WO2013038958A1 - Clamp circuit and signal processing system using same - Google Patents

Clamp circuit and signal processing system using same Download PDF

Info

Publication number
WO2013038958A1
WO2013038958A1 PCT/JP2012/072500 JP2012072500W WO2013038958A1 WO 2013038958 A1 WO2013038958 A1 WO 2013038958A1 JP 2012072500 W JP2012072500 W JP 2012072500W WO 2013038958 A1 WO2013038958 A1 WO 2013038958A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
terminal
circuit
clamp circuit
Prior art date
Application number
PCT/JP2012/072500
Other languages
French (fr)
Japanese (ja)
Inventor
沼尾 孝次
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013038958A1 publication Critical patent/WO2013038958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/16Circuitry for reinsertion of dc and slowly varying components of signal; Circuitry for preservation of black or white level
    • H04N5/18Circuitry for reinsertion of dc and slowly varying components of signal; Circuitry for preservation of black or white level by means of "clamp" circuit operated by switching circuit

Definitions

  • the present invention relates to a clamp circuit and a signal processing system using the clamp circuit.
  • the clamp circuit is used for various applications.
  • a clamp circuit is also used in a television receiver that receives an analog television broadcast.
  • An analog / digital converter (sometimes referred to as an “A / D conversion circuit”) is used for performing “A / D conversion”.
  • a / D conversion circuit is used for performing “A / D conversion”.
  • a clamp circuit is required to accurately convert an analog input signal into a digital signal.
  • FIG. 9 shows a circuit configuration of a conventional clamp circuit (FIG. 2 of Patent Document 1)
  • FIG. 10 shows a waveform of an analog input signal input to the clamp circuit. As shown in FIG.
  • the analog input signal 1 of an analog television broadcast receiver is impedance-converted by an emitter follower circuit (NPN type transistor 15 and resistor 16), and the converted signal is DC-converted by a clamping capacitor 17.
  • the component (DC component) is cut and applied to the input terminal 21 of the video signal processing digital system 18.
  • the AD conversion circuit 24 digitizes the voltage level appearing at the input terminal 21.
  • the AD converter circuit 24 has a predetermined voltage range that can be digitized. Therefore, the clamp circuit 50 is configured by the clamp capacitor 17, the resistor 19, the current source 22, and the switch element 23.
  • the clamp circuit 50 reproduces the reference voltage of the AD conversion circuit 24 from the analog input signal 1 from which the DC component is cut by the capacitor 17 so that the voltage level appearing at the input terminal 21 falls within the voltage range of the AD conversion circuit 24.
  • an analog signal 1 as shown in FIG. 10 for example, a composite video signal (CVBS; Composite Video, Blanking, and Sync, a composite image including a video signal, a blanking period, and a synchronization signal) Signal) pedestal period (burst signal period indicated by point G) and CVBS synchronization period (indicated by point F).
  • the circuit configuration of the clamp circuit 50 shown in FIG. 9 is a circuit configuration for regenerating the reference voltage using the pedestal period.
  • the pedestal level detection circuit 25 detects the voltage level (pedestal level) of the analog signal 1 during the pedestal period.
  • the pedestal level detection circuit 25 performs the conversion based on the digital data after the AD conversion circuit 24 converts the analog signal 1 into a digital signal.
  • the comparison circuit 26 compares the detection result of the pedestal level detection circuit 25 with the reference data 27.
  • the clamp pulse generation circuit 28 generates a clamp pulse according to the comparison result of the comparison circuit 26 and turns on the switch element 23 to make the pedestal level constant.
  • the AD conversion circuit 24 does not operate unless the voltage at the input terminal 21 is within the voltage range that the AD conversion circuit 24 can digitize.
  • FIG. 11 shows a circuit configuration of a clamp circuit 51 that uses a synchronization period in order to solve this problem (FIG. 1 of Patent Document 1).
  • the clamp circuit 51 includes a capacitor 4, a PNP transistor 6 (PNP bipolar transistor), a resistor 7, an NPN transistor 8 (NPN bipolar transistor), a resistor 12, and a bias circuit 13.
  • the clamp circuit 51 converts the impedance of the analog input signal 1 by an emitter follower circuit (NPN type transistor 2 and resistor 3), cuts the DC component of the signal after the impedance conversion by the capacitor 4, and supplies it to the emitter of the NPN type transistor 8. Giving.
  • the output voltage VB of the bias circuit 13 is applied to the base of the NPN transistor 8. The explanation will be supplemented as follows.
  • the NPN transistor 8 when the NPN transistor 8 is turned on, a current flows through the resistor 7, so that the base voltage of the PNP transistor 6 decreases. Therefore, the PNP transistor 6 is turned on to charge the capacitor 4, and the emitter voltage of the NPN transistor 8, that is, the voltage VE at the point A rises to (VB ⁇ Vbe).
  • the minimum voltage of the analog signal 1 (CVBS) is given during the synchronization signal period of the analog signal 1 indicated by a point F in FIG. Therefore, the minimum value of the emitter voltage of the NPN transistor 8 indicated by the point A in the synchronization signal period, that is, the output voltage of the clamp circuit (the input voltage to the AD conversion circuit provided in the next stage) is (VB ⁇ Vbe).
  • FIG. 12 shows a circuit configuration of another conventional clamp circuit (FIG. 5 of Patent Document 2).
  • the clamp circuit 52 includes a capacitor C1, a diode D1, a resistor R1, and a resistor R2.
  • an analog signal including direct current is input to the input terminal I, the DC component of the analog signal is cut by the capacitor C1, and input to the cathode of the diode D1.
  • the anode of the diode D1 is at the GND potential VG. Therefore, as shown in the following equation (2), when the voltage at the cathode (indicated by point H) of the diode D1 is lowered by the threshold voltage Vca of the diode D1, the diode D1 becomes conductive.
  • the clamp circuit 52 sets the minimum value of the output voltage of the clamp circuit (the voltage of the output terminal O1) in the synchronization signal period of the analog signal 1 indicated by the point F in FIG. 10 to (VG ⁇ Vca).
  • JP-A-6-62275 Japanese Unexamined Patent Publication No. 7-46101
  • FIG. 13 is a graph showing a relationship between a voltage between a base and an emitter (base-emitter voltage) and a base current in an NPN transistor.
  • the graph shown in FIG. 13 shows the dependency of the base current IB on the base-emitter voltage VBE when the environmental temperature Ta at which the clamp circuit operates is changed to ⁇ 25 ° C., 25 ° C., and 100 ° C.
  • FIG. 13 shows the dependency of the base current IB on the base-emitter voltage VBE when the environmental temperature Ta at which the clamp circuit operates is changed to ⁇ 25 ° C., 25 ° C., and 100 ° C.
  • the threshold voltage Vbe when the base-emitter voltage VBE when the base current IB is 10 ⁇ A, for example, is the threshold voltage Vbe of the NPN transistor, the threshold voltage Vbe has an environmental temperature Ta of ⁇ 25 ° C. to 100 ° C. When it changes, it changes about ⁇ 0.1V. Therefore, in the circuit configuration of the clamp circuit 51 of FIG. 11, the output voltage of the clamp circuit (hereinafter referred to as the synchronization signal voltage) during the synchronization period of the analog signal 1 becomes (VB ⁇ Vbe). It will change about 0.1V.
  • Vbe decreases by about 0.1 V at 100 ° C., and accordingly, the synchronization signal voltage level increases accordingly.
  • the voltage range that can be digitized by the AD conversion circuit is wasted.
  • FIG. 14 is a graph showing the relationship between the voltage (forward voltage VF) between the anode and the cathode in the PN diode and the current flowing from the anode to the cathode (forward current IF).
  • the graph shown in FIG. 14 shows the dependency of the forward current IF on the forward voltage VF when the environmental temperature Ta at which the clamp circuit 52 operates is changed to ⁇ 25 ° C., 25 ° C., and 100 ° C. as in FIG. ing.
  • the threshold voltage Vca is ⁇ when the environmental temperature Ta changes from ⁇ 25 ° C. to 100 ° C.
  • a clamp circuit that clamps an analog input voltage to a voltage with little temperature change with a simple circuit configuration is provided.
  • the output terminal O1 of the clamp circuit 52 is connected to the input terminal Ia1 of the differential amplifier circuit A, and the bias circuit is connected to the other input terminal Ia2.
  • a circuit configuration is shown in which the output of B is connected and a clamped signal is output from the output terminal Oa1 of the differential amplifier circuit A.
  • the bias circuit B outputs a clamp voltage or a voltage that swings around the clamp voltage to the input terminal Ia2
  • the level of the clamp voltage output from the output terminal Oa1 is the same as that of the clamp circuit 52.
  • the level includes the threshold voltage Vca of the diode and has temperature dependency.
  • a clamp circuit includes a capacitor, a first transistor connected to the capacitor, a current control terminal to which a specified voltage is applied, and a second transistor having the same conductivity type as the first transistor. And a first resistor having a first terminal and a second terminal, the first resistor being connected to one of a pair of main terminals of each of the first transistor and the second transistor, A first resistor having a first main terminal to which a prescribed reference voltage is applied connected to the first terminal; a first voltage source connected to the second terminal of the first resistor; A second resistor disposed between a current control terminal of one transistor and a second main terminal different from the first main terminal of the pair of main terminals; and the second resistor of the second transistor. Connected to main terminal A second voltage source, and a third resistor disposed between the second main terminal of the first transistor and the second voltage source, and the current control terminal of the first transistor includes the second voltage source. An external signal is given through a capacitor.
  • a specified voltage is applied to the current control terminal of the second transistor so that the second transistor becomes conductive.
  • the first main terminal is one of a pair of main terminals of each of the first transistor and the second transistor, and is a terminal to which a reference voltage that defines an amount of current is applied. Therefore, the voltage of the first main terminal is the specified voltage VD applied to the current control terminal of the second transistor and the voltage between the current control terminal of the second transistor and the reference voltage terminal (referred to as threshold voltage Vbe or Vth). Determined by the sum. Since the first transistor and the second transistor are transistors of the same conductivity type, a transistor having equivalent performance can be obtained.
  • the current control terminal voltage of the first transistor is a clamped voltage having the specified voltage VD as a peak regardless of the temperature.
  • the first transistor and the second transistor may be a PNP transistor or a p-channel field effect transistor.
  • the input analog signal is a signal that keeps the voltage during the synchronization signal period constant. If the first and second transistors are PNP transistors or p-type FETs, in the case of a positive CVBS, the synchronization period voltage is the minimum voltage, so that the minimum voltage is the specified voltage VB.
  • the first transistor and the second transistor may be an NPN transistor or an n-channel field effect transistor.
  • the synchronization period voltage is the maximum voltage, so the maximum voltage is set to the specified voltage VB.
  • a signal processing system includes the clamp circuit and an AD conversion circuit connected to the clamp circuit.
  • the clamp circuit is arranged immediately before the AD conversion circuit, so that the signal obtained by cutting the DC component of the input analog signal is within the input voltage range of the AD conversion circuit.
  • the signal processing system may further include a digital clamp circuit that further performs pedestal clamp processing on the signal after AD conversion by the AD conversion circuit.
  • a digital clamp circuit that performs pedestal clamp processing, a back porch period (pedestal period) after AD conversion is detected, and a digital clamp is applied again so that the value of the period becomes a predetermined value, whereby a video signal To reproduce the minimum signal level more accurately.
  • the minimum value or the maximum value of the voltage after clamping the input analog signal becomes equal to the specified voltage VD, and the threshold voltage of the first or second transistor becomes the clamped voltage. Since it is not included, the temperature dependence of the voltage after clamping is reduced. For this reason, there is an effect that the voltage range that can be digitized by the AD conversion circuit connected to the next stage of the clamp circuit can be effectively used. In addition, since the voltage range in which AD conversion can be performed can be used effectively, in a signal processing system including a clamp circuit, the gradation resolution of the AD conversion circuit can be used effectively, and a smooth image with little quantization error can be displayed. .
  • FIG. 2 is a block diagram showing an overall configuration of a liquid crystal display device 111.
  • FIG. 3 is a block diagram showing a configuration of a Y / C separation circuit 115.
  • FIG. 3 is a circuit diagram of a clamp circuit 120.
  • FIG. 6 is a diagram for explaining temperature characteristics of a clamp circuit 120.
  • FIG. 2 is a block diagram illustrating an overall configuration of an imaging apparatus 211.
  • FIG. 3 is a circuit diagram of a clamp circuit 215.
  • FIG. It is a signal waveform diagram of negative polarity CVBS.
  • 3 is a circuit diagram of a clamp circuit 311.
  • FIG. 6 is a circuit configuration diagram of a clamp circuit described in Patent Document 1.
  • FIG. It is a signal waveform diagram of positive CVBS.
  • FIG. 6 is a circuit configuration diagram of a clamp circuit described in Patent Document 1.
  • FIG. 6 is a circuit configuration diagram of a clamp circuit described in Patent Document 2.
  • FIG. It is a figure which shows the base-emitter voltage VBE dependence of the base current IB in an NPN type transistor. It is a figure which shows the forward voltage VF dependence of the forward current IF in a PN diode.
  • 6 is a circuit configuration diagram of a clamp circuit described in Patent Document 2.
  • FIG. 1 is a block diagram showing the overall configuration of a liquid crystal display device 111 to which the clamp circuit of the present invention is applied.
  • the liquid crystal display device 111 includes a liquid crystal module 112 for displaying an image, and an image processing engine 113 (SoC; System-on-a-) for supplying a video signal for display to the liquid crystal module 112. Chip) and a tuner 114 for detecting an RF signal (video signal) supplied to the image processing engine 113.
  • SoC System-on-a-
  • a tuner 114 for detecting an RF signal (video signal) supplied to the image processing engine 113.
  • a broadcast wave is an interlace signal such as NTSC or PAL.
  • the image processing engine 113 includes a Y / C separation circuit 115, an NR circuit 116 (noise reduction processing device), and an I / P conversion circuit 117, and performs predetermined processing on the detected RF signal (video signal).
  • a Y / C separation circuit 115 an NR circuit 116 (noise reduction processing device), and an I / P conversion circuit 117, and performs predetermined processing on the detected RF signal (video signal).
  • the liquid crystal display device 111 detects an RF signal received from an antenna or a cable by the tuner 114 and transmits a CVBS (composite video signal) to the image processing engine 113.
  • CVBS composite video signal
  • the CVBS is separated into the luminance signal Y and the color signal C by the Y / C separation circuit 115.
  • the NR circuit 116 removes noise from the Y / C signal and outputs it to the I / P conversion circuit 117.
  • the I / P conversion circuit 117 converts the resolution of the input video in accordance with the resolution of the liquid crystal and outputs it to the liquid crystal module 112.
  • the input video signal is received by the TCON circuit 118 (timing controller), converted into a signal and timing according to the specifications of the LCD 119 (liquid crystal panel), and displayed on the LCD 119.
  • the LCD 119 is a display panel (display unit) arranged in a matrix and having pixels corresponding to input image data.
  • FIG. 2 is a diagram showing a block configuration of the Y / C separation circuit 115.
  • the Y / C separation circuit 115 shifts the voltage level of the analog CVBS (composite video signal) by the clamp circuit 120, digitizes the analog CVBS by the ADC circuit 121 (Analog to Digital Converter), and decodes the decoder.
  • the luminance signal Y and the color signal CbCr are separated.
  • FIG. 3 is a diagram illustrating a circuit configuration of the clamp circuit 120 and a relationship with the ADC circuit 121 and the like at the next stage.
  • the analog CVBS is once DC-cut by the capacitor 101, multiplied by LPF as necessary, and input to the ADC circuit 121.
  • the ADC circuit 121 converts an analog signal into a digital signal.
  • the input level of the ADC circuit 121 is in the range of 0V to 2V. Therefore, the clamp circuit 120 adjusts the voltage at the connection point (point E) between the clamp circuit 120 and the ADC circuit 121 after the DC cut to fall within a range of, for example, 0V to 2V.
  • the problem solving means of the present invention is applied to the clamp circuit 120.
  • a clamp circuit 120 whose circuit configuration is shown in FIG. 3 is used as means for solving the problems of the present invention. That is, the clamp circuit 120 supplies CVBS to the base terminal of the PNP transistor 102 (first transistor) through the capacitor 101, and the emitter terminals (each transistor of each transistor) of the PNP transistor 102 and PNP transistor 103 (second transistor).
  • a first main terminal that is connected to either one of the pair of main terminals and to which a reference voltage that defines a current amount is applied is connected to one terminal (first terminal) of the first resistor 104.
  • the other terminal (second terminal) of the first resistor 104 is connected to a positive voltage source (+ power supply), and a specified voltage VD is applied to the base terminal (current control terminal) of the PNP transistor 103.
  • a second resistor 105 is disposed between the base terminal of the PNP transistor 102 and the collector terminal (a second main terminal different from the first main terminal of the pair of main terminals).
  • the third resistor 106 is arranged between the collector terminal and the negative voltage source (-power supply).
  • the collector terminal of the PNP transistor 103 is also connected to the negative voltage source.
  • the specified voltage VD of the PNP transistor 103 is set to a value lower than the positive voltage source by the constant voltage source 108 by Vbe3 or more.
  • Vbe3 is a base-emitter threshold voltage of the PNP transistor 103.
  • the capacitor 107 is a capacitor for preventing the fluctuation of the specified voltage VD.
  • the voltage VB of the emitter terminals (indicated by point B) of the PNP transistor 102 and PNP transistor 103 (PNP bipolar transistor) is the base terminal (indicated by point D) of the PNP transistor 103. )
  • the base-emitter threshold voltage Vbe3 of the PNP transistor 103 the value is represented by the following equation (3).
  • VB VD + Vbe3 (3)
  • the minimum voltage of the positive CVBS is a voltage in the synchronization period indicated by the point F.
  • the voltage VE at the point E becomes equal to or lower than the voltage represented by the following equation (4) during this synchronization period, the PNP transistor 102 becomes conductive.
  • VE ⁇ VB ⁇ Vbe2 VD + Vbe3 ⁇ Vbe2 (4)
  • Vbe2 is a base-emitter threshold voltage of the PNP transistor 102.
  • the clamp circuit 120 can set the input voltage to the ADC circuit 121 to a value that does not include the threshold voltage of the first or second transistor in the synchronization period in which the CVBS signal is the minimum voltage.
  • the clamp circuit 120 can output a clamp voltage (voltage level VD) that does not depend on temperature to the ADC circuit 121 in the synchronization period of the CVBS signal.
  • the voltage at the point E changes as VE ⁇ VB ⁇ Vbe2 due to the CVBS signal in the actual video signal transmission period.
  • the charge of the capacitor 101 flows out through the resistors 105 and 106, the voltage at the point E is eventually reached.
  • VE ⁇ VB ⁇ Vbe2 the PNP transistor 102 becomes conductive again.
  • the PNP transistor 102 cannot be turned on during the actual video signal transmission period. Therefore, the time constant ⁇ is increased by sufficiently increasing the value of the capacitor 101 and the value of the resistor 105 that determine the charge discharge period.
  • the value of each element constituting the clamp circuit 120 was set as follows.
  • the capacitor 101 is 0.047 ⁇ F
  • the resistor 105 is 1 M ⁇
  • the resistor 106 is 80 k ⁇
  • the resistor 104 is 3.9 k ⁇
  • the positive voltage is +5 V
  • the negative voltage is ⁇ 2 V.
  • the time constant ⁇ of the charge discharge period is about 0.047 seconds obtained by the product of the capacitor 101 and the resistor 105, and can be made sufficiently larger than the 1H period (for example, 60 ⁇ s) of CVBS.
  • the clamp circuit 120 can set the voltage at the point E to the voltage of the specified voltage VD every time the CVBS signal is in the synchronization period.
  • the clamp circuit 120 suppresses the voltage fluctuation at the point E every 1H period, the minimum resolution of the ADC circuit 121 that is the next stage of the clamp circuit 120 can be kept within 1 LSB.
  • FIG. 4 shows a graph comparing the temperature characteristics of the synchronization period voltage between the clamp circuit 120 of the present invention shown in FIG. 3 and the conventional clamp circuit shown in FIG.
  • FIG. 4 shows how much the output voltage (synchronization period voltage) deviates from the output voltage of 25 ° C. between the ambient temperature between ⁇ 25 ° C. and 70 ° C. (relative deviation).
  • the temperature dependency of the “temperature compensation type” indicated by the symbol X is the temperature dependency of the clamp circuit 120
  • the temperature dependency of the “diode type” indicated by the symbol Y is the temperature dependency of the conventional clamp circuit. is there. As shown in FIG.
  • the synchronization period voltage of the conventional clamp circuit has a temperature dependence of about ⁇ 100 mV, whereas in the clamp circuit 120 of the present application shown in FIG. It turns out that it is almost constant regardless. For this reason, in the prior art, considering the temperature dependence, the input voltage range at 25 ° C. of the AD converter circuit in the next stage had to be 0.1 V to 1.9 V. In the present invention, however, the temperature dependence is reduced. Without consideration, the input voltage range at 25 ° C. of the AD converter circuit in the next stage can be set to 0V to 2.0V. In other words, by arranging the clamp circuit 120 of the present invention immediately before the ADC circuit 121 as shown in FIG.
  • the input voltage range of the AD converter circuit is not affected by the temperature dependence of the output voltage of the clamp circuit. Effective use. Note that the voltage difference between the synchronization period voltage indicated by point F in FIG. 10 and the back porch period (pedestal period) indicated by point G varies depending on the broadcast environment in which the CVBS is transmitted. Therefore, after AD conversion of the video signal by the ADC circuit 121, the timing of the back porch period is detected, and the value of the video signal is changed so that the average value of the period becomes a predetermined value. Since the minimum signal level of the video signal can be more accurately reproduced by such pedestal clamp processing, it is more preferable to dispose the pedestal clamp circuit 123 after the ADC circuit 121 as shown in FIG.
  • FIG. 5 shows a configuration of the imaging device 211.
  • an optical signal is converted into an RGB analog signal by a CCD 212 (Charge Coupled Device), and the converted RGB analog signal is converted into a video signal or a CVBS digital signal by a signal processing circuit 213.
  • the IF circuit 214 the video signal output from the signal processing circuit 213 is converted into an HDMI signal (digital signal conforming to the High-Definition Multimedia Interface standard) by the HDMI_IF circuit 219, and the CVBS digital signal is converted into a CVBS analog signal by the DAC circuit 220. Convert.
  • the signal processing circuit 213 clamps the input RGB analog signal by the clamp circuit 215, digitally converts it by the ADC circuit 216, converts it to a YCbCr signal by the image processing circuit 217, and converts it to a CVBS digital signal by the encoder 218.
  • the YCbCr signal is a signal for displaying an image, and is a luminance signal (Y) representing brightness, a color difference signal (Cb) that is a difference between the luminance signal and blue, and a difference between the luminance signal and red. This is a video signal that expresses a color with three pieces of information of a certain color difference signal (Cr).
  • FIG. 6 is a diagram illustrating a circuit configuration of the clamp circuit 120 and a relationship with the ADC circuit 216 and the like at the next stage.
  • the pedestal clamp circuit 223 is a circuit having the same function as that of the pedestal clamp circuit 123 in the first embodiment, and thus the description thereof is omitted.
  • a clamp circuit 215 shown in FIG. 6 is a circuit in which the PNP transistor 102 and the PNP transistor 103 in the clamp circuit 120 shown in FIG.
  • the clamp circuit 215 applies CVBS to the gate terminal of the p-type FET 202 (first transistor) through the capacitor 201, and the source terminals (a pair of main terminals of each transistor) of the p-type FET 202 and the p-type FET 203 (second transistor). And a first main terminal to which a reference voltage defining a current amount is applied is connected to one terminal of the first resistor 204. Further, the other terminal of the first resistor 204 is connected to a positive voltage source (+ power supply), and a specified voltage VD is applied to the gate terminal of the p-type FET 203.
  • a second resistor 205 is disposed between the gate terminal (current control terminal) of the p-type FET 202 and the drain terminal (second main terminal different from the first main terminal among the pair of main terminals),
  • a third resistor 206 is disposed between the drain terminal of the p-type FET 202 and a negative voltage source (-power supply).
  • the drain terminal of the p-type FET 203 is also connected to the negative voltage source.
  • the specified voltage VD of the p-type FET 203 is set to a value lower than the positive voltage source by the constant voltage source 208 by Vgs3 or more.
  • Vgs3 is a gate-source threshold voltage of the FET 203.
  • the capacitor 207 is a capacitor for preventing the fluctuation of the specified voltage VD.
  • the voltage VB of the source terminal (indicated by point B) of the p-type FET 202 and p-type FET 203 is equal to the voltage VD of the gate terminal (indicated by point D) of the p-type FET 203.
  • Vgs3 of the FET 203 the value is expressed by the following equation (5).
  • VB VD + Vgs3 (5)
  • the analog RGB signal also has a positive blanking period like the positive CVBS, if the voltage VE of the gate terminal (indicated by point E) of the p-type FET 202 becomes equal to or lower than the following voltage during that period, the p-type FET 202 Conduct.
  • VE ⁇ VB ⁇ Vgs2 VD + Vgs3 ⁇ Vgs2 (6)
  • Vgs ⁇ b> 2 is a gate-source threshold voltage of the p-type FET 202.
  • the clamp circuit 215 sets the input voltage to the ADC circuit 216 at the next stage to a value not including the threshold voltage of the p-type FET 202 or the p-type FET 203 in the positive blanking period in which the analog RGB signal is the minimum voltage. can do.
  • the p-type FET 202 and the p-type FET 203 have the same structure, whereby the threshold voltage Vgs3 of the p-type FET 203 and the threshold voltage Vgs2 of the p-type FET 202 can be made equal.
  • the clamp circuit 215 can output the clamp voltage VD with little temperature dependence to the ADC circuit 216 during the positive blanking period of the analog RGB signal.
  • the clamp circuit 215 the same effect as the clamp circuit 120 can be obtained even if a p-type FET is used instead of the NPN transistor of the clamp circuit 120.
  • the p-type FET can be realized by an ASIC process that forms only a CMOS transistor, the clamp circuit of the present invention can be incorporated in an LSI manufactured using only a CMOS transistor.
  • FIG. 7 is a signal waveform diagram of negative polarity CVBS.
  • the maximum voltage is the voltage in the synchronization period.
  • the clamp circuit 120 shown in FIG. 3 or the clamp circuit 215 shown in FIG. 6 is used, the voltage during the period of the video signal peak in FIG. It becomes VD.
  • the peak of the video signal varies depending on the video, even if this period is constant, the voltage during the synchronization period indicated by point F in FIG. Therefore, a clamp circuit that can keep the positive maximum voltage constant is required.
  • FIG. 7 is a signal waveform diagram of negative polarity CVBS.
  • the maximum voltage is the voltage in the synchronization period.
  • the ADC circuit 312, the pedestal clamp circuit 313, and the decoder 314 are circuits having the same functions as the ADC circuit 121, the pedestal clamp circuit 123, and the decoder 122 in the first embodiment, and thus description thereof is omitted. .
  • the clamp circuit 311 shown in FIG. 8 applies CVBS through the capacitor 301 to the gate terminal of an n-type FET 302 (first transistor) which is an n-channel field effect transistor, and the sources of the n-type FET 302 and the n-type FET 303 (second transistor).
  • a terminal (a first main terminal connected to either one of a pair of main terminals of each transistor and to which a reference voltage defining a current amount is applied) is connected to one terminal of the first resistor 304.
  • the other terminal of the first resistor 304 is connected to a negative voltage source ( ⁇ power supply), and a specified voltage VD is applied to the gate terminal of the n-type FET 303.
  • a second resistor 305 is disposed between the gate terminal (current control terminal) of the n-type FET 302 and the drain terminal (second main terminal different from the first main terminal of the pair of main terminals),
  • the third resistor 306 is arranged between the drain terminal of the n-type FET 302 and the positive voltage source (+ power supply).
  • the drain terminal of the n-type FET 303 is also connected to a positive voltage source.
  • the specified voltage VD of the n-type FET 303 is set to a value higher than the negative voltage source by the constant voltage source 308 by Vgs3 or more.
  • Vgs3 is the gate-source threshold voltage of the FET 303.
  • the voltage VB of the source terminals (indicated by point B) of the n-type FET 302 and the n-type FET 303 is equal to the voltage VD of the gate terminal (indicated by point D) of the n-type FET 303.
  • Vgs3 of the FET 303 the value is expressed by the following equation (7).
  • VB VD ⁇ Vgs3 (7)
  • the maximum voltage of the negative CVBS is the voltage during the synchronization period indicated by the point F.
  • VE> VB + Vgs2 VD ⁇ Vgs3 + Vgs2 (8)
  • the voltage at point C decreases, the voltage at point E is decreased through the resistor 305, and when VE ⁇ VB + Vgs2, the n-type FET 302 becomes non-conductive.
  • the voltage at the point E changes as VE ⁇ VB + Vgs2, but since the capacitor 301 is charged through the resistors 305 and 306, the voltage in the synchronization period eventually becomes VE> VB + Vgs2, and the n-type FET 302 becomes conductive again.
  • the clamp circuit of the present invention is also effective for negative polarity signals.
  • the FET and the bipolar transistor can be replaced. Therefore, the n-type FET in the third embodiment is replaced with an NPN transistor, and the negative polarity CVBS is replaced.
  • a clamp circuit may be configured.
  • the aspect of the present invention can be applied to an apparatus that processes an image signal and an audio signal.
  • the present invention can be suitably applied to a display device that displays a moving image.

Abstract

The clamp circuit of the present invention comprises a capacitor, a first transistor connected to the capacitor, a second transistor, a first resistor, a first voltage source, a second resistor, a second voltage source and a third resistor. The second transistor has an electric current control terminal for applying a specific voltage and is of the same conductivity type as the first transistor. The first resistor has a first terminal and a second terminal, is connected to one of the main terminals of the pair of main terminals of each of the first transistor and the second transistor, and the first main terminal to which is applied a reference voltage for specifying an electric current amount is connected to the first terminal. The first voltage source is connected to the second terminal of the first resistor. The second resistor is disposed between the electric current control terminal of the first transistor and the second main terminal different from the first main terminal of the pair of main terminals. The second voltage source is connected to the second main terminal of the second transistor. The third resistor is disposed between the second main terminal of the first transistor and the second voltage source. The clamp circuit presents an external signal to the electric current control terminal of the first transistor through the capacitor.

Description

クランプ回路及びそれを用いた信号処理システムClamp circuit and signal processing system using the same
 本発明は、クランプ回路、及びそれを用いた信号処理システムに関する。
 本願は、2011年9月12日に、日本に出願された特願2011-198502号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a clamp circuit and a signal processing system using the clamp circuit.
This application claims priority based on Japanese Patent Application No. 2011-198502 filed in Japan on September 12, 2011, the contents of which are incorporated herein by reference.
 クランプ回路は種々の用途に用いられる。例えばアナログテレビジョン放送を受信するテレビジョン受像器においてもクランプ回路が用いられる。この点を説明すると、受信したアナログ映像信号(アナログ入力信号)をテレビジョン受像器内のディジタルシステムに入力する際には、アナログ入力信号をデジタル信号に変換する必要があり、このアナログデジタル変換(「A/D変換」と言うことがある)を行うためにアナログ/デジタル変換器(「A/D変換回路」と言うことがある)が用いられる。このアナログデジタル変換では、アナログ入力信号を正確にデジタル信号に変換するために、クランプ回路が必要となる。
 図9に従来のクランプ回路の回路構成(特許文献1の図2)、図10にこのクランプ回路に入力されるアナログ入力信号の波形を示す。
 図9に示すように、アナログテレビジョン放送の受像機のアナログ入力信号1をエミッタフォロワ回路(NPN型トランジスタ15及び抵抗16)によりインピーダンス変換し、変換後の信号をクランプ用コンデンサ17により、その直流成分(DC成分)をカットし、映像信号処理用ディジタルシステム18の入力端子21に印加する。AD変換回路24は、入力端子21に現れる電圧レベルをデジタル化する。しかし、AD変換回路24ではデジタル化できる電圧範囲が決まっている。
 そのため、クランプ用コンデンサ17、抵抗19、電流源22およびスイッチ素子23によってクランプ回路50を構成する。クランプ回路50は、入力端子21に現れる電圧レベルがAD変換回路24の電圧範囲となるように、コンデンサ17によりDC成分がカットされたアナログ入力信号1からAD変換回路24の基準電圧を再生する。
The clamp circuit is used for various applications. For example, a clamp circuit is also used in a television receiver that receives an analog television broadcast. To explain this point, when the received analog video signal (analog input signal) is input to the digital system in the television receiver, it is necessary to convert the analog input signal into a digital signal. An analog / digital converter (sometimes referred to as an “A / D conversion circuit”) is used for performing “A / D conversion”. In this analog-digital conversion, a clamp circuit is required to accurately convert an analog input signal into a digital signal.
FIG. 9 shows a circuit configuration of a conventional clamp circuit (FIG. 2 of Patent Document 1), and FIG. 10 shows a waveform of an analog input signal input to the clamp circuit.
As shown in FIG. 9, the analog input signal 1 of an analog television broadcast receiver is impedance-converted by an emitter follower circuit (NPN type transistor 15 and resistor 16), and the converted signal is DC-converted by a clamping capacitor 17. The component (DC component) is cut and applied to the input terminal 21 of the video signal processing digital system 18. The AD conversion circuit 24 digitizes the voltage level appearing at the input terminal 21. However, the AD converter circuit 24 has a predetermined voltage range that can be digitized.
Therefore, the clamp circuit 50 is configured by the clamp capacitor 17, the resistor 19, the current source 22, and the switch element 23. The clamp circuit 50 reproduces the reference voltage of the AD conversion circuit 24 from the analog input signal 1 from which the DC component is cut by the capacitor 17 so that the voltage level appearing at the input terminal 21 falls within the voltage range of the AD conversion circuit 24.
 この従来のクランプ回路について、さらに説明を補足する。AD変換回路24の基準電圧の再生方法として、図10に示すようなアナログ信号1、例えばコンポジットビデオ信号(CVBS;Composite Video, Blanking, and Sync、ビデオ信号、帰線期間および同期信号から成る複合映像信号)のペデスタル期間(ポイントGで示すバースト信号期間)を用いる方法と、CVBSの同期期間(ポイントFで示す)を用いる方法がある。
 図9に戻って、図9に示すクランプ回路50の回路構成は、ペデスタル期間を用いて基準電圧を再生する回路構成である。この回路構成では、ペデスタルレベル検出回路25が、アナログ信号1のペデスタル期間の電圧レベル(ペデスタルレベル)の検出を行う。このとき、ペデスタルレベル検出回路25は、AD変換回路24がアナログ信号1をデジタル信号へ変換した後、このデジタルデータに基づいて行う。比較回路26は、ペデスタルレベル検出回路25の検出結果と基準データ27との比較を行う。そして、クランプパルス発生回路28は、比較回路26の比較結果に応じて、クランプパルスを発生させ、スイッチ素子23をオン(導通)させることにより、ペデスタルレベルを一定とする。
 しかし、このクランプ回路50の回路構成では、入力端子21の電圧がAD変換回路24のデジタル化できる電圧範囲に入っていなければ、AD変換回路24が動作しない。
The conventional clamp circuit will be further explained. As a method of reproducing the reference voltage of the AD conversion circuit 24, an analog signal 1 as shown in FIG. 10, for example, a composite video signal (CVBS; Composite Video, Blanking, and Sync, a composite image including a video signal, a blanking period, and a synchronization signal) Signal) pedestal period (burst signal period indicated by point G) and CVBS synchronization period (indicated by point F).
Returning to FIG. 9, the circuit configuration of the clamp circuit 50 shown in FIG. 9 is a circuit configuration for regenerating the reference voltage using the pedestal period. In this circuit configuration, the pedestal level detection circuit 25 detects the voltage level (pedestal level) of the analog signal 1 during the pedestal period. At this time, the pedestal level detection circuit 25 performs the conversion based on the digital data after the AD conversion circuit 24 converts the analog signal 1 into a digital signal. The comparison circuit 26 compares the detection result of the pedestal level detection circuit 25 with the reference data 27. The clamp pulse generation circuit 28 generates a clamp pulse according to the comparison result of the comparison circuit 26 and turns on the switch element 23 to make the pedestal level constant.
However, in the circuit configuration of the clamp circuit 50, the AD conversion circuit 24 does not operate unless the voltage at the input terminal 21 is within the voltage range that the AD conversion circuit 24 can digitize.
 図11は、この問題の解決を図るべく同期期間を用いるクランプ回路51の回路構成を示す(特許文献1の図1)。
 このクランプ回路51は、コンデンサ4、PNP型トランジスタ6(PNP型バイポーラトランジスタ)、抵抗7、NPN型トランジスタ8(NPN型バイポーラトランジスタ)、抵抗12、バイアス回路13から構成される。クランプ回路51は、エミッタフォロワ回路(NPN型トランジスタ2及び抵抗3)により、アナログ入力信号1をインピーダンス変換し、インピーダンス変換後の信号のDC成分をコンデンサ4によりカットし、NPN型トランジスタ8のエミッタへ与えている。NPN型トランジスタ8のベースには、バイアス回路13の出力電圧VBが与えられている。
 この点について以下のように説明を補足する。
 以下の(1)式に示すように、NPN型トランジスタ8のエミッタ(ポイントAで示す)の電圧VEが、出力電圧VBよりNPN型トランジスタ8の閾値電圧Vbe分低くなると、NPN型トランジスタ8がオンする。
 VE<VB-Vbe・・・(1)
FIG. 11 shows a circuit configuration of a clamp circuit 51 that uses a synchronization period in order to solve this problem (FIG. 1 of Patent Document 1).
The clamp circuit 51 includes a capacitor 4, a PNP transistor 6 (PNP bipolar transistor), a resistor 7, an NPN transistor 8 (NPN bipolar transistor), a resistor 12, and a bias circuit 13. The clamp circuit 51 converts the impedance of the analog input signal 1 by an emitter follower circuit (NPN type transistor 2 and resistor 3), cuts the DC component of the signal after the impedance conversion by the capacitor 4, and supplies it to the emitter of the NPN type transistor 8. Giving. The output voltage VB of the bias circuit 13 is applied to the base of the NPN transistor 8.
The explanation will be supplemented as follows.
As shown in the following equation (1), when the voltage VE of the emitter (indicated by point A) of the NPN transistor 8 becomes lower than the output voltage VB by the threshold voltage Vbe of the NPN transistor 8, the NPN transistor 8 is turned on. To do.
VE <VB-Vbe (1)
 クランプ回路51では、NPN型トランジスタ8がオンすると、抵抗7を電流が流れるので、PNP型トランジスタ6のベース電圧が低下する。このため、PNP型トランジスタ6がオンしてコンデンサ4を充電し、NPN型トランジスタ8のエミッタ電圧、即ちポイントAの電圧VEが上昇し、(VB-Vbe)となる。ここで、アナログ信号1(CVBS)の最小電圧を与えるのは、図10にポイントFで示すアナログ信号1の同期信号期間である。よって、同期信号期間におけるポイントAで示すNPN型トランジスタ8のエミッタ、すなわち、クランプ回路の出力電圧(次段に設けられるAD変換回路への入力電圧)の最小値が(VB-Vbe)となる。 In the clamp circuit 51, when the NPN transistor 8 is turned on, a current flows through the resistor 7, so that the base voltage of the PNP transistor 6 decreases. Therefore, the PNP transistor 6 is turned on to charge the capacitor 4, and the emitter voltage of the NPN transistor 8, that is, the voltage VE at the point A rises to (VB−Vbe). Here, the minimum voltage of the analog signal 1 (CVBS) is given during the synchronization signal period of the analog signal 1 indicated by a point F in FIG. Therefore, the minimum value of the emitter voltage of the NPN transistor 8 indicated by the point A in the synchronization signal period, that is, the output voltage of the clamp circuit (the input voltage to the AD conversion circuit provided in the next stage) is (VB−Vbe).
 図12には、従来の別のクランプ回路の回路構成を示す(特許文献2の図5)。
 クランプ回路52は、コンデンサC1、ダイオードD1,抵抗R1、抵抗R2から構成される。クランプ回路52の回路構成では、直流を含むアナログ信号を入力端子Iに入力し、コンデンサC1によりアナログ信号のDC成分をカットし、ダイオードD1のカソードに入力している。また、ダイオードD1のアノードはGND電位VGとなっている。そのため、以下の(2)式に示すように、ダイオードD1のカソード(ポイントHで示す)の電圧がダイオードD1の閾値電圧Vca分低くなったとき、ダイオードD1が導通する。
 VH<VG-Vca・・・(2)
 このため、クランプ回路52により、図10にポイントFで示すアナログ信号1の同期信号期間におけるクランプ回路の出力電圧(出力端子O1の電圧)の最小値が(VG-Vca)となる。
FIG. 12 shows a circuit configuration of another conventional clamp circuit (FIG. 5 of Patent Document 2).
The clamp circuit 52 includes a capacitor C1, a diode D1, a resistor R1, and a resistor R2. In the circuit configuration of the clamp circuit 52, an analog signal including direct current is input to the input terminal I, the DC component of the analog signal is cut by the capacitor C1, and input to the cathode of the diode D1. The anode of the diode D1 is at the GND potential VG. Therefore, as shown in the following equation (2), when the voltage at the cathode (indicated by point H) of the diode D1 is lowered by the threshold voltage Vca of the diode D1, the diode D1 becomes conductive.
VH <VG-Vca (2)
For this reason, the clamp circuit 52 sets the minimum value of the output voltage of the clamp circuit (the voltage of the output terminal O1) in the synchronization signal period of the analog signal 1 indicated by the point F in FIG. 10 to (VG−Vca).
特開平6-62275号公報JP-A-6-62275 特開平7-46101号公報Japanese Unexamined Patent Publication No. 7-46101
 ところで、NPN型トランジスタの閾値電圧Vbeは、LSIが置かれる環境温度の影響を受けて変化する。
 図13は、NPN型トランジスタにおけるベースとエミッタとの間の電圧(ベース・エミッタ間電圧)と、ベース電流との関係を示すグラフである。図13に示すグラフは、クランプ回路が動作する環境温度Taを、-25℃、25℃、100℃と変化させたときのベース電流IBのベース・エミッタ間電圧VBE依存性を示している。この図13に示すように、例えばベース電流IBが10μAとなるときのベース・エミッタ間電圧VBEをNPN型トランジスタの閾値電圧Vbeとすると、閾値電圧Vbeは環境温度Taが-25℃から100℃と変化すると、±0.1V程度変化する。
 従って、図11のクランプ回路51の回路構成では、アナログ信号1の同期期間におけるクランプ回路の出力電圧(以下、同期信号電圧という)が(VB-Vbe)となるので、同期信号電圧は温度により±0.1V程度変化することになる。
 このため、例えばTa=25℃を基準にして、次段のAD変換回路の入力電圧範囲を定めると、100℃では0.1V程度Vbeが下がるので、その分、同期信号電圧レベルが上昇し、AD変換回路のデジタル化できる電圧範囲を無駄に使うことになる。
Incidentally, the threshold voltage Vbe of the NPN transistor changes under the influence of the environmental temperature where the LSI is placed.
FIG. 13 is a graph showing a relationship between a voltage between a base and an emitter (base-emitter voltage) and a base current in an NPN transistor. The graph shown in FIG. 13 shows the dependency of the base current IB on the base-emitter voltage VBE when the environmental temperature Ta at which the clamp circuit operates is changed to −25 ° C., 25 ° C., and 100 ° C. As shown in FIG. 13, when the base-emitter voltage VBE when the base current IB is 10 μA, for example, is the threshold voltage Vbe of the NPN transistor, the threshold voltage Vbe has an environmental temperature Ta of −25 ° C. to 100 ° C. When it changes, it changes about ± 0.1V.
Therefore, in the circuit configuration of the clamp circuit 51 of FIG. 11, the output voltage of the clamp circuit (hereinafter referred to as the synchronization signal voltage) during the synchronization period of the analog signal 1 becomes (VB−Vbe). It will change about 0.1V.
For this reason, for example, when the input voltage range of the AD converter circuit in the next stage is determined based on Ta = 25 ° C., Vbe decreases by about 0.1 V at 100 ° C., and accordingly, the synchronization signal voltage level increases accordingly. The voltage range that can be digitized by the AD conversion circuit is wasted.
 また、LSIを製造するための複数の製造工程からなるASIC(Application Specific Integrated Circuit)プロセスに依っては、PNP型トランジスタやp型FET(pチャネル型電界効果トランジスタ)しか製造できないプロセスもある。図11に示すクランプ回路51の構成では、NPN型トランジスタが使われているため、そのようなプロセスには適用できない。
 これに対して、図12に示すクランプ回路52は、ダイオードから構成されるため、上記ASICプロセスによって生じる課題はないが、ダイオードの閾値電圧Vcaも環境温度の影響を受けて変化する。
 図14は、PNダイオードにおけるアノードとカソードとの間の電圧(順電圧VF)と、アノードからカソードに流れる電流(順電流IF)との関係を示すグラフである。図14に示すグラフは、クランプ回路52が動作する環境温度Taを、図13と同様に、-25℃、25℃、100℃と変化させたときの順電流IFの順電圧VF依存性を示している。この図14に示すように、例えば順電流IFが1mAとなるときの順電圧VFをPNダイオードの閾値電圧Vcaとすると、閾値電圧Vcaは環境温度Taが-25℃から100℃と変化すると、±0.1V程度変化する。
 このため、例えばTa=25℃を基準にして、次段のAD変換回路の入力電圧範囲を定めると、100℃では0.1V程度Vcaが下がるので、その分、同期信号電圧レベルが上昇し、AD変換回路のデジタル化できる電圧範囲を無駄に使うことになる。
 本発明の一態様によれば、簡単な回路構成によりアナログ入力電圧を温度変化の少ない電圧にクランプするクランプ回路を提供する。なお、図15に示す従来回路構成(特許文献2の図1)には、差動増幅回路Aの入力端子Ia1に上記クランプ回路52の出力端子O1を接続し、他方の入力端子Ia2にバイアス回路Bの出力を接続し、差動増幅回路Aの出力端子Oa1からクランプされた信号を出力する回路構成が示されている。しかしながら、このバイアス回路Bはクランプ電圧、またはクランプ電圧を中心に振幅する電圧を入力端子Ia2に出力するものであるから、出力端子Oa1から出力されるクランプ電圧のレベルは、クランプ回路52と同様にダイオードの閾値電圧Vcaを含んだレベルとなり、温度依存性を有するものとなってしまう。
In addition, depending on an ASIC (Application Specific Integrated Circuit) process including a plurality of manufacturing steps for manufacturing an LSI, there is a process in which only a PNP transistor or a p-type FET (p-channel field effect transistor) can be manufactured. The configuration of the clamp circuit 51 shown in FIG. 11 is not applicable to such a process because an NPN transistor is used.
On the other hand, since the clamp circuit 52 shown in FIG. 12 is composed of a diode, there is no problem caused by the ASIC process, but the threshold voltage Vca of the diode also changes under the influence of the environmental temperature.
FIG. 14 is a graph showing the relationship between the voltage (forward voltage VF) between the anode and the cathode in the PN diode and the current flowing from the anode to the cathode (forward current IF). The graph shown in FIG. 14 shows the dependency of the forward current IF on the forward voltage VF when the environmental temperature Ta at which the clamp circuit 52 operates is changed to −25 ° C., 25 ° C., and 100 ° C. as in FIG. ing. As shown in FIG. 14, for example, if the forward voltage VF when the forward current IF is 1 mA is the threshold voltage Vca of the PN diode, the threshold voltage Vca is ±± when the environmental temperature Ta changes from −25 ° C. to 100 ° C. It changes about 0.1V.
For this reason, for example, when the input voltage range of the AD converter circuit in the next stage is determined based on Ta = 25 ° C., Vca decreases by about 0.1 V at 100 ° C., and accordingly, the synchronization signal voltage level increases accordingly. The voltage range that can be digitized by the AD conversion circuit is wasted.
According to one embodiment of the present invention, a clamp circuit that clamps an analog input voltage to a voltage with little temperature change with a simple circuit configuration is provided. In the conventional circuit configuration shown in FIG. 15 (FIG. 1 of Patent Document 2), the output terminal O1 of the clamp circuit 52 is connected to the input terminal Ia1 of the differential amplifier circuit A, and the bias circuit is connected to the other input terminal Ia2. A circuit configuration is shown in which the output of B is connected and a clamped signal is output from the output terminal Oa1 of the differential amplifier circuit A. However, since the bias circuit B outputs a clamp voltage or a voltage that swings around the clamp voltage to the input terminal Ia2, the level of the clamp voltage output from the output terminal Oa1 is the same as that of the clamp circuit 52. The level includes the threshold voltage Vca of the diode and has temperature dependency.
 本発明の一態様に係るクランプ回路は、コンデンサと、前記コンデンサと接続された第1トランジスタと、規定電圧が印加される電流制御端子を有し、前記第1トランジスタと同一導電型の第2トランジスタと、第1の端子と第2の端子とを有する第1抵抗であって、前記第1トランジスタと前記第2トランジスタそれぞれのトランジスタの一対の主端子のうちいずれか一方に接続され、電流量を規定する基準電圧が印加される第1の主端子が前記第1の端子に接続された第1抵抗と、前記第1抵抗の前記第2の端子と接続された第1電圧源と、前記第1トランジスタの電流制御端子と、前記一対の主端子のうち前記第1の主端子とは異なる第2の主端子との間に配置された第2抵抗と、前記第2トランジスタの前記第2の主端子に接続された第2電圧源と、前記第1トランジスタの前記第2の主端子と前記第2電圧源との間に配置された第3抵抗と、を含み、前記第1トランジスタの前記電流制御端子に前記コンデンサを通して外部信号を与える。 A clamp circuit according to an aspect of the present invention includes a capacitor, a first transistor connected to the capacitor, a current control terminal to which a specified voltage is applied, and a second transistor having the same conductivity type as the first transistor. And a first resistor having a first terminal and a second terminal, the first resistor being connected to one of a pair of main terminals of each of the first transistor and the second transistor, A first resistor having a first main terminal to which a prescribed reference voltage is applied connected to the first terminal; a first voltage source connected to the second terminal of the first resistor; A second resistor disposed between a current control terminal of one transistor and a second main terminal different from the first main terminal of the pair of main terminals; and the second resistor of the second transistor. Connected to main terminal A second voltage source, and a third resistor disposed between the second main terminal of the first transistor and the second voltage source, and the current control terminal of the first transistor includes the second voltage source. An external signal is given through a capacitor.
 上記クランプ回路では、第2トランジスタが導通状態となるよう第2トランジスタの電流制御端子に規定電圧(VDとする)を与える。第1の主端子は、第1トランジスタ及び第2トランジスタそれぞれのトランジスタの一対の主端子のうちいずれか一方の主端子であって、電流量を規定する基準電圧が印加される端子である。そのため、第1の主端子の電圧は、第2トランジスタの電流制御端子に与える規定電圧VDと、第2トランジスタの電流制御端子及び基準電圧端子間の電圧(閾値電圧VbeまたはVthとする)との和により定まる。
 第1トランジスタと第2トランジスタは同一導電型のトランジスタであるので、同等の性能を持ったトランジスタとすることができる。そのため、同期信号期間に第1トランジスタの電流制御端子の電圧が規定電圧VD以下になると、第1トランジスタの電流制御端子と基準電圧端子間との間の電圧も閾値電圧VbeまたはVthとなり、第1トランジスタが導通状態となる。これにより、第3抵抗により、第2の主端子の電位は上昇し、第2の主端子に第2抵抗を介して接続される第1トランジスタの電流制御端子の電圧は、規定電圧VD以下になることが抑えられ、規定電圧VDにクランプされる。
 つまり、第1トランジスタと第2トランジスタの温度特性が同等なので、温度に依らず第1トランジスタの電流制御端子電圧は、規定電圧VDをピークとするクランプされた電圧となる。
In the clamp circuit, a specified voltage (VD) is applied to the current control terminal of the second transistor so that the second transistor becomes conductive. The first main terminal is one of a pair of main terminals of each of the first transistor and the second transistor, and is a terminal to which a reference voltage that defines an amount of current is applied. Therefore, the voltage of the first main terminal is the specified voltage VD applied to the current control terminal of the second transistor and the voltage between the current control terminal of the second transistor and the reference voltage terminal (referred to as threshold voltage Vbe or Vth). Determined by the sum.
Since the first transistor and the second transistor are transistors of the same conductivity type, a transistor having equivalent performance can be obtained. Therefore, when the voltage of the current control terminal of the first transistor becomes equal to or lower than the specified voltage VD during the synchronization signal period, the voltage between the current control terminal of the first transistor and the reference voltage terminal also becomes the threshold voltage Vbe or Vth, The transistor becomes conductive. As a result, the potential of the second main terminal rises due to the third resistor, and the voltage of the current control terminal of the first transistor connected to the second main terminal via the second resistor is equal to or lower than the specified voltage VD. And is clamped to the specified voltage VD.
That is, since the temperature characteristics of the first transistor and the second transistor are the same, the current control terminal voltage of the first transistor is a clamped voltage having the specified voltage VD as a peak regardless of the temperature.
 また、上記クランプ回路において、前記第1トランジスタ及び前記第2トランジスタが、PNP型トランジスタ、またはpチャネル型電界効果トランジスタであってもよい。 In the clamp circuit, the first transistor and the second transistor may be a PNP transistor or a p-channel field effect transistor.
 入力されるアナログ信号(CVBS)は、同期信号期間の電圧を一定とする信号である。上記第1及び第2トランジスタがPNP型トランジスタ、またはp型FETであれば、正極性のCVBSの場合、同期期間電圧が最小電圧となるので、その最小電圧を上記規定電圧VBとする。 The input analog signal (CVBS) is a signal that keeps the voltage during the synchronization signal period constant. If the first and second transistors are PNP transistors or p-type FETs, in the case of a positive CVBS, the synchronization period voltage is the minimum voltage, so that the minimum voltage is the specified voltage VB.
 また、上記クランプ回路において、前記第1トランジスタ及び前記第2トランジスタが、NPN型トランジスタ、またはnチャネル型電界効果トランジスタであってもよい。 In the clamp circuit, the first transistor and the second transistor may be an NPN transistor or an n-channel field effect transistor.
 上記第1及び第2トランジスタがNPN型トランジスタ、またはn型FETであれば、負極性のCVBSの場合、同期期間電圧が最大電圧となるので、その最大電圧を上記規定電圧VBとする。 If the first and second transistors are NPN type transistors or n-type FETs, in the case of negative polarity CVBS, the synchronization period voltage is the maximum voltage, so the maximum voltage is set to the specified voltage VB.
 また、本発明の他の一態様に係る信号処理システムは、上記クランプ回路と、前記クランプ回路と接続されたAD変換回路と、を含む。 In addition, a signal processing system according to another aspect of the present invention includes the clamp circuit and an AD conversion circuit connected to the clamp circuit.
 上記信号処理システムにおいて、クランプ回路をAD変換回路の直前に配置することで、入力アナログ信号のDC成分をカットした信号をAD変換回路の入力電圧範囲に収める。 In the above signal processing system, the clamp circuit is arranged immediately before the AD conversion circuit, so that the signal obtained by cutting the DC component of the input analog signal is within the input voltage range of the AD conversion circuit.
 また、上記信号処理システムは、前記AD変換回路によるAD変換後の信号に、さらにペデスタルクランプ処理を行うデジタルクランプ回路をさらに含んでいてもよい。 The signal processing system may further include a digital clamp circuit that further performs pedestal clamp processing on the signal after AD conversion by the AD conversion circuit.
 ペデスタルクランプ処理を行うデジタルクランプ回路を配置することにより、AD変換後バックポーチ期間(ペデスタル期間)を検出し、その期間の値が所定値となるようデジタル的なクランプを再度掛けることにより、映像信号の最小信号レベルをより正確に再生する。 By arranging a digital clamp circuit that performs pedestal clamp processing, a back porch period (pedestal period) after AD conversion is detected, and a digital clamp is applied again so that the value of the period becomes a predetermined value, whereby a video signal To reproduce the minimum signal level more accurately.
 本発明の一態様に係るクランプ回路によれば、入力アナログ信号をクランプした後の電圧の最小値または最大値が規定電圧VDと等しくなり、第1または第2トランジスタの閾値電圧がクランプした電圧に含まれないので、クランプした後の電圧の温度依存性が少なくなる。
 このため、クランプ回路の次段に接続されるAD変換回路のデジタル化できる電圧範囲を有効に使えるという効果がある。
 また、AD変換できる電圧範囲を有効に使えるので、クランプ回路を含む信号処理システムにおいて、AD変換回路の持つ階調分解能を有効に使え、量子化誤差の少ない、滑らかな映像が表示できる効果もある。
According to the clamp circuit of one aspect of the present invention, the minimum value or the maximum value of the voltage after clamping the input analog signal becomes equal to the specified voltage VD, and the threshold voltage of the first or second transistor becomes the clamped voltage. Since it is not included, the temperature dependence of the voltage after clamping is reduced.
For this reason, there is an effect that the voltage range that can be digitized by the AD conversion circuit connected to the next stage of the clamp circuit can be effectively used.
In addition, since the voltage range in which AD conversion can be performed can be used effectively, in a signal processing system including a clamp circuit, the gradation resolution of the AD conversion circuit can be used effectively, and a smooth image with little quantization error can be displayed. .
液晶表示装置111の全体構成を示すブロック図である。2 is a block diagram showing an overall configuration of a liquid crystal display device 111. FIG. Y/C分離回路115の構成を示すブロック図である。3 is a block diagram showing a configuration of a Y / C separation circuit 115. FIG. クランプ回路120の回路図である。3 is a circuit diagram of a clamp circuit 120. FIG. クランプ回路120の温度特性を説明するための図である。6 is a diagram for explaining temperature characteristics of a clamp circuit 120. FIG. 撮像装置211の全体構成を示すブロック図である。2 is a block diagram illustrating an overall configuration of an imaging apparatus 211. FIG. クランプ回路215の回路図である。3 is a circuit diagram of a clamp circuit 215. FIG. 負極性CVBSの信号波形図である。It is a signal waveform diagram of negative polarity CVBS. クランプ回路311の回路図である。3 is a circuit diagram of a clamp circuit 311. FIG. 特許文献1記載のクランプ回路の回路構成図である。6 is a circuit configuration diagram of a clamp circuit described in Patent Document 1. FIG. 正極性CVBSの信号波形図である。It is a signal waveform diagram of positive CVBS. 特許文献1記載のクランプ回路の回路構成図である。6 is a circuit configuration diagram of a clamp circuit described in Patent Document 1. FIG. 特許文献2記載のクランプ回路の回路構成図である。6 is a circuit configuration diagram of a clamp circuit described in Patent Document 2. FIG. NPN型トランジスタにおけるベース電流IBのベース・エミッタ間電圧VBE依存性を示す図である。It is a figure which shows the base-emitter voltage VBE dependence of the base current IB in an NPN type transistor. PNダイオードにおける順電流IFの順電圧VF依存性を示す図である。It is a figure which shows the forward voltage VF dependence of the forward current IF in a PN diode. 特許文献2記載のクランプ回路の回路構成図である。6 is a circuit configuration diagram of a clamp circuit described in Patent Document 2. FIG.
 以下、図面を参照しながら本発明の実施形態を詳細に説明する。
[第1の実施形態]
 図1は、本発明のクランプ回路を適用する液晶表示装置111の全体構成を示すブロック図である。
 液晶表示装置111は、図1に示すように、画像を表示するための液晶モジュール112、液晶モジュール112に表示用の映像信号を供給するための画像処理エンジン113(SoC;System-on-a-Chip)、画像処理エンジン113に供給されるRF信号(映像信号)を検波するチューナ114を少なくとも含んだ構成となっている。ここでは、映像信号として、放送波を想定して説明する。放送波としては、NTSC方式、PAL方式等のインターレース信号とする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a block diagram showing the overall configuration of a liquid crystal display device 111 to which the clamp circuit of the present invention is applied.
As shown in FIG. 1, the liquid crystal display device 111 includes a liquid crystal module 112 for displaying an image, and an image processing engine 113 (SoC; System-on-a-) for supplying a video signal for display to the liquid crystal module 112. Chip) and a tuner 114 for detecting an RF signal (video signal) supplied to the image processing engine 113. Here, a description will be given assuming a broadcast wave as the video signal. The broadcast wave is an interlace signal such as NTSC or PAL.
 画像処理エンジン113は、Y/C分離回路115、NR回路116(ノイズ低減処理装置)、I/P変換回路117を備えて、検波後のRF信号(映像信号)に対して所定の処理を施して、後段の液晶モジュール(表示装置)112に送信する。
 すなわち、液晶表示装置111は、アンテナやケーブルから届くRF信号をチューナ114で検波し、CVBS(コンポジットビデオ信号)を画像処理エンジン113に送信する。
The image processing engine 113 includes a Y / C separation circuit 115, an NR circuit 116 (noise reduction processing device), and an I / P conversion circuit 117, and performs predetermined processing on the detected RF signal (video signal). To the subsequent liquid crystal module (display device) 112.
That is, the liquid crystal display device 111 detects an RF signal received from an antenna or a cable by the tuner 114 and transmits a CVBS (composite video signal) to the image processing engine 113.
 画像処理エンジン113において、CVBSをY/C分離回路115により輝度信号Yと色信号Cに分離する。NR回路116では、Y/C信号からノイズを落とし、I/P変換回路117に出力する。I/P変換回路117では、液晶の解像度に合わせて入力映像を解像度変換し、液晶モジュール112へ出力する。 In the image processing engine 113, the CVBS is separated into the luminance signal Y and the color signal C by the Y / C separation circuit 115. The NR circuit 116 removes noise from the Y / C signal and outputs it to the I / P conversion circuit 117. The I / P conversion circuit 117 converts the resolution of the input video in accordance with the resolution of the liquid crystal and outputs it to the liquid crystal module 112.
 液晶モジュール112では、入力された映像信号をTCON回路118(タイミングコントローラ)で受けて、LCD119(液晶パネル)の仕様に合わせた信号とタイミングに変換し、LCD119に表示させる。このLCD119は、マトリックス状に配置され、入力される画像データに対応する画素を有する表示パネル(表示部)である。 In the liquid crystal module 112, the input video signal is received by the TCON circuit 118 (timing controller), converted into a signal and timing according to the specifications of the LCD 119 (liquid crystal panel), and displayed on the LCD 119. The LCD 119 is a display panel (display unit) arranged in a matrix and having pixels corresponding to input image data.
 図2は、Y/C分離回路115のブロック構成を示す図である。
 Y/C分離回路115は、図2に示すように、アナログCVBS(コンポジット映像信号)をクランプ回路120で電圧レベルをシフトし、ADC回路121(Analog to Digital Converter)でアナログCVBSをデジタル化し、デコーダ122で輝度信号Yと色信号CbCrに分離する。
FIG. 2 is a diagram showing a block configuration of the Y / C separation circuit 115.
As shown in FIG. 2, the Y / C separation circuit 115 shifts the voltage level of the analog CVBS (composite video signal) by the clamp circuit 120, digitizes the analog CVBS by the ADC circuit 121 (Analog to Digital Converter), and decodes the decoder. At 122, the luminance signal Y and the color signal CbCr are separated.
 図3は、クランプ回路120の回路構成、及び次段のADC回路121等との関係を示す図である。
 アナログCVBSは、図3に示すように、一旦コンデンサ101でDCカットされ、必要に応じてLPFを掛けられ、ADC回路121へ入力される。
 ADC回路121は、アナログ信号をデジタル信号に変換するが、本ADC回路121の入力レベルは0V~2Vの範囲である。そこで、クランプ回路120では、DCカット後のクランプ回路120とADC回路121との接続点(ポイントE)の電圧を、例えば0V~2Vの範囲に入るよう調整する。
FIG. 3 is a diagram illustrating a circuit configuration of the clamp circuit 120 and a relationship with the ADC circuit 121 and the like at the next stage.
As shown in FIG. 3, the analog CVBS is once DC-cut by the capacitor 101, multiplied by LPF as necessary, and input to the ADC circuit 121.
The ADC circuit 121 converts an analog signal into a digital signal. The input level of the ADC circuit 121 is in the range of 0V to 2V. Therefore, the clamp circuit 120 adjusts the voltage at the connection point (point E) between the clamp circuit 120 and the ADC circuit 121 after the DC cut to fall within a range of, for example, 0V to 2V.
 本発明の課題解決手段は、このクランプ回路120へ適用される。
 本実施形態では、本発明の課題解決手段として、図3にその回路構成を示すクランプ回路120を用いる。
 すなわち、クランプ回路120は、PNP型トランジスタ102(第1トランジスタ)のベース端子にコンデンサ101を通してCVBSを与え、PNP型トランジスタ102及びPNP型トランジスタ103(第2トランジスタ)それぞれのエミッタ端子(それぞれのトランジスタの一対の主端子のうちいずれか一方に接続され、電流量を規定する基準電圧が印加される第1の主端子)を第1抵抗104の一方の端子(第1の端子)に接続する。また、第1抵抗104の他方の端子(第2の端子)を正極性電圧源(+電源)に接続し、PNP型トランジスタ103のベース端子(電流制御端子)に規定電圧VDを与える。また、PNP型トランジスタ102のベース端子とコレクタ端子(一対の主端子のうち第1の主端子とは異なる第2の主端子)との間に第2抵抗105を配置し、PNP型トランジスタ102のコレクタ端子と負極性電圧源(-電源)の間に第3抵抗106を配置した構成である。
 なお、PNP型トランジスタ103のコレクタ端子も負極性電圧源に接続されている。
 また、PNP型トランジスタ103の規定電圧VDは、定電圧源108により正極性電圧源よりもVbe3以上低い値に設定されている。ここで、Vbe3はPNP型トランジスタ103のベース・エミッタ間閾値電圧である。また、コンデンサ107は規定電圧VDの変動を防止するためのコンデンサである。
The problem solving means of the present invention is applied to the clamp circuit 120.
In the present embodiment, a clamp circuit 120 whose circuit configuration is shown in FIG. 3 is used as means for solving the problems of the present invention.
That is, the clamp circuit 120 supplies CVBS to the base terminal of the PNP transistor 102 (first transistor) through the capacitor 101, and the emitter terminals (each transistor of each transistor) of the PNP transistor 102 and PNP transistor 103 (second transistor). A first main terminal that is connected to either one of the pair of main terminals and to which a reference voltage that defines a current amount is applied is connected to one terminal (first terminal) of the first resistor 104. The other terminal (second terminal) of the first resistor 104 is connected to a positive voltage source (+ power supply), and a specified voltage VD is applied to the base terminal (current control terminal) of the PNP transistor 103. A second resistor 105 is disposed between the base terminal of the PNP transistor 102 and the collector terminal (a second main terminal different from the first main terminal of the pair of main terminals). The third resistor 106 is arranged between the collector terminal and the negative voltage source (-power supply).
The collector terminal of the PNP transistor 103 is also connected to the negative voltage source.
The specified voltage VD of the PNP transistor 103 is set to a value lower than the positive voltage source by the constant voltage source 108 by Vbe3 or more. Here, Vbe3 is a base-emitter threshold voltage of the PNP transistor 103. The capacitor 107 is a capacitor for preventing the fluctuation of the specified voltage VD.
 図3に示すクランプ回路120において、PNP型トランジスタ102及びPNP型トランジスタ103(PNP型バイポーラトランジスタ)のエミッタ端子(ポイントBで示す)の電圧VBは、PNP型トランジスタ103のベース端子(ポイントDで示す)の電圧VDと、PNP型トランジスタ103のベース・エミッタ間閾値電圧Vbe3とを用いて、次の式(3)で示す値になる。
 VB=VD+Vbe3・・・(3)
 図10において、正極性CVBSの最低電圧は、ポイントFで示す同期期間の電圧である。
 この同期期間にポイントEの電圧VEが以下の式(4)で示す電圧以下となると、PNP型トランジスタ102は導通する。
 VE<VB-Vbe2=VD+Vbe3-Vbe2・・・(4)
 ここで、Vbe2はPNP型トランジスタ102のベース・エミッタ間閾値電圧である。
In the clamp circuit 120 shown in FIG. 3, the voltage VB of the emitter terminals (indicated by point B) of the PNP transistor 102 and PNP transistor 103 (PNP bipolar transistor) is the base terminal (indicated by point D) of the PNP transistor 103. ) And the base-emitter threshold voltage Vbe3 of the PNP transistor 103, the value is represented by the following equation (3).
VB = VD + Vbe3 (3)
In FIG. 10, the minimum voltage of the positive CVBS is a voltage in the synchronization period indicated by the point F.
When the voltage VE at the point E becomes equal to or lower than the voltage represented by the following equation (4) during this synchronization period, the PNP transistor 102 becomes conductive.
VE <VB−Vbe2 = VD + Vbe3−Vbe2 (4)
Here, Vbe2 is a base-emitter threshold voltage of the PNP transistor 102.
 この同期期間の電圧がVE<VB-Vbe2になると、PNP型トランジスタ102のコレクタ端子(ポイントCで示す)の電圧が、抵抗106にPNP型トランジスタ102のコレクタ電流が流れることにより上昇する。また、PNP型トランジスタ102のコレクタ端子とベース端子との間に設けられる抵抗105は、ポイントEの電圧を上昇させる。VE≒VB-Vbe2となったとき、PNP型トランジスタ102は非導通となる。
 このように、クランプ回路120は、CVBS信号が最小電圧である同期期間において、ADC回路121への入力電圧を、第1または第2トランジスタの閾値電圧を含まない値にすることができる。つまり、第1トランジスタと第2トランジスタを同一構造とすることで、上記式(4)において、第2トランジスタの閾値電圧Vbe3と第1トランジスタの閾値電圧Vbe2とを等しくすることができる。これにより、クランプ回路120は、温度依存のないクランプ電圧(電圧レベルVD)を、CVBS信号の同期期間において、ADC回路121に対して出力することができる。
When the voltage during this synchronization period becomes VE <VB−Vbe2, the voltage at the collector terminal (indicated by point C) of the PNP transistor 102 increases due to the collector current of the PNP transistor 102 flowing through the resistor 106. In addition, the resistor 105 provided between the collector terminal and the base terminal of the PNP transistor 102 increases the voltage at point E. When VE≈VB−Vbe2, the PNP transistor 102 becomes non-conductive.
In this manner, the clamp circuit 120 can set the input voltage to the ADC circuit 121 to a value that does not include the threshold voltage of the first or second transistor in the synchronization period in which the CVBS signal is the minimum voltage. That is, by making the first transistor and the second transistor have the same structure, the threshold voltage Vbe3 of the second transistor and the threshold voltage Vbe2 of the first transistor can be made equal in the above equation (4). Accordingly, the clamp circuit 120 can output a clamp voltage (voltage level VD) that does not depend on temperature to the ADC circuit 121 in the synchronization period of the CVBS signal.
 そして、その後、ポイントEの電圧は実際の映像信号の送信期間におけるCVBS信号によりVE≧VB-Vbe2で推移するが、抵抗105と抵抗106を通してコンデンサ101の電荷が流出するので、やがてポイントEの電圧がVE<VB-Vbe2となると、再びPNP型トランジスタ102は導通する。しかし、実際の映像信号の送信期間にPNP型トランジスタ102を導通させることはできない。
 そこで、この電荷放出期間を決めるコンデンサ101の値と抵抗105の値を充分大きく取って、時定数τを大きくする。
 具体的には、クランプ回路120を構成する各素子の値を次のように設定した。例えば、コンデンサ101を0.047μF、抵抗105を1MΩ、抵抗106を80kΩ、抵抗104を3.9kΩ、また、正極性電圧を+5V、負極性電圧を-2Vとした。
 このため、電荷放出期間の時定数τは、コンデンサ101と抵抗105の積で求められる約0.047秒となり、CVBSの1H期間(例えば60μ秒)と比べて充分大きくすることができた。これにより、クランプ回路120は、CVBS信号が同期期間になる毎に、ポイントEの電圧を規定電圧VDの電圧にすることができる。また、クランプ回路120は、1H期間経過ごとのポイントEの電圧変動を抑えるので、クランプ回路120の次段であるADC回路121の最小分解能を1LSB以内に収めることができる。
After that, the voltage at the point E changes as VE ≧ VB−Vbe2 due to the CVBS signal in the actual video signal transmission period. However, since the charge of the capacitor 101 flows out through the resistors 105 and 106, the voltage at the point E is eventually reached. When VE <VB−Vbe2, the PNP transistor 102 becomes conductive again. However, the PNP transistor 102 cannot be turned on during the actual video signal transmission period.
Therefore, the time constant τ is increased by sufficiently increasing the value of the capacitor 101 and the value of the resistor 105 that determine the charge discharge period.
Specifically, the value of each element constituting the clamp circuit 120 was set as follows. For example, the capacitor 101 is 0.047 μF, the resistor 105 is 1 MΩ, the resistor 106 is 80 kΩ, the resistor 104 is 3.9 kΩ, the positive voltage is +5 V, and the negative voltage is −2 V.
For this reason, the time constant τ of the charge discharge period is about 0.047 seconds obtained by the product of the capacitor 101 and the resistor 105, and can be made sufficiently larger than the 1H period (for example, 60 μs) of CVBS. Accordingly, the clamp circuit 120 can set the voltage at the point E to the voltage of the specified voltage VD every time the CVBS signal is in the synchronization period. In addition, since the clamp circuit 120 suppresses the voltage fluctuation at the point E every 1H period, the minimum resolution of the ADC circuit 121 that is the next stage of the clamp circuit 120 can be kept within 1 LSB.
 図3に示す本願発明のクランプ回路120と、図12に示す従来のクランプ回路との間で同期期間電圧の温度特性を比較したグラフを図4に示す。
 図4は、出力電圧(同期期間電圧)が、環境温度が-25℃と70℃との間で25℃の出力電圧に対してどれだけずれるか(相対的なズレ)を示している。図4において、符号Xで示す「温度補償型」の温度依存性がクランプ回路120の温度依存性であり、符号Yで示す「ダイオード型」の温度依存性が従来のクランプ回路の温度依存性である。
 この図4に示すように、従来のクランプ回路の同期期間電圧が±100mV程度の温度依存性を有しているのに対して、図3に示す本願のクランプ回路120では同期期間電圧が温度に依らず殆ど一定であることが判る。
 このため、従来技術では温度依存性を考慮して、次段のAD変換回路の25℃における入力電圧範囲を0.1V~1.9Vとしなければならなかったが、本願発明では温度依存性を考慮することなく、次段のAD変換回路の25℃における入力電圧範囲を0V~2.0Vとすることができる。
 つまり、本願発明のクランプ回路120を、図3に示すようにADC回路121の直前に配置することで、クランプ回路の出力電圧の温度依存性の影響を受けず、AD変換回路の入力電圧範囲を有効利用できる。
 なお、図10にポイントFで示す同期期間電圧とポイントGで示すバックポーチ期間(ペデストラル期間)の電圧差は、CVBSを送信する放送環境により変化する。このため、ADC回路121による映像信号のAD変換後、バックポーチ期間のタイミングを検出し、その期間の平均値が所定値とるよう映像信号の値を変化させる。このようなベデスタルクランプ処理により、映像信号の最小信号レベルをより正確に再生できるので、図3に示す様にペデスタルクランプ回路123をADC回路121の後段に配置することがより好ましい。
FIG. 4 shows a graph comparing the temperature characteristics of the synchronization period voltage between the clamp circuit 120 of the present invention shown in FIG. 3 and the conventional clamp circuit shown in FIG.
FIG. 4 shows how much the output voltage (synchronization period voltage) deviates from the output voltage of 25 ° C. between the ambient temperature between −25 ° C. and 70 ° C. (relative deviation). In FIG. 4, the temperature dependency of the “temperature compensation type” indicated by the symbol X is the temperature dependency of the clamp circuit 120, and the temperature dependency of the “diode type” indicated by the symbol Y is the temperature dependency of the conventional clamp circuit. is there.
As shown in FIG. 4, the synchronization period voltage of the conventional clamp circuit has a temperature dependence of about ± 100 mV, whereas in the clamp circuit 120 of the present application shown in FIG. It turns out that it is almost constant regardless.
For this reason, in the prior art, considering the temperature dependence, the input voltage range at 25 ° C. of the AD converter circuit in the next stage had to be 0.1 V to 1.9 V. In the present invention, however, the temperature dependence is reduced. Without consideration, the input voltage range at 25 ° C. of the AD converter circuit in the next stage can be set to 0V to 2.0V.
In other words, by arranging the clamp circuit 120 of the present invention immediately before the ADC circuit 121 as shown in FIG. 3, the input voltage range of the AD converter circuit is not affected by the temperature dependence of the output voltage of the clamp circuit. Effective use.
Note that the voltage difference between the synchronization period voltage indicated by point F in FIG. 10 and the back porch period (pedestal period) indicated by point G varies depending on the broadcast environment in which the CVBS is transmitted. Therefore, after AD conversion of the video signal by the ADC circuit 121, the timing of the back porch period is detected, and the value of the video signal is changed so that the average value of the period becomes a predetermined value. Since the minimum signal level of the video signal can be more accurately reproduced by such pedestal clamp processing, it is more preferable to dispose the pedestal clamp circuit 123 after the ADC circuit 121 as shown in FIG.
[第2の実施形態]
 第2の実施形態では、本願発明のクランプ回路を他の画像処理システムに適用する例について説明する。
 図5は、撮像装置211の構成である。
 撮像装置211では、CCD212(Charge Coupled Device)により、光信号をRGBアナログ信号へ変換し、変換後のRGBアナログ信号を信号処理回路213により映像信号またはCVBSデジタル信号に変換する。
 IF回路214では、信号処理回路213が出力する映像信号をHDMI_IF回路219によりHDMI信号(High-Definition Multimedia Interface規格に準拠したデジタル信号)へ変換し、CVBSデジタル信号をDAC回路220によりCVBSアナログ信号へ変換する。
 信号処理回路213は、入力されたRGBアナログ信号をクランプ回路215でクランプし、ADC回路216でデジタル変換し、画像処理回路217でYCbCr信号へ変換し、エンコーダ218でCVBSデジタル信号へ変換する。YCbCr信号とは、映像を表示するための信号であって、明るさを表す輝度信号(Y)、輝度信号と青との差である色差信号(Cb)、及び輝度信号と赤との差である色差信号(Cr)の3つの情報で色を表現する映像信号である。
[Second Embodiment]
In the second embodiment, an example in which the clamp circuit of the present invention is applied to another image processing system will be described.
FIG. 5 shows a configuration of the imaging device 211.
In the imaging device 211, an optical signal is converted into an RGB analog signal by a CCD 212 (Charge Coupled Device), and the converted RGB analog signal is converted into a video signal or a CVBS digital signal by a signal processing circuit 213.
In the IF circuit 214, the video signal output from the signal processing circuit 213 is converted into an HDMI signal (digital signal conforming to the High-Definition Multimedia Interface standard) by the HDMI_IF circuit 219, and the CVBS digital signal is converted into a CVBS analog signal by the DAC circuit 220. Convert.
The signal processing circuit 213 clamps the input RGB analog signal by the clamp circuit 215, digitally converts it by the ADC circuit 216, converts it to a YCbCr signal by the image processing circuit 217, and converts it to a CVBS digital signal by the encoder 218. The YCbCr signal is a signal for displaying an image, and is a luminance signal (Y) representing brightness, a color difference signal (Cb) that is a difference between the luminance signal and blue, and a difference between the luminance signal and red. This is a video signal that expresses a color with three pieces of information of a certain color difference signal (Cr).
 このようなRGB信号用クランプ回路215にも本願発明のクランプ回路を適用できる。なお、本実施形態では、クランプ回路をFET(電界効果トランジスタ)で構成する例について説明する。
 図6は、クランプ回路120の回路構成、及び次段のADC回路216等との関係を示す図である。なお、ペデスタルクランプ回路223については、第1の実施形態におけるペデスタルクランプ回路123と同じ機能を有する回路であるので、その説明を省略する。
 図6に示すクランプ回路215は、図3に示すクランプ回路120におけるPNP型トランジスタ102,PNP型トランジスタ103を、それぞれpチャネル型電界効果トランジスタであるp型FET202,p型FET203に置き換えた回路である。
 すなわち、クランプ回路215は、p型FET202(第1トランジスタ)のゲート端子にコンデンサ201を通してCVBSを与え、p型FET202及びp型FET203(第2トランジスタ)のソース端子(それぞれのトランジスタの一対の主端子のうちいずれか一方に接続され、電流量を規定する基準電圧が印加される第1の主端子)を第1抵抗204の一方の端子に接続する。また、第1抵抗204の他方の端子を正極性電圧源(+電源)に接続し、p型FET203のゲート端子に規定電圧VDを与える。また、p型FET202のゲート端子(電流制御端子)と、ドレイン端子(一対の主端子のうち第1の主端子とは異なる第2の主端子)との間に第2抵抗205を配置し、p型FET202のドレイン端子と負極性電圧源(-電源)の間に第3抵抗206を配置した構成である。
 なお、p型FET203のドレイン端子も負極性電圧源に接続されている。
 また、p型FET203の規定電圧VDは、定電圧源208により正極性電圧源よりもVgs3以上低い値に設定されている。ここで、Vgs3はFET203のゲート・ソース間閾値電圧である。また、コンデンサ207は規定電圧VDの変動を防止するためのコンデンサである。
The clamp circuit of the present invention can also be applied to such an RGB signal clamp circuit 215. In the present embodiment, an example in which the clamp circuit is configured by an FET (Field Effect Transistor) will be described.
FIG. 6 is a diagram illustrating a circuit configuration of the clamp circuit 120 and a relationship with the ADC circuit 216 and the like at the next stage. The pedestal clamp circuit 223 is a circuit having the same function as that of the pedestal clamp circuit 123 in the first embodiment, and thus the description thereof is omitted.
A clamp circuit 215 shown in FIG. 6 is a circuit in which the PNP transistor 102 and the PNP transistor 103 in the clamp circuit 120 shown in FIG. 3 are replaced with p-type FET 202 and p-type FET 203 which are p-channel field effect transistors, respectively. .
That is, the clamp circuit 215 applies CVBS to the gate terminal of the p-type FET 202 (first transistor) through the capacitor 201, and the source terminals (a pair of main terminals of each transistor) of the p-type FET 202 and the p-type FET 203 (second transistor). And a first main terminal to which a reference voltage defining a current amount is applied is connected to one terminal of the first resistor 204. Further, the other terminal of the first resistor 204 is connected to a positive voltage source (+ power supply), and a specified voltage VD is applied to the gate terminal of the p-type FET 203. Further, a second resistor 205 is disposed between the gate terminal (current control terminal) of the p-type FET 202 and the drain terminal (second main terminal different from the first main terminal among the pair of main terminals), In this configuration, a third resistor 206 is disposed between the drain terminal of the p-type FET 202 and a negative voltage source (-power supply).
The drain terminal of the p-type FET 203 is also connected to the negative voltage source.
In addition, the specified voltage VD of the p-type FET 203 is set to a value lower than the positive voltage source by the constant voltage source 208 by Vgs3 or more. Here, Vgs3 is a gate-source threshold voltage of the FET 203. The capacitor 207 is a capacitor for preventing the fluctuation of the specified voltage VD.
 図6に示すクランプ回路215においても、p型FET202及びp型FET203のソース端子(ポイントBで示す)の電圧VBは、p型FET203のゲート端子(ポイントDで示す)の電圧VDと、p型FET203のゲート・ソース間閾値電圧Vgs3を用いて、次の式(5)で示す値になる。
 VB=VD+Vgs3・・・(5)
 アナログRGB信号も、正極性CVBSと同様に正極性ブランキング期間を持つので、その期間にp型FET202のゲート端子(ポイントEで示す)の電圧VEが以下の電圧以下となると、p型FET202は導通する。
 VE<VB-Vgs2=VD+Vgs3-Vgs2・・・(6)
ここで、Vgs2はp型FET202のゲート・ソース間閾値電圧である。
Also in the clamp circuit 215 shown in FIG. 6, the voltage VB of the source terminal (indicated by point B) of the p-type FET 202 and p-type FET 203 is equal to the voltage VD of the gate terminal (indicated by point D) of the p-type FET 203. Using the gate-source threshold voltage Vgs3 of the FET 203, the value is expressed by the following equation (5).
VB = VD + Vgs3 (5)
Since the analog RGB signal also has a positive blanking period like the positive CVBS, if the voltage VE of the gate terminal (indicated by point E) of the p-type FET 202 becomes equal to or lower than the following voltage during that period, the p-type FET 202 Conduct.
VE <VB−Vgs2 = VD + Vgs3−Vgs2 (6)
Here, Vgs <b> 2 is a gate-source threshold voltage of the p-type FET 202.
 このブランキング期間の電圧がVE<VB-Vgs2のとき、p型FET202のドレイン端子(ポイントCで示す)の電圧が上昇し、抵抗205を通して、ポイントEの電圧を上昇させ、VE≒VB-Vgs2となったとき、FET202は非導通となる。
 これにより、クランプ回路215は、アナログRGB信号が最小電圧である正極性ブランキング期間において、次段のADC回路216への入力電圧を、p型FET202またはp型FET203の閾値電圧を含まない値にすることができる。つまり、上記式(6)において、p型FET202とp型FET203を同一構造とすることで、p型FET203の閾値電圧Vgs3とp型FET202の閾値電圧Vgs2とを等しくすることができる。これにより、クランプ回路215は、温度依存の少ないクランプ電圧VDを、アナログRGB信号の正極性ブランキング期間において、ADC回路216に対して出力することができる。
When the voltage during the blanking period is VE <VB−Vgs2, the voltage at the drain terminal (indicated by point C) of the p-type FET 202 increases, the voltage at point E is increased through the resistor 205, and VE≈VB−Vgs2 The FET 202 becomes non-conductive.
Thereby, the clamp circuit 215 sets the input voltage to the ADC circuit 216 at the next stage to a value not including the threshold voltage of the p-type FET 202 or the p-type FET 203 in the positive blanking period in which the analog RGB signal is the minimum voltage. can do. That is, in the above equation (6), the p-type FET 202 and the p-type FET 203 have the same structure, whereby the threshold voltage Vgs3 of the p-type FET 203 and the threshold voltage Vgs2 of the p-type FET 202 can be made equal. Thereby, the clamp circuit 215 can output the clamp voltage VD with little temperature dependence to the ADC circuit 216 during the positive blanking period of the analog RGB signal.
 そして、その後、ポイントEの電圧はVE≧VB-Vgs2で推移するが、抵抗205と抵抗206を通してコンデンサ201の電荷が流出するので、やがて同期期間にVE<VB-Vgs2となり、再びp型FET202は導通する。
 このように、クランプ回路215では、クランプ回路120のNPN型トランジスタの替わりにp型FETを用いてもクランプ回路120と同様の効果が得られる。
 特に、p型FETはCMOSトランジスタのみを形成するASICプロセスにより実現することが可能なので、本願発明のクランプ回路を、CMOSトランジスタのみを用いて製造されるLSIに内蔵させることが可能となる。
After that, the voltage at the point E changes as VE ≧ VB−Vgs2, but since the electric charge of the capacitor 201 flows out through the resistors 205 and 206, VE <VB−Vgs2 is eventually reached in the synchronization period, and the p-type FET 202 again becomes Conduct.
Thus, in the clamp circuit 215, the same effect as the clamp circuit 120 can be obtained even if a p-type FET is used instead of the NPN transistor of the clamp circuit 120.
In particular, since the p-type FET can be realized by an ASIC process that forms only a CMOS transistor, the clamp circuit of the present invention can be incorporated in an LSI manufactured using only a CMOS transistor.
[第3の実施形態]
 第3の実施形態では、負極性CVBSを扱う場合について説明する。
 図7は、負極性CVBSの信号波形図である。
 図7に示す負極性CVBSでは、最大電圧が同期期間の電圧となる。
 このような負極性CVBSに対して、図3に示すクランプ回路120或いは図6に示すクランプ回路215を用いれば、図7における映像信号のピークである期間(ポイントIで示す)の電圧が規定電圧VDとなってしまう。しかしながら、映像信号のピークは映像により変化するので、この期間を一定にしても図7にポイントFで示す同期期間の電圧は変動してしまう。
 そこで、正の最大電圧を一定とできるクランプ回路が必要となる。
 図8は、正の最大電圧を一定とするクランプ回路311の回路構成、及びクランプ回路311の次段回路であるADC回路312等との関係を示す図である。なお、ADC回路312、ペデスタルクランプ回路313、及びデコーダ314については、第1の実施形態におけるADC回路121、ペデスタルクランプ回路123、及びデコーダ122と同じ機能を有する回路であるので、その説明を省略する。
[Third Embodiment]
In the third embodiment, a case where negative CVBS is handled will be described.
FIG. 7 is a signal waveform diagram of negative polarity CVBS.
In the negative CVBS shown in FIG. 7, the maximum voltage is the voltage in the synchronization period.
For such a negative CVBS, if the clamp circuit 120 shown in FIG. 3 or the clamp circuit 215 shown in FIG. 6 is used, the voltage during the period of the video signal peak in FIG. It becomes VD. However, since the peak of the video signal varies depending on the video, even if this period is constant, the voltage during the synchronization period indicated by point F in FIG.
Therefore, a clamp circuit that can keep the positive maximum voltage constant is required.
FIG. 8 is a diagram illustrating a relationship between the circuit configuration of the clamp circuit 311 that makes the positive maximum voltage constant, the ADC circuit 312 that is the next stage circuit of the clamp circuit 311, and the like. The ADC circuit 312, the pedestal clamp circuit 313, and the decoder 314 are circuits having the same functions as the ADC circuit 121, the pedestal clamp circuit 123, and the decoder 122 in the first embodiment, and thus description thereof is omitted. .
 図8に示すクランプ回路311は、nチャネル型電界効果トランジスタであるn型FET302(第1トランジスタ)のゲート端子にコンデンサ301を通してCVBSを与え、n型FET302及びn型FET303(第2トランジスタ)のソース端子(それぞれのトランジスタの一対の主端子のうちいずれか一方に接続され、電流量を規定する基準電圧が印加される第1の主端子)を第1抵抗304の一方の端子に接続する。また、第1抵抗304の他方の端子を負極性電圧源(-電源)に接続し、n型FET303のゲート端子に規定電圧VDを与える。また、n型FET302のゲート端子(電流制御端子)と、ドレイン端子(一対の主端子のうち第1の主端子とは異なる第2の主端子)との間に第2抵抗305を配置し、n型FET302のドレイン端子と正極性電圧源(+電源)の間に第3抵抗306を配置した構成である。
 なお、n型FET303のドレイン端子も正極性電圧源に接続されている。
 また、n型FET303の規定電圧VDは、定電圧源308により負極性電圧源よりもVgs3以上高い値に設定されている。ここで、Vgs3はFET303のゲート・ソース間閾値電圧である。
The clamp circuit 311 shown in FIG. 8 applies CVBS through the capacitor 301 to the gate terminal of an n-type FET 302 (first transistor) which is an n-channel field effect transistor, and the sources of the n-type FET 302 and the n-type FET 303 (second transistor). A terminal (a first main terminal connected to either one of a pair of main terminals of each transistor and to which a reference voltage defining a current amount is applied) is connected to one terminal of the first resistor 304. Further, the other terminal of the first resistor 304 is connected to a negative voltage source (−power supply), and a specified voltage VD is applied to the gate terminal of the n-type FET 303. Also, a second resistor 305 is disposed between the gate terminal (current control terminal) of the n-type FET 302 and the drain terminal (second main terminal different from the first main terminal of the pair of main terminals), The third resistor 306 is arranged between the drain terminal of the n-type FET 302 and the positive voltage source (+ power supply).
Note that the drain terminal of the n-type FET 303 is also connected to a positive voltage source.
Also, the specified voltage VD of the n-type FET 303 is set to a value higher than the negative voltage source by the constant voltage source 308 by Vgs3 or more. Here, Vgs3 is the gate-source threshold voltage of the FET 303.
 図8に示すクランプ回路311においても、n型FET302及びn型FET303のソース端子(ポイントBで示す)の電圧VBは、n型FET303のゲート端子(ポイントDで示す)の電圧VDと、n型FET303のゲート・ソース間閾値電圧Vgs3を用いて、次の式(7)で示す値になる。
 VB=VD-Vgs3・・・(7)
 図7において、負極性CVBSの最大電圧は、ポイントFで示す同期期間の電圧である。
 この同期期間にポイントEの電圧VEが以下の式(4)で示す電圧以上となると、n型FET302は導通する。
 VE>VB+Vgs2=VD-Vgs3+Vgs2・・・(8)
 この同期期間の電圧がVE>VB+Vgs2のとき、ポイントCの電圧が低下し、抵抗305を通して、ポイントEの電圧を低下させ、VE≒VB+Vgs2となったとき、n型FET302は非導通となる。
 そして、その後、ポイントEの電圧はVE≦VB+Vgs2で推移するが、抵抗305と抵抗306を通してコンデンサ301へ電荷が充電されるので、やがて同期期間の電圧がVE>VB+Vgs2となり、再びn型FET302は導通する。
 このように、負極性信号に対しても本願発明のクランプ回路は有効である。
 もちろん、第1の実施形態と第2の実施形態において説明したように、FETとバイポーラトランジスタとを置き換えることができるので、第3の実施形態におけるn型FETをNPN型トランジスタに置き換えて負極性CVBS用のクランプ回路を構成してもよい。
Also in the clamp circuit 311 shown in FIG. 8, the voltage VB of the source terminals (indicated by point B) of the n-type FET 302 and the n-type FET 303 is equal to the voltage VD of the gate terminal (indicated by point D) of the n-type FET 303. Using the gate-source threshold voltage Vgs3 of the FET 303, the value is expressed by the following equation (7).
VB = VD−Vgs3 (7)
In FIG. 7, the maximum voltage of the negative CVBS is the voltage during the synchronization period indicated by the point F.
When the voltage VE at the point E becomes equal to or higher than the voltage represented by the following expression (4) during this synchronization period, the n-type FET 302 becomes conductive.
VE> VB + Vgs2 = VD−Vgs3 + Vgs2 (8)
When the voltage during this synchronization period is VE> VB + Vgs2, the voltage at point C decreases, the voltage at point E is decreased through the resistor 305, and when VE≈VB + Vgs2, the n-type FET 302 becomes non-conductive.
After that, the voltage at the point E changes as VE ≦ VB + Vgs2, but since the capacitor 301 is charged through the resistors 305 and 306, the voltage in the synchronization period eventually becomes VE> VB + Vgs2, and the n-type FET 302 becomes conductive again. To do.
Thus, the clamp circuit of the present invention is also effective for negative polarity signals.
Of course, as described in the first embodiment and the second embodiment, the FET and the bipolar transistor can be replaced. Therefore, the n-type FET in the third embodiment is replaced with an NPN transistor, and the negative polarity CVBS is replaced. A clamp circuit may be configured.
 本発明の態様は、画像信号や音声信号を処理する装置に適用できる。特に、動画像を表示するディスプレイ装置等に好適に適用できる。 The aspect of the present invention can be applied to an apparatus that processes an image signal and an audio signal. In particular, the present invention can be suitably applied to a display device that displays a moving image.
 2,8,9,15  NPN型トランジスタ
 6,102,103  PNP型トランジスタ
 3,R1,R2,7,10,12,16,19,104,105,106,204,205,206,304,305,306  抵抗
 17,4,C1,101,107,201,207,301,307  コンデンサ
 5  同期分離回路
 13  バイアス回路
 21,I  入力端子
 22  電流源
 23  スイッチ素子
 24  AD変換回路
 25  ペデスタルレベル検出回路
 26  比較回路
 27  基準データ
 28  クランプパルス発生回路
 108,208,308  定電圧源
 111  液晶表示装置
 112  液晶モジュール
 113  画像処理エンジン
 114  チューナ
 115  Y/C分離回路
 116  NR回路
 117  I/P変換回路
 118  TCON回路
 120,215,311,50,51,52  クランプ回路
 123,223,313  ペデスタルクランプ回路
 121,216,312  ADC回路
 213  信号処理回路
 214,219  IF回路
 217  画像処理回路
 218  エンコーダ
 220  DAC回路
 202,203  p型FET
 302,303  n型FET
 119  LCD
2, 8, 9, 15 NPN type transistor 6, 102, 103 PNP type transistor 3, R1, R2, 7, 10, 12, 16, 19, 104, 105, 106, 204, 205, 206, 304, 305, 306 Resistor 17, 4, C1, 101, 107, 201, 207, 301, 307 Capacitor 5 Sync separation circuit 13 Bias circuit 21, I input terminal 22 Current source 23 Switch element 24 AD conversion circuit 25 Pedestal level detection circuit 26 Comparison circuit 27 Reference data 28 Clamp pulse generation circuit 108, 208, 308 Constant voltage source 111 Liquid crystal display device 112 Liquid crystal module 113 Image processing engine 114 Tuner 115 Y / C separation circuit 116 NR circuit 117 I / P conversion circuit 118 TCON circuit 120, 21 , 311,50,51,52 clamp circuit 123,223,313 pedestal clamp circuit 121,216,312 ADC circuit 213 a signal processing circuit 214,219 IF circuit 217 the image processing circuit 218 encoder 220 DAC circuit 202, 203 p-type FET
302,303 n-type FET
119 LCD

Claims (5)

  1.  コンデンサと、
     前記コンデンサと接続された第1トランジスタと、
     規定電圧が印加される電流制御端子を有し、前記第1トランジスタと同一導電型の第2トランジスタと、
     第1の端子と第2の端子とを有する第1抵抗であって、前記第1トランジスタと前記第2トランジスタそれぞれのトランジスタの一対の主端子のうちいずれか一方に接続され、電流量を規定する基準電圧が印加される第1の主端子が前記第1の端子に接続された第1抵抗と、
     前記第1抵抗の前記第2の端子と接続された第1電圧源と、
     前記第1トランジスタの電流制御端子と、前記一対の主端子のうち前記第1の主端子とは異なる第2の主端子との間に配置された第2抵抗と、
     前記第2トランジスタの前記第2の主端子に接続された第2電圧源と、
     前記第1トランジスタの前記第2の主端子と前記第2電圧源との間に配置された第3抵抗と、
     を含み、
     前記第1トランジスタの前記電流制御端子に前記コンデンサを通して外部信号を与えるクランプ回路。
    A capacitor,
    A first transistor connected to the capacitor;
    A current control terminal to which a specified voltage is applied; a second transistor having the same conductivity type as the first transistor;
    A first resistor having a first terminal and a second terminal, which is connected to one of a pair of main terminals of each of the first transistor and the second transistor, and defines a current amount. A first resistor to which a first main terminal to which a reference voltage is applied is connected to the first terminal;
    A first voltage source connected to the second terminal of the first resistor;
    A second resistor disposed between a current control terminal of the first transistor and a second main terminal different from the first main terminal of the pair of main terminals;
    A second voltage source connected to the second main terminal of the second transistor;
    A third resistor disposed between the second main terminal of the first transistor and the second voltage source;
    Including
    A clamp circuit that applies an external signal to the current control terminal of the first transistor through the capacitor.
  2.  前記第1トランジスタ及び前記第2トランジスタが、PNP型バイポーラトランジスタ、またはpチャネル型電界効果トランジスタである請求項1記載のクランプ回路。 The clamp circuit according to claim 1, wherein the first transistor and the second transistor are PNP bipolar transistors or p-channel field effect transistors.
  3.  前記第1トランジスタ及び前記第2トランジスタが、NPN型バイポーラトランジスタ、またはnチャネル型電界効果トランジスタである請求項1記載のクランプ回路。 2. The clamp circuit according to claim 1, wherein the first transistor and the second transistor are an NPN bipolar transistor or an n-channel field effect transistor.
  4.  請求項1から請求項3のいずれか一項に記載の前記クランプ回路と、
     前記クランプ回路と接続されたAD変換回路と、を含む信号処理システム。
    The clamp circuit according to any one of claims 1 to 3,
    A signal processing system including an AD conversion circuit connected to the clamp circuit.
  5.  前記AD変換回路によるAD変換後の信号に、さらにペデスタルクランプ処理を行うデジタルクランプ回路 をさらに含む請求項4記載の信号処理システム。 5. The signal processing system according to claim 4, further comprising a digital clamp circuit for further performing a pedestal clamp process on the signal after AD conversion by the AD conversion circuit.
PCT/JP2012/072500 2011-09-12 2012-09-04 Clamp circuit and signal processing system using same WO2013038958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011198502A JP2014225715A (en) 2011-09-12 2011-09-12 Clamping circuit and signal processing system using the same
JP2011-198502 2011-09-12

Publications (1)

Publication Number Publication Date
WO2013038958A1 true WO2013038958A1 (en) 2013-03-21

Family

ID=47883189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072500 WO2013038958A1 (en) 2011-09-12 2012-09-04 Clamp circuit and signal processing system using same

Country Status (2)

Country Link
JP (1) JP2014225715A (en)
WO (1) WO2013038958A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085016A1 (en) * 2018-10-24 2020-04-30 ソニーセミコンダクタソリューションズ株式会社 A/d converter and electronic device
TWI835869B (en) 2018-10-24 2024-03-21 日商索尼半導體解決方案公司 A/D converters and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163832U (en) * 1984-04-06 1985-10-31 株式会社日立製作所 clamp circuit
JPH01318466A (en) * 1988-06-20 1989-12-22 Sony Corp Analog/digital converting circuit
JPH02134982A (en) * 1988-11-15 1990-05-23 Mitsubishi Electric Corp Clamping circuit
JPH1131930A (en) * 1997-07-08 1999-02-02 Yokogawa Electric Corp Clamping circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163832U (en) * 1984-04-06 1985-10-31 株式会社日立製作所 clamp circuit
JPH01318466A (en) * 1988-06-20 1989-12-22 Sony Corp Analog/digital converting circuit
JPH02134982A (en) * 1988-11-15 1990-05-23 Mitsubishi Electric Corp Clamping circuit
JPH1131930A (en) * 1997-07-08 1999-02-02 Yokogawa Electric Corp Clamping circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085016A1 (en) * 2018-10-24 2020-04-30 ソニーセミコンダクタソリューションズ株式会社 A/d converter and electronic device
CN112997476A (en) * 2018-10-24 2021-06-18 索尼半导体解决方案公司 A/D converter and electronic device
US11283460B2 (en) 2018-10-24 2022-03-22 Sony Semiconductor Solutions Corporation A/D converter and electronic equipment
TWI835869B (en) 2018-10-24 2024-03-21 日商索尼半導體解決方案公司 A/D converters and electronic equipment
JP7464531B2 (en) 2018-10-24 2024-04-09 ソニーセミコンダクタソリューションズ株式会社 A/D converter and electronic device

Also Published As

Publication number Publication date
JP2014225715A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US20160117986A1 (en) Compensation Circuit Design of Active Organic Light Emitting Diode Display System
US8264481B2 (en) Display device
US8593449B2 (en) Reference voltage generation circuit, power source device, liquid crystal display device
US11100869B2 (en) Semiconductor apparatus for driving display device
US20110157372A1 (en) Multimedia apparatus having function of detecting video signal connection
JP2007334276A (en) Output buffer for gray-scale voltage source
JP2929053B2 (en) Video signal processing device
WO2022121403A1 (en) Driving apparatus and method, and display panel and electronic device
WO2013038958A1 (en) Clamp circuit and signal processing system using same
US8212938B2 (en) Sync signal acquisition device
CN114360459B (en) OLED drive circuit and OLED display device
US6825887B2 (en) Color component signal interface circuit
EP1274230A2 (en) Pedestal level control circuit and method for controlling pedestal level
JPH0594156A (en) Liquid crystal display device
CN108259804B (en) Video output system and related video signal compensation method thereof
JP3251086B2 (en) Gamma correction circuit
US9418614B2 (en) Liquid crystal display apparatus and method for controlling the same
US4764811A (en) Picture signal processing circuit
US7843513B2 (en) Automatic adaptation of a video source to a receiver
US7184097B2 (en) On-screen display apparatus
JPH0419750B2 (en)
KR820000914B1 (en) Combined blanking level and kinescope bias clamp for a television signal processing system
US9501999B2 (en) Circuit for generating horizontal synchronizing signal of display and associated method
JPH0823478A (en) Output circuit for solid-state image pickup device
US7321402B1 (en) Apparatus and method for component video signal conversion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP