えば、応力計測や、荷計にも用いられる。例えば、図14に示す如く、ベース材である樹脂フィルム上に貼着した金属箔に、並列に並ぶ直線部分であるグリッド部とグリッド部の折り返し部分であるエンドタブ部とを有するパターンをエッチング技術により形成して構成される。
 ひずみゲージは、それ単独で用いるとひずみによる抵抗の変化は極めて小さいので、図15に示すホイートストンブリッジ回路に組み、抵抗の変化を電圧の変化に変換して測定する(E:ブリッジ電圧、E0:出力電圧)。この回路では、抵抗変化分に比例した出力電圧が得られるとともに、ひずみにも比例した出力電圧が得られる。この微小電圧を増幅器で拡大して、アナログ出力として得たり、ディジタル値として表示してひずみを測定することができる。
《Strain gauge》
The respiration sensor may be constituted by a strain gauge 56 instead of the piezoelectric sensor 52. The configuration in this case is as shown in FIG.
The strain gauge is a mechanical sensor for measuring strain, and is used for, for example, stress measurement and a load gauge. For example, as shown in FIG. 14, an etching technique is used to form a pattern having a grid portion that is a linear portion aligned in parallel and an end tab portion that is a folded portion of the grid portion on a metal foil adhered on a resin film that is a base material. Formed and configured.
When a strain gauge is used alone, the change in resistance due to strain is extremely small. Therefore, the strain gauge is assembled in the Wheatstone bridge circuit shown in FIG. 15, and the change in resistance is converted into a change in voltage (E: bridge voltage, E 0). : Output voltage). In this circuit, an output voltage proportional to the resistance change can be obtained, and an output voltage proportional to the distortion can be obtained. This minute voltage can be expanded by an amplifier and obtained as an analog output or displayed as a digital value to measure distortion.
 また、ストレインゲージは非常にしなやかであるため、複数枚のストレインゲージにより呼吸センサを構成することもできる。例えば、2枚のストレインゲージ(図16参照)や4枚のストレインゲージ(図17参照)により呼吸センサを構成してもよい。複数枚のストレインゲージにより呼吸センサを構成すれば、出力を大きくとることができ、また、温度変化をキャンセルすることも可能である。ここで、ストレインゲージは、圧電フィルムと異なり裏表がない。温度の影響は測定するためのグリッド部から発生し、それをキャンセルするためにブリッジを構成する対角線でない辺(隣接する2辺)にそれぞれストレインゲージを配置するとブリッジ回路の特性から温度変化がキャンセルされる(図18参照)。なお、図17の構成は、ブリッジを構成する2組の隣接2辺にストレインゲージが配置されているので、温度キャンセル機能を有している。
 以上に説明したストレインゲージは、圧電フィルムのように微分値ではなく絶対値が出力されるので、制御には有利である。このように、本発明の防塵マスクは、呼吸センサをストレインゲージにより構成しても実現することが可能である。
Further, since the strain gauge is very flexible, a respiration sensor can be configured by a plurality of strain gauges. For example, the respiration sensor may be configured by two strain gauges (see FIG. 16) or four strain gauges (see FIG. 17). If a respiration sensor is constituted by a plurality of strain gauges, a large output can be obtained and a change in temperature can be canceled. Here, unlike the piezoelectric film, the strain gauge has no back and front. The influence of temperature is generated from the grid part for measurement, and if a strain gauge is placed on each of the non-diagonal sides (adjacent two sides) constituting the bridge to cancel it, the temperature change is canceled due to the characteristics of the bridge circuit. (See FIG. 18). In addition, since the strain gauge is arrange | positioned in 2 sets of adjacent 2 sides which comprise a bridge | bridging, the structure of FIG. 17 has a temperature cancellation function.
The strain gauge described above is advantageous for control because an absolute value is output instead of a differential value like a piezoelectric film. Thus, the dust mask of the present invention can be realized even if the respiration sensor is constituted by a strain gauge.
 以下では、本発明の詳細を実施例で説明するが、本発明はこれらの実施例によって何ら限定されることはない。 In the following, details of the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 実施例1の防塵マスクは、市販の防塵マスクの頬部に圧力測定部5を取り付け、電動ファン用モータと連動させる改良を施したものである(図1参照)。
 圧力測定部5は、図3に示す如く構成され、膜部材51はシリコンゴムシート、圧電センサ52は、PVDFフィルムである。PVDFフィルムは、長手方向の歪に応じた信号を出力する方形状の圧電フィルムであり、東京センサー社の圧電フィルムを使用した。実施例1で使用した圧電フィルムの主な仕様は次のとおりである。
In the dust mask of Example 1, the pressure measuring unit 5 is attached to the cheek part of a commercially available dust mask, and an improvement is made in conjunction with the motor for the electric fan (see FIG. 1).
The pressure measuring unit 5 is configured as shown in FIG. 3, the film member 51 is a silicon rubber sheet, and the piezoelectric sensor 52 is a PVDF film. The PVDF film is a rectangular piezoelectric film that outputs a signal corresponding to the strain in the longitudinal direction, and a piezoelectric film manufactured by Tokyo Sensor Co., Ltd. was used. The main specifications of the piezoelectric film used in Example 1 are as follows.
 型番:LDTC-100V
 全体の厚さ:203μm
 フィルムの厚さ:28μm
 シート部寸法:6mm×12.8mm
 電極部寸法:4.2mm×8mm
 静電容量:0.244nF
Model number: LDTC-100V
Overall thickness: 203μm
Film thickness: 28μm
Sheet size: 6mm x 12.8mm
Electrode size: 4.2mm x 8mm
Capacitance: 0.244nF
 図7(a)は、電動ファンをOFFとした場合における呼吸による面体内の圧力変化の測定結果を示す図である。同図中、点線で囲んだ部分が吸気による電圧変化であり、実線で囲んだ部分が呼気による電圧変化である。
 図7(b)は、電動ファンをONとした場合における呼吸による面体内の圧力変化の測定結果を示す図である。同図中、点線で囲んだ部分が吸気による電圧変化であり、実線で囲んだ部分が呼気による電圧変化である。同図では、電動ファンによるノイズ出力もみられるが、呼気状態、吸気状態を判別することは充分可能である。
 このように、電動ファンのON/OFFにかかわらず、圧電センサ52からの出力により呼気状態、吸気状態を判別できるので、呼気状態または吸気状態の変化に応じて、電動ファン用モータを制御することが可能である。
Fig.7 (a) is a figure which shows the measurement result of the pressure change in the face body by respiration in the case of turning off the electric fan. In the figure, the portion surrounded by a dotted line is a voltage change due to inspiration, and the portion surrounded by a solid line is a voltage change due to expiration.
FIG. 7B is a diagram illustrating a measurement result of pressure change in the face due to respiration when the electric fan is turned on. In the figure, the portion surrounded by a dotted line is a voltage change due to inspiration, and the portion surrounded by a solid line is a voltage change due to expiration. In the figure, noise output from the electric fan is also seen, but it is sufficiently possible to determine the expiration state and the inhalation state.
As described above, since the expiration state and the inspiration state can be determined by the output from the piezoelectric sensor 52 regardless of whether the electric fan is ON / OFF, the electric fan motor is controlled according to the change in the expiration state or the inspiration state. Is possible.
 電動ファン用モータの制御は、吸気時にはモータが通常動作するように電力を供給し、排気時にはモータが停止或いは回転数が減少するように電力を供給することにより行う。モータの回転を完全に停止させると、再起動時の立ち上がり時間が必要となるため、モータの回転数を低下させることにより、面体内圧力を制御することが好ましい。本実施例では、直流モータの供給電圧を下げることにより電動ファンの回転数を制御した。 The electric fan motor is controlled by supplying power so that the motor normally operates during intake, and supplying power so that the motor stops or the rotation speed decreases during exhaust. When the rotation of the motor is completely stopped, a rise time at the time of restart is required. Therefore, it is preferable to control the in-plane pressure by reducing the number of rotations of the motor. In this embodiment, the rotational speed of the electric fan is controlled by lowering the supply voltage of the DC motor.
 図8は、呼吸によるマスク内圧力の変化を示す図である。同図中、上の波形が電動ファンを制御せず連続稼動した際のもので、下の波形が電動ファンの回転数を制御した際のものである。同図から、電動ファンを制御することにより、制御しない場合と比べマスク内圧を低下させ、かつ、環境圧力よりも充分に高い範囲内(概ね10~40Pa)でマスク内圧を制御することが可能であることを確認することができた。 FIG. 8 is a diagram showing a change in the pressure in the mask due to respiration. In the figure, the upper waveform is when the electric fan is continuously operated without controlling the electric fan, and the lower waveform is when the rotational speed of the electric fan is controlled. From the figure, by controlling the electric fan, it is possible to reduce the mask internal pressure compared to the case where it is not controlled, and to control the mask internal pressure within a range sufficiently higher than the environmental pressure (approximately 10 to 40 Pa). I was able to confirm that there was.
 実施例2の防塵マスクは、実施例1の防塵マスクにおいて、膜部材51を改良したものである。実施例1の防塵マスクにおいては、電動ファンによるノイズ抑制のためのプログラム制御が複雑になるという課題があった。そこで、実施例2では、膜部材51を積層構造とし、周囲の肉厚部でノイズを低減しつつ、中心の薄肉部で測定することで上記ノイズの問題を解決している。 The dust mask of Example 2 is obtained by improving the film member 51 in the dust mask of Example 1. In the dust mask of Example 1, there existed a subject that the program control for noise suppression by an electric fan became complicated. Therefore, in the second embodiment, the film member 51 has a laminated structure, and the noise problem is solved by measuring at the central thin portion while reducing the noise at the surrounding thick portion.
 実施例2では、3層のシリコンゴムシートからなる積層構造シートを準備し、ノイズ低減効果を確認した。
 シートAは、0.1mm厚の第一膜部材(上層)と、0.1mm厚の第二膜部材(下層)と、0.1mm厚の第三膜部材(中層)とから構成される。第一膜部材(上層)および第二膜部材(下層)は、中心部分に直径10mmの穴が設けられている。シートAの中心を切断した場合の断面図を図10上図に示す。
 シートBは、0.1mm厚の第一膜部材(上層)と、0.1mm厚の第二膜部材(下層)と、0.05mm厚の第三膜部材(中層)とから構成される。第一膜部材(上層)および第二膜部材(下層)は、中心部分に直径10mmの穴が設けられている。シートBの中心を切断した場合の断面図を図10中図に示す。
 シートCは、0.05mm厚の第一膜部材(上層)と、0.05mm厚の第二膜部材(下層)と、0.05mm厚の第三膜部材(中層)とから構成される。第一膜部材(上層)および第二膜部材(下層)は、中心部分に直径10mmの穴が設けられている。シートCの中心を切断した場合の断面図を図10下図に示す。
In Example 2, a laminated structure sheet composed of three layers of silicon rubber sheets was prepared, and the noise reduction effect was confirmed.
The sheet A includes a first film member (upper layer) having a thickness of 0.1 mm, a second film member (lower layer) having a thickness of 0.1 mm, and a third film member (middle layer) having a thickness of 0.1 mm. The first membrane member (upper layer) and the second membrane member (lower layer) are provided with a hole having a diameter of 10 mm in the center portion. A cross-sectional view when the center of the sheet A is cut is shown in the upper part of FIG.
The sheet B includes a first film member (upper layer) having a thickness of 0.1 mm, a second film member (lower layer) having a thickness of 0.1 mm, and a third film member (middle layer) having a thickness of 0.05 mm. The first membrane member (upper layer) and the second membrane member (lower layer) are provided with a hole having a diameter of 10 mm in the center portion. A cross-sectional view when the center of the sheet B is cut is shown in FIG.
The sheet C is composed of a 0.05 mm thick first film member (upper layer), a 0.05 mm thick second film member (lower layer), and a 0.05 mm thick third film member (middle layer). The first membrane member (upper layer) and the second membrane member (lower layer) are provided with a hole having a diameter of 10 mm in the center portion. A cross-sectional view when the center of the sheet C is cut is shown in the lower part of FIG.
 上記のシートA~Cと、0.1mm厚のシリコンゴムシート1枚を膜部材51に用いた比較例1とを用いて、積層構造シートによるノイズ低減効果を確認した。
 図11は、電動ファンをONとした状態で人の呼吸により生じる面体内の圧力変化の測定結果を示す図であり、(i)は比較例1の場合、(ii)は実施例2に係るシートAの場合、(iii)は実施例2に係るシートBの場合、(iii)は実施例2に係るシートCの場合である。
 図12は、電動ファンをOFFとした状態で人の呼吸により生じる面体内の圧力変化の測定結果を示す図であり、(i)は比較例1の場合、(ii)は実施例2に係るシートAの場合、(iii)は実施例2に係るシートBの場合、(iii)は実施例2に係るシートCの場合である。
Using the sheets A to C described above and the comparative example 1 using one silicon rubber sheet having a thickness of 0.1 mm as the film member 51, the noise reduction effect by the laminated structure sheet was confirmed.
FIG. 11 is a diagram showing measurement results of pressure changes in the face caused by human breathing with the electric fan turned on. (I) is for Comparative Example 1 and (ii) is for Example 2. In the case of the sheet A, (iii) is the case of the sheet B according to the second embodiment, and (iii) is the case of the sheet C according to the second embodiment.
FIG. 12 is a diagram showing measurement results of pressure changes in the face caused by human breathing with the electric fan turned off. (I) is for Comparative Example 1, and (ii) is for Example 2. In the case of the sheet A, (iii) is the case of the sheet B according to the second embodiment, and (iii) is the case of the sheet C according to the second embodiment.
 図11および図12の(i)を比較すると、比較例1では電動ファンによるノイズが生じていることが分かる。図11および図12の(ii)を比較すると、シートAでは、電動ファンOFFの状態ではかろうじて呼吸の有無を認識することができるものの、電動ファンONの状態では呼吸の有無を認識することができていないことが分かる。図11および図12の(iii)を比較すると、シートBでは、電動ファンのノイズを抑制できていることが確認できる。図11および図12の(iv)を比較すると、シートCでは、電動ファンのノイズを抑制できていることが確認できる。
 なお、シートAとBとの比較から、シートAで呼吸を十分に検出できなかったのは、0.1mm厚の第三膜部材(中層)が厚すぎることが原因であると考えられる。このことから、第三膜部材(中層)の厚さを、例えば、0.3mm~0.9mmの範囲で設定することが好ましいと考えられる。
Comparing (i) in FIG. 11 and FIG. 12, it can be seen that noise is generated by the electric fan in Comparative Example 1. Comparing (ii) of FIG. 11 and FIG. 12, seat A can barely recognize the presence or absence of breathing when the electric fan is OFF, but can recognize the presence or absence of breathing when the electric fan is ON. I understand that it is not. Comparing (iii) of FIG. 11 and FIG. 12, it can be confirmed that the noise of the electric fan can be suppressed in the seat B. When comparing (iv) in FIG. 11 and FIG. 12, it can be confirmed that the noise of the electric fan can be suppressed in the sheet C.
From the comparison between the sheets A and B, it is considered that the reason why the respiration was not sufficiently detected by the sheet A was that the third film member (middle layer) having a thickness of 0.1 mm was too thick. From this, it is considered preferable to set the thickness of the third film member (intermediate layer) within a range of 0.3 mm to 0.9 mm, for example.
1 防塵マスク
2 面体
3 電動ファンユニット(吸気口)
4 排気口
5 圧力測定部
6 制御部
51 膜部材
52 圧電センサ(呼吸センサ)
53 通気路
54,55 固定部材
56 ストレインゲージ(呼吸センサ)
61 ケーブル
1 Dust mask 2 Face body 3 Electric fan unit (intake port)
4 exhaust port 5 pressure measurement unit 6 control unit 51 membrane member 52 piezoelectric sensor (respiration sensor)
53 Ventilation channels 54, 55 Fixing member 56 Strain gauge (respiration sensor)
61 cable

Claims (10)

  1.  着用者の鼻孔と口許とを覆う面体と、フィルタが設けられた吸気口と、吸気口を通して外息を面体内に送り込む電動ファンと、排気口と、圧力測定部と、電動ファンの回転数を制御する制御部とを備える電動ファン付き呼吸用保護具であって、
     前記圧力測定部が、面体内の圧力変化に応じて変形する膜部材と、膜部材の動きに追従して変形する呼吸センサとを含んで構成され、
     前記制御部が、圧力測定部からの出力信号に応じて、電動ファンを制御することを特徴とする電動ファン付き呼吸用保護具。
    The number of rotations of the faceplate that covers the nostril and mouth of the wearer, the air inlet provided with a filter, the electric fan that sends external breath into the face through the air inlet, the exhaust port, the pressure measuring unit, and the electric fan A respiratory protective device with an electric fan comprising a control unit for controlling,
    The pressure measuring unit includes a membrane member that deforms in response to a pressure change in the body, and a respiration sensor that deforms following the movement of the membrane member,
    The respirator with an electric fan, wherein the control unit controls the electric fan according to an output signal from the pressure measurement unit.
  2.  呼吸センサが、ストレインゲージにより構成されることを特徴とする請求項1の電動ファン付き呼吸用保護具。 The respirator with an electric fan according to claim 1, wherein the respiration sensor is composed of a strain gauge.
  3.  前記ストレインゲージが偶数枚からなり、熱により生じる電圧をキャンセルする機能を有することを特徴とする請求項2の電動ファン付き呼吸用保護具。 The respiratory protection device with an electric fan according to claim 2, wherein the strain gauge is composed of an even number and has a function of canceling a voltage generated by heat.
  4.  呼吸センサが、圧電センサにより構成されことを特徴とする請求項1の電動ファン付き呼吸用保護具。 The respirator with an electric fan according to claim 1, wherein the respiration sensor comprises a piezoelectric sensor.
  5.  前記圧電センサが、PVDFフィルムにより構成されることを特徴とする請求項4の電動ファン付き呼吸用保護具。 5. The respiratory protective device with an electric fan according to claim 4, wherein the piezoelectric sensor is made of a PVDF film.
  6.  前記呼吸センサが、第1の素子(A)と、第1の素子(A)と実質的に同一形状かつ実質的に同一素子容量であり、第1の素子(A)と表裏反対に配置された第2の素子(B)と、を備え、第1および第2の素子に与えられた熱により生じる電圧をキャンセルする機能を有することを特徴とする請求項4または5の電動ファン付き呼吸用保護具。 The respiration sensor has substantially the same shape and substantially the same element capacity as the first element (A) and the first element (A), and is disposed opposite to the first element (A). And a second element (B), and has a function of canceling a voltage generated by heat applied to the first and second elements. Protective equipment.
  7.  前記膜部材が、振動吸収材料で構成された固定材を介して前記面体に固定されていることを特徴とする請求項1ないし6のいずれかの電動ファン付き呼吸用保護具。 The respiratory protective device with an electric fan according to any one of claims 1 to 6, wherein the membrane member is fixed to the face body via a fixing member made of a vibration absorbing material.
  8.  前記呼吸センサが、膜部材の外方に配置されることを特徴とする請求項1ないし7のいずれかの電動ファン付き呼吸用保護具。 The respirator with an electric fan according to any one of claims 1 to 7, wherein the respiration sensor is disposed outside the membrane member.
  9.  前記呼吸センサが、一端が膜部材に固定され、他端が固定部材に固定された長尺形状に構成されることを特徴とする請求項1ないし8のいずれかの電動ファン付き呼吸用保護具。 The respiratory protective device with an electric fan according to any one of claims 1 to 8, wherein the respiration sensor has a long shape in which one end is fixed to the membrane member and the other end is fixed to the fixing member. .
  10.  前記制御部が、排気時の電動ファンの回転数を吸気時と比べ低下させることを特徴とする請求項1ないし9のいずれかの電動ファン付き呼吸用保護具。 10. The respiratory protective device with an electric fan according to any one of claims 1 to 9, wherein the control unit lowers the rotational speed of the electric fan during exhausting as compared with that during inhalation.
PCT/JP2012/073482 2011-09-15 2012-09-13 Respiratory protective tool provided with electric fan WO2013039153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-201290 2011-09-15
JP2011201290 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039153A1 true WO2013039153A1 (en) 2013-03-21

Family

ID=47883370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073482 WO2013039153A1 (en) 2011-09-15 2012-09-13 Respiratory protective tool provided with electric fan

Country Status (2)

Country Link
JP (1) JP2013075157A (en)
WO (1) WO2013039153A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108144209A (en) * 2016-12-05 2018-06-12 山本光学株式会社 Breathing protection tool
CN109463817A (en) * 2018-10-30 2019-03-15 芦旌锟 Modular multi-function anti-dust mask
EP3492146A4 (en) * 2016-07-26 2019-08-14 Shigematsu Works Co., Ltd. Respirator with respiration-linked electric fan
CN111050857A (en) * 2017-09-01 2020-04-21 3M创新有限公司 Breathing apparatus
CN111528531A (en) * 2020-04-30 2020-08-14 歌尔微电子有限公司 Electronic cigarette detection device, detection method and electronic cigarette
US11364395B2 (en) 2016-08-24 2022-06-21 Koninklijke Philips N.V. Breathing mask with increased user comfort

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103751919B (en) * 2014-01-27 2016-05-11 胡昀 Can form with face the mouth mask of airtight respiratory cavity
CN105029769B (en) 2015-07-31 2017-03-08 小米科技有限责任公司 Intelligent mask, the method calculating pollutant adsorbance, intelligent mask and device
CN105029770B (en) 2015-07-31 2016-08-17 小米科技有限责任公司 Intelligence mouth mask, the method for calculating pollutant adsorbance, intelligence mouth mask and device
KR101856361B1 (en) * 2016-09-23 2018-05-09 울산과학기술원 High electric field filter mask
JP6944088B1 (en) * 2018-09-26 2021-10-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Contamination mask and its control method
EP3856360B1 (en) * 2018-09-27 2022-04-20 Koninklijke Philips N.V. A pollution mask and control method
JP7103640B2 (en) * 2018-10-16 2022-07-20 山本光学株式会社 Mask adhesion judgment device
KR102628590B1 (en) * 2021-12-06 2024-01-25 국립창원대학교 산학협력단 Fine Dust Removal Screen and Operation Method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147335A (en) * 1985-12-20 1987-07-01 Sharp Corp Electric field effect type pressure sensor
JPH0341332A (en) * 1989-07-07 1991-02-21 Sanyo Electric Co Ltd Superconducting pressure sensor
JPH05256716A (en) * 1992-03-13 1993-10-05 Mitsubishi Electric Corp Semiconductor apparatus
JP2858131B2 (en) * 1988-07-26 1999-02-17 ミネソタ マイニング アンド マニュファクチャリング カンパニー Breathing apparatus
JP2002210031A (en) * 2001-01-17 2002-07-30 Fujitsu Ltd Protective mask fitting detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147335A (en) * 1985-12-20 1987-07-01 Sharp Corp Electric field effect type pressure sensor
JP2858131B2 (en) * 1988-07-26 1999-02-17 ミネソタ マイニング アンド マニュファクチャリング カンパニー Breathing apparatus
JPH0341332A (en) * 1989-07-07 1991-02-21 Sanyo Electric Co Ltd Superconducting pressure sensor
JPH05256716A (en) * 1992-03-13 1993-10-05 Mitsubishi Electric Corp Semiconductor apparatus
JP2002210031A (en) * 2001-01-17 2002-07-30 Fujitsu Ltd Protective mask fitting detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492146A4 (en) * 2016-07-26 2019-08-14 Shigematsu Works Co., Ltd. Respirator with respiration-linked electric fan
US11433205B2 (en) 2016-07-26 2022-09-06 Shigematsu Works Co., Ltd. Breathing apparatus provided with a breath-synchronized motor fan
US11364395B2 (en) 2016-08-24 2022-06-21 Koninklijke Philips N.V. Breathing mask with increased user comfort
CN108144209A (en) * 2016-12-05 2018-06-12 山本光学株式会社 Breathing protection tool
CN108144209B (en) * 2016-12-05 2021-08-17 山本光学株式会社 Protective tool for breathing
CN111050857A (en) * 2017-09-01 2020-04-21 3M创新有限公司 Breathing apparatus
CN109463817A (en) * 2018-10-30 2019-03-15 芦旌锟 Modular multi-function anti-dust mask
CN111528531A (en) * 2020-04-30 2020-08-14 歌尔微电子有限公司 Electronic cigarette detection device, detection method and electronic cigarette

Also Published As

Publication number Publication date
JP2013075157A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
WO2013039153A1 (en) Respiratory protective tool provided with electric fan
EP2950890B1 (en) Respirator mask speech enhancement apparatus and method
CN109475762B (en) Respiration linkage type respiration device with electric fan
AU2014212792B2 (en) Respirator mask speech enhancement apparatus and method
JP5041596B2 (en) Breathing apparatus
JP6308661B2 (en) Breathing apparatus
JP7085719B2 (en) Respiratory protective equipment with electric fan suitable for consumer use
CN102271743A (en) System and respiration appliance for supporting the airway of a subject
WO2015019574A1 (en) Cpap device and blower unit for cpap device
TW201821127A (en) Respiratory protective device capable of instantly detecting internal pressure of a face piece and allowing for comfortable breathing without difficulties
US20140261405A1 (en) Facepiece with noise reduction for communication
US10982679B2 (en) Blowing apparatus
WO2014210552A1 (en) Ventilator flow valve
JP5168346B2 (en) Dust filter clogging detection device
JP5843321B2 (en) Breathing apparatus
JP6124733B2 (en) Breathing apparatus
WO2016121134A1 (en) Respiration device
US20200360736A1 (en) Portable air treatment device and method for supplying filtered air to a person
JP2013090823A (en) Breath assist device
JP6385136B2 (en) Breathing device loudspeaker
JP2000350716A (en) Breath detection device
JP5286483B2 (en) Respiratory device
JP5593471B2 (en) Respiratory device
JP5933462B2 (en) Respiratory device
KR102497384B1 (en) System for health examination using mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831045

Country of ref document: EP

Kind code of ref document: A1