WO2013038666A1 - Light-induced seizure model in rat brains - Google Patents

Light-induced seizure model in rat brains Download PDF

Info

Publication number
WO2013038666A1
WO2013038666A1 PCT/JP2012/005805 JP2012005805W WO2013038666A1 WO 2013038666 A1 WO2013038666 A1 WO 2013038666A1 JP 2012005805 W JP2012005805 W JP 2012005805W WO 2013038666 A1 WO2013038666 A1 WO 2013038666A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
animal
convulsions
gene
protein
Prior art date
Application number
PCT/JP2012/005805
Other languages
French (fr)
Japanese (ja)
Inventor
伸一郎 大沢
真樹 岩崎
元 虫明
寛 八尾
悌二 冨永
義人 古澤
浩史 冨田
隆一 重本
Original Assignee
国立大学法人東北大学
大学共同利用機関法人自然科学研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 大学共同利用機関法人自然科学研究機構 filed Critical 国立大学法人東北大学
Priority to JP2013533503A priority Critical patent/JP6108469B2/en
Publication of WO2013038666A1 publication Critical patent/WO2013038666A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0356Animal model for processes and diseases of the central nervous system, e.g. stress, learning, schizophrenia, pain, epilepsy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2857Seizure disorders; Epilepsy

Definitions

  • the present invention relates to the use of a non-human mammal that expresses a photoreceptor protein in brain neurons as a convulsion model animal. More specifically, the present invention relates to a method for evaluating convulsions using the model animal and a method for screening for preventive or therapeutic agents for convulsions such as antiepileptic drugs.
  • Epilepsy is a relatively common neurological disease affecting approximately 1% of the population, but its biological origin has not been known for a long time.
  • cerebral neurons spontaneously fire in an abnormally synchronized manner, and the cerebral activity of that part is impaired, and symptoms appear, but the causes are diverse, and the mechanism of abnormality varies depending on the focal site. It was difficult to elucidate the fundamental mechanism.
  • So-called “epilepsy model animals” are used as a means for developing and developing epilepsy diagnosis and treatment methods. Many types of animal models have been reported that play an important role in elucidating the mechanism of acquired epileptogenicity, but it takes a long time of several weeks to several months to create it, like electrical stimulation in the brain. Things (Reference 1), those in which the status of convulsions persists, those that have not been able to reproduce epileptic seizures in humans that end intermittently within a few minutes (Reference 2), and those with a high mortality rate (Reference 2) ), There are cases where most of the similar creation techniques do not cause seizures and the model creation efficiency is poor (Reference 2), and there is a great limitation on the reproducibility of seizures and the arbitraryness of induction.
  • a neurotoxin such as kainic acid
  • metal such as alumina gel
  • physical stimulation such as cerebral contusion
  • An object of the present invention is to provide a model animal that can induce a seizure attack immediately and with high reliability.
  • the inventors conducted research to establish a model animal experiment system that allows easy observation of seizure activity by creating a convulsion model using light stimulation, and collected it from the diatom Chlamydomonas. It was discovered that convulsive seizures can be induced in the rat by applying light stimulation to the hippocampus of a transgenic rat into which channel rhodopsin 2 (ChR2), which is a photoreceptive protein, has been introduced. Furthermore, the inventors have discovered that convulsive seizures can be induced in the rat by applying light stimulation to the hippocampus of the rat introduced with the ChR2 gene into the hippocampus by gene transfer using an adeno-associated virus-5 vector.
  • ChR2 channel rhodopsin 2
  • the present invention is as follows. (1) Use of a non-human mammal expressing a photoreceptor protein in brain neurons as a convulsion model animal. (2) The use according to (1), wherein convulsions are induced by irradiating the hippocampus with light. (3) The use according to (1) or (2), wherein the photoreceptor protein is a photosensitive cation channel. (4) The use according to (3), wherein the photosensitive cation channel is channelrhodopsin 2. (5) The use according to any one of (1) to (4), wherein the animal is a rodent.
  • a method for evaluating seizures comprising a step of using a non-human mammal expressing a photoreceptive protein in brain neurons and irradiating the hippocampus of the animal with light.
  • the photoreceptor protein is a photosensitive cation channel.
  • the photosensitive cation channel is channelrhodopsin 2.
  • the wavelength of light is 420 to 520 nm.
  • a test substance is administered to an animal, and the induction rate of convulsion induced by light irradiation and / or the duration of convulsions are compared and evaluated as compared with the case where no test substance is administered. 23) The screening method according to 23).
  • Transgenic non-human mammals that express photoreceptor proteins in brain neurons used in the present invention and non-human mammals in which photoreceptor protein genes are introduced into brain neurons by infection with viral vectors respond to light irradiation And convulsive seizures are triggered immediately and reliably. Therefore, the animal can be used as a model animal for seizures including epilepsy. In addition, the model animal can be used to screen for preventive or therapeutic agents for convulsions such as antiepileptic drugs.
  • FIG. 1A is a diagram schematically showing a DNA fragment to be introduced into a rat.
  • FIG. 1B shows the expression pattern of the introduced gene.
  • FIG. 2 is a diagram schematically showing the method of the present invention.
  • FIG. 3 is a chart showing neural activity during electrical stimulation and light stimulation.
  • FIG. 4 is a diagram schematically showing the intermittent light stimulation method.
  • FIG. 5 is a chart showing electroencephalograms measured in a convulsion model rat during and after light stimulation.
  • FIG. 6 shows the results of examining the influence of the on / off ratio and frequency on the seizure induction rate.
  • FIG. 7 is a diagram showing the seizure induction rates of the hippocampus, amygdala, prothalamic nucleus, and sensorimotor cortex when light stimulation is applied.
  • FIG. 8A is a graph showing changes in seizure induction rate and seizure duration when diazepam is administered.
  • FIG. 8B shows changes in convulsive activity when diazepam is administered.
  • FIG. 9A is a schematic diagram showing an experimental protocol in which light stimulation is given to the rat hippocampus into which a channelrhodopsin gene has been introduced using a viral vector.
  • FIG. 9B is a photomicrograph confirming the expression of the introduced ChR2V.
  • FIG. 9C is a chart showing electroencephalograms measured in a convulsion model rat during and after light stimulation.
  • the present invention relates to the use of a non-human mammal that expresses a photoreceptor protein in brain neurons as a convulsion model animal. More specifically, the present invention relates to a method for evaluating convulsions using the model animal and a method for screening for preventive or therapeutic agents for convulsions such as antiepileptic drugs.
  • a “photoreceptive protein” is a protein that exhibits some response by absorbing light of a specific wavelength, and includes sensory rhodopsin involved in light-sensitive ion channels and signal transduction.
  • the “photosensitive ion channel” is a photosensitive channel protein in which a channel opens and closes by light stimulation of a specific wavelength, and depolarization or hyperpolarization occurs due to ion migration.
  • Photosensitive cation or anion channels combine the functions of a photoreceptor and the function of a cation channel or anion channel in a single molecule, and convert light brightness information into electrical information. Can do.
  • Photoreceptive proteins that can be used in the present invention include channelrhodopsins, which are photosensitive cation channels.
  • the photosensitive cation channel is not particularly limited as long as it is a photosensitive cation channel found in Chlamydomonas or other organisms and a gene variant thereof.
  • channel rhodopsin 2 ChR2
  • channelrhodopsin 1 channelrhodopsin 1
  • modified channelrhodopsin modified channelrhodopsin.
  • it is possible to use a variant with enhanced efficiency in causing an action potential caused by a light pulse by adding a property having a property of accumulating to a specific location of a neuron in the intracellular domain.
  • variants with different ion permeability for example, variants with enhanced Ca 2+ permeability, K + selective or anion selective permeability, and negative displacement of membrane potential by light stimulation ( It is also conceivable to use a variant that causes hyperpolarization. In addition, it is possible to use variants having different absorption spectra.
  • ChR2 protein encoded by the ChR2 gene is not limited to the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1, but substitution or deletion of one or several amino acids in the amino acid sequence shown in SEQ ID NO: 1, Those having an addition or insertion and having a biological activity equivalent to or higher than that of the ChR2 protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or having substantially the same sequence homology as the amino acid sequence shown in SEQ ID NO: 1 And having a biological activity equivalent to or higher than that of the ChR2 protein consisting of the amino acid sequence shown in SEQ ID NO: 1 (hereinafter also referred to as “ChR2 mutant polypeptide”).
  • “several” used in the context of ChR2 mutant polypeptide is an integer of 10 or less, for example, an integer of 2 to 9, 2 to 7, or 2 to 5.
  • the “substantially identical sequence homology” is at least 90%, more preferably at least 95%, more preferably at least 96%, 97%, 98% or 99% of the amino acid sequence shown in SEQ ID NO: 1. It means having homology.
  • The% homology refers to a value calculated using software (for example, FASTA, DNASIS, BLAST, etc.) that calculates the homology between a plurality (two) of amino acid sequences with default settings.
  • equivalent biological activity means that biological activities such as photosensitivity and channel function have substantially the same strength.
  • the term may also include the case of having substantially the same biological activity, and the “same” biological activity here is the same in light sensitive wavelength, for example, the nature of the ion permeable activity. Say something.
  • the ChR2 gene is not limited to the polynucleotide comprising the base sequence shown in SEQ ID NO: 2, but is a polynucleotide that hybridizes under stringent conditions to the complementary strand of the polynucleotide comprising the base sequence shown in SEQ ID NO: 2.
  • a polynucleotide encoding a polypeptide having a biological activity equal to or higher than that of the ChR2 protein consisting of the amino acid sequence shown in SEQ ID NO: 1 hereinafter also referred to as “ChR2 mutant polynucleotide”.
  • a person skilled in the art can appropriately combine the above or other factors that determine the stringency of hybridization (for example, the concentration, length and GC content of the hybridization probe, the reaction time of hybridization, etc.) Similar stringency can be achieved.
  • Epilepsy refers to the same type of clinical seizures (systemic tonic-clonic seizures, absence seizures, hallucinogenic seizures, one-limbed seizures) within the same individual due to excessive synchronous firing of cerebral neurons. This refers to a pathological condition that repeats tonic seizures in the club. Epilepsy is a neurological disease of unknown biological origin and is associated with convulsions.
  • convulsions refers to involuntary and seizure contractions of the muscle groups of the whole body or part of the body accompanied by characteristic brain wave changes.
  • a state in which convulsions are spontaneously and repeatedly induced is defined as epilepsy, and the terms seizure, seizures, seizure activity, and seizures are all presenting with seizures. It shall be said.
  • “intermittently irradiating light” means, as shown in FIG. 4, that light is continuously emitted for a certain time (pulse width or on-time) with a certain time interval (stimulation interval or off-period).
  • (Period) irradiation time (stimulation period), and the period of non-irradiation after the stimulation period (non-stimulation period) means repeating, such light irradiation method is defined as intermittent light stimulation method .
  • the stimulation period light irradiation with a pulse width (on period) is repeated with a stimulation interval (off period), and the repetition is performed at a frequency (Hz) (1) with the pulse width irradiation and the stimulation interval as one cycle. The number of cycles per second).
  • the ratio of the pulse width in one cycle is defined as “on / off ratio”.
  • Seizure model non-human mammal (1) Production of model animal (a) Production of transgenic animal
  • a transgenic non-human mammal that expresses a photoreceptor protein in brain neurons is used.
  • Such an animal is prepared by introducing a gene of a photoreceptor protein into a non-human mammal and expressing the gene specifically in brain neurons according to a method for producing a transgenic animal well known to those skilled in the art. Can do.
  • a transgenic animal can be produced by the following steps.
  • a gene of a photoreceptor protein is introduced into an expression vector for a non-human mammal cell having an expression control sequence that functions in the brain neurons of the non-human mammal.
  • a linear DNA fragment containing the transgene, linearized from this gene expression vector is introduced into a totipotent cell derived from a non-human mammal such as a rat, and transplanted to a temporary parent after the introduction.
  • Used in the present invention by generating individuals from transplanted totipotent cells and selecting individuals in which the transgene is integrated into the somatic chromosome by PCR or the like using DNA extracted from the tissue of the individual Transgenic animals can be obtained.
  • a preferred example of the introduction of a DNA fragment into a totipotent cell is a microinjection method.
  • Examples of totipotent cells used for producing a transgenic animal include cultured cells such as fertilized eggs and early embryos, ES cells having multipotency, and the like.
  • the “expression control sequence that functions in the brain neurons of the non-human mammal” is not particularly limited as long as it is an expression control sequence that functions in the brain neurons of the non-human mammal, but in the brain neurons of the non-human mammal. It is preferably an expression control sequence that functions specifically, and more preferably a promoter that functions specifically in brain neurons of a non-human mammal.
  • a nerve cell-specific promoter that functions in a non-human mammal for example, Thy1, 2 region, CaMKII, PV and the like can be used.
  • transgenic animals in which the photoreceptive protein used in the present invention has been incorporated into a part of the chromosome so that it can be stably expressed in brain neurons can be efficiently produced. can do.
  • the non-human mammal used in the present invention may be a mammal other than a human, and examples thereof include rats, mice, hamsters, guinea pigs, rabbits, dogs, cats, monkeys and the like.
  • rodents such as rats, mice, hamsters and guinea pigs are used, and more preferably rats and mice are used.
  • a gene encoding a fluorescent protein may be introduced together.
  • fluorescent proteins well known to those skilled in the art can be used.
  • GFP, YFP, RFP, DSRed, and Venus may be used. This makes it possible to identify nerve cells that respond to light stimulation by confirming fluorescence in the tissue.
  • a gene sequence encoding a photoreceptive protein, and optionally a fluorescent protein is encoded under the control of an expression control sequence that functions in brain neurons of a non-human mammal.
  • An expression vector for non-human mammalian cells in which the sequence of the gene to be ligated in such a manner that it can function is used.
  • expression vectors for non-human mammalian cells include pEGFP-C1 (Clontech), pGBT-9 (Clontech), pcDNAI (Invitrogen), pcDNA3.1 (Invitrogen), pEF- BOS (Nucleic® Acids® Res., 18, 5322, 1990), pAGE107 (Cytotechnology, 3, 133, 1990), pCDM8 (Nature, 329, 840, 1987), pcDNAI / AmP (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen) ), PAGE103 (J. Blochem., 101, 1307, 1987), pAGE210, and the like.
  • transgenic rat identified by the receipt number NITE ABP-1417 described later can be mentioned.
  • a non-human mammal that expresses a photoreceptor protein in brain neurons by gene transfer using a viral vector can also be used.
  • Gene transfer into animals using viral vectors can be performed according to methods well known to those skilled in the art.
  • the gene can be introduced in vivo by the following steps. First, under the control of an expression control sequence, a viral vector having a sequence in which a gene sequence encoding a photoreceptor protein and optionally a sequence of a gene encoding a fluorescent protein are linked in a functional manner is prepared.
  • the “viral vector” is not particularly limited, and refers to a vector for gene transfer utilizing a mechanism for infecting or maintaining a virus cell, and includes any known viral vector.
  • a Sendai virus vector for example, a Sendai virus vector, a lentivirus vector, a retrovirus vector, an adenovirus vector, an adeno-associated virus (AAV) vector, and the like can be used.
  • the “expression control sequence” is not particularly limited, and an enhancer and / or promoter sequence well known to those skilled in the art can be used. For example, calmodulin kinase II, parvalbumin promoter, etc. can be used.
  • a gene encoding a fluorescent protein may be arbitrarily introduced in order to confirm the expression of the introduced photoreceptor protein gene.
  • fluorescent proteins well known to those skilled in the art can be used.
  • GFP, YFP, RFP, DSRed, and Venus may be used. This makes it possible to identify nerve cells that respond to light stimulation by confirming fluorescence in the tissue.
  • a virus vector containing a photoreceptive protein gene sequence is injected into a target cell, target tissue or target organ (hereinafter referred to as “target cell etc.”).
  • target cell target tissue or target organ
  • target cell refers to any cell existing in the brain, any site in the brain, and brain, respectively.
  • the viral vector is preferably injected into the hippocampus.
  • a virus is infected by injecting a viral vector into a target cell or the like, and a gene encoding a photoreceptor protein gene and a fluorescent protein is introduced into the cell.
  • the animals in order to induce convulsions in the transgenic animals and animals transgenic using the viral vectors, the animals are opened, and the brain, particularly the hippocampus, is intermittently irradiated with light to stimulate light. Do.
  • the on / off ratio of light irradiation is 0.02 to 0.9 or continuous stimulation, preferably 0.05 to 0.5, more preferably 0.05 to 0.1.
  • the pulse width may be 0.5 ms to continuous, preferably 0.1 to 100 ms, more preferably 0.1 to 50 ms.
  • the wavelength of the light irradiated in the method according to the present invention is about the response wavelength of photoreceptive protein ⁇ 50 nm, preferably ⁇ 35 nm, more preferably about ⁇ 20 nm. Therefore, when channelrhodopsin 2 that is depolarized by light having an optimum wavelength of 470 nm is used as the photoreceptive protein, light having a wavelength of about 420 to 520 nm, preferably about 435 nm to 505 nm, more preferably about 450 to 490 nm. Irradiate.
  • the intensity of the irradiated light is about 10 to 120 mW, preferably about 30 to 100 mW, more preferably about 50 to 80 mW.
  • the frequency of the irradiated light is about 5 to 40 Hz, preferably about 10 to 20 Hz.
  • Transgenic animals and animals that have been transfected with viral vectors exhibit convulsions when the hippocampus is subjected to light stimulation, in particular light stimulation according to the intermittent light stimulation method. It is considered that depolarization is caused in a nerve cell expressing a light-sensitive cation channel by light stimulation, so that a transgenic animal and an animal transgenic with a viral vector exhibit convulsions.
  • a transgenic non-human mammal incorporating a photoreceptive protein gene and a non-human mammal introduced with a viral vector
  • a light source (b) a light source
  • An apparatus is used that includes coupled photoconductive leads and (c) means for measuring brain waves.
  • the apparatus may further include (d) means for data processing of the measured electroencephalogram and / or (e) means for displaying the measured electroencephalogram.
  • the light source that can be used in the apparatus is not particularly limited as long as it emits light having a response wavelength of the photoreceptive protein.
  • a laser light source is used.
  • a photoconductive conductor that can be used in the device is a means for conducting light or light energy from one location to another, such as an optical fiber.
  • an electroencephalograph known in the art can be used.
  • the above apparatus is used together with the model animal according to the present invention for evaluation of convulsions, screening for preventive or therapeutic drugs for convulsions described later.
  • an abnormal electroencephalogram is an activity characterized by spontaneous continuous sharp waves and spikes, which are induced by intermittent light stimulation, but are generated independently of each evoked potential. Activity.
  • Transgenic animals that have been subjected to light stimulation and animals that have been transfected with a viral vector exhibit a latent period that does not exhibit convulsions even when irradiated with light, and then a convulsions (Sz) period that exhibits convulsions (FIG. 4). And FIG. 5).
  • the convulsion period continues for a certain period of time even after the light stimulation is finished, but eventually ends spontaneously.
  • the incubation period and the convulsion period are combined and defined as one session.
  • Electroencephalogram monitoring can be performed according to a method known in the art. Specifically, a deep electrode is inserted into the brain of a model animal, and the electrode is connected to an electroencephalograph to measure an electroencephalogram. Therefore, in the method of the present invention, the deep electrode is preferably inserted into the hippocampus. While the seizures are induced, EEG findings are measured only for the evoked potential for each stimulus in the early stage of the stimulus, but the waveform gradually changes and spontaneous seizure activity occurs from a certain point. At the end of the stimulus, it continuously shifts to autonomous seizure activity. This activity can be observed throughout the induction period in this model with few artifacts (see FIGS. 3 and 5).
  • Seizure model rat In the present invention, a transgenic non-human mammal that expresses a photoreceptor protein in brain neurons is used. In one embodiment of the present invention, a transgenic rat expressing Chlamydomonas-derived channelrhodopsin 2 specifically in brain neurons can be used.
  • the fertilized egg of a transgenic rat introduced with channelrhodopsin 2 which can be used in the present invention, is a microorganism identification display Thy1.2-ChR2-Venus, September 2012 On the 4th (reception date), it was deposited with the National Institute of Technology and Evaluation Patent Microorganisms Deposit Center (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture 292-0818). The receipt number is NITE ABP-1417.
  • the deposited transgenic rats can be proliferated by brother-sister mating to ensure the necessary number of rats, as is usually used for breeding inbred animals.
  • the breeding conditions are not particularly limited, and can be raised according to a conventional breeding method.
  • Transgenic rats that can be used in the present invention have not only the transgenic rat that has been deposited, but also the introduced gene, that is, the ChR2 gene (SEQ ID NO: 2). Also included are crossed rats obtained by crossing the transgenic rats and experimental rats that exhibit the above characteristics, and congenic rats. Also included are mutants of the transgenic rat that express the ChR2 mutant polypeptide specifically in brain neurons and exhibit the characteristics described above.
  • the congenic rat has a genetic background other than the introduced gene of that of any experimental rat, and such a congenic rat is a transgenic rat that has been deposited.
  • a transgenic rat that is heterozygous or homozygous for the ChR2 gene and any experimental rat can be produced by proceeding backcrossing according to a known backcross breeding method.
  • the convulsion model animal of the present invention is superior to the conventional epilepsy model animal in the following points. ⁇ Because it shifts to convulsive activity as it is after light stimulation, it does not take time to induce convulsive seizure. ⁇ Because convulsive seizure can be induced immediately after placing optical fiber and electrode, it takes a long time to create a model such as kindling model. No convulsive seizures can be triggered arbitrarily at multiple times within minutes to hours, and reproducibility is very high within or between individuals.Light stimulation has few electrical measurement artifacts. Therefore, it is convenient to measure and analyze epilepsy activity, which is an abnormality of electrical activity.
  • the convulsion model animal of the present invention has a lower mortality rate than the conventional model animal.
  • Receive number NITE used in the present invention ABP-1417 transgenic rats, and their progeny, congenic rats, and mutants Identification (genotyping) is easy. Typing uses a somatic cell (tail) sample to detect the Venus (not present in the Wild Wister rat gene), which is part of the recombinant gene, by the PCR method. Receipt number used in the present invention NITE ABP-1417 transgenic rats, and their progeny, congenic rats, and mutants exhibit 100% seizures, regardless of whether they are heterozygous or homozygous.
  • Drug screening method and deep brain stimulation therapy using convulsion model non-human mammal (1) Drug screening method
  • the convulsion model non-human mammal of the present invention can be used as an epilepsy model non-human mammal. Therefore, a drug for preventing or treating convulsions including epilepsy can be screened by administering a test substance to the convulsion model non-human mammal of the present invention.
  • a test substance is administered to the model animal of the present invention, an index value correlated with convulsions in the model animal or a part thereof is measured, and compared with the result of a control animal not administered the test substance. Based on the comparison result, by confirming whether or not to reduce or eliminate convulsions, a prophylactic or therapeutic agent for convulsions including epilepsy can be screened.
  • the model animal or a part thereof includes both the whole body of the animal and a limited tissue or organ.
  • a limited tissue or organ In the case of limited tissues or organs, it includes those extracted from animals.
  • the index value for example, changes in the duration of convulsions and the induction rate can be used.
  • “duration of convulsions” refers to the time during which a convulsion model animal that has received light stimulation exhibits convulsions, and is also referred to as a convulsion period.
  • “convulsion induction rate” refers to the frequency of occurrence of convulsions in a convulsion model animal that has been subjected to light stimulation, and the model animal exhibited convulsions relative to the number of times of light stimulation. The number of times is expressed as a percentage.
  • the test substance used can be selected as a prophylactic or therapeutic agent for seizures including epilepsy.
  • changes in vibrations in the whiskers, limbs, trunk, or tail, or changes in abnormal brain waves can be used as index values.
  • the test substance used can be selected as a prophylactic or therapeutic agent for seizures including epilepsy.
  • test substances include peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, cell culture supernatants, plant extracts, mammalian tissue extracts, plasma, etc.
  • the compound may be a novel compound or a known compound.
  • These test substances may form a salt, and as a salt of the test substance, a salt with a physiologically acceptable acid (for example, inorganic acid) or a base (for example, organic acid) is used. .
  • salts examples include salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, etc.), or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, And salts with succinic acid, tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid, and the like.
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, etc.
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid
  • succinic acid tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid, and the like.
  • the administration method of the test substance can be appropriately selected by those skilled in the art depending on the nature of the substance, and for example, oral administration, intravenous injection, transdermal administration, subcutaneous administration, intradermal administration, intraperitoneal administration, etc. are used. .
  • the dosage of the test substance can be appropriately set by those skilled in the art depending on the administration method and the nature of the substance.
  • the convulsive model non-human mammal of the present invention can also be used as an epilepsy model non-human mammal. Therefore, convulsions including epilepsy are prevented or treated by applying physical stimulation such as electricity to the brain of the convulsion model non-human mammal of the present invention, imitating deep brain stimulation (DBS). Therefore, it is possible to identify a region in the brain where a physical stimulus effectively acts, a stimulation parameter, and the like.
  • deep brain stimulation therapy is a method of causing some change in activity in the brain by applying electrical stimulation from electrodes placed deep in the brain, for treating symptoms such as epilepsy and Parkinson's disease It can also be a surgical procedure.
  • imitating deep brain stimulation therapy placing a stimulation electrode in the brain of the model animal of the present invention, applying physical stimulation such as electrical stimulation, etc., and correlating with convulsions in the model animal or a part thereof
  • An index value having Including epilepsy by comparing with the results of control animals not receiving physical stimulation or model animals prior to physical stimulation and confirming whether or not convulsions are reduced or eliminated based on the comparison results
  • Sites and stimulation parameters in the brain where physical stimulation can effectively work in the prevention or treatment of seizures can be identified.
  • electrical stimulation and electrical and chemical cauterization can be used as physical stimulation.
  • index value as in the above (1) drug screening method, for example, changes in convulsion duration and induction rate, changes in vibration in the beard, limbs, trunk, or tail, or changes in abnormal electroencephalogram Can be used. For example, if a decrease in the duration and / or induction rate of convulsions is observed by electrical stimulation, or if disappearance or reduction of convulsions, or normalization of abnormal electroencephalograms is observed, prevention or treatment of seizures including epilepsy It is possible to identify a site in the brain where a physical stimulus effectively works and a stimulation parameter.
  • Transgenic rat Thy1.2-ChR2-Venus transgenic rat prepared by incorporating Channelrhodopsin-2 (ChR2) and Venus under the mouse Thy1.2 promoter using gene recombination technology to Wister rat.
  • the Thy1.2 promoter is a promoter region that is selectively expressed in thymic stromal cells and neurons
  • ChR2 is the above-described photoreceptor cation channel
  • Venus is a fluorescent protein.
  • ChR2-Venus fusion protein is expressed, and the expression distribution of ChR2 can be evaluated by observing the fluorescence of Venus.
  • the transgenic rat used in this experiment was created by the research of Prof. Hiroshi Yao, graduate School of Medicine, Tohoku University and Professor Ryuichi Shigemoto, National Institutes of Natural Sciences, receiving number NITE ABP-1417 .
  • the frequency of convulsions was measured under conditions of 5-40 Hz, on / off ratio 0.02-0.9, and continuous stimulation, and 10-20 Hz, on / off.
  • the induction frequency was maximum (10/10) times under the stimulation condition with an off ratio of 0.05-0.1 (see FIG. 6).
  • the induction is mostly made outside the hippocampus. None (see FIG. 7).
  • AAV-RC and p-helper plasmids were obtained from Stratagene (La Jolla, CA, USA).
  • the high titer (1-10 ⁇ 1012 particles / ml) rAAV vector (rAAV-ChR2V) was obtained by a previously reported method (Gene Therapy, 2011; 18 (3): 266-74).
  • the model animal prepared according to the method of the present invention is useful for elucidating the mechanism of convulsions, screening for anticonvulsants and antiepileptic drugs, and determining the therapeutic effect.

Abstract

The invention pertains to the use of a nonhuman mammal that expresses a photoreceptive protein in the nerve cells of the brain as a seizure model animal. More specifically, the invention pertains to a method for evaluating seizures using these model animals and a method for screening drugs to prevent or treat seizures, such as antiepileptic drugs.

Description

ラット脳内光誘発けいれんモデルRat brain light-induced convulsion model
 本発明は、脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物のけいれんモデル動物としての使用に関するものである。更に詳細には、本発明は、前記モデル動物を用いたけいれんの評価方法、および抗てんかん薬等のけいれんの予防または治療薬のスクリーニング方法に関するものである。 The present invention relates to the use of a non-human mammal that expresses a photoreceptor protein in brain neurons as a convulsion model animal. More specifically, the present invention relates to a method for evaluating convulsions using the model animal and a method for screening for preventive or therapeutic agents for convulsions such as antiepileptic drugs.
 てんかんは、人口の約1%が罹患する比較的多い神経疾患であるが、その生物学的成因は長い間不明であった。てんかんは大脳の神経細胞が自発的に異常同期して発火することによりその部分の脳活動が障害されて症状が出現するが、その原因は多岐にわたり、さらに焦点部位によっても異常のメカニズムが異なっており、根本的なメカニズムの解明は困難であった。 Epilepsy is a relatively common neurological disease affecting approximately 1% of the population, but its biological origin has not been known for a long time. In epilepsy, cerebral neurons spontaneously fire in an abnormally synchronized manner, and the cerebral activity of that part is impaired, and symptoms appear, but the causes are diverse, and the mechanism of abnormality varies depending on the focal site. It was difficult to elucidate the fundamental mechanism.
 てんかんの診断法や治療方法の開発ならびに発展のための手段として、いわゆる「てんかんモデル動物」が使用されている。後天的なてんかん原性獲得のメカニズム解明に重要な役割を果たす動物モデルとしては多くの種類が報告されているが、脳内の電気刺激のように作成に数週間~数ヶ月の長時間を要するもの(文献1)やけいれん重積状態が持続してしまい、間欠的かつ数分以内に終結するようなヒトにおけるてんかん発作を再現できていないもの(文献2)、死亡率が高いもの(文献2)、同様の作成手技によっても大半が発作出現せずモデル作成効率が悪いもの(文献2)などがあり、発作の再現性、誘発の任意性には大きな制限がある。具体的には、(i)神経毒(カイニン酸など)や金属(アルミナゲルなど)の投与、もしくは物理的刺激(脳挫傷など)で脳の特定部位と機能を破壊、(ii)間歇的な電気刺激による興奮(キンドリングモデルなど)、(iii)遺伝子改変、などがあるが、何れも上記のような欠点が存在しており、その欠点を改善した新たなモデル開発についても現在まで様々に研究がなされている。 So-called “epilepsy model animals” are used as a means for developing and developing epilepsy diagnosis and treatment methods. Many types of animal models have been reported that play an important role in elucidating the mechanism of acquired epileptogenicity, but it takes a long time of several weeks to several months to create it, like electrical stimulation in the brain. Things (Reference 1), those in which the status of convulsions persists, those that have not been able to reproduce epileptic seizures in humans that end intermittently within a few minutes (Reference 2), and those with a high mortality rate (Reference 2) ), There are cases where most of the similar creation techniques do not cause seizures and the model creation efficiency is poor (Reference 2), and there is a great limitation on the reproducibility of seizures and the arbitraryness of induction. Specifically, (i) administration of a neurotoxin (such as kainic acid) or metal (such as alumina gel) or physical stimulation (such as cerebral contusion) destroys specific parts and functions of the brain; (ii) intermittent Exciting by electrical stimulation (Kindling model, etc.), (iii) Gene modification, etc., all of which have the above drawbacks, and various studies have been conducted to date on the development of new models that have improved these drawbacks. Has been made.
 一方で近年、遺伝子工学を駆使した光感受性陽イオンチャネルを用いた研究が盛んである。トランスジェニック動物、もしくはウィルスベクターを用いた遺伝子導入により標的細胞に光受容性タンパク質を発現させ、脳内留置した光ファイバーから特定の波長で刺激することにより、細胞選択性、空間選択性、時間選択性などが従来より飛躍的に高く、さらに電気的アーチファクトが小さい実験系を構築することが可能となった。パーキンソン病モデル動物に対する脳深部刺激(文献3、文献4)や脳スライス上での電気刺激によるけいれん活動を光刺激で抑制することができる(文献5)、といった報告が出ているが、てんかんに関する研究は殆ど無い。 On the other hand, in recent years, research using light-sensitive cation channels using genetic engineering has been active. Cell-selectivity, spatial-selectivity, and time-selectivity by expressing a photoreceptive protein in a target cell by gene transfer using a transgenic animal or viral vector, and stimulating at a specific wavelength from an optical fiber placed in the brain It has become possible to construct an experimental system that is significantly higher than before and that has smaller electrical artifacts. It has been reported that convulsive activity caused by deep brain stimulation (Reference 3, Reference 4) and electrical stimulation on brain slices can be suppressed by light stimulation (Model 5) for Parkinson's disease model animals. There is little research.
 本発明の目的は、けいれん発作を即時に、かつ高い信頼性で誘発できるモデル動物を提供することにある。 An object of the present invention is to provide a model animal that can induce a seizure attack immediately and with high reliability.
 上記目的を達成するため、発明者らは、光刺激を用いたけいれんモデルを作製することにより、その発作活動の観察が容易なモデル動物実験系を確立するべく研究を行い、珪藻類クラミドモナスから採取した光受容性タンパク質であるチャネルロドプシン2(ChR2)を導入したトランスジェニックラットの海馬に光刺激を与えることにより、該ラットにけいれん発作を誘発できることを発見した。さらに、発明者らは、アデノ随伴ウイルス-5ベクターを用いた遺伝子導入により海馬にChR2遺伝子を導入したラットの海馬に光刺激を与えることにより、該ラットにけいれん発作を誘発できることを発見した。 In order to achieve the above object, the inventors conducted research to establish a model animal experiment system that allows easy observation of seizure activity by creating a convulsion model using light stimulation, and collected it from the diatom Chlamydomonas. It was discovered that convulsive seizures can be induced in the rat by applying light stimulation to the hippocampus of a transgenic rat into which channel rhodopsin 2 (ChR2), which is a photoreceptive protein, has been introduced. Furthermore, the inventors have discovered that convulsive seizures can be induced in the rat by applying light stimulation to the hippocampus of the rat introduced with the ChR2 gene into the hippocampus by gene transfer using an adeno-associated virus-5 vector.
 すなわち、本発明は、以下の通りである。
(1)脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物のけいれんモデル動物としての使用。
(2)海馬に光照射することにより、けいれんが誘発されることを特徴とする、(1)に記載の使用。
(3)光受容性タンパク質が光感受性陽イオンチャネルである、(1)または(2)に記載の使用。
(4)光感受性陽イオンチャネルがチャネルロドプシン2である、(3)に記載の使用。
(5)動物がげっ歯動物である、(1)~(4)のいずれかに記載の使用。
(6)動物がウイルスベクターの感染により光受容性タンパク質の遺伝子が導入された動物である、(1)~(5)のいずれかに記載の使用。
(7)動物が光受容性タンパク質の遺伝子が導入されたトランスジェニック動物である、(1)~(5)のいずれかに記載の使用。
(8)動物が受領番号NITE ABP-1417として受精卵が寄託されているトランスジェニックラット、または光の照射によりけいれんを呈するその変異体である、(7)に記載の使用。
(9)脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物を使用し、該動物の海馬に光を照射する工程を含む、けいれん発作の評価方法。
(10)脳波をモニターする工程をさらに含む、(9)に記載の方法。
(11)光受容性タンパク質が光感受性陽イオンチャネルである、(9)または(10)に記載の方法。
(12)光感受性陽イオンチャネルがチャネルロドプシン2である、(11)に記載の方法。
(13)光の波長が420~520nmである、(12)に記載の方法。
(14)光の強度が10~120mWである、(12)または(13)に記載の方法。
(15)光の周波数が5~40Hzである、または光を連続照射することを特徴とする、(12)~(14)のいずれかに記載の方法。
(16)光のパルス幅が0.5ms~連続である、(12)~(15)のいずれかに記載の方法。
(17)オン/オフ比が0.02~0.9となるように、光が間欠的に照射される、(12)~(16)のいずれかに記載の方法。
(18)動物がげっ歯動物である、(9)~(17)のいずれかに記載の方法。
(19)動物がウイルスベクターの感染により光受容性タンパク質の遺伝子が導入された動物である、(9)~(18)のいずれかに記載の方法。
(20)動物が光受容性タンパク質の遺伝子が導入されたトランスジェニック動物である、(9)~(18)のいずれかに記載の方法。
(21)動物が受領番号NITE ABP-1417として受精卵が寄託されているトランスジェニックラット、または光の照射によりけいれんを呈するその変異体である、(20)に記載の方法。
(22)受領番号NITE ABP-1417として受精卵が寄託されているけいれんモデル非ヒト哺乳動物、または光の照射によりけいれんを呈するその変異体。
(23)脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物を用いた、てんかんを含むけいれんの予防または治療薬をスクリーニングする方法。
(24)動物に被験物質を投与し、光照射により誘発されるけいれんの誘発率および/またはけいれんの持続時間を、被験物質を投与していない場合と比較および評価することを特徴とする、(23)に記載のスクリーニングする方法。
That is, the present invention is as follows.
(1) Use of a non-human mammal expressing a photoreceptor protein in brain neurons as a convulsion model animal.
(2) The use according to (1), wherein convulsions are induced by irradiating the hippocampus with light.
(3) The use according to (1) or (2), wherein the photoreceptor protein is a photosensitive cation channel.
(4) The use according to (3), wherein the photosensitive cation channel is channelrhodopsin 2.
(5) The use according to any one of (1) to (4), wherein the animal is a rodent.
(6) The use according to any one of (1) to (5), wherein the animal is an animal into which a gene for a photoreceptor protein has been introduced by infection with a viral vector.
(7) The use according to any one of (1) to (5), wherein the animal is a transgenic animal into which a gene for a photoreceptor protein has been introduced.
(8) The use according to (7), wherein the animal is a transgenic rat in which a fertilized egg is deposited under the receipt number NITE ABP-1417, or a mutant thereof that exhibits convulsions upon irradiation with light.
(9) A method for evaluating seizures, comprising a step of using a non-human mammal expressing a photoreceptive protein in brain neurons and irradiating the hippocampus of the animal with light.
(10) The method according to (9), further comprising a step of monitoring an electroencephalogram.
(11) The method according to (9) or (10), wherein the photoreceptor protein is a photosensitive cation channel.
(12) The method according to (11), wherein the photosensitive cation channel is channelrhodopsin 2.
(13) The method according to (12), wherein the wavelength of light is 420 to 520 nm.
(14) The method according to (12) or (13), wherein the light intensity is 10 to 120 mW.
(15) The method according to any one of (12) to (14), wherein the frequency of light is 5 to 40 Hz, or the light is continuously irradiated.
(16) The method according to any one of (12) to (15), wherein the light pulse width is 0.5 ms to continuous.
(17) The method according to any one of (12) to (16), wherein the light is intermittently irradiated so that the on / off ratio is 0.02 to 0.9.
(18) The method according to any one of (9) to (17), wherein the animal is a rodent.
(19) The method according to any one of (9) to (18), wherein the animal is an animal into which a gene for a photoreceptor protein has been introduced by infection with a viral vector.
(20) The method according to any one of (9) to (18), wherein the animal is a transgenic animal into which a gene for a photoreceptor protein has been introduced.
(21) The method according to (20), wherein the animal is a transgenic rat in which a fertilized egg is deposited under the receipt number NITE ABP-1417, or a mutant thereof that exhibits convulsions upon irradiation with light.
(22) A convulsion model non-human mammal in which a fertilized egg is deposited under the receipt number NITE ABP-1417, or a variant that exhibits convulsions upon irradiation with light.
(23) A method for screening a prophylactic or therapeutic agent for seizures including epilepsy using a non-human mammal that expresses a photoreceptor protein in brain neurons.
(24) A test substance is administered to an animal, and the induction rate of convulsion induced by light irradiation and / or the duration of convulsions are compared and evaluated as compared with the case where no test substance is administered. 23) The screening method according to 23).
 本発明で用いられる脳神経細胞に光受容性タンパク質を発現するトランスジェニック非ヒト哺乳動物およびウイルスベクターの感染により脳神経細胞に光受容性タンパク質の遺伝子が導入された非ヒト哺乳動物は、光照射に応答して、けいれん発作を即時に、かつ高い信頼性で誘発する。それゆえ、該動物は、てんかんをはじめとするけいれん発作のモデル動物として使用することができる。また、該モデル動物を用いて、抗てんかん薬等のけいれんの予防または治療薬をスクリーニングすることができる。 Transgenic non-human mammals that express photoreceptor proteins in brain neurons used in the present invention and non-human mammals in which photoreceptor protein genes are introduced into brain neurons by infection with viral vectors respond to light irradiation And convulsive seizures are triggered immediately and reliably. Therefore, the animal can be used as a model animal for seizures including epilepsy. In addition, the model animal can be used to screen for preventive or therapeutic agents for convulsions such as antiepileptic drugs.
図1Aは、ラットに導入するDNAフラグメントを模式的に示す図である。FIG. 1A is a diagram schematically showing a DNA fragment to be introduced into a rat. 図1Bは、導入された遺伝子の発現パターンを示す。FIG. 1B shows the expression pattern of the introduced gene. 図2は、本発明の方法を模式的に示す図である。FIG. 2 is a diagram schematically showing the method of the present invention. 図3は、電気刺激中および光刺激中の、神経活動を示すチャートである。FIG. 3 is a chart showing neural activity during electrical stimulation and light stimulation. 図4は、間欠的光刺激法を模式的に示す図である。FIG. 4 is a diagram schematically showing the intermittent light stimulation method. 図5は、光刺激中および光刺激後のけいれんモデルラットにおいて測定された脳波を示すチャートである。FIG. 5 is a chart showing electroencephalograms measured in a convulsion model rat during and after light stimulation. 図6は、オン/オフ比および周波数が、けいれん誘発率に与える影響を調べた結果を示す。FIG. 6 shows the results of examining the influence of the on / off ratio and frequency on the seizure induction rate. 図7は、海馬、扁桃体、視床前核、および感覚運動皮質に光刺激を与えたときの、それぞれのけいれん誘発率を示す図である。FIG. 7 is a diagram showing the seizure induction rates of the hippocampus, amygdala, prothalamic nucleus, and sensorimotor cortex when light stimulation is applied. 図8Aは、ジアゼパムを投与した場合のけいれん誘発率およびけいれん持続時間の変化を示す図である。FIG. 8A is a graph showing changes in seizure induction rate and seizure duration when diazepam is administered. 図8Bは、ジアゼパムを投与した場合のけいれん活動の変化を示す図である。FIG. 8B shows changes in convulsive activity when diazepam is administered. 図9Aは、ウイルスベクターを用いてチャネルロドプシン遺伝子を導入したラットの海馬に光刺激を与えるという実験プロトコールを示す模式図である。FIG. 9A is a schematic diagram showing an experimental protocol in which light stimulation is given to the rat hippocampus into which a channelrhodopsin gene has been introduced using a viral vector. 図9Bは、導入したChR2Vの発現を確認した顕微鏡写真である。FIG. 9B is a photomicrograph confirming the expression of the introduced ChR2V. 図9Cは、光刺激中および光刺激後のけいれんモデルラットにおいて測定された脳波を示すチャートである。FIG. 9C is a chart showing electroencephalograms measured in a convulsion model rat during and after light stimulation.
 本発明は、脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物のけいれんモデル動物としての使用に関する。更に詳細には、本発明は、前記モデル動物を用いたけいれんの評価方法、および抗てんかん薬等のけいれんの予防または治療薬のスクリーニング方法に関する。 The present invention relates to the use of a non-human mammal that expresses a photoreceptor protein in brain neurons as a convulsion model animal. More specifically, the present invention relates to a method for evaluating convulsions using the model animal and a method for screening for preventive or therapeutic agents for convulsions such as antiepileptic drugs.
1.定義
 「光受容性タンパク質」とは、特定の波長の光を吸収することによって何らかの応答を示すタンパク質であり、光感受性イオンチャネルおよびシグナル伝達に関わるセンサリーロドプシンなどがある。ここで「光感受性イオンチャネル」とは、特定の波長の光刺激によってチャネルが開閉し、イオン移動によって脱分極もしくは過分極が起こる、光感受性のチャネルタンパク質である。光感受性陽イオンチャネルまたは陰イオンチャネルは、光受容体としての機能と陽イオンチャネルまたは陰イオンチャネルの機能を単一の分子において併せ持っており、光の明暗情報を電気的な情報に変換することができる。
1. Definitions A “photoreceptive protein” is a protein that exhibits some response by absorbing light of a specific wavelength, and includes sensory rhodopsin involved in light-sensitive ion channels and signal transduction. Here, the “photosensitive ion channel” is a photosensitive channel protein in which a channel opens and closes by light stimulation of a specific wavelength, and depolarization or hyperpolarization occurs due to ion migration. Photosensitive cation or anion channels combine the functions of a photoreceptor and the function of a cation channel or anion channel in a single molecule, and convert light brightness information into electrical information. Can do.
 本発明において使用し得る光受容性タンパク質としては、光感受性陽イオンチャネルであるチャネルロドプシン類がある。また光感受性陽イオンチャネルとしては、クラミドモナス類やその他の生物に見出される光感受性陽イオンチャネルおよびその遺伝子改変体であるならば特に限定されるものではなく、例えばチャネルロドプシン2(ChR2)(配列番号1)、チャネルロドプシン1、および改変されたチャネルロドプシンが挙げられる。とくにその細胞内ドメインに神経細胞の特定箇所へ集積する性質を有する特性を付加することにより、光パルスによる活動電位を引き起こす効率を高めた改変体の利用も十分可能である。また、イオン透過性の異なる改変体、たとえば、Ca2+透過性を高めた改変体や、K+選択的、あるいは陰イオン選択的な透過性を有し、光刺激により膜電位をマイナス変位(過分極)させるような改変体の利用も考えられる。他に、吸収スペクトルの異なる改変体の利用もあり得る。 Photoreceptive proteins that can be used in the present invention include channelrhodopsins, which are photosensitive cation channels. The photosensitive cation channel is not particularly limited as long as it is a photosensitive cation channel found in Chlamydomonas or other organisms and a gene variant thereof. For example, channel rhodopsin 2 (ChR2) (SEQ ID NO: 1), channelrhodopsin 1, and modified channelrhodopsin. In particular, it is possible to use a variant with enhanced efficiency in causing an action potential caused by a light pulse by adding a property having a property of accumulating to a specific location of a neuron in the intracellular domain. In addition, variants with different ion permeability, for example, variants with enhanced Ca 2+ permeability, K + selective or anion selective permeability, and negative displacement of membrane potential by light stimulation ( It is also conceivable to use a variant that causes hyperpolarization. In addition, it is possible to use variants having different absorption spectra.
 なお、ChR2遺伝子によりコードされるChR2タンパク質としては、配列番号1に示すアミノ酸配列からなるポリペプチドに限定されず、配列番号1に示すアミノ酸配列において1個若しくは数個のアミノ酸の置換、欠失、付加又は挿入を有し、かつ配列番号1に示すアミノ酸配列からなるChR2タンパク質と同等以上の生物学的活性を有するもの、或いは配列番号1に示すアミノ酸配列と実質的に同一の配列相同性を有し、かつ配列番号1に示すアミノ酸配列からなるChR2タンパク質と同等以上の生物学的活性を有するもの(以下、「ChR2変異型ポリペプチド」ともいう)を含む。 The ChR2 protein encoded by the ChR2 gene is not limited to the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1, but substitution or deletion of one or several amino acids in the amino acid sequence shown in SEQ ID NO: 1, Those having an addition or insertion and having a biological activity equivalent to or higher than that of the ChR2 protein consisting of the amino acid sequence shown in SEQ ID NO: 1, or having substantially the same sequence homology as the amino acid sequence shown in SEQ ID NO: 1 And having a biological activity equivalent to or higher than that of the ChR2 protein consisting of the amino acid sequence shown in SEQ ID NO: 1 (hereinafter also referred to as “ChR2 mutant polypeptide”).
 本明細書において、ChR2変異型ポリペプチドの関連で使用する「数個」とは、10以下の整数、例えば2~9、2~7、2~5の整数である。 In the present specification, “several” used in the context of ChR2 mutant polypeptide is an integer of 10 or less, for example, an integer of 2 to 9, 2 to 7, or 2 to 5.
 また「実質的に同一の配列相同性」とは、配列番号1に示すアミノ酸配列と少なくとも90%、より好ましくは少なくとも95%、より好ましくは少なくとも96%、97%、98%又は99%の配列相同性を有することをいう。なお、相同性の%は、複数(2つ)のアミノ酸配列間の相同性を演算するソフトウェア(例えば、FASTA、DNASIS、BLASTなど)をデフォルトの設定で使用して算出した値をいう。 The “substantially identical sequence homology” is at least 90%, more preferably at least 95%, more preferably at least 96%, 97%, 98% or 99% of the amino acid sequence shown in SEQ ID NO: 1. It means having homology. The% homology refers to a value calculated using software (for example, FASTA, DNASIS, BLAST, etc.) that calculates the homology between a plurality (two) of amino acid sequences with default settings.
 本明細書において、「同等の生物学的活性」とは、例えば光感受性、チャネル機能といった生物学的な活性の強さが実質的に同一であることを指す。またこの用語は、実質的に同質の生物学的活性を有する場合を含んでもよく、ここでいう「同質」の生物学的活性とは、光感受波長や、例えばイオン透過活性の性質が同一であることをいう。 In the present specification, “equivalent biological activity” means that biological activities such as photosensitivity and channel function have substantially the same strength. The term may also include the case of having substantially the same biological activity, and the “same” biological activity here is the same in light sensitive wavelength, for example, the nature of the ion permeable activity. Say something.
 また、ChR2遺伝子としては、配列番号2に示す塩基配列からなるポリヌクレオチドに限定されず、配列番号2に示す塩基配列からなるポリヌクレオチドの相補鎖に対してストリンジェントな条件でハイブリダイズするポリヌクレオチドであって、配列番号1に示すアミノ酸配列からなるChR2タンパク質と同等以上の生物学的活性を有するポリペプチドをコードするポリヌクレオチド(以下、「ChR2変異型ポリヌクレオチド」ともいう)を含む。当業者であればハイブリダイゼーションのストリンジェンシーを決定する上記の又は他の要素(例えば、ハイブリダーゼーションプローブの濃度、長さ及びGC含量、ハイブリダイゼーションの反応時間など)を適宜組み合わせることにより、上記と同様のストリンジェンシーを実現することが可能である。 Further, the ChR2 gene is not limited to the polynucleotide comprising the base sequence shown in SEQ ID NO: 2, but is a polynucleotide that hybridizes under stringent conditions to the complementary strand of the polynucleotide comprising the base sequence shown in SEQ ID NO: 2. And a polynucleotide encoding a polypeptide having a biological activity equal to or higher than that of the ChR2 protein consisting of the amino acid sequence shown in SEQ ID NO: 1 (hereinafter also referred to as “ChR2 mutant polynucleotide”). A person skilled in the art can appropriately combine the above or other factors that determine the stringency of hybridization (for example, the concentration, length and GC content of the hybridization probe, the reaction time of hybridization, etc.) Similar stringency can be achieved.
 「てんかん」とは、大脳の神経細胞の過剰な同期的発射活動が起こることによって、同一個人の中では同じ型の臨床発作(全身強直-間代発作、欠神発作、幻聴発作、四肢の一部の強直発作等)を繰り返す病態をいう。てんかんは生物学的成因が不明の神経疾患であり、けいれんを伴う。 “Epileptic” refers to the same type of clinical seizures (systemic tonic-clonic seizures, absence seizures, hallucinogenic seizures, one-limbed seizures) within the same individual due to excessive synchronous firing of cerebral neurons. This refers to a pathological condition that repeats tonic seizures in the club. Epilepsy is a neurological disease of unknown biological origin and is associated with convulsions.
 ここで、「けいれん」とは、特徴的な脳波変化を伴う全身または身体の一部の筋群の不随意かつ発作性の収縮をいう。本明細書においては、けいれんが自発的に、反復して惹起される状態をてんかんと定義し、また、発作、けいれん発作、けいれん活動、およびてんかん発作の用語は、いずれもけいれんを呈している状態をいうものとする。 Here, “convulsions” refers to involuntary and seizure contractions of the muscle groups of the whole body or part of the body accompanied by characteristic brain wave changes. In the present specification, a state in which convulsions are spontaneously and repeatedly induced is defined as epilepsy, and the terms seizure, seizures, seizure activity, and seizures are all presenting with seizures. It shall be said.
 本明細書において、「光を間欠的に照射する」とは、図4に示すように、光を一定の時間間隔(刺激間隔またはオフ期間)を空けて連続的に一定時間(パルス幅またはオン期間)ずつ照射する時間(刺激期間)、および、刺激期間の後の光を照射しない時間(非刺激期間)を繰り返すことを意味し、そのような光照射法を間欠的光刺激法と定義する。刺激期間においては、刺激間隔(オフ期間)を空けてパルス幅(オン期間)の光照射が繰り返され、該繰り返しを、パルス幅の照射と刺激間隔とを一サイクルとした周波数(Hz)(1秒間あたりのサイクル数)を用いて表す。さらに、一サイクル中のパルス幅の割合(パルス幅/パルス幅+刺激間隔)を「オン/オフ比」と定義する。 In this specification, “intermittently irradiating light” means, as shown in FIG. 4, that light is continuously emitted for a certain time (pulse width or on-time) with a certain time interval (stimulation interval or off-period). (Period) irradiation time (stimulation period), and the period of non-irradiation after the stimulation period (non-stimulation period) means repeating, such light irradiation method is defined as intermittent light stimulation method . In the stimulation period, light irradiation with a pulse width (on period) is repeated with a stimulation interval (off period), and the repetition is performed at a frequency (Hz) (1) with the pulse width irradiation and the stimulation interval as one cycle. The number of cycles per second). Furthermore, the ratio of the pulse width in one cycle (pulse width / pulse width + stimulation interval) is defined as “on / off ratio”.
2.けいれんモデル非ヒト哺乳動物
(1)モデル動物の作製
(a)トランスジェニック動物の作製
 本発明においては、脳神経細胞に光受容性タンパク質を発現するトランスジェニック非ヒト哺乳動物を用いる。そのような動物は、当業者に周知のトランスジェニック動物の作出方法に従い、非ヒト哺乳動物に光受容性タンパク質の遺伝子を導入して、脳神経細胞特異的に該遺伝子を発現させることにより作製することができる。
2. Seizure model non-human mammal (1) Production of model animal (a) Production of transgenic animal In the present invention, a transgenic non-human mammal that expresses a photoreceptor protein in brain neurons is used. Such an animal is prepared by introducing a gene of a photoreceptor protein into a non-human mammal and expressing the gene specifically in brain neurons according to a method for producing a transgenic animal well known to those skilled in the art. Can do.
 具体的には、限定するものではないが、例えば以下に示すような工程により、トランスジェニック動物を作製することができる。光受容性タンパク質の遺伝子を非ヒト哺乳動物の脳神経細胞内で機能する発現制御配列を有する非ヒト哺乳動物細胞用発現ベクターに導入する。この遺伝子発現ベクターをリニアライズした、導入遺伝子を含む直鎖DNAフラグメントを、ラット等の非ヒト哺乳動物由来の分化全能性細胞に導入し、導入後仮親に移植する。移植した分化全能性細胞から個体を発生させ、その個体の組織から抽出したDNAを用いたPCR法等により、導入遺伝子が体細胞染色体中に組み込まれた個体を選別することによって、本発明において使用するトランスジェニック動物を得ることができる。DNAフラグメントの分化全能性細胞への導入としては、マイクロインジェクション法を好ましく例示することができる。トランスジェニック動物を作製するために用いる分化全能性細胞としては、受精卵、初期胚の他、多分化能を有するES細胞等の培養細胞を例示することができる。 Specifically, although not limited, for example, a transgenic animal can be produced by the following steps. A gene of a photoreceptor protein is introduced into an expression vector for a non-human mammal cell having an expression control sequence that functions in the brain neurons of the non-human mammal. A linear DNA fragment containing the transgene, linearized from this gene expression vector, is introduced into a totipotent cell derived from a non-human mammal such as a rat, and transplanted to a temporary parent after the introduction. Used in the present invention by generating individuals from transplanted totipotent cells and selecting individuals in which the transgene is integrated into the somatic chromosome by PCR or the like using DNA extracted from the tissue of the individual Transgenic animals can be obtained. A preferred example of the introduction of a DNA fragment into a totipotent cell is a microinjection method. Examples of totipotent cells used for producing a transgenic animal include cultured cells such as fertilized eggs and early embryos, ES cells having multipotency, and the like.
 上記の「非ヒト哺乳動物の脳神経細胞内で機能する発現制御配列」としては、非ヒト哺乳動物の脳神経細胞で機能する発現制御配列である限り特に制限されないが、非ヒト哺乳動物の脳神経細胞で特異的に機能する発現制御配列であることが好ましく、非ヒト哺乳動物の脳神経細胞で特異的に機能するプロモーターであることがより好ましい。非ヒト哺乳動物中で機能する神経細胞特異的プロモーターとしては、例えばThy1、2領域、CaMKII、PV等を用いることができる。 The “expression control sequence that functions in the brain neurons of the non-human mammal” is not particularly limited as long as it is an expression control sequence that functions in the brain neurons of the non-human mammal, but in the brain neurons of the non-human mammal. It is preferably an expression control sequence that functions specifically, and more preferably a promoter that functions specifically in brain neurons of a non-human mammal. As a nerve cell-specific promoter that functions in a non-human mammal, for example, Thy1, 2 region, CaMKII, PV and the like can be used.
 導入遺伝子の存在が確認された個体を交配することにより、本発明において使用する光受容性タンパク質を脳神経細胞で安定的に発現可能なように染色体の一部に組み込んだトランスジェニック動物を効率よく作出することができる。 By crossing individuals whose transgenes have been confirmed, transgenic animals in which the photoreceptive protein used in the present invention has been incorporated into a part of the chromosome so that it can be stably expressed in brain neurons can be efficiently produced. can do.
 本発明において使用される非ヒト哺乳動物はヒト以外の哺乳動物であればよく、例えばラット、マウス、ハムスター、モルモット、ウサギ、イヌ、ネコ、サル等が挙げられる。好ましくは、ラット、マウス、ハムスター、モルモット等のげっ歯動物が使用され、より好ましくはラット、マウスが使用される。 The non-human mammal used in the present invention may be a mammal other than a human, and examples thereof include rats, mice, hamsters, guinea pigs, rabbits, dogs, cats, monkeys and the like. Preferably, rodents such as rats, mice, hamsters and guinea pigs are used, and more preferably rats and mice are used.
 導入した光受容性タンパク質遺伝子の発現を確認するため、蛍光タンパク質をコードする遺伝子を一緒に導入してもよい。本発明においては当業者に周知の蛍光タンパク質を使用することができ、例えば、GFP、YFP、RFP、DSRed、およびVenus等を使用してもよい。これによって光刺激に応答する神経細胞を組織での蛍光を確認することによって識別する事が可能となる。 In order to confirm the expression of the introduced photoreceptor protein gene, a gene encoding a fluorescent protein may be introduced together. In the present invention, fluorescent proteins well known to those skilled in the art can be used. For example, GFP, YFP, RFP, DSRed, and Venus may be used. This makes it possible to identify nerve cells that respond to light stimulation by confirming fluorescence in the tissue.
 本発明において使用するトランスジェニック動物を作製するために、非ヒト哺乳動物の脳神経細胞で機能する発現制御配列の制御下に、光受容性タンパク質をコードする遺伝子の配列、および任意に蛍光タンパク質をコードする遺伝子の配列を機能しうる態様で連結した非ヒト哺乳動物細胞用発現ベクターを使用する。非ヒト哺乳動物細胞用発現ベクターとして、例えば、pEGFP-C1(クローンテック社製)、pGBT-9(クローンテック社製)、pcDNAI(インビトロジェン社製)、pcDNA3.1(インビトロジェン社製)、pEF-BOS(Nucleic Acids Res., 18, 5322, 1990)、pAGE107(Cytotechnology, 3, 133, 1990)、pCDM8(Nature, 329, 840, 1987)、pcDNAI/AmP(インビトロジェン社製)、pREP4(インビトロジェン社製)、pAGE103(J.Blochem., 101, 1307, 1987)、pAGE210等を例示することができる。 In order to produce a transgenic animal for use in the present invention, a gene sequence encoding a photoreceptive protein, and optionally a fluorescent protein, is encoded under the control of an expression control sequence that functions in brain neurons of a non-human mammal. An expression vector for non-human mammalian cells in which the sequence of the gene to be ligated in such a manner that it can function is used. Examples of expression vectors for non-human mammalian cells include pEGFP-C1 (Clontech), pGBT-9 (Clontech), pcDNAI (Invitrogen), pcDNA3.1 (Invitrogen), pEF- BOS (Nucleic® Acids® Res., 18, 5322, 1990), pAGE107 (Cytotechnology, 3, 133, 1990), pCDM8 (Nature, 329, 840, 1987), pcDNAI / AmP (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen) ), PAGE103 (J. Blochem., 101, 1307, 1987), pAGE210, and the like.
 上記トランスジェニック動物の好適な一例として、後述する受領番号NITE ABP-1417で特定されるトランスジェニックラットを挙げることができる。 As a suitable example of the above-mentioned transgenic animal, a transgenic rat identified by the receipt number NITE ABP-1417 described later can be mentioned.
(b)ウイルスベクターによる遺伝子導入
 本発明においては、ウイルスベクターを用いた遺伝子導入によって脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物を用いることもできる。ウイルスベクターを用いた動物への遺伝子導入は、当業者に周知の方法に従って行うことができる。
(B) Gene transfer by viral vector In the present invention, a non-human mammal that expresses a photoreceptor protein in brain neurons by gene transfer using a viral vector can also be used. Gene transfer into animals using viral vectors can be performed according to methods well known to those skilled in the art.
 具体的には、限定するものではないが、例えば以下に示すような工程により、in vivoで遺伝子を導入することができる。まず、発現制御配列の制御下に、光受容性タンパク質をコードする遺伝子の配列、および任意に蛍光タンパク質をコードする遺伝子の配列を機能しうる態様で連結した配列を有するウイルスベクターを作製する。 Specifically, although not limited, for example, the gene can be introduced in vivo by the following steps. First, under the control of an expression control sequence, a viral vector having a sequence in which a gene sequence encoding a photoreceptor protein and optionally a sequence of a gene encoding a fluorescent protein are linked in a functional manner is prepared.
 本発明において「ウイルスベクター」とは、特に制限されず、ウイルスの細胞へ感染する機構や細胞に維持される機構を利用した遺伝子導入用のベクターをいい、公知の任意のウイルスベクターを含む。本発明において、例えば、センダイウイルスベクター、レンチウイルスベクター、レトロウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルス(Adeno-associated virus(AAV))ベクター等が使用されうる。また、本発明において「発現制御配列」とは、特に限定されるものではなく、当業者に周知のエンハンサーおよび/またはプロモーター配列を使用することができる。例えばカルモジュリンキナーゼII、パルブアルブミンプロモーター等が使用されうる。 In the present invention, the “viral vector” is not particularly limited, and refers to a vector for gene transfer utilizing a mechanism for infecting or maintaining a virus cell, and includes any known viral vector. In the present invention, for example, a Sendai virus vector, a lentivirus vector, a retrovirus vector, an adenovirus vector, an adeno-associated virus (AAV) vector, and the like can be used. In the present invention, the “expression control sequence” is not particularly limited, and an enhancer and / or promoter sequence well known to those skilled in the art can be used. For example, calmodulin kinase II, parvalbumin promoter, etc. can be used.
 蛍光タンパク質をコードする遺伝子は、導入した光受容性タンパク質遺伝子の発現を確認するために、任意に導入してもよい。本発明においては当業者に周知の蛍光タンパク質を使用することができ、例えば、GFP、YFP、RFP、DSRed、およびVenus等を使用してもよい。これによって光刺激に応答する神経細胞を組織での蛍光を確認することによって識別する事が可能となる。 A gene encoding a fluorescent protein may be arbitrarily introduced in order to confirm the expression of the introduced photoreceptor protein gene. In the present invention, fluorescent proteins well known to those skilled in the art can be used. For example, GFP, YFP, RFP, DSRed, and Venus may be used. This makes it possible to identify nerve cells that respond to light stimulation by confirming fluorescence in the tissue.
 光受容性タンパク質遺伝子の配列を含むウイルスベクターを、標的細胞、標的組織または標的臓器(以下、「標的細胞等」とする。)にインジェクションする。本発明において「標的細胞」、「標的組織」、および「標的臓器」とは、それぞれ、脳内に存在する任意の細胞、脳内の任意の部位、および脳をいう。本発明において、好ましくは海馬にウイルスベクターが注入される。標的細胞等にウイルスベクターを注入することによりウイルスが感染し、光受容性タンパク質遺伝子および蛍光タンパク質をコードする遺伝子が当該細胞に導入される。 A virus vector containing a photoreceptive protein gene sequence is injected into a target cell, target tissue or target organ (hereinafter referred to as “target cell etc.”). In the present invention, “target cell”, “target tissue”, and “target organ” refer to any cell existing in the brain, any site in the brain, and brain, respectively. In the present invention, the viral vector is preferably injected into the hippocampus. A virus is infected by injecting a viral vector into a target cell or the like, and a gene encoding a photoreceptor protein gene and a fluorescent protein is introduced into the cell.
(2)けいれんの誘発(光照射工程)
 本発明においては、上記トランスジェニック動物およびウイルスベクターを用いて遺伝子導入された動物においてけいれんを誘発するため、該動物を開頭し、脳、特に海馬に、間欠的に光を照射して光刺激を行う。光照射のオン/オフ比は、0.02~0.9もしくは連続刺激、好ましくは0.05~0.5、より好ましくは0.05~0.1である。また、パルス幅は、0.5ms~連続であってよく、好ましくは0.1~100ms、より好ましくは0.1~50msである。本発明において、上記トランスジェニック動物に対して、間欠的ではなく持続的に光を照射することによっても、低頻度ではあるが、けいれんを誘発することが可能である。
(2) Seizure induction (light irradiation process)
In the present invention, in order to induce convulsions in the transgenic animals and animals transgenic using the viral vectors, the animals are opened, and the brain, particularly the hippocampus, is intermittently irradiated with light to stimulate light. Do. The on / off ratio of light irradiation is 0.02 to 0.9 or continuous stimulation, preferably 0.05 to 0.5, more preferably 0.05 to 0.1. The pulse width may be 0.5 ms to continuous, preferably 0.1 to 100 ms, more preferably 0.1 to 50 ms. In the present invention, it is possible to induce convulsions, albeit at a low frequency, by irradiating the transgenic animal with light continuously rather than intermittently.
 本発明に係る方法において照射する光の波長は、光受容性タンパク質の応答波長±50nm程度、好ましくは±35nm、より好ましくは±20nm程度である。したがって、光受容性タンパク質として、最適波長470nmの光により脱分極するチャネルロドプシン2を使用する場合には、420~520nm程度、好ましくは435nm~505nm程度、より好ましくは450~490nm程度の波長の光を照射する。 The wavelength of the light irradiated in the method according to the present invention is about the response wavelength of photoreceptive protein ± 50 nm, preferably ± 35 nm, more preferably about ± 20 nm. Therefore, when channelrhodopsin 2 that is depolarized by light having an optimum wavelength of 470 nm is used as the photoreceptive protein, light having a wavelength of about 420 to 520 nm, preferably about 435 nm to 505 nm, more preferably about 450 to 490 nm. Irradiate.
 照射する光の強度は、約10~120mW、好ましくは約30~100mW、より好ましくは約50~80mWである。 The intensity of the irradiated light is about 10 to 120 mW, preferably about 30 to 100 mW, more preferably about 50 to 80 mW.
 照射する光の周波数は、約5~40Hz、好ましくは約10~20Hzである。 The frequency of the irradiated light is about 5 to 40 Hz, preferably about 10 to 20 Hz.
 トランスジェニック動物およびウイルスベクターを用いて遺伝子導入された動物は、その海馬に光刺激、特に間欠的光刺激法に従い光刺激を受けると、けいれんを呈する。光刺激によって光感受性陽イオンチャネルを発現する神経細胞に脱分極が引き起こされることにより、トランスジェニック動物およびウイルスベクターを用いて遺伝子導入された動物がけいれんを呈するものと考えられる。 Transgenic animals and animals that have been transfected with viral vectors exhibit convulsions when the hippocampus is subjected to light stimulation, in particular light stimulation according to the intermittent light stimulation method. It is considered that depolarization is caused in a nerve cell expressing a light-sensitive cation channel by light stimulation, so that a transgenic animal and an animal transgenic with a viral vector exhibit convulsions.
 本発明では、光受容性タンパク質遺伝子を組み込んだトランスジェニック非ヒト哺乳動物およびウイルスベクターを用いて遺伝子導入された非ヒト哺乳動物にけいれんを誘発するために、(a)光源、(b)光源に結合された光伝導導線、および(c)脳波を測定する手段を含む装置を用いる。該装置は、さらに(d)測定した脳波をデータ処理する手段、および/または(e)測定した脳波を表示する手段を含んでもよい。 In the present invention, in order to induce convulsions in a transgenic non-human mammal incorporating a photoreceptive protein gene and a non-human mammal introduced with a viral vector, (a) a light source, (b) a light source An apparatus is used that includes coupled photoconductive leads and (c) means for measuring brain waves. The apparatus may further include (d) means for data processing of the measured electroencephalogram and / or (e) means for displaying the measured electroencephalogram.
 前記装置において使用し得る光源としては、光受容性タンパク質の応答波長の光を発するものであれば特に限定されないが、例えば、レーザー光源が使用される。 The light source that can be used in the apparatus is not particularly limited as long as it emits light having a response wavelength of the photoreceptive protein. For example, a laser light source is used.
 前記装置において使用し得る光伝導導線は、例えば光ファイバーのような、ある位置から別の位置へ光または光エネルギーを伝導するための手段である。 A photoconductive conductor that can be used in the device is a means for conducting light or light energy from one location to another, such as an optical fiber.
 前記装置において使用し得る脳波を測定する手段としては、当該技術分野において公知の脳波計を用いることができる。 As a means for measuring an electroencephalogram that can be used in the apparatus, an electroencephalograph known in the art can be used.
 上記装置は、本発明に係るモデル動物とともに、後述するけいれんの評価、けいれんの予防または治療薬のスクリーニングに使用される。 The above apparatus is used together with the model animal according to the present invention for evaluation of convulsions, screening for preventive or therapeutic drugs for convulsions described later.
(3)けいれんの評価(動物の観察工程または脳波のモニタリング工程)
 けいれんは、トランスジェニック動物およびウイルスベクターを用いて遺伝子導入された動物の観察および脳波の測定により検出することができる。例えば、ひげ、四肢、体幹、もしくは尾に振動が生じた場合、または異常脳波を観測した場合に、けいれんが起こったと判断する。本明細書において、異常脳波とは、自発的な連続する鋭波・棘波を特徴とする活動で、間欠的光刺激により誘発されるものの、一つ一つの誘発電位とは独立して発生する活動である。
(3) Evaluation of convulsions (animal observation process or EEG monitoring process)
Seizures can be detected by observing transgenic animals and animals transfected with viral vectors and measuring brain waves. For example, when vibration occurs in the beard, limbs, trunk, or tail, or when abnormal brain waves are observed, it is determined that convulsion has occurred. In this specification, an abnormal electroencephalogram is an activity characterized by spontaneous continuous sharp waves and spikes, which are induced by intermittent light stimulation, but are generated independently of each evoked potential. Activity.
 光刺激を受けたトランスジェニック動物およびウイルスベクターを用いて遺伝子導入された動物は、光を照射されてもけいれんを呈さない潜伏期間と、その後けいれんを呈するけいれん(Sz)期間とを示す(図4および図5参照)。けいれん期間は、光刺激を終了しても一定時間継続するが、やがて自発的に終息する。本明細書においては、潜伏期間とけいれん期間とを合わせて、1セッションと定義する。 Transgenic animals that have been subjected to light stimulation and animals that have been transfected with a viral vector exhibit a latent period that does not exhibit convulsions even when irradiated with light, and then a convulsions (Sz) period that exhibits convulsions (FIG. 4). And FIG. 5). The convulsion period continues for a certain period of time even after the light stimulation is finished, but eventually ends spontaneously. In this specification, the incubation period and the convulsion period are combined and defined as one session.
 かくして、本発明では、脳波を測定することにより、より容易かつ正確に、モデル動物におけるけいれん発作誘発の有無を判断することができる。 Thus, in the present invention, it is possible to more easily and accurately determine the presence or absence of convulsive seizure induction in a model animal by measuring an electroencephalogram.
 脳波のモニタリングは、当該技術分野において公知の方法に従って、実施することができる。具体的には、モデル動物の脳内に深部電極を刺入し、該電極を脳波計に接続して脳波を測定する。よって、本発明の方法では、深部電極は海馬に刺入されることが好ましい。けいれん発作が誘発されている間、脳波所見は刺激初期に刺激毎の誘発電位のみが計測されるが、徐々にその波形が変化していき、ある点から自発的なけいれん活動が発生する。刺激終了時には連続的に自律的けいれん活動へ移行する。この活動はアーチファクトが少ない当モデルにおいては誘発時終始において観察可能である(図3および図5参照)。 Electroencephalogram monitoring can be performed according to a method known in the art. Specifically, a deep electrode is inserted into the brain of a model animal, and the electrode is connected to an electroencephalograph to measure an electroencephalogram. Therefore, in the method of the present invention, the deep electrode is preferably inserted into the hippocampus. While the seizures are induced, EEG findings are measured only for the evoked potential for each stimulus in the early stage of the stimulus, but the waveform gradually changes and spontaneous seizure activity occurs from a certain point. At the end of the stimulus, it continuously shifts to autonomous seizure activity. This activity can be observed throughout the induction period in this model with few artifacts (see FIGS. 3 and 5).
3.けいれんモデルラット
 本発明においては、脳神経細胞に光受容性タンパク質を発現するトランスジェニック非ヒト哺乳動物を用いる。本発明の一態様では、クラミドモナス由来のチャネルロドプシン2を脳神経細胞特異的に発現しているトランスジェニックラットを使用することができる。
3. Seizure model rat In the present invention, a transgenic non-human mammal that expresses a photoreceptor protein in brain neurons is used. In one embodiment of the present invention, a transgenic rat expressing Chlamydomonas-derived channelrhodopsin 2 specifically in brain neurons can be used.
(1)受精卵の寄託
 本発明において使用し得る、チャネルロドプシン2を導入したトランスジェニックラットの受精卵は、微生物の識別の表示Thy1.2-ChR2-Venusで、平成24(2012)年9月4日(受領日)付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(〒292-0818 千葉県木更津市かずさ鎌足2-5-8)に寄託された。受領番号はNITE ABP-1417である。
(1) Deposit of fertilized egg The fertilized egg of a transgenic rat introduced with channelrhodopsin 2, which can be used in the present invention, is a microorganism identification display Thy1.2-ChR2-Venus, September 2012 On the 4th (reception date), it was deposited with the National Institute of Technology and Evaluation Patent Microorganisms Deposit Center (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture 292-0818). The receipt number is NITE ABP-1417.
(2)特性
 寄託を行ったトランスジェニックラットには、Thy1.2-ChR2-Venusが導入されている。該トランスジェニックラットは、間欠的光刺激法に従って海馬に光が照射されると、けいれんを呈する。しかし、該トランスジェニックラットにおいて、従来刺激によってけいれん誘発が起こりやすいとされてきた皮質および扁桃体、ならびにてんかんの発作活動のネットワークに重要な役割を果たすとされる視床前核に対して、同様に光刺激を加えても、けいれん発作は誘発されない(図7)。
(2) Characteristics Thy1.2-ChR2-Venus has been introduced into the deposited transgenic rat. The transgenic rat exhibits convulsions when the hippocampus is irradiated with light according to the intermittent light stimulation method. However, in the transgenic rats, the cortex and amygdala, which have been considered to be prone to convulsions by conventional stimulation, and the prethalamic nucleus, which is thought to play an important role in the network of seizure activity of epilepsy, are similarly illuminated. Adding a stimulus does not induce a seizure (Figure 7).
(3)繁殖・飼育条件
 寄託を行ったトランスジェニックラットは、近交系動物の繁殖に通常用いられているように、兄妹交配によって増殖を行って、必要なラット数を確保することができる。また、飼育条件は特に制限はなく、慣用の飼育法に従って飼育することができる。
(3) Breeding / breeding conditions The deposited transgenic rats can be proliferated by brother-sister mating to ensure the necessary number of rats, as is usually used for breeding inbred animals. The breeding conditions are not particularly limited, and can be raised according to a conventional breeding method.
(4)子孫、コンジェニック系、および変異体
 本発明において使用し得るトランスジェニックラットとしては、寄託を行ったトランスジェニックラットだけでなく、導入した遺伝子、すなわちChR2遺伝子(配列番号2)を保有して上記の特性を示す、該トランスジェニックラットと実験用ラットを交配させて得られる交雑ラットや、コンジェニック系ラットも含まれる。また、ChR2変異型ポリペプチドを脳神経細胞特異的に発現して上記の特性を示す、該トランスジェニックラットの変異体も含まれる。なお、コンジェニック系ラットは、導入した遺伝子以外についての遺伝的背景が、任意の実験用ラットのものとなっているものであり、このようなコンジェニック系ラットは、寄託を行ったトランスジェニックラットであってChR2遺伝子についてヘテロまたはホモ接合体であるトランスジェニックラットと、任意の実験用ラットとを公知の戻し交雑育種法にしたがって戻し交配を進めることにより、作出することができる。
(4) Offspring, congenic lines, and mutants Transgenic rats that can be used in the present invention have not only the transgenic rat that has been deposited, but also the introduced gene, that is, the ChR2 gene (SEQ ID NO: 2). Also included are crossed rats obtained by crossing the transgenic rats and experimental rats that exhibit the above characteristics, and congenic rats. Also included are mutants of the transgenic rat that express the ChR2 mutant polypeptide specifically in brain neurons and exhibit the characteristics described above. In addition, the congenic rat has a genetic background other than the introduced gene of that of any experimental rat, and such a congenic rat is a transgenic rat that has been deposited. In addition, a transgenic rat that is heterozygous or homozygous for the ChR2 gene and any experimental rat can be produced by proceeding backcrossing according to a known backcross breeding method.
(5)有用性および利点
 本発明のけいれんモデル動物は、従来のてんかんモデル動物に比べて以下の点で秀でている。
・光刺激後そのままけいれん活動に移行するので、けいれん発作誘発に時間を要しない
・光ファイバーおよび電極留置後は即時にけいれん発作を誘発できるので、例えばキンドリングモデル等のようにモデル作製に長時間を要しない
・数分から数時間以内に複数回にわたって任意にけいれん発作を高確率に誘発することができ、個体内、もしくは個体間で非常に再現性が高い
・光刺激は電気的な計測のアーチファクトが少ないため、電気的活動の異常であるてんかん活動を計測、解析するのに便利である
・本発明のけいれんモデル動物は、従来のモデル動物に比べて死亡率が低い
・本発明において使用する受領番号NITE ABP-1417のトランスジェニックラット、ならびにその子孫、コンジェニック系ラット、および変異体は、繁殖、および表現形の識別(ジェノタイピング)が容易である。タイピングは体細胞(尾)のサンプルを用いて組換え遺伝子の一部であるVenus(野性型(Wild Wister rat)の遺伝子には存在しない)をPCR法によって検出する
・本発明において使用する受領番号NITE ABP-1417のトランスジェニックラット、ならびにその子孫、コンジェニック系ラット、および変異体は、ヘテロであるかホモであるかにかかわらず、100%けいれんを呈する
(5) Usefulness and Advantages The convulsion model animal of the present invention is superior to the conventional epilepsy model animal in the following points.
・ Because it shifts to convulsive activity as it is after light stimulation, it does not take time to induce convulsive seizure. ・ Because convulsive seizure can be induced immediately after placing optical fiber and electrode, it takes a long time to create a model such as kindling model. No convulsive seizures can be triggered arbitrarily at multiple times within minutes to hours, and reproducibility is very high within or between individuals.Light stimulation has few electrical measurement artifacts. Therefore, it is convenient to measure and analyze epilepsy activity, which is an abnormality of electrical activity. ・ The convulsion model animal of the present invention has a lower mortality rate than the conventional model animal. ・ Receive number NITE used in the present invention. ABP-1417 transgenic rats, and their progeny, congenic rats, and mutants Identification (genotyping) is easy. Typing uses a somatic cell (tail) sample to detect the Venus (not present in the Wild Wister rat gene), which is part of the recombinant gene, by the PCR method. Receipt number used in the present invention NITE ABP-1417 transgenic rats, and their progeny, congenic rats, and mutants exhibit 100% seizures, regardless of whether they are heterozygous or homozygous.
4.けいれんモデル非ヒト哺乳動物を用いた、薬剤のスクリーニング方法および深部脳刺激療法
(1)薬剤のスクリーニング方法
 本発明のけいれんモデル非ヒト哺乳動物は、てんかんモデル非ヒト哺乳動物として使用することができる。したがって、本発明のけいれんモデル非ヒト哺乳動物に、被験物質を投与することにより、てんかんを含むけいれんを予防または治療するための薬物をスクリーニングすることができる。
4). Drug screening method and deep brain stimulation therapy using convulsion model non-human mammal (1) Drug screening method The convulsion model non-human mammal of the present invention can be used as an epilepsy model non-human mammal. Therefore, a drug for preventing or treating convulsions including epilepsy can be screened by administering a test substance to the convulsion model non-human mammal of the present invention.
 例えば、本発明のモデル動物に被験物質を投与し、該モデル動物又はその一部においてけいれんと相関関係を有する指標値を測定し、被験物質を投与していない対照動物の結果と比較し、この比較結果に基づいて、けいれんを軽減または消滅させるか否かを確認することで、てんかんを含むけいれんの予防または治療薬をスクリーニングすることができる。 For example, a test substance is administered to the model animal of the present invention, an index value correlated with convulsions in the model animal or a part thereof is measured, and compared with the result of a control animal not administered the test substance. Based on the comparison result, by confirming whether or not to reduce or eliminate convulsions, a prophylactic or therapeutic agent for convulsions including epilepsy can be screened.
 モデル動物又はその一部とは、動物の生体の全身、及び限定された組織又は器官の両者を含む。限定された組織又は器官の場合は、動物から摘出されたものも含む。 The model animal or a part thereof includes both the whole body of the animal and a limited tissue or organ. In the case of limited tissues or organs, it includes those extracted from animals.
 指標値としては、例えば、けいれんの持続時間や誘発率の変化を用いることができる。本明細書において、「けいれんの持続時間」とは、光刺激を受けたけいれんモデル動物がけいれんを呈する時間のことをいい、けいれん期間とも記載する。また、本明細書において「けいれんの誘発率」とは、光刺激を受けたけいれんモデル動物においてけいれんが発生する発生頻度をいい、光刺激を行った回数に対して該モデル動物がけいれんを呈した回数を百分率で表す。 As the index value, for example, changes in the duration of convulsions and the induction rate can be used. In the present specification, “duration of convulsions” refers to the time during which a convulsion model animal that has received light stimulation exhibits convulsions, and is also referred to as a convulsion period. Further, in the present specification, “convulsion induction rate” refers to the frequency of occurrence of convulsions in a convulsion model animal that has been subjected to light stimulation, and the model animal exhibited convulsions relative to the number of times of light stimulation. The number of times is expressed as a percentage.
 例えば、被験物質の投与により、けいれんの持続時間および/または誘発率の低下が観察された場合、使用した被験物質をてんかんを含むけいれんの予防または治療薬として選択することができる。 For example, when a decrease in the duration and / or induction rate of convulsions is observed by administration of a test substance, the test substance used can be selected as a prophylactic or therapeutic agent for seizures including epilepsy.
 また、ひげ、四肢、体幹、もしくは尾における振動の変化、または異常脳波の変化も、指標値として使用し得る。例えば、被験物質の投与により、けいれんの消失若しくは軽減、または異常脳波の正常化が観察された場合、使用した被験物質をてんかんを含むけいれんの予防または治療薬として選択することができる。 Also, changes in vibrations in the whiskers, limbs, trunk, or tail, or changes in abnormal brain waves can be used as index values. For example, when disappearance or alleviation of convulsions or normalization of abnormal electroencephalograms is observed by administration of a test substance, the test substance used can be selected as a prophylactic or therapeutic agent for seizures including epilepsy.
 被験物質としては、例えば、ペプチド、タンパク質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、細胞培養上清、植物抽出液、哺乳動物の組織抽出液、血漿などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。これら被験物質は塩を形成していてもよく、被験物質の塩としては、生理学的に許容される酸(例えば、無機酸など)や塩基(例えば、有機酸など)などとの塩が用いられる。この様な塩としては、例えば、無機酸(例えば、塩酸、リン酸、臭化水素酸、硫酸など)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蓚酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など)との塩などが挙げられる。 Examples of test substances include peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, cell culture supernatants, plant extracts, mammalian tissue extracts, plasma, etc. The compound may be a novel compound or a known compound. These test substances may form a salt, and as a salt of the test substance, a salt with a physiologically acceptable acid (for example, inorganic acid) or a base (for example, organic acid) is used. . Examples of such salts include salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, etc.), or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, And salts with succinic acid, tartaric acid, citric acid, malic acid, succinic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid, and the like.
 被験物質の投与方法は、当該物質の性質などに応じて当業者が適宜選択することができ、例えば、経口投与、静脈注射、経皮投与、皮下投与、皮内投与、腹腔投与などが用いられる。また、被験物質の投与量は、投与方法および当該物質の性質に応じて、当業者が適宜設定することができる。 The administration method of the test substance can be appropriately selected by those skilled in the art depending on the nature of the substance, and for example, oral administration, intravenous injection, transdermal administration, subcutaneous administration, intradermal administration, intraperitoneal administration, etc. are used. . The dosage of the test substance can be appropriately set by those skilled in the art depending on the administration method and the nature of the substance.
(2)深部脳刺激療法
 上記のとおり、本発明のけいれんモデル非ヒト哺乳動物は、てんかんモデル非ヒト哺乳動物としても使用することができる。よって、本発明のけいれんモデル非ヒト哺乳動物の脳に、深部脳刺激療法(deep brain stimulation,DBS)を模して電気等の物理的刺激を与えることにより、てんかんを含むけいれんを予防または治療するために物理的刺激が有効に作用する脳内の部位や刺激のパラメータ等を同定することができる。ここで、深部脳刺激療法とは、脳の深部に設置した電極から電気刺激を与えることにより、脳内の活動に何らかの変化を起こす方法であり、てんかんやパーキンソン病等の症状を治療するための外科的処置ともなりうる。
(2) Deep brain stimulation therapy As described above, the convulsive model non-human mammal of the present invention can also be used as an epilepsy model non-human mammal. Therefore, convulsions including epilepsy are prevented or treated by applying physical stimulation such as electricity to the brain of the convulsion model non-human mammal of the present invention, imitating deep brain stimulation (DBS). Therefore, it is possible to identify a region in the brain where a physical stimulus effectively acts, a stimulation parameter, and the like. Here, deep brain stimulation therapy is a method of causing some change in activity in the brain by applying electrical stimulation from electrodes placed deep in the brain, for treating symptoms such as epilepsy and Parkinson's disease It can also be a surgical procedure.
 例えば、深部脳刺激療法を模して、本発明のモデル動物の脳内に刺激電極を留置し、電気刺激等のような物理的刺激を与え、該モデル動物又はその一部においてけいれんと相関関係を有する指標値を測定する。物理的刺激を与えていない対照動物または物理的刺激を与える前のモデル動物の結果と比較し、この比較結果に基づいて、けいれんを軽減または消滅させるか否かを確認することで、てんかんを含むけいれんの予防または治療に物理的刺激が有効に作用する脳内の部位および刺激パラメータを同定することができる。 For example, imitating deep brain stimulation therapy, placing a stimulation electrode in the brain of the model animal of the present invention, applying physical stimulation such as electrical stimulation, etc., and correlating with convulsions in the model animal or a part thereof An index value having Including epilepsy by comparing with the results of control animals not receiving physical stimulation or model animals prior to physical stimulation and confirming whether or not convulsions are reduced or eliminated based on the comparison results Sites and stimulation parameters in the brain where physical stimulation can effectively work in the prevention or treatment of seizures can be identified.
 例えば、物理的刺激としては電気刺激および電気的、化学的焼灼術を用いることができる。また、指標値としては、上記(1)薬物スクリーニング方法と同様に、例えば、けいれんの持続時間や誘発率の変化、ならびにひげ、四肢、体幹、もしくは尾における振動の変化、または異常脳波の変化を用いることができる。例えば、電気刺激により、けいれんの持続時間および/または誘発率の低下が観察された場合、またはけいれんの消失若しくは軽減、または異常脳波の正常化が観察された場合、てんかんを含むけいれんの予防または治療に物理的刺激が有効に作用する脳内の部位および刺激パラメータを同定することができる。 For example, electrical stimulation and electrical and chemical cauterization can be used as physical stimulation. In addition, as the index value, as in the above (1) drug screening method, for example, changes in convulsion duration and induction rate, changes in vibration in the beard, limbs, trunk, or tail, or changes in abnormal electroencephalogram Can be used. For example, if a decrease in the duration and / or induction rate of convulsions is observed by electrical stimulation, or if disappearance or reduction of convulsions, or normalization of abnormal electroencephalograms is observed, prevention or treatment of seizures including epilepsy It is possible to identify a site in the brain where a physical stimulus effectively works and a stimulation parameter.
 本明細書において明示的に引用される全ての特許および参考文献の内容は全て参照として本明細書に組み込まれる。また、本出願が有する優先権主張の基礎となる出願である日本特許出願2011-198126号(2011年9月12日出願)の明細書および図面に記載の内容は全て参照として本明細書に組み込まれる。 The contents of all patents and references explicitly cited herein are hereby incorporated by reference. In addition, the contents described in the specification and drawings of Japanese Patent Application No. 2011-198126 (filed on September 12, 2011), which is the application on which the priority of the present application is based, are incorporated herein by reference. It is.
 以下、実施例をもって本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but these examples do not limit the present invention.
1.系の構築
(1)トランスジェニックラット
 Wister ratへ遺伝子組換え技術を用いてマウスThy1.2プロモーター下にChannelrhodopsin-2(ChR2)及びVenusを組み入れ作成されたThy1.2-ChR2-Venusトランスジェニックラットを用いる。なおThy1.2プロモーターは胸腺間質細胞、神経細胞において選択的に発現するプロモーター領域であり、ChR2は前述の光受容性陽イオンチャネル、Venusは蛍光タンパク質である。本ラット神経細胞にはChR2-Venus融合タンパク質が発現しており、Venusの蛍光を見る事によってChR2の発現分布を評価する事ができる。
1. System construction (1) Transgenic rat Thy1.2-ChR2-Venus transgenic rat prepared by incorporating Channelrhodopsin-2 (ChR2) and Venus under the mouse Thy1.2 promoter using gene recombination technology to Wister rat. Use. The Thy1.2 promoter is a promoter region that is selectively expressed in thymic stromal cells and neurons, ChR2 is the above-described photoreceptor cation channel, and Venus is a fluorescent protein. In this rat neuron, ChR2-Venus fusion protein is expressed, and the expression distribution of ChR2 can be evaluated by observing the fluorescence of Venus.
 なお本実験で用いているトランスジェニックラットは東北大学医学系研究科八尾寛教授および自然科学研究機構生理学研究所重本隆一教授の研究によって作製されたものであり、受領番号NITE ABP-1417である。 The transgenic rat used in this experiment was created by the research of Prof. Hiroshi Yao, Graduate School of Medicine, Tohoku University and Professor Ryuichi Shigemoto, National Institutes of Natural Sciences, receiving number NITE ABP-1417 .
(2)実験デザイン
(a)装置
 使用した装置は、ラット固定装置、脳波測定装置、光刺激装置よりなる。
(b)開頭手術
 トランスジェニックラットを麻酔下に開頭し、電極を脳波を測定したい脳内の任意の部位に、ならびに光ファイバーを海馬内に光が到達する部位および方向に、留置する(図2参照)。
(c)神経活動可視化
 脳内留置された電極により脳波が記録される(図3参照)。
(d)間欠的光刺激法
 光刺激は前述の間欠的刺激を用いる。刺激頻度、オン/オフ比は任意に変更できる(図4参照)。
(2) Experimental design (a) Apparatus The apparatus used consists of a rat fixation device, an electroencephalogram measurement device, and a light stimulation device.
(B) Craniotomy Transgenic rats are opened under anesthesia, and electrodes are placed in any part of the brain where the electroencephalogram is to be measured, and an optical fiber is placed in the part and direction where light reaches the hippocampus (see FIG. 2). ).
(C) Neural activity visualization An electroencephalogram is recorded by an electrode placed in the brain (see FIG. 3).
(D) Intermittent light stimulation method The light stimulation uses the above-mentioned intermittent stimulation. The stimulation frequency and the on / off ratio can be arbitrarily changed (see FIG. 4).
(3)光誘発けいれん活動
 脳波測定下に光刺激を行うと、脳波上に光刺激による光電流が計測されるが徐々に自発的なけいれん活動が発生し、成長する。またひげや四肢など身体所見としても間代けいれんが認められるようになる。この活動は光刺激終了後も連続して自発的なけいれん活動へ移行し、やがて終息する。一部始終は脳波の記録が可能である(図5参照)。
(3) Light-induced seizure activity When photostimulation is performed under electroencephalogram measurement, photocurrent due to photostimulation is measured on the electroencephalogram, but spontaneous seizure activity gradually occurs and grows. In addition, clastic convulsions are recognized as physical findings such as beards and extremities. This activity continues to spontaneous seizure activity after the end of light stimulation, and eventually ends. Recording of the electroencephalogram is possible throughout (see FIG. 5).
(4)けいれん誘発の至適条件
 海馬において、5-40Hz、オン/オフ比0.02-0.9、加えて連続刺激の条件でけいれんの誘発頻度を測定したところ、10-20Hz、オン/オフ比0.05-0.1の刺激条件で誘発頻度は最大(10/10)回となった(図6参照)。また、10Hz、オン/オフ比0.1の刺激条件で、海馬、扁桃体、視床前部、および感覚運動皮質に光刺激を与えてけいれんの誘発を試みると、海馬外の部分では殆ど誘発はなされなかった(図7参照)。
(4) Optimum conditions for inducing convulsions In the hippocampus, the frequency of convulsions was measured under conditions of 5-40 Hz, on / off ratio 0.02-0.9, and continuous stimulation, and 10-20 Hz, on / off. The induction frequency was maximum (10/10) times under the stimulation condition with an off ratio of 0.05-0.1 (see FIG. 6). In addition, when stimulating convulsions by applying light stimulation to the hippocampus, amygdala, anterior thalamus, and sensorimotor cortex under a stimulation condition of 10 Hz and an on / off ratio of 0.1, the induction is mostly made outside the hippocampus. None (see FIG. 7).
2.ジアゼパム投与による、けいれん誘発の変化
(1)実験デザイン
 トランスジェニックラットを、ジアゼパム投与群及びリン酸緩衝食塩水投与群(コントロール)の2群に分け、ジアゼパム投与群にはジアゼパム10mg/ml/kg体重(0.2-0.4ml)を、対照群にはリン酸緩衝食塩水1ml/kg体重を腹腔内投与した。投与前後に各々5分おきに10回ずつ、海馬への光刺激によるけいれん誘発を行い、誘発頻度(誘発率)及びけいれん持続時間を比較した。光刺激条件は、光の強度50mW、周波数10Hz、パルス幅10ms、総刺激時間10秒とした。
2. Changes in convulsions induced by diazepam administration (1) Experimental design Transgenic rats were divided into two groups, diazepam administration group and phosphate buffered saline administration group (control), and diazepam administration group had diazepam 10 mg / ml / kg body weight. (0.2-0.4 ml) was administered intraperitoneally to the control group at 1 ml / kg body weight of phosphate buffered saline. Before and after administration, convulsions were induced by light stimulation to the hippocampus 10 times every 5 minutes, and the induction frequency (induction rate) and convulsion duration were compared. The light stimulation conditions were a light intensity of 50 mW, a frequency of 10 Hz, a pulse width of 10 ms, and a total stimulation time of 10 seconds.
(2)結果
 ジアゼパム投与群、リン酸緩衝食塩水投与群の誘発頻度はそれぞれ(投与前、投与後)でジアゼパム投与群(70%、20%)、リン酸緩衝食塩水投与群(90%、90%)だった(図8A参照)。またけいれんが起こった際の平均持続時間[秒](投与前、投与後)はジアゼパム投与群(42.3、6.6)、リン酸緩衝食塩水投与群(54.0、61.1)だった(図8A参照)。
(2) Results The induction frequencies of the diazepam administration group and phosphate buffered saline administration group were (before administration, after administration), respectively, the diazepam administration group (70%, 20%), phosphate buffered saline administration group (90%, 90%) (see FIG. 8A). The average duration [seconds] (before and after administration) when convulsions occurred was the diazepam administration group (42.3, 6.6) and the phosphate buffered saline administration group (54.0, 61.1). (See FIG. 8A).
(3)ジアゼパム投与の効果
 ジアゼパム投与群で、脳波から計算されたけいれん活動の平均パワー[mV2/sec]を投与前後で比較すると、投与前(0.55±0.7)、投与後(0.11±0.21)であり、両者には有意差があった(図8B参照)。ここで、図8Bにおけるパワースコアとは脳波の振幅を2乗したものであり、けいれん活動の強さを表す指標である。この結果より、ジアゼパムの投与によってけいれん活動が抑制されたと考えられた。
(3) Effect of diazepam administration In the diazepam administration group, the mean power [mV 2 / sec] of convulsive activity calculated from the electroencephalogram was compared before and after administration, after administration (0.55 ± 0.7), after administration ( 0.11 ± 0.21), and there was a significant difference between the two (see FIG. 8B). Here, the power score in FIG. 8B is obtained by squaring the amplitude of the electroencephalogram and is an index representing the intensity of convulsive activity. From these results, it was considered that the seizure activity was suppressed by the administration of diazepam.
3.rAAV-ChR2-Venusベクターによりトランスフェクトされた海馬への光刺激後のけいれん誘発
(1)ChR2遺伝子コンストラクトを有するAAVベクターの調製
 ChR2(GenBank 受入番号 AF461397)のN末端フラグメント(残基1-315)を、ChR2-コーディングフラグメント(ChR2V)の末端においてインフレームで、蛍光タンパク質Venusに融合させた。ChR2遺伝子は、6P1プラスミドのEcoRIとHindIIIサイトに導入された。シナプシンプロモーターを、ハイブリッドサイトメガロウイルスエンハンサー/ニワトリβ-アクチンプロモーターに交換し、AAV-ChR2Vを構築した。AAV-RCおよびp-ヘルパープラスミドはStratagene(La Jolla,CA、USA)より得た。高力価(1-10x1012 粒子/ml)rAAVベクター(rAAV-ChR2V)は、以前に報告されている方法(Gene Therapy, 2011;
18(3):266-74)を用いて精製した。
3. Induction of convulsions after photostimulation in hippocampus transfected with rAAV-ChR2-Venus vector (1) Preparation of AAV vector with ChR2 gene construct N-terminal fragment of ChR2 (GenBank accession number AF461397) (residues 1-315) Was fused in-frame to the fluorescent protein Venus at the end of the ChR2-coding fragment (ChR2V). The ChR2 gene was introduced into the EcoRI and HindIII sites of the 6P1 plasmid. The synapsin promoter was replaced with a hybrid cytomegalovirus enhancer / chicken β-actin promoter to construct AAV-ChR2V. AAV-RC and p-helper plasmids were obtained from Stratagene (La Jolla, CA, USA). The high titer (1-10 × 1012 particles / ml) rAAV vector (rAAV-ChR2V) was obtained by a previously reported method (Gene Therapy, 2011;
18 (3): 266-74).
(2)けいれんの誘発
 rAAV-ChR2-Venusベクターによりトランスフェクトされた野生型Wisterラットの海馬に、繰返し光刺激を与えた(図9A)。ハイブリッドサイトメガロウイルスエンハンサー/ニワトリβ-アクチンプロモーターによってドライブされるChR2V融合タンパク質をコードする遺伝子を持つAAVを、通常のラットの中隔海馬(septal hippocampus)の歯状回門(dentate hilus)に注入した。4~6週間後、海馬ニューロンにおけるChR2Vの強い発現が確認された(図9B)。ハイブリッド電極を用いたLFPの同時レコーディング下、周波数(5,10,20Hz)とデューティ比(duty ratio)(0.05,0.1,0.2)のパラメーターと組み合わせた繰返しのパルス光刺激を与えた。繰返しの光刺激は、再現可能な方法で成功裡にけいれんを誘導した(図9C)。
(2) Induction of seizure Repeated light stimulation was given to the hippocampus of wild-type Wister rats transfected with rAAV-ChR2-Venus vector (FIG. 9A). AAV with a gene encoding a ChR2V fusion protein driven by a hybrid cytomegalovirus enhancer / chicken β-actin promoter was injected into the dentate hilus of normal rat septal hippocampus . After 4-6 weeks, strong expression of ChR2V was confirmed in hippocampal neurons (FIG. 9B). Repetitive pulsed light stimulation combined with parameters of frequency (5, 10, 20 Hz) and duty ratio (0.05, 0.1, 0.2) under simultaneous recording of LFP using hybrid electrodes Gave. Repeated light stimulation successfully induced convulsions in a reproducible manner (FIG. 9C).
 本発明の方法に従って作製したモデル動物は、けいれんのメカニズム解明や、抗けいれん薬および抗てんかん薬のスクリーニング・治療効果判定に有用である。 The model animal prepared according to the method of the present invention is useful for elucidating the mechanism of convulsions, screening for anticonvulsants and antiepileptic drugs, and determining the therapeutic effect.

Claims (24)

  1.  脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物のけいれんモデル動物としての使用。 Used as a convulsion model animal for non-human mammals that express photoreceptor proteins in brain neurons.
  2.  海馬に光照射することにより、けいれんが誘発されることを特徴とする、請求項1に記載の使用。 Use according to claim 1, characterized in that convulsions are induced by irradiating the hippocampus with light.
  3.  光受容性タンパク質が光感受性陽イオンチャネルである、請求項1または2に記載の使用。 Use according to claim 1 or 2, wherein the photoreceptor protein is a photosensitive cation channel.
  4.  光感受性陽イオンチャネルがチャネルロドプシン2である、請求項3に記載の使用。 Use according to claim 3, wherein the photosensitive cation channel is channelrhodopsin 2.
  5.  動物がげっ歯動物である、請求項1~4のいずれか一項に記載の使用。 The use according to any one of claims 1 to 4, wherein the animal is a rodent.
  6.  動物がウイルスベクターの感染により光受容性タンパク質の遺伝子が導入された動物である、請求項1~5のいずれか一項に記載の使用。 The use according to any one of claims 1 to 5, wherein the animal is an animal into which a gene for a photoreceptor protein has been introduced by infection with a viral vector.
  7.  動物が光受容性タンパク質の遺伝子が導入されたトランスジェニック動物である、請求項1~5のいずれか一項に記載の使用。 The use according to any one of claims 1 to 5, wherein the animal is a transgenic animal into which a gene for a photoreceptor protein has been introduced.
  8.  トランスジェニック動物が受領番号NITE ABP-1417として受精卵が寄託されているトランスジェニックラット、または光の照射によりけいれんを呈するその変異体である、請求項7に記載の使用。 The use according to claim 7, wherein the transgenic animal is a transgenic rat in which a fertilized egg is deposited under the receipt number NITE ABP-1417, or a mutant thereof that exhibits convulsions upon irradiation with light.
  9.  脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物を使用し、該動物の海馬に光を照射する工程を含む、けいれん発作の評価方法。 A method for evaluating seizures, which comprises a step of using a non-human mammal expressing a photoreceptive protein in brain neurons and irradiating the hippocampus of the animal with light.
  10.  脳波をモニターする工程をさらに含む、請求項9に記載の方法。 The method according to claim 9, further comprising a step of monitoring an electroencephalogram.
  11.  光受容性タンパク質が光感受性陽イオンチャネルである、請求項9または10に記載の方法。 The method according to claim 9 or 10, wherein the photoreceptor protein is a photosensitive cation channel.
  12.  光感受性陽イオンチャネルがチャネルロドプシン2である、請求項11に記載の方法。 The method according to claim 11, wherein the photosensitive cation channel is channelrhodopsin 2.
  13.  光の波長が420~520nmである、請求項12に記載の方法。 The method according to claim 12, wherein the wavelength of light is 420 to 520 nm.
  14.  光の強度が10~120mWである、請求項12または13に記載の方法。 The method according to claim 12 or 13, wherein the light intensity is 10 to 120 mW.
  15.  光の周波数が5~40Hzである、または光を連続照射することを特徴とする、請求項12~14のいずれか一項に記載の方法。 The method according to any one of claims 12 to 14, wherein the frequency of light is 5 to 40 Hz, or light is continuously irradiated.
  16.  光のパルス幅が0.5ms~連続である、請求項12~15のいずれか一項に記載の方法。 The method according to any one of claims 12 to 15, wherein the pulse width of the light is 0.5 ms to continuous.
  17.  オン/オフ比が0.02~0.9となるように、光が間欠的に照射される、請求項12~16のいずれか一項に記載の方法。 The method according to any one of claims 12 to 16, wherein the light is intermittently irradiated so that the on / off ratio is 0.02 to 0.9.
  18.  動物がげっ歯動物である、請求項9~17のいずれか一項に記載の方法。 The method according to any one of claims 9 to 17, wherein the animal is a rodent.
  19.  動物がウイルスベクターの感染により光受容性タンパク質の遺伝子が導入された動物である、請求項9~18のいずれか一項に記載の方法。 The method according to any one of claims 9 to 18, wherein the animal is an animal into which a gene for a photoreceptor protein has been introduced by infection with a viral vector.
  20.  動物が光受容性タンパク質の遺伝子が導入されたトランスジェニック動物である、請求項9~18のいずれか一項に記載の方法。 The method according to any one of claims 9 to 18, wherein the animal is a transgenic animal into which a gene for a photoreceptor protein has been introduced.
  21.  動物が受領番号NITE ABP-1417として受精卵が寄託されているトランスジェニックラット、または光の照射によりけいれんを呈するその変異体である、請求項20に記載の方法。 21. The method according to claim 20, wherein the animal is a transgenic rat in which a fertilized egg is deposited under the receipt number NITE ABP-1417, or a mutant thereof that exhibits convulsions upon irradiation with light.
  22.  受領番号NITE ABP-1417として受精卵が寄託されているけいれんモデル非ヒト哺乳動物、または光の照射によりけいれんを呈するその変異体。 A convulsion model non-human mammal in which a fertilized egg is deposited under the receipt number NITE ABP-1417, or a variant that exhibits convulsions upon irradiation with light.
  23.  脳神経細胞に光受容性タンパク質を発現する非ヒト哺乳動物を用いた、てんかんを含むけいれんの予防または治療薬をスクリーニングする方法。 A method of screening for a prophylactic or therapeutic agent for seizures including epilepsy using a non-human mammal that expresses a photoreceptor protein in brain neurons.
  24.  動物に被験物質を投与し、光照射により誘発されるけいれんの誘発率および/またはけいれんの持続時間を、被験物質を投与していない場合と比較および評価することを特徴とする、請求項23に記載のスクリーニングする方法。 24. The test substance is administered to an animal, and the induction rate and / or the duration of convulsions induced by light irradiation are compared and evaluated as compared with the case where no test substance is administered. The screening method described.
PCT/JP2012/005805 2011-09-12 2012-09-12 Light-induced seizure model in rat brains WO2013038666A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013533503A JP6108469B2 (en) 2011-09-12 2012-09-12 Rat brain light-induced convulsion model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-198126 2011-09-12
JP2011198126 2011-09-12

Publications (1)

Publication Number Publication Date
WO2013038666A1 true WO2013038666A1 (en) 2013-03-21

Family

ID=47882915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005805 WO2013038666A1 (en) 2011-09-12 2012-09-12 Light-induced seizure model in rat brains

Country Status (2)

Country Link
JP (1) JP6108469B2 (en)
WO (1) WO2013038666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019535255A (en) * 2016-11-06 2019-12-12 ナノスコープ テクノロジーズ エルエルシーNanoscope Technologies Llc Optogenetic modulation with multi-characteristic opsin and other applications for vision recovery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024391A2 (en) * 2005-07-22 2007-03-01 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
WO2009131837A2 (en) * 2008-04-23 2009-10-29 The Board Of Trustees Of The Leland Stanford Junior University. Systems, methods and compositions for optical stimulation of target cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024391A2 (en) * 2005-07-22 2007-03-01 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
WO2009131837A2 (en) * 2008-04-23 2009-10-29 The Board Of Trustees Of The Leland Stanford Junior University. Systems, methods and compositions for optical stimulation of target cells

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CAMPOS, C.J.R. ET AL.: "The paradoxical effect of lidocaine on an experimental model of epilepsy.", ARCH INT PHARMACODYN THER, vol. 243, no. 1, 1980, pages 66 - 73 *
CAVALHEIRO, E.A. ET AL.: "Effect of brain serotonin level on induced hippocampal paroxysmal activity in rats.", PHARMACOL BIOCHEM BEHAV, vol. 15, no. 3, 1981, pages 363 - 366, XP023807644, DOI: doi:10.1016/0091-3057(81)90263-X *
HUBER, D. ET AL.: "Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice", NATURE, vol. 451, no. 7174, 2008, LOND, pages 61 - 64 *
MOTOHIRO OKADA: "Model Dobutsu o Mochiita Chusu Shinkeikei Kinosei Shikkan no Byotai Kaiseki Model Dobutsu o Mochiita Tenkan Byotai Kaiseki", BRAIN SCIENCE AND MENTAL DISORDERS, vol. 20, no. 3, 2009, pages 237 - 242 *
NAKO ISHIKURA ET AL.: "Tenkan no Kiso Kenkyu Tenkan Model Dobutsu to Hito Shikkan eno Tenbo", SHUKAN JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 193, no. 6, 2000, pages 505 - 510 *
OSAWA, S. ET AL.: "A novel hippocampal seizure model using optogenetics", J PHYSIOL SCI, vol. 62, no. SUPPL., 29 March 2012 (2012-03-29), pages S176, 2PJ - 153 *
THYAGARAJAN, S. ET AL.: "Visual Function in Mice with Photoreceptor Degeneration and Transgenic Expression of Channelrhodopsin 2 in Ganglion Cells", J NEUROSCI, vol. 30, no. 26, 2010, pages 8745 - 8758 *
WANG J ET AL.: "A neurophotonic device for stimulation and recording of neural microcircuits.", 32ND ANN INT CONF IEEE ENG MED BIOL SOC, 2010, pages 2935 - 2938, XP032108326, DOI: doi:10.1109/IEMBS.2010.5626296 *
YONEHARA, K. ET AL.: "Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit", NATURE, vol. 469, no. 7330, 20 January 2011 (2011-01-20), LOND, pages 407 - 410 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019535255A (en) * 2016-11-06 2019-12-12 ナノスコープ テクノロジーズ エルエルシーNanoscope Technologies Llc Optogenetic modulation with multi-characteristic opsin and other applications for vision recovery
US11180537B2 (en) 2016-11-06 2021-11-23 Nancoscope Technologies LLC Optogenetic modulation by Multi-Characteristic Opsins for vision restoration and other applications

Also Published As

Publication number Publication date
JP6108469B2 (en) 2017-04-05
JPWO2013038666A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
AU2013235517B2 (en) Non-human animal models of depression and methods of use thereof
JP6445602B2 (en) Optogenetic control of reward-related behavior
US9850290B2 (en) Light-activated chimeric opsins and methods of using the same
Witten et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement
Tanaka et al. Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system
Alexander et al. CA2 neuronal activity controls hippocampal low gamma and ripple oscillations
JP5986575B2 (en) Control and characterization of psychotic states
Shimano et al. Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling
JP2006511197A (en) Heterogeneous stimulus-gated ion channel and method of use thereof
AU2014306679A1 (en) Compositions and methods for controlling pain
Cichon et al. Imaging neuronal activity in the central and peripheral nervous systems using new Thy1. 2-GCaMP6 transgenic mouse lines
Booth et al. Selective optogenetic stimulation of efferent fibers in the vagus nerve of a large mammal
Lehnert et al. Mechanoreceptor synapses in the brainstem shape the central representation of touch
JP2022110036A (en) Methods for functional brain circuit analysis
JP6108469B2 (en) Rat brain light-induced convulsion model
Mendelson et al. The effects of aging in the medial geniculate nucleus: a comparison with the inferior colliculus and auditory cortex
US20210038743A1 (en) Methods for treating parkinson's disease
KR20220145381A (en) Prediction of successful generation and inhibition of seizure-like relapses and mapping of these seizure networks using FMRI
JP7175880B2 (en) Chrimson's mutant light-inducible ion channel
US20230330440A1 (en) Devices and methods based on ultrasounds for restoring vision or any other brain function
AU781591B2 (en) Compositions and methods for improving learning and memory
US20230346884A1 (en) Molecular Targets for Modulation of Dissociative and Associative States
WO2023116720A1 (en) ULTRA LIGHT-SENSITIVE NEUROPSIN-BASED OPTOGENETIC TOOL FOR ACTIVATING G q-COUPLED SIGNALING AND/OR ACTIVATING CELLS
Marocha The Clustered Protocadherins in the Form and Function of Cerebellar Purkinje Cells
CN109195635A (en) Magnetic science of heredity and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832498

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013533503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832498

Country of ref document: EP

Kind code of ref document: A1