WO2013038588A1 - Communication control method, communication terminal, and network device - Google Patents

Communication control method, communication terminal, and network device Download PDF

Info

Publication number
WO2013038588A1
WO2013038588A1 PCT/JP2012/004756 JP2012004756W WO2013038588A1 WO 2013038588 A1 WO2013038588 A1 WO 2013038588A1 JP 2012004756 W JP2012004756 W JP 2012004756W WO 2013038588 A1 WO2013038588 A1 WO 2013038588A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
information
communication terminal
address
gateway
Prior art date
Application number
PCT/JP2012/004756
Other languages
French (fr)
Japanese (ja)
Inventor
隆二 杉崎
池田 新吉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013038588A1 publication Critical patent/WO2013038588A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/082Mobility data transfer for traffic bypassing of mobility servers, e.g. location registers, home PLMNs or home agents
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • H04W36/125Reselecting a serving backbone network switching or routing node involving different types of service backbones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/08Interfaces between hierarchically different network devices between user and terminal device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/22Interfaces between hierarchically similar devices between access point controllers

Definitions

  • the disclosed technology is a communication control method, a communication terminal, and a network using a home access technology (LIPA (Local IP Access)) when a network-driven MIP (PMIP (Proxy Mobile IP)) is applied Relates to the device.
  • LIPA Local IP Access
  • PMIP Proxy Mobile IP
  • Non-Patent Document 1 a procedure satisfying basic functions such as a procedure.
  • LIPA home access technology
  • a server in which a UE is located in a local network for example, an in-house server that cannot be accessed from an external network or can be accessed from an external network
  • a procedure for providing an access service to the home server are defined (see Non-Patent Document 1 below).
  • This LIPA is one of the technologies defined by 3GPP, and its operation is defined in accordance with a transport protocol between core network nodes called GTP (GPRS Tunneling Protocol) or PMIP.
  • GTP GPRS Tunneling Protocol
  • PMIP PMIP
  • a base station 210 wirelessly connected to the UE 100 eNB (eNode B) 310 in the E-UTRAN 300, called HeNB (Home eNB) 210 in the LHN (Local HeNB Network) 200
  • the UE 100 on the E-UTRAN 300 The mobility management node in charge of communication line control and mobility control (the mobility management node connected to the E-UTRAN 300 is the MME (Mobility Management Entity: Mobility Management Entity) 430, the SGW that performs user data distribution control to the E-UTRAN 300 of the UE 100 ( Serving Gateway: serving gateway, MAG (Mobility Anchor Gateway) 410, etc.
  • MME Mobility Management Entity
  • the SGW that performs user data distribution control to the E-UTRAN 300 of the UE 100
  • Serving Gateway serving gateway
  • MAG Mobility Anchor Gateway
  • PGW Packet Data Network Gateway: HA (Packet Data Network Gateway), HA (User Data Transfer) and PDN (Packet Data Network: Packet Data Network) 500 and user data transfer between the SGW 410 and path control (data path control) User Agent (Home Agent) and LMA (Local Mobility Anchor: Local Mobility Anchor), etc.) 420, LHN200 performs user data transfer and route control (data path control) between Enterprise / Residential network 600 and SGW 410, or HeNB 210.
  • LGW to perform (Local Gat way: local gateway (220), a server that manages and holds subscription data (subscription data) of UE100 and communication context (having an interface with MME430 (for UE100 using E-UTRAN)) Shows an example of a network configuration composed of HSS (called Home Subscriber Server) 440).
  • HSS Home Subscriber Server
  • the UE 100 when the UE 100 communicates (LIPA) with a node in the enterprise / residential network 600 via the LHN 200, the UE 100 establishes a PDN connection and an EPS bearer (referred to as EPS Bearer, bearer, etc.) with the LGW 220. To do.
  • the UE 100 acquires an IP (Internet Protocol) address through the establishment of this PDN connection, and establishes an EPS bearer used for communication with the Enterprise / Residential network 600 (see Non-Patent Document 1 and Non-Patent Document 2 below). reference).
  • IP Internet Protocol
  • information such as the IP address assigned to the UE 100 and the address of the SGW 410 (for example, IPv6 link-local address) is treated as context information of the UE 100, and the core network (for example, in Non-Patent Documents 1 and 2).
  • Specified EPC; Evolved Packet Core etc. 400 entities (for example, MME, SGW, LGW).
  • the entity of the core network 400 can transfer, for example, data transmitted from the enterprise / residential network 600 to the UE 100.
  • the UE 100 transmits a request message (sometimes referred to as a connection request message in this specification) such as “Attach request” and “PDN connectivity request” disclosed in Non-Patent Document 1 to the network, and the LGW 220. PDN connection is established during a request message (sometimes referred to as a connection request message in this specification) such as “Attach request” and “PDN connectivity request” disclosed in Non-Patent Document 1 to the network, and the LGW 220. PDN connection is established during
  • the procedure for establishing a PDN connection for LIPA (hereinafter referred to as a LIPA connection) is largely the same as the procedure for establishing a normal PDN connection.
  • the entity of the core network 400 for example, the MME 430
  • the LIPA connection is permitted (for example, the APN (Access Point Name: access point name specified by the Attach / PDN connectivity request transmitted from the UE 100).
  • This parameter identifies the PDN 500, and the connection of the PDN connection. (Information indicating the destination) is identified as an APN for LIPA and the UE is permitted to connect to LIPA), the Correlation I from the MME 430 to the HeNB 210 Points are mentioned to be sent.
  • the LGW 220 and the HeNB 210 establish a communication path (direct user plane path (direct user plane path), direct path (direct path), shortcut path), which can directly exchange user data when establishing a LIPA connection.
  • the direct path can be identified using the Correlation ID shared via the MME 430.
  • the merit of constructing the direct path is that user data transfer can be closed by the LGW 220 and the HeNB 210, and the traffic load of the core network 400 can be reduced.
  • the procedure for the UE 100 to acquire an IPv6 address is that the UE 100 generates an IPv6 address based on the IPv6 prefix acquired from the network (see Non-Patent Document 1 and Non-Patent Document 2). reference).
  • the entity that notifies the UE 100 of the IPv6 prefix differs depending on whether the core network transport is GTP or PMIP.
  • PGW420 LGW220 at the time of LIPA is disclosed in Non-Patent Document 1.
  • RA Router Advertisement
  • RA Router Advertisement
  • IPv6 IPv6 prefix
  • PMIP notifies the UE 100 of the IPv6 prefix using the RA message as disclosed in Non-Patent Document 2.
  • the RA message is sent in response to both a case where it is transmitted in response to an inquiry from the UE 100 (Solicated) and a case where it is periodically transmitted without being inquired from the UE 100 (Unsolicited).
  • the RA message is notified to the UE 100 when the PDN connection establishment is completed (after the default bearer is established). Further, the UE 100 can request an RA message by transmitting an RS (Router Solicitation) message (also called an address information request message) to the network.
  • RS Radio Solicitation
  • the PGW 420, LGW 220 (in the case of GTP), or SGW 410 (in the case of PMIP) that has received the RS message returns an RA message.
  • the structure of the RA message includes a source address (Source address (source address)), an end point address (Destination address (destination address)), and the like as disclosed in Non-Patent Document 3 and Non-Patent Document 4 below. It consists of IP field, ICMP (Internet Control Message Protocol) including the message type, router lifetime, etc., and Possible options field including source link layer address and prefix information.
  • Source address source address
  • Destination address destination address
  • IP field IP field
  • ICMP Internet Control Message Protocol
  • Possible options field including source link layer address and prefix information.
  • Non-Patent Document 3 and Non-Patent Document 4 a Link-MTU (Maximum Transmission Unit) value indicating the size of the maximum transfer unit that can be transmitted in the layer 2 link using an RA message, a router The priority level between them can also be notified.
  • Link-MTU Maximum Transmission Unit
  • a direct path is established between the HeNB 210 and the LGW 220.
  • user data in the uplink direction sent from the UE 100 on the established LIPA connection is transferred from the HeNB 210 to the LGW 220 via the direct path. That is, the user data in the uplink direction is not transferred from the HeNB 210 to the SGW 410 of the core network 400, but is transferred directly from the HeNB 210 to the LGW 220.
  • the user data received by the LGW 220 from the Enterprise / Residential network 600 is not transferred to the SGW 410 of the core network 400 but is transferred from the LGW 220 to the HeNB 210 via the direct path. Thereafter, the HeNB 210 transfers the received user data in the downlink direction to the UE 100.
  • the above-described flow of user data in the downlink direction assumes that the UE 100 is in the CONNECTED mode (a state in which a communication bearer including a radio section has been established).
  • the paging process disclosed in Non-Patent Document 1 or Non-Patent Document 5 is performed in order to shift the UE to the CONNECTED mode.
  • the LGW 220 transfers the first (partial) data of the received user data in the downlink direction to the SGW 410 of the core network 400, and the SGW 410 performs the paging process disclosed in Non-Patent Document 1. To do.
  • the downlink data addressed to the UE 100 transferred to the SGW 410 is transferred to the UE 100. That is, when the UE 100 is in the IDLE mode, only some user data is transferred via the SGW 410 of the core network 400.
  • a message (also referred to as control signaling) for controlling the LIPA connection is transmitted to the MME 430 of the core network 400.
  • the UE 100 when the UE 100 wants to release a LIPA connection, the UE 100 transmits a PDN Connection Request message disclosed in Non-Patent Document 1 to the network.
  • the PDN Connection Request message is transferred to the MME 430 via the HeNB 210, and processing for releasing the LIPA connection is performed.
  • the UE 100 enters the enterprise / residential network 600 via the base station.
  • the network operator policy permits (for example, when the connection data from the outside (MRA described below is permitted in the subscription data of the UE 100 held by the HSS 440)).
  • the UE 100 under the HeNB of the LHN 200 accesses the Enterprise / Residential network 600 via the SGW 410 is referred to as MRA (Managed Remote Access (to home based network)) in Non-Patent Document 5. It is sometimes called RIPA (Remote IP Access), remote access, etc.
  • MRA Managed Remote Access (to home based network)
  • RIPA Remote IP Access
  • remote access etc.
  • user data and control signaling transmitted from the HeNB 210 to the entities of the core network 400 and the E-UTRAN 300 are the same as those of the LHN 200 shown in FIG.
  • the data is transferred to the destination node via an (IP) backhaul 700 for connecting the core network 400.
  • IP IP
  • the UE 100 transmits an RS message to the network in an environment where PMIP is used as a user data transport of the core network (hereinafter sometimes referred to as a PMIP environment) and a LIPA connection is established between the UE 100 and the LGW 220.
  • the RS message is transferred from the HeNB 210 to the LGW 220 via the direct path (because the RS / RA message is handled as user data).
  • the LGW 220 implements the router function shown in Non-Patent Document 3
  • the RA message is transmitted to the UE 100 in response to the received RS message.
  • IP router next hop router
  • the UE 100 receives an RA message (solicited RA; shown as RA_1 in FIG. 2) as a reply to the RS message from the LGW 220, but on the other hand, a process of establishing a LIPA connection
  • an RA message periodically sent from the SGW 410 (unsolicited RA; shown as RA_2 in FIG. 2) is also received.
  • the UE 100 may receive RA messages having different contents from the LGW 220 and the SGW 410 at almost the same timing. .
  • the UE 100 When the UE 100 receives RA messages having different contents (especially, different source link local addresses), the UE 100 manages information stored in the two RA messages. Further, as disclosed in Non-Patent Document 3, the UE 100 has one piece of information stored in the RA message (for example, a Link-MTU value indicating the maximum transfer unit size that can be transmitted in the layer 2 link) per link. In such a case, the existing information is overwritten with the information stored in the last received RA message.
  • a Link-MTU value indicating the maximum transfer unit size that can be transmitted in the layer 2 link
  • RA_1 indicates a configuration example of an RA message (corresponding to RA_1 in FIG. 2) transmitted by the LGW 220 in response to the RS message from the UE 100.
  • RA_1 has a source address of 2001: db8 :: 1 and a Link-MTU value of 2000.
  • Link-MTU value when UE 100 can hold only one piece of information (Link-MTU value) stored in the RA message for the layer 2 link at the same time, and after receiving RA_1, RA_2 (corresponding to RA_2 in FIG. 2)
  • the Link-MTU value is 1500
  • the Link-MTU value related to the layer 2 link is overwritten from 2000 to 1500.
  • the Link 100 is set to the link-MTU value (1500) specified by the RA_2, so that the UE 100 performs inefficient communication. There is a problem of being forced.
  • Link-MTU value 1 when the Link-MTU value (Link-MTU value 1) stored in the RA_1 message is larger than the Link-MTU value (Link-MTU value 2) stored in the RA_2 message (Link-MTU value 1> Link).
  • -MTU value 2) When the UE 100 receives RA_2 later, user data is generated with reference to the Link-MTU value 2 smaller than the actual Link-MTU value 1. At this time, the size of the IP packet is smaller than the actual Link-MTU value 1, and the LGW 220 normally receives it. That is, since the difference between the Link-MTU is not noticed, the UE 100 is forced to perform inefficient communication until the next RA_1 is received.
  • the router LGW 220 enters the Enterprise / A packet exceeding the IP packet size (that is, Link-MTU value 1) that can be transferred to the Residential network 600 is received, and an error message (Packet Too) that describes a desired Link-MTU value (that is, Link-MTU value 1) is received.
  • the IPv6 ICMP message for notifying the Big error is transmitted to the UE 100 that is the packet transmission source.
  • the UE 100 again sets the notified Link-MTU value 1 as the Link-MTU value of the layer 2 link, and performs proper communication (see Non-Patent Document 6).
  • the RA received immediately after throwing the RS message as described above is from the LGW 220. Since it cannot be determined (because the SGW 410 may transmit RA at almost the same timing), the UE 100 can always set communication based on appropriate address setting information (information included in the RA message). Therefore, inefficient communication occurs. Even when the source addresses of RA_1 and RA_2 are the same, the UE 100 overwrites information (for example, the Link-MTU value) with the contents of the RA message received later, and the same problem occurs.
  • information for example, the Link-MTU value
  • not all UEs 100 can transmit an RS message when establishing a connection (due to restrictions due to implementation and settings).
  • the UE 100 receives only the RA message that the SGW 410 periodically transmits (Unsolicited). That is, there is no opportunity to obtain an RA message from the LGW, and communication settings cannot be performed based on appropriate address setting information.
  • it is not impossible to share necessary setting information such as Link-MTU value between the LGW 220 and the SGW 410, but the conventional PMIP technology does not specify an option for transmitting such information, and it is accompanied by protocol modification.
  • the impact cost due to renovation of the terminal OS is enormous and unrealistic.
  • RA messages address information notification messages
  • LGW 220 and SGW 410 gateways
  • UE 100 can always perform communication setting based on appropriate address setting information (information included in the RA message), and it is possible to suppress the occurrence of inefficient communication.
  • address setting information (address information notification notified from the gateway (LGW 220) that manages the LIPA connection), for example, is particularly required for the communication terminal to perform communication via the LIPA connection. It is possible to suppress the occurrence of inefficient communication that occurs when the address setting information included in the message is overwritten by the address setting information included in the address information notification message notified from another gateway (SGW 410). Become.
  • the UE 100 receives RA messages from two gateways of the LGW 220 and the SGW 410, and correct RA message information (for example, , Link-MTU value) may not be available. According to one aspect of the present disclosure, for example, even when the UE 100 transmits an RS message to the network, it is possible to always select and use correct RA message information.
  • correct RA message information for example, , Link-MTU value
  • One aspect of the disclosed technique is, for example, a communication control method for performing communication control of a communication terminal connected to a network via a base station, The communication terminal transmitting a connection request message including identification information designating a connection destination to the network;
  • a first gateway on the network that performs data path control of the communication terminal receives the connection request message, and performs data path control in connection with the connection destination based on the connection request message Sending a registration request message to the second gateway;
  • the second gateway receives the registration request message and generates address setting information to be notified to the communication terminal;
  • the second gateway as a response to the registration request message, sending a registration response message including the address setting information in an option field to the first gateway;
  • the first gateway transmits a connection acceptance message including the address setting information in an option field to the communication terminal;
  • the communication terminal receiving the connection acceptance message from the network as a response to the connection request message;
  • a communication control method the communication terminal can
  • the aspect of the disclosed technique may be realized by a communication terminal, a network device, or the like in addition to the communication control method described above.
  • the communication terminal in an environment where an address information notification message including different address setting information can be notified from two gateways to a communication terminal, the communication terminal always performs communication setting based on appropriate address setting information. As a result, it is possible to suppress the occurrence of inefficient communication.
  • the disclosed technology has an effect that the communication terminal can perform communication setting based on appropriate address setting information for communication via the LIPA connection, for example.
  • the disclosed technique has an effect that the address setting information can always be correctly selected and used even when the communication terminal transmits an address information request message to the network.
  • FIG. 7 is a sequence diagram for explaining an example of a system operation according to a conventional technique and an example of a system operation assumed in the first to third embodiments of the disclosed technique;
  • the figure which shows an example of the extended RA message in 1st Embodiment of this indication technique The figure which shows an example of a structure of UE in 1st Embodiment of this indication technique.
  • movement of UE in 1st Embodiment of this indication technique The figure which shows an example of a structure of LGW in 1st Embodiment of this indication technique
  • movement of LGW in 1st Embodiment of this indication technique The sequence diagram for demonstrating an example of operation
  • movement of 2nd Embodiment of this indication technique The figure which shows an example of the state transition in 2nd Embodiment of this indication technique
  • Sequence diagram for explaining an example of the operation of the third embodiment of the disclosed technology The figure which shows an example of a structure of UE in 3rd Embodiment of this indication technique.
  • FIG. 17 is a flowchart showing an example of LGW operation from step S1701 to step S1703 in FIG.
  • FIG. 17 is a flowchart showing an example of LGW operation from part of step S1707 (reception of a PBU message) to step S1711.
  • FIG. 1 is a diagram illustrating an example of a system configuration common to the first to third embodiments of the disclosed technology and the conventional technology.
  • the communication system illustrated in FIG. 1 is referred to as a base station (eNB (eNode B) 310 in E-UTRAN 300 and HeNB (Home eNB) 210 in LHN (Local HeNB Network) 200) that is wirelessly connected to UE 100.
  • eNB eNode B
  • HeNB Home eNB
  • LHN Local HeNB Network
  • the MME 430 responsible for the mobility management of the UE 100, the HSS 440 holding the subscription information of the UE 100, the SGW 410 for performing user data distribution control, the PGW 420 for performing address assignment to the UE 100 and user data transfer and path control between the PDN 500 and the SGW 410 , LHN200 Enterprise / Residential network 600 and SGW410, or Enterprise / Residential network 00 to have a user data transfer and LGW220 performing routing control (data path control) between the HeNB 210.
  • the UE 100 performs data communication with the enterprise / residential network 600 and the PDN 500 by using this communication system.
  • the LGW 220 is illustrated as a device different from the HeNB 210, but may be physically or logically handled as one entity.
  • the UE 100 has at least one or more communication interfaces and can be connected to a network (for example, the E-UTRAN 300 or the LHN 200).
  • a network for example, the E-UTRAN 300 or the LHN 200
  • the UE 100 may be connected to the illustrated network (for example, the E-UTRAN 300 or the LHN 200) simultaneously or exclusively, but only one network can be connected at the same time through one communication interface. Only.
  • the UE 100 is connected to the communication system via a base station such as the HeNB 210 or the eNB 310, and can communicate with the PDN 500 or the enterprise / residential network 600 through the network.
  • the UE 100 When the UE 100 establishes a LIPA connection with the LGW 220 of the LHN 200, entities in the core network 400 (such as the MME 430 and the SGW 410) operate to establish the LIPA connection, and the UE 100 can communicate with the enterprise / residential network 600. become.
  • entities in the core network 400 such as the MME 430 and the SGW 410 operate to establish the LIPA connection, and the UE 100 can communicate with the enterprise / residential network 600. become.
  • the UE 100 can establish a LIPA connection with the LGW 220 of the LHN 200 by using a procedure established by 3GPP.
  • the establishment of the LIPA connection will be described mainly using the network components shown in FIG. 1.
  • the disclosed technique is also applicable to UTRAN (UMTS Terrestrial Radio Access Network) established by 3GPP. Applicable.
  • UTRAN UMTS Terrestrial Radio Access Network
  • the base station corresponding to the above-described HeNB 210 of the LHN 200 is called an HNB and is used as a device combined with the LGW 220.
  • the LGW 220 manages a plurality of HeNBs 210, but in the UTRAN, the LGW 220 and the HNB have a one-to-one relationship.
  • FIG. 4 is an example of a system operation according to a conventional technique, and is a sequence diagram for explaining an example of a system operation premised on the first to third embodiments of the disclosed technique.
  • a PDN connection establishment procedure is performed via the MME 430 (via the E-UTRAN 300).
  • the implementation will be described with reference to the network connection procedure (Attach procedure) disclosed in Non-Patent Document 1 and Non-Patent Document 2.
  • the procedure for the UE 100 to establish a LIPA connection with the LGW 220 via the HeNB 210 of the LHN 200 (FIG. 4) is the same except for a part of the procedure for the UE 100 to establish a PDN connection with the PGW 420 via the eNB 310 of the E-UTRAN 300. .
  • the MME 430 determines whether the PDN connection to be established is a LIPA connection or a conventional (non-LIPA) PDN connection (a PDN connection with the PGW 420), and the PDN connection to be established is intended for LIPA If it is, the MME 430 notifies the HeNB 210 of information (correlation ID) for establishing a direct path between the HeNB 210 and the LGW 220, and the HeNB 210 establishes a direct path between the LGW 220. It is a point to do.
  • Non-Patent Document 1 The information indicating whether or not this is a LIPA connection is called Correlation ID in 3GPP, and is a part of step S401 in FIG. 4 (see Non-Patent Document 1: For example, FIG. 5.3.2 of Non-Patent Document 1). 1-1, notified to the HeNB 210 from the MME 430, and the HeNB 210 establishes a direct path with the LGW 220 using the received Correlation ID (see Non-Patent Document 1 and Non-Patent Document 2). .
  • Non-Patent Document 2 when a LIPA connection is established between the UE 100 and the LGW 220 in a PMIP environment where PMIP is used in the core network 400, an RA message for assigning an IPv6 prefix to the UE 100 is an SGW 410. Sent from. Further, as disclosed in Non-Patent Documents 1 to 3, the RA message is periodically sent from the SGW 410 to the UE 100.
  • the UE 100 can transmit an RS message to the network in order to obtain an IPv6 prefix. Since this RS message is handled as user data, it is transferred from the HeNB 210 via the direct path to the LGW 220 and receives an RA message from the LGW 220.
  • the UE 100 transmits an RS message to the network, as shown in FIG. 2, the UE 100 receives RA messages from two gateways (SGW 410 and LGW 220) and manages information of the two RA messages. .
  • information for example, the Link-MTU value
  • the UE 100 can hold only for the layer 2 link is overwritten with the most recently received information, and thus inefficient communication occurs as described above. there is a possibility.
  • the UE 100 performs a PDN connection establishment procedure disclosed in Non-Patent Document 1 or Non-Patent Document 2 and establishes a LIPA connection with the LGW 220. Subsequently, the UE 100 transmits an RS message to the network.
  • the RS message is transferred from the HeNB 210 to the LGW 220 via the direct path (not via the SGW 410).
  • the LGW 220 transmits an RA message to the UE 100 in response to the received RS message.
  • the RA problem transmitted from the LGW 220 to the UE 100 is extended as shown in FIG. That is, in the first embodiment of the disclosed technique, information that instructs to use only the RA message transmitted from the LGW 220 in the RA message conventionally transmitted from the LGW 220 (other RA ignore instruction information and RA designation information). , which is also referred to as RA specific information), the UE 100 can receive only the information included in the RA message (RA_1 in FIG. 2) transmitted from the LGW 220 to the UE 100 in the IP setting (configuration) related to the LIPA connection. As a result, it becomes possible to make appropriate settings by selectively using it, and the inefficient communication state described above can be avoided.
  • the RA designation information is information for instructing to use only the RA message transmitted from the LGW 220, but ignores the RA message from the RA message transmission source (for example, the SGW 410 in FIG. 2) other than the LGW 220. It can also be interpreted as the information to be instructed.
  • the source of the RA message When the UE 100 can determine the source of the RA message by referring to information (for example, a source address and a port number) stored in the conventional RA message, the source of the RA message May be used as RA designation information. Further, as RA designation information, for example, a token or ID shared between the UE 100 and the LGW 220, or information exchanged when a PDN connection is established (key information or TMSI (Temporary Mobile Subscriber Identity)) or the like may be used. Good.
  • information for example, a source address and a port number
  • RA designation information for example, a token or ID shared between the UE 100 and the LGW 220, or information exchanged when a PDN connection is established (key information or TMSI (Temporary Mobile Subscriber Identity)) or the like may be used. Good.
  • a state is formed so that an extended RA message as shown in FIG. 5 can be transmitted.
  • the state is stored in the context information of the UE 100, and when the RS message is received later, the context information is referred to and it is determined whether to respond with the conventional RA or the extended RA. Thereafter, the UE 100 can always obtain and set correct information by trusting only the RA message in which the RA designation information is stored (that is, the extended RA message). That is, all RA messages in which RA designation information is not stored are ignored.
  • the network connection procedure (Attach procedure) has been described as an example, but other procedures for establishing a PDN connection (for example, PDN connectivity request are used). Or a procedure for establishing a PDN connection).
  • FIG. 6 is a diagram illustrating an example of a configuration of the UE 100 according to the first embodiment of the present disclosure.
  • a UE 100 is connected to a network (for example, E-UTRAN or LHN) to perform communication processing in a lower layer and packet communication processing such as IP in an upper layer, and to a RA message received as an RA message.
  • a network for example, E-UTRAN or LHN
  • RA message received as an RA message.
  • the above-described configuration of the UE 100 is an example.
  • FIG. 7 is a flowchart showing an example of the operation of the UE 100 in the first embodiment of the disclosed technology.
  • the UE 100 transmits an Attach request message according to the procedure for establishing a PDN connection defined in 3GPP (step S701 in FIG. 7). Subsequently, the UE 100 receives an Attach accept message (hereinafter also referred to as a connection acceptance message) that is a result of the network permitting Attach request (step S703 in FIG. 7). Thereafter, when the UE 100 receives the RA message, it checks whether or not RA designation information is stored in the RA message (step S705 in FIG. 7). When it is confirmed that RA designation information is stored in the RA message, the RA message information is used as usual (step S707 in FIG. 7). On the other hand, when the RA designation information is not stored, the UE 100 ignores (discards) the information included in the RA message or the RA message itself (step S709 in FIG. 7).
  • an Attach accept message hereinafter also referred to as a connection acceptance message
  • FIG. 8 is a diagram illustrating an example of a configuration of the LGW 220 according to the first embodiment of the disclosed technique.
  • the LGW 220 performs communication processing with the SGW 410 of the core network 400 and the HeNB 210 of the LHN, and performs an RA message to the communication processing unit 221 that performs packet communication processing such as IP, and the UE 100 that holds the LIPA connection in the PMIP environment.
  • the time of transmission for example, when an RS message is received
  • it has at least an RA message processing unit 222 that processes an RA message to be transmitted to the UE 100 into an extended RA message storing RA designation information.
  • FIG. 9 is a flowchart illustrating an example of the operation of the LGW 220 according to the first embodiment of the disclosed technique.
  • the LGW 220 receives a PBU (Proxy Binding Update) message (hereinafter also referred to as a registration request message) from the SGW 410 in the PDN connection establishment procedure defined in 3GPP (step S901 in FIG. 9).
  • a PBU Proxy Binding Update
  • the LGW 220 responds to the RS message from the UE 100.
  • it is recorded in the context information of the UE 100 that the UE 100 is a UE 100 that holds a LIPA connection in the PMIP environment.
  • the protocol applied to the traffic transport of the UE 100 that transmitted the PDN connection establishment request in the UE context and the subscription data held by the network or the parameter in the transmitted message is PMIP, and the UE 100 If the APN stored in the PDN connection establishment request transmitted from is an APN for LIPA, it can be determined that the UE 100 holds the LIPA connection.
  • the LGW 220 may determine that the protocol applied to the traffic transport of the UE 100 is PMIP upon receiving the PBU message (because it is already obvious). Whether or not the APN is intended for LIPA may be inquired of other network nodes such as the MME 430, or information set in advance in the LGW 220 may be used. In addition, when the LGW 220 is an operation in which only establishment of a LIPA connection is requested (for example, when the LGW 220 is an operation that accommodates only the LIPA connection), the LGW 220 is an APN for the purpose of LIPA. Can be omitted, and PDN connections related to all UEs can be handled as LIPA connections.
  • the LGW 220 transmits an RA message to the UE 100 that holds the LIPA connection (that is, when an RA message is transmitted as a response to the received RS message)
  • the LGW 220 transmits an extended RA message storing RA designation information to the UE 100 ( Step S903 in FIG. 9).
  • the LGW 220 transmits a PBA message to the SGW 410 (step S905 in FIG. 9).
  • an RA message (that is, an extended RA message) in which RA designation information transmitted from the LGW 220 to the UE 100 is stored will be described with reference to FIG.
  • the UE 100 ignores (drops) the “conventional RA message field” in which information in a normal RA message is stored and the RA message transmitted from another gateway (for example, the SGW 410). It is composed of an “RA designation information field” in which RA designation information for the purpose of instructing is stored.
  • the “RA designation information field” for example, an RA message identifier for enabling the UE 100 to identify whether or not to use an RA message received thereafter, or whether the UE 100 should ignore information included in the RA message.
  • flag information for example, bits represented by 0 or 1.
  • the “RA designation information field” "" Can be omitted.
  • the UE 100 can select only the RA message from the specific gateway and ignore the RA message transmitted from the other gateway.
  • the problem of exchanging user data using wrong parameters for example, Link-MTU value
  • the UE 100 can always obtain and set correct information by trusting only the RA message (that is, the extended RA message) in which valid RA designation information is stored.
  • FIG. 10 is a sequence diagram for explaining an example of the operation of the second embodiment of the disclosed technique. Note that FIG. 10 is based on the sequence diagram (FIG. 4) for explaining an example of the operation of the first embodiment of the disclosed technique, and thus the description of the overlapping steps is omitted.
  • FIG. 10 shows a procedure for establishing a LIPA connection between the UE 100 and the LGW 220.
  • the UE 100 for example, in a network connection procedure (Attach procedure), sends a PDN connection establishment request storing an APN that is identification information of a connection destination network. It transmits to the network (step S1001 in FIG. 10).
  • the procedure disclosed in Non-Patent Document 1 and Non-Patent Document 2 is performed as in the first embodiment of the disclosed technology ( Processing from step S1002 to step S1003 in FIG. 10).
  • the LGW 220 converts the RA message information (address setting information) to be notified to the UE 100 into a PCO (Protocol Configuration) in a PBA (Proxy Binding Acknowledgment) message (which may be referred to as a registration response message in this specification). (Option) (also referred to as an option field) and returns to the SGW 410 (step S1004 in FIG. 10).
  • PCO Peripheral Protocol Configuration
  • PBA Proxy Binding Acknowledgment
  • Option also referred to as an option field
  • the LGW 220 can directly notify the UE 100 of arbitrary information.
  • the UE 100 receives the message with the PCO in which the RA message information (address setting information) is stored (step S1005 in FIG. 10).
  • the RA message information (address setting information) notified to the UE 100 by the LGW 220 is information included in the RA_2 in FIG. 2, and the UE 100 stores the RA message information (address setting information) stored in the PCO. It is possible to appropriately set communication between the UE 100 and the LGW 220 via the LIPA connection.
  • the UE 100 ignores (discards) all the received RA messages.
  • the UE 100 ignores all the RA messages received thereafter from the normal state in which the received RA message is processed in a normal operation (see Non-Patent Documents 1 to 3) (hereinafter, Transition to a PCO belief mode, a PCO emphasis mode, a (simply) PCO mode, an RA NAS transfer mode, a designated address mode, etc. That is, by providing a new mode for continuing to use the address setting information (the same information included in the RA message or the RA message itself) stored in the PCO, the RA message received thereafter is ignored.
  • the address setting information the same information included in the RA message or the RA message itself
  • the UE 100 maintains the communication setting using the information (address setting information) of the RA message stored in the PCO, and the information in the RA message (RA_1 in FIG. 2) notified from the SGW 410, for example.
  • the UE 100 can be prevented from being set.
  • FIG. 12 is a diagram illustrating an example of a configuration of the UE 100 according to the second embodiment of the present disclosure.
  • a UE 100 is connected to a network (for example, E-UTRAN 300 or LHN 200), performs communication processing in a lower layer and packet communication processing such as IP in an upper layer, and a message transmitted from the network.
  • RA message information is stored in the PCO, a process for ignoring the RA message received thereafter is performed.
  • the option field address setting information processing including the function of managing the information (mode) for maintaining the state for continuing to ignore other RA messages. It has at least part 103.
  • each processing function may be divided as a processing unit.
  • RA message information address setting information
  • processing for ignoring the RA message received thereafter is performed, for example, by an RA message drop unit.
  • the processing unit may be divided by using, for example, a mode management unit as a management process for information (mode) for maintaining a state in which other RA messages are ignored.
  • the option field address setting information processing unit 103 shown in FIG. 12 has received RA message information (address setting information) that is not stored in the conventional PCO as a normal IP packet. Process like information. In order to enable the UE 100 to process the RA message information (address setting information) stored in the PCO in the same way as a normal RA message, for example, the message type and the packet length may be unified.
  • the option field address setting information processing unit 103 uses, for example, a packet filter function implemented as part of an OS (operation system) IP stack (corresponding to a part of the communication processing unit 101 in FIG. 12). be able to. Using a packet filter, it is possible to set to drop or pass an IP packet having a specific protocol number (type) received from a specific source address. For example, the RA message can be specified by setting the protocol number 58 (IPv6-ICMP) and the ICMP type 134 as a key (in addition, the reception direction may need to be set).
  • IPv6-ICMP protocol number
  • FIG. 13 is a flowchart illustrating an example of the operation of the UE 100 according to the second embodiment of the present disclosure.
  • the UE 100 transmits a message for establishing a PDN connection (for example, an Attach request message (or a PDN connectivity request message) disclosed in Non-Patent Document 1) to the network (step S1301 in FIG. 13).
  • the UE 100 receives an Attach Accept message transmitted from the network to the UE 100 when the PDN connection establishment procedure established by 3GPP is permitted by the network (step S1303 in FIG. 13).
  • the UE 100 confirms whether RA message information (address setting information) is stored in the PCO (option field) of the received Attach Accept message (step S1305 in FIG. 13).
  • RA message information address setting information
  • the UE 100 normally receives RA message information (address setting information) stored in the PCO (option field). It is processed as a message (address setting information) (RA message periodically transmitted from the gateway or RA message for the RS message) (step S1307 in FIG. 13).
  • the UE 100 continues to ignore the RA message received thereafter (changes to a mode in which the RA message information stored in the PCO continues to be trusted (designated address mode)) (step S1309 in FIG. 13).
  • the step of processing the RA message information (address setting information) stored in the PCO in step S1307 as the address setting information stored in the normal RA message and the step of changing to the designated address mode in step S1309 are as follows:
  • the execution order may be changed.
  • the UE 100 acquires the mode switching information from the PCO, the UE 100 transits to a mode for operating the present invention, and performs setting of a packet filter, which will be described later. That is, after setting the packet filter, the RA message is not received unless a specific link local address is used as the source address.
  • step S1309 can be omitted.
  • FIG. 14 is a diagram illustrating an example of a configuration of the LGW 220 according to the second embodiment of the present disclosure.
  • the LGW 220 performs communication processing with the SGW 410 of the core network 400 and the HeNB 210 of the LHN 200, and when the communication processing unit 221 that performs packet communication processing such as IP and the network determines that the LIPA connection is established in the PMIP environment
  • the address setting information storage unit 223 stores at least RA message information (address setting information) in the PCO of the PBA message transmitted to the SGW 410.
  • the LGW 220 has previously assigned an IPv6 prefix as address setting information to the UE 100 using the PCO.
  • the LGW 220 transmits an RA message (address information notification message) in response to the RS message (address information request message) received from the UE 100 via the HeNB 210 through the direct path, a new IPv6 prefix is assigned to the UE 100.
  • an IPv6 prefix management unit (not shown in FIG. 14) for acquiring and re-notifying the same IPv6 prefix assigned previously may be provided.
  • the IPv6 prefix management unit uses a function unit (managing an IPv6 prefix assigned to the UE 100 using an address pool) that has an LGW that supports GTP, and that manages the IPv6 prefix. Can do. As a result, even when the LGW 220 transmits an RA message that responds to an RS message in a PMIP environment, the prefix is centrally managed by the address pool. The IPv6 prefix can be correctly re-notified.
  • the address setting information storage unit 223 illustrated in FIG. 14 stores RA message information (address setting information) in the PCO. Furthermore, in order to make the information (address setting information) of the RA message stored in the PCO handled in the same way as the information of the normal RA message in the UE 100 (the UE 100 can be identified as RA message information) Thus, for example, the message type, packet length, etc. may be standardized, or special information (flag) may be added.
  • FIG. 15 is a flowchart illustrating an example of the operation of the LGW according to the second embodiment of the present disclosure.
  • the LGW 220 receives the PBU message from the SGW 410 during the PDN connection establishment procedure defined in 3GPP as in the first embodiment of the disclosed technology (step S1501 in FIG. 15).
  • the LGW 220 determines that the received PBU message is the establishment of the LIPA connection in the PMIP environment (for example, the PDN connection is established in the UE context or the subscription data held by the network or the parameter in the transmitted message)
  • the protocol type (GTP or PMIP) of the UE that transmitted the request indicates PMIP, and the APN stored in the PDN connection establishment request transmitted from the UE is an APN for LIPA)
  • RA message information address setting information
  • IPv6 prefix etc. for example, IPv6 prefix etc.
  • the LGW 220 may determine that the protocol applied to the traffic transport of the UE 100 is PMIP by receiving the PBU message (since it is already obvious). Whether or not the APN is intended for LIPA may be inquired of other network nodes such as the MME 430, or information set in advance in the LGW 220 may be used. In addition, when the LGW 220 is an operation in which only establishment of a LIPA connection is requested (for example, when the LGW 220 is an operation that accommodates only the LIPA connection), the LGW 220 is an APN for the purpose of LIPA. Can be omitted, and PDN connections related to all UEs can be handled as LIPA connections.
  • the LGW 220 confirms whether or not the direct path can be applied to the UE 100 (that is, whether user data can be transferred without going through the SGW 410), and when the direct path can be applied to the UE 100, the UE 100 RA message information (address setting information) that was about to be assigned may be generated.
  • the LGW 220 stores the generated RA message information (address setting information) in, for example, a PCO (option field) of a PBA message that is a reply to the PBU message, and transmits the same to the UE 100 via the SGW 410 (see FIG. 15 step S1505).
  • RA message information address setting information
  • PCO optional field
  • the message shown in FIG. 16 is composed of an address setting information option that is a feature of the present application, in addition to the basic header and option field conventionally used.
  • the address setting information option notifies address setting information for preventing the UE 100 from using an RA message transmitted from another gateway.
  • the UE 100 uses the RA message information (address setting information) stored in the PCO of the message received by the UE 100 in the PDN connection establishment procedure, and the UE 100 By making it possible to ignore the RA message transmitted from the UE 100, it is possible to avoid the problem that the UE 100 exchanges user data using an incorrect parameter (for example, Link-MTU value).
  • an incorrect parameter for example, Link-MTU value
  • the UE 100 that holds the LIPA connection needs information (for example, Link-MTU value) of the RA message transmitted from the SGW 410 (for example, other HeNB or E- A method of exchanging user data using a correct RA message information while maintaining a LIPA connection even when handing over to a UTRAN eNB or the like) will be described.
  • information for example, Link-MTU value
  • the SGW 410 for example, other HeNB or E- A method of exchanging user data using a correct RA message information while maintaining a LIPA connection even when handing over to a UTRAN eNB or the like
  • FIG. 17 is a sequence diagram for explaining an example of the operation of the third embodiment of the disclosed technique.
  • the RA message information address setting information
  • the RA message newly received by the UE 100 is reflected.
  • Information hereinafter also referred to as mode switching information or mode switching instruction
  • mode switching information or mode switching instruction for instructing whether or not it should be determined is stored in the PCO.
  • the UE 100 establishes a message for establishing a PDN connection (for example, an Attach request message disclosed in Non-Patent Document 1 or a PDN connectivity request). Message) is transmitted to the network (step S1701 in FIG. 17). If the APN stored in the message for establishing the PDN connection in step S1701 (Attach / PDN connectivity request message) is an APN for the purpose of LIPA, the network (for example, the MME 430) is identified and a request is made.
  • a message for establishing a PDN connection for example, an Attach request message disclosed in Non-Patent Document 1 or a PDN connectivity request. Message
  • the network for example, the MME 430
  • the LGW 220 adds RA message information (in the optional field) of the PBA message, which is a response to the PBU message from the SGW 410, as in the second embodiment of the present disclosure.
  • Address setting information for example, link-local address (also called link local address, LL address, LL address), or special flag information, or ID, or reply and stores the token, etc.) (step S1703 in FIG. 17).
  • the link-local address is used as a source address of the RA message transmitted from the SGW 410 to the UE 100, and is an address provided from the LGW 220 to the SGW 410.
  • a mode switching instruction for example, a link-local address
  • the special flag information, ID, token, and the like described above may be stored in a new field and notified to the UE 100.
  • the UE 100 that has received the message (Attach Accept message) including the RA message information (address setting information) and the PCO in which the mode switching instruction is stored, will receive the RA message thereafter, as in the second embodiment of the present disclosure. Is switched to a state (designated address mode) for ignoring (discarding) (step S1705 in FIG. 17).
  • the UE 100 performs a handover to another base station (step S1707 in FIG. 17).
  • the UE 100 performs a handover to another HeNB in the same LHN.
  • the policy for the UE 100 to handover to another base station and the processing until the PBU message is transmitted from the SGW 410 to the LGW 220 in the handover procedure do not affect the technology of the present disclosure and will not be described.
  • a handover to another HeNB in the same LHN will be described, but the technique of the present disclosure can be similarly implemented even for a handover to another HeNB of another LHN or an eNB on E-UTRAN. it can.
  • the LGW 220 determines that the user data path of the LIPA connection is switched (or switched) via the SGW 410 (for example, in the subscription data of the UE, on the direct path under the handover destination HeNB
  • the LGW 220 notifies the UE 100 in step S1703.
  • the same LL address is stored in the link local address option of the PBA message transmitted from the LGW 220 to the SGW 410, and transmitted to the SGW 410 (step S1711 in FIG. 17).
  • the SGW 410 sets the LL address stored in the received link local address option of the PBA as its own link local address in the bearer with the UE 100, and transmits an RA message with the LL address as the source address to the UE 100. (Step S1713 in FIG. 17).
  • This operation is the same as the conventional SGW operation disclosed in Non-Patent Document 2, and the present invention can be realized with the implementation cost suppressed by using the conventional operation particularly with respect to the SGW 410.
  • the SGW 410 separately manages the link local address obtained by PBA at the time of handover as described above, without setting it as its own link local address in the bearer with the UE 100. Also good. This is because when the UE 100 returns to the LHN 200 again and the route of the LIPA connection is changed, the link local address used before can be used immediately without performing a new configuration. This can contribute to reduction of handover time.
  • the SGW 410 transmits the RA (RA_2) in FIG. 3 to the UE 100 before receiving the notification of the LL address from the LGW 220, but after receiving the notification of the LL address from the LGW 220 (see FIG. 17 step S1713), for example, RA (RA_3) in FIG. RA_2 and RA_3 have different RA message source addresses, and 2001: db8 :: 3 set as the source address in RA_3 is notified to the UE 100 as a mode switching instruction, for example, in step S1703 of FIG.
  • the UE 100 receives the RA message received in step S1713.
  • the communication interface (or LIPA connection) is set using the address setting information included in the RA message received thereafter (step S1717 in FIG. 17).
  • RA belief mode the state for using the RA message received by UE 100 after step S1717
  • RA priority mode the state for using the RA message received by UE 100 after step S1717
  • special flag information for switching the mode to the RA message may be provided as the mode switching instruction. This eliminates the need for the LGW 220 to newly generate an LL address that has been distributed in advance by the PCO, and the UE 100 correctly switches between the two modes based on the acquired flag information, and information included in the received RA message. It is possible to determine whether to use or ignore (discard).
  • a token may be used as another form of realizing the mode switching instruction.
  • the LGW 220 notifies the SGW 410 of the token notified to the UE by the PCO, and the SGW 410 stores the token in a predetermined option in the RA and notifies the UE 100.
  • the UE 100 determines whether the token acquired from the PCO of the message (Attach Accept message) received in step S1703 in FIG. 17 matches the token acquired from the predetermined option of the RA message received in step S1713 in FIG. Check. Only when the tokens match, the address setting information stored in the received RA message is used. Otherwise, the address setting information stored in the RA message is ignored (discarded).
  • the UE 100 can evaluate the RA message transmitted from the SGW 410 only when the RA message is required (when accessing the LGW 220 via the SGW 410), and maintains the established LIPA connection (ie, reconnection). Handover) can be performed.
  • FIG. 18 is a diagram illustrating an example of a configuration of the UE 100 according to the third embodiment of the present disclosure.
  • the communication processing unit 101 and option field address setting information processing unit 103 shown in FIG. 12 the description is omitted here
  • the period or state in which the address setting information acquired from the PCO is used that is, specified
  • Address switching mode the period or state in which the address setting information acquired from the PCO is used
  • a mode switching unit 104 that switches a period or state (normal mode) in which the received RA message is used without being ignored (discarded).
  • the configuration of the UE 100 described above is an example.
  • the mode switching unit 104 illustrated in FIG. 18 includes mode switching information (for example, LL address and token) received by the PCO of the message (Attach Accept message) received in step S1703 of FIG.
  • mode switching information for example, LL address and token
  • This is a functional unit that checks whether or not the RA message information (for example, source address, token, etc.) received in step S1713 in FIG. 17 matches and switches the mode.
  • the additional part (mode switching unit 104) illustrated in FIG. 18 includes, for example, an OS (operation system) IP stack (in FIG. 18, the communication processing unit 101).
  • the packet filter function implemented as a part of the above can be used. Using a packet filter, it is possible to set to drop or pass an IP packet having a specific protocol number (type) received from a specific source address.
  • the RA message can be specified by setting the protocol number 58 (IPv6-ICMP) and the ICMP type 134 as a key (in addition, the reception direction may need to be set).
  • the mode switching unit 104 of the UE 100 changes to the designated address mode.
  • the mode switching unit 104 of the UE 100 changes to the designated address mode.
  • only the corresponding RA message that is, the RA message with the LL address as the source address
  • Other received RA messages are discarded.
  • FIG. 19 is a flowchart illustrating an example of the operation of the UE 100 from step S1701 to step S1705 in FIG. 17 according to the third embodiment of the present disclosure.
  • FIG. 20 is a flowchart illustrating an example of the operation of the UE 100 from step S1713 to step S1717 in FIG. 17 according to the third embodiment of the present disclosure.
  • the UE 100 transmits a message for establishing a PDN connection (for example, an Attach request message (or a PDN connectivity request message) disclosed in Non-Patent Document 1) to the network (step S1901 in FIG. 19).
  • the UE 100 receives an Attach Accept message (or a PDN connectivity Accept message) that is transmitted when the PDN connection establishment procedure specified in 3GPP is correctly processed by the network (step S1903 in FIG. 19).
  • the UE 100 confirms whether address setting information and mode switching information are stored in the PCO (option field) of the received Attach Accept message (step S1905 in FIG. 19).
  • step S1907 in FIG. 19 Address setting information stored in the PCO (option field) is processed as address setting information stored in a normal RA message (address information notification message) (step S1907 in FIG. 19).
  • step S1909 in FIG. 19 similarly to step S1309 in the second embodiment of the disclosed technology, the transition is made to a designated address mode in which the RA message (address information notification message) received thereafter is ignored.
  • mode switching information is extracted and held (stored) from a PCO (option field). (Step S1909 in FIG. 19).
  • the UE 100 hands over to another HeNB or eNB (in particular, a HeNB that is not permitted to use a direct path with the LGW 220 or the macro base station eNB 301 arranged in the E-UTRAN 300), and then performs an RA message (address information notification).
  • Message is received from the network (step S2001 in FIG. 20).
  • the UE 100 switches the RA message (address information notification message) switching information (for example, the source address and token) received in step S2001 and the mode switching information (LL address or the information stored in step S1909 in FIG. 19). It is confirmed whether the tokens and the like match (step S2003 in FIG. 20).
  • the UE 100 updates the setting of the communication interface (or LIPA connection) using the RA message received in step S2001 (or the RA message received thereafter) (step in FIG. 20). S2005).
  • the two modes of the designated address mode and the normal mode in the UE 100 for example, instead of using the LL address as the mode switching information, special flag information having a small number of bits, for example, is used.
  • special flag information having a small number of bits, for example, is used.
  • FIG. 21 is a diagram illustrating an example of the configuration of the LGW according to the third embodiment of the present disclosure.
  • the LGW 220 generates and manages mode switching information in order to selectively switch between the two modes in the communication processing unit 221 and the address setting information storage unit 223 illustrated in FIG. Based on this, at least a mode switching processing unit 224 that controls the SGW 410 using a PBA message at a predetermined timing to transmit the mode switching information to the UE 100 is provided.
  • the LGW 220 in the PDN connection establishment procedure, has already assigned the IPv6 prefix to the UE 100 via the SGW 410.
  • the RS message (address information request message) transmitted from the UE 100 is transferred from the HeNB through the direct path.
  • the assigned IPv6 prefix is assigned to the UE 100 without assigning a new IPv6 prefix.
  • An IPv6 prefix management unit (not shown in FIG. 21) for specifying correctly may be held.
  • the mode switching processing unit 224 illustrated in FIG. 21 generates and manages mode switching information (for example, a source address and a token) stored in the option field of the PBA message transmitted from the LGW 220 to the SGW 410 in step S1703 in FIG.
  • mode switching information for example, a source address and a token
  • the mode switching processing unit 224 can use a message for causing the LGW 220 to set or change the LL address for the SGW 410.
  • a PBA message that is transmitted as a response to a received PBU message a PBA message that is transmitted spontaneously without receiving a PBU message, or a binding that aims to prompt the SGW 410 to transmit a PBU A Revoke message can be used.
  • the existing parameters for example, Error cause
  • the existing parameters may be used as they are, or new parameters may be defined. .
  • the SGW 410 extracts the LL address from the PBA message option field transmitted from the LGW 220 and sets the source address of the RA message (address information notification message) to be transmitted to the UE 100. It is assumed that it is set.
  • FIG. 22 is a flowchart illustrating an example of the operation of the LGW 220 from step S1701 to step S1703 in FIG. 17 according to the third embodiment of the present disclosure.
  • FIG. 23 is a flowchart illustrating an example of the operation of the LGW 220 from step S1707 in FIG. 17 (reception of a PBU message) to step S1711 in the third embodiment of the present disclosure.
  • step S2201 to step S2203 in FIG. 22 is the same as the processing from step S1501 to step S1503 in FIG.
  • the LGW 220 detects that the LIPA connection path of the UE 100 is changed (for example, when the characteristic of the LIPA connection (link) is changed as in the case where the LIPA connection path is changed via the SGW 410 due to handover)
  • Mode switching information for causing the UE 100 to use the RA message (address information notification message) is generated (step S2205 in FIG. 22).
  • the LGW 220 stores the address setting information generated in step S2203 and the mode switching information generated in step S2205 in the option field of the PBA message, and transmits them to the SGW 410 (step S2207 in FIG. 22).
  • the LGW 220 receives the PBU message from the SGW 410 (step S2301), and the HeNB that is the handover destination performs the LIPA of the UE 100. It is determined whether or not the direct path can be applied to the UE 100, such as whether or not the direct path is allowed to be established for the connection, or whether or not the direct path already exists (FIG. 23). Step S2303). When the direct path cannot be applied to the connection of the UE 100, a connection via the SGW 410 (that is, a LIPA connection for remote access) is established.
  • step S2303 when the LGW 220 detects that the direct path cannot be applied to the connection of the UE 100 (when it is determined to be a connection via the SGW 410), the LGW 220 stores it in the PCO of the Attach Accept message in step S1703 and stores it in the UE 100.
  • a process for selecting an RA message is started. That is, a message instructing to use the mode switching information is transmitted to the SGW 410 (step S2305 in FIG. 23).
  • the instruction to the SGW 410 is performed by storing mode switching information in the option field of the PBA message and transmitting it to the SGW 410, for example.
  • the SGW 410 that has received the PBA message notifies the UE 100 of the mode switching information, and the UE 100 can evaluate the RA message (address information notification message) without ignoring it and use it for setting the LIPA connection (remote access). .
  • the mode switching information may be notified to the UE 100 using the source address (Link-local address) of the RA message (address information notification message).
  • Link-local address By using the link-local address, it is not necessary to use a new parameter or a new message for notifying the UE 100 of the mode switching information. That is, since the existing RA message can be used, the implementation cost can be suppressed.
  • LGW220 transmits normal PBA to SGW410 (step S2307).
  • FIG. 24A and FIG. 24B the PBA message (and the Attach / PDN connectivity Accept message reaching UE 100) transmitted from LGW 220 to SGW 410 in step S1703 of FIG. 17 (FIG. 24A) and FIG. A format example of the PBA message (FIG. 24B) transmitted from the LGW 220 to the SGW 410 in step S1711 will be described.
  • the PBA message shown in FIG. 24A is composed of an address setting information option and a mode switching information option, which are features of the present application, in addition to the basic header and option fields used conventionally.
  • the address setting information option notifies address setting information for preventing the UE 100 from using an RA message (address information notification message) transmitted from another gateway.
  • the mode switching information option stores information for using the RA message (address information notification message) received when the LIPA connection route of the UE 100 is changed without being ignored.
  • the information stored in the “mode switching information field” includes the source address (Link-local address) of the RA message (address information notification message), special flag information for switching the mode, or It may be an ID or a token.
  • FIG. 24B is composed of a mode switching information option, which is a feature of the present application, in addition to the basic header and option field conventionally used.
  • the UE 100 uses the RA message information (address setting information) acquired from the PCO of the message received by the UE 100 in the procedure for establishing the PDN connection, and the UE 100 receives information from another gateway.
  • RA message information address setting information
  • the transmitted RA message address information notification message
  • an incorrect parameter for example, Link-MTU value
  • the base station (HeNB or eNB) that is the handover destination of the UE 100 does not permit the UE 100 to make a direct path to the LGW 220, or the base station that is the handover destination of the UE 100
  • the UE 100 uses the RA message (address information notification message) information (address setting information) from the SGW 410.
  • RA message address information notification message
  • the third embodiment of the disclosed technology uses the conventional technology established by 3GPP, and solves the problem while considering the impact on the existing system. Can be solved.
  • the LGW 220 When the LIPA connection of the UE 100 is switched from via the SGW 410 to the direct path with the HeNB, the LGW 220 initially notifies the SGW 410 when the LIPA connection via the direct path is established (that is, at least the one notified to the UE 100 by the PCO) A different link local address) is notified to the SGW 410 again.
  • the above-described PBA, Binding Revoke message, or the like can be used for the notification from the LGW 220 to the SGW 410.
  • the IP configuration of the connection in the UE 100 can always be correctly performed, the transmission efficiency can be improved, and the user benefit can be increased.
  • the state is changed. It may be one. That is, when the UE 100 acquires mode switching information from the PCO, the UE 100 transits to a mode in which the present invention is operated, and performs packet filter setting and the like. That is, after setting the packet filter, the RA message is not received unless a specific link local address is used as the source address. That is, by setting a packet filter, the two modes described above are implicitly selected. Therefore, in the implementation of the present invention, the two modes described above are not necessarily essential.
  • the communication terminal performs a handover to another base station different from the base station to which the communication terminal is connected;
  • the first gateway transmitting a second registration request message to the second gateway based on the handover;
  • the second gateway receives the second registration request message, and determines whether data transfer between the communication terminal and the connection destination is switched to data transfer via the first gateway by the handover. Steps, When the data transfer between the communication terminal and the connection destination is switched to the data transfer via the first gateway by the handover, the address setting included in the address information notification message received by the communication terminal is received by the second gateway.
  • the first gateway receives the second registration response message and transmits an address information notification message including the mode switching information to the communication terminal;
  • the communication terminal receives the address information notification message including the mode switching information, and sets communication with the connection destination based on the address setting information included in the address information notification message including the mode switching information.
  • the second gateway performs mode switching for validating the address setting information included in the address information notification message received by the communication terminal.
  • the second gateway further inserts the mode switching information in an option field of the registration response message
  • the first gateway further inserts the mode switching information in an option field of the connection acceptance message
  • the mode switching information May be further held.
  • the mode switching information included in the address information notification message is the connection information. Confirming whether the mode switching information included in the option field of the acceptance message matches the mode switching information held by the communication terminal; If they match, updating the communication settings with the connection destination based on the address setting information included in the address information notification message, Furthermore, you may have.
  • one of the link local addresses of the first gateway is used for the mode switching information, and one of the link local addresses of the first gateway is used as a source address of the address information notification message. May be used.
  • the communication terminal sets communication with the connection destination based on the address setting information included in the address information notification message, and then notifies the address information from the network.
  • the method further includes a step of updating the setting of communication with the connection destination based on the address setting information included in the other address information notification message. May be.
  • the address setting information generated by the second gateway may include information of an address information notification message to be notified from the second gateway to the communication terminal.
  • connection request message and the connection acceptance message may be messages defined in a packet data network connection establishment procedure.
  • the registration request message and the registration response message may be a proxy binding update message and a proxy binding acknowledgment message defined by proxy mobile IP, respectively.
  • the communication terminal sets communication with the connection destination based on the address setting information, and then includes address setting information included in an address information notification message received from the network. May be further included.
  • the second gateway confirms whether proxy mobile IP is applied as a mobility control protocol of the communication terminal, and the proxy mobile IP is used as the mobility control protocol of the communication terminal. Is applied, the address setting information may be generated, and a registration response message including the address setting information in an option field may be transmitted to the first gateway.
  • the second gateway confirms whether or not the connection to the connection destination by the communication terminal is a local IP access, and the connection to the connection destination by the communication terminal is In the case of the local IP access, the address setting information may be generated and a registration response message including the address setting information in an option field may be transmitted to the first gateway.
  • the second gateway can establish a direct path that does not pass through the first gateway between the base station to which the communication terminal is connected and the second gateway. If the direct path can be established, the address setting information may be generated, and a registration response message including the address setting information in an option field may be transmitted to the first gateway.
  • one aspect of the disclosed technology is a network device that functions as a gateway on a network to which a communication terminal connects via a base station, for example, Means for performing data path control in connection between a connection destination designated by the communication terminal and the communication terminal; A registration request message transmitted based on a connection request message including identification information for designating the connection destination transmitted from the communication terminal to the network, wherein the communication terminal performs data path control of the communication terminal.
  • a network device that sets communication with the connection destination based on the address setting information may be included. With this configuration, the communication terminal can perform communication settings based on appropriate address setting information in communication with a desired connection destination network, and can suppress the occurrence of inefficient communication.
  • the communication terminal is a registration request message transmitted based on a handover performed to another base station different from the base station, and transmitted from the another gateway.
  • Means for transmitting a second registration response message including the mode switching information in the option field to the another gateway The another gateway receives the second registration response message and transmits an address information notification message including the mode switching information to the communication terminal, so that the communication terminal includes the address information including the mode switching information.
  • a notification message may be received, and a communication setting with the connection destination may be updated based on the address setting information included in the address information notification message including the mode switching information.
  • one aspect of the disclosed technique is, for example, a communication terminal connected to a network via a base station, Means for transmitting a connection request message including identification information designating a connection destination to the network; As a response to the connection request message, a connection acceptance message including address setting information to be notified to the communication terminal by the gateway on the network performing data path control in connection with the connection destination is received from the network.
  • Means Means for setting communication with the connection destination based on the address setting information; You may include the communication terminal which has. With this configuration, the communication terminal can perform communication settings based on appropriate address setting information in communication with a desired connection destination network, and can suppress the occurrence of inefficient communication.
  • the information processing apparatus may further include means for updating the setting of communication with the connection destination based on the address setting information included in the address information notification message.
  • one aspect of the present disclosure provides a method that is executed by the communication terminal and the network device, a program that causes a computer to execute the method, and the program It may be realized by a recorded recording medium or the like.
  • each functional block and each processing unit used in the description of the above embodiment may be realized by hardware, software, or a combination thereof.
  • the functional blocks included in each device illustrated in FIGS. 6, 8, 12, 14, 1, 21, etc., or each processing unit having an equivalent function may be a hardware such as a CPU and a memory of an arbitrary computer. It may be realized by wear. Further, each functional block and each processing unit may be realized by causing a computer to execute a program in which operations related to each function are described.
  • LSI Large Scale Integration
  • IC Integrated Circuit
  • system LSI super LSI
  • ultra LSI ultra LSI
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the disclosed technology allows a communication terminal to always perform communication setting based on appropriate address setting information in an environment where an address information notification message including different address setting information can be notified from two gateways to the communication terminal.
  • the effect that it becomes possible to suppress the occurrence of inefficient communication the effect that the communication terminal can perform communication setting based on appropriate address setting information for communication via the LIPA connection, communication Even in the case where the terminal transmits an address information request message to the network, there is an effect that correct address information notification message information can be always selected and used.
  • a PMIP when a PMIP is applied, a home access technology (local IP Applicable to technology when using (Access) It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed is a technique that enables a communication terminal to perform communication setting on the basis of appropriate address setting information with respect to the communication through a PDN connection of a local IP access (LIPA). According to such technique, in a procedure in which a communication terminal (UE 100) establishes the PDN connection with respect to the network, the network notifies the UE of a connection accepting message, in which the address setting information suited to the communication of an LIPA connection is included in an option field (PCO), if the PDN connection is the LIPA connection at the time of using the PMIP. The UE performs the communication setting of the LIPA connection on the basis of the address setting information included in the PCO, and ignores the address setting information in an RA message received from the network thereafter.

Description

通信制御方法及び通信端末並びにネットワーク装置COMMUNICATION CONTROL METHOD, COMMUNICATION TERMINAL, AND NETWORK DEVICE
 本開示技術は、網主導MIP(PMIP(Proxy Mobile IP:プロキシモバイルIP))適用時において、宅内アクセス技術(LIPA(Local IP Access:ローカルIPアクセス))を利用する通信制御方法及び通信端末並びにネットワーク装置に関する。 The disclosed technology is a communication control method, a communication terminal, and a network using a home access technology (LIPA (Local IP Access)) when a network-driven MIP (PMIP (Proxy Mobile IP)) is applied Relates to the device.
 現在、携帯電話(User Equipment:UE、通信端末とも呼ぶ)に用いる技術の標準化活動は、3GPP(The third Generation Partnership Project:第3世代パートナーシッププロジェクト)で行われていて、ネットワークへの接続手順やハンドオーバ手順などの基本機能を満たす手順から、宅内アクセス技術(LIPA)と呼ばれる、例えば、UEがローカルネットワーク内に位置するサーバ(例えば、外部ネットワークからアクセスできない、又は、外部ネットワークからもアクセス可能な社内サーバやホームサーバ)へのアクセスサービスを提供するための手順などが定義されている(下記の非特許文献1を参照)。このLIPAは、3GPPが定義する技術の1つであり、GTP(GPRS Tunnelling Protocol)やPMIPと呼ばれるコアネットワークノード間のトランスポートプロトコルに対応して動作が規定される。UEが、LIPAを実施する際のネットワーク(通信システム)の構成の一例を図1に示す。 Currently, standardization activities for technologies used in mobile phones (also referred to as user equipment: UEs and communication terminals) are being carried out in 3GPP (The Third Generation Partnership Project: Third Generation Partnership Project). From a procedure satisfying basic functions such as a procedure, it is called a home access technology (LIPA), for example, a server in which a UE is located in a local network (for example, an in-house server that cannot be accessed from an external network or can be accessed from an external network) And a procedure for providing an access service to the home server are defined (see Non-Patent Document 1 below). This LIPA is one of the technologies defined by 3GPP, and its operation is defined in accordance with a transport protocol between core network nodes called GTP (GPRS Tunneling Protocol) or PMIP. An example of the configuration of a network (communication system) when the UE performs LIPA is shown in FIG.
 図1には、UE100と無線接続する基地局210(E-UTRAN300ではeNB(eNode B)310、LHN(Local HeNB Network)200では、HeNB(Home eNB)210と呼ばれる)、E-UTRAN300上のUE100の通信回線制御や移動制御を担当する移動管理ノード(E-UTRAN300と接続する移動管理ノードはMME(Mobility Management Entity:モビリティ管理エンティティ)430、UE100のE-UTRAN300に対するユーザデータ配信制御を行うSGW(Serving Gateway:サービングゲートウェイ、MAG(Mobility Anchor Gateway:モビリティアンカポイント)410などとも呼ばれる)、UE100に対するアドレス割り当てやPDN(Packet Data Network:パケットデータネットワーク)500とSGW410間のユーザデータ転送並びに経路制御(データパス制御)を行うPGW(Packet Data Network Gateway:パケットデータネットワークゲートウェイ、HA(Home Agent:ホームエージェント)やLMA(Local Mobility Anchor:ローカルモビリティアンカ)などとも呼ばれる)420、LHN200においてEnterprise/Residentialネットワーク600とSGW410、若しくは、HeNB210間のユーザデータ転送並びに経路制御(データパス制御)を行うLGW(Local Gateway:ローカルゲートウェイ)220、UE100のサブスクリプションデータ(Subscription data)並びに通信コンテキストなどを管理保持しているサーバ(MME430との間にインタフェースを持つ(E-UTRANを利用するUE100を対象とする)ものはHSS(Home Subscriber Server)440と呼ばれる)から構成されるネットワーク構成の一例が図示されている。 In FIG. 1, a base station 210 wirelessly connected to the UE 100 (eNB (eNode B) 310 in the E-UTRAN 300, called HeNB (Home eNB) 210 in the LHN (Local HeNB Network) 200), the UE 100 on the E-UTRAN 300 The mobility management node in charge of communication line control and mobility control (the mobility management node connected to the E-UTRAN 300 is the MME (Mobility Management Entity: Mobility Management Entity) 430, the SGW that performs user data distribution control to the E-UTRAN 300 of the UE 100 ( Serving Gateway: serving gateway, MAG (Mobility Anchor Gateway) 410, etc. PGW (Packet Data Network Gateway: HA (Packet Data Network Gateway), HA (User Data Transfer) and PDN (Packet Data Network: Packet Data Network) 500 and user data transfer between the SGW 410 and path control (data path control) User Agent (Home Agent) and LMA (Local Mobility Anchor: Local Mobility Anchor), etc.) 420, LHN200 performs user data transfer and route control (data path control) between Enterprise / Residential network 600 and SGW 410, or HeNB 210. LGW to perform (Local Gat way: local gateway (220), a server that manages and holds subscription data (subscription data) of UE100 and communication context (having an interface with MME430 (for UE100 using E-UTRAN)) Shows an example of a network configuration composed of HSS (called Home Subscriber Server) 440).
 図1において、UE100がLHN200を介してEnterprise/Residentialネットワーク600内のノードと通信(LIPA)を行うにあたり、UE100はLGW220との間にPDNコネクション及びEPSベアラ(EPS Bearer、ベアラなどと呼ばれる)を確立する。UE100は、このPDNコネクションの確立を通じてIP(Internet Protocol:インターネットプロトコル)アドレスを取得し、Enterprise/Residentialネットワーク600との通信に用いるEPSベアラを確立する(下記の非特許文献1及び非特許文献2を参照)。PDNコネクションを確立する際、UE100に割り当てたIPアドレスやSGW410のアドレス(例えばIPv6 link-lokal address)などの情報が、UE100のコンテキスト情報として扱われ、コアネットワーク(例えば、非特許文献1、2で規定されるEPC;Evolved Packet Coreなど)400のエンティティ(例えば、MME、SGW、LGW)で保持される。その結果、コアネットワーク400のエンティティは、例えばEnterprise/Residentialネットワーク600から送られてきたデータをUE100に転送することができる。UE100は非特許文献1で開示されている“Attach request”や“PDN connectivity request”などのリクエストメッセージ(本明細書では、接続要求メッセージと記載することもある)をネットワークに送信して、LGW220との間にPDNコネクションを確立する。 In FIG. 1, when the UE 100 communicates (LIPA) with a node in the enterprise / residential network 600 via the LHN 200, the UE 100 establishes a PDN connection and an EPS bearer (referred to as EPS Bearer, bearer, etc.) with the LGW 220. To do. The UE 100 acquires an IP (Internet Protocol) address through the establishment of this PDN connection, and establishes an EPS bearer used for communication with the Enterprise / Residential network 600 (see Non-Patent Document 1 and Non-Patent Document 2 below). reference). When establishing a PDN connection, information such as the IP address assigned to the UE 100 and the address of the SGW 410 (for example, IPv6 link-local address) is treated as context information of the UE 100, and the core network (for example, in Non-Patent Documents 1 and 2). Specified EPC; Evolved Packet Core etc.) 400 entities (for example, MME, SGW, LGW). As a result, the entity of the core network 400 can transfer, for example, data transmitted from the enterprise / residential network 600 to the UE 100. The UE 100 transmits a request message (sometimes referred to as a connection request message in this specification) such as “Attach request” and “PDN connectivity request” disclosed in Non-Patent Document 1 to the network, and the LGW 220. PDN connection is established during
 LIPA向けPDNコネクション(以降、LIPAコネクションと呼ぶ)の確立手順は、通常のPDNコネクションの確立手順と大部分が同じであり、異なる点は、コアネットワーク400のエンティティ(例えば、MME430)がLIPAを目的とし、かつLIPA接続が許可される場合に(例えば、UE100から送信されるAttach/PDN connectivity requestで指定されたAPN(Access Point Name:アクセスポイントネーム。PDN500を識別するパラメータであり、PDNコネクションの接続先を示す情報)がLIPA向けのAPNと識別され、かつそのUEがLIPA接続を許可された場合)、MME430からHeNB210に対して、Correlation IDが送られる点が挙げられる。LGW220とHeNB210は、LIPAコネクション確立時にユーザデータを直接交換可能な通信経路(Direct User plane path(ダイレクトユーザプレーンパス)、Direct path(ダイレクトパス)、Shortcut path(ショートカットパス)とも呼ばれる)を確立し、上記MME430を介して共有したCorrelation IDを用いてダイレクトパスを識別することができる。また、ダイレクトパスを構築することのメリットは、ユーザデータの転送をLGW220とHeNB210で閉じることができ、コアネットワーク400のトラフィック負荷を低減できるものである。 The procedure for establishing a PDN connection for LIPA (hereinafter referred to as a LIPA connection) is largely the same as the procedure for establishing a normal PDN connection. The difference is that the entity of the core network 400 (for example, the MME 430) aims for LIPA. And when the LIPA connection is permitted (for example, the APN (Access Point Name: access point name specified by the Attach / PDN connectivity request transmitted from the UE 100). This parameter identifies the PDN 500, and the connection of the PDN connection. (Information indicating the destination) is identified as an APN for LIPA and the UE is permitted to connect to LIPA), the Correlation I from the MME 430 to the HeNB 210 Points are mentioned to be sent. The LGW 220 and the HeNB 210 establish a communication path (direct user plane path (direct user plane path), direct path (direct path), shortcut path), which can directly exchange user data when establishing a LIPA connection. The direct path can be identified using the Correlation ID shared via the MME 430. The merit of constructing the direct path is that user data transfer can be closed by the LGW 220 and the HeNB 210, and the traffic load of the core network 400 can be reduced.
 一般的に3GPPが規定するネットワークにおいて、UE100がIPv6アドレスを取得する手順は、ネットワークから取得したIPv6プレフィックスに基づいてUE100がIPv6アドレスを生成するものである(非特許文献1及び非特許文献2を参照)。UE100にIPv6プレフィックスを通知するエンティティは、コアネットワークのトランスポートがGTPの場合とPMIPの場合で異なり、GTPではPGW420(LIPA時には、LGW220)が、非特許文献1に開示されるRA(Router Advertisement:ルータアドバタイズメント)メッセージ(アドレス情報通知メッセージとも呼ぶ)を用いてUE100にIPv6プレフィックスを通知し、PMIPでは非特許文献2に開示されるように、SGW410がRAメッセージを用いてUE100にIPv6プレフィックスを通知する。なお、上記RAメッセージの送付は、UE100からの問い合わせに応答して(Solicited)送信する場合と、UE100からの問い合わせなく(Unsolicited)定期的に送信する場合の両方に対応するものである。 In general, in a network defined by 3GPP, the procedure for the UE 100 to acquire an IPv6 address is that the UE 100 generates an IPv6 address based on the IPv6 prefix acquired from the network (see Non-Patent Document 1 and Non-Patent Document 2). reference). The entity that notifies the UE 100 of the IPv6 prefix differs depending on whether the core network transport is GTP or PMIP. In GTP, PGW420 (LGW220 at the time of LIPA) is disclosed in Non-Patent Document 1. RA (Router Advertisement: Router Advertisement) message (also called address information notification message) is used to notify the UE 100 of the IPv6 prefix, and PMIP notifies the UE 100 of the IPv6 prefix using the RA message as disclosed in Non-Patent Document 2. To do. It should be noted that the RA message is sent in response to both a case where it is transmitted in response to an inquiry from the UE 100 (Solicated) and a case where it is periodically transmitted without being inquired from the UE 100 (Unsolicited).
 RAメッセージは、PDNコネクション確立が完了すると(デフォルトベアラ確立後)、UE100に通知される。またUE100は、RS(Router Solicitation:ルータソリシテーション)メッセージ(アドレス情報要求メッセージとも呼ぶ)をネットワークに送信して、RAメッセージを要求することができる。RSメッセージを受信したPGW420やLGW220(GTPの場合)、あるいはSGW410(PMIPの場合)はRAメッセージを返信する。 The RA message is notified to the UE 100 when the PDN connection establishment is completed (after the default bearer is established). Further, the UE 100 can request an RA message by transmitting an RS (Router Solicitation) message (also called an address information request message) to the network. The PGW 420, LGW 220 (in the case of GTP), or SGW 410 (in the case of PMIP) that has received the RS message returns an RA message.
 RAメッセージの構成は、下記の非特許文献3や非特許文献4で開示されるように、送信元アドレス(Source address(ソースアドレス))や終点アドレス(Destination address(ディスティネーションアドレス))などを含むIPフィールドや、メッセージタイプやルータライフタイムなどを含むICMP(Internet Control Message Protocol:インターネット制御通知プロトコル)フィールドや、ソースリンクレイヤアドレスやプレフィックスインフォメーションを含むPossible optionsフィールドで構成される。 The structure of the RA message includes a source address (Source address (source address)), an end point address (Destination address (destination address)), and the like as disclosed in Non-Patent Document 3 and Non-Patent Document 4 below. It consists of IP field, ICMP (Internet Control Message Protocol) including the message type, router lifetime, etc., and Possible options field including source link layer address and prefix information.
 また、非特許文献3や非特許文献4に開示されるように、RAメッセージを用いて、レイヤ2リンクにおいて送信可能な最大転送ユニットのサイズを示すLink-MTU(Maximum Transmission Unit)値や、ルータ間の優先度レベルを通知することもできる。 Further, as disclosed in Non-Patent Document 3 and Non-Patent Document 4, a Link-MTU (Maximum Transmission Unit) value indicating the size of the maximum transfer unit that can be transmitted in the layer 2 link using an RA message, a router The priority level between them can also be notified.
 続いて、UE100とLGW220との間にLIPAコネクションが確立されたときの、ユーザデータの転送処理について説明する。 Next, a user data transfer process when a LIPA connection is established between the UE 100 and the LGW 220 will be described.
 LIPAコネクションが確立される際、HeNB210とLGW220との間にはダイレクトパスが確立される。このとき、例えば、確立したLIPAコネクション上で、UE100から送られるアップリンク方向のユーザデータは、HeNB210からダイレクトパスを介してLGW220に転送される。すなわち、このアップリンク方向のユーザデータは、HeNB210からコアネットワーク400のSGW410には転送されず、HeNB210から直接LGW220に転送される。ダウンリンク方向も同様に、LGW220がEnterprise/Residentialネットワーク600から受信したユーザデータは、コアネットワーク400のSGW410には転送されず、LGW220からダイレクトパスを介してHeNB210に転送される。その後、HeNB210は受信したダウンリンク方向のユーザデータをUE100に転送する。 When a LIPA connection is established, a direct path is established between the HeNB 210 and the LGW 220. At this time, for example, user data in the uplink direction sent from the UE 100 on the established LIPA connection is transferred from the HeNB 210 to the LGW 220 via the direct path. That is, the user data in the uplink direction is not transferred from the HeNB 210 to the SGW 410 of the core network 400, but is transferred directly from the HeNB 210 to the LGW 220. Similarly, in the downlink direction, the user data received by the LGW 220 from the Enterprise / Residential network 600 is not transferred to the SGW 410 of the core network 400 but is transferred from the LGW 220 to the HeNB 210 via the direct path. Thereafter, the HeNB 210 transfers the received user data in the downlink direction to the UE 100.
 上記したダウンリンク方向のユーザデータの流れは、UE100がCONNECTEDモード(無線区間を含む通信ベアラが確立済みの状態)であることを想定している。UE100がIDLEモード(無線区間の通信ベアラが確立されていない状態)の場合は、UEをCONNECTEDモードに遷移させるために、非特許文献1又は非特許文献5で開示されているページング処理を実施する。ページング処理をトリガするために、LGW220は受信したダウンリンク方向のユーザデータの最初の(一部)データをコアネットワーク400のSGW410に転送し、SGW410が非特許文献1に開示されるページング処理を実施する。ページング処理によりUE100がCONNECTEDモードになると、SGW410に転送されたUE100宛のダウンリンクデータは、UE100に転送される。つまり、UE100がIDLEモードの時は、一部のユーザデータのみ、コアネットワーク400のSGW410経由で転送される。 The above-described flow of user data in the downlink direction assumes that the UE 100 is in the CONNECTED mode (a state in which a communication bearer including a radio section has been established). When the UE 100 is in the IDLE mode (a state in which a communication bearer in the radio section is not established), the paging process disclosed in Non-Patent Document 1 or Non-Patent Document 5 is performed in order to shift the UE to the CONNECTED mode. . In order to trigger the paging process, the LGW 220 transfers the first (partial) data of the received user data in the downlink direction to the SGW 410 of the core network 400, and the SGW 410 performs the paging process disclosed in Non-Patent Document 1. To do. When the UE 100 enters the CONNECTED mode by the paging process, the downlink data addressed to the UE 100 transferred to the SGW 410 is transferred to the UE 100. That is, when the UE 100 is in the IDLE mode, only some user data is transferred via the SGW 410 of the core network 400.
 上記のように、ユーザデータは、通常、コアネットワーク400(のSGW410)方向には転送されないが、LIPAコネクションを制御するメッセージ(制御シグナリングとも呼ばれる)はコアネットワーク400のMME430に送信される。例えば、UE100がLIPAコネクションをリリースしたいとき、UE100は非特許文献1で開示されているPDN Disconnection Request messageをネットワークに送信する。PDN Disconnection Request messageは、HeNB210を経由してMME430に転送され、LIPAコネクションをリリースするための処理が実施される。 As described above, user data is not normally transferred in the direction of the core network 400 (the SGW 410), but a message (also referred to as control signaling) for controlling the LIPA connection is transmitted to the MME 430 of the core network 400. For example, when the UE 100 wants to release a LIPA connection, the UE 100 transmits a PDN Connection Request message disclosed in Non-Patent Document 1 to the network. The PDN Connection Request message is transferred to the MME 430 via the HeNB 210, and processing for releasing the LIPA connection is performed.
 また、HeNB210とLGW220との間にダイレクトパスが確立されない場合、すなわちLGWとダイレクトパスを確立できない(確立を許可されていない、あるいは物理的に確立できない)基地局経由でUE100がEnterprise/Residentialネットワーク600への接続を試みる場合は、ネットワークのオペレータポリシが許可する場合(例えば、HSS440が保持するUE100のSubscription dataにおいて、外部からの接続(後述するMRA)が許可される場合)に限り、コアネットワーク400のSGW410を介してLGW220に接続し、Enterprise/Residentialネットワークにアクセスすることができる。このように、LHN200のHeNB配下にいるUE100が、SGW410経由でEnterprise/Residentialネットワーク600にアクセスすることを非特許文献5では、MRA(Managed Remote Access(to home based network)と呼んでいる。また、RIPA(Remote IP Access)やリモートアクセスなどと呼ばれることもある。このように、HeNB210からコアネットワーク400やE-UTRAN300のエンティティに向けて送信されるユーザデータや制御シグナリングは、図1に示すLHN200とコアネットワーク400を接続するための(IP)バックホール(Backhaul)700を経由してあて先ノードに転送される。 Further, when a direct path is not established between the HeNB 210 and the LGW 220, that is, the direct path cannot be established with the LGW (the establishment is not permitted or cannot be physically established), the UE 100 enters the enterprise / residential network 600 via the base station. When trying to connect to the core network 400 only when the network operator policy permits (for example, when the connection data from the outside (MRA described below is permitted in the subscription data of the UE 100 held by the HSS 440)). Can be connected to the LGW 220 via the SGW 410 and can access the Enterprise / Residential network. In this way, the UE 100 under the HeNB of the LHN 200 accesses the Enterprise / Residential network 600 via the SGW 410 is referred to as MRA (Managed Remote Access (to home based network)) in Non-Patent Document 5. It is sometimes called RIPA (Remote IP Access), remote access, etc. In this way, user data and control signaling transmitted from the HeNB 210 to the entities of the core network 400 and the E-UTRAN 300 are the same as those of the LHN 200 shown in FIG. The data is transferred to the destination node via an (IP) backhaul 700 for connecting the core network 400.
 コアネットワークのユーザデータトランスポートとしてPMIPが利用され(以降、PMIP環境と呼ぶことがある)、UE100とLGW220との間にLIPAコネクションが確立される環境において、UE100がRSメッセージをネットワークに送信する場合、RSメッセージはHeNB210からLGW220へとダイレクトパスを介して転送される(RS/RAメッセージは、ユーザデータとして扱われるため)。LGW220が非特許文献3に示すルータ機能を実装している場合、受信したRSメッセージに応答してRAメッセージをUE100に送信する。 When the UE 100 transmits an RS message to the network in an environment where PMIP is used as a user data transport of the core network (hereinafter sometimes referred to as a PMIP environment) and a LIPA connection is established between the UE 100 and the LGW 220. The RS message is transferred from the HeNB 210 to the LGW 220 via the direct path (because the RS / RA message is handled as user data). When the LGW 220 implements the router function shown in Non-Patent Document 3, the RA message is transmitted to the UE 100 in response to the received RS message.
 なお、これはコアネットワーク内のトランスポートプロトコルがGTP、PMIPのいずれであっても生じる現象である。これは、LGW220がEnterprise/Residentialネットワーク600に対してIPルータとして動作するためであり、上記示したRSに応答してRAを送信する動作は通常実施されるものである。ただし、トランスポートプロトコルとしてPMIPが動作する環境において、LGW220は定期的な(あるいは自発的な)RA(すなわち非特許文献3で規定されるunsolicited RA)を送信することはない。なぜなら、PMIPにおけるUE100のネクストホップルータ(IPルータ)としての機能はSGW410が実施するためである。 This is a phenomenon that occurs regardless of whether the transport protocol in the core network is GTP or PMIP. This is because the LGW 220 operates as an IP router with respect to the enterprise / residential network 600, and the operation of transmitting RA in response to the above-described RS is normally performed. However, in an environment where PMIP operates as a transport protocol, the LGW 220 does not transmit a periodic (or spontaneous) RA (that is, an unsolicited RA defined in Non-Patent Document 3). This is because the SGW 410 performs the function of the UE 100 as the next hop router (IP router) in PMIP.
 このとき、図2に示すように、UE100はLGW220からRSメッセージの返信としてRAメッセージ(solicited RA;図2中では、RA_1と図示)を受信するが、一方で、LIPAコネクションを確立する手順の過程及び手順完了後に、SGW410から定期的に送られてくるRAメッセージ(unsolicited RA;図2中では、RA_2と図示)も受信する。 At this time, as shown in FIG. 2, the UE 100 receives an RA message (solicited RA; shown as RA_1 in FIG. 2) as a reply to the RS message from the LGW 220, but on the other hand, a process of establishing a LIPA connection After the procedure is completed, an RA message periodically sent from the SGW 410 (unsolicited RA; shown as RA_2 in FIG. 2) is also received.
 すなわち、PMIP環境において、UE100がLIPAコネクションを確立している場合に、UE100がRSメッセージをネットワークに送信すると、UE100はLGW220及びSGW410から異なる内容のRAメッセージをほぼ同じタイミングで受信する可能性がある。 That is, in the PMIP environment, when the UE 100 has established a LIPA connection and the UE 100 transmits an RS message to the network, the UE 100 may receive RA messages having different contents from the LGW 220 and the SGW 410 at almost the same timing. .
 UE100は異なる内容の(特に送信元リンクローカルアドレスが異なる)のRAメッセージを受信すると、UE100は2つのRAメッセージに格納されている情報を管理する。また、非特許文献3で開示されるように、UE100は、RAメッセージに格納されている情報(例えば、レイヤ2リンクにおける送信可能な最大転送ユニットサイズを示すLink-MTU値)をリンクあたり1つしか保持できない場合があり、そのときは、最後に受信したRAメッセージに格納されている情報で既存の情報を上書きする。 When the UE 100 receives RA messages having different contents (especially, different source link local addresses), the UE 100 manages information stored in the two RA messages. Further, as disclosed in Non-Patent Document 3, the UE 100 has one piece of information stored in the RA message (for example, a Link-MTU value indicating the maximum transfer unit size that can be transmitted in the layer 2 link) per link. In such a case, the existing information is overwritten with the information stored in the last received RA message.
 2つのゲートウェイ(LGW220とSGW410)から送られてくるRAメッセージは、図3に示すように、保持する情報が異なることが予想される。例えば、RA_1は、UE100からのRSメッセージに応答してLGW220が送信したRAメッセージ(図2中のRA_1に相当)の構成例を示している。RA_1は、例えばソースアドレスが2001:db8::1であり、Link-MTU値が2000であるものとする。 The RA messages sent from the two gateways (LGW 220 and SGW 410) are expected to have different information as shown in FIG. For example, RA_1 indicates a configuration example of an RA message (corresponding to RA_1 in FIG. 2) transmitted by the LGW 220 in response to the RS message from the UE 100. For example, RA_1 has a source address of 2001: db8 :: 1 and a Link-MTU value of 2000.
 つまり、UE100が、RAメッセージに格納されている情報(Link-MTU値)を当該レイヤ2リンクに対して同時に1つしか保持できない場合、かつ、RA_1の受信後にRA_2(図2中のRA_2に相当、Link-MTU値が1500)を受信するような場合、当該レイヤ2リンクに係るLink-MTU値は2000から1500に上書きされる。これにより、UE100がLGW220との間に確立したLIPAコネクション上で通信を行う場合であっても、RA_2によって指定されたLink-MTU値(1500)が設定されるため、UE100は非効率な通信を強いられるといった問題がある。 That is, when UE 100 can hold only one piece of information (Link-MTU value) stored in the RA message for the layer 2 link at the same time, and after receiving RA_1, RA_2 (corresponding to RA_2 in FIG. 2) When the Link-MTU value is 1500), the Link-MTU value related to the layer 2 link is overwritten from 2000 to 1500. Thereby, even when the UE 100 performs communication on the LIPA connection established with the LGW 220, the Link 100 is set to the link-MTU value (1500) specified by the RA_2, so that the UE 100 performs inefficient communication. There is a problem of being forced.
 まとめると、RA_1メッセージに格納されるLink-MTU値(Link-MTU値1)が、RA_2メッセージに格納されるLink-MTU値(Link-MTU値2)より大きい場合(Link-MTU値1>Link-MTU値2)、UE100がRA_2を後から受信すると、実際のLink-MTU値1よりも小さなLink-MTU値2を参照してユーザデータを生成することになる。このとき、IPパケットのサイズは実際のLink-MTU値1よりも小さいサイズでありLGW220はそれを正常に受信する。すなわち、Link-MTUの違いには気づかないため、次にRA_1を受信するまでの間、UE100は非効率な通信を強いられることになる。 In summary, when the Link-MTU value (Link-MTU value 1) stored in the RA_1 message is larger than the Link-MTU value (Link-MTU value 2) stored in the RA_2 message (Link-MTU value 1> Link). -MTU value 2) When the UE 100 receives RA_2 later, user data is generated with reference to the Link-MTU value 2 smaller than the actual Link-MTU value 1. At this time, the size of the IP packet is smaller than the actual Link-MTU value 1, and the LGW 220 normally receives it. That is, since the difference between the Link-MTU is not noticed, the UE 100 is forced to perform inefficient communication until the next RA_1 is received.
 逆に、RA_2メッセージで通知されるLink-MTU値2がRA_1で通知されるLink-MTU値1より大きい場合は(Link-MTU値1<Link-MTU値2)、ルータであるLGW220がEnterprise/Residentialネットワーク600に転送可能なIPパケットサイズ(すなわちLink-MTU値1)を上回るパケットを受信することになり、所望のLink-MTU値(すなわちLink-MTU値1)を記述したエラーメッセージ(Packet Too Bigエラーを通知するためのIPv6 ICMPメッセージ)を、パケットの送信元であるUE100に送信する。これを受けてUE100は、通知されたLink-MTU値1を当該レイヤ2リンクのLink-MTU値として再度設定し、適正に通信を行うものである(非特許文献6を参照)。 On the other hand, when the Link-MTU value 2 notified by the RA_2 message is larger than the Link-MTU value 1 notified by the RA_1 (Link-MTU value 1 <Link-MTU value 2), the router LGW 220 enters the Enterprise / A packet exceeding the IP packet size (that is, Link-MTU value 1) that can be transferred to the Residential network 600 is received, and an error message (Packet Too) that describes a desired Link-MTU value (that is, Link-MTU value 1) is received. The IPv6 ICMP message for notifying the Big error is transmitted to the UE 100 that is the packet transmission source. In response to this, the UE 100 again sets the notified Link-MTU value 1 as the Link-MTU value of the layer 2 link, and performs proper communication (see Non-Patent Document 6).
 このように、SGW410とLGW220が異なるリンクローカルアドレスを持ち、個々にRAをUE100に送信するような状況においては、上述したようにRSメッセージを投げた直後に受けるRAがLGW220からのものであると決定づけることができないので(ほぼ同じタイミングでSGW410がRAを送信するかもしれないため)、UE100が常に適切なアドレス設定情報(RAメッセージ内に含まれる情報)に基づいて通信の設定を行うことができず、非効率な通信が発生することになる。なお、上記RA_1とRA_2のソースアドレスが同じ場合であっても、UE100は後から受信したRAメッセージの内容で情報(例えば、Link-MTU値)を上書きするので、同様の問題が発生する。 As described above, in a situation where the SGW 410 and the LGW 220 have different link local addresses and individually send RAs to the UE 100, the RA received immediately after throwing the RS message as described above is from the LGW 220. Since it cannot be determined (because the SGW 410 may transmit RA at almost the same timing), the UE 100 can always set communication based on appropriate address setting information (information included in the RA message). Therefore, inefficient communication occurs. Even when the source addresses of RA_1 and RA_2 are the same, the UE 100 overwrites information (for example, the Link-MTU value) with the contents of the RA message received later, and the same problem occurs.
 ここで、RAメッセージの内容に基づいて送信元がLGW220、SGW410のいずれであるかを判別させることも不可能ではないが、IPv6の基本プロトコルを変更する必要があり、全ての端末OS(Operating System)を更新するためのコストは莫大であり現実的ではない。すなわち、低コストかつ実現可能な解法が必要となる。 Here, although it is not impossible to determine whether the transmission source is LGW 220 or SGW 410 based on the contents of the RA message, it is necessary to change the basic protocol of IPv6, and all terminal OS (Operating System) ) Is costly and unrealistic. That is, a low cost and feasible solution is required.
 なお、すべてのUE100がコネクション確立時にRSメッセージを送信できるとは限らない(実装や設定による制約から)。そうしたUE100は、LIPAコネクションを確立した後、SGW410が定期的に送信する(Unsolicited)RAメッセージのみ受信することになる。すなわち、LGWからのRAメッセージを取得する機会がなくなり、適切なアドレス設定情報に基づいて通信の設定を行うことができない。特にLink-MTU値などの必要な設定情報をLGW220とSGW410間で共有させることも不可能ではないが、従来PMIP技術ではそうした情報を伝達するためのオプションは規定されておらず、プロトコル改変に伴う影響(端末OS改修によるコスト)は莫大であり現実的でない。 Note that not all UEs 100 can transmit an RS message when establishing a connection (due to restrictions due to implementation and settings). After establishing the LIPA connection, the UE 100 receives only the RA message that the SGW 410 periodically transmits (Unsolicited). That is, there is no opportunity to obtain an RA message from the LGW, and communication settings cannot be performed based on appropriate address setting information. In particular, it is not impossible to share necessary setting information such as Link-MTU value between the LGW 220 and the SGW 410, but the conventional PMIP technology does not specify an option for transmitting such information, and it is accompanied by protocol modification. The impact (cost due to renovation of the terminal OS) is enormous and unrealistic.
 上記の問題に鑑み、本開示技術の一態様によれば、例えば、2つのゲートウェイ(LGW220及びSGW410)からUE100に対して、それぞれ異なるアドレス設定情報を含むRAメッセージ(アドレス情報通知メッセージ)が通知され得る環境において、UE100が常に適切なアドレス設定情報(RAメッセージ内に含まれる情報)に基づいて通信の設定を行えるようにし、非効率な通信の発生を抑えることが可能となる。 In view of the above problem, according to an aspect of the disclosed technology, for example, RA messages (address information notification messages) including different address setting information are notified from two gateways (LGW 220 and SGW 410) to UE 100, respectively. In the obtaining environment, the UE 100 can always perform communication setting based on appropriate address setting information (information included in the RA message), and it is possible to suppress the occurrence of inefficient communication.
 また、本開示技術の一態様によれば、例えば、特に、通信端末がLIPAコネクションを経由した通信を行う必要となるアドレス設定情報(LIPAコネクションを管理するゲートウェイ(LGW220)から通知されるアドレス情報通知メッセージに含まれるアドレス設定情報)が、別のゲートウェイ(SGW410)から通知されるアドレス情報通知メッセージに含まれるアドレス設定情報によって上書きされてしまうことによって生じる非効率な通信の発生を抑えることが可能となる。 In addition, according to one aspect of the present disclosure, for example, address setting information (address information notification notified from the gateway (LGW 220) that manages the LIPA connection), for example, is particularly required for the communication terminal to perform communication via the LIPA connection. It is possible to suppress the occurrence of inefficient communication that occurs when the address setting information included in the message is overwritten by the address setting information included in the address information notification message notified from another gateway (SGW 410). Become.
 また、コアネットワーク400においてPMIPが利用されていて、UE100がRSメッセージをネットワークに送信するケースにおいては、UE100はLGW220とSGW410の2つのゲートウェイからRAメッセージを受信することとなり、正しいRAメッセージ情報(例えば、Link-MTU値)を利用できなくなる場合がある。本開示技術の一態様によれば、例えば、UE100がRSメッセージをネットワークに送信するケースにおいても、正しいRAメッセージ情報を常に選択及び利用できるようにすることが可能となる。 Further, in the case where PMIP is used in the core network 400 and the UE 100 transmits an RS message to the network, the UE 100 receives RA messages from two gateways of the LGW 220 and the SGW 410, and correct RA message information (for example, , Link-MTU value) may not be available. According to one aspect of the present disclosure, for example, even when the UE 100 transmits an RS message to the network, it is possible to always select and use correct RA message information.
 本開示技術の一態様は、例えば、基地局を介してネットワークに接続する通信端末の通信制御を行う通信制御方法であって、
 前記通信端末が、接続先を指定する識別情報を含む接続要求メッセージを前記ネットワークへ送信するステップと、
 前記通信端末のデータパス制御を行う前記ネットワーク上の第1ゲートウェイが、前記接続要求メッセージを受信し、前記接続要求メッセージに基づいて、前記接続先との接続におけるデータパス制御を行う前記ネットワーク上の第2ゲートウェイへ登録要求メッセージを送信するステップと、
 前記第2ゲートウェイが、前記登録要求メッセージを受信し、前記通信端末に通知すべきアドレス設定情報を生成するステップと、
 前記第2ゲートウェイが、前記登録要求メッセージに対する応答として、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記第1ゲートウェイへ送信するステップと、
 前記第1ゲートウェイが、前記アドレス設定情報をオプションフィールドに含む接続受諾メッセージを前記通信端末へ送信するステップと、
 前記通信端末が、前記接続要求メッセージに対する応答として、前記接続受諾メッセージを前記ネットワークから受信するステップと、
 前記通信端末が、前記アドレス設定情報に基づいて前記接続先との通信の設定を行うステップとを、
 有する通信制御方法を含む。
 この方法により、通信端末は、所望の接続先ネットワークとの通信において、適切なアドレス設定情報に基づく通信設定を行うことが可能となり、非効率な通信の発生を抑えることが可能となる。
One aspect of the disclosed technique is, for example, a communication control method for performing communication control of a communication terminal connected to a network via a base station,
The communication terminal transmitting a connection request message including identification information designating a connection destination to the network;
A first gateway on the network that performs data path control of the communication terminal receives the connection request message, and performs data path control in connection with the connection destination based on the connection request message Sending a registration request message to the second gateway;
The second gateway receives the registration request message and generates address setting information to be notified to the communication terminal;
The second gateway, as a response to the registration request message, sending a registration response message including the address setting information in an option field to the first gateway;
The first gateway transmits a connection acceptance message including the address setting information in an option field to the communication terminal;
The communication terminal receiving the connection acceptance message from the network as a response to the connection request message;
The communication terminal performing communication setting with the connection destination based on the address setting information;
A communication control method.
With this method, the communication terminal can perform communication settings based on appropriate address setting information in communication with a desired connection destination network, and can suppress the occurrence of inefficient communication.
 なお、本開示技術の態様は、上記の通信制御方法以外に、通信端末、ネットワーク装置などによって実現されてもよい。 Note that the aspect of the disclosed technique may be realized by a communication terminal, a network device, or the like in addition to the communication control method described above.
 本開示技術は、例えば、2つのゲートウェイから通信端末に対して、それぞれ異なるアドレス設定情報を含むアドレス情報通知メッセージが通知され得る環境において、通信端末が、常に適切なアドレス設定情報に基づく通信設定を行えるようになり、非効率な通信の発生を抑えることが可能になるという効果を有する。また、本開示技術は、例えば、特に、通信端末がLIPAコネクションを経由した通信に対して、適切なアドレス設定情報に基づく通信設定を行えるようになるという効果を有する。また、本開示技術は、例えば、通信端末がアドレス情報要求メッセージをネットワークに送信するケースにおいても、アドレス設定情報を常に正しく選択及び利用できるようになるという効果を有する。 In the disclosed technology, for example, in an environment where an address information notification message including different address setting information can be notified from two gateways to a communication terminal, the communication terminal always performs communication setting based on appropriate address setting information. As a result, it is possible to suppress the occurrence of inefficient communication. In addition, for example, the disclosed technology has an effect that the communication terminal can perform communication setting based on appropriate address setting information for communication via the LIPA connection, for example. In addition, for example, the disclosed technique has an effect that the address setting information can always be correctly selected and used even when the communication terminal transmits an address information request message to the network.
 なお、本開示技術が有する効果及び利点は上記に限定されるものではなく、更なる効果及び利点が本明細書及び図面の開示内容から明らかとなるであろう。上記の更なる効果及び利点は、例えば、本明細書及び図面に開示されている様々な実施の形態及び特徴によって個別に提供されるものであり、必ずしも、本開示技術の一態様によってすべての効果及び利点が提供される必要はない。 Note that the effects and advantages of the disclosed technology are not limited to the above, and further effects and advantages will be apparent from the disclosure of the present specification and drawings. The above-described further effects and advantages are individually provided by, for example, the various embodiments and features disclosed in this specification and the drawings, and all the effects are not necessarily limited by one aspect of the disclosed technology. And benefits need not be provided.
本開示技術の第1から第3の実施の形態並びに従来の技術に共通するシステム構成の一例を示す図The figure which shows an example of the system configuration common to the 1st to 3rd embodiment of this indication technique, and the prior art 本開示技術が解決しようとする従来の課題の一例を示す図The figure which shows an example of the conventional subject which this indication technique tries to solve 従来の技術及び本開示技術の第3の実施の形態において送信されるRAメッセージの一例を説明するための図The figure for demonstrating an example of RA message transmitted in 3rd Embodiment of a prior art and this indication technique 従来の技術に係るシステム動作の一例であり、かつ、本開示技術の第1から第3の実施の形態において前提とするシステム動作の一例を説明するためのシーケンス図FIG. 7 is a sequence diagram for explaining an example of a system operation according to a conventional technique and an example of a system operation assumed in the first to third embodiments of the disclosed technique; 本開示技術の第1の実施の形態における拡張RAメッセージの一例を示す図The figure which shows an example of the extended RA message in 1st Embodiment of this indication technique 本開示技術の第1の実施の形態におけるUEの構成の一例を示す図The figure which shows an example of a structure of UE in 1st Embodiment of this indication technique. 本開示技術の第1の実施の形態におけるUEの動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of UE in 1st Embodiment of this indication technique. 本開示技術の第1の実施の形態におけるLGWの構成の一例を示す図The figure which shows an example of a structure of LGW in 1st Embodiment of this indication technique 本開示技術の第1の実施の形態におけるLGWの動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of LGW in 1st Embodiment of this indication technique. 本開示技術の第2の実施の形態の動作の一例を説明するためのシーケンス図The sequence diagram for demonstrating an example of operation | movement of 2nd Embodiment of this indication technique 本開示技術の第2の実施の形態における状態遷移の一例を示す図The figure which shows an example of the state transition in 2nd Embodiment of this indication technique 本開示技術の第2の実施の形態におけるUEの構成の一例を示す図The figure which shows an example of a structure of UE in 2nd Embodiment of this indication technique. 本開示技術の第2の実施の形態におけるUEの動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of UE in 2nd Embodiment of this indication technique. 本開示技術の第2の実施の形態におけるLGWの構成の一例を示す図The figure which shows an example of a structure of LGW in 2nd Embodiment of this indication technique. 本開示技術第2の実施の形態におけるLGWの動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of LGW in 2nd Embodiment of this indication technique. 本開示技術の第2の実施の形態においてLGWからSGWにアドレス設定情報を通知するためのメッセージの一例を示す図The figure which shows an example of the message for notifying address setting information from LGW to SGW in 2nd Embodiment of this indication technique. 本開示技術の第3の実施の形態の動作の一例を説明するためのシーケンス図Sequence diagram for explaining an example of the operation of the third embodiment of the disclosed technology 本開示技術の第3の実施の形態におけるUEの構成の一例を示す図The figure which shows an example of a structure of UE in 3rd Embodiment of this indication technique. 図17のステップS1701からステップS1705までのUEの動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of UE from step S1701 of FIG. 17 to step S1705. 図17のステップS1713からステップS1717までのUEの動作の一例を示すフローチャートThe flowchart which shows an example of operation | movement of UE from step S1713 of FIG. 17 to step S1717. 本開示技術の第3の実施の形態におけるLGWの構成の一例を示す図The figure which shows an example of a structure of LGW in 3rd Embodiment of this indication technique. 図17のステップS1701からステップS1703までのLGWの動作の一例を示すフローチャートFIG. 17 is a flowchart showing an example of LGW operation from step S1701 to step S1703 in FIG. 図17のステップS1707の一部(PBUメッセージの受信)からステップS1711までのLGWの動作の一例を示すフローチャートFIG. 17 is a flowchart showing an example of LGW operation from part of step S1707 (reception of a PBU message) to step S1711. 本開示技術の第3の実施の形態においてLGWからSGWに送信されるPBAメッセージの第1の例を示す図The figure which shows the 1st example of the PBA message transmitted from LGW to SGW in 3rd Embodiment of this indication technique. 本開示技術の第3の実施の形態においてLGWからSGWに送信されるPBAメッセージの第2の例を示す図The figure which shows the 2nd example of the PBA message transmitted from LGW to SGW in 3rd Embodiment of this indication technique.
 以下、図面を参照しながら、本開示技術の第1から第3の実施の形態について説明する。 Hereinafter, first to third embodiments of the disclosed technology will be described with reference to the drawings.
 まず、図1を参照しながら、本開示技術の第1から第3の実施の形態に共通するシステム構成について説明する。図1は、本開示技術の第1から第3の実施の形態並びに従来の技術に共通するシステム構成の一例を示す図である。 First, a system configuration common to the first to third embodiments of the disclosed technology will be described with reference to FIG. FIG. 1 is a diagram illustrating an example of a system configuration common to the first to third embodiments of the disclosed technology and the conventional technology.
 上述のように、図1に図示される通信システムは、UE100と無線接続する基地局(E-UTRAN300ではeNB(eNode B)310、LHN(Local HeNB Network)200ではHeNB(Home eNB)210と呼ばれる)、UE100の移動管理を担当するMME430、UE100のサブスクリプション情報を保持するHSS440、ユーザデータ配信制御を行うSGW410、UE100に対するアドレス割り当てやPDN500とSGW410との間のユーザデータ転送並びに経路制御を行うPGW420、LHN200においてEnterprise/Residentialネットワーク600とSGW410、若しくは、Enterprise/Residentialネットワーク600とHeNB210との間のユーザデータ転送並びに経路制御(データパス制御)を行うLGW220を有している。UE100は、本通信システムを利用することによりEnterprise/Residentialネットワーク600やPDN500とデータ通信を行う。また、図1では、LGW220はHeNB210とは別の装置として図示されているが、物理的あるいは論理的に1つのエンティティとして扱ってもよい。 As described above, the communication system illustrated in FIG. 1 is referred to as a base station (eNB (eNode B) 310 in E-UTRAN 300 and HeNB (Home eNB) 210 in LHN (Local HeNB Network) 200) that is wirelessly connected to UE 100. ), The MME 430 responsible for the mobility management of the UE 100, the HSS 440 holding the subscription information of the UE 100, the SGW 410 for performing user data distribution control, the PGW 420 for performing address assignment to the UE 100 and user data transfer and path control between the PDN 500 and the SGW 410 , LHN200 Enterprise / Residential network 600 and SGW410, or Enterprise / Residential network 00 to have a user data transfer and LGW220 performing routing control (data path control) between the HeNB 210. The UE 100 performs data communication with the enterprise / residential network 600 and the PDN 500 by using this communication system. In FIG. 1, the LGW 220 is illustrated as a device different from the HeNB 210, but may be physically or logically handled as one entity.
 ここで、UE100は少なくとも1つ以上の通信インタフェースを持ち、ネットワーク(例えば、E-UTRAN300又はLHN200)に接続することが可能である。なお、UE100は、図示されているネットワーク(例えば、E-UTRAN300又はLHN200)に、同時に、あるいは排他的に接続するものであってもよいが、1つの通信インタフェースで同時に接続できるのは1つのネットワークのみとする。UE100は、HeNB210やeNB310などの基地局を介して通信システムに接続し、当該ネットワークを通じて、PDN500やEnterprise/Residentialネットワーク600と通信可能である。なお、UE100がLHN200のLGW220との間にLIPAコネクションを確立する場合、コアネットワーク400内のエンティティ(MME430やSGW410など)が動作してLIPAコネクションを確立し、UE100はEnterprise/Residentialネットワーク600と通信可能になる。 Here, the UE 100 has at least one or more communication interfaces and can be connected to a network (for example, the E-UTRAN 300 or the LHN 200). Note that the UE 100 may be connected to the illustrated network (for example, the E-UTRAN 300 or the LHN 200) simultaneously or exclusively, but only one network can be connected at the same time through one communication interface. Only. The UE 100 is connected to the communication system via a base station such as the HeNB 210 or the eNB 310, and can communicate with the PDN 500 or the enterprise / residential network 600 through the network. When the UE 100 establishes a LIPA connection with the LGW 220 of the LHN 200, entities in the core network 400 (such as the MME 430 and the SGW 410) operate to establish the LIPA connection, and the UE 100 can communicate with the enterprise / residential network 600. become.
 上述したように、UE100は3GPPが制定する手順を用いることで、LHN200のLGW220との間にLIPAコネクションを確立することができる。なお、以下では、主に図1で示したネットワークの構成要素を用いて、LIPAコネクションの確立について説明するが、3GPPが制定するUTRAN(UMTS Terrestrial Radio Access Network)に対しても、本開示技術は適用可能である。なお、UTRANにおいては、上記したLHN200のHeNB210に相当する基地局はHNBと呼ばれ、LGW220と合わせた装置として利用される。したがって、図1ではLGW220が複数のHeNB210を管理しているが、UTRANではLGW220とHNBは1対1の関係となる。 As described above, the UE 100 can establish a LIPA connection with the LGW 220 of the LHN 200 by using a procedure established by 3GPP. In the following, the establishment of the LIPA connection will be described mainly using the network components shown in FIG. 1. However, the disclosed technique is also applicable to UTRAN (UMTS Terrestrial Radio Access Network) established by 3GPP. Applicable. In UTRAN, the base station corresponding to the above-described HeNB 210 of the LHN 200 is called an HNB and is used as a device combined with the LGW 220. Accordingly, in FIG. 1, the LGW 220 manages a plurality of HeNBs 210, but in the UTRAN, the LGW 220 and the HNB have a one-to-one relationship.
 以下、本開示技術の第1から第3の実施の形態において前提とするシステム動作の一例について、図4を用いて簡単に説明する。図4は、従来の技術に係るシステム動作の一例であり、かつ、本開示技術の第1から第3の実施の形態において前提とするシステム動作の一例を説明するためのシーケンス図である。ここでは、本開示技術の第1から第3の実施の形態の説明例として、UE100がLGW220との間にLIPAコネクションを確立する際に、MME430経由(E-UTRAN300経由)でPDNコネクション確立手順が実施される場合を、非特許文献1及び非特許文献2に開示されるネットワーク接続手順(Attach procedure)を参照しながら説明する。 Hereinafter, an example of a system operation premised on the first to third embodiments of the disclosed technology will be briefly described with reference to FIG. FIG. 4 is an example of a system operation according to a conventional technique, and is a sequence diagram for explaining an example of a system operation premised on the first to third embodiments of the disclosed technique. Here, as an explanation example of the first to third embodiments of the disclosed technology, when the UE 100 establishes a LIPA connection with the LGW 220, a PDN connection establishment procedure is performed via the MME 430 (via the E-UTRAN 300). The implementation will be described with reference to the network connection procedure (Attach procedure) disclosed in Non-Patent Document 1 and Non-Patent Document 2.
 UE100がLHN200のHeNB210経由でLGW220とLIPAコネクションを確立する手順(図4)は、UE100がE-UTRAN300のeNB310経由でPGW420とPDNコネクションを確立する手順と一部を除いて同じ手順となっている。手順において異なるのは、確立するPDNコネクションがLIPAコネクションか、あるいは、従来の(LIPAではない)PDNコネクション(PGW420とのPDNコネクション)かをMME430が判断し、確立するPDNコネクションがLIPAを目的としたものである場合には、MME430がHeNB210に対して、HeNB210とLGW220との間のダイレクトパスを確立するための情報(Correlation ID)を通知する点と、HeNB210がLGW220との間にダイレクトパスを確立する点である。 The procedure for the UE 100 to establish a LIPA connection with the LGW 220 via the HeNB 210 of the LHN 200 (FIG. 4) is the same except for a part of the procedure for the UE 100 to establish a PDN connection with the PGW 420 via the eNB 310 of the E-UTRAN 300. . The difference in the procedure is that the MME 430 determines whether the PDN connection to be established is a LIPA connection or a conventional (non-LIPA) PDN connection (a PDN connection with the PGW 420), and the PDN connection to be established is intended for LIPA If it is, the MME 430 notifies the HeNB 210 of information (correlation ID) for establishing a direct path between the HeNB 210 and the LGW 220, and the HeNB 210 establishes a direct path between the LGW 220. It is a point to do.
 このLIPAコネクションか否かを示す情報は、3GPPではCorrelation IDと呼ばれており、図4のステップS401の一部(非特許文献1を参照:例えば非特許文献1のFigure 5.3.2.1-1のステップ17)でMME430からHeNB210に通知され、HeNB210は、受信したCorrelation IDを使用して、LGW220との間のダイレクトパスを確立する(非特許文献1及び非特許文献2を参照)。 The information indicating whether or not this is a LIPA connection is called Correlation ID in 3GPP, and is a part of step S401 in FIG. 4 (see Non-Patent Document 1: For example, FIG. 5.3.2 of Non-Patent Document 1). 1-1, notified to the HeNB 210 from the MME 430, and the HeNB 210 establishes a direct path with the LGW 220 using the received Correlation ID (see Non-Patent Document 1 and Non-Patent Document 2). .
 非特許文献2で開示されるように、コアネットワーク400でPMIPが利用されるPMIP環境において、UE100とLGW220との間にLIPAコネクションを確立する場合、UE100にIPv6プレフィックスを割り当てるためのRAメッセージはSGW410から送られる。また、非特許文献1から3で開示されるように、RAメッセージは、定期的にSGW410からUE100に送られるものである。 As disclosed in Non-Patent Document 2, when a LIPA connection is established between the UE 100 and the LGW 220 in a PMIP environment where PMIP is used in the core network 400, an RA message for assigning an IPv6 prefix to the UE 100 is an SGW 410. Sent from. Further, as disclosed in Non-Patent Documents 1 to 3, the RA message is periodically sent from the SGW 410 to the UE 100.
 また、非特許文献1から3で開示されるように、UE100はIPv6プレフィックスを取得するためにRSメッセージをネットワークに送信することができる。このRSメッセージは、ユーザデータとして扱われるため、HeNB210からダイレクトパスを経由して、LGW220に転送され、LGW220からRAメッセージを受信する。 Further, as disclosed in Non-Patent Documents 1 to 3, the UE 100 can transmit an RS message to the network in order to obtain an IPv6 prefix. Since this RS message is handled as user data, it is transferred from the HeNB 210 via the direct path to the LGW 220 and receives an RA message from the LGW 220.
 その結果、UE100がRSメッセージをネットワークに送信する場合、図2に示すように、UE100は2つのゲートウェイ(SGW410とLGW220)からRAメッセージを受信し、2つのRAメッセージの情報を管理することとなる。また、UE100が当該レイヤ2リンクに対して1つしか保持できない情報(例えば、Link-MTU値)は、もっとも最近に受信した情報で上書きされるため、上記したように非効率な通信が発生する可能性がある。 As a result, when the UE 100 transmits an RS message to the network, as shown in FIG. 2, the UE 100 receives RA messages from two gateways (SGW 410 and LGW 220) and manages information of the two RA messages. . In addition, information (for example, the Link-MTU value) that the UE 100 can hold only for the layer 2 link is overwritten with the most recently received information, and thus inefficient communication occurs as described above. there is a possibility.
<第1の実施の形態>
 本開示技術の第1の実施の形態では、上記したLGW220からUE100に対して送信されるRAメッセージ(図2中のRA_1)を拡張することで、上記課題を解決する。
<First Embodiment>
In 1st Embodiment of this indication technique, the said subject is solved by extending RA message (RA_1 in FIG. 2) transmitted to UE100 from above-mentioned LGW220.
 まず、UE100は、非特許文献1又は非特許文献2に開示されるPDNコネクション確立手順を実施して、LGW220との間にLIPAコネクションを確立する。続いて、UE100はRSメッセージをネットワークに送信する。RSメッセージは、HeNB210からダイレクトパスを介してLGW220へ転送される(SGW410を経由しない)。LGW220は、受信したRSメッセージに応答して、RAメッセージをUE100宛に送信する。 First, the UE 100 performs a PDN connection establishment procedure disclosed in Non-Patent Document 1 or Non-Patent Document 2 and establishes a LIPA connection with the LGW 220. Subsequently, the UE 100 transmits an RS message to the network. The RS message is transferred from the HeNB 210 to the LGW 220 via the direct path (not via the SGW 410). The LGW 220 transmits an RA message to the UE 100 in response to the received RS message.
 本開示技術の第1の実施の形態では、LGW220からUE100に対して送信されるRAメッセージを図5に示すように拡張することで、上記課題を解決する。すなわち、本開示技術の第1の実施の形態では、LGW220から従来送信されるRAメッセージに、LGW220から送信されるRAメッセージのみを利用するように指示する情報(他RA無視指示情報やRA指定情報、RA特定情報などとも呼ぶ)を追加することで、UE100はLIPAコネクションに係るIP設定(コンフィグレーション)において、LGW220からUE100に送信されるRAメッセージ(図2中のRA_1)に含まれる情報のみを選択的に利用して適切に設定を行えるようになり、上記した非効率な通信状態を回避することができる。RA指定情報は、LGW220から送信されるRAメッセージだけを利用するように指示する情報であるが、LGW220以外のRAメッセージの送信元(例えば、図2中のSGW410)からのRAメッセージを無視するよう指示する情報であると解釈することもできる。 In the first embodiment of the disclosed technique, the RA problem transmitted from the LGW 220 to the UE 100 is extended as shown in FIG. That is, in the first embodiment of the disclosed technique, information that instructs to use only the RA message transmitted from the LGW 220 in the RA message conventionally transmitted from the LGW 220 (other RA ignore instruction information and RA designation information). , Which is also referred to as RA specific information), the UE 100 can receive only the information included in the RA message (RA_1 in FIG. 2) transmitted from the LGW 220 to the UE 100 in the IP setting (configuration) related to the LIPA connection. As a result, it becomes possible to make appropriate settings by selectively using it, and the inefficient communication state described above can be avoided. The RA designation information is information for instructing to use only the RA message transmitted from the LGW 220, but ignores the RA message from the RA message transmission source (for example, the SGW 410 in FIG. 2) other than the LGW 220. It can also be interpreted as the information to be instructed.
 なお、従来のRAメッセージに格納されている情報(例えば、ソースアドレスやポート番号など)を参照することで、UE100がRAメッセージの送信元を判別することができる場合には、RAメッセージの送信元を判別するための情報をRA指定情報として利用してもよい。また、RA指定情報として、例えば、UE100とLGW220の間で共有されるトークンやID、又は、PDNコネクションの確立時に交換した情報(鍵情報やTMSI(Temporary Mobile Subscriber Identity))などを利用してもよい。 When the UE 100 can determine the source of the RA message by referring to information (for example, a source address and a port number) stored in the conventional RA message, the source of the RA message May be used as RA designation information. Further, as RA designation information, for example, a token or ID shared between the UE 100 and the LGW 220, or information exchanged when a PDN connection is established (key information or TMSI (Temporary Mobile Subscriber Identity)) or the like may be used. Good.
 LGW220は、UE100のPDNコネクションを確立する際、SGW410との接続インタフェースであるS5あるいはS8にPMIPが適用されている、かつ、リクエストされたPDNコネクションがLIPA向けであると確認できた場合に、後にUE100からのRSメッセージに応答して図5に示すような拡張RAメッセージを送信できるよう状態を形成する。例えば、UE100のコンテキスト情報に当該状態を記憶しておき、後にRSメッセージを受信したときにコンテキスト情報を参照し、従来RAか拡張RAのいずれで応答するかを判別する。UE100は、それ以降、RA指定情報が格納されているRAメッセージ(すなわち拡張RAメッセージ)だけを信頼することで、常に正しい情報を取得、設定することができる。すなわち、RA指定情報が格納されていないRAメッセージを全て無視する。 When the LGW 220 establishes the PDN connection of the UE 100 and confirms that PMIP is applied to S5 or S8, which is the connection interface with the SGW 410, and that the requested PDN connection is for LIPA, In response to the RS message from the UE 100, a state is formed so that an extended RA message as shown in FIG. 5 can be transmitted. For example, the state is stored in the context information of the UE 100, and when the RS message is received later, the context information is referred to and it is determined whether to respond with the conventional RA or the extended RA. Thereafter, the UE 100 can always obtain and set correct information by trusting only the RA message in which the RA designation information is stored (that is, the extended RA message). That is, all RA messages in which RA designation information is not stored are ignored.
 なお、本開示技術の第1の実施の形態を容易に説明するために、ネットワーク接続手順(Attach procedure)を一例として説明したが、PDNコネクションを確立する他の手順(例えば、PDN connectivity requestを用いて、PDNコネクションを確立する手順)などを用いてもよい。 In order to easily explain the first embodiment of the disclosed technology, the network connection procedure (Attach procedure) has been described as an example, but other procedures for establishing a PDN connection (for example, PDN connectivity request are used). Or a procedure for establishing a PDN connection).
 次に、図6を参照しながら、本開示技術の第1の実施の形態におけるUE100の構成について説明する。図6は、本開示技術の第1の実施の形態におけるUE100の構成の一例を示す図である。図6において、UE100はネットワーク(例えば、E-UTRANやLHN)と接続して下位レイヤにおける通信処理と上位レイヤでIPなどのパケット通信処理を実施する通信処理部101と、受信したRAメッセージにRA指定情報が格納されているか否かを確認し、RA指定情報が格納されているRAメッセージのみ評価して利用する、あるいは、RA指定情報が格納されていないRAメッセージに含まれている情報又はそうしたRAメッセージそのものを無視(ドロップ)するRAメッセージ処理部102とを少なくとも有する。なお、上記したUE100の構成は一例を示したものであり、例えば、RAメッセージ処理部102が保持するRA指定情報が格納されているか否かを確認する機能と、RA指定情報が格納されていない場合にはそのRAメッセージに含まれている情報を無視する機能とに分けて実装してもよい。 Next, the configuration of the UE 100 according to the first embodiment of the disclosed technology will be described with reference to FIG. FIG. 6 is a diagram illustrating an example of a configuration of the UE 100 according to the first embodiment of the present disclosure. In FIG. 6, a UE 100 is connected to a network (for example, E-UTRAN or LHN) to perform communication processing in a lower layer and packet communication processing such as IP in an upper layer, and to a RA message received as an RA message. Check whether specified information is stored and evaluate and use only RA messages in which RA specified information is stored, or information included in RA messages in which RA specified information is not stored or such It has at least an RA message processing unit 102 that ignores (drops) the RA message itself. Note that the above-described configuration of the UE 100 is an example. For example, a function for confirming whether RA designation information held by the RA message processing unit 102 is stored, and RA designation information is not stored. In some cases, it may be implemented separately from the function of ignoring information included in the RA message.
 次に、図6に図示されている構成を有するUE100について、本開示技術における特徴的な処理を中心に、図7を用いて詳しく説明する。図7は、本開示技術の第1の実施の形態におけるUE100の動作の一例を示すフローチャートである。 Next, the UE 100 having the configuration illustrated in FIG. 6 will be described in detail with reference to FIG. 7, focusing on the characteristic processing in the disclosed technology. FIG. 7 is a flowchart showing an example of the operation of the UE 100 in the first embodiment of the disclosed technology.
 UE100は、3GPPにおいて規定されるPDNコネクションの確立手順に従って、Attach requestメッセージを送信する(図7のステップS701)。続いて、UE100は、ネットワークがAttach requestを許可した結果であるAttach acceptメッセージ(以降、接続受諾メッセージと呼ぶこともある)を受信する(図7のステップS703)。その後、UE100がRAメッセージを受信すると、RAメッセージにRA指定情報が格納されているか否かを確認する(図7のステップS705)。RAメッセージにRA指定情報が格納されていることが確認された場合は、従来通り、そのRAメッセージ情報を使用する(図7のステップS707)。一方、RA指定情報が格納されていない場合は、UE100はRAメッセージに含まれている情報あるいはRAメッセージそのものを無視(破棄)する(図7のステップS709)。 UE 100 transmits an Attach request message according to the procedure for establishing a PDN connection defined in 3GPP (step S701 in FIG. 7). Subsequently, the UE 100 receives an Attach accept message (hereinafter also referred to as a connection acceptance message) that is a result of the network permitting Attach request (step S703 in FIG. 7). Thereafter, when the UE 100 receives the RA message, it checks whether or not RA designation information is stored in the RA message (step S705 in FIG. 7). When it is confirmed that RA designation information is stored in the RA message, the RA message information is used as usual (step S707 in FIG. 7). On the other hand, when the RA designation information is not stored, the UE 100 ignores (discards) the information included in the RA message or the RA message itself (step S709 in FIG. 7).
 次に、図8を参照しながら、本開示技術の第1の実施の形態におけるLGW220の構成について説明する。図8は、本開示技術の第1の実施の形態におけるLGW220の構成の一例を示す図である。図8において、LGW220はコアネットワーク400のSGW410やLHNのHeNB210と通信処理を行い、IPなどのパケット通信処理を実施する通信処理部221、PMIP環境におけるLIPAコネクションを保持するUE100に対してRAメッセージを送信する際(例えば、RSメッセージを受信した際)、UE100に送信するRAメッセージを、RA指定情報を格納した拡張RAメッセージに加工するRAメッセージ加工部222を少なくとも有する。 Next, the configuration of the LGW 220 in the first embodiment of the disclosed technique will be described with reference to FIG. FIG. 8 is a diagram illustrating an example of a configuration of the LGW 220 according to the first embodiment of the disclosed technique. In FIG. 8, the LGW 220 performs communication processing with the SGW 410 of the core network 400 and the HeNB 210 of the LHN, and performs an RA message to the communication processing unit 221 that performs packet communication processing such as IP, and the UE 100 that holds the LIPA connection in the PMIP environment. At the time of transmission (for example, when an RS message is received), it has at least an RA message processing unit 222 that processes an RA message to be transmitted to the UE 100 into an extended RA message storing RA designation information.
 次に、図8に図示されている構成を有するLGW220について、本開示技術における特徴的な処理を中心に、図9を用いて詳しく説明する。図9は、本開示技術の第1の実施の形態におけるLGW220の動作の一例を示すフローチャートである。 Next, the LGW 220 having the configuration illustrated in FIG. 8 will be described in detail with reference to FIG. 9, focusing on the characteristic processing in the disclosed technology. FIG. 9 is a flowchart illustrating an example of the operation of the LGW 220 according to the first embodiment of the disclosed technique.
 LGW220は、3GPPにおいて規定されるPDNコネクション確立手順において、SGW410からPBU(Proxy Binding Update:プロキシバインディングアップデート)メッセージ(以降、登録要求メッセージと呼ぶこともある)を受信する(図9のステップS901)。このとき、LGW220は、上記したように、トランスポートプロトコルとしてPMIPが利用されており、かつ、リクエストされたPDNコネクションがLIPA向けであると確認できた場合には、そのUE100からのRSメッセージに対する応答として拡張RAメッセージを送信できるようにするため、このUE100がPMIP環境においてLIPAコネクションを保持するUE100であることを、例えば、UE100のコンテキスト情報に記録する。例えば、ネットワークが保持しているUEコンテキストやSubscription data、又は、送信されたメッセージ内のパラメータにおいて、PDNコネクション確立リクエストを送信したUE100のトラフィックトランスポートに適用されるプロトコルがPMIPであり、かつ、UE100から送信されるPDNコネクション確立リクエストに格納されているAPNがLIPAのためのAPNである場合、LIPAコネクションを保持するUE100であると判断することができる。 The LGW 220 receives a PBU (Proxy Binding Update) message (hereinafter also referred to as a registration request message) from the SGW 410 in the PDN connection establishment procedure defined in 3GPP (step S901 in FIG. 9). At this time, as described above, when the LGW 220 uses PMIP as a transport protocol and confirms that the requested PDN connection is for LIPA, the LGW 220 responds to the RS message from the UE 100. In order to be able to transmit an extended RA message as follows, it is recorded in the context information of the UE 100 that the UE 100 is a UE 100 that holds a LIPA connection in the PMIP environment. For example, the protocol applied to the traffic transport of the UE 100 that transmitted the PDN connection establishment request in the UE context and the subscription data held by the network or the parameter in the transmitted message is PMIP, and the UE 100 If the APN stored in the PDN connection establishment request transmitted from is an APN for LIPA, it can be determined that the UE 100 holds the LIPA connection.
 なお、LGW220は、PBUメッセージを受信したことを受けて、UE100のトラフィックトランスポートに適用されるプロトコルがPMIPであることを判断してもよい(既に自明であるため)。また、LIPAを目的としたAPNであるか否かの確認は、例えばMME430などの他のネットワークノードに問い合わせてもよいし、LGW220内に事前に設定されている情報を用いてもよい。また、LGW220にはLIPAコネクションの確立のみがリクエストされる運用である場合(例えば、LGW220はLIPAコネクションしか収容しないような運用である場合)、LGW220は、LIPAを目的としたAPNであるか否かの確認を省略することができ、すべてのUEに係るPDNコネクションをLIPAコネクションとして取り扱うことができる。 Note that the LGW 220 may determine that the protocol applied to the traffic transport of the UE 100 is PMIP upon receiving the PBU message (because it is already obvious). Whether or not the APN is intended for LIPA may be inquired of other network nodes such as the MME 430, or information set in advance in the LGW 220 may be used. In addition, when the LGW 220 is an operation in which only establishment of a LIPA connection is requested (for example, when the LGW 220 is an operation that accommodates only the LIPA connection), the LGW 220 is an APN for the purpose of LIPA. Can be omitted, and PDN connections related to all UEs can be handled as LIPA connections.
 LGW220は、LIPAコネクションを保持するUE100にRAメッセージを送信する際(すなわち、受信したRSメッセージへの応答としてRAメッセージを送信する場合)、RA指定情報を格納した拡張RAメッセージをUE100に送信する(図9のステップS903)。最後にLGW220はSGW410にPBAメッセージを送信する(図9のステップS905)。 When the LGW 220 transmits an RA message to the UE 100 that holds the LIPA connection (that is, when an RA message is transmitted as a response to the received RS message), the LGW 220 transmits an extended RA message storing RA designation information to the UE 100 ( Step S903 in FIG. 9). Finally, the LGW 220 transmits a PBA message to the SGW 410 (step S905 in FIG. 9).
 次に図5を参照しながら、LGW220からUE100に送信されるRA指定情報が格納されたRAメッセージ(すなわち拡張RAメッセージ)のフォーマット例について説明する。図5に示す拡張RAメッセージは、通常のRAメッセージ内の情報が格納される“従来のRAメッセージフィールド”と、他のゲートウェイ(例えば、SGW410)から送信されるRAメッセージをUE100が無視(ドロップ)するように指示することを目的としたRA指定情報が格納される“RA指定情報フィールド”とにより構成される。“RA指定情報フィールド”には、例えば、UE100が以降受信するRAメッセージを利用するか否かを識別できるようにするためのRAメッセージ識別子や、UE100がRAメッセージに含まれる情報を無視すべきか否かを判断するためのフラグ情報(例えば、0又は1で表現されるビット)などが格納される。なお、UE100が、RAメッセージに格納されるIPヘッダ情報を参照して送信元を識別することで、RAメッセージに含まれる情報を無視すべきか否かを判断できる場合には、“RA指定情報フィールド”は省略可能である。 Next, a format example of an RA message (that is, an extended RA message) in which RA designation information transmitted from the LGW 220 to the UE 100 is stored will be described with reference to FIG. In the extended RA message shown in FIG. 5, the UE 100 ignores (drops) the “conventional RA message field” in which information in a normal RA message is stored and the RA message transmitted from another gateway (for example, the SGW 410). It is composed of an “RA designation information field” in which RA designation information for the purpose of instructing is stored. In the “RA designation information field”, for example, an RA message identifier for enabling the UE 100 to identify whether or not to use an RA message received thereafter, or whether the UE 100 should ignore information included in the RA message. For example, flag information (for example, bits represented by 0 or 1) is stored. When the UE 100 can determine whether or not the information included in the RA message should be ignored by referring to the IP header information stored in the RA message to identify the transmission source, the “RA designation information field” "" Can be omitted.
 以上、本開示技術の第1の実施の形態によれば、UE100が特定のゲートウェイからのRAメッセージのみを選択し、他のゲートウェイから送信されるRAメッセージを無視できるようにすることで、UE100が誤ったパラメータ(例えば、Link-MTU値)を用いてユーザデータを交換する問題を回避することができる。すなわち、UE100は有効なRA指定情報が格納されているRAメッセージ(すなわち拡張RAメッセージ)だけを信頼することで、常に正しい情報を取得、設定することができる。 As described above, according to the first embodiment of the present disclosure, the UE 100 can select only the RA message from the specific gateway and ignore the RA message transmitted from the other gateway. The problem of exchanging user data using wrong parameters (for example, Link-MTU value) can be avoided. That is, the UE 100 can always obtain and set correct information by trusting only the RA message (that is, the extended RA message) in which valid RA designation information is stored.
<第2の実施の形態>
 上記第1の実施の形態では、非特許文献3で規定されているRAメッセージを拡張することで解決する方法を説明したが、本開示技術の第2の実施の形態では、3GPPが規定するメッセージ(制御シグナリング)を拡張することで、課題を解決する。これにより、非特許文献3のRFCで規定されているRAメッセージの変更が不要となり、端末OSの改修コストを大きく低減させることができる。
<Second Embodiment>
In the first embodiment, the method for solving the problem by extending the RA message defined in Non-Patent Document 3 has been described. However, in the second embodiment of the disclosed technology, the message defined by 3GPP The problem is solved by extending (control signaling). Thereby, it is not necessary to change the RA message defined in the RFC of Non-Patent Document 3, and the repair cost of the terminal OS can be greatly reduced.
 以下、本開示技術の第2の実施の形態について説明する。図10は、本開示技術の第2の実施の形態の動作の一例を説明するためのシーケンス図である。なお、図10は、本開示技術の第1の実施の形態の動作の一例を説明するためのシーケンス図(図4)をベースとしているため、重複するステップの説明は省略する。 Hereinafter, a second embodiment of the disclosed technique will be described. FIG. 10 is a sequence diagram for explaining an example of the operation of the second embodiment of the disclosed technique. Note that FIG. 10 is based on the sequence diagram (FIG. 4) for explaining an example of the operation of the first embodiment of the disclosed technique, and thus the description of the overlapping steps is omitted.
 図10は、UE100とLGW220との間にLIPAコネクションを確立するための手順を示している。図4や非特許文献1又は非特許文献2で開示されているように、UE100は、例えばネットワーク接続手順(Attach procedure)において、接続先ネットワークの識別情報であるAPNを格納したPDNコネクション確立リクエストをネットワークに送信する(図10のステップS1001)。続いて、LIPAコネクションを確立するための処理を実施するために、本開示技術の第1の実施の形態と同様に、非特許文献1及び非特許文献2で開示されている手順を実施する(図10のステップS1002からステップS1003までの処理)。 FIG. 10 shows a procedure for establishing a LIPA connection between the UE 100 and the LGW 220. As disclosed in FIG. 4 and Non-Patent Document 1 or Non-Patent Document 2, the UE 100, for example, in a network connection procedure (Attach procedure), sends a PDN connection establishment request storing an APN that is identification information of a connection destination network. It transmits to the network (step S1001 in FIG. 10). Subsequently, in order to carry out the process for establishing the LIPA connection, the procedure disclosed in Non-Patent Document 1 and Non-Patent Document 2 is performed as in the first embodiment of the disclosed technology ( Processing from step S1002 to step S1003 in FIG. 10).
 続いて、ネットワークが、UE100から送られてきたPDNコネクション確立リクエストで示されたAPNは、UE100が接続を許可されたLIPA向けのAPNであると判断した場合(LIPAコネクションとして確立される場合)、LGW220は、UE100に通知するRAメッセージの情報(アドレス設定情報)を、PBA(Proxy Binding Acknowledgement:プロキシバインディングアップデート)メッセージ(本明細書では、登録応答メッセージと記載することもある)のPCO(Protocol Configuration Option)(オプションフィールドとも呼ぶ)に格納して、SGW410に返信する(図10のステップS1004)。PCOを用いることにより、LGW220は任意の情報をUE100に直接情通知することができる。UE100は、RAメッセージの情報(アドレス設定情報)が格納されたPCO付きのメッセージを受信する(図10のステップS1005)。LGW220がUE100に対して通知するRAメッセージの情報(アドレス設定情報)は、図2中のRA_2に含まれる情報であり、UE100は、PCO内に格納されたRAメッセージの情報(アドレス設定情報)を用いて、UE100とLGW220との間におけるLIPAコネクションを経由した通信の設定を適切に行うことが可能となる。 Subsequently, when the network determines that the APN indicated by the PDN connection establishment request sent from the UE 100 is an APN for LIPA to which the UE 100 is permitted to connect (when established as a LIPA connection), The LGW 220 converts the RA message information (address setting information) to be notified to the UE 100 into a PCO (Protocol Configuration) in a PBA (Proxy Binding Acknowledgment) message (which may be referred to as a registration response message in this specification). (Option) (also referred to as an option field) and returns to the SGW 410 (step S1004 in FIG. 10). By using PCO, the LGW 220 can directly notify the UE 100 of arbitrary information. The UE 100 receives the message with the PCO in which the RA message information (address setting information) is stored (step S1005 in FIG. 10). The RA message information (address setting information) notified to the UE 100 by the LGW 220 is information included in the RA_2 in FIG. 2, and the UE 100 stores the RA message information (address setting information) stored in the PCO. It is possible to appropriately set communication between the UE 100 and the LGW 220 via the LIPA connection.
 また、UE100は、ステップS1005のメッセージを受信してから以降は、受信するRAメッセージを全て無視(破棄)する。なお、図11に示すように、UE100は、受信するRAメッセージを通常の動作(非特許文献1から3を参照)で処理する通常状態から、以降受信するRAメッセージを全て無視する状態(以降、PCO信じ続けるモード、PCO重視モード、(単に)PCOモード、RAのNAS転送モード、指定アドレスモードなどとも呼ぶ)に遷移する。すなわち、PCOに格納されたアドレス設定情報(RAメッセージに含まれるのと同じ情報、又は、RAメッセージそのもの)を使用し続けるための新たなモードを設けることで、以降受信するRAメッセージを無視するようにする。これにより、UE100は、PCO内に格納されたRAメッセージの情報(アドレス設定情報)を用いた通信設定を維持するとともに、例えばSGW410から通知されるRAメッセージ(図2中のRA_1)内の情報をUE100に設定させないようにすることができる。 Further, after receiving the message in step S1005, the UE 100 ignores (discards) all the received RA messages. Note that, as shown in FIG. 11, the UE 100 ignores all the RA messages received thereafter from the normal state in which the received RA message is processed in a normal operation (see Non-Patent Documents 1 to 3) (hereinafter, Transition to a PCO belief mode, a PCO emphasis mode, a (simply) PCO mode, an RA NAS transfer mode, a designated address mode, etc. That is, by providing a new mode for continuing to use the address setting information (the same information included in the RA message or the RA message itself) stored in the PCO, the RA message received thereafter is ignored. To. Thereby, the UE 100 maintains the communication setting using the information (address setting information) of the RA message stored in the PCO, and the information in the RA message (RA_1 in FIG. 2) notified from the SGW 410, for example. The UE 100 can be prevented from being set.
 次に、図12を参照しながら、本開示技術の第2の実施の形態におけるUE100の構成について説明する。図12は、本開示技術の第2の実施の形態におけるUE100の構成の一例を示す図である。図12において、UE100はネットワーク(例えば、E-UTRAN300やLHN200)と接続して下位レイヤにおける通信処理と上位レイヤでIPなどのパケット通信処理を実施する通信処理部101と、ネットワークから送信されるメッセージに格納されているPCO内のRAメッセージ情報(アドレス設定情報)をRAメッセージとして処理を行う機能、PCO内にRAメッセージ情報が格納されている場合に、以降受信するRAメッセージを無視する処理を行う機能、PCO内にRAメッセージ情報が格納されている場合に、他RAメッセージを無視しつづけるための状態を維持するための情報(モード)の管理処理を行う機能を含むオプションフィールド内アドレス設定情報処理部103を少なくとも有する。なお、上記したUE100の構成は一例を示したものであり、各処理機能を処理部として分けてもよい。例えば、上記したオプションフィールド内アドレス設定情報処理部103が取得したPCO内にRAメッセージ情報(アドレス設定情報)が格納されている場合に、以降受信するRAメッセージを無視する処理を例えばRAメッセージドロップ部とし、また、他RAメッセージを無視し続ける状態を維持するための情報(モード)の管理処理を例えばモード管理部とすることで処理部を分けてもよい。 Next, the configuration of the UE 100 according to the second embodiment of the disclosed technology will be described with reference to FIG. FIG. 12 is a diagram illustrating an example of a configuration of the UE 100 according to the second embodiment of the present disclosure. In FIG. 12, a UE 100 is connected to a network (for example, E-UTRAN 300 or LHN 200), performs communication processing in a lower layer and packet communication processing such as IP in an upper layer, and a message transmitted from the network. A function for processing RA message information (address setting information) in the PCO stored in the PC as an RA message. When RA message information is stored in the PCO, a process for ignoring the RA message received thereafter is performed. When the RA message information is stored in the function, the PCO, the option field address setting information processing including the function of managing the information (mode) for maintaining the state for continuing to ignore other RA messages. It has at least part 103. Note that the configuration of the UE 100 described above is an example, and each processing function may be divided as a processing unit. For example, when RA message information (address setting information) is stored in the PCO acquired by the option field address setting information processing unit 103 described above, processing for ignoring the RA message received thereafter is performed, for example, by an RA message drop unit. In addition, the processing unit may be divided by using, for example, a mode management unit as a management process for information (mode) for maintaining a state in which other RA messages are ignored.
 図12に図示されているオプションフィールド内アドレス設定情報処理部103は、従来のPCOには格納されていないRAメッセージ情報(アドレス設定情報)を、従来、通常のIPパケットとして受信していたRAメッセージ情報と同じように処理する。UE100がPCO内に格納されるRAメッセージ情報(アドレス設定情報)を通常のRAメッセージと同じように処理できるようにするために、例えば、メッセージタイプやパケット長などを統一しておいてもよい。また、オプションフィールド内アドレス設定情報処理部103は、例えば、OS(オペレーションシステム)のIPスタック(図12では通信処理部101の一部に相当)の一部として実装されるパケットフィルタ機能を利用することができる。パケットフィルタを用いて特定のソースアドレスから受信した特定のプロトコル番号(タイプ)を持つIPパケットをドロップあるいは通過させたりする設定を行える。例えば、プロトコル番号58(IPv6-ICMP)、ICMPタイプ134をキーとして設定することにより、RAメッセージを特定することができる(加えて受信方向の設定をする必要があるかもしれない)。 The option field address setting information processing unit 103 shown in FIG. 12 has received RA message information (address setting information) that is not stored in the conventional PCO as a normal IP packet. Process like information. In order to enable the UE 100 to process the RA message information (address setting information) stored in the PCO in the same way as a normal RA message, for example, the message type and the packet length may be unified. The option field address setting information processing unit 103 uses, for example, a packet filter function implemented as part of an OS (operation system) IP stack (corresponding to a part of the communication processing unit 101 in FIG. 12). be able to. Using a packet filter, it is possible to set to drop or pass an IP packet having a specific protocol number (type) received from a specific source address. For example, the RA message can be specified by setting the protocol number 58 (IPv6-ICMP) and the ICMP type 134 as a key (in addition, the reception direction may need to be set).
 次に、図12に図示されている構成を有するUE100について、本開示技術における特徴的な処理を中心に、図13を用いて詳しく説明する。図13は、本開示技術の第2の実施の形態におけるUE100の動作の一例を示すフローチャートである。 Next, the UE 100 having the configuration illustrated in FIG. 12 will be described in detail with reference to FIG. 13 with a focus on characteristic processing in the disclosed technology. FIG. 13 is a flowchart illustrating an example of the operation of the UE 100 according to the second embodiment of the present disclosure.
 最初に、UE100は、PDNコネクションを確立するためのメッセージ(例えば、非特許文献1で開示されるAttach requestメッセージ(又は、PDN connectivity requestメッセージ)をネットワークに送信する(図13のステップS1301)。そして、UE100は、3GPPが制定するPDNコネクション確立手順がネットワークによって許可される際にネットワークからUE100に対して送信されるAttach Acceptメッセージを受信する(図13のステップS1303)。 First, the UE 100 transmits a message for establishing a PDN connection (for example, an Attach request message (or a PDN connectivity request message) disclosed in Non-Patent Document 1) to the network (step S1301 in FIG. 13). The UE 100 receives an Attach Accept message transmitted from the network to the UE 100 when the PDN connection establishment procedure established by 3GPP is permitted by the network (step S1303 in FIG. 13).
 続いて、UE100は受信したAttach AcceptメッセージのPCO(オプションフィールド)にRAメッセージ情報(アドレス設定情報)が格納されているかどうかを確認する(図13のステップS1305)。PCO(オプションフィールド)にRAメッセージ情報(アドレス設定情報)が格納されていると判断した場合、UE100は、PCO(オプションフィールド)に格納されているRAメッセージ情報(アドレス設定情報)を通常受信するRAメッセージ(アドレス設定情報)(ゲートウェイから定期的に送信されるRAメッセージや、RSメッセージに対するRAメッセージ)として処理する(図13のステップS1307)。続いて、UE100は、以降受信するRAメッセージを無視し続ける状態になる(PCOに格納されているRAメッセージ情報を信じ続けるモード(指定アドレスモード)に変更する)(図13のステップS1309)。 Subsequently, the UE 100 confirms whether RA message information (address setting information) is stored in the PCO (option field) of the received Attach Accept message (step S1305 in FIG. 13). When it is determined that RA message information (address setting information) is stored in the PCO (option field), the UE 100 normally receives RA message information (address setting information) stored in the PCO (option field). It is processed as a message (address setting information) (RA message periodically transmitted from the gateway or RA message for the RS message) (step S1307 in FIG. 13). Subsequently, the UE 100 continues to ignore the RA message received thereafter (changes to a mode in which the RA message information stored in the PCO continues to be trusted (designated address mode)) (step S1309 in FIG. 13).
 なお、ステップS1307のPCOに格納されているRAメッセージ情報(アドレス設定情報)を通常のRAメッセージに格納されているアドレス設定情報として処理するステップと、ステップS1309の指定アドレスモードに変更するステップは、実施順序が前後してもよい。また、UE100がPCOからモード切り替え情報を取得した時に、本願発明を動作させるモードに遷移し、後述するパケットフィルタの設定などを行う。すなわち、パケットフィルタの設定以降は、特定のリンクローカルアドレスをソースアドレスとしない限りRAメッセージを受信することはない。つまり、パケットフィルタを適正に設定することで、上記説明した2つのモードを明示的に区別する必要がなくなり、すなわち暗黙のうちに取捨選択されるにようになるので、ステップS1309を省略できる。 The step of processing the RA message information (address setting information) stored in the PCO in step S1307 as the address setting information stored in the normal RA message and the step of changing to the designated address mode in step S1309 are as follows: The execution order may be changed. Further, when the UE 100 acquires the mode switching information from the PCO, the UE 100 transits to a mode for operating the present invention, and performs setting of a packet filter, which will be described later. That is, after setting the packet filter, the RA message is not received unless a specific link local address is used as the source address. In other words, by appropriately setting the packet filter, there is no need to explicitly distinguish between the two modes described above, that is, the selection is made implicitly, so step S1309 can be omitted.
 次に、図14を参照しながら、本開示技術の第2の実施の形態におけるLGW220の構成について説明する。図14は、本開示技術の第2の実施の形態におけるLGW220の構成の一例を示す図である。図14において、LGW220はコアネットワーク400のSGW410やLHN200のHeNB210と通信処理を行い、IPなどのパケット通信処理を実施する通信処理部221と、ネットワークがPMIP環境におけるLIPAコネクションの確立だと判断した際などに、SGW410に送信するPBAメッセージのPCOにRAメッセージ情報(アドレス設定情報)を格納するアドレス設定情報格納部223とを少なくとも有する。 Next, the configuration of the LGW 220 in the second embodiment of the disclosed technique will be described with reference to FIG. FIG. 14 is a diagram illustrating an example of a configuration of the LGW 220 according to the second embodiment of the present disclosure. In FIG. 14, the LGW 220 performs communication processing with the SGW 410 of the core network 400 and the HeNB 210 of the LHN 200, and when the communication processing unit 221 that performs packet communication processing such as IP and the network determines that the LIPA connection is established in the PMIP environment The address setting information storage unit 223 stores at least RA message information (address setting information) in the PCO of the PBA message transmitted to the SGW 410.
 また、PDNコネクションを確立した時に、LGW220がPCOを用いてUE100にアドレス設定情報としてIPv6プレフィックスを先に割り当ててあるものとする。このとき、LGW220がダイレクトパスを通じてHeNB210経由で受信したUE100からのRSメッセージ(アドレス情報要求メッセージ)に応答するRAメッセージ(アドレス情報通知メッセージ)を送信する場合に、新たなIPv6プレフィックスをUE100に割り当てることなく、先に割り当てたのと同じIPv6プレフィックスを取得して再通知するためのIPv6プレフィックス管理部(図14では不図示)を設けてもよい。 Also, when establishing a PDN connection, it is assumed that the LGW 220 has previously assigned an IPv6 prefix as address setting information to the UE 100 using the PCO. At this time, when the LGW 220 transmits an RA message (address information notification message) in response to the RS message (address information request message) received from the UE 100 via the HeNB 210 through the direct path, a new IPv6 prefix is assigned to the UE 100. Instead, an IPv6 prefix management unit (not shown in FIG. 14) for acquiring and re-notifying the same IPv6 prefix assigned previously may be provided.
 上記したIPv6プレフィックス管理部(図14では不図示)は、GTPをサポートするLGWが有するような、IPv6プレフィックスを管理する機能部(アドレスプールを用いてUE100に割り当てるIPv6プレフィックスを管理)を利用することができる。これにより、LGW220がPMIP環境において、RSメッセージに応答する(solicited)RAメッセージを送信する場合においても、アドレスプールによってプレフィックスが一元管理されるので、新たなIPv6プレフィックスの割り当てを回避し、割当て済みのIPv6プレフィックスを正しく再通知することができる。 The IPv6 prefix management unit (not shown in FIG. 14) uses a function unit (managing an IPv6 prefix assigned to the UE 100 using an address pool) that has an LGW that supports GTP, and that manages the IPv6 prefix. Can do. As a result, even when the LGW 220 transmits an RA message that responds to an RS message in a PMIP environment, the prefix is centrally managed by the address pool. The IPv6 prefix can be correctly re-notified.
 また、図14に図示されるアドレス設定情報格納部223は、PCOにRAメッセージの情報(アドレス設定情報)を格納する。さらには、PCOに格納されたRAメッセージの情報(アドレス設定情報)を、UE100において通常のRAメッセージの情報と同じように扱わせる(UE100がRAメッセージ情報であると識別できる)ために、上記したように、例えば、メッセージタイプやパケット長などを統一したり、特別な情報(フラグ)を付加したりするなどしてもよい。 Further, the address setting information storage unit 223 illustrated in FIG. 14 stores RA message information (address setting information) in the PCO. Furthermore, in order to make the information (address setting information) of the RA message stored in the PCO handled in the same way as the information of the normal RA message in the UE 100 (the UE 100 can be identified as RA message information) Thus, for example, the message type, packet length, etc. may be standardized, or special information (flag) may be added.
 次に、図14に図示されている構成を有するLGW220について、本開示技術における特徴的な処理を中心に、図15を用いて詳しく説明する。図15は、本開示技術の第2の実施の形態におけるLGWの動作の一例を示すフローチャートである。 Next, the LGW 220 having the configuration illustrated in FIG. 14 will be described in detail with reference to FIG. FIG. 15 is a flowchart illustrating an example of the operation of the LGW according to the second embodiment of the present disclosure.
 LGW220は、本開示技術の第1の実施の形態のように、3GPPにおいて規定されるPDNコネクション確立手順の中で、SGW410からPBUメッセージを受信する(図15のステップS1501)。LGW220は、受信したPBUメッセージが、PMIP環境におけるLIPAコネクションの確立だと判断した際(例えば、ネットワークが保持しているUEコンテキストやSubscription data、又は、送信されたメッセージ内のパラメータにおいて、PDNコネクション確立リクエストを送信したUEのプロトコルタイプ(GTPかPMIP)がPMIPを示していて、かつ、UEから送信されるPDNコネクション確立リクエストに格納されているAPNがLIPAを目的としたAPNである場合)、従来、UE100に対して割り当てようとしていたRAメッセージ情報(アドレス設定情報)(例えば、IPv6プレフィックスなど)を生成する(図15のステップS1503)。 The LGW 220 receives the PBU message from the SGW 410 during the PDN connection establishment procedure defined in 3GPP as in the first embodiment of the disclosed technology (step S1501 in FIG. 15). When the LGW 220 determines that the received PBU message is the establishment of the LIPA connection in the PMIP environment (for example, the PDN connection is established in the UE context or the subscription data held by the network or the parameter in the transmitted message) When the protocol type (GTP or PMIP) of the UE that transmitted the request indicates PMIP, and the APN stored in the PDN connection establishment request transmitted from the UE is an APN for LIPA), conventional Then, RA message information (address setting information) (for example, IPv6 prefix etc.) to be assigned to the UE 100 is generated (step S1503 in FIG. 15).
 なお、LGW220は、PBUメッセージを受信することによって、UE100のトラフィックトランスポートに適用されるプロトコルがPMIPであることを判断してもよい(既に自明であるため)。また、LIPAを目的としたAPNであるか否かの確認は、例えばMME430などの他のネットワークノードに問い合わせてもよいし、LGW220内に事前に設定されている情報を用いてもよい。また、LGW220にはLIPAコネクションの確立のみがリクエストされる運用である場合(例えば、LGW220はLIPAコネクションしか収容しないような運用である場合)、LGW220は、LIPAを目的としたAPNであるか否かの確認を省略することができ、すべてのUEに係るPDNコネクションをLIPAコネクションとして取り扱うことができる。 Note that the LGW 220 may determine that the protocol applied to the traffic transport of the UE 100 is PMIP by receiving the PBU message (since it is already obvious). Whether or not the APN is intended for LIPA may be inquired of other network nodes such as the MME 430, or information set in advance in the LGW 220 may be used. In addition, when the LGW 220 is an operation in which only establishment of a LIPA connection is requested (for example, when the LGW 220 is an operation that accommodates only the LIPA connection), the LGW 220 is an APN for the purpose of LIPA. Can be omitted, and PDN connections related to all UEs can be handled as LIPA connections.
 また、LGW220は、UE100に対してダイレクトパスを適用できるか否か(すなわち、SGW410を経由せずにユーザデータ転送が可能か)を確認し、UE100に対してダイレクトパスを適用できる場合に、UE100に対して割り当てようとしていたRAメッセージ情報(アドレス設定情報)を生成してもよい。 Also, the LGW 220 confirms whether or not the direct path can be applied to the UE 100 (that is, whether user data can be transferred without going through the SGW 410), and when the direct path can be applied to the UE 100, the UE 100 RA message information (address setting information) that was about to be assigned may be generated.
 続いて、LGW220は、生成したRAメッセージ情報(アドレス設定情報)を、例えば、PBUメッセージの返信であるPBAメッセージのPCO(オプションフィールド)に格納して、SGW410を経由してUE100に送信する(図15のステップS1505)。 Subsequently, the LGW 220 stores the generated RA message information (address setting information) in, for example, a PCO (option field) of a PBA message that is a reply to the PBU message, and transmits the same to the UE 100 via the SGW 410 (see FIG. 15 step S1505).
 次に、図16を参照しながら、図10のステップS1004でLGW220からSGW410に通知されるRAメッセージ情報(アドレス設定情報)が格納されるオプションフィールドを利用するメッセージのフォーマット例について説明する。図16に示すメッセージは、従来から使用される基本的なヘッダやオプションフィールドの他に、本願の特徴となるアドレス設定情報オプションから構成される。アドレス設定情報オプションは、他のゲートウェイから送信されるRAメッセージをUE100が利用しないようにするためのアドレス設定情報を通知するものである。 Next, a format example of a message using an option field in which RA message information (address setting information) notified from the LGW 220 to the SGW 410 in step S1004 in FIG. 10 is stored will be described with reference to FIG. The message shown in FIG. 16 is composed of an address setting information option that is a feature of the present application, in addition to the basic header and option field conventionally used. The address setting information option notifies address setting information for preventing the UE 100 from using an RA message transmitted from another gateway.
 以上、本開示技術の第2の実施の形態によれば、UE100がPDNコネクションの確立手順において受信するメッセージのPCOに格納されるRAメッセージ情報(アドレス設定情報)を利用し、UE100が他のゲートウェイから送信されるRAメッセージを無視できるようにすることで、UE100が誤ったパラメータ(例えば、Link-MTU値)を用いて、ユーザデータを交換する問題を回避することができる。また、3GPPにて規定される従来技術を利用することにより、既存システムへのインパクト(影響)を考慮しながら問題を解決することができる。 As described above, according to the second embodiment of the present disclosure, the UE 100 uses the RA message information (address setting information) stored in the PCO of the message received by the UE 100 in the PDN connection establishment procedure, and the UE 100 By making it possible to ignore the RA message transmitted from the UE 100, it is possible to avoid the problem that the UE 100 exchanges user data using an incorrect parameter (for example, Link-MTU value). In addition, by using the conventional technology defined by 3GPP, it is possible to solve the problem while considering the impact on the existing system.
<第3の実施の形態>
 本開示技術の第3の実施の形態では、LIPAコネクションを保持するUE100が、SGW410から送信されるRAメッセージの情報(例えば、Link-MTU値)が必要になるケース(例えば、他HeNBやE-UTRANのeNBなどにハンドオーバする際)においても、LIPAコネクションを維持し、かつ、正しいRAメッセージの情報を利用してユーザデータを交換する方法について説明する。
<Third Embodiment>
In the third embodiment of the disclosed technology, the UE 100 that holds the LIPA connection needs information (for example, Link-MTU value) of the RA message transmitted from the SGW 410 (for example, other HeNB or E- A method of exchanging user data using a correct RA message information while maintaining a LIPA connection even when handing over to a UTRAN eNB or the like) will be described.
 図17は、本開示技術の第3の実施の形態の動作の一例を説明するためのシーケンス図である。本開示技術の第3の実施の形態では、上記の第2の実施の形態のPCOにRAメッセージの情報(アドレス設定情報)を格納する方法に加えて、新たにUE100が受信するRAメッセージを反映すべきか否かを判断できるよう指示する情報(以降、モード切り替え情報やモード切り替え指示とも呼ぶ)をPCOに格納する。 FIG. 17 is a sequence diagram for explaining an example of the operation of the third embodiment of the disclosed technique. In the third embodiment of the present disclosure, in addition to the method of storing RA message information (address setting information) in the PCO of the second embodiment, the RA message newly received by the UE 100 is reflected. Information (hereinafter also referred to as mode switching information or mode switching instruction) for instructing whether or not it should be determined is stored in the PCO.
 以下、本開示技術の第3の実施の形態について、図17を用いて説明する。 Hereinafter, a third embodiment of the disclosed technology will be described with reference to FIG.
 最初に、UE100は、本開示技術の第1と第2の実施の形態と同様に、PDNコネクションを確立するためのメッセージ(例えば、非特許文献1で開示されるAttach requestメッセージや、PDN connectivity requestメッセージ)をネットワークに送信する(図17のステップS1701)。ステップS1701のPDNコネクションを確立するためのメッセージ(Attach/PDN connectivity requestメッセージ)に格納されているAPNが、LIPAを目的としたAPNであるとネットワーク(例えば、MME430)で識別されて、かつ、リクエストがネットワークによって許可される場合などには、LGW220は、SGW410からのPBUメッセージに対する応答であるPBAメッセージのPCO(オプションフィールド)に、本開示技術の第2の実施の形態と同様のRAメッセージ情報(アドレス設定情報)と、モード切り替え指示(例えば、Link-localアドレス(リンクローカルアドレス、LL address、LLアドレスとも呼ぶ)、又は、特別なフラグ情報、又は、ID、又は、トークンなど)を格納して返信する(図17のステップS1703)。 First, similarly to the first and second embodiments of the disclosed technology, the UE 100 establishes a message for establishing a PDN connection (for example, an Attach request message disclosed in Non-Patent Document 1 or a PDN connectivity request). Message) is transmitted to the network (step S1701 in FIG. 17). If the APN stored in the message for establishing the PDN connection in step S1701 (Attach / PDN connectivity request message) is an APN for the purpose of LIPA, the network (for example, the MME 430) is identified and a request is made. Is permitted by the network, the LGW 220 adds RA message information (in the optional field) of the PBA message, which is a response to the PBU message from the SGW 410, as in the second embodiment of the present disclosure. Address setting information) and mode switching instruction (for example, link-local address (also called link local address, LL address, LL address), or special flag information, or ID, or reply and stores the token, etc.) (step S1703 in FIG. 17).
 このLink-localアドレスは、SGW410からUE100に送信されるRAメッセージのソースアドレスとして利用され、LGW220からSGW410に対して提供されるアドレスである。この既存のフィールド(ソースアドレスを格納するフィールド)を利用してモード切り替え指示(例えば、Link-localアドレス)を通知することで、新たなフィールドを設けなくて済む。また、ネットワークがUE100に対して、明示的にモードを切り替えるように指示したい場合は、上記した特別なフラグ情報やID、トークンなどを新たなフィールドに格納して、UE100に通知してもよい。以降、本開示技術の第3の実施の形態を容易に説明するために、一例として、モード切り替え指示としてLink-localアドレスを用いる場合について説明する。 The link-local address is used as a source address of the RA message transmitted from the SGW 410 to the UE 100, and is an address provided from the LGW 220 to the SGW 410. By using this existing field (a field for storing a source address) to notify a mode switching instruction (for example, a link-local address), it is not necessary to provide a new field. When the network wants to explicitly instruct the UE 100 to switch the mode, the special flag information, ID, token, and the like described above may be stored in a new field and notified to the UE 100. Hereinafter, in order to easily describe the third embodiment of the disclosed technology, a case where a link-local address is used as a mode switching instruction will be described as an example.
 RAメッセージ情報(アドレス設定情報)とモード切り替え指示が格納されたPCOを含むメッセージ(Attach Acceptメッセージ)を受信したUE100は、本開示技術の第2の実施の形態と同様に、以降受信するRAメッセージを無視(破棄)する状態(指定アドレスモード)に切り替える(図17のステップS1705)。 The UE 100 that has received the message (Attach Accept message) including the RA message information (address setting information) and the PCO in which the mode switching instruction is stored, will receive the RA message thereafter, as in the second embodiment of the present disclosure. Is switched to a state (designated address mode) for ignoring (discarding) (step S1705 in FIG. 17).
 その後、UE100が、他の基地局にハンドオーバを行ったとする(図17のステップS1707)。なお、本開示技術の第3の実施の形態では、説明を容易にするため、UE100が同じLHN内の他HeNBにハンドオーバを行ったとする。UE100が他の基地局にハンドオーバするポリシや、ハンドオーバ手順においてSGW410からLGW220へPBUメッセージが送信されるまでの処理(非特許文献1、2、7などを参照、なお、図17では、ハンドオーバ手順(ステップS1707)としてまとめて図示)などは、本開示技術に影響を与えるものではないため、説明を省略する。また説明の便宜上、同じLHN内の他HeNBへのハンドオーバについて説明するが、異なるLHNの他HeNBや、E-UTRAN上のeNBへのハンドオーバであっても、本開示技術を同様に実施することができる。 Thereafter, it is assumed that the UE 100 performs a handover to another base station (step S1707 in FIG. 17). In the third embodiment of the present disclosure, for ease of explanation, it is assumed that the UE 100 performs a handover to another HeNB in the same LHN. The policy for the UE 100 to handover to another base station and the processing until the PBU message is transmitted from the SGW 410 to the LGW 220 in the handover procedure (see Non-Patent Documents 1, 2, 7, etc., in FIG. 17, the handover procedure ( Steps S1707) collectively illustrated) and the like do not affect the technology of the present disclosure and will not be described. For convenience of explanation, a handover to another HeNB in the same LHN will be described, but the technique of the present disclosure can be similarly implemented even for a handover to another HeNB of another LHN or an eNB on E-UTRAN. it can.
 この3GPPが規定するハンドオーバ手順において、LIPAコネクションのユーザデータ経路がSGW410経由に切り替わる(あるいは切り替わった)とLGW220が判断した場合(例えば、UEのSubscription dataで、ハンドオーバ先のHeNB配下では、ダイレクトパス上でのLIPAを禁止する仕様になっている場合や、SGW410から経路切り替えのためのPBUを受信した場合など)には(図17のステップS1709)、LGW220は、ステップS1703においてUE100へ通知したのと同じLLアドレスを、LGW220からSGW410に送信されるPBAメッセージのリンクローカルアドレスオプションに格納して、SGW410に送信する(図17のステップS1711)。 In the handover procedure stipulated by 3GPP, when the LGW 220 determines that the user data path of the LIPA connection is switched (or switched) via the SGW 410 (for example, in the subscription data of the UE, on the direct path under the handover destination HeNB In the case where the specification is such that LIPA is prohibited or the PBU for route switching is received from the SGW 410 (step S1709 in FIG. 17), the LGW 220 notifies the UE 100 in step S1703. The same LL address is stored in the link local address option of the PBA message transmitted from the LGW 220 to the SGW 410, and transmitted to the SGW 410 (step S1711 in FIG. 17).
 これを受けてSGW410は、受信したPBAのリンクローカルアドレスオプションに格納されたLLアドレスを、UE100とのベアラにおける自身のリンクローカルアドレスとして設定し、LLアドレスをソースアドレスとするRAメッセージをUE100に送信する(図17のステップS1713)。この動作は、非特許文献2に開示される従来のSGW動作と同じであり、本願発明は特にSGW410に関して従来動作を流用することで、実施コストを抑えたうえでの実現が可能である。なお、SGW410は、上記のようにハンドオーバ時にPBAで取得した、それまでとは異なるリンクローカルアドレスについては、UE100とのベアラにおける自身のリンクローカルアドレスとして設定することなく、別途管理するものであってもよい。これは、UE100が再度LHN200に戻ってLIPAコネクションの経路が変更されるようなときに、以前に使っていたリンクローカルアドレスを新たなコンフィグレーションを行うことなく、直ちに利用可能とするためであり、ハンドオーバ時間の削減に貢献することができる。 In response to this, the SGW 410 sets the LL address stored in the received link local address option of the PBA as its own link local address in the bearer with the UE 100, and transmits an RA message with the LL address as the source address to the UE 100. (Step S1713 in FIG. 17). This operation is the same as the conventional SGW operation disclosed in Non-Patent Document 2, and the present invention can be realized with the implementation cost suppressed by using the conventional operation particularly with respect to the SGW 410. Note that the SGW 410 separately manages the link local address obtained by PBA at the time of handover as described above, without setting it as its own link local address in the bearer with the UE 100. Also good. This is because when the UE 100 returns to the LHN 200 again and the route of the LIPA connection is changed, the link local address used before can be used immediately without performing a new configuration. This can contribute to reduction of handover time.
 具体的には、SGW410は、LGW220からLLアドレスの通知を受ける前までは、例えば図3のRA(RA_2)をUE100へ送信していたが、LGW220からLLアドレスの通知を受けた後は(図17のステップS1713)、例えば図3のRA(RA_3)をUE100へ送信する。RA_2とRA_3はRAメッセージのソースアドレスが異なっており、RA_3でソースアドレスとして設定されている2001:db8::3は、例えば図17のステップS1703において、モード切り替え指示としてUE100へ通知される。 Specifically, the SGW 410, for example, transmits the RA (RA_2) in FIG. 3 to the UE 100 before receiving the notification of the LL address from the LGW 220, but after receiving the notification of the LL address from the LGW 220 (see FIG. 17 step S1713), for example, RA (RA_3) in FIG. RA_2 and RA_3 have different RA message source addresses, and 2001: db8 :: 3 set as the source address in RA_3 is notified to the UE 100 as a mode switching instruction, for example, in step S1703 of FIG.
 モード切り替え指示となる(図17のステップS1703でUE100に通知した)LLアドレスが格納されたRAメッセージを受信したUE100は、ステップS1703で受信したPCOに格納されていたモード切り替え指示(LLアドレス)と、ステップS1713で受信したRAメッセージのソースアドレスとが一致しているか否かを確認する(図17のステップS1715)。 The UE 100 that has received the RA message storing the LL address (notified to the UE 100 in step S1703 in FIG. 17) that is the mode switching instruction and the mode switching instruction (LL address) stored in the PCO received in step S1703. Then, it is confirmed whether or not the source address of the RA message received in step S1713 matches (step S1715 in FIG. 17).
 ステップS1703で受信したメッセージ(Attach Acceptメッセージ)のPCOから取得したモード切り替え指示(LLアドレス)と、ステップS1713で受信したRAメッセージのソースアドレスが一致する場合、UE100は、ステップS1713で受信したRAメッセージ、あるいは、以降受信するRAメッセージに含まれるアドレス設定情報を用いて通信インタフェース(又はLIPAコネクション)の設定を行う(図17のステップS1717)。 When the mode switching instruction (LL address) acquired from the PCO in the message received in step S1703 (Attach Accept message) matches the source address of the RA message received in step S1713, the UE 100 receives the RA message received in step S1713. Alternatively, the communication interface (or LIPA connection) is set using the address setting information included in the RA message received thereafter (step S1717 in FIG. 17).
 なお、UE100がこのステップS1717以降に受信するRAメッセージを利用するための状態(RA信じるモード、RA重視モード、(単に)RAモード、フリーアドレスモード、通常状態(あるいは通常モード)などと呼ぶ)を設けることで、指定アドレスモードと明確に区別することができる。指定アドレスモードと通常モードの2つのモードをUE100で選択的に切り替えさせるために、例えば、RAメッセージにモードを切り替えるための特別なフラグ情報をモード切り替え指示として設けてもよい。これにより、あらかじめPCOで配布していたようなLLアドレスをLGW220が新たに生成する必要がなくなり、UE100は取得したフラグ情報に基づいて上記2つのモードを正しく切り替え、受信したRAメッセージに含まれる情報を利用するか無視(破棄)するかを判断することができる。 It should be noted that the state for using the RA message received by UE 100 after step S1717 (referred to as RA belief mode, RA priority mode, (simply) RA mode, free address mode, normal state (or normal mode), etc.). By providing, it can be clearly distinguished from the designated address mode. In order to selectively switch the two modes of the designated address mode and the normal mode by the UE 100, for example, special flag information for switching the mode to the RA message may be provided as the mode switching instruction. This eliminates the need for the LGW 220 to newly generate an LL address that has been distributed in advance by the PCO, and the UE 100 correctly switches between the two modes based on the acquired flag information, and information included in the received RA message. It is possible to determine whether to use or ignore (discard).
 また、別のモード切り替え指示の実現形態として、例えばトークンを用いてもよい。その場合、LGW220は、UEにPCOで通知したトークンをSGW410に通知し、SGW410がそのトークンをRA内の所定オプションに格納してUE100に通知する。UE100は、図17のステップS1703で受信したメッセージ(Attach Acceptメッセージ)のPCOから取得したトークンと、図17のステップS1713で受信したRAメッセージの所定オプションから取得したトークンが一致しているか否かを確認する。トークンが一致する場合のみ、受信したRAメッセージに格納されるアドレス設定情報を利用する。それ以外はRAメッセージに格納されたアドレス設定情報を無視(廃棄)する。 Further, for example, a token may be used as another form of realizing the mode switching instruction. In this case, the LGW 220 notifies the SGW 410 of the token notified to the UE by the PCO, and the SGW 410 stores the token in a predetermined option in the RA and notifies the UE 100. The UE 100 determines whether the token acquired from the PCO of the message (Attach Accept message) received in step S1703 in FIG. 17 matches the token acquired from the predetermined option of the RA message received in step S1713 in FIG. Check. Only when the tokens match, the address setting information stored in the received RA message is used. Otherwise, the address setting information stored in the RA message is ignored (discarded).
 これにより、UE100はRAメッセージが必要なとき(SGW410経由でLGW220にアクセスするとき)にのみ、SGW410から送信されるRAメッセージを評価することができ、確立したLIPAコネクションを維持したまま(すなわち再接続することなく)、ハンドオーバを実施することができる。 Thereby, the UE 100 can evaluate the RA message transmitted from the SGW 410 only when the RA message is required (when accessing the LGW 220 via the SGW 410), and maintains the established LIPA connection (ie, reconnection). Handover) can be performed.
 次に、図18を参照しながら、本開示技術の第3の実施の形態におけるUE100の構成について説明する。図18は、本開示技術の第3の実施の形態におけるUE100の構成の一例を示す図である。図18において、図12で図示される通信処理部101及びオプションフィールド内アドレス設定情報処理部103(ここでは、説明は省略)と、PCOから取得したアドレス設定情報を利用する期間ないし状態(すなわち指定アドレスモード)と受信したRAメッセージを無視(破棄)せずに利用する期間ないし状態(通常モード)を切り替えるモード切り替え部104とを少なくとも有する。なお、上記したUE100の構成は一例を示したものである。 Next, the configuration of the UE 100 according to the third embodiment of the disclosed technology will be described with reference to FIG. FIG. 18 is a diagram illustrating an example of a configuration of the UE 100 according to the third embodiment of the present disclosure. In FIG. 18, the communication processing unit 101 and option field address setting information processing unit 103 shown in FIG. 12 (the description is omitted here), and the period or state in which the address setting information acquired from the PCO is used (that is, specified) Address switching mode) and a mode switching unit 104 that switches a period or state (normal mode) in which the received RA message is used without being ignored (discarded). Note that the configuration of the UE 100 described above is an example.
 図18で図示されるモード切り替え部104は、上記したように、図17のステップS1703で受信するメッセージ(Attach Acceptメッセージ)のPCOで受信するモード切り替え情報(例えば、LLアドレスやトークンなど)と、図17のステップS1713で受信するRAメッセージの情報(例えば、ソースアドレスやトークンなど)とが一致しているか否かを確認し、モードの切り替えを実施する機能部である。 As described above, the mode switching unit 104 illustrated in FIG. 18 includes mode switching information (for example, LL address and token) received by the PCO of the message (Attach Accept message) received in step S1703 of FIG. This is a functional unit that checks whether or not the RA message information (for example, source address, token, etc.) received in step S1713 in FIG. 17 matches and switches the mode.
 また、本開示技術の第2の実施の形態におけるUE100と同様に、図18に示す追加部分(モード切り替え部104)は、例えば、OS(オペレーションシステム)のIPスタック(図18では通信処理部101の一部に相当)の一部として実装されるパケットフィルタ機能を利用することができる。パケットフィルタを用いて特定のソースアドレスから受信した特定のプロトコル番号(タイプ)を持つIPパケットをドロップあるいは通過させたりする設定を行える。例えば、プロトコル番号58(IPv6-ICMP)、ICMPタイプ134をキーとして設定することにより、RAメッセージを特定することができる(加えて受信方向の設定をする必要があるかもしれない)。さらに、先にPCOを通じて取得したLLアドレスをソースアドレスとする設定を追加することで、LLアドレスからのRAを捕捉することができることから、UE100のモード切り替え部104は、指定アドレスモードに遷移したときに、上記のような設定をパケットフィルタに対して実施することで、以降該当するRAメッセージ(すなわちLLアドレスをソースアドレスとするRAメッセージ)のみ評価できるようになる。それ以外の受信RAメッセージは廃棄される。 Similarly to the UE 100 according to the second embodiment of the present disclosure, the additional part (mode switching unit 104) illustrated in FIG. 18 includes, for example, an OS (operation system) IP stack (in FIG. 18, the communication processing unit 101). The packet filter function implemented as a part of the above can be used. Using a packet filter, it is possible to set to drop or pass an IP packet having a specific protocol number (type) received from a specific source address. For example, the RA message can be specified by setting the protocol number 58 (IPv6-ICMP) and the ICMP type 134 as a key (in addition, the reception direction may need to be set). Furthermore, since the RA from the LL address can be captured by adding the setting using the LL address acquired through the PCO as the source address first, the mode switching unit 104 of the UE 100 changes to the designated address mode. In addition, by performing the setting as described above for the packet filter, only the corresponding RA message (that is, the RA message with the LL address as the source address) can be evaluated thereafter. Other received RA messages are discarded.
 次に、図18に図示される構成を有するUE100について、本開示技術における特徴的な処理を中心に、図19と図20を用いて詳しく説明する。図19は、本開示技術の第3の実施の形態における図17のステップS1701からステップS1705までのUE100の動作の一例を示すフローチャートである。図20は、本開示技術の第3の実施の形態における図17のステップS1713からステップS1717までのUE100の動作の一例を示すフローチャートである。 Next, the UE 100 having the configuration illustrated in FIG. 18 will be described in detail with reference to FIG. 19 and FIG. 20, focusing on the characteristic processing in the disclosed technology. FIG. 19 is a flowchart illustrating an example of the operation of the UE 100 from step S1701 to step S1705 in FIG. 17 according to the third embodiment of the present disclosure. FIG. 20 is a flowchart illustrating an example of the operation of the UE 100 from step S1713 to step S1717 in FIG. 17 according to the third embodiment of the present disclosure.
 以下、最初に図19を用いて、図17のステップS1701からステップS1705までのUE100の動作について説明する。 Hereinafter, the operation of the UE 100 from step S1701 to step S1705 in FIG. 17 will be described first with reference to FIG.
 最初に、UE100は、PDNコネクションを確立するためのメッセージ(例えば、非特許文献1で開示されるAttach requestメッセージ(又は、PDN connectivity requestメッセージ)をネットワークに送信する(図19のステップS1901)。そしてUE100は、3GPPにて規定されるPDNコネクション確立手順がネットワークによって正しく処理されたときに送信されるAttach Acceptメッセージ(又は、PDN connectivity Acceptメッセージ)を受信する(図19のステップS1903)。 First, the UE 100 transmits a message for establishing a PDN connection (for example, an Attach request message (or a PDN connectivity request message) disclosed in Non-Patent Document 1) to the network (step S1901 in FIG. 19). The UE 100 receives an Attach Accept message (or a PDN connectivity Accept message) that is transmitted when the PDN connection establishment procedure specified in 3GPP is correctly processed by the network (step S1903 in FIG. 19).
 UE100は、受信したAttach AcceptメッセージのPCO(オプションフィールド)内にアドレス設定情報及びモード切り替え情報が格納されているか否かを確認する(図19のステップS1905)。 The UE 100 confirms whether address setting information and mode switching information are stored in the PCO (option field) of the received Attach Accept message (step S1905 in FIG. 19).
 PCO(オプションフィールド)内にアドレス設定情報とモード切り替え情報が格納されている場合、UE100は、本開示技術の第2の実施の形態と同様に(すなわち、図13のステップS1307と同様に)、PCO(オプションフィールド)内に格納されているアドレス設定情報を、通常のRAメッセージ(アドレス情報通知メッセージ)に格納されるアドレス設定情報として処理する(図19のステップS1907)。続く図19のステップS1909では、本開示技術の第2の実施の形態におけるステップS1309と同様に、以降受信するRAメッセージ(アドレス情報通知メッセージ)を無視する指定アドレスモードに遷移するが、さらに、本開示技術の第3の実施の形態では、PCO(オプションフィールド)からモード切り替え情報を抽出・保持(記憶)する。(図19のステップS1909)。 When the address setting information and the mode switching information are stored in the PCO (option field), the UE 100, as in the second embodiment of the present disclosure technique (that is, as in step S1307 in FIG. 13), Address setting information stored in the PCO (option field) is processed as address setting information stored in a normal RA message (address information notification message) (step S1907 in FIG. 19). In step S1909 in FIG. 19, similarly to step S1309 in the second embodiment of the disclosed technology, the transition is made to a designated address mode in which the RA message (address information notification message) received thereafter is ignored. In the third embodiment of the disclosed technology, mode switching information is extracted and held (stored) from a PCO (option field). (Step S1909 in FIG. 19).
 次に、図20を用いて、図17のステップS1713からステップS1717までのUE100の動作について説明する。 Next, the operation of the UE 100 from step S1713 to step S1717 in FIG. 17 will be described using FIG.
 UE100は、他のHeNBやeNB(特には、LGW220とのダイレクトパスの利用が許可されていないHeNBや、E-UTRAN300に配置されるマクロ基地局eNB301)にハンドオーバした後、RAメッセージ(アドレス情報通知メッセージ)をネットワークから受信する(図20のステップS2001)。このとき、UE100は、ステップS2001で受信したRAメッセージ(アドレス情報通知メッセージ)の切り替え情報(例えば、ソースアドレスやトークンなど)と、図19のステップS1909で保持したおいたモード切り替え情報(LLアドレス又はトークンなど)が一致しているか否かを確認する(図20のステップS2003)。比較した情報が一致している場合は、UE100はステップS2001で受信したRAメッセージ(あるいは、以降受信するRAメッセージ)を利用して通信インタフェース(あるいはLIPAコネクション)の設定を更新する(図20のステップS2005)。なお、上記したように、指定アドレスモードと通常モードの2つのモードをUE100で利用することによって、例えば、モード切り替え情報としてLLアドレスを利用するのではなく、例えばビット数が少ない特別なフラグ情報を追加することにより、RAメッセージ(アドレス情報通知メッセージ)を利用するか否かのモードを切り替えることができる。これにより、少ないリソースで所望の情報を伝達できるので、リソース効率の点で優位である。 The UE 100 hands over to another HeNB or eNB (in particular, a HeNB that is not permitted to use a direct path with the LGW 220 or the macro base station eNB 301 arranged in the E-UTRAN 300), and then performs an RA message (address information notification). Message) is received from the network (step S2001 in FIG. 20). At this time, the UE 100 switches the RA message (address information notification message) switching information (for example, the source address and token) received in step S2001 and the mode switching information (LL address or the information stored in step S1909 in FIG. 19). It is confirmed whether the tokens and the like match (step S2003 in FIG. 20). If the compared information matches, the UE 100 updates the setting of the communication interface (or LIPA connection) using the RA message received in step S2001 (or the RA message received thereafter) (step in FIG. 20). S2005). As described above, by using the two modes of the designated address mode and the normal mode in the UE 100, for example, instead of using the LL address as the mode switching information, special flag information having a small number of bits, for example, is used. By adding, it is possible to switch the mode whether or not to use the RA message (address information notification message). Thereby, since desired information can be transmitted with few resources, it is advantageous in terms of resource efficiency.
 次に、図21を参照しながら、本開示技術の第3の実施の形態におけるLGW220の構成について説明する。図21は、本開示技術の第3の実施の形態におけるLGWの構成の一例を示す図である。図21において、LGW220は、図14で図示される通信処理部221及びアドレス設定情報格納部223と、UE100における2つのモードを選択的に切り替えさせるために、モード切り替え情報を生成・管理し、それに基づいて所定のタイミングでPBAメッセージを用いてSGW410を制御してモード切り替え情報をUE100に伝達させるモード切り替え処理部224とを少なくとも有する。 Next, the configuration of the LGW 220 according to the third embodiment of the disclosed technique will be described with reference to FIG. FIG. 21 is a diagram illustrating an example of the configuration of the LGW according to the third embodiment of the present disclosure. In FIG. 21, the LGW 220 generates and manages mode switching information in order to selectively switch between the two modes in the communication processing unit 221 and the address setting information storage unit 223 illustrated in FIG. Based on this, at least a mode switching processing unit 224 that controls the SGW 410 using a PBA message at a predetermined timing to transmit the mode switching information to the UE 100 is provided.
 また、本開示技術の第3の実施の形態は、本開示技術の第2の実施の形態と同様に、PDNコネクション確立手順の中で、LGW220が、SGW410を経由してUE100にIPv6プレフィックスを既に割り当てている場合、UE100から送信されるRSメッセージ(アドレス情報要求メッセージ)はダイレクトパスを通じてHeNBから転送される。このときLGW220は、受信したRSメッセージ(アドレス情報要求メッセージ)に応答するRAメッセージ(アドレス情報通知メッセージ)を送信する場合においても、新たなIPv6プレフィックスをUE100に割り当てることなく、割り当て済みのIPv6プレフィックスを正しく特定するためのIPv6プレフィックス管理部(図21では不図示)を保持してもよい。 Also, in the third embodiment of the disclosed technology, as in the second embodiment of the disclosed technology, in the PDN connection establishment procedure, the LGW 220 has already assigned the IPv6 prefix to the UE 100 via the SGW 410. When assigned, the RS message (address information request message) transmitted from the UE 100 is transferred from the HeNB through the direct path. At this time, even when the LGW 220 transmits an RA message (address information notification message) in response to the received RS message (address information request message), the assigned IPv6 prefix is assigned to the UE 100 without assigning a new IPv6 prefix. An IPv6 prefix management unit (not shown in FIG. 21) for specifying correctly may be held.
 図21で図示されるモード切り替え処理部224は、図17のステップS1703でLGW220からSGW410に送信するPBAメッセージのオプションフィールドに格納するモード切り替え情報(例えば、ソースアドレスやトークンなど)を生成、管理する機能部であり、また、図17のステップS1711で、LIPAコネクションの経路がSGW410経由となることを判断すると、モード切り替え情報(例えば、ソースアドレスやトークンなど)を、PBAメッセージのオプションフィールドに格納する機能部でもある。なお、このモード切り替え処理部224は、LGW220がSGW410に対してLLアドレスの設定や変更を行わせるためのメッセージを用いることができる。例えば、受信したPBUメッセージの応答として送信するPBAメッセージを利用したり、PBUメッセージを受信することなく自発的に送信するPBAメッセージを利用したり、SGW410にPBUの送信を促すことを目的とするBinding Revokeメッセージを利用したりすることができる。なお、これらLGW220が既存のメッセージを用いてLLアドレスの設定/変更を指示する場合は、既存のパラメータ(例えば、Error cause)をそのまま利用してもよいし、新たにパラメータを定義してもよい。 The mode switching processing unit 224 illustrated in FIG. 21 generates and manages mode switching information (for example, a source address and a token) stored in the option field of the PBA message transmitted from the LGW 220 to the SGW 410 in step S1703 in FIG. When it is determined that the LIPA connection route is via the SGW 410 in step S1711 of FIG. 17, mode switching information (for example, a source address and a token) is stored in the option field of the PBA message. It is also a functional part. The mode switching processing unit 224 can use a message for causing the LGW 220 to set or change the LL address for the SGW 410. For example, a PBA message that is transmitted as a response to a received PBU message, a PBA message that is transmitted spontaneously without receiving a PBU message, or a binding that aims to prompt the SGW 410 to transmit a PBU A Revoke message can be used. When these LGWs 220 use an existing message to instruct setting / change of an LL address, the existing parameters (for example, Error cause) may be used as they are, or new parameters may be defined. .
 また、本開示技術の第3の実施の形態では、SGW410は、LGW220から送信されるPBAメッセージオプションフィールドからLLアドレスを抽出して、UE100に送信するRAメッセージ(アドレス情報通知メッセージ)のソースアドレスに設定することを前提とする。 Further, in the third embodiment of the disclosed technique, the SGW 410 extracts the LL address from the PBA message option field transmitted from the LGW 220 and sets the source address of the RA message (address information notification message) to be transmitted to the UE 100. It is assumed that it is set.
 次に、図21に図示されている構成を有するLGW220について、本開示技術における特徴的な処理を中心に、図22と図23を用いて詳しく説明する。図22は、本開示技術の第3の実施の形態における図17のステップS1701からステップS1703までのLGW220の動作の一例を示すフローチャートである。図23は、本開示技術の第3の実施の形態における図17のステップS1707の一部(PBUメッセージの受信)からステップS1711までのLGW220の動作の一例を示すフローチャートである。 Next, the LGW 220 having the configuration illustrated in FIG. 21 will be described in detail with reference to FIGS. 22 and 23, focusing on characteristic processing in the disclosed technology. FIG. 22 is a flowchart illustrating an example of the operation of the LGW 220 from step S1701 to step S1703 in FIG. 17 according to the third embodiment of the present disclosure. FIG. 23 is a flowchart illustrating an example of the operation of the LGW 220 from step S1707 in FIG. 17 (reception of a PBU message) to step S1711 in the third embodiment of the present disclosure.
 以下、最初に図22を用いて、図17のステップS1701からステップS1703までのLGW220の動作について説明する。 Hereinafter, the operation of the LGW 220 from step S1701 to step S1703 in FIG. 17 will be described first with reference to FIG.
 図22のステップS2201からステップS2203までの処理は、図15のステップS1501からステップS1503までの処理と同じであるため、説明を省略する。続いてLGW220は、UE100のLIPAコネクション経路が変更されることを検知すると(例えば、ハンドオーバによりLIPAコネクション経路がSGW410経由に変更されるときのように、LIPAコネクション(リンク)の特性が変わるとき)、UE100にRAメッセージ(アドレス情報通知メッセージ)を利用させるためのモード切り替え情報を生成する(図22のステップS2205)。その後、LGW220は、ステップS2203で生成したアドレス設定情報と、ステップS2205で生成したモード切り替え情報とをPBAメッセージのオプションフィールドに格納して、SGW410に送信する(図22のステップS2207)。 The processing from step S2201 to step S2203 in FIG. 22 is the same as the processing from step S1501 to step S1503 in FIG. Subsequently, when the LGW 220 detects that the LIPA connection path of the UE 100 is changed (for example, when the characteristic of the LIPA connection (link) is changed as in the case where the LIPA connection path is changed via the SGW 410 due to handover), Mode switching information for causing the UE 100 to use the RA message (address information notification message) is generated (step S2205 in FIG. 22). Thereafter, the LGW 220 stores the address setting information generated in step S2203 and the mode switching information generated in step S2205 in the option field of the PBA message, and transmits them to the SGW 410 (step S2207 in FIG. 22).
 次に、図23を用いて、図17のステップS1707の一部(PBUメッセージの受信)からステップS1711までのLGW220の動作について説明する。 Next, the operation of the LGW 220 from step S1707 (reception of a PBU message) to step S1711 in FIG. 17 will be described with reference to FIG.
 UE100が他のHeNBやeNB(ここでは説明を簡単にするためHeNBとする)にハンドオーバする際、LGW220は、SGW410からPBUメッセージを受信し(ステップS2301)、ハンドオーバ先であるHeNBにおいて、UE100のLIPAコネクションに対してダイレクトパスを構築することが許可されるか否か、又は、ダイレクトパスが既に存在するか否かなど、ダイレクトパスをそのUE100に対して適用できるか否かを判断する(図23のステップS2303)。なお、UE100のコネクションに対してダイレクトパスを適用できない場合は、SGW410経由のコネクション(すなわちリモートアクセス用のLIPAコネクション)を確立する。 When the UE 100 is handed over to another HeNB or eNB (here, to be HeNB for the sake of simplicity), the LGW 220 receives the PBU message from the SGW 410 (step S2301), and the HeNB that is the handover destination performs the LIPA of the UE 100. It is determined whether or not the direct path can be applied to the UE 100, such as whether or not the direct path is allowed to be established for the connection, or whether or not the direct path already exists (FIG. 23). Step S2303). When the direct path cannot be applied to the connection of the UE 100, a connection via the SGW 410 (that is, a LIPA connection for remote access) is established.
 ステップS2303において、LGW220がダイレクトパスをUE100のコネクションに適用できないことを検出すると(SGW410経由のコネクションとすることを判断した場合)、LGW220は、ステップS1703でAttach AcceptメッセージのPCOに格納してUE100に通知したモード切り替え情報を使用して、RAメッセージの選別を行わせるための処理を開始する。すなわち、モード切り替え情報を使用することを指示するメッセージをSGW410に送信する(図23のステップS2305)。SGW410への指示は、例えばPBAメッセージのオプションフィールドにモード切り替え情報を格納してSGW410へ送信することで実施する。PBAメッセージを受信したSGW410は、モード切り替え情報をUE100に通知し、UE100はRAメッセージ(アドレス情報通知メッセージ)を無視せずに評価して、LIPAコネクション(リモートアクセス)の設定に利用することができる。なお、モード切り替え情報をUE100に通知するために、モード切り替え情報をRAメッセージ(アドレス情報通知メッセージ)のソースアドレス(Link-localアドレス)を利用して、UE100に通知してもよい。Link-localアドレスを利用することにより、モード切り替え情報をUE100に通知する新たなパラメータや新たなメッセージを利用しなくて済む。すなわち、既存のRAメッセージを利用することができるため、実施コストを抑えることができる。また、UE100のLIPAコネクションのユーザデータ経路が変更されないときは、LGW220は通常のPBAをSGW410に送信する(ステップS2307)。 In step S2303, when the LGW 220 detects that the direct path cannot be applied to the connection of the UE 100 (when it is determined to be a connection via the SGW 410), the LGW 220 stores it in the PCO of the Attach Accept message in step S1703 and stores it in the UE 100. Using the notified mode switching information, a process for selecting an RA message is started. That is, a message instructing to use the mode switching information is transmitted to the SGW 410 (step S2305 in FIG. 23). The instruction to the SGW 410 is performed by storing mode switching information in the option field of the PBA message and transmitting it to the SGW 410, for example. The SGW 410 that has received the PBA message notifies the UE 100 of the mode switching information, and the UE 100 can evaluate the RA message (address information notification message) without ignoring it and use it for setting the LIPA connection (remote access). . In addition, in order to notify the mode switching information to the UE 100, the mode switching information may be notified to the UE 100 using the source address (Link-local address) of the RA message (address information notification message). By using the link-local address, it is not necessary to use a new parameter or a new message for notifying the UE 100 of the mode switching information. That is, since the existing RA message can be used, the implementation cost can be suppressed. Moreover, when the user data path of the LIPA connection of UE100 is not changed, LGW220 transmits normal PBA to SGW410 (step S2307).
 次に、図24A及び図24Bを参照しながら、図17のステップS1703でLGW220からSGW410に送信されるPBAメッセージ(並びに、UE100まで到達するAttach/PDN connectivity Acceptメッセージ)(図24A)と図17のステップS1711でLGW220からSGW410に送信されるPBAメッセージ(図24B)のフォーマット例について説明する。 Next, referring to FIG. 24A and FIG. 24B, the PBA message (and the Attach / PDN connectivity Accept message reaching UE 100) transmitted from LGW 220 to SGW 410 in step S1703 of FIG. 17 (FIG. 24A) and FIG. A format example of the PBA message (FIG. 24B) transmitted from the LGW 220 to the SGW 410 in step S1711 will be described.
 図24Aに示すPBAメッセージは、従来から使用される基本的なヘッダやオプションフィールドの他に、本願の特徴となるアドレス設定情報オプションとモード切り替え情報オプションから構成される。アドレス設定情報オプションは、他のゲートウェイから送信されるRAメッセージ(アドレス情報通知メッセージ)をUE100に利用させないようにするためのアドレス設定情報を通知するものである。モード切り替え情報オプションは、UE100のLIPAコネクション経路が変更されるときに受信したRAメッセージ(アドレス情報通知メッセージ)を無視せずに利用させるための情報が格納される。なお、上記したように、“モード切り替え情報フィールド”に格納される情報は、RAメッセージ(アドレス情報通知メッセージ)のソースアドレス(Link-localアドレス)やモードを切り替える目的の特別なフラグ情報、又は、ID、又は、トークンなどでもよい。 The PBA message shown in FIG. 24A is composed of an address setting information option and a mode switching information option, which are features of the present application, in addition to the basic header and option fields used conventionally. The address setting information option notifies address setting information for preventing the UE 100 from using an RA message (address information notification message) transmitted from another gateway. The mode switching information option stores information for using the RA message (address information notification message) received when the LIPA connection route of the UE 100 is changed without being ignored. As described above, the information stored in the “mode switching information field” includes the source address (Link-local address) of the RA message (address information notification message), special flag information for switching the mode, or It may be an ID or a token.
 また図24Bは、従来から使用される基本的なヘッダやオプションフィールドの他に、本願の特徴となるモード切り替え情報オプションから構成されるものである。 FIG. 24B is composed of a mode switching information option, which is a feature of the present application, in addition to the basic header and option field conventionally used.
 以上、本開示技術の第3の実施の形態によれば、UE100がPDNコネクションの確立手順において受信するメッセージのPCOから取得したRAメッセージ情報(アドレス設定情報)を利用し、UE100が他のゲートウェイから送信されるRAメッセージ(アドレス情報通知メッセージ)を無視できるようにすることで、UE100が誤ったパラメータ(例えば、Link-MTU値)を用いて、ユーザデータを交換する問題を回避することができる。また、モード切り替え情報を用いることによって、UE100のハンドオーバ先の基地局(HeNBやeNB)がLGW220との間のダイレクトパスをUE100に対して許可していない場合、あるいは、UE100のハンドオーバ先の基地局(HeNBやeNB)とLGW220との間のダイレクトパスが存在しない場合など、LIPAコネクションがSGW410経由に切り替わる場合に、UE100がSGW410からのRAメッセージ(アドレス情報通知メッセージ)の情報(アドレス設定情報)を利用することができるようになる。これにより、UE100が誤ったパラメータ(例えば、Link-MTU値)を用いて、ユーザデータを交換する問題を回避することができる。また、本開示技術の第3の実施の形態は、第2の実施の形態と同様に、3GPPが制定する従来技術を利用することにより、既存システムへのインパクト(影響)を考慮しながら問題を解決することができる。 As described above, according to the third embodiment of the present disclosure, the UE 100 uses the RA message information (address setting information) acquired from the PCO of the message received by the UE 100 in the procedure for establishing the PDN connection, and the UE 100 receives information from another gateway. By enabling the transmitted RA message (address information notification message) to be ignored, it is possible to avoid the problem that the UE 100 exchanges user data using an incorrect parameter (for example, Link-MTU value). Further, by using the mode switching information, the base station (HeNB or eNB) that is the handover destination of the UE 100 does not permit the UE 100 to make a direct path to the LGW 220, or the base station that is the handover destination of the UE 100 When the LIPA connection is switched via the SGW 410, such as when there is no direct path between the (HeNB or eNB) and the LGW 220, the UE 100 uses the RA message (address information notification message) information (address setting information) from the SGW 410. Can be used. As a result, it is possible to avoid the problem that the UE 100 exchanges user data using an incorrect parameter (for example, Link-MTU value). In addition, the third embodiment of the disclosed technology, as in the second embodiment, uses the conventional technology established by 3GPP, and solves the problem while considering the impact on the existing system. Can be solved.
 なお、UE100のLIPAコネクションがSGW410経由からHeNBとのダイレクトパス経由に切り替わるときは、LGW220は当初ダイレクトパス経由のLIPAコネクション確立時にSGW410に通知したLLアドレス(つまりPCOでUE100に通知したものとは少なくとも異なるリンクローカルアドレス)を、あらためてSGW410に通知する。LGW220からSGW410への通知には、上記したようなPBAやBinding Revokeメッセージなどを用いることができる。これにより、UE100がいかなる基地局へハンドオーバするときでも、UE100におけるコネクションのIPコンフィグレーションを常に正しく実施させることができるようになり、伝送効率の向上を達成し、ユーザベネフィットを高めることができる。 When the LIPA connection of the UE 100 is switched from via the SGW 410 to the direct path with the HeNB, the LGW 220 initially notifies the SGW 410 when the LIPA connection via the direct path is established (that is, at least the one notified to the UE 100 by the PCO) A different link local address) is notified to the SGW 410 again. For the notification from the LGW 220 to the SGW 410, the above-described PBA, Binding Revoke message, or the like can be used. As a result, even when the UE 100 is handed over to any base station, the IP configuration of the connection in the UE 100 can always be correctly performed, the transmission efficiency can be improved, and the user benefit can be increased.
 また、上記説明では、UE100の状態として指定アドレスモードと通常モードの2つがあることを前提に説明を行ったが、特にパケットフィルタを用いて本願発明による処理を実装する場合などにおいては、状態を1つとするものであってもよい。つまり、UE100がPCOからモード切り替え情報を取得した時に、本願発明を動作させるモードに遷移し、パケットフィルタの設定などを行う。すなわち、パケットフィルタを設定してから以降、RAメッセージについて特定のリンクローカルアドレスをソースアドレスとしない限り受信することはない。つまり、パケットフィルタを設定することで、上記説明した2つのモードは暗黙のうちに取捨選択されるようになる。したがって、本願発明の実施において、必ずしも上記説明した2つのモードが必須となるわけではない。 Further, in the above description, the description has been made on the assumption that the UE 100 has two states of the designated address mode and the normal mode. However, particularly when the process according to the present invention is implemented using a packet filter, the state is changed. It may be one. That is, when the UE 100 acquires mode switching information from the PCO, the UE 100 transits to a mode in which the present invention is operated, and performs packet filter setting and the like. That is, after setting the packet filter, the RA message is not received unless a specific link local address is used as the source address. That is, by setting a packet filter, the two modes described above are implicitly selected. Therefore, in the implementation of the present invention, the two modes described above are not necessarily essential.
 また、本開示技術の一態様では、前記通信端末が、前記通信端末が接続している前記基地局とは異なる別の基地局へハンドオーバを行うステップと、
 前記第1ゲートウェイが、前記ハンドオーバに基づいて、前記第2ゲートウェイへ第2の登録要求メッセージを送信するステップと、
 前記第2ゲートウェイが、前記第2の登録要求メッセージを受信し、前記ハンドオーバによって前記通信端末と前記接続先との間のデータ転送が前記第1ゲートウェイ経由のデータ転送に切り替わるか否かを判断するステップと、
 前記ハンドオーバによって前記通信端末と前記接続先との間のデータ転送が前記第1ゲートウェイ経由のデータ転送に切り替わる場合、前記第2ゲートウェイが、前記通信端末が受信するアドレス情報通知メッセージに含まれるアドレス設定情報を有効にするためのモード切り替え情報をオプションフィールドに含む第2の登録応答メッセージを前記第1ゲートウェイへ送信するステップと、
 前記第1ゲートウェイが、前記第2の登録応答メッセージを受信し、前記モード切り替え情報を含むアドレス情報通知メッセージを前記通信端末へ送信するステップと、
 前記通信端末が、前記モード切り替え情報を含む前記アドレス情報通知メッセージを受信し、前記モード切り替え情報を含む前記アドレス情報通知メッセージに含まれる前記アドレス設定情報に基づいて前記接続先との通信の設定を更新するステップとを、
 更に有していてもよい。
Further, in one aspect of the disclosed technology, the communication terminal performs a handover to another base station different from the base station to which the communication terminal is connected;
The first gateway transmitting a second registration request message to the second gateway based on the handover;
The second gateway receives the second registration request message, and determines whether data transfer between the communication terminal and the connection destination is switched to data transfer via the first gateway by the handover. Steps,
When the data transfer between the communication terminal and the connection destination is switched to the data transfer via the first gateway by the handover, the address setting included in the address information notification message received by the communication terminal is received by the second gateway. Transmitting a second registration response message including mode switching information for validating information in an option field to the first gateway;
The first gateway receives the second registration response message and transmits an address information notification message including the mode switching information to the communication terminal;
The communication terminal receives the address information notification message including the mode switching information, and sets communication with the connection destination based on the address setting information included in the address information notification message including the mode switching information. The step of updating,
Furthermore, you may have.
 また、本開示技術の一態様では、前記アドレス設定情報を生成するステップにおいて、前記第2ゲートウェイが、前記通信端末が受信するアドレス情報通知メッセージに含まれるアドレス設定情報を有効にするためのモード切り替え情報を更に生成し、
 前記登録応答メッセージを前記第1ゲートウェイへ送信するステップにおいて、前記第2ゲートウェイが、前記登録応答メッセージのオプションフィールドに前記モード切り替え情報を更に挿入し、
 前記接続受諾メッセージを前記通信端末へ送信するステップにおいて、前記第1ゲートウェイが、前記接続受諾メッセージのオプションフィールドに前記モード切り替え情報を更に挿入し、
 前記接続受諾メッセージを受信するステップにおいて、前記通信端末が、前記アドレス設定情報を含む前記オプションフィールドに前記モード切り替え情報が更に挿入された前記接続受諾メッセージを前記ネットワークから受信した際、前記モード切り替え情報を更に保持してもよい。
Further, in one aspect of the disclosed technology, in the step of generating the address setting information, the second gateway performs mode switching for validating the address setting information included in the address information notification message received by the communication terminal. Generate more information,
In the step of transmitting the registration response message to the first gateway, the second gateway further inserts the mode switching information in an option field of the registration response message,
In the step of transmitting the connection acceptance message to the communication terminal, the first gateway further inserts the mode switching information in an option field of the connection acceptance message,
In the step of receiving the connection acceptance message, when the communication terminal receives from the network the connection acceptance message in which the mode switching information is further inserted into the option field including the address setting information, the mode switching information May be further held.
 また、本開示技術の一態様では、前記通信端末が、前記ネットワークから前記モード切り替え情報を含む前記アドレス情報通知メッセージを受信した場合、前記アドレス情報通知メッセージに含まれる前記モード切り替え情報が、前記接続受諾メッセージの前記オプションフィールドに含まれており前記通信端末が保持している前記モード切り替え情報と一致するか否かを確認するステップと、
 一致した場合に、前記アドレス情報通知メッセージに含まれるアドレス設定情報に基づいて前記接続先との通信の設定を更新するステップとを、
 更に有していてもよい。
In one aspect of the disclosed technology, when the communication terminal receives the address information notification message including the mode switching information from the network, the mode switching information included in the address information notification message is the connection information. Confirming whether the mode switching information included in the option field of the acceptance message matches the mode switching information held by the communication terminal;
If they match, updating the communication settings with the connection destination based on the address setting information included in the address information notification message,
Furthermore, you may have.
 また、本開示技術の一態様では、前記モード切り替え情報に前記第1ゲートウェイのリンクローカルアドレスの1つが使用され、前記アドレス情報通知メッセージのソースアドレスに前記第1ゲートウェイの前記リンクローカルアドレスの1つが使用されてもよい。 Also, in one aspect of the disclosed technology, one of the link local addresses of the first gateway is used for the mode switching information, and one of the link local addresses of the first gateway is used as a source address of the address information notification message. May be used.
 また、本開示技術の一態様では、前記通信端末が、前記アドレス情報通知メッセージに含まれる前記アドレス設定情報に基づいて前記接続先との通信の設定を行った後、前記ネットワークから前記アドレス情報通知メッセージとは異なる別のアドレス情報通知メッセージを受信した場合には、前記別のアドレス情報通知メッセージに含まれるアドレス設定情報に基づいて前記接続先との通信の設定を更新するステップを更に有していてもよい。 Further, in one aspect of the disclosed technology, the communication terminal sets communication with the connection destination based on the address setting information included in the address information notification message, and then notifies the address information from the network. When another address information notification message different from the message is received, the method further includes a step of updating the setting of communication with the connection destination based on the address setting information included in the other address information notification message. May be.
 また、本開示技術の一態様では、前記第2ゲートウェイが生成する前記アドレス設定情報が、前記第2ゲートウェイから前記通信端末へ通知されるべきアドレス情報通知メッセージの情報を含んでもよい。 Moreover, in one aspect of the disclosed technique, the address setting information generated by the second gateway may include information of an address information notification message to be notified from the second gateway to the communication terminal.
 また、本開示技術の一態様では、前記接続要求メッセージ及び前記接続受諾メッセージが、パケットデータネットワークコネクションの確立手順において定義されているメッセージであってもよい。 In one aspect of the disclosed technology, the connection request message and the connection acceptance message may be messages defined in a packet data network connection establishment procedure.
 また、本開示技術の一態様では、前記登録要求メッセージ及び前記登録応答メッセージがそれぞれ、プロキシモバイルIPで定義されているプロキシバインディングアップデートメッセージ及びプロキシバインディングアクノレッジメントメッセージであってもよい。 Further, in one aspect of the present disclosure, the registration request message and the registration response message may be a proxy binding update message and a proxy binding acknowledgment message defined by proxy mobile IP, respectively.
 また、本開示技術の一態様では、前記通信端末が、前記アドレス設定情報に基づいて前記接続先との通信の設定を行った後、前記ネットワークから受信するアドレス情報通知メッセージに含まれるアドレス設定情報を無視するステップを更に有していてもよい。 Further, in one aspect of the disclosed technology, the communication terminal sets communication with the connection destination based on the address setting information, and then includes address setting information included in an address information notification message received from the network. May be further included.
 また、本開示技術の一態様では、前記第2ゲートウェイが、前記通信端末の移動制御プロトコルとしてプロキシモバイルIPが適用されているか否かを確認し、前記通信端末の移動制御プロトコルとして前記プロキシモバイルIPが適用されている場合に、前記アドレス設定情報を生成して、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記第1ゲートウェイへ送信してもよい。 Further, in one aspect of the disclosed technology, the second gateway confirms whether proxy mobile IP is applied as a mobility control protocol of the communication terminal, and the proxy mobile IP is used as the mobility control protocol of the communication terminal. Is applied, the address setting information may be generated, and a registration response message including the address setting information in an option field may be transmitted to the first gateway.
 また、本開示技術の一態様では、前記第2ゲートウェイが、前記通信端末による前記接続先への接続がローカルIPアクセスであるか否かを確認し、前記通信端末による前記接続先への接続が前記ローカルIPアクセスである場合に、前記アドレス設定情報を生成して、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記第1ゲートウェイへ送信してもよい。 Further, in one aspect of the present disclosure, the second gateway confirms whether or not the connection to the connection destination by the communication terminal is a local IP access, and the connection to the connection destination by the communication terminal is In the case of the local IP access, the address setting information may be generated and a registration response message including the address setting information in an option field may be transmitted to the first gateway.
 また、本開示技術の一態様では、前記第2ゲートウェイが、前記通信端末が接続している前記基地局と前記第2ゲートウェイとの間で前記第1ゲートウェイを経由しないダイレクトパスを確立できるか否かを確認し、前記ダイレクトパスを確立できる場合に、前記アドレス設定情報を生成して、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記第1ゲートウェイへ送信してもよい。 Further, according to one aspect of the disclosed technology, the second gateway can establish a direct path that does not pass through the first gateway between the base station to which the communication terminal is connected and the second gateway. If the direct path can be established, the address setting information may be generated, and a registration response message including the address setting information in an option field may be transmitted to the first gateway.
 また、本開示技術の一態様は、例えば、通信端末が基地局を介して接続するネットワーク上のゲートウェイとして機能するネットワーク装置であって、
 前記通信端末が指定する接続先と前記通信端末との接続におけるデータパス制御を行う手段と、
 前記通信端末から前記ネットワークへ送信された前記接続先を指定する識別情報を含む接続要求メッセージに基づいて送信される登録要求メッセージであって、前記通信端末のデータパス制御を行う前記ネットワーク上の別のゲートウェイから送信される前記登録要求メッセージを受信する手段と、
 前記通信端末に通知すべきアドレス設定情報を生成する手段と、
 前記登録要求メッセージに対する応答として、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記別のゲートウェイへ送信する手段とを、
 有し、
 前記別のゲートウェイが前記アドレス設定情報をオプションフィールドに含む接続受諾メッセージを前記通信端末へ送信することによって、前記通信端末が、前記接続要求メッセージに対する応答として、前記接続受諾メッセージを前記ネットワークから受信し、前記アドレス設定情報に基づいて前記接続先との通信の設定を行うネットワーク装置を含んでもよい。
 この構成により、通信端末は、所望の接続先ネットワークとの通信において、適切なアドレス設定情報に基づく通信設定を行うことが可能となり、非効率な通信の発生を抑えることが可能となる。
Further, one aspect of the disclosed technology is a network device that functions as a gateway on a network to which a communication terminal connects via a base station, for example,
Means for performing data path control in connection between a connection destination designated by the communication terminal and the communication terminal;
A registration request message transmitted based on a connection request message including identification information for designating the connection destination transmitted from the communication terminal to the network, wherein the communication terminal performs data path control of the communication terminal. Means for receiving the registration request message sent from the gateway of
Means for generating address setting information to be notified to the communication terminal;
As a response to the registration request message, means for transmitting a registration response message including the address setting information in an option field to the another gateway;
Have
When the another gateway transmits a connection acceptance message including the address setting information in an option field to the communication terminal, the communication terminal receives the connection acceptance message from the network as a response to the connection request message. A network device that sets communication with the connection destination based on the address setting information may be included.
With this configuration, the communication terminal can perform communication settings based on appropriate address setting information in communication with a desired connection destination network, and can suppress the occurrence of inefficient communication.
 また、本開示技術の一態様では、前記通信端末が前記基地局とは異なる別の基地局へ行ったハンドオーバに基づいて送信される登録要求メッセージであって、前記別のゲートウェイから送信される前記登録要求メッセージを受信する手段と、
 前記ハンドオーバによって前記通信端末と前記接続先との間のデータ転送が前記別のゲートウェイ経由のデータ転送に切り替わるか否かを判断する手段と、
 前記ハンドオーバによって前記通信端末と前記接続先との間のデータ転送が前記別のゲートウェイ経由のデータ転送に切り替わる場合、前記通信端末が受信するアドレス情報通知メッセージに含まれるアドレス設定情報を有効にするためのモード切り替え情報をオプションフィールドに含む第2の登録応答メッセージを前記別のゲートウェイへ送信する手段とを有し、
 前記別のゲートウェイが前記第2の登録応答メッセージを受信し、前記モード切り替え情報を含むアドレス情報通知メッセージを前記通信端末へ送信することによって、前記通信端末が、前記モード切り替え情報を含む前記アドレス情報通知メッセージを受信し、前記モード切り替え情報を含む前記アドレス情報通知メッセージに含まれる前記アドレス設定情報に基づいて前記接続先との通信の設定を更新してもよい。
Further, in one aspect of the disclosed technique, the communication terminal is a registration request message transmitted based on a handover performed to another base station different from the base station, and transmitted from the another gateway. Means for receiving a registration request message;
Means for determining whether or not data transfer between the communication terminal and the connection destination is switched to data transfer via the another gateway by the handover;
In order to validate the address setting information included in the address information notification message received by the communication terminal when data transfer between the communication terminal and the connection destination is switched to data transfer via the other gateway by the handover Means for transmitting a second registration response message including the mode switching information in the option field to the another gateway,
The another gateway receives the second registration response message and transmits an address information notification message including the mode switching information to the communication terminal, so that the communication terminal includes the address information including the mode switching information. A notification message may be received, and a communication setting with the connection destination may be updated based on the address setting information included in the address information notification message including the mode switching information.
 また、本開示技術の一態様は、例えば、基地局を介してネットワークに接続する通信端末であって、
 接続先を指定する識別情報を含む接続要求メッセージを前記ネットワークへ送信する手段と、
 前記接続要求メッセージに対する応答として、前記接続先との接続におけるデータパス制御を行う前記ネットワーク上のゲートウェイが前記通信端末に通知すべきアドレス設定情報をオプションフィールドに含む接続受諾メッセージを前記ネットワークから受信する手段と、
 前記アドレス設定情報に基づいて前記接続先との通信の設定を行う手段とを、
 有する通信端末を含んでもよい。
 この構成により、通信端末は、所望の接続先ネットワークとの通信において、適切なアドレス設定情報に基づく通信設定を行うことが可能となり、非効率な通信の発生を抑えることが可能となる。
Further, one aspect of the disclosed technique is, for example, a communication terminal connected to a network via a base station,
Means for transmitting a connection request message including identification information designating a connection destination to the network;
As a response to the connection request message, a connection acceptance message including address setting information to be notified to the communication terminal by the gateway on the network performing data path control in connection with the connection destination is received from the network. Means,
Means for setting communication with the connection destination based on the address setting information;
You may include the communication terminal which has.
With this configuration, the communication terminal can perform communication settings based on appropriate address setting information in communication with a desired connection destination network, and can suppress the occurrence of inefficient communication.
 また、本開示技術の一態様では、ハンドオーバを行って前記基地局とは異なる別の基地局へ接続した際、アドレス設定情報が有効であることを示すモード切り替え情報を含むアドレス情報通知メッセージを受信した場合に、前記アドレス情報通知メッセージに含まれる前記アドレス設定情報に基づいて前記接続先との通信の設定を更新する手段を更に有してもよい。 Further, according to one aspect of the disclosed technology, when an handover is performed and a connection is made to another base station different from the base station, an address information notification message including mode switching information indicating that the address setting information is valid is received. In this case, the information processing apparatus may further include means for updating the setting of communication with the connection destination based on the address setting information included in the address information notification message.
 なお、上記の本開示技術の各態様は、適宜組み合わせることが可能である。 It should be noted that the above aspects of the disclosed technology can be combined as appropriate.
 また、本開示技術の一態様は、通信制御方法、通信端末、ネットワーク装置に加えて、通信端末やネットワーク装置によって実行される方法、この方法をコンピュータに実行させるためのプログラム、及び、このプログラムを記録した記録媒体などによって実現されてもよい。 In addition to the communication control method, the communication terminal, and the network device, one aspect of the present disclosure provides a method that is executed by the communication terminal and the network device, a program that causes a computer to execute the method, and the program It may be realized by a recorded recording medium or the like.
 また、上記実施の形態の説明に用いた各機能ブロックや各処理部は、ハードウェア、ソフトウェア、あるいはこれらの組み合わせによって実現されてもよい。例えば、図6、8、12、14、1、21などに図示されている各装置に含まれる機能ブロック、あるいは、同等の機能を有する各処理部は、任意のコンピュータのCPU及びメモリなどのハードウェアによって実現されてもよい。また、各機能に係る動作が記述されたプログラムをコンピュータによって実行させることで、各機能ブロックや各処理部が実現されてもよい。 Also, each functional block and each processing unit used in the description of the above embodiment may be realized by hardware, software, or a combination thereof. For example, the functional blocks included in each device illustrated in FIGS. 6, 8, 12, 14, 1, 21, etc., or each processing unit having an equivalent function may be a hardware such as a CPU and a memory of an arbitrary computer. It may be realized by wear. Further, each functional block and each processing unit may be realized by causing a computer to execute a program in which operations related to each function are described.
 また、上記の本開示技術の実施の形態の説明で用いた機能ブロックは、典型的には集積回路であるLSI(Large Scale Integration)として実現される。これらは個別に1チップ化されてもよいし、一部又はすべてを含むように1チップ化されてもよい。なお、ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, the functional blocks used in the description of the embodiment of the presently disclosed technique are typically realized as an LSI (Large Scale Integration) that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Here, LSI is used, but depending on the degree of integration, it may be called IC (Integrated Circuit), system LSI, super LSI, or ultra LSI.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。例えば、バイオ技術の適応などが可能性としてあり得る。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. For example, biotechnology can be applied.
 本開示技術は、2つのゲートウェイから通信端末に対して、それぞれ異なるアドレス設定情報を含むアドレス情報通知メッセージが通知され得る環境において、通信端末が、常に適切なアドレス設定情報に基づく通信設定を行えるようになり、非効率な通信の発生を抑えることが可能になるという効果、通信端末がLIPAコネクションを経由した通信に対して、適切なアドレス設定情報に基づく通信設定を行えるようになるという効果、通信端末がアドレス情報要求メッセージをネットワークに送信するケースにおいても、正しいアドレス情報通知メッセージ情報を常に選択及び利用できるようになるという効果などを有し、例えば、PMIP適用時において、宅内アクセス技術(ローカルIPアクセス)を利用した場合の技術に適用可能である。 The disclosed technology allows a communication terminal to always perform communication setting based on appropriate address setting information in an environment where an address information notification message including different address setting information can be notified from two gateways to the communication terminal. The effect that it becomes possible to suppress the occurrence of inefficient communication, the effect that the communication terminal can perform communication setting based on appropriate address setting information for communication via the LIPA connection, communication Even in the case where the terminal transmits an address information request message to the network, there is an effect that correct address information notification message information can be always selected and used. For example, when a PMIP is applied, a home access technology (local IP Applicable to technology when using (Access) It is.

Claims (17)

  1.  基地局を介してネットワークに接続する通信端末の通信制御を行う通信制御方法であって、
     前記通信端末が、接続先を指定する識別情報を含む接続要求メッセージを前記ネットワークへ送信するステップと、
     前記通信端末のデータパス制御を行う前記ネットワーク上の第1ゲートウェイが、前記接続要求メッセージを受信し、前記接続要求メッセージに基づいて、前記接続先との接続におけるデータパス制御を行う前記ネットワーク上の第2ゲートウェイへ登録要求メッセージを送信するステップと、
     前記第2ゲートウェイが、前記登録要求メッセージを受信し、前記通信端末に通知すべきアドレス設定情報を生成するステップと、
     前記第2ゲートウェイが、前記登録要求メッセージに対する応答として、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記第1ゲートウェイへ送信するステップと、
     前記第1ゲートウェイが、前記アドレス設定情報をオプションフィールドに含む接続受諾メッセージを前記通信端末へ送信するステップと、
     前記通信端末が、前記接続要求メッセージに対する応答として、前記接続受諾メッセージを前記ネットワークから受信するステップと、
     前記通信端末が、前記アドレス設定情報に基づいて前記接続先との通信の設定を行うステップとを、
     有する通信制御方法。
    A communication control method for performing communication control of a communication terminal connected to a network via a base station,
    The communication terminal transmitting a connection request message including identification information designating a connection destination to the network;
    A first gateway on the network that performs data path control of the communication terminal receives the connection request message, and performs data path control in connection with the connection destination based on the connection request message Sending a registration request message to the second gateway;
    The second gateway receives the registration request message and generates address setting information to be notified to the communication terminal;
    The second gateway, as a response to the registration request message, sending a registration response message including the address setting information in an option field to the first gateway;
    The first gateway transmits a connection acceptance message including the address setting information in an option field to the communication terminal;
    The communication terminal receiving the connection acceptance message from the network as a response to the connection request message;
    The communication terminal performing communication setting with the connection destination based on the address setting information;
    A communication control method.
  2.  前記通信端末が、前記通信端末が接続している前記基地局とは異なる別の基地局へハンドオーバを行うステップと、
     前記第1ゲートウェイが、前記ハンドオーバに基づいて、前記第2ゲートウェイへ第2の登録要求メッセージを送信するステップと、
     前記第2ゲートウェイが、前記第2の登録要求メッセージを受信し、前記ハンドオーバによって前記通信端末と前記接続先との間のデータ転送が前記第1ゲートウェイ経由のデータ転送に切り替わるか否かを判断するステップと、
     前記ハンドオーバによって前記通信端末と前記接続先との間のデータ転送が前記第1ゲートウェイ経由のデータ転送に切り替わる場合、前記第2ゲートウェイが、前記通信端末が受信するアドレス情報通知メッセージに含まれるアドレス設定情報を有効にするためのモード切り替え情報をオプションフィールドに含む第2の登録応答メッセージを前記第1ゲートウェイへ送信するステップと、
     前記第1ゲートウェイが、前記第2の登録応答メッセージを受信し、前記モード切り替え情報を含むアドレス情報通知メッセージを前記通信端末へ送信するステップと、
     前記通信端末が、前記モード切り替え情報を含む前記アドレス情報通知メッセージを受信し、前記モード切り替え情報を含む前記アドレス情報通知メッセージに含まれる前記アドレス設定情報に基づいて前記接続先との通信の設定を更新するステップとを、
     更に有する請求項1に記載の通信制御方法。
    The communication terminal performs handover to another base station different from the base station to which the communication terminal is connected;
    The first gateway transmitting a second registration request message to the second gateway based on the handover;
    The second gateway receives the second registration request message, and determines whether data transfer between the communication terminal and the connection destination is switched to data transfer via the first gateway by the handover. Steps,
    When the data transfer between the communication terminal and the connection destination is switched to the data transfer via the first gateway by the handover, the address setting included in the address information notification message received by the communication terminal is received by the second gateway. Transmitting a second registration response message including mode switching information for validating information in an option field to the first gateway;
    The first gateway receives the second registration response message and transmits an address information notification message including the mode switching information to the communication terminal;
    The communication terminal receives the address information notification message including the mode switching information, and sets communication with the connection destination based on the address setting information included in the address information notification message including the mode switching information. The step of updating,
    The communication control method according to claim 1, further comprising:
  3.  前記アドレス設定情報を生成するステップにおいて、前記第2ゲートウェイが、前記通信端末が受信するアドレス情報通知メッセージに含まれるアドレス設定情報を有効にするためのモード切り替え情報を更に生成し、
     前記登録応答メッセージを前記第1ゲートウェイへ送信するステップにおいて、前記第2ゲートウェイが、前記登録応答メッセージのオプションフィールドに前記モード切り替え情報を更に挿入し、
     前記接続受諾メッセージを前記通信端末へ送信するステップにおいて、前記第1ゲートウェイが、前記接続受諾メッセージのオプションフィールドに前記モード切り替え情報を更に挿入し、
     前記接続受諾メッセージを受信するステップにおいて、前記通信端末が、前記アドレス設定情報を含む前記オプションフィールドに前記モード切り替え情報が更に挿入された前記接続受諾メッセージを前記ネットワークから受信した際、前記モード切り替え情報を更に保持する請求項1に記載の通信制御方法。
    In the step of generating the address setting information, the second gateway further generates mode switching information for validating the address setting information included in the address information notification message received by the communication terminal,
    In the step of transmitting the registration response message to the first gateway, the second gateway further inserts the mode switching information in an option field of the registration response message,
    In the step of transmitting the connection acceptance message to the communication terminal, the first gateway further inserts the mode switching information in an option field of the connection acceptance message,
    In the step of receiving the connection acceptance message, when the communication terminal receives from the network the connection acceptance message in which the mode switching information is further inserted into the option field including the address setting information, the mode switching information The communication control method according to claim 1, further comprising:
  4.  前記通信端末が、前記ネットワークから前記モード切り替え情報を含む前記アドレス情報通知メッセージを受信した場合、前記アドレス情報通知メッセージに含まれる前記モード切り替え情報が、前記接続受諾メッセージの前記オプションフィールドに含まれており前記通信端末が保持している前記モード切り替え情報と一致するか否かを確認するステップと、
     一致した場合に、前記アドレス情報通知メッセージに含まれるアドレス設定情報に基づいて前記接続先との通信の設定を更新するステップとを、
     更に有する請求項3に記載の通信制御方法。
    When the communication terminal receives the address information notification message including the mode switching information from the network, the mode switching information included in the address information notification message is included in the option field of the connection acceptance message. Checking whether the communication terminal matches the mode switching information, and
    If they match, updating the communication settings with the connection destination based on the address setting information included in the address information notification message,
    The communication control method according to claim 3, further comprising:
  5.  前記モード切り替え情報に前記第1ゲートウェイのリンクローカルアドレスの1つが使用され、前記アドレス情報通知メッセージのソースアドレスに前記第1ゲートウェイの前記リンクローカルアドレスの1つが使用される請求項4に記載の通信制御方法。 The communication according to claim 4, wherein one of the link local addresses of the first gateway is used for the mode switching information, and one of the link local addresses of the first gateway is used for a source address of the address information notification message. Control method.
  6.  前記通信端末が、前記アドレス情報通知メッセージに含まれる前記アドレス設定情報に基づいて前記接続先との通信の設定を行った後、前記ネットワークから前記アドレス情報通知メッセージとは異なる別のアドレス情報通知メッセージを受信した場合には、前記別のアドレス情報通知メッセージに含まれるアドレス設定情報に基づいて前記接続先との通信の設定を更新するステップを更に有する請求項4に記載の通信制御方法。 After the communication terminal sets communication with the connection destination based on the address setting information included in the address information notification message, another address information notification message different from the address information notification message from the network. 5. The communication control method according to claim 4, further comprising a step of updating a communication setting with the connection destination based on address setting information included in the another address information notification message.
  7.  前記第2ゲートウェイが生成する前記アドレス設定情報が、前記第2ゲートウェイから前記通信端末へ通知されるべきアドレス情報通知メッセージの情報を含む請求項1に記載の通信制御方法。 The communication control method according to claim 1, wherein the address setting information generated by the second gateway includes information of an address information notification message to be notified from the second gateway to the communication terminal.
  8.  前記接続要求メッセージ及び前記接続受諾メッセージが、パケットデータネットワークコネクションの確立手順において定義されているメッセージである請求項1に記載の通信制御方法。 The communication control method according to claim 1, wherein the connection request message and the connection acceptance message are messages defined in a packet data network connection establishment procedure.
  9.  前記登録要求メッセージ及び前記登録応答メッセージがそれぞれ、プロキシモバイルIPで定義されているプロキシバインディングアップデートメッセージ及びプロキシバインディングアクノレッジメントメッセージである請求項1に記載の通信制御方法。 The communication control method according to claim 1, wherein the registration request message and the registration response message are a proxy binding update message and a proxy binding acknowledgment message defined in proxy mobile IP, respectively.
  10.  前記通信端末が、前記アドレス設定情報に基づいて前記接続先との通信の設定を行った後、前記ネットワークから受信するアドレス情報通知メッセージに含まれるアドレス設定情報を無視するステップを更に有する請求項1に記載の通信制御方法。 The communication terminal further includes a step of ignoring address setting information included in an address information notification message received from the network after setting communication with the connection destination based on the address setting information. The communication control method described in 1.
  11.  前記第2ゲートウェイが、前記通信端末の移動制御プロトコルとしてプロキシモバイルIPが適用されているか否かを確認し、前記通信端末の移動制御プロトコルとして前記プロキシモバイルIPが適用されている場合に、前記アドレス設定情報を生成して、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記第1ゲートウェイへ送信する請求項1に記載の通信制御方法。 The second gateway checks whether proxy mobile IP is applied as a mobility control protocol of the communication terminal, and when the proxy mobile IP is applied as a mobility control protocol of the communication terminal, the address The communication control method according to claim 1, wherein setting information is generated and a registration response message including the address setting information in an option field is transmitted to the first gateway.
  12.  前記第2ゲートウェイが、前記通信端末による前記接続先への接続がローカルIPアクセスであるか否かを確認し、前記通信端末による前記接続先への接続が前記ローカルIPアクセスである場合に、前記アドレス設定情報を生成して、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記第1ゲートウェイへ送信する請求項1に記載の通信制御方法。 The second gateway checks whether the connection to the connection destination by the communication terminal is a local IP access, and when the connection to the connection destination by the communication terminal is the local IP access, 2. The communication control method according to claim 1, wherein address setting information is generated, and a registration response message including the address setting information in an option field is transmitted to the first gateway.
  13.  前記第2ゲートウェイが、前記通信端末が接続している前記基地局と前記第2ゲートウェイとの間で前記第1ゲートウェイを経由しないダイレクトパスを確立できるか否かを確認し、前記ダイレクトパスを確立できる場合に、前記アドレス設定情報を生成して、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記第1ゲートウェイへ送信する請求項1に記載の通信制御方法。 The second gateway confirms whether or not a direct path that does not pass through the first gateway can be established between the base station to which the communication terminal is connected and the second gateway, and establishes the direct path The communication control method according to claim 1, wherein if possible, the address setting information is generated and a registration response message including the address setting information in an option field is transmitted to the first gateway.
  14.  通信端末が基地局を介して接続するネットワーク上のゲートウェイとして機能するネットワーク装置であって、
     前記通信端末が指定する接続先と前記通信端末との接続におけるデータパス制御を行う手段と、
     前記通信端末から前記ネットワークへ送信された前記接続先を指定する識別情報を含む接続要求メッセージに基づいて送信される登録要求メッセージであって、前記通信端末のデータパス制御を行う前記ネットワーク上の別のゲートウェイから送信される前記登録要求メッセージを受信する手段と、
     前記通信端末に通知すべきアドレス設定情報を生成する手段と、
     前記登録要求メッセージに対する応答として、前記アドレス設定情報をオプションフィールドに含む登録応答メッセージを前記別のゲートウェイへ送信する手段とを、
     有し、
     前記別のゲートウェイが前記アドレス設定情報をオプションフィールドに含む接続受諾メッセージを前記通信端末へ送信することによって、前記通信端末が、前記接続要求メッセージに対する応答として、前記接続受諾メッセージを前記ネットワークから受信し、前記アドレス設定情報に基づいて前記接続先との通信の設定を行うネットワーク装置。
    A network device that functions as a gateway on a network to which a communication terminal connects via a base station,
    Means for performing data path control in connection between a connection destination designated by the communication terminal and the communication terminal;
    A registration request message transmitted based on a connection request message including identification information for designating the connection destination transmitted from the communication terminal to the network, wherein the communication terminal performs data path control of the communication terminal. Means for receiving the registration request message sent from the gateway of
    Means for generating address setting information to be notified to the communication terminal;
    As a response to the registration request message, means for transmitting a registration response message including the address setting information in an option field to the another gateway;
    Have
    When the another gateway transmits a connection acceptance message including the address setting information in an option field to the communication terminal, the communication terminal receives the connection acceptance message from the network as a response to the connection request message. A network device for setting communication with the connection destination based on the address setting information.
  15.  前記通信端末が前記基地局とは異なる別の基地局へ行ったハンドオーバに基づいて送信される登録要求メッセージであって、前記別のゲートウェイから送信される前記登録要求メッセージを受信する手段と、
     前記ハンドオーバによって前記通信端末と前記接続先との間のデータ転送が前記別のゲートウェイ経由のデータ転送に切り替わるか否かを判断する手段と、
     前記ハンドオーバによって前記通信端末と前記接続先との間のデータ転送が前記別のゲートウェイ経由のデータ転送に切り替わる場合、前記通信端末が受信するアドレス情報通知メッセージに含まれるアドレス設定情報を有効にするためのモード切り替え情報をオプションフィールドに含む第2の登録応答メッセージを前記別のゲートウェイへ送信する手段とを有し、
     前記別のゲートウェイが前記第2の登録応答メッセージを受信し、前記モード切り替え情報を含むアドレス情報通知メッセージを前記通信端末へ送信することによって、前記通信端末が、前記モード切り替え情報を含む前記アドレス情報通知メッセージを受信し、前記モード切り替え情報を含む前記アドレス情報通知メッセージに含まれる前記アドレス設定情報に基づいて前記接続先との通信の設定を更新する請求項14に記載のネットワーク装置。
    Means for receiving the registration request message transmitted from the another gateway, the registration request message transmitted based on a handover performed by the communication terminal to another base station different from the base station;
    Means for determining whether or not data transfer between the communication terminal and the connection destination is switched to data transfer via the another gateway by the handover;
    In order to validate the address setting information included in the address information notification message received by the communication terminal when data transfer between the communication terminal and the connection destination is switched to data transfer via the other gateway by the handover Means for transmitting a second registration response message including the mode switching information in the option field to the another gateway,
    The another gateway receives the second registration response message and transmits an address information notification message including the mode switching information to the communication terminal, so that the communication terminal includes the address information including the mode switching information. The network device according to claim 14, wherein the network device receives a notification message and updates a communication setting with the connection destination based on the address setting information included in the address information notification message including the mode switching information.
  16.  基地局を介してネットワークに接続する通信端末であって、
     接続先を指定する識別情報を含む接続要求メッセージを前記ネットワークへ送信する手段と、
     前記接続要求メッセージに対する応答として、前記接続先との接続におけるデータパス制御を行う前記ネットワーク上のゲートウェイが前記通信端末に通知すべきアドレス設定情報をオプションフィールドに含む接続受諾メッセージを前記ネットワークから受信する手段と、
     前記アドレス設定情報に基づいて前記接続先との通信の設定を行う手段とを、
     有する通信端末。
    A communication terminal connected to a network via a base station,
    Means for transmitting a connection request message including identification information designating a connection destination to the network;
    As a response to the connection request message, a connection acceptance message including address setting information to be notified to the communication terminal by the gateway on the network that performs data path control in connection with the connection destination is received from the network. Means,
    Means for setting communication with the connection destination based on the address setting information;
    Having a communication terminal.
  17.  ハンドオーバを行って前記基地局とは異なる別の基地局へ接続した際、アドレス設定情報が有効であることを示すモード切り替え情報を含むアドレス情報通知メッセージを受信した場合に、前記アドレス情報通知メッセージに含まれる前記アドレス設定情報に基づいて前記接続先との通信の設定を更新する手段を更に有する請求項16に記載の通信端末。 When an address information notification message including mode switching information indicating that the address setting information is valid is received when a handover is performed to connect to another base station different from the base station, the address information notification message is displayed. The communication terminal according to claim 16, further comprising means for updating a communication setting with the connection destination based on the address setting information included.
PCT/JP2012/004756 2011-09-16 2012-07-26 Communication control method, communication terminal, and network device WO2013038588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011203723 2011-09-16
JP2011-203723 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013038588A1 true WO2013038588A1 (en) 2013-03-21

Family

ID=47882842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004756 WO2013038588A1 (en) 2011-09-16 2012-07-26 Communication control method, communication terminal, and network device

Country Status (1)

Country Link
WO (1) WO2013038588A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640520A (en) * 2018-06-29 2021-04-09 北欧半导体公司 Method of communicating between a device and a network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150785A1 (en) * 2009-06-26 2010-12-29 シャープ株式会社 Mobile communication system, subscriber information management apparatus, position management apparatus and home base station
WO2011048768A1 (en) * 2009-10-21 2011-04-28 パナソニック株式会社 Communication system, user equipment and communication node
JP2011217114A (en) * 2010-03-31 2011-10-27 Ntt Docomo Inc Mobile communication method and gateway device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150785A1 (en) * 2009-06-26 2010-12-29 シャープ株式会社 Mobile communication system, subscriber information management apparatus, position management apparatus and home base station
WO2011048768A1 (en) * 2009-10-21 2011-04-28 パナソニック株式会社 Communication system, user equipment and communication node
JP2011217114A (en) * 2010-03-31 2011-10-27 Ntt Docomo Inc Mobile communication method and gateway device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements for non-3GPP accesses(Release 10)", 3GPP TS 23.402 V10.4.0, June 2011 (2011-06-01), pages 33 - 40 *
"3rd Generation Partnership Project; Technical Specification GroupServices and System Aspects; General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access", 3GPP TS 23.401 V10.4.0, June 2011 (2011-06-01), pages 32 - 34, 40-41,53-54,80-91 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640520A (en) * 2018-06-29 2021-04-09 北欧半导体公司 Method of communicating between a device and a network

Similar Documents

Publication Publication Date Title
US8724509B2 (en) Mobile communication method, mobile communication system, and corresponding apparatus
JP6536850B2 (en) Communications system
US8687592B2 (en) Method for switching session of user equipment in wireless communication system and system employing the same
US8792453B2 (en) Secure tunnel establishment upon attachment or handover to an access network
ES2610915T3 (en) Method, device and system to establish a connection
US8964697B2 (en) Connection management method, connection management system, mobile terminal, packet data gateway and mobile management gateway
JP5497890B2 (en) Local IP access support method and apparatus in wireless communication network including femtocell
KR102132062B1 (en) Transport network layer address discovery with x2-gateway
US9019894B2 (en) Position managing apparatus, packet gateway apparatus, mobile communication system, mobile station apparatus and mobile communication method
US20180234792A1 (en) Terminal device, base station device, mme, and communication control method
US8842636B2 (en) Method and device for managing Internet Protocol offload connection
TW201703490A (en) Methods, apparatus and systems IP mobility management
KR20140022401A (en) Local/remote ip traffic access and selective ip traffic offload service continuity
JPWO2009066438A1 (en) Address assignment method, address assignment system, mobile node and proxy node
WO2011054294A1 (en) Connection setup method and equipment
TW201434339A (en) Systems and methods for pre-registration to enable mobility management
JP2008271140A (en) Handover method between mobile communication network and public network, and communication system
KR20150001251A (en) Method and apparatus for data traffic offload in a wireless communication system
US20130058312A1 (en) Method, apparatus and system for processing local address in shunt connection
WO2018000654A1 (en) Local ip access service implementation method and apparatus system, and home evolved base station
CN102448185B (en) Remote access method and equipment
CN101610462B (en) Data message sending method, device and communication system
WO2012152226A1 (en) Method, radio access network device and communication system for transmitting data
WO2013038588A1 (en) Communication control method, communication terminal, and network device
JP2011509611A (en) Techniques for optimizing routes in communication networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP