WO2013038534A1 - Method for detecting target nucleic acid - Google Patents

Method for detecting target nucleic acid Download PDF

Info

Publication number
WO2013038534A1
WO2013038534A1 PCT/JP2011/071048 JP2011071048W WO2013038534A1 WO 2013038534 A1 WO2013038534 A1 WO 2013038534A1 JP 2011071048 W JP2011071048 W JP 2011071048W WO 2013038534 A1 WO2013038534 A1 WO 2013038534A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
nucleic acid
primer
target nucleic
dna
Prior art date
Application number
PCT/JP2011/071048
Other languages
French (fr)
Japanese (ja)
Inventor
孝介 丹羽
廣田 寿一
三雄 川瀬
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2011/071048 priority Critical patent/WO2013038534A1/en
Priority to JP2013533406A priority patent/JP5932808B2/en
Priority to JP2012173361A priority patent/JP2013059320A/en
Priority to JP2012173333A priority patent/JP6182300B2/en
Priority to JP2012175283A priority patent/JP6001374B2/en
Priority to PCT/JP2012/073710 priority patent/WO2013039228A1/en
Priority to JP2012549585A priority patent/JP5503021B2/en
Priority to MYPI2014000740A priority patent/MY157586A/en
Priority to ES12832061T priority patent/ES2736977T3/en
Priority to EP12832061.1A priority patent/EP2762562B1/en
Priority to SG11201400635UA priority patent/SG11201400635UA/en
Priority to CN201280045065.7A priority patent/CN103797119B/en
Publication of WO2013038534A1 publication Critical patent/WO2013038534A1/en
Priority to JP2014023882A priority patent/JP6076273B2/en
Priority to US14/208,070 priority patent/US20140206567A1/en
Priority to US15/820,798 priority patent/US20180119211A1/en
Priority to JP2018073278A priority patent/JP2018143245A/en
Priority to JP2021051302A priority patent/JP2021100429A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/161Modifications characterised by incorporating target specific and non-target specific sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/125Sandwich assay format
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/149Particles, e.g. beads
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/179Nucleic acid detection characterized by the use of physical, structural and functional properties the label being a nucleic acid

Definitions

  • the present invention relates to a technique for detecting a target nucleic acid.
  • nucleic acid sequences have been proposed as methods for genetic analysis of living organisms and for examining the presence of viruses, bacteria, and the like in biological samples.
  • a probe or the like associated with a target nucleic acid sequence is prepared in advance, and hybridization between the probe and the like and a DNA fragment amplified from a biological sample by a nucleic acid amplification method is used.
  • the target nucleic acid is detected with a labeling substance that has been bound to the fragment.
  • a method is described in which a primer is designed to include a base sequence that allows a specific substance to bind to both ends of a DNA fragment amplified by a nucleic acid amplification method, and the DNA fragment is detected using such a specific substance.
  • Patent Document 1 a method is described in which a primer is designed to include a base sequence that allows a specific substance to bind to both ends of a DNA fragment amplified by a nucleic acid amplification method, and the DNA fragment is detected using such a specific substance.
  • Patent Documents 2 and 3 Non-Patent Document 1
  • a sample preparation step is designed so that a detection probe having an artificial base sequence is prepared in advance and a DNA fragment having a base sequence that binds to the artificial base sequence can be amplified.
  • a specific substance recognizes a specific substance binding site (specific base sequence to which a specific substance can bind) of an amplified DNA fragment and binds to the specific base sequence.
  • the amplified DNA fragment forms a double strand with its complementary strand even in its specific base sequence, and is not in a single-stranded state that easily interacts with a specific substance. Therefore, the efficiency with which a specific substance recognizes a specific base sequence is not so high, and it is necessary to concentrate double-stranded fragments to which the specific substance is bound.
  • amplification is performed on the array intentionally by performing amplification with a relatively high concentration of one primer (also referred to as asymmetric PCR) in the labeling step.
  • the reactivity is improved by selectively amplifying the DNA strand that reacts with the probe.
  • non-contrast PCR tended to reduce the amplification efficiency itself.
  • a DNA amplification fragment used as a sample is also a double strand, and in order to efficiently perform hybridization with a probe, it is subjected to heat denaturation or alkali denaturation to be single stranded. It is common to do. However, the denatured amplified fragment gradually returns to double strand, which may reduce the hybridization efficiency. On the other hand, in order to suppress this, it may be necessary to optimize conditions such as hybridization time and temperature.
  • the present invention solves the problem of sample DNA fragments in conventional probe hybridization and realizes efficient probe hybridization, a target nucleic acid detection method, and a gene amplification agent and high
  • An object is to provide a composition for hybridization.
  • the present inventors examined modification of the nucleic acid amplification method from the viewpoint of improving hybridization efficiency and sensitivity with a probe when applied to probe hybridization. As a result of various studies, knowledge that hybridization efficiency is high and detection sensitivity can be improved by introducing a site capable of suppressing or stopping the progress of the polymerase reaction into a part of the primer used for nucleic acid amplification. Got. According to the present invention, the following means are provided based on this finding.
  • a method for detecting a target nucleic acid in a sample Preparing a solid phase body comprising detection probes each having a different predetermined base sequence; A tag sequence complementary to the detection probe previously associated with the target nucleic acid, and a first identification sequence for identifying a first base sequence in the target nucleic acid, the tag sequence and the first recognition
  • a second primer comprising a second identification sequence for identifying a second base sequence in the target nucleic acid
  • a method comprising: (2) The method according to (1), wherein the second primer has a labeling substance binding region to which
  • the amplification step is a step of performing nucleic acid amplification using a nucleoside triphosphate including a nucleoside derivative triphosphate having a labeling substance.
  • the linking site does not include a natural base or a derivative of a natural base paired with a natural base.
  • the linking site includes an alkylene chain or a polyoxyalkylene chain which is adjacent to the nucleotide in the primer via a phosphodiester bond and has 2 to 40 elements and may be substituted.
  • nucleic acid amplification is performed using a plurality of sets of the first primer and the second primer so as to be detectable by a plurality of the detection probes previously associated with the plurality of target nucleic acids.
  • the hybridization step is a step of bringing the plurality of amplified fragments obtained in the amplification step into contact with the plurality of detection probes on the solid phase so as to be capable of hybridizing
  • the detection step is a step of detecting a hybrid product of the plurality of amplified fragments on the solid phase body and the plurality of detection probes.
  • the tag sequence has 20 to 50 bases.
  • (13) including a first arbitrary base sequence from the 5 ′ side and a first identification sequence for identifying the first base sequence in the nucleic acid to be amplified, the first arbitrary base sequence and the first
  • a nucleic acid amplification agent used in a nucleic acid amplification method which is an oligonucleotide derivative having a linking site capable of suppressing or stopping a DNA polymerase reaction between 1 and a recognition sequence.
  • a nucleic acid amplification kit comprising two or more nucleic acid amplification agents according to (13) or (14).
  • a composition for probe hybridization comprising a DNA double-stranded fragment.
  • the probe hybridization composition according to (16) wherein the other strand has a single-stranded portion on the 5 ′ side, and a label is linked to the single-stranded portion.
  • a method for amplifying a target nucleic acid in a sample Including a first arbitrary base sequence and a first identification sequence for identifying the first base sequence in the target nucleic acid, between the first arbitrary base sequence and the first identification sequence, Performing nucleic acid amplification of the sample using at least a first primer having a linking site capable of suppressing or terminating the DNA polymerase reaction, A method of providing.
  • the present invention relates to a method for detecting a target nucleic acid, a nucleic acid amplification agent, and the like.
  • the target nucleic acid detection method of the present invention is characterized by using the following first primer and second primer.
  • An example of the amplification step in the detection method of the present invention is shown in FIGS. 1A and 1B.
  • the first primer discriminates the first arbitrary base sequence such as a tag sequence complementary to the detection probe previously associated with the target nucleic acid from the first base sequence in the target nucleic acid.
  • a linking site capable of suppressing or stopping the DNA polymerase reaction between the first arbitrary base sequence and the first recognition sequence,
  • the second primer includes a second identification sequence that identifies the second base sequence in the target nucleic acid.
  • the linking site suppresses or stops the DNA polymerase reaction. That is, the linking site cannot be a template for a DNA extension reaction by DNA polymerase because it does not contain a natural base or the like. Therefore, as shown in FIG. 1A, when the DNA single strand amplified by the first primer becomes a template strand and further amplified by the second primer, the DNA extension reaction from the second primer is In addition, it is suppressed or stopped on the 3 ′ side from the site that matches the linking site. Therefore, as a result, the amplified fragment (DNA double-stranded fragment) obtained by the amplification step is provided with a first arbitrary base sequence protruding from one end as a single strand and double-paired by base pairing. It is inferred to have a chain part.
  • FIG. 1B also shows a case where the second primer further has a second arbitrary base sequence, and has the linking site between the second arbitrary base sequence and the second identification sequence.
  • An amplification process is shown.
  • FIG. 1B like the first primer shown in FIG. 1A, when the DNA single strand amplified by the second primer becomes a template strand and further amplified by the first primer, The DNA extension reaction from one primer is suppressed or stopped on the 3 ′ side from the site that pairs with the ligation site.
  • the amplified fragment (DNA double-stranded fragment) obtained by the amplification step is provided as a single strand with a tag sequence protruding at one end and an arbitrary base sequence protruding at the other end. It is inferred that it is provided as a single strand and has a double-stranded portion by base pairing.
  • the target nucleic acid can be detected with extremely high sensitivity and speed when the amplified fragment obtained by carrying out the step is hybridized with the detection probe without being denatured as it is.
  • the obtained DNA double-stranded fragment forms a double-stranded portion in the first base sequence and the second base sequence in the target nucleic acid, and a tag sequence at the end. Since it is a DNA double-stranded fragment possessed as a single strand, it is considered that this single strand is efficiently hybridized with the probe. Sensitivity improves as hybridization efficiency increases.
  • Such an oligonucleotide derivative having a base sequence including a linking site is useful as a nucleic acid amplification agent such as a primer itself.
  • the nucleic acid amplification method using such a primer, the obtained DNA double-stranded fragment and the hybridization composition containing the fragment can also exhibit at least one effect corresponding to the form of each.
  • nucleic acid refers to all DNA and RNA including cDNA, genomic DNA, synthetic DNA, mRNA, total RNA, hnRNA and synthetic RNA, peptide nucleic acid, morpholino nucleic acid, methylphosphonate nucleic acid, and Includes artificially synthesized nucleic acids such as S-oligonucleic acid. Moreover, it may be single-stranded or double-stranded.
  • target nucleic acid is an arbitrary nucleic acid having an arbitrary sequence.
  • nucleic acids may have a base sequence that serves as a genetic indicator in humans or non-human animals, such as constitution, genetic disease, onset of specific diseases such as cancer, disease diagnosis, treatment prognosis, drug and treatment selection, etc.
  • nucleic acids with Examples of the index include polymorphisms such as SNP and congenital or acquired mutations.
  • nucleic acids derived from microorganisms such as pathogenic bacteria and viruses are also included in the target nucleic acid.
  • a sample described later or a nucleic acid fraction thereof can be used as it is, but preferably, an amplification product obtained by amplifying a plurality of target nucleic acids by PCR amplification reaction, more preferably multiplex PCR amplification reaction is used. It is preferable to use it.
  • sample refers to a sample that may contain a target nucleic acid.
  • Samples include cells, tissues, blood, urine, saliva and the like, and any sample containing nucleic acid can be used. Fractions containing nucleic acids from these various samples can be obtained by those skilled in the art with reference to conventional techniques as appropriate.
  • the “target sequence” refers to a sequence composed of one or more bases characteristic of the target nucleic acid to be detected.
  • it may be a partial sequence with low homology between target nucleic acids, or may be a sequence that is complementary or has low homology to other nucleic acids that may be contained in a sample.
  • the target sequence may be a sequence characteristic of the target nucleic acid.
  • Such target sequences may be artificially altered sequences.
  • the detection method disclosed in the present specification includes a step of preparing a solid phase body provided with a detection probe, and a step of performing nucleic acid amplification of the sample using a first primer and a second primer.
  • a detection step for detecting a hybridized product is provided.
  • the detection method disclosed in the present specification applies to one or more types of target nucleic acids, and more specifically, target sequences related to characteristic sequences in these target nucleic acids are to be detected.
  • a series of steps for one kind of target nucleic acid will be mainly described. However, the following steps are also applied to a case where a plurality of target nucleic acids are detected simultaneously.
  • the detection method disclosed in the present specification can include a step of preparing a solid phase as shown in FIG. 2A.
  • a solid phase may be prepared in advance prior to the execution of the detection method, may be obtained commercially, or may be prepared each time the detection method is performed.
  • the solid phase body can be provided with a plurality of detection probes each having a detection sequence that is a different unique base sequence on a carrier.
  • a detection probe each having a detection sequence that is a different unique base sequence on a carrier.
  • FIG. 2A shows an example of a solid phase body.
  • Each of the detection probes has a detection sequence that is a unique base sequence for probing.
  • a detection sequence can be set independently of the sequence characteristic of the target nucleic acid, that is, the target sequence.
  • the detection sequence of the detection probe can suppress or avoid non-specific binding between a plurality of detection probes, and is suitable for hybridization at a suitable temperature and time. Can be set in consideration of the hybridization conditions.
  • the same detection probe can always be used regardless of the type of target nucleic acid.
  • the length of the detection sequence is not particularly limited, but is preferably 20 bases or more and 50 bases or less. This is because within this range, hybridization efficiency can be ensured while ensuring the specificity of each detection sequence.
  • a base length detection sequence includes a 46 base length sequence obtained by combining two base sequences each having a base length of 23 bases each selected from SEQ ID NOs: 1 to 100 and a complementary sequence thereof, and the combined base sequence. Can be obtained by appropriately adding or deleting a base. More preferably, it is 20 bases or more and 25 bases or less.
  • such a base length detection sequence can be obtained by appropriately adding or deleting bases to the 23 base length sequences of SEQ ID NOS: 1 to 100 and their complementary sequences or these base sequences. it can.
  • the tag sequence in the first primer is a base sequence that is paired with the detection sequence
  • the base length of the tag sequence is preferably 20 bases or more and 50 bases or less, like the detection sequence. Preferably, it is 20 bases or more and 25 bases or less.
  • the detection sequence of such a detection probe for example, the base sequence described in SEQ ID NO: 1 to SEQ ID NO: 100 or a base sequence complementary to this base sequence can be used. These base sequences all have the same base length (23 base length), and have a melting temperature (Tm) of 40 ° C. or higher and 80 ° C. or lower, preferably 50 ° C. or higher and 70 ° C. or lower, and are homogeneous in hybridization under the same conditions. A hybrid result can be obtained.
  • Tm melting temperature
  • 2 types selected from these base sequence groups can also be combined.
  • bases can be added, deleted, substituted, etc. within such a range that the specificity is not lost.
  • the detection sequence for the detection probe used at the same time is selected from the group of the base sequences (groups) represented by SEQ ID NOs: 1 to 100 or the complementary base sequence (group) to these. Is preferred.
  • the detection sequence of the detection probe can be appropriately selected from such candidate base sequences or their complementary sequences, and is selected from the base sequences shown in the following table or their complementary sequences. Only a probe set consisting of only one or two or more probes each having one or two or more base sequences as a detection sequence, or only a probe having all the following base sequences or their complementary sequences as detection sequences It is preferable to use a probe set consisting of By selecting such a base sequence as a detection sequence, it is possible to perform hybridization in a short time and realize further rapid hybridization.
  • the detection sequence in such a detection probe is also referred to as an orthonormalized sequence, for example, a continuous match length for a DNA sequence of a predetermined base length obtained from a random number, melting temperature prediction by Nearest-Neighbor method, Hamming distance, Designed by performing secondary structure prediction calculations.
  • the orthonormalized sequence is a base sequence of nucleic acid having a uniform melting temperature, that is, a sequence designed so that the melting temperature is within a certain range, and the nucleic acid itself is intramolecular. It means a base sequence that does not form a stable hybrid other than a base sequence that is structured in the above and does not inhibit hybridization with a complementary sequence.
  • a sequence included in one orthonormalized sequence group hardly reacts between sequences other than the desired combination and within a self-sequence, or does not generate a reaction. Further, when the orthonormalized sequence is amplified in PCR, the amount of nucleic acid corresponding to the initial amount of the nucleic acid having the orthonormalized sequence is quantitatively affected without being affected by the problems such as the above-mentioned cross-hybridization. Has the property of being amplified.
  • the orthonormalized array as described above is described in detail in H. Yoshida and A.Suyama, “Solution to 3-SAT by breadth first search”, DIMACS Vl.54, 9-20 (2000) and Japanese Patent Application No. 2003-108126. Are listed. Orthonormalized sequences can be designed using the methods described in these references.
  • the detection probe is immobilized on a carrier.
  • a solid phase carrier can be used.
  • the carrier may be plastic or glass, and the material is not particularly limited.
  • carrier may be flat form as shown in FIG. 1, it may be bead shape and a shape is not specifically limited.
  • the solid phase is preferably an array (particularly a microarray) in which the carrier is in the form of a solid plate and a plurality of detection probes are fixed in a fixed arrangement. The array can fix a large number of detection probes 4 and is convenient for comprehensively detecting various target nucleic acids at the same time.
  • the solid phase body may include a plurality of partitioned array regions on the carrier.
  • a set of detection probes each having the same combination may be fixed, or a set of detection probes each having a different combination may be fixed. If different combinations of detection probe sets are immobilized on multiple array regions, individual array regions can be assigned for detection of target nucleic acids in different genes.
  • the immobilization form of the detection probe is not particularly limited.
  • the 3 'end of the detection probe may be bound to a carrier, or the 5' end may be bound. It may be covalent or non-covalent.
  • the detection probe can be immobilized on the surface of the carrier by various conventionally known methods.
  • An appropriate linker sequence may be provided on the surface of the carrier. The linker sequence is preferably the same sequence with the same base length between the detection probes.
  • the amplification step is performed using a first primer and a second primer.
  • the nucleic acid amplification method in the nucleic acid amplification step include various known methods for amplifying DNA using a DNA polymerase reaction such as PCR to obtain a double-stranded DNA fragment.
  • the first primer includes a tag sequence complementary to a detection probe previously associated with the target nucleic acid and a first identification sequence for identifying the first base sequence in the target nucleic acid.
  • the lengths and the like of these base sequences are not particularly limited, and are appropriately determined according to the contents of the target sequence of the target nucleic acid.
  • the first identification sequence is a sequence for amplifying the target nucleic acid by nucleic acid amplification, and can specifically hybridize with the first base sequence constituting a part of the target sequence in the target nucleic acid.
  • the first identification sequence is set complementarily to the extent that it can hybridize with the first base sequence with high selectivity. Preferably, it is set to be completely complementary (specific).
  • the tag sequence is a sequence for allowing the amplified fragment to hybridize with the detection probe and detects the target nucleic acid. Therefore, the tag sequence hybridizes to the detection sequence of the detection probe for each target nucleic acid. It is set to be able to soy.
  • the base sequence is complementary to the detection sequence. Therefore, one target nucleic acid is associated with one detection probe.
  • the base length of the tag sequence preferably matches the base length of the detection sequence of the detection probe, preferably 20 bases to 50 bases, more preferably 20 bases to 25 bases. It is as follows.
  • the first base sequence and the second base sequence in the target nucleic acid may have any configuration with respect to the target nucleic acid.
  • only one of the base sequences may contain a mutation site of one or more bases, or both may contain a mutation site.
  • the first primer has such a tag sequence and a first identification sequence, has a natural base constituting such a base sequence or an artificial base homologous thereto, and a base pair with a natural nucleic acid. It has a skeleton that can be combined. Typically an oligonucleotide or a derivative thereof.
  • the ligation site is a site capable of suppressing or stopping the DNA polymerase reaction when included in the template strand.
  • the DNA polymerase reaction it is said that if there is no nucleic acid (or base) as a template, the DNA strand will not be extended any further.
  • the linking site of the present invention has a structure that cannot serve as a template during DNA elongation by DNA polymerase. That is, this linking site does not include a natural base or a derivative of a natural base (such as a natural base) that pairs with a natural base.
  • this linking site may be only a skeleton chain having no natural base or the like. That is, it may be a sugar-phosphate skeleton or a skeleton applied to other known artificial oligonucleotides.
  • the DNA polymerase includes various known DNA polymerases. Typically, DNA polymerase used for nucleic acid amplification methods, such as various PCR, is mentioned.
  • this linking site may be a chain linking group containing a single chain structure having 2 to 40 elements adjacent to the nucleotide via a phosphodiester bond. This is because if the number of elements is 1 or less, the DNA polymerase reaction is likely to be incompletely inhibited or stopped, and if the number of elements exceeds 40, the solubility of nucleotides may be reduced. Considering the effect of suppressing or stopping the DNA polymerase reaction, the chain linking group element is preferably 2 or more and 36 or less, more preferably 3 or more and 16 or less.
  • This linking site contains a single bond to facilitate rotation at the linking site, and the single bond is a carbon-carbon single bond, carbon-oxygen single bond, carbon-nitrogen single bond, SS single bond. Examples include bonding. It is preferable that this connection site is mainly composed of such a single bond. In addition, this linking site may partially contain an aromatic ring or cycloalkane as long as it contains a single bond.
  • the connecting site preferably contains an alkylene chain or a polyoxyalkylene chain which has 2 to 40 elements and may be substituted.
  • Such a chain-like connection structure is structurally simple and can be easily introduced as a connection site.
  • connection part represented by the following formula
  • equation (1) is mentioned, for example.
  • equation (1) (In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and m represents an integer of 2 to 40. To express.),
  • m is preferably 2 or more and 36 or less, and more preferably 3 or more and 16 or less.
  • substituent of H in formula (1) include an alkyl group, an alkoxy group, and a hydroxyl group.
  • the alkyl group and alkoxy group preferably have 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the substituents may be the same or different.
  • connection part represented by the following formula
  • equation (2) is mentioned.
  • equation (2) (In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and n represents an integer of 2 or more and 4 or less.
  • l is an integer of 2 or more, and (n + 1) ⁇ l represents an integer of 40 or less.)
  • (n + 1) ⁇ l is preferably 2 or more and 36 or less, and more preferably 3 or more and 16 or less.
  • the same aspect as the substituent in Formula (1) is applied to the substituent of H in Formula (2).
  • linking site examples include the following chain sites.
  • linking site examples include the following chain sites.
  • the first primer has a first identification sequence and a tag sequence, and has a natural base constituting such a base sequence or an artificial base homologous thereto, and allows base pairing with a natural nucleic acid.
  • a main component Typically an oligonucleotide or a derivative thereof.
  • the first primer preferably has a tag sequence, a linking site, and a first identification sequence in that order from the 5 'side.
  • the 5 'end of the nucleotide base adjacent to the 3 ′ side of the ligation site derived from the first primer in the template strand or the base in the vicinity thereof is the 5 ′ end, and the tag sequence in the first primer An amplified fragment having no complementary strand is obtained (see FIGS. 1A and 1B and FIGS. 2A to 2C).
  • a sequence unrelated to the tag sequence or the first identification sequence can also be included in the vicinity of the linking site, that is, on the 3 'side and 5' side of the linking site.
  • the presence of a ligation site can reduce or avoid the influence of unintended DNA extension reaction progress or termination on the tag sequence or the first identification sequence in the extended strand. Because.
  • the second primer includes a second identification sequence that identifies the second base sequence in the target nucleic acid.
  • the lengths and the like of these base sequences are not particularly limited, and are appropriately determined according to the contents of the target sequence of the target nucleic acid.
  • the second identification sequence is a sequence for amplifying the target nucleic acid together with the first primer by nucleic acid amplification, and specifically with the second base sequence constituting the other part of the target sequence in the target nucleic acid. Can hybridize.
  • the second identification sequence is set complementarily to the extent that it can hybridize with the second base sequence with high selectivity. Preferably, it is set to be completely complementary (specific).
  • the labeling substance binding region can be provided with a labeling substance in advance.
  • the labeling substance is for detecting a DNA double-stranded fragment bound to a detection probe on a solid phase.
  • conventionally known substances can be appropriately selected and used. It may be various dyes such as a fluorescent substance that emits a fluorescent signal when excited by itself, or may be a substance that emits various signals in combination with the second component by an enzyme reaction or an antigen-antibody reaction.
  • a fluorescent labeling substance such as Cy3, Alexa555, Cy5, Alexa647 can be used.
  • the labeling substance binding region is provided with a labeling substance linked to the second base sequence directly or via a suitable linker by a known method.
  • the second primer may be configured such that the labeling substance binding region can bind the labeling substance. That is, a labeled probe having a predetermined base sequence and having a labeling substance and a base sequence for identifying the label binding sequence may be capable of binding. Such a labeled probe can be supplied to a DNA double-stranded fragment hybridized with a detection probe on a solid phase in the hybridization step or detection step described later, and can be labeled.
  • the third primer may not have a labeling substance binding region. That is, in the amplification step, nucleic acid amplification is performed using a nucleoside triphosphate including a nucleoside derivative triphosphate provided with a labeling substance, whereby a labeled substance is introduced into the DNA extension site of the amplified fragment and labeled. Because it can be obtained.
  • the second primer has a labeling substance binding region as required in addition to the second identification sequence, and has a natural base constituting the base sequence of the second identification sequence or an artificial base homologous thereto. In addition, it has a skeleton that allows base pairing with natural nucleic acids. Typically an oligonucleotide or a derivative thereof.
  • the labeling substance binding region and the second identification sequence may be directly linked, but it is preferable to have a linking site between them.
  • the labeling substance binding region has a base sequence that interacts with and binds to the labeling probe.
  • the linking site is as described in the first primer.
  • the second primer preferably has a labeling substance binding region, a linking site, and a second identification sequence in that order from the 5 'side.
  • the base binding to the base of the nucleotide adjacent to or adjacent to the 3 ′ side of the linking site derived from the second primer in the template strand is the 5 ′ end, and the label binding region in the second primer A DNA amplified fragment having no complementary strand of (base sequence) is obtained (see FIGS. 1B and 2B).
  • a sequence unrelated to the labeling substance binding region and the second identification sequence can also be included in the vicinity of the linking site, that is, on the 3 ′ side and 5 ′ side of the linking site.
  • the second primer becomes a template strand, due to the presence of the ligation site, the influence of unintended DNA extension reaction progress or termination on the labeling substance binding region or the second identification sequence in the extended strand is reduced or This is because it can be avoided.
  • Such primers can be synthesized according to a normal oligonucleotide synthesis method.
  • the linking site can be synthesized using a phosphoramidite reagent having an alkylene chain.
  • a reagent itself is known and can be obtained from, for example, GlenResearch.
  • the following reagents can be mentioned.
  • DMT represents a typical dimethoxytrityl group as a hydroxyl protecting group, but may be other known hydroxyl protecting groups.
  • PA represents a phosphoramidite group.
  • Nucleic acid amplification is performed using these primers.
  • various known methods can be applied to the nucleic acid amplification method, but typically, various PCRs such as PCR and multiplex PCR are used.
  • a person skilled in the art can appropriately set the solution composition, temperature control, and the like in carrying out the nucleic acid amplification step.
  • the first primer having these in the order of the tag sequence, the linking site and the first identification sequence from the 5 ′ side, and the labeling substance binding region, the linking site and the second from the 5 ′ side.
  • PCR is performed on a sample that may contain a target nucleic acid using a second primer having these in the order of the identification sequences, as shown in each of (a) to (c) of FIG. 1B Due to the DNA extension reaction of DNA polymerase, a template strand containing the primer is formed from the first primer and the second primer.
  • the DNA extension reaction is again performed by the DNA polymerase using the second primer and the first primer which are different from the primers from which the template strands are derived.
  • the DNA extension reaction of the DNA polymerase with respect to the template strand starting from the second primer and containing the first primer is performed by the first primer in the template strand.
  • DNA elongation is suppressed or stopped.
  • the DNA extension reaction of the DNA polymerase with respect to the template strand starting from the first primer and containing the second primer is derived from the second primer in the template strand.
  • the DNA elongation is suppressed or stopped.
  • the resulting amplified fragment has a single-stranded tag sequence protruding from the 5 ′ end and a labeling substance binding region, and includes a first identification sequence and a second identification sequence.
  • a double-stranded DNA fragment comprising a double strand. That is, in the heavy chain fragment of this DNA, the tag sequence protrudes into a single strand on the 5 ′ side of one DNA strand, and the labeling substance binding region protrudes on the 5 ′ side of the other DNA strand. Yes.
  • the labeling substance is attached to the 5 ′ end of one DNA strand as shown in FIG. 2A. It has a tag sequence protruding on the 5 ′ side of one DNA strand, and in the first and second identification sequences, it becomes a DNA double-stranded fragment comprising a double strand.
  • a labeling substance is present at the DNA chain extension site, a tag sequence protrudes on the 5 ′ side of one DNA chain, and the first and second identification sequences are double-stranded.
  • a DNA double-stranded fragment comprising
  • the hybridization step is a step in which the amplified fragment obtained in the amplification step and the detection probe are brought into contact with each other so as to be hybridizable with a tag sequence.
  • the tag sequence of the DNA double-stranded fragment obtained in the amplification step, the detection sequence of the detection probe on the solid phase body, and the fixed sequence When they are complementary to the extent that they can specifically hybridize, they hybridize to form a duplex in a given detection probe on the solid phase.
  • An appropriate washing step may be further included after the hybridization step.
  • a DNA double-stranded fragment corresponding to the target nucleic acid specifically amplified in the amplification step is supplied.
  • This fragment has a tag sequence specific to a detection probe associated in advance as a single strand.
  • a denaturation step such as heat denaturation. Therefore, the hybridization efficiency is high, and as a result, the sensitivity can be improved and stabilized .
  • the sensitivity is preferably improved by a factor of 5 or more, more preferably by a factor of 10 or more by providing a linking site in the first primer.
  • the rapidity of hybridization is also improved. It has been found that the provision of a linking site in the first primer shortens the hybridization time to about 1/10.
  • the DNA double-stranded fragment supplied to the hybridization step has a labeling substance binding region and is directly provided with a labeling substance
  • a special labeling step does not have to be performed.
  • FIG. 2C the same applies to the case where the DNA double-stranded fragment is given a labeling substance by the amplification step.
  • the labeling substance binding region includes a base sequence that binds the labeling probe
  • this base sequence portion projects as a single strand to the 5 ′ side opposite to the tag sequence. . For this reason, it is possible to efficiently hybridize with the labeled probe, and to label quickly, easily and with high sensitivity.
  • the labeled probe is supplied to the solid phase simultaneously with the DNA double strand break in the hybridization step, or before and after the supply of the DNA double strand fragment to the solid phase. (That is, it may be before or after hybridization).
  • the DNA double-stranded fragment hybridizes only to a specific detection probe based on the tag sequence.
  • the detection sequence and the tag sequence of the detection probe are designed to be highly selective and mishybridization is highly suppressed. Hybridization of heavy chain fragments is highly suppressed.
  • the detection step is a step of detecting a hybridized product of the amplified fragment on the solid phase body and the detection probe.
  • the detection step is a step of acquiring signal intensity information about the target nucleic acid based on the labeling substance held by the hybridized product on the solid phase after hybridization, and detecting the hybridized product. For obtaining signal intensity information, a label signal derived from a labeling substance can be detected. Since the position on the solid phase body of the detection probe associated with the target nucleic acid in advance is acquired in advance, the presence or the ratio of the target nucleic acid can be detected by detecting the label signal.
  • a conventionally known method may be appropriately selected and adopted according to the form of the solid phase used and the type of labeling substance.
  • the fluorescent signal of the added labeling substance is detected by an array scanner or the like, or a chemiluminescent reaction to the labeling substance Can be implemented.
  • a detection method using a flow cytometer can be used.
  • the presence or absence, the ratio, etc. of the target nucleic acid in the sample can be detected based on the signal intensity information of the labeling substance. According to this method, even when a plurality of target nucleic acids are detected at the same time, it is possible to reliably detect a target sequence as a detection target. In this method, since the DNA double-stranded fragment obtained in the amplification step is suitable for efficient hybridization and efficient labeling, efficient detection with high sensitivity is possible and a complicated denaturation step is performed. It can be omitted.
  • nucleic acid amplification was performed using a plurality of sets of the first primer and the second primer so that they could be detected by a plurality of detection probes previously associated with a plurality of target nucleic acids, and obtained in the amplification step
  • a plurality of amplified fragments and a plurality of detection probes on the solid phase are brought into contact with each other so as to be able to hybridize, and a hybrid product of the plurality of amplified fragments on the solid phase and the plurality of detection probes is detected. It is preferable.
  • the nucleic acid amplifying agent of the present invention is a first discriminating first base sequence in a nucleic acid to be amplified from a first arbitrary base sequence from the 5 ′ side. And an oligonucleotide derivative having a linking site capable of suppressing or stopping the DNA polymerase reaction between the first base sequence and the first identification sequence.
  • the nucleic acid amplification agent includes such a linking site, the nucleic acid amplification agent is used in the nucleic acid amplification method as at least one primer, and the DNA strand containing the nucleic acid amplification agent obtained by the amplification reaction is a template strand.
  • the linking site acts as a point for suppressing or stopping the DNA polymerase reaction in the extended strand, and the portion after the linking site does not function as a template strand.
  • an extended strand complementary to the template strand after the ligation site is not formed.
  • the resulting DNA double-stranded fragment is a DNA duplex having a single strand of the first arbitrary base sequence on one 5 ′ side, as shown in FIG. 1A.
  • the second primer which is the other primer, is amplified with the second arbitrary base sequence from the 5 ′ side in the same manner as the first primer.
  • an oligonucleotide derivative having a linking site capable of suppressing or stopping the DNA polymerase reaction between the second base sequence and the second identification sequence. it can.
  • a DNA duplex having a single strand of the first arbitrary base sequence and a single strand of the second arbitrary base sequence on each 5 'side is obtained.
  • the nucleic acid amplification agent can typically be used as a primer in various nucleic acid amplification methods.
  • the first arbitrary base sequence and / or the second arbitrary base sequence may be a tag sequence in the present invention, or may be a base sequence to which a label is bound or capable of hybridizing with a labeled probe. Good.
  • the target nucleic acid can be amplified and labeled at the same time.
  • the linking site already described in the present detection method can be applied to the linking site in the nucleic acid amplification agent.
  • the first arbitrary base sequence and the first identification sequence of the nucleic acid amplification site include the tag sequence and the first identification sequence in the first primer and the second primer already described in the detection method, and Various embodiments of the labeling substance binding region and the second identification sequence can be applied. That is, the nucleic acid amplification agent uses the first primer and the second primer as one embodiment.
  • kits containing one or more of these nucleic acid amplification agents is also provided.
  • the kit may contain a solid phase body for hybridization with a DNA fragment obtained using the first primer or the second primer described above.
  • a DNA double-stranded fragment obtained by the present detection method that is, a DNA duplex having a single-stranded portion on the 5 ′ side of at least one strand and having a double-stranded portion by base pairing.
  • At least one DNA strand has a linking site capable of suppressing or stopping a DNA polymerase reaction between the single-stranded portion and the double-stranded binding portion, and the single-stranded portion is A DNA double-stranded fragment having a tag sequence complementary to the base sequence in the detection probe is also provided.
  • a DNA double-stranded fragment having a single-stranded portion on the 5 'side of the other strand and having a label linked to this single-stranded portion is also provided.
  • a probe hybridization composition containing them is also provided. Use this method.
  • a method for amplifying a target nucleic acid in a sample is also provided. That is, a first arbitrary base sequence and a first identification sequence for identifying the first base sequence in the target nucleic acid, and between the first arbitrary base sequence and the first recognition sequence
  • a method is provided which comprises the step of performing nucleic acid amplification of the sample using at least a first primer having a linking site capable of suppressing or stopping the DNA polymerase reaction.
  • the amplified fragment obtained by this method is a DNA double-stranded fragment having a single strand of the first arbitrary base sequence protruding to the 5 'side of at least one strand.
  • the second arbitrary base sequence and a second identification sequence for identifying the second base sequence in the target nucleic acid are included as other primers, and the first arbitrary base A second primer having a linking site capable of suppressing or stopping the DNA polymerase reaction can also be used between the sequence and the first recognition sequence.
  • a DNA double-stranded fragment having a single strand of the first arbitrary base sequence protruding to the 5 'side of both strands can be obtained.
  • the first arbitrary base sequence may be provided with a labeling substance or may have a base sequence capable of binding to the label probe. The same applies to the second primer.
  • the various aspects of the detection method described above can be applied to the first primer, the second primer, and the ligation site.
  • This amplification method is also provided as a method for producing a DNA double-stranded fragment having a single strand on the 5 'side of at least one DNA strand. Furthermore, this amplification method can also be implemented as a method for labeling a target nucleic acid. Furthermore, it can also be implemented as a method for detecting a target nucleic acid comprising such a labeling step. That is, by using this amplification step (labeling step) instead of the labeling step in the detection methods such as SNP disclosed in JP2008-306941A, JP2009-24A and Non-Patent Document 1, Thus, efficient and sensitive hybridization can be carried out.
  • the target nucleic acid was detected by the following procedure according to the detection method of the present invention. Hereinafter, it demonstrates according to these order.
  • DNA microarray GENESHT (Nippon Gaishi Co., Ltd.) uses an aqueous solution in which a synthetic oligo DNA (manufactured by Nippon Genetic Laboratory Co., Ltd.) having a 3 ′ end modified with an amino group is dissolved in a plastic plate as a detection probe. Spotted with a spotter (registered trademark).
  • synthetic oligo DNA sequences used the following 33 types capable of high-speed hybridization were selected from SEQ ID NOs: 1 to 100.
  • the synthetic oligo DNA was immobilized by the procedure described below. That is, after washing with 2 ⁇ SSC / 0.2% SDS for 15 minutes, washing with 2 ⁇ SSC / 0.2% SDS at 95 ° C. for 5 minutes, and then washing with sterilized water (shaking up and down 10 times) 3 Repeated times. Then, it dehydrated by centrifugation (1000 rpm x 3 minutes).
  • the genomic DNA used for amplification is derived from humans and is specific to six target nucleic acids ((1) to (6)) in the human genome.
  • Primers P1-1 to P1 shown in the following table -6 (manufactured by Nippon Genetic Institute), P2-1 to P2-6 (manufactured by Nippon Genetic Institute) and P3-1 to P3-6 (manufactured by Nippon Genetic Institute) were prepared. Each series has the following configuration (displayed as 5 ′ to 3 ′).
  • the propylene group portion of the P3-based primer was synthesized according to an ordinary oligonucleotide synthesis method using Spacer Phophoamidite C3, a phosphoramidite reagent of GlenResearch, shown in the following formula.
  • P1-based primers F, R: P2-based primers including a base sequence for specific target nucleic acids (1) to (6) in human DNA:
  • P3 primer F: Binding sequence of labeled probe + base sequence for each target nucleic acid of P1 system
  • R Tag sequence consisting of a base sequence complementary to the base sequence of the synthetic oligonucleotide probe + linkage site (propylene chain) + base sequence for each target nucleic acid of P1 system
  • genomic DNA was amplified using these primers as follows.
  • QIAGEN's multiplex PCR master mix was used as a sample amplification reagent.
  • Applied Biosystems GeneAmp PCR 9970 was used as a thermal cycler.
  • the reagent preparation is then transferred to a thermal cycle plate and the thermal cycle reaction (after 15 minutes at 95 ° C .; 30 seconds at 95 ° C., 1 second at 80 ° C., 40 cycles of 6 minutes at 64 ° C., then lowered to 10 ° C.) Went.
  • the amplified labeled sample was purified by QIAGEN's MinElute PCR-Purification-Kit, and then confirmed to be amplified by the intended length by agarose electrophoresis. The results are shown in FIG. The upper part of FIG. 3 shows the result of electrophoresis, and the lower part shows the amplification amount calculated from the fluorescence intensity.
  • Hybridization In order to hybridize the amplified sample obtained in (2) with the detection probe immobilized on the microarray, the following Hybri control and Hybri solution were prepared, and a reagent for hybridization was prepared therefrom.
  • PrimerMix includes a labeling probe (fluorescently modified oligonucleotide that binds to the 5 ′ side of F of P2 and P3 primers).
  • the Alexa555-rD1_100 used for the Hybri control was one in which the 5 'end of a sequence complementary to the corresponding sequence of D1_100 was labeled with Alexa555.
  • Hybri solution 20 x SSC 2.0ml 10% SDS 0.8ml 100% Formamide 12.0ml 100 mM EDTA 0.8 ml milliQ 24.4ml Total 40.0ml
  • Hybri control 1.5 ⁇ l Primer Mix 1.0 ⁇ l Hybri solution 9.0 ⁇ l Subtotal 10.5 ⁇ l Amplified sample 3.0 ⁇ l 18.0 ⁇ l total
  • the microarray substrate after completion of the hybridization reaction is immersed in a glass staining vat filled with a cleaning solution of the following composition, shaken up and down for 5 minutes, and transferred to a glass staining vat containing sterilized water, The mixture was shaken up and down for 1 minute and centrifuged at 2000 rpm for 1 minute to remove water remaining on the surface of the microarray substrate.
  • composition of cleaning solution milliQ 188.0ml 20 x SSC 10.0ml 10% SDS 2.0ml Total 200.0ml
  • the intended target nucleic acid in the genomic DNA can be amplified regardless of the presence or absence of the tag sequence.
  • the lower table of FIG. 3 it was found that there was no significant change in the amplification amount even when the tag sequence was directly linked to the identification sequence or via a linking site containing a propylene group. .
  • the use of the P3-based primer improves the detection sensitivity by at least 10 times.
  • the amplification sample was applied to the array without performing the denaturation step, and as shown in FIG. 3, the synthesis amount of the amplification sample was almost the same as that by the P2-based primer. From the above, it can be seen that a double-stranded fragment with high efficiency and good label efficiency was obtained by using the P3 primer.

Abstract

Provided is a method for detecting a target nucleic acid, which can achieve efficient probe hybridization. In the present invention, a target nucleic acid is amplified using a first primer and a second primer, an amplified fragment and a detection probe that is associated with the target nucleic acid previously are brought into contact with each other in such a manner that the amplified fragment and the detection probe can be hybridized with each other, and a product of the hybridization is detected, wherein the first primer contains a tag sequence complementary to the detection probe and a first recognition sequence capable of recognizing a first nucleotide sequence in the target nucleic acid and has, between the tag sequence and the first recognition sequence, a connection site capable of inhibiting or terminating a DNA polymerase reaction, and the second primer contains a second recognition sequence capable of recognizing a second nucleotide sequence in the target nucleic acid.

Description

標的核酸の検出方法Target nucleic acid detection method
 本発明は、標的核酸を検出する技術に関する。 The present invention relates to a technique for detecting a target nucleic acid.
 従来、生物個体の遺伝子解析や、生体試料におけるウイルスや細菌等の存在を調べるための方法として、核酸配列を網羅的に検出し、同定し、さらに定量する方法が提案されている。こうした解析等においては、予め標的となる核酸配列に関連付けられたプローブなどを準備しておき、このプローブ等と生体試料から核酸増幅法により増幅したDNA断片とのハイブリダイゼーションを利用し、プローブないしDNA断片に結合させておいた標識物質で標的核酸を検出等することが通常である。 Conventionally, methods for comprehensively detecting, identifying, and further quantifying nucleic acid sequences have been proposed as methods for genetic analysis of living organisms and for examining the presence of viruses, bacteria, and the like in biological samples. In such analysis, a probe or the like associated with a target nucleic acid sequence is prepared in advance, and hybridization between the probe and the like and a DNA fragment amplified from a biological sample by a nucleic acid amplification method is used. Usually, the target nucleic acid is detected with a labeling substance that has been bound to the fragment.
 例えば、核酸増幅法により増幅したDNA断片の両端に特定の物質が結合できるような塩基配列を含むようにプライマーを設計し、こうした特定物質を利用してDNA断片を検出する方法が記載されている(特許文献1)。 For example, a method is described in which a primer is designed to include a base sequence that allows a specific substance to bind to both ends of a DNA fragment amplified by a nucleic acid amplification method, and the DNA fragment is detected using such a specific substance. (Patent Document 1).
 また、一塩基多型(SNP)の検出に特化したアレイが開発されている(例えば特許文献2、3、非特許文献1)。この方法では、人工的な塩基配列を有する検出用プローブを予め準備しておき、当該人工的塩基配列に結合する塩基配列を有するようなDNA断片を増幅可能に試料調製工程が設計されている。 Moreover, an array specialized for detection of single nucleotide polymorphisms (SNPs) has been developed (for example, Patent Documents 2 and 3, Non-Patent Document 1). In this method, a sample preparation step is designed so that a detection probe having an artificial base sequence is prepared in advance and a DNA fragment having a base sequence that binds to the artificial base sequence can be amplified.
WO2009/034842WO2009 / 034842 特開2006-211982号公報Japanese Patent Laid-Open No. 2006-211982 特開2006-101844号公報JP 2006-101844 A
 上記特許文献1に記載の方法では、増幅DNA断片の特定物質結合部位(特定物質が結合可能な特定塩基配列)を、特定物質が認識して当該特定塩基配列に結合する。しかしながら、増幅DNA断片は、その特定塩基配列においてもその相補鎖と二重鎖を形成しており、特定物質と相互作用しやすい一本鎖状態ではない。したがって、特定物質が特定塩基配列を認識する効率はそれほど高くなく、特定物質が結合した二重鎖断片を濃縮する必要がある。 In the method described in Patent Document 1, a specific substance recognizes a specific substance binding site (specific base sequence to which a specific substance can bind) of an amplified DNA fragment and binds to the specific base sequence. However, the amplified DNA fragment forms a double strand with its complementary strand even in its specific base sequence, and is not in a single-stranded state that easily interacts with a specific substance. Therefore, the efficiency with which a specific substance recognizes a specific base sequence is not so high, and it is necessary to concentrate double-stranded fragments to which the specific substance is bound.
 また、上記特許文献2、3に記載の方法では、ラベリング工程において、片方のプライマー濃度を相対的に高くして増幅を行う(アシメトリックPCRともいう。)などして、意図的にアレイ上のプローブと反応する側のDNA鎖を選択的に増幅するようにして、反応性を向上させている。しかしながら、こうした非対照的なPCRでは、増幅効率自体が低下する傾向があった。 In the methods described in Patent Documents 2 and 3, amplification is performed on the array intentionally by performing amplification with a relatively high concentration of one primer (also referred to as asymmetric PCR) in the labeling step. The reactivity is improved by selectively amplifying the DNA strand that reacts with the probe. However, such non-contrast PCR tended to reduce the amplification efficiency itself.
 また、一般的なプローブハイブリダイゼーションにおいて、試料として用いられるDNA増幅断片はやはり二重鎖であり、プローブとのハイブリダイゼーションを効率的に行うためには、熱変性やアルカリ変性を行って一本鎖とすることが一般的である。しかしながら、変性した増幅断片は、徐々に二重鎖に戻り、ハイブリダイゼーション効率が低下するおそれがある。一方、これを抑制するには、ハイブリダイゼーション時間や温度などの条件の最適化が必要になる場合もある。 In general probe hybridization, a DNA amplification fragment used as a sample is also a double strand, and in order to efficiently perform hybridization with a probe, it is subjected to heat denaturation or alkali denaturation to be single stranded. It is common to do. However, the denatured amplified fragment gradually returns to double strand, which may reduce the hybridization efficiency. On the other hand, in order to suppress this, it may be necessary to optimize conditions such as hybridization time and temperature.
 以上の現状に鑑み、本発明は、従来のプローブハイブリダイゼーションにおける試料DNA断片における問題を解決して、効率的なプローブハイブリダイゼーションを実現できる標的核酸の検出方法、その方法に用いる遺伝子増幅剤及びハイブリダイゼーション用組成物を提供することを目的とする。 In view of the above situation, the present invention solves the problem of sample DNA fragments in conventional probe hybridization and realizes efficient probe hybridization, a target nucleic acid detection method, and a gene amplification agent and high An object is to provide a composition for hybridization.
 本発明者らは、プローブハイブリダイゼーションに適用する際のプローブとのハイブリダイゼーション効率や感度の向上の観点から核酸増幅法の修飾について検討した。種々の検討の結果、核酸増幅に用いるプライマーの一部にポリメラーゼ反応の進行を抑制又は停止可能な部位を導入しておくことで、ハイブリダイゼーション効率が高く、検出感度を向上させることができるという知見を得た。本発明によれば、本知見に基づいて以下の手段が提供される。 The present inventors examined modification of the nucleic acid amplification method from the viewpoint of improving hybridization efficiency and sensitivity with a probe when applied to probe hybridization. As a result of various studies, knowledge that hybridization efficiency is high and detection sensitivity can be improved by introducing a site capable of suppressing or stopping the progress of the polymerase reaction into a part of the primer used for nucleic acid amplification. Got. According to the present invention, the following means are provided based on this finding.
(1)試料中の標的核酸を検出する方法であって、
 それぞれ異なる所定の塩基配列を有する検出用プローブを備える固相体を準備する工程と、
 前記標的核酸に予め関連付けられた前記検出用プローブに相補的なタグ配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーと、
 前記標的核酸中の第2の塩基配列を識別する第2の識別配列を含む第2のプライマーと、
を用いて、前記試料中の核酸増幅を実施する増幅工程と、
 前記増幅工程で得られた増幅断片と前記固相体上の前記検出用プローブとをハイブリダイズ可能に接触させるハイブリダイゼーション工程と、
 前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する検出工程と、
を備える方法。
(2)前記第2のプライマーは、標識物質が結合された又は標識物質を結合可能に構成された標識物質結合領域を有する、(1)に記載の方法。
(3)前記第2のプライマーは、前記標識物質結合領域と前記第2の識別配列との間に、前記連結部を有する、(1)又は(2)に記載の方法。
(4)前記増幅工程は、標識物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて核酸増幅を実施する工程である、(1)に記載の方法。
(5)前記連結部位は、天然塩基又は天然塩基と対合する天然塩基の誘導体を含まない、(1)~(4)のいずれかに記載の方法。
(6)前記連結部位は、リン酸ジエステル結合を介して前記プライマー中のヌクレオチドに隣接される、元素数が2以上40以下であって置換されていてもよいアルキレン鎖又はポリオキシアルキレン鎖を含む、(1)~(5)のいずれかに記載の方法。
(7)前記連結部位は、以下のいずれかの式で表される、(6)に記載の方法。
 5’-O-Cm2m-O-3’                    式(1)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)、
 又は、
5’-(OCn2nl-O-3’                式(2)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、nは2以上4以下の整数を表し、lは、2以上の整数であって、(n+1)×lは40以下となる整数を表す。)
(8)前記増幅工程は、複数の前記標的核酸に予め関連付けた複数の前記検出用プローブで検出可能に、前記第1のプライマーと前記第2のプライマーとからなる複数のセットを用いて核酸増幅を実施する工程であり、
 前記ハイブリダイゼーション工程は、前記増幅工程で得られた複数の前記増幅断片と前記固相体上の前記複数の検出用プローブとをハイブリダイズ可能に接触させる工程であり、
 前記検出工程は、前記固相体上の前記複数の増幅断片と前記複数の検出用プローブとのハイブリダイズ産物を検出する工程である、(1)~(7)のいずれかに記載の方法。
(9)前記タグ配列は、塩基数が20以上50以下である、(1)~(8)のいずれかに記載の方法。
(10)前記塩基数が20以上25以下である、(9)に記載の方法。
(11)前記検出用プローブの前記所定の配列は、配列番号1~100で表される塩基配列及びその相補配列から選択される、(1)~(10)のいずれかに記載の方法。
(12)前記検出用プローブの前記所定の配列は、以下の表に記載の配列番号で表される塩基配列及びその相補配列から選択される、(1)~(11)のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-T000002
(13)5’側から第1の任意の塩基配列と増幅しようとする核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体である、核酸増幅法に用いる核酸増幅剤。
(14)前記第1の塩基配列には、標識が結合されている、(13)に記載の核酸増幅剤。
(15)(13)又は(14)に記載の核酸増幅剤を2種以上含む、核酸増幅キット。
(16)少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有し、前記一本鎖部分が、検出用プローブ中の塩基配列と相補的なタグ配列を有する、DNA二重鎖断片を含む、プローブハイブリダイゼーション用組成物。
(17)他方の鎖の5’側にも一本鎖部分を有し、この一本鎖部分に標識が連結されている、(16)に記載のプローブハイブリダイゼーション用組成物。
(18)少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する、DNA二重鎖断片。
(19)試料中の標的核酸を増幅する方法であって、
 第1の任意の塩基配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーを少なくとも用いて、前記試料の核酸増幅を実施する工程を、
備える、方法。
(1) A method for detecting a target nucleic acid in a sample,
Preparing a solid phase body comprising detection probes each having a different predetermined base sequence;
A tag sequence complementary to the detection probe previously associated with the target nucleic acid, and a first identification sequence for identifying a first base sequence in the target nucleic acid, the tag sequence and the first recognition A first primer having a linking site capable of suppressing or stopping the DNA polymerase reaction between the sequence and
A second primer comprising a second identification sequence for identifying a second base sequence in the target nucleic acid;
An amplification step of performing nucleic acid amplification in the sample using
A hybridization step in which the amplified fragment obtained in the amplification step and the detection probe on the solid phase body are brought into contact in a hybridizable manner;
A detection step of detecting a hybridized product of the amplified fragment on the solid phase body and the detection probe;
A method comprising:
(2) The method according to (1), wherein the second primer has a labeling substance binding region to which a labeling substance is bound or configured to bind the labeling substance.
(3) The method according to (1) or (2), wherein the second primer has the linking portion between the labeling substance binding region and the second identification sequence.
(4) The method according to (1), wherein the amplification step is a step of performing nucleic acid amplification using a nucleoside triphosphate including a nucleoside derivative triphosphate having a labeling substance.
(5) The method according to any one of (1) to (4), wherein the linking site does not include a natural base or a derivative of a natural base paired with a natural base.
(6) The linking site includes an alkylene chain or a polyoxyalkylene chain which is adjacent to the nucleotide in the primer via a phosphodiester bond and has 2 to 40 elements and may be substituted. The method according to any one of (1) to (5).
(7) The method according to (6), wherein the linking site is represented by any of the following formulas.
5′-O—C m H 2m —O-3 ′ Formula (1)
(In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and m represents an integer of 2 to 40. To express.),
Or
5 ′-(OC n H 2n ) l —O-3 ′ Formula (2)
(In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and n represents an integer of 2 or more and 4 or less. And l is an integer of 2 or more, and (n + 1) × l represents an integer of 40 or less.)
(8) In the amplification step, nucleic acid amplification is performed using a plurality of sets of the first primer and the second primer so as to be detectable by a plurality of the detection probes previously associated with the plurality of target nucleic acids. Is the process of implementing
The hybridization step is a step of bringing the plurality of amplified fragments obtained in the amplification step into contact with the plurality of detection probes on the solid phase so as to be capable of hybridizing,
The method according to any one of (1) to (7), wherein the detection step is a step of detecting a hybrid product of the plurality of amplified fragments on the solid phase body and the plurality of detection probes.
(9) The method according to any one of (1) to (8), wherein the tag sequence has 20 to 50 bases.
(10) The method according to (9), wherein the number of bases is 20 or more and 25 or less.
(11) The method according to any one of (1) to (10), wherein the predetermined sequence of the detection probe is selected from a base sequence represented by SEQ ID NOs: 1 to 100 and a complementary sequence thereof.
(12) The predetermined sequence of the detection probe is selected from a base sequence represented by a sequence number shown in the following table and a complementary sequence thereof, according to any one of (1) to (11) Method.
Figure JPOXMLDOC01-appb-T000002
(13) including a first arbitrary base sequence from the 5 ′ side and a first identification sequence for identifying the first base sequence in the nucleic acid to be amplified, the first arbitrary base sequence and the first A nucleic acid amplification agent used in a nucleic acid amplification method, which is an oligonucleotide derivative having a linking site capable of suppressing or stopping a DNA polymerase reaction between 1 and a recognition sequence.
(14) The nucleic acid amplification agent according to (13), wherein a label is bound to the first base sequence.
(15) A nucleic acid amplification kit comprising two or more nucleic acid amplification agents according to (13) or (14).
(16) A DNA double-stranded fragment having a single-stranded portion on the 5 ′ side of at least one strand and having a double-stranded portion by base pairing, wherein at least one DNA strand is the single-stranded portion A linking site capable of suppressing or stopping the DNA polymerase reaction between a portion and the double-stranded binding portion, and the single-stranded portion has a tag sequence complementary to the base sequence in the detection probe, A composition for probe hybridization comprising a DNA double-stranded fragment.
(17) The probe hybridization composition according to (16), wherein the other strand has a single-stranded portion on the 5 ′ side, and a label is linked to the single-stranded portion.
(18) A DNA double-stranded fragment having a single-stranded portion on the 5 ′ side of at least one strand and having a double-stranded portion by base pairing, wherein at least one DNA strand is the single-stranded portion A DNA double-stranded fragment having a linking site capable of suppressing or stopping a DNA polymerase reaction between a portion and the double-stranded binding portion.
(19) A method for amplifying a target nucleic acid in a sample,
Including a first arbitrary base sequence and a first identification sequence for identifying the first base sequence in the target nucleic acid, between the first arbitrary base sequence and the first identification sequence, Performing nucleic acid amplification of the sample using at least a first primer having a linking site capable of suppressing or terminating the DNA polymerase reaction,
A method of providing.
本発明の検出方法における増幅工程の一例の概要を模式的に示す図である。It is a figure which shows typically the outline | summary of an example of the amplification process in the detection method of this invention. 本発明の検出方法における増幅工程の他の一例の概要を模式的に示す図である。It is a figure which shows typically the outline | summary of another example of the amplification process in the detection method of this invention. 本発明の検出方法のフローの一例を示す図である。It is a figure which shows an example of the flow of the detection method of this invention. 本発明の検出方法のフローの他の一例を示す図である。It is a figure which shows another example of the flow of the detection method of this invention. 本発明の検出方法のフローの他の一例を示す図である。It is a figure which shows another example of the flow of the detection method of this invention. 実施例におけるゲノムDNAの増幅結果を示す図である。It is a figure which shows the amplification result of the genomic DNA in an Example. 本発明の実施例で得られた検出結果を示す図である。It is a figure which shows the detection result obtained in the Example of this invention. 本発明の実施例で得られた検出結果を示す図である。It is a figure which shows the detection result obtained in the Example of this invention.
 本発明は、標的核酸の検出方法、核酸増幅剤等に関する。本発明の標的核酸を検出方法は、以下の第1のプライマーと第2のプライマーとを用いることを特徴としている。本発明の検出方法における増幅工程の一例を図1A及び図1Bに示す。 The present invention relates to a method for detecting a target nucleic acid, a nucleic acid amplification agent, and the like. The target nucleic acid detection method of the present invention is characterized by using the following first primer and second primer. An example of the amplification step in the detection method of the present invention is shown in FIGS. 1A and 1B.
 図1Aに示すように、第1のプライマーは、標的核酸に予め関連付けられた検出用プローブに相補的なタグ配列などの第1の任意の塩基配列と標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、第1の任意の塩基配列と第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有しており、
 第2のプライマーは、標的核酸中の第2の塩基配列を識別する第2の識別配列を含んでいる。
As shown in FIG. 1A, the first primer discriminates the first arbitrary base sequence such as a tag sequence complementary to the detection probe previously associated with the target nucleic acid from the first base sequence in the target nucleic acid. A linking site capable of suppressing or stopping the DNA polymerase reaction between the first arbitrary base sequence and the first recognition sequence,
The second primer includes a second identification sequence that identifies the second base sequence in the target nucleic acid.
 連結部位は、DNAポリメラーゼの反応を抑制又は停止させる。すなわち、当該連結部位は、天然塩基等を含まないなどの理由により、DNAポリメラーゼによるDNA伸長反応の鋳型とはなりえない。このため、図1Aに示すように、第1のプライマーによって増幅されたDNA一本鎖が鋳型鎖となって、さらに第2のプライマーによって増幅されるとき、第2のプライマーからのDNA伸長反応は、当該連結部位に対合する部位より3’側において抑制又は停止される。このため、増幅工程により得られる増幅断片(DNA二重鎖断片)は、結果として、一方の端部に第1の任意の塩基配列を突出する一本鎖として備えるとともに塩基の対合による二重鎖部分を備えたものとなると推論される。 The linking site suppresses or stops the DNA polymerase reaction. That is, the linking site cannot be a template for a DNA extension reaction by DNA polymerase because it does not contain a natural base or the like. Therefore, as shown in FIG. 1A, when the DNA single strand amplified by the first primer becomes a template strand and further amplified by the second primer, the DNA extension reaction from the second primer is In addition, it is suppressed or stopped on the 3 ′ side from the site that matches the linking site. Therefore, as a result, the amplified fragment (DNA double-stranded fragment) obtained by the amplification step is provided with a first arbitrary base sequence protruding from one end as a single strand and double-paired by base pairing. It is inferred to have a chain part.
 また、図1Bには、第2のプライマーが、第2の任意の塩基配列をさらに有し、当該第2の任意の塩基配列と第2の識別配列との間に前記連結部位を有する場合の増幅工程を示す。図1Bに示すように、図1Aで示した第1のプライマーと同様、第2のプライマーによって増幅されたDNA一本鎖が鋳型鎖となって、さらに第1のプライマーによって増幅されるとき、第1のプライマーからのDNA伸長反応は、当該連結部位に対合する部位より3’側において抑制又は停止される。このため、増幅工程により得られる増幅断片(DNA二重鎖断片)は、結果として、一方の端部にタグ配列を突出した一本鎖として備え、他方の端部に任意の塩基配列を突出した一本鎖として備えるとともに、塩基の対合による二重鎖部分を備えたものとなると推論される。 FIG. 1B also shows a case where the second primer further has a second arbitrary base sequence, and has the linking site between the second arbitrary base sequence and the second identification sequence. An amplification process is shown. As shown in FIG. 1B, like the first primer shown in FIG. 1A, when the DNA single strand amplified by the second primer becomes a template strand and further amplified by the first primer, The DNA extension reaction from one primer is suppressed or stopped on the 3 ′ side from the site that pairs with the ligation site. For this reason, as a result, the amplified fragment (DNA double-stranded fragment) obtained by the amplification step is provided as a single strand with a tag sequence protruding at one end and an arbitrary base sequence protruding at the other end. It is inferred that it is provided as a single strand and has a double-stranded portion by base pairing.
 以上のことは、第1の任意の塩基配列を、標的核酸に予め関連付けられた検出用プローブに相補的なタグ配列としたプライマーセットを用いて、標的核酸を含む試料に対してDNAポリメラーゼによる増幅工程を実施することで得られる増幅断片を、そのまま変性することなく、検出用プローブとハイブリダイゼーションさせるとき、極めて高感度にかつ迅速に標的核酸を検出できることでも支持されている。図1A及び図1Bに示すように、得られたDNA二重鎖断片が、標的核酸中の第1の塩基配列及び第2の塩基配列において二重鎖部分を形成し、端部にタグ配列を一本鎖として有するDNA二重鎖断片となっているため、この一本鎖で効率的にプローブとハイブリダイゼーションしていると考えられる。ハイブリダイゼーション効率が上昇することにより感度は向上する。 As described above, amplification using a DNA polymerase for a sample containing a target nucleic acid using a primer set in which the first arbitrary base sequence is a tag sequence complementary to a detection probe previously associated with the target nucleic acid It is also supported that the target nucleic acid can be detected with extremely high sensitivity and speed when the amplified fragment obtained by carrying out the step is hybridized with the detection probe without being denatured as it is. As shown in FIG. 1A and FIG. 1B, the obtained DNA double-stranded fragment forms a double-stranded portion in the first base sequence and the second base sequence in the target nucleic acid, and a tag sequence at the end. Since it is a DNA double-stranded fragment possessed as a single strand, it is considered that this single strand is efficiently hybridized with the probe. Sensitivity improves as hybridization efficiency increases.
 本発明の検出方法によれば、以下の少なくとも一つの効果を実現できる。
(1)ハイブリダイゼーションの効率化(迅速化)
(2)ラベリングの効率化
(3)検出感度の高度化
(4)工程の簡略化(迅速化)-特に二重鎖を一本鎖とする変性工程の省略による
According to the detection method of the present invention, at least one of the following effects can be realized.
(1) Efficiency improvement (acceleration) of hybridization
(2) Efficient labeling (3) Enhancement of detection sensitivity (4) Simplification of process (acceleration)-Especially by omission of denaturation process to make double strand as single strand
 こうした連結部位を含んで塩基配列を有するオリゴヌクレオチド誘導体は、それ自体プライマー等の核酸増幅剤として有用である。また、こうしたプライマーを用いる核酸増幅方法、得られたDNA二重鎖断片及び当該断片を含むハイブリダイゼーション用組成物も、それぞれその形態に応じた少なくとも一つの効果を発揮することができる。 Such an oligonucleotide derivative having a base sequence including a linking site is useful as a nucleic acid amplification agent such as a primer itself. Moreover, the nucleic acid amplification method using such a primer, the obtained DNA double-stranded fragment and the hybridization composition containing the fragment can also exhibit at least one effect corresponding to the form of each.
 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 なお、本明細書において「核酸」とは、cDNA、ゲノムDNA、合成DNA、mRNA、全RNA、hnRNAおよび合成RNAを含む全てのDNAおよびRNA、並びにペプチド核酸、モルホリノ核酸、メチルフォスフォネート核酸およびS-オリゴ核酸などの人工合成核酸を含む。また、1本鎖であっても2本鎖であってもよい。また、本明細書において「標的核酸」とは、任意の配列を有する任意の核酸である。典型的には、体質、遺伝病、癌などの特定疾患についての発症、疾患診断、治療予後、薬剤や治療の選択などのヒトや非ヒト動物における遺伝子上の指標となる塩基配列を有する可能性のある核酸が挙げられる。指標としては、SNPなどの多型や先天的又は後天的変異が挙げられる。また、病原菌やウイルスなどの微生物由来の核酸なども標的核酸に含まれる。 In the present specification, “nucleic acid” refers to all DNA and RNA including cDNA, genomic DNA, synthetic DNA, mRNA, total RNA, hnRNA and synthetic RNA, peptide nucleic acid, morpholino nucleic acid, methylphosphonate nucleic acid, and Includes artificially synthesized nucleic acids such as S-oligonucleic acid. Moreover, it may be single-stranded or double-stranded. In the present specification, the “target nucleic acid” is an arbitrary nucleic acid having an arbitrary sequence. Typically, it may have a base sequence that serves as a genetic indicator in humans or non-human animals, such as constitution, genetic disease, onset of specific diseases such as cancer, disease diagnosis, treatment prognosis, drug and treatment selection, etc. There may be mentioned nucleic acids with Examples of the index include polymorphisms such as SNP and congenital or acquired mutations. Further, nucleic acids derived from microorganisms such as pathogenic bacteria and viruses are also included in the target nucleic acid.
 標的核酸は、後述する試料又はその核酸画分をそのまま用いることもできるが、好ましくは、PCRによる増幅反応、より好ましくはマルチプレックスPCRによる増幅反応により、複数の標的核酸が増幅された増幅産物を用いることが好ましい。 As the target nucleic acid, a sample described later or a nucleic acid fraction thereof can be used as it is, but preferably, an amplification product obtained by amplifying a plurality of target nucleic acids by PCR amplification reaction, more preferably multiplex PCR amplification reaction is used. It is preferable to use it.
 本明細書において「試料」とは、標的核酸を含む可能性のある試料をいう。試料としては、細胞、組織、血液、尿、唾液等が含まれ、核酸を含む任意の試料を用いることができる。こうした各種の試料からの核酸を含む画分は当業者であれば適宜従来技術を参照して取得することができる。 As used herein, “sample” refers to a sample that may contain a target nucleic acid. Samples include cells, tissues, blood, urine, saliva and the like, and any sample containing nucleic acid can be used. Fractions containing nucleic acids from these various samples can be obtained by those skilled in the art with reference to conventional techniques as appropriate.
 本明細書において「標的配列」とは、検出対象の標的核酸に特徴的な1又は2以上の塩基からなる配列をいう。例えば、標的核酸同士のホモロジーの低い部分配列であってもよいし、試料に含まれる可能性のある他の核酸に相補性もしくは相同性の低い配列であってもよい。標的配列は、標的核酸に特徴的な配列であってもよい。こうした標的配列は、人工的に配列を変更したものであってもよい。 In the present specification, the “target sequence” refers to a sequence composed of one or more bases characteristic of the target nucleic acid to be detected. For example, it may be a partial sequence with low homology between target nucleic acids, or may be a sequence that is complementary or has low homology to other nucleic acids that may be contained in a sample. The target sequence may be a sequence characteristic of the target nucleic acid. Such target sequences may be artificially altered sequences.
 以下では、本明細書の開示の代表的かつ非限定的な具体例について、図面を参照して詳細に説明する。この詳細な説明は、本明細書の開示の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本明細書の開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに開示は、さらに改善された標的核酸の検出方法等を提供するために、他の特徴や発明とは別に、又は共に用いることができる。 Hereinafter, representative and non-limiting specific examples of the disclosure of the present specification will be described in detail with reference to the drawings. This detailed description is intended merely to provide those skilled in the art with details for practicing the preferred embodiments of the present disclosure and is not intended to limit the scope of the present disclosure. Absent. Further, the additional features and disclosure disclosed below can be used separately from or together with other features and inventions to provide improved methods for detecting target nucleic acids and the like.
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本明細書の開示を実施する際に必須のものではなく、特に本明細書の開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本明細書の開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。 In addition, the combination of features and steps disclosed in the following detailed description are not essential in carrying out the disclosure of the present specification in the broadest sense, and are particularly representative specific examples of the disclosure of the present specification. It is described only for the purpose of explaining. Furthermore, the various features of the exemplary embodiments described above and below, as well as those described in the independent and dependent claims, provide additional and useful embodiments of the disclosure herein. They do not have to be combined according to the specific examples described herein or in the order listed.
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。 All features described in this specification and / or claims, apart from the configuration of the features described in the examples and / or claims, are individually disclosed as limitations on the original disclosure and claimed specific matters. And are intended to be disclosed independently of each other. Further, all numerical ranges and group or group descriptions are intended to disclose intermediate configurations thereof as a limitation to the original disclosure and claimed subject matter.
[標的核酸中の標的配列を検出する方法]
 本明細書に開示される検出方法は、検出用プローブを備える固相体を準備する工程と、第1のプライマーと、第2のプライマーと、を用いて、前記試料の核酸増幅を実施する工程と、前記増幅実施工程で得られた増幅断片と前記検出用プローブとを前記タグ配列によりハイブリダイズ可能に接触させるハイブリダイゼーション工程と、前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する検出工程と、を備えている。本明細書に開示の検出方法は、1種又は2種以上の標的核酸を適用対象とし、より詳細には、これらの標的核酸中の特徴的な配列に関する標的配列を検出対象とする。以下、主として一種の標的核酸についての一連の工程を説明するが、以下の工程は、複数又は多数の標的核酸を同時に検出する場合にも適用される。
[Method for detecting target sequence in target nucleic acid]
The detection method disclosed in the present specification includes a step of preparing a solid phase body provided with a detection probe, and a step of performing nucleic acid amplification of the sample using a first primer and a second primer. A hybridization step in which the amplified fragment obtained in the amplification step and the detection probe are brought into contact with each other so as to be capable of hybridizing with the tag sequence, and the amplified fragment on the solid phase and the detection probe And a detection step for detecting a hybridized product. The detection method disclosed in the present specification applies to one or more types of target nucleic acids, and more specifically, target sequences related to characteristic sequences in these target nucleic acids are to be detected. Hereinafter, a series of steps for one kind of target nucleic acid will be mainly described. However, the following steps are also applied to a case where a plurality of target nucleic acids are detected simultaneously.
(固相体の準備工程)
 本明細書に開示される検出方法(以下、単に本検出方法という。)は、図2Aに示すように、固相体を準備する工程を備えることができる。こうした固相体は、検出方法の実施に先立って予め準備していてもよいし、商業的に入手してもよいし、検出方法の実施毎に調製してもよい。
(Solid phase preparation process)
The detection method disclosed in the present specification (hereinafter simply referred to as the present detection method) can include a step of preparing a solid phase as shown in FIG. 2A. Such a solid phase may be prepared in advance prior to the execution of the detection method, may be obtained commercially, or may be prepared each time the detection method is performed.
 図2Aに示すように、固相体は、それぞれ異なる固有の塩基配列である検出用配列を備える複数の検出用プローブを担体上に備えることができる。このような固相体を準備することで、プローブの設計、合成、アレイの作製、ハイブリダイゼーション条件についての検討を回避することができる。 As shown in FIG. 2A, the solid phase body can be provided with a plurality of detection probes each having a detection sequence that is a different unique base sequence on a carrier. By preparing such a solid phase body, it is possible to avoid examination of probe design, synthesis, array production, and hybridization conditions.
 図2Aに固相体の一例を示す。検出用プローブは、それぞれプロービングのための固有の塩基配列である検出用配列を有している。このような検出用配列は、標的核酸に特徴的な配列、すなわち標的配列と、無関係に設定することができる。標的配列と無関係に設定することで、検出用プローブの検出用配列を、複数の検出用プローブ間での非特異的結合を抑制又は回避できるように、かつ、ハイブリダイゼーションに好適な温度及び時間等のハイブリダイゼーション条件を考慮して設定することができる。また、標的核酸の種類にかかわらず、いつも同じ検出用プローブを用いることができるようになる。 FIG. 2A shows an example of a solid phase body. Each of the detection probes has a detection sequence that is a unique base sequence for probing. Such a detection sequence can be set independently of the sequence characteristic of the target nucleic acid, that is, the target sequence. By setting the detection sequence independent of the target sequence, the detection sequence of the detection probe can suppress or avoid non-specific binding between a plurality of detection probes, and is suitable for hybridization at a suitable temperature and time. Can be set in consideration of the hybridization conditions. In addition, the same detection probe can always be used regardless of the type of target nucleic acid.
 検出用配列の長さは、特に限定しないが、20塩基以上50塩基以下であることが好ましい。この範囲であると、各検出用配列の特異性を確保しつつハイブリダイゼーション効率も確保できるからである。例えば、こうした塩基長の検出用配列は、後述する配列番号1~100及びその相補配列から選択される各23塩基長の塩基配列を2つ組み合わせた46塩基長の配列や、当該組み合わせた塩基配列に対して適宜塩基を付加、欠失などすることにより得ることができる。より好ましくは、20塩基以上25塩基以下である。例えば、こうした塩基長の検出用配列は、配列番号1~100の各23塩基長の塩基配列及びその相補配列又はこれらの塩基配列に対して適宜塩基を付加、欠失などすることにより得ることができる。なお、第1のプライマーにおけるタグ配列は、検出用配列と対合する塩基配列であるため、タグ配列の塩基長は、検出用配列と同様、20塩基以上50塩基以下であることが好ましく、より好ましくは、20塩基以上25塩基以下である。 The length of the detection sequence is not particularly limited, but is preferably 20 bases or more and 50 bases or less. This is because within this range, hybridization efficiency can be ensured while ensuring the specificity of each detection sequence. For example, such a base length detection sequence includes a 46 base length sequence obtained by combining two base sequences each having a base length of 23 bases each selected from SEQ ID NOs: 1 to 100 and a complementary sequence thereof, and the combined base sequence. Can be obtained by appropriately adding or deleting a base. More preferably, it is 20 bases or more and 25 bases or less. For example, such a base length detection sequence can be obtained by appropriately adding or deleting bases to the 23 base length sequences of SEQ ID NOS: 1 to 100 and their complementary sequences or these base sequences. it can. Since the tag sequence in the first primer is a base sequence that is paired with the detection sequence, the base length of the tag sequence is preferably 20 bases or more and 50 bases or less, like the detection sequence. Preferably, it is 20 bases or more and 25 bases or less.
 こうした検出用プローブの検出用配列としては、例えば、配列番号1~配列番号100に記載の塩基配列又はこの塩基配列に相補的な塩基配列を用いることができる。これらの塩基配列は全て同一塩基長(23塩基長)であり、融解温度(Tm)が40℃以上80℃以下、好ましくは50℃以上70℃以下であって、同一条件でのハイブリダイズにおいて均質なハイブリダイズ結果が得ることができるようになっている。なお、上述したように、これらの塩基配列群から選択される2種を組み合わせることもできる。さらに、こうした配列に対して、特異性を失わない範囲で塩基を付加、欠失、置換等することができる。同時に用いる検出用プローブのための検出用配列は、配列番号1~100で表される塩基配列(群)か、あるいはこれらに相補的な塩基配列(群)のいずれかの群から選択されることが好ましい。 As the detection sequence of such a detection probe, for example, the base sequence described in SEQ ID NO: 1 to SEQ ID NO: 100 or a base sequence complementary to this base sequence can be used. These base sequences all have the same base length (23 base length), and have a melting temperature (Tm) of 40 ° C. or higher and 80 ° C. or lower, preferably 50 ° C. or higher and 70 ° C. or lower, and are homogeneous in hybridization under the same conditions. A hybrid result can be obtained. In addition, as above-mentioned, 2 types selected from these base sequence groups can also be combined. Furthermore, bases can be added, deleted, substituted, etc. within such a range that the specificity is not lost. The detection sequence for the detection probe used at the same time is selected from the group of the base sequences (groups) represented by SEQ ID NOs: 1 to 100 or the complementary base sequence (group) to these. Is preferred.
 検出用プローブの検出用配列は、このような候補となる塩基配列又はその相補配列から適宜選択して用いることができるが、なかでも、以下の表に示す塩基配列又はその相補配列から選択される1種又は2種以上の塩基配列をそれぞれ検出用配列として有する1種又は2種以上のプローブのみからなるプローブセット、あるいは以下の全ての塩基配列又はその相補配列をそれぞれ検出用配列として有するプローブのみからなるプローブセットを用いることが好ましい。こうした塩基配列を検出用配列として選択することで、短時間のハイブリダイゼーションが可能であり、ハイブリダイゼーションの一層の迅速性を実現できる。 The detection sequence of the detection probe can be appropriately selected from such candidate base sequences or their complementary sequences, and is selected from the base sequences shown in the following table or their complementary sequences. Only a probe set consisting of only one or two or more probes each having one or two or more base sequences as a detection sequence, or only a probe having all the following base sequences or their complementary sequences as detection sequences It is preferable to use a probe set consisting of By selecting such a base sequence as a detection sequence, it is possible to perform hybridization in a short time and realize further rapid hybridization.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このような検出用プローブにおける検出用配列は、正規直交化配列ともいい、たとえば乱数から得られた所定塩基長のDNA配列に対して連続一致長、Nearest-Neighbor法による融解温度予測、ハミング距離、二次構造予測の計算を行うことにより設計される。正規直交化配列は、核酸の塩基配列であって、その融解温度が均一であるもの、即ち融解温度が一定範囲内に揃うように設計された配列であって、核酸自身が分子内(intramolecular)で構造化して、相補的な配列とのハイブリッド形成を阻害することのない配列であり、尚且つこれに相補的な塩基配列以外とは安定したハイブリッドを形成しない塩基配列を意味する。1つの正規直交化配列群に含まれる配列は、所望の組み合わせ以外の配列間および自己配列内において反応が生じ難いか、または反応が生じない。また、正規直交化配列は、PCRにおいて増幅させると、たとえば上述のクロスハイブリダイズのような問題に影響されずに、当該正規直交化配列を有する核酸の初期量に応じた量の核酸が定量的に増幅される性質を有している。上記のような正規直交化配列は、H.Yoshida and A.Suyama,“Solution to 3-SAT by breadth first search”,DIMACS Vl.54, 9-20(2000)および特願2003-108126に詳細が記載されている。これらの文献に記載の方法を使用して正規直交化配列を設計することができる。 The detection sequence in such a detection probe is also referred to as an orthonormalized sequence, for example, a continuous match length for a DNA sequence of a predetermined base length obtained from a random number, melting temperature prediction by Nearest-Neighbor method, Hamming distance, Designed by performing secondary structure prediction calculations. The orthonormalized sequence is a base sequence of nucleic acid having a uniform melting temperature, that is, a sequence designed so that the melting temperature is within a certain range, and the nucleic acid itself is intramolecular. It means a base sequence that does not form a stable hybrid other than a base sequence that is structured in the above and does not inhibit hybridization with a complementary sequence. A sequence included in one orthonormalized sequence group hardly reacts between sequences other than the desired combination and within a self-sequence, or does not generate a reaction. Further, when the orthonormalized sequence is amplified in PCR, the amount of nucleic acid corresponding to the initial amount of the nucleic acid having the orthonormalized sequence is quantitatively affected without being affected by the problems such as the above-mentioned cross-hybridization. Has the property of being amplified. The orthonormalized array as described above is described in detail in H. Yoshida and A.Suyama, “Solution to 3-SAT by breadth first search”, DIMACS Vl.54, 9-20 (2000) and Japanese Patent Application No. 2003-108126. Are listed. Orthonormalized sequences can be designed using the methods described in these references.
 検出用プローブは、担体に固定化されている。こうした担体としては、固相担体を用いることができる。例えば、担体はプラスチックであってもよいし、ガラスであってもよく、材質は特に限定されない。なお、担体の形状は図1に示すように平板状であってもよいが、ビーズ状であってもよく、形状は特に限定されない。固相体は、好ましくは、担体が固相平板状であり、複数の検出用プローブが一定の配列で固定されたアレイ(特にマイクロアレイ)である。アレイは、多数個の検出用プロー4を固定でき、同時に網羅的に各種の標的核酸を検出するのに都合がよい。また、固相体は、担体上に複数個の区画されたアレイ領域を備えていてもよい。これらの複数のアレイ領域は、それぞれ同一の組み合わせからなる検出用プローブのセットが固定化されていてもよいし、それぞれ別の組み合わせからなる検出用プローブのセットが固定化されていてもよい。複数のアレイ領域に異なる組み合わせの検出用プローブのセットが固定化されていれば、個々のアレイ領域を、異なる遺伝子における標的核酸の検出のために割り当てることができる。 The detection probe is immobilized on a carrier. As such a carrier, a solid phase carrier can be used. For example, the carrier may be plastic or glass, and the material is not particularly limited. In addition, although the shape of a support | carrier may be flat form as shown in FIG. 1, it may be bead shape and a shape is not specifically limited. The solid phase is preferably an array (particularly a microarray) in which the carrier is in the form of a solid plate and a plurality of detection probes are fixed in a fixed arrangement. The array can fix a large number of detection probes 4 and is convenient for comprehensively detecting various target nucleic acids at the same time. Further, the solid phase body may include a plurality of partitioned array regions on the carrier. In the plurality of array regions, a set of detection probes each having the same combination may be fixed, or a set of detection probes each having a different combination may be fixed. If different combinations of detection probe sets are immobilized on multiple array regions, individual array regions can be assigned for detection of target nucleic acids in different genes.
 検出用プローブの固定化形態は特に限定されない。検出用プローブは、その3’末端が担体に結合されていてもよいし、5’末端が結合されていてもよい。共有結合性であってもよいし非共有結合性であってもよい。検出用プローブは、従来公知の各種の方法で担体の表面に固定化することができる。また、担体の表面に対しては適当なリンカー配列を備えていてもよい。リンカー配列は、好ましくは検出用プローブ間において同一塩基長で同一配列とする。 The immobilization form of the detection probe is not particularly limited. The 3 'end of the detection probe may be bound to a carrier, or the 5' end may be bound. It may be covalent or non-covalent. The detection probe can be immobilized on the surface of the carrier by various conventionally known methods. An appropriate linker sequence may be provided on the surface of the carrier. The linker sequence is preferably the same sequence with the same base length between the detection probes.
(増幅工程)
 図2Aに示すように、増幅工程は、第1のプライマーと第2のプライマーとを用いて実施する。核酸増幅工程における核酸増幅法は、PCRを始めとするDNAポリメラーゼ反応を用いてDNAを増幅して二重鎖DNA断片を取得する各種の公知の方法が挙げられる。
(Amplification process)
As shown in FIG. 2A, the amplification step is performed using a first primer and a second primer. Examples of the nucleic acid amplification method in the nucleic acid amplification step include various known methods for amplifying DNA using a DNA polymerase reaction such as PCR to obtain a double-stranded DNA fragment.
(第1のプライマー)
 第1のプライマーは、標的核酸に予め関連付けられた検出用プローブに相補的なタグ配列と標的核酸中の第1の塩基配列を識別する第1の識別配列とを含んでいる。これらの塩基配列の長さ等は特に限定されず、標的核酸の標的配列の内容に応じて適宜決定される。
(First primer)
The first primer includes a tag sequence complementary to a detection probe previously associated with the target nucleic acid and a first identification sequence for identifying the first base sequence in the target nucleic acid. The lengths and the like of these base sequences are not particularly limited, and are appropriately determined according to the contents of the target sequence of the target nucleic acid.
(第1の識別配列)
 第1の識別配列は、核酸増幅により、標的核酸を増幅するための配列であり、標的核酸中の標的配列の一部を構成する第1の塩基配列と特異的にハイブリダイズできる。第1の識別配列は、第1の塩基配列と高い選択性でハイブリダイズ可能な程度に相補的に設定される。好ましくは完全に相補的(特異的)に設定される。
(First identification sequence)
The first identification sequence is a sequence for amplifying the target nucleic acid by nucleic acid amplification, and can specifically hybridize with the first base sequence constituting a part of the target sequence in the target nucleic acid. The first identification sequence is set complementarily to the extent that it can hybridize with the first base sequence with high selectivity. Preferably, it is set to be completely complementary (specific).
(タグ配列)
 タグ配列は、タグ配列は、増幅断片が検出用プローブとハイブリダイゼーションを可能とするための配列であり、標的核酸を検出するものであるため、標的核酸毎に検出用プローブの検出用配列にハイブリダイズ可能に設定される。典型的には、検出用配列に相補的な塩基配列となっている。したがって、一つの標的核酸は、一つの検出用プローブに対応付けられることになる。タグ配列の塩基長は、既に説明したように、好ましくは検出用プローブの検出用配列の塩基長に一致し、好ましくは、20塩基以上50塩基以下であり、より好ましくは、20塩基以上25塩基以下である。
(Tag array)
The tag sequence is a sequence for allowing the amplified fragment to hybridize with the detection probe and detects the target nucleic acid. Therefore, the tag sequence hybridizes to the detection sequence of the detection probe for each target nucleic acid. It is set to be able to soy. Typically, the base sequence is complementary to the detection sequence. Therefore, one target nucleic acid is associated with one detection probe. As already explained, the base length of the tag sequence preferably matches the base length of the detection sequence of the detection probe, preferably 20 bases to 50 bases, more preferably 20 bases to 25 bases. It is as follows.
 標的核酸中の第1の塩基配列と第2の塩基配列とは、標的核酸に対してどのような構成となっていてもよい。例えば、DNA上の変異を検出する場合、いずれか一方の塩基配列にのみ1又は2以上の塩基の変異部位が含まれるようにしてもよいし、双方に変異部位が含まれるようにしてもよい。なお、第1のプライマーは、こうしたタグ配列及び第1の識別配列を有しており、こうした塩基配列を構成する天然塩基あるいはこれに相同な人工塩基を有するとともに、天然核酸との間で塩基対合を可能とする骨格を有している。典型的にはオリゴヌクレオチド又はその誘導体である。 The first base sequence and the second base sequence in the target nucleic acid may have any configuration with respect to the target nucleic acid. For example, when detecting a mutation on DNA, only one of the base sequences may contain a mutation site of one or more bases, or both may contain a mutation site. . The first primer has such a tag sequence and a first identification sequence, has a natural base constituting such a base sequence or an artificial base homologous thereto, and a base pair with a natural nucleic acid. It has a skeleton that can be combined. Typically an oligonucleotide or a derivative thereof.
(連結部位)
 タグ配列を有するプライマーの一部と第1の識別配列を有するプライマーの他の一部とは直接連結されることはなく、これらの間には連結部位を有している。連結部位は、鋳型鎖に含まれたとき、DNAポリメラーゼ反応を抑制又は停止可能な部位である。DNAポリメラーゼ反応は、鋳型となる核酸(ないし塩基)がないとそれ以上DNA鎖を伸長しないとされている。このため、本発明の連結部位は、DNAポリメラーゼによるDNA伸長時の鋳型となりえない構造を有している。すなわち、本連結部位は、天然塩基又は天然塩基と対合する天然塩基の誘導体(天然塩基等)を含まない。こうした天然塩基等を含まないことで、前記鋳型となることを回避して、DNAポリメラーゼによるDNA鎖の伸長を抑制又は回避できる。したがって、本連結部位は、天然塩基等を有しないない単なる骨格鎖だけであってもよい。すなわち、糖-リン酸骨格や、他の公知の人工オリゴヌクレオチドに適用される骨格であってもよい。なお、DNAポリメラーゼは、各種公知のDNAポリメラーゼが包含される。典型的には、各種PCRなどの核酸増幅法に用いられるDNAポリメラーゼが挙げられる。
(Linked part)
A part of the primer having the tag sequence and the other part of the primer having the first identification sequence are not directly linked and have a linking site between them. The ligation site is a site capable of suppressing or stopping the DNA polymerase reaction when included in the template strand. In the DNA polymerase reaction, it is said that if there is no nucleic acid (or base) as a template, the DNA strand will not be extended any further. For this reason, the linking site of the present invention has a structure that cannot serve as a template during DNA elongation by DNA polymerase. That is, this linking site does not include a natural base or a derivative of a natural base (such as a natural base) that pairs with a natural base. By not including such a natural base or the like, it can be prevented from becoming a template, and DNA chain elongation by DNA polymerase can be suppressed or avoided. Therefore, this linking site may be only a skeleton chain having no natural base or the like. That is, it may be a sugar-phosphate skeleton or a skeleton applied to other known artificial oligonucleotides. The DNA polymerase includes various known DNA polymerases. Typically, DNA polymerase used for nucleic acid amplification methods, such as various PCR, is mentioned.
 また、本連結部位は、リン酸ジエステル結合を介してヌクレオチドに隣接される、元素数が2以上40以下である一重鎖構造を含む鎖状の連結基であってもよい。元素数が1以下では、DNAポリメラーゼ反応を抑制又は停止が不完全になりやすく、元素数が40を超えると、ヌクレオチドの溶解性が低下するおそれがあるからである。DNAポリメラーゼ反応の抑制又は停止の効果を考慮すると、鎖状の連結基の元素は、2以上36以下であることが好ましく、より好ましくは3以上16以下である。 Further, this linking site may be a chain linking group containing a single chain structure having 2 to 40 elements adjacent to the nucleotide via a phosphodiester bond. This is because if the number of elements is 1 or less, the DNA polymerase reaction is likely to be incompletely inhibited or stopped, and if the number of elements exceeds 40, the solubility of nucleotides may be reduced. Considering the effect of suppressing or stopping the DNA polymerase reaction, the chain linking group element is preferably 2 or more and 36 or less, more preferably 3 or more and 16 or less.
 本連結部位が、一重結合を含むのは、連結部位における回転を容易にするためであり、一重結合は、炭素-炭素一重結合、炭素-酸素一重結合、炭素-窒素一重結合、S-S一重結合などが挙げられる。本連結部位は、こうした一重結合を主体とすることが好ましい。また、本連結部位は、一重結合を含む限り一部に芳香環あるいはシクロアルカンを含んでいてもよい。 This linking site contains a single bond to facilitate rotation at the linking site, and the single bond is a carbon-carbon single bond, carbon-oxygen single bond, carbon-nitrogen single bond, SS single bond. Examples include bonding. It is preferable that this connection site is mainly composed of such a single bond. In addition, this linking site may partially contain an aromatic ring or cycloalkane as long as it contains a single bond.
 本連結部位としては、元素数が2以上40以下であって置換されていてもよいアルキレン鎖又はポリオキシアルキレン鎖を含むことが好ましい。こうした鎖状の連結構造は、構造的に簡易であるほか、連結部位としての導入も容易である。 The connecting site preferably contains an alkylene chain or a polyoxyalkylene chain which has 2 to 40 elements and may be substituted. Such a chain-like connection structure is structurally simple and can be easily introduced as a connection site.
 こうした連結部位としては、例えば、以下の式(1)で表される連結部位が挙げられる。
5’-O-Cm2m-O-3’               式(1)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)、
As such a connection part, the connection part represented by the following formula | equation (1) is mentioned, for example.
5′-O—C m H 2m —O-3 ′ Formula (1)
(In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and m represents an integer of 2 to 40. To express.),
 式(1)においてmは、好ましくは2以上36以下であり、より好ましくは3以上16以下である。式(1)中のHの置換基は、典型的には、アルキル基、アルコキシ基、水酸基等が挙げられる。アルキル基及びアルコキシ基の炭素数は1~8であることが好ましく、より好ましくは1~4である。また、2以上の置換基を有する場合には、置換基は同一であっても異なっていてもよい。さらに、置換基を有していないことも好ましい。 In the formula (1), m is preferably 2 or more and 36 or less, and more preferably 3 or more and 16 or less. Typical examples of the substituent of H in formula (1) include an alkyl group, an alkoxy group, and a hydroxyl group. The alkyl group and alkoxy group preferably have 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms. Moreover, when it has two or more substituents, the substituents may be the same or different. Furthermore, it is also preferable that it does not have a substituent.
 また、他の連結部位としては、以下の式(2)で表される連結部位が挙げられる。
5’-(OCn2nl-O-3’                式(2)
(式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、nは2以上4以下の整数を表し、lは、2以上の整数であって、(n+1)×lは40以下となる整数を表す。)
Moreover, as another connection part, the connection part represented by the following formula | equation (2) is mentioned.
5 ′-(OC n H 2n ) l —O-3 ′ Formula (2)
(In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and n represents an integer of 2 or more and 4 or less. And l is an integer of 2 or more, and (n + 1) × l represents an integer of 40 or less.)
 式(2)において(n+1)×lは、好ましくは2以上36以下であり、より好ましくは3以上16以下である。式(2)中のHの置換基は、式(1)中の置換基と同様の態様が適用される。 In formula (2), (n + 1) × l is preferably 2 or more and 36 or less, and more preferably 3 or more and 16 or less. The same aspect as the substituent in Formula (1) is applied to the substituent of H in Formula (2).
 本連結部位としては、例えば、以下の鎖状部位が挙げられる。 Examples of the linking site include the following chain sites.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 さらに、本連結部位としては、例えば、以下の鎖状部位が挙げられる。 Furthermore, examples of the linking site include the following chain sites.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 第1のプライマーは、第1の識別配列及びタグ配列を有しており、こうした塩基配列を構成する天然塩基あるいはこれに相同な人工塩基を有するとともに、天然核酸との間で塩基対合を可能とする骨格を主体として有している。典型的にはオリゴヌクレオチド又はその誘導体である。 The first primer has a first identification sequence and a tag sequence, and has a natural base constituting such a base sequence or an artificial base homologous thereto, and allows base pairing with a natural nucleic acid. As a main component. Typically an oligonucleotide or a derivative thereof.
 第1のプライマーにおいては、その5’側からタグ配列、連結部位及び第1の識別配列の順でこれらを有していることが好ましい。こうした構成とすることで、こうしたプライマーによって増幅されたDNA鎖が鋳型鎖となって増幅されるとき、鋳型鎖中の第1のプライマー由来の連結部位よりも5’側、すなわち、DNAポリメラーゼによって伸長されるDNA鎖においてより先の3’側では伸長反応が停止されるか抑制される。この結果、鋳型鎖中の第1のプライマー由来の連結部位の3’側に隣接するヌクレオチドの塩基又はその近傍の塩基に対合する塩基を5’末端とし、第1のプライマー中のタグ配列の相補鎖を有しない増幅断片が得られることとなる(図1A及び図1B、図2A~図2C参照)。 The first primer preferably has a tag sequence, a linking site, and a first identification sequence in that order from the 5 'side. With such a configuration, when the DNA strand amplified by such a primer is amplified as a template strand, it is extended 5 ′ from the ligation site derived from the first primer in the template strand, that is, extended by DNA polymerase. The extension reaction is stopped or suppressed on the 3 ′ side further in the DNA strand to be processed. As a result, the 5 'end of the nucleotide base adjacent to the 3 ′ side of the ligation site derived from the first primer in the template strand or the base in the vicinity thereof is the 5 ′ end, and the tag sequence in the first primer An amplified fragment having no complementary strand is obtained (see FIGS. 1A and 1B and FIGS. 2A to 2C).
 なお、連結部位近傍、すなわち、連結部位の3’側及び5’側には、タグ配列や第1の識別配列とは無関係の配列を含めることもできる。第1のプライマーが鋳型鎖となったとき、連結部位の存在のために、伸長鎖におけるタグ配列や第1の識別配列に対して意図しないDNA伸長反応の進行や停止の影響を低減又は回避できるからである。 It should be noted that a sequence unrelated to the tag sequence or the first identification sequence can also be included in the vicinity of the linking site, that is, on the 3 'side and 5' side of the linking site. When the first primer becomes a template strand, the presence of a ligation site can reduce or avoid the influence of unintended DNA extension reaction progress or termination on the tag sequence or the first identification sequence in the extended strand. Because.
(第2のプライマー)
 図2Aに示すように、第2のプライマーは、標的核酸中の第2の塩基配列を識別する第2の識別配列を含んでいる。これらの塩基配列の長さ等は特に限定されず、標的核酸の標的配列の内容に応じて適宜決定される。
(Second primer)
As shown in FIG. 2A, the second primer includes a second identification sequence that identifies the second base sequence in the target nucleic acid. The lengths and the like of these base sequences are not particularly limited, and are appropriately determined according to the contents of the target sequence of the target nucleic acid.
(第2の識別配列)
 第2の識別配列は、核酸増幅により、第1のプライマーとともに標的核酸を増幅するための配列であり、標的核酸中の標的配列の他の一部を構成する第2の塩基配列と特異的にハイブリダイズできる。第2の識別配列は、第2の塩基配列と高い選択性でハイブリダイズ可能な程度に相補的に設定される。好ましくは完全に相補的(特異的)に設定される。
(Second identification sequence)
The second identification sequence is a sequence for amplifying the target nucleic acid together with the first primer by nucleic acid amplification, and specifically with the second base sequence constituting the other part of the target sequence in the target nucleic acid. Can hybridize. The second identification sequence is set complementarily to the extent that it can hybridize with the second base sequence with high selectivity. Preferably, it is set to be completely complementary (specific).
(標識物質結合領域)
 図2Aに示すように、標識物質結合領域は、予め標識物質を備えることができる。標識物質は、固相上で検出用プローブに結合したDNA二重鎖断片を検出するためのものである。標識物質としては従来公知のものを適宜選択して用いることができる。それ自体励起されると蛍光シグナルを発する蛍光物質などの各種色素であってもよいし、さらに酵素反応や抗原抗体反応により第2成分と組み合わせて各種シグナルを発する物質であってもよい。典型的には、Cy3、Alexa555、Cy5、Alexa647等の蛍光標識物質を用いることができる。また、ビオチンとストレプトアビイジンHPRとを組み合わせのほか、DIG等を用いて基質による処理等による発色による検出を用いてもよい。標識物質結合領域は、標識物質を、第2の塩基配列に対して直接あるいは適当なリンカーを介して公知の方法により連結して備えている。
(Labeling substance binding region)
As shown in FIG. 2A, the labeling substance binding region can be provided with a labeling substance in advance. The labeling substance is for detecting a DNA double-stranded fragment bound to a detection probe on a solid phase. As the labeling substance, conventionally known substances can be appropriately selected and used. It may be various dyes such as a fluorescent substance that emits a fluorescent signal when excited by itself, or may be a substance that emits various signals in combination with the second component by an enzyme reaction or an antigen-antibody reaction. Typically, a fluorescent labeling substance such as Cy3, Alexa555, Cy5, Alexa647 can be used. In addition to the combination of biotin and streptavidin HPR, detection by color development by treatment with a substrate using DIG or the like may be used. The labeling substance binding region is provided with a labeling substance linked to the second base sequence directly or via a suitable linker by a known method.
 また、第2のプライマーは、図2Bに示すように、標識物質結合領域が、標識物質を結合可能に構成されていてもよい。すなわち、所定の塩基配列を有しており、標識物質を有するとともに標識結合配列を識別する塩基配列を有する標識プローブが結合可能であってもよい。こうした標識プローブは後述するハイブリダイゼーション工程や検出工程において固相体上の検出用プローブとハイブリダイゼーションしたDNA二重鎖断片に供給されて、これを標識することができる。 In addition, as shown in FIG. 2B, the second primer may be configured such that the labeling substance binding region can bind the labeling substance. That is, a labeled probe having a predetermined base sequence and having a labeling substance and a base sequence for identifying the label binding sequence may be capable of binding. Such a labeled probe can be supplied to a DNA double-stranded fragment hybridized with a detection probe on a solid phase in the hybridization step or detection step described later, and can be labeled.
 さらに、第3のプライマーは、図2Cに示すように、標識物質結合領域を備えていなくてもよい。すなわち、増幅工程において、標識物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて核酸増幅を実施することで、増幅断片のDNA伸長部位に標識物質が導入され標識された増幅断片を得ることができるからである。 Furthermore, as shown in FIG. 2C, the third primer may not have a labeling substance binding region. That is, in the amplification step, nucleic acid amplification is performed using a nucleoside triphosphate including a nucleoside derivative triphosphate provided with a labeling substance, whereby a labeled substance is introduced into the DNA extension site of the amplified fragment and labeled. Because it can be obtained.
 第2のプライマーは、第2の識別配列のほか、必要に応じて標識物質結合領域を有しており、第2の識別配列の塩基配列を構成する天然塩基あるいはこれに相同な人工塩基を有するとともに、天然核酸との間で塩基対合を可能とする骨格を有している。典型的にはオリゴヌクレオチド又はその誘導体である。 The second primer has a labeling substance binding region as required in addition to the second identification sequence, and has a natural base constituting the base sequence of the second identification sequence or an artificial base homologous thereto. In addition, it has a skeleton that allows base pairing with natural nucleic acids. Typically an oligonucleotide or a derivative thereof.
(連結部位)
 標識物質結合領域を備えるとき、標識物質結合領域と第2の識別配列とは、直接連結されていてもよいが、これらの間には連結部位を有していることが好ましい。特に、図2Bに示すように、標識物質結合領域が標識プローブと相互作用してこれを結合する塩基配列を有しているときにおいて好ましい。連結部位は、既に第1のプライマーにおいて説明したとおりである。
(Linked part)
When the labeling substance binding region is provided, the labeling substance binding region and the second identification sequence may be directly linked, but it is preferable to have a linking site between them. In particular, as shown in FIG. 2B, it is preferable when the labeling substance binding region has a base sequence that interacts with and binds to the labeling probe. The linking site is as described in the first primer.
 第2のプライマーにおいては、その5’側から、標識物質結合領域、連結部位及び第2の識別配列の順でこれらを有していることが好ましい。こうした構成とすることで、第2のプライマーによって増幅されたDNA鎖が鋳型鎖となって、第1のプライマーによって増幅されるとき、鋳型鎖中の第2のプライマーに由来する連結部位よりも5’側、すなわち、DNAポリメラーゼによって伸長される新たなDNA鎖においてはより先の3’側では伸長反応が停止されるか抑制される。この結果、鋳型鎖中の第2のプライマー由来の連結部位の3’側に隣接するヌクレオチドの塩基又はその近傍の塩基に対合する塩基を5’末端とし、第2のプライマー中の標識結合領域(の塩基配列)の相補鎖を有しないDNA増幅断片が得られることとなる(図1B、図2B参照)。 The second primer preferably has a labeling substance binding region, a linking site, and a second identification sequence in that order from the 5 'side. By adopting such a configuration, when the DNA strand amplified by the second primer becomes a template strand and is amplified by the first primer, it is 5% more than the linking site derived from the second primer in the template strand. The extension reaction is stopped or suppressed on the 'side, that is, the 3 ′ side ahead in the new DNA strand that is extended by the DNA polymerase. As a result, the base binding to the base of the nucleotide adjacent to or adjacent to the 3 ′ side of the linking site derived from the second primer in the template strand is the 5 ′ end, and the label binding region in the second primer A DNA amplified fragment having no complementary strand of (base sequence) is obtained (see FIGS. 1B and 2B).
 なお、連結部位近傍、すなわち、連結部位の3’側及び5’側には、標識物質結合領域や第2の識別配列とは無関係の配列を含めることもできる。第2のプライマーが鋳型鎖となったとき、連結部位の存在のために、伸長鎖における標識物質結合領域や第2の識別配列に対して意図しないDNA伸長反応の進行や停止の影響を低減又は回避できるからである。 It should be noted that a sequence unrelated to the labeling substance binding region and the second identification sequence can also be included in the vicinity of the linking site, that is, on the 3 ′ side and 5 ′ side of the linking site. When the second primer becomes a template strand, due to the presence of the ligation site, the influence of unintended DNA extension reaction progress or termination on the labeling substance binding region or the second identification sequence in the extended strand is reduced or This is because it can be avoided.
 こうしたプライマーは、通常のオリゴヌクレオチド合成法にしたがって合成することができる。例えば、連結部位については、アルキレン鎖を有するホフォスホアミダイト試薬を用いて合成することができる。こうした試薬自体は、公知であり、例えば、GlenResearch社等から入手することができる。例えば、以下の試薬が挙げられる。なお、以下の式においてDMTは、水酸基保護基として典型的なジメトキシトリチル基を表すが、他の公知の水酸基保護基であってもよい。また、以下の式においてPAは、ホスホアミダイト基を表す。 Such primers can be synthesized according to a normal oligonucleotide synthesis method. For example, the linking site can be synthesized using a phosphoramidite reagent having an alkylene chain. Such a reagent itself is known and can be obtained from, for example, GlenResearch. For example, the following reagents can be mentioned. In the following formula, DMT represents a typical dimethoxytrityl group as a hydroxyl protecting group, but may be other known hydroxyl protecting groups. In the following formula, PA represents a phosphoramidite group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 核酸増幅は、これらのプライマーを用いて実施する。核酸増幅法は既に説明したように各種公知の方法を適用できるが、典型的にはPCR、マルチプレックスPCR等の各種PCRである。核酸増幅工程を実施するにあたっての、溶液組成、温度制御等については、当業者であれば適宜設定することができる。 Nucleic acid amplification is performed using these primers. As described above, various known methods can be applied to the nucleic acid amplification method, but typically, various PCRs such as PCR and multiplex PCR are used. A person skilled in the art can appropriately set the solution composition, temperature control, and the like in carrying out the nucleic acid amplification step.
 すでに説明したように、たとえば、5’側からタグ配列、連結部位及び第1の識別配列の順でこれらを有する第1のプライマーと、5’側から、標識物質結合領域、連結部位及び第2の識別配列の順でこれらを有する第2のプライマーと、を用いて標的核酸を含む可能性のある試料に対してPCRを実施すると、図1Bの各(a)~(c)に示すように、DNAポリメラーゼのDNA伸長反応により、第1のプライマー及び第2のプライマーに由来して当該プライマーを含む鋳型鎖が形成される。 As already described, for example, the first primer having these in the order of the tag sequence, the linking site and the first identification sequence from the 5 ′ side, and the labeling substance binding region, the linking site and the second from the 5 ′ side. When PCR is performed on a sample that may contain a target nucleic acid using a second primer having these in the order of the identification sequences, as shown in each of (a) to (c) of FIG. 1B Due to the DNA extension reaction of DNA polymerase, a template strand containing the primer is formed from the first primer and the second primer.
 そして、これらの鋳型鎖がそれぞれ由来するプライマーとは異なる第2のプライマー及び第1のプライマーによって再びDNAポリメラーゼによるDNA伸長反応が実施される。このとき、図1Bの各(e)及び(d)に示すように、第2のプライマーから始まり第1のプライマーを含む鋳型鎖に対するDNAポリメラーゼのDNA伸長反応は、鋳型鎖中の第1のプライマー由来の連結部位より5’側、すなわち、伸長鎖では連結部位よりも3’側ではDNAの伸長が抑制又は停止される。 Then, the DNA extension reaction is again performed by the DNA polymerase using the second primer and the first primer which are different from the primers from which the template strands are derived. At this time, as shown in each of (e) and (d) of FIG. 1B, the DNA extension reaction of the DNA polymerase with respect to the template strand starting from the second primer and containing the first primer is performed by the first primer in the template strand. On the 5 ′ side from the linking site derived from the origin, that is, 3 ′ from the linking site in the extended strand, DNA elongation is suppressed or stopped.
 また、図1Bの(e)及び(d)に示すように、第1のプライマーから始まり第2のプライマーを含む鋳型鎖に対するDNAポリメラーゼのDNA伸長反応は、鋳型鎖中の第2のプライマー由来の連結部位より5’側、すなわち、伸長鎖では連結部位よりも3’側ではDNAの伸長が抑制又は停止される。なお、 As shown in (e) and (d) of FIG. 1B, the DNA extension reaction of the DNA polymerase with respect to the template strand starting from the first primer and containing the second primer is derived from the second primer in the template strand. On the 5 ′ side from the ligation site, that is, 3 ′ from the ligation site in the extended strand, the DNA elongation is suppressed or stopped. In addition,
 こうした結果、得られる増幅断片は、、図2Bに示すように、5’末端にそれぞれ突出する一本鎖のタグ配列と標識物質結合領域とを備え、第1の識別配列と第2の識別配列においては二重鎖を備えるDNA二重鎖断片となる。すなわち、このDNAに重鎖断片にあっては、一方のDNA鎖の5’側では、タグ配列が突出して一本鎖となり、他方のDNA鎖の5’側では、標識物質結合領域が突出している。 As a result, as shown in FIG. 2B, the resulting amplified fragment has a single-stranded tag sequence protruding from the 5 ′ end and a labeling substance binding region, and includes a first identification sequence and a second identification sequence. Is a double-stranded DNA fragment comprising a double strand. That is, in the heavy chain fragment of this DNA, the tag sequence protrudes into a single strand on the 5 ′ side of one DNA strand, and the labeling substance binding region protrudes on the 5 ′ side of the other DNA strand. Yes.
 なお、用いる第2のプライマーが図2Aに示すように、予め標識物質が結合した標識物質結合領域を有する場合には、図2Aに示すように、標識物質を一方のDNA鎖の5’末端に有し、一方のDNA鎖の5’側にタグ配列を突出して有し、第1及び第2の識別配列においては二重鎖を備えるDNA二重鎖断片となる。 When the second primer to be used has a labeling substance binding region to which a labeling substance is bound in advance as shown in FIG. 2A, the labeling substance is attached to the 5 ′ end of one DNA strand as shown in FIG. 2A. It has a tag sequence protruding on the 5 ′ side of one DNA strand, and in the first and second identification sequences, it becomes a DNA double-stranded fragment comprising a double strand.
また、図2Cに示すように、標識物質をDNA鎖伸長部位に有し、一方のDNA鎖の5’側にタグ配列を突出して有し、第1及び第2の識別配列においては二重鎖を備えるDNA二重鎖断片となる。 In addition, as shown in FIG. 2C, a labeling substance is present at the DNA chain extension site, a tag sequence protrudes on the 5 ′ side of one DNA chain, and the first and second identification sequences are double-stranded. A DNA double-stranded fragment comprising
(ハイブリダイゼーション工程)
 次に、図2A~図2Cに示すように、ハイブリダイゼーション工程を実施する。ハイブリダイゼーション工程は、増幅工程で得られた増幅断片と検出用プローブとをタグ配列によりハイブリダイズ可能に接触させる工程である。ハイブリダイゼーション工程によれば、図2A~図2Cに示すように、増幅工程で得られたDNA二重鎖断片のタグ配列と、固相体上の検出用プローブの検出用配列と一定条件下において特異的にハイブリダイズ部可能な程度に相補的であるとき、これらはハイブリダイズし固相体上の所定の検出用プローブにおいて二重鎖を形成する。ハイブリダイゼーション工程後において、適宜洗浄工程をさらに含んでいてもよい。
(Hybridization process)
Next, as shown in FIGS. 2A to 2C, a hybridization step is performed. The hybridization step is a step in which the amplified fragment obtained in the amplification step and the detection probe are brought into contact with each other so as to be hybridizable with a tag sequence. According to the hybridization step, as shown in FIGS. 2A to 2C, the tag sequence of the DNA double-stranded fragment obtained in the amplification step, the detection sequence of the detection probe on the solid phase body, and the fixed sequence When they are complementary to the extent that they can specifically hybridize, they hybridize to form a duplex in a given detection probe on the solid phase. An appropriate washing step may be further included after the hybridization step.
 ハイブリダイゼーション工程には、増幅工程において特異的に増幅された標的核酸に対応するDNA二重鎖断片が供給される。この断片は、予め関連付けられた検出用プローブに特異的なタグ配列を、一本鎖として突出して有している。このため、増幅工程後、熱変性等の変性工程によって一本鎖としなくても、検出用プローブと容易に反応できる。したがって、ハイブリダイゼーション効率が高いものとなっており、結果として感度も向上しかつ安定化させることができる感度は、第1のプライマーにおいて連結部位を備えることで、好ましくは5倍以上、より好ましくは10倍以上向上する。また、ハイブリダイゼーションの迅速性も向上されている。第1のプライマーにおいて連結部位を備えることで、ハイブリダイゼーション時間は、10分の1程度にまで短縮されることがわかっている。 In the hybridization step, a DNA double-stranded fragment corresponding to the target nucleic acid specifically amplified in the amplification step is supplied. This fragment has a tag sequence specific to a detection probe associated in advance as a single strand. For this reason, after the amplification step, it is possible to easily react with the detection probe without forming a single strand by a denaturation step such as heat denaturation. Therefore, the hybridization efficiency is high, and as a result, the sensitivity can be improved and stabilized . The sensitivity is preferably improved by a factor of 5 or more, more preferably by a factor of 10 or more by providing a linking site in the first primer. Moreover, the rapidity of hybridization is also improved. It has been found that the provision of a linking site in the first primer shortens the hybridization time to about 1/10.
 また、図2Aに示すように、ハイブリダイゼーション工程に供給されるDNA二重鎖断片が標識物質結合領域を有し直接標識物質を備えているときには、特別なラベリング工程を実施しなくてよい。図2Cに示すように、DNA二重鎖断片が増幅工程により標識物質を付与されている場合も同様である。さらに、図2Bに示すように、標識物質結合領域が標識プローブを結合する塩基配列を含んでいるときには、この塩基配列部分は、一本鎖としてタグ配列と反対側の5’側に突出している。このため、効率的に標識プローブとハイブリダイズし、迅速かつ容易に、しかも感度よい標識が可能となっている。したがって、特別なラベリング工程は不要であり、標識プローブは、ハイブリダイゼーション工程においてDNA二重鎖断と同時に固相体に供給するか、あるいは、DNA二重鎖断片の固相体への供給に前後して供給してもよい(すなわち、ハイブリダイゼーション前でもハイブリダイゼーション後であってもよい。)。 Further, as shown in FIG. 2A, when the DNA double-stranded fragment supplied to the hybridization step has a labeling substance binding region and is directly provided with a labeling substance, a special labeling step does not have to be performed. As shown in FIG. 2C, the same applies to the case where the DNA double-stranded fragment is given a labeling substance by the amplification step. Furthermore, as shown in FIG. 2B, when the labeling substance binding region includes a base sequence that binds the labeling probe, this base sequence portion projects as a single strand to the 5 ′ side opposite to the tag sequence. . For this reason, it is possible to efficiently hybridize with the labeled probe, and to label quickly, easily and with high sensitivity. Therefore, no special labeling step is required, and the labeled probe is supplied to the solid phase simultaneously with the DNA double strand break in the hybridization step, or before and after the supply of the DNA double strand fragment to the solid phase. (That is, it may be before or after hybridization).
 DNA二重鎖断片は、そのタグ配列に基づき特定の検出用プローブにしかハイブリダイズしない。検出用プローブの検出用配列とタグ配列とは、高度に選択的に設計されておりミスハイブリダイズが高度に抑制されているため、ハイブリダイゼーション工程においては検出用プローブに対して非特異的に二重鎖断片がハイブリダイズすることが高度に抑制される。 The DNA double-stranded fragment hybridizes only to a specific detection probe based on the tag sequence. The detection sequence and the tag sequence of the detection probe are designed to be highly selective and mishybridization is highly suppressed. Hybridization of heavy chain fragments is highly suppressed.
(検出工程)
 検出工程は、前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する工程である。
(Detection process)
The detection step is a step of detecting a hybridized product of the amplified fragment on the solid phase body and the detection probe.
 検出工程は、ハイブリダイズ後の固相体上のハイブリダイズ産物が保持する標識物質に基づく標的核酸についてのシグナル強度情報を取得し、ハイブリダイズ産物を検出する工程である。シグナル強度情報取得の取得には、標識物質由来の標識シグナルを検出することができる。標的核酸と予め関連付けられた検出用プローブの固相体上における位置は予め取得されているため、標識シグナルを検出することで標的核酸の有無や比率を検知することができる。 The detection step is a step of acquiring signal intensity information about the target nucleic acid based on the labeling substance held by the hybridized product on the solid phase after hybridization, and detecting the hybridized product. For obtaining signal intensity information, a label signal derived from a labeling substance can be detected. Since the position on the solid phase body of the detection probe associated with the target nucleic acid in advance is acquired in advance, the presence or the ratio of the target nucleic acid can be detected by detecting the label signal.
 シグナル強度情報取得には、用いた固相体の形態や標識物質の種類に応じて、従来公知の手法を適宜選択して採用すればよい。典型的には、固相体からハイブリダイズしなかったオリゴヌクレオチド等を洗浄操作等によって除去した後、付加した標識物質の蛍光シグナルをアレイスキャナ等により検出したり、標識物質に対して化学発光反応を実施したりすることができる。担体にビーズを用いた場合には、フローサイトメーターによる検出方法が挙げられる。 For obtaining signal intensity information, a conventionally known method may be appropriately selected and adopted according to the form of the solid phase used and the type of labeling substance. Typically, after removing non-hybridized oligonucleotides from the solid phase by washing, etc., the fluorescent signal of the added labeling substance is detected by an array scanner or the like, or a chemiluminescent reaction to the labeling substance Can be implemented. When beads are used as the carrier, a detection method using a flow cytometer can be used.
 本検出工程では、標識物質のシグナル強度情報に基づいて、試料中の標的核酸の有無や比率等を検出することができる。本方法によれば、複数の標的核酸を同時に検出する場合であっても、確実に検出対象たる標的配列を検出することができる。本方法では、増幅工程で取得したDNA二重鎖断片が、効率的なハイブリダイゼーションや効率的なラベリングに適しているため、効率的に高感度な検出が可能であるとともに、煩雑な変性工程を省略できるようになっている。 In this detection step, the presence or absence, the ratio, etc. of the target nucleic acid in the sample can be detected based on the signal intensity information of the labeling substance. According to this method, even when a plurality of target nucleic acids are detected at the same time, it is possible to reliably detect a target sequence as a detection target. In this method, since the DNA double-stranded fragment obtained in the amplification step is suitable for efficient hybridization and efficient labeling, efficient detection with high sensitivity is possible and a complicated denaturation step is performed. It can be omitted.
 本検出方法は、マルチプレックスPCRで試料から複数の標的核酸に対応する増幅断片を増幅して、これらを一挙に固相体上で検出することが好ましい。すなわち、複数の標的核酸に予め関連付けた複数の検出用プローブで検出可能に、第1のプライマーと第2のプライマーとからなる複数のセットを用いて核酸増幅を実施し、増幅工程で得られた複数の増幅断片と固相体上の複数の検出用プローブとをハイブリダイズ可能に接触させ、固相体上の複数の増幅断片と複数の検出用プローブとのハイブリダイズ産物を検出するようにすることが好ましい。 In this detection method, it is preferable to amplify amplified fragments corresponding to a plurality of target nucleic acids from a sample by multiplex PCR and detect them all at once on a solid phase. That is, nucleic acid amplification was performed using a plurality of sets of the first primer and the second primer so that they could be detected by a plurality of detection probes previously associated with a plurality of target nucleic acids, and obtained in the amplification step A plurality of amplified fragments and a plurality of detection probes on the solid phase are brought into contact with each other so as to be able to hybridize, and a hybrid product of the plurality of amplified fragments on the solid phase and the plurality of detection probes is detected. It is preferable.
(核酸増幅剤)
 本発明の核酸増幅剤は、図1Aに第1のプライマー等として示すように、5’側から第1の任意の塩基配列と増幅しようとする核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体を含んでいる。本核酸増幅剤がこうした連結部位を含むことで、本核酸増幅剤を少なくとも一つのプライマー等として核酸増幅法で用いる場合であって、増幅反応で得られた核酸増幅剤を含むDNA鎖が鋳型鎖となるとき、当該連結部位は、伸長鎖におけるDNAポリメラーゼ反応の抑制又は停止ポイントとして作用し、連結部位以降は、鋳型鎖として機能しなくなる。この結果、連結部位以降の鋳型鎖に相補的な伸長鎖が形成されないことになる。この結果得られるDNA二重鎖断片は、図1Aに示すように、一方の5’側に第1の任意の塩基配列の一本鎖を有するDNA二重鎖となる。
(Nucleic acid amplification agent)
As shown in FIG. 1A as a first primer or the like, the nucleic acid amplifying agent of the present invention is a first discriminating first base sequence in a nucleic acid to be amplified from a first arbitrary base sequence from the 5 ′ side. And an oligonucleotide derivative having a linking site capable of suppressing or stopping the DNA polymerase reaction between the first base sequence and the first identification sequence. When the nucleic acid amplification agent includes such a linking site, the nucleic acid amplification agent is used in the nucleic acid amplification method as at least one primer, and the DNA strand containing the nucleic acid amplification agent obtained by the amplification reaction is a template strand. Then, the linking site acts as a point for suppressing or stopping the DNA polymerase reaction in the extended strand, and the portion after the linking site does not function as a template strand. As a result, an extended strand complementary to the template strand after the ligation site is not formed. As a result, the resulting DNA double-stranded fragment is a DNA duplex having a single strand of the first arbitrary base sequence on one 5 ′ side, as shown in FIG. 1A.
 図1Bに示すように、他方のプライマーである第2のプライマーを、第1のプライマーと同様に、5’側から第2の任意の塩基配列と増幅しようとする核酸中の第2の塩基配列を識別する第2の識別配列とを含み、前記第2の塩基配列と前記第2の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体とすることもできる。こうすることで、図1Bに示すように、各5’側に第1の任意の塩基配列の一本鎖と第2の任意の塩基配列の一本鎖を有するDNA二重鎖となる。 As shown in FIG. 1B, the second primer, which is the other primer, is amplified with the second arbitrary base sequence from the 5 ′ side in the same manner as the first primer. And an oligonucleotide derivative having a linking site capable of suppressing or stopping the DNA polymerase reaction between the second base sequence and the second identification sequence. it can. By doing so, as shown in FIG. 1B, a DNA duplex having a single strand of the first arbitrary base sequence and a single strand of the second arbitrary base sequence on each 5 'side is obtained.
 こうした突出一本鎖を有するDNA二重鎖は、ハイブリダイゼーション用のほか、各種用途に用いられる。核酸増幅剤は、典型的には各種核酸増幅法におけるプライマーとして用いることができる。 Such DNA double strands having protruding single strands are used for various purposes in addition to hybridization. The nucleic acid amplification agent can typically be used as a primer in various nucleic acid amplification methods.
 第1の任意の塩基配列及び/又は第2の任意の塩基配列は、本発明におけるタグ配列であってもよいし、標識が結合された又は標識プローブとハイブリダイズ可能な塩基配列であってもよい。第1の任意の塩基配列がこのように標識に関連付けられていると、標的核酸を増幅すると同時にラベリングも可能となる。 The first arbitrary base sequence and / or the second arbitrary base sequence may be a tag sequence in the present invention, or may be a base sequence to which a label is bound or capable of hybridizing with a labeled probe. Good. When the first arbitrary base sequence is thus associated with the label, the target nucleic acid can be amplified and labeled at the same time.
 本核酸増幅剤における連結部位には、本検出方法において既に説明した連結部位の各種実施態様を適用できる。また、本核酸増幅部位の第1の任意の塩基配列及び第1の識別配列には、本検出方法において既に説明した第1のプライマー及び第2のプライマーにおける、タグ配列及び第1の識別配列並びに標識物質結合領域及び第2の識別配列の各種実施態様を適用できる。すなわち、本核酸増幅剤は、第1のプライマーや第2のプライマーをその一実施態様としている。 Various embodiments of the linking site already described in the present detection method can be applied to the linking site in the nucleic acid amplification agent. Further, the first arbitrary base sequence and the first identification sequence of the nucleic acid amplification site include the tag sequence and the first identification sequence in the first primer and the second primer already described in the detection method, and Various embodiments of the labeling substance binding region and the second identification sequence can be applied. That is, the nucleic acid amplification agent uses the first primer and the second primer as one embodiment.
 なお、本発明によれば、こうした核酸増幅剤を1種又は2種以上含むキットも提供される。当該キットには、上記した第1のプライマーや第2のプライマーを用いて得られるDNA断片とハイブリダイゼーションさせるための固相体を含んでいてもよい。 In addition, according to the present invention, a kit containing one or more of these nucleic acid amplification agents is also provided. The kit may contain a solid phase body for hybridization with a DNA fragment obtained using the first primer or the second primer described above.
 本発明によれば、本検出方法において得られるDNA二重鎖断片、すなわち、少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有し、前記一本鎖部分が、検出用プローブ中の塩基配列に相補的なタグ配列を有する、DNA二重鎖断片も提供される。さらに、他方の鎖の5’側にも一本鎖部分を有し、この一本鎖部分に標識が連結されているDNA二重鎖断片も提供される。さらにこうしたDNA二重鎖断片は、プローブハイブリダイゼーションに好適であるため、これらを含むプローブハイブリダイゼーション用組成物も提供される。この方法で用いる。 According to the present invention, a DNA double-stranded fragment obtained by the present detection method, that is, a DNA duplex having a single-stranded portion on the 5 ′ side of at least one strand and having a double-stranded portion by base pairing. At least one DNA strand has a linking site capable of suppressing or stopping a DNA polymerase reaction between the single-stranded portion and the double-stranded binding portion, and the single-stranded portion is A DNA double-stranded fragment having a tag sequence complementary to the base sequence in the detection probe is also provided. Furthermore, a DNA double-stranded fragment having a single-stranded portion on the 5 'side of the other strand and having a label linked to this single-stranded portion is also provided. Furthermore, since such DNA double-stranded fragments are suitable for probe hybridization, a probe hybridization composition containing them is also provided. Use this method.
 さらに、本発明によれば、試料中の標的核酸を増幅する方法も提供される。すなわち、第1の任意の塩基配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーを少なくとも用いて、前記試料の核酸増幅を実施する工程を、備える、方法も提供される。この方法によって得られる増幅断片は、図1Aに示すように、少なくとも一方の鎖の5’側に突出した第1の任意の塩基配列の一本鎖を有するDNA二重鎖断片となっている。さらに、この増幅方法においては、他のプライマーとして、第2の任意の塩基配列と前記標的核酸中の第2の塩基配列を識別する第2の識別配列とを含み、前記第1の任意の塩基配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第2のプライマーを用いることもできる。この場合には、図1Bに示すように、両方の鎖の5’側に突出した第1の任意の塩基配列の一本鎖を有するDNA二重鎖断片を得ることができる。第1のプライマーにおいては、その第1の任意の塩基配列には、標識物質を備えていてもよいし、標識プローブと結合可能な塩基配列を有していてもよい。第2のプライマーについても、同様である。 Furthermore, according to the present invention, a method for amplifying a target nucleic acid in a sample is also provided. That is, a first arbitrary base sequence and a first identification sequence for identifying the first base sequence in the target nucleic acid, and between the first arbitrary base sequence and the first recognition sequence In addition, a method is provided which comprises the step of performing nucleic acid amplification of the sample using at least a first primer having a linking site capable of suppressing or stopping the DNA polymerase reaction. As shown in FIG. 1A, the amplified fragment obtained by this method is a DNA double-stranded fragment having a single strand of the first arbitrary base sequence protruding to the 5 'side of at least one strand. Further, in this amplification method, the second arbitrary base sequence and a second identification sequence for identifying the second base sequence in the target nucleic acid are included as other primers, and the first arbitrary base A second primer having a linking site capable of suppressing or stopping the DNA polymerase reaction can also be used between the sequence and the first recognition sequence. In this case, as shown in FIG. 1B, a DNA double-stranded fragment having a single strand of the first arbitrary base sequence protruding to the 5 'side of both strands can be obtained. In the first primer, the first arbitrary base sequence may be provided with a labeling substance or may have a base sequence capable of binding to the label probe. The same applies to the second primer.
 本増幅方法においても、第1のプライマー及び第2のプライマー並びに連結部位に関して、既に説明した本検出方法の各種態様を適用できる。 Also in this amplification method, the various aspects of the detection method described above can be applied to the first primer, the second primer, and the ligation site.
 本増幅方法は、また、少なくとも一方のDNA鎖の5’側に一本鎖を備えるDNA二重鎖断片の生産方法としても提供される。さらに、本増幅方法は、標的核酸のラベリング方法としても実施できる。さらに、こうしたラベリング工程を備える、標的核酸の検出方法としても実施できる。すなわち、特開2008-306941号公報、特開2009-24号公報並びに非特許文献1に開示されるSNP等の検出方法における標識工程に替えて本増幅工程(標識工程)を用いることで、その後の変性工程を省略するとともに、効率的かつ高感度なハイブリダイゼーションを実施することができる。 This amplification method is also provided as a method for producing a DNA double-stranded fragment having a single strand on the 5 'side of at least one DNA strand. Furthermore, this amplification method can also be implemented as a method for labeling a target nucleic acid. Furthermore, it can also be implemented as a method for detecting a target nucleic acid comprising such a labeling step. That is, by using this amplification step (labeling step) instead of the labeling step in the detection methods such as SNP disclosed in JP2008-306941A, JP2009-24A and Non-Patent Document 1, Thus, efficient and sensitive hybridization can be carried out.
 以下、本発明を、実施例を挙げて具体的に説明するが、以下の実施例は本発明を限定するものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the following examples do not limit the present invention.
以下の実施例では、本発明の検出方法による標的核酸の検出を次の手順で行った。以下、これらの順序に従って説明する。
(1)DNAマイクロアレイの作製
(2)標的核酸とプライマーの調製と増幅
(3)ハイブリダイズ
(4)スキャナーを用いた検出
In the following examples, the target nucleic acid was detected by the following procedure according to the detection method of the present invention. Hereinafter, it demonstrates according to these order.
(1) Preparation of DNA microarray (2) Preparation and amplification of target nucleic acid and primer (3) Hybridization (4) Detection using scanner
(1)DNAマイクロアレイの作製
 プラスチック板に、3’末端をアミノ基で修飾した合成オリゴDNA(株式会社日本遺伝子研究所製)を溶かした水溶液を検出用プローブとして、日本ガイシ株式会社にてGENESHOT(登録商標である)スポッターを用いてスポットした。使用した合成オリゴDNA配列は、配列番号1~100から高速ハイブリダイゼーションが可能な以下の33種を選択した。
(1) Preparation of DNA microarray GENESHT (Nippon Gaishi Co., Ltd.) uses an aqueous solution in which a synthetic oligo DNA (manufactured by Nippon Genetic Laboratory Co., Ltd.) having a 3 ′ end modified with an amino group is dissolved in a plastic plate as a detection probe. Spotted with a spotter (registered trademark). As synthetic oligo DNA sequences used, the following 33 types capable of high-speed hybridization were selected from SEQ ID NOs: 1 to 100.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 スポットの後、80℃、1時間のベークを行った。さらに、以下に記載した手順で、合成オリゴDNAの固定化を行った。すなわち、2×SSC/0.2%SDSで15分洗浄後、95℃の2×SSC/0.2%SDSで5分洗浄し、その後、滅菌水で洗浄(10回上下振とう)を3回繰り返した。その後、遠心(1000rpm×3分)により脱水した。 After the spot, baking was performed at 80 ° C. for 1 hour. Furthermore, the synthetic oligo DNA was immobilized by the procedure described below. That is, after washing with 2 × SSC / 0.2% SDS for 15 minutes, washing with 2 × SSC / 0.2% SDS at 95 ° C. for 5 minutes, and then washing with sterilized water (shaking up and down 10 times) 3 Repeated times. Then, it dehydrated by centrifugation (1000 rpm x 3 minutes).
(2)標的核酸の増幅
 増幅に使用したゲノムDNAは、ヒト由来とし、ヒトゲノム中の6つの標的核酸((1)~(6))に特異的な以下の表に示すプライマーP1-1~P1-6(日本遺伝子研究所製)、P2-1~P2-6(日本遺伝子研究所製)及びP3-1~P3-6(日本遺伝子研究所製)を準備した。なお、各系列は以下の構成(5’から3’として表示)とした。なお、P3系のプライマーのプロピレン基部分は、以下の式に示すGlenResearch社のホスホアミダイト試薬であるSpacer PhophoamiditeC3を用いて通常のオリゴヌクレオチド合成方法に準じて合成された。
(2) Amplification of target nucleic acid The genomic DNA used for amplification is derived from humans and is specific to six target nucleic acids ((1) to (6)) in the human genome. Primers P1-1 to P1 shown in the following table -6 (manufactured by Nippon Genetic Institute), P2-1 to P2-6 (manufactured by Nippon Genetic Institute) and P3-1 to P3-6 (manufactured by Nippon Genetic Institute) were prepared. Each series has the following configuration (displayed as 5 ′ to 3 ′). The propylene group portion of the P3-based primer was synthesized according to an ordinary oligonucleotide synthesis method using Spacer Phophoamidite C3, a phosphoramidite reagent of GlenResearch, shown in the following formula.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
P1系のプライマー:F,R:ヒトDNA中の特定の標的核酸(1)~(6)に対する塩基配列を含む
P2系のプライマー:
              F:標識プローブの結合配列+P1系の各標的核酸に対する塩基配列
              R:合成オリゴヌクレオチドプローブの塩基配列と同一の塩基配列からなるタグ配列+P1系の各標的核酸に対する塩基配列
(なお、P2系プライマーを用い場合には、このタグ配列と相補的な塩基配列の相補鎖も増幅されるため、当該相補鎖がプローブとハイブリダイズし、増幅断片を検出できる。)
P3系プライマー:
              F:標識プローブの結合配列+P1系の各標的核酸に対する塩基配列 
              R:合成オリゴヌクレオチドプローブの塩基配列と相補的な塩基配列からなるタグ配列+連結部位(プロピレン鎖)+P1系の各標的核酸に対する塩基配列
P1-based primers: F, R: P2-based primers including a base sequence for specific target nucleic acids (1) to (6) in human DNA:
F: Binding sequence of labeled probe + base sequence for each target nucleic acid of P1 system R: Tag sequence comprising the same base sequence as the base sequence of the synthetic oligonucleotide probe + base sequence for each target nucleic acid of P1 system (note that P2 system primer is used) When used, since a complementary strand of a base sequence complementary to this tag sequence is also amplified, the complementary strand hybridizes with the probe, and an amplified fragment can be detected.)
P3 primer:
F: Binding sequence of labeled probe + base sequence for each target nucleic acid of P1 system
R: Tag sequence consisting of a base sequence complementary to the base sequence of the synthetic oligonucleotide probe + linkage site (propylene chain) + base sequence for each target nucleic acid of P1 system
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 次に、ゲノムDNAをこれらのプライマーを用いて以下のように増幅した。なお、サンプル増幅用試薬として、QIAGEN社のmultiplex PCR master mix を使用した。サーマルサイクラーとして、Applied Biosystems社のGeneAmp PCR System9700を使用した。 Next, genomic DNA was amplified using these primers as follows. In addition, QIAGEN's multiplex PCR master mix was used as a sample amplification reagent. As a thermal cycler, Applied Biosystems GeneAmp PCR 9970 was used.
 まず、以下に示す試薬を個々のサンプルごとに調製した。
(試薬調製)
dHO                                     4.0μl
2×multiplex PCR master mix                5.0μl
プライマー混合物(各500nM)           0.5μl
ゲノムDNA(50ng/μl)              0.5μl
合計                                      10.0μl
First, the following reagents were prepared for each sample.
(Reagent preparation)
dH 2 O 4.0 μl
2 × multiplex PCR master mix 5.0μl
Primer mix (500 nM each) 0.5 μl
Genomic DNA (50 ng / μl) 0.5 μl
Total 10.0 μl
 次に、試薬調製をサーマルサイクルプレートに移し、サーマルサイクル反応(95℃で15分後;95℃で30秒、80℃で1秒、64℃で6分を40サイクル、その後10℃に下げる)を行った。そして、増幅した標識サンプルはQIAGEN社のMinElute PCR Purification Kitにて精製を行った後、アガロース電気泳動により意図した長さで増幅していることを確認した。結果を図3に示す。図3の上段には、電気泳動結果を示し、その下段には、蛍光強度から算出した増幅量を示す。 The reagent preparation is then transferred to a thermal cycle plate and the thermal cycle reaction (after 15 minutes at 95 ° C .; 30 seconds at 95 ° C., 1 second at 80 ° C., 40 cycles of 6 minutes at 64 ° C., then lowered to 10 ° C.) Went. The amplified labeled sample was purified by QIAGEN's MinElute PCR-Purification-Kit, and then confirmed to be amplified by the intended length by agarose electrophoresis. The results are shown in FIG. The upper part of FIG. 3 shows the result of electrophoresis, and the lower part shows the amplification amount calculated from the fluorescence intensity.
(3)ハイブリダイズ
 (2)で得た増幅サンプルをマイクロアレイ上に固定した検出用プローブとハイブリダイズするために、以下のHybri controlとHybri solutionを調製し、これからハイブリダイズ用の試薬を調製した。PrimerMixには、標識用プローブ(蛍光修飾したオリゴヌクレオチド出でありP2系及びP3系プライマーのFの5’側に結合する。)を含んでいる。なお、Hybri controlに使用したAlexa555-rD1_100は、D1_100の対応する配列に相補な配列の5´末端をAlexa555で標識したものを用いた。
(3) Hybridization In order to hybridize the amplified sample obtained in (2) with the detection probe immobilized on the microarray, the following Hybri control and Hybri solution were prepared, and a reagent for hybridization was prepared therefrom. PrimerMix includes a labeling probe (fluorescently modified oligonucleotide that binds to the 5 ′ side of F of P2 and P3 primers). The Alexa555-rD1_100 used for the Hybri control was one in which the 5 'end of a sequence complementary to the corresponding sequence of D1_100 was labeled with Alexa555.
(Hybri control)
Alexa555-rD1_100(100nM)            10μl
TE(pH8.0)                               390μl
合計                                             400μl
(Hybri control)
Alexa555-rD1_100 (100 nM) 10 μl
TE (pH 8.0) 390 μl
400 μl total
(Hybri solution)
20×SSC                                2.0ml
10%SDS                                0.8ml
100% Formamide                12.0ml
100mM EDTA                         0.8ml
milliQ                               24.4ml
合計                                      40.0ml
(Hybri solution)
20 x SSC 2.0ml
10% SDS 0.8ml
100% Formamide 12.0ml
100 mM EDTA 0.8 ml
milliQ 24.4ml
Total 40.0ml
(ハイブリダイズ用の試薬)
Hybri control         1.5μl
Primer Mix            1.0μl
Hybri solution         9.0μl
小計                 10.5μl
増幅サンプル          3.0μl
合計                18.0μl
(Reagent for hybridization)
Hybri control 1.5μl
Primer Mix 1.0μl
Hybri solution 9.0μl
Subtotal 10.5μl
Amplified sample 3.0 μl
18.0 μl total
 調製した標識サンプル溶液を、変性等のために加熱することなく、各9μlずつ、マイクロアレイのスポットエリアにかけて、乾燥防止のためコンフォート/プラス用サーもブロックスライド(エッペンドルフ社)を使用し、37℃で30分間静置することによってハイブリダイズ反応を行った。 Apply 9 μl of the prepared labeled sample solution to the spot area of the microarray without heating for denaturation, etc., and use a block slide (Eppendorf) as a comfort / plus sir to prevent drying at 37 ° C. Hybridization reaction was performed by leaving still for 30 minutes.
(洗浄)
ハイブリダイズ後、以下の組成の洗浄液を満たしたガラス染色バットに、ハイブリダイズ反応終了後のマイクロアレイ基板を浸漬し、5分間上下振とうし、滅菌水を入れたガラス染色バットにガラス基板を移し、1分間上下振とうし、2000rpmで1分間遠心乾燥し、マイクロアレイ基板表面に残った水分を除去した。
(洗浄液の組成)
milliQ               188.0ml
20×SSC                10.0ml
10%SDS                 2.0ml
合計                       200.0ml
(Washing)
After hybridization, the microarray substrate after completion of the hybridization reaction is immersed in a glass staining vat filled with a cleaning solution of the following composition, shaken up and down for 5 minutes, and transferred to a glass staining vat containing sterilized water, The mixture was shaken up and down for 1 minute and centrifuged at 2000 rpm for 1 minute to remove water remaining on the surface of the microarray substrate.
(Composition of cleaning solution)
milliQ 188.0ml
20 x SSC 10.0ml
10% SDS 2.0ml
Total 200.0ml
(4)スキャナーを用いた検出
 Appleied Precision社ArrayWoRxを使用して適宜、露光時間を調節し、蛍光画像を取得した。結果を、図4及び図5に示す。
(4) Detection using a scanner Appleied Precision Co. ArrayWoRx was used to adjust the exposure time as appropriate to obtain a fluorescence image. The results are shown in FIGS.
 まず、図3の上段に示すように、タグ配列の有無にかかわらず、ゲノムDNA中の意図した標的核酸を増幅できることがわかった。また、図3の下段の表に示すように、タグ配列を識別配列に直接連結しても、プロピレン基を含む連結部位を介して連結してもその増幅量に大きな変化がないことがわかった。 First, as shown in the upper part of FIG. 3, it was found that the intended target nucleic acid in the genomic DNA can be amplified regardless of the presence or absence of the tag sequence. In addition, as shown in the lower table of FIG. 3, it was found that there was no significant change in the amplification amount even when the tag sequence was directly linked to the identification sequence or via a linking site containing a propylene group. .
 また、図4及び図5に示すように、P2系プライマー(タグ配列+識別配列)とP3系プライマー(タグ配列+連結部位+識別配列)を用いた場合とでは、明らかに、P3系プライマーを用いて増幅して得られたDNA断片とのハイブリダイゼーション結果において、個々のタグ配列にかかわらず、おおよそ一定の強い蛍光を観察できた。これに対して、P2系プライマーを用いたときのハイブリダイゼーション結果においては、タグ配列にかかわらずいずれもほとんど蛍光を観察できなかった。 In addition, as shown in FIGS. 4 and 5, when the P2 primer (tag sequence + identification sequence) and the P3 primer (tag sequence + linking site + identification sequence) are used, the P3 primer is clearly As a result of hybridization with the DNA fragment obtained by amplification using the DNA, roughly constant strong fluorescence could be observed regardless of individual tag sequences. On the other hand, in the hybridization results using the P2 primer, almost no fluorescence was observed regardless of the tag sequence.
 さらに、サンプル濃度を10倍希釈して得られたハイブリダイゼーション結果においては、P3系プライマーを用いた場合は、依然として蛍光を観察することができた。 Furthermore, in the hybridization results obtained by diluting the sample concentration 10 times, fluorescence could still be observed when the P3 primer was used.
 以上のことから、P3系プライマーを用いることで、少なくとも検出感度が10倍以上向上することがわかった。以上の実施例では、増幅したサンプルの変性工程を行わずにアレイに適用したこと、及び図3に示すように、増幅サンプルの合成量がP2系プライマーによるものとほぼ同量である。以上のことからすると、P3系プライマーを用いることで高効率にハイブリダイゼーションし、かつラベル効率の良好な二重鎖断片が得られたことがわかる。 From the above, it was found that the use of the P3-based primer improves the detection sensitivity by at least 10 times. In the above example, the amplification sample was applied to the array without performing the denaturation step, and as shown in FIG. 3, the synthesis amount of the amplification sample was almost the same as that by the P2-based primer. From the above, it can be seen that a double-stranded fragment with high efficiency and good label efficiency was obtained by using the P3 primer.
配列用フリーテキストFree text for array
配列番号1~100:プローブ
配列番号101~136:プライマー
SEQ ID NO: 1 to 100: Probe SEQ ID NO: 101 to 136: Primer

Claims (19)

  1.  試料中の標的核酸を検出する方法であって、
     それぞれ異なる所定の塩基配列を有する検出用プローブを備える固相体を準備する工程と、
     前記標的核酸に予め関連付けられた前記検出用プローブに相補的なタグ配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記タグ配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーと、
     前記標的核酸中の第2の塩基配列を識別する第2の識別配列を含む第2のプライマーと、
    を用いて、前記試料中の核酸増幅を実施する増幅工程と、
     前記増幅工程で得られた増幅断片と前記固相体上の前記検出用プローブとをハイブリダイズ可能に接触させるハイブリダイゼーション工程と、
     前記固相体上の前記増幅断片と前記検出用プローブとのハイブリダイズ産物を検出する検出工程と、
    を備える方法。
    A method for detecting a target nucleic acid in a sample, comprising:
    Preparing a solid phase body comprising detection probes each having a different predetermined base sequence;
    A tag sequence complementary to the detection probe previously associated with the target nucleic acid, and a first identification sequence for identifying a first base sequence in the target nucleic acid, the tag sequence and the first recognition A first primer having a linking site capable of suppressing or stopping the DNA polymerase reaction between the sequence and
    A second primer comprising a second identification sequence for identifying a second base sequence in the target nucleic acid;
    An amplification step of performing nucleic acid amplification in the sample using
    A hybridization step in which the amplified fragment obtained in the amplification step and the detection probe on the solid phase body are brought into contact in a hybridizable manner;
    A detection step of detecting a hybridized product of the amplified fragment on the solid phase body and the detection probe;
    A method comprising:
  2.  前記第2のプライマーは、標識物質が結合された又は標識物質を結合可能に構成された標識物質結合領域を有する、請求項1に記載の方法。 The method according to claim 1, wherein the second primer has a labeling substance binding region to which a labeling substance is bound or configured to be able to bind the labeling substance.
  3. 前記第2のプライマーは、前記標識物質結合領域と前記第2の識別配列との間に、前記連結部を有する、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the second primer has the linking portion between the labeling substance binding region and the second identification sequence.
  4.  前記増幅工程は、標識物質を備えるヌクレオシド誘導体三リン酸を含むヌクレオシド三リン酸を用いて核酸増幅を実施する工程である、請求項1に記載の方法。 The method according to claim 1, wherein the amplification step is a step of performing nucleic acid amplification using a nucleoside triphosphate including a nucleoside derivative triphosphate having a labeling substance.
  5.  前記連結部位は、天然塩基又は天然塩基と対合する天然塩基の誘導体を含まない、請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the linking site does not contain a natural base or a derivative of a natural base paired with a natural base.
  6.  前記連結部位は、リン酸ジエステル結合を介して前記プライマー中のヌクレオチドに隣接される、元素数が2以上40以下であって置換されていてもよいアルキレン鎖又はポリオキシアルキレン鎖を含む、請求項1~5のいずれかに記載の方法。 The linking site includes an alkylene chain or a polyoxyalkylene chain which is adjacent to the nucleotide in the primer via a phosphodiester bond and has 2 to 40 elements and may be substituted. The method according to any one of 1 to 5.
  7.  前記連結部位は、以下のいずれかの式で表される、請求項6に記載の方法。
     5’-O-Cm2m-O-3’                    式(1)
    (式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、mは2以上40以下の整数を表す。)、
     又は、
    5’-(OCn2nl-O-3’                式(2)
    (式中、5’は、5’側のリン酸ジエステル結合の酸素原子を表し、3’は、3’側のリン酸ジエステル結合のリン酸原子を表し、nは2以上4以下の整数を表し、lは、2以上の整数であって、(n+1)×lは40以下となる整数を表す。)
    The method according to claim 6, wherein the linking site is represented by any one of the following formulas.
    5′-O—C m H 2m —O-3 ′ Formula (1)
    (In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and m represents an integer of 2 to 40. To express.),
    Or
    5 ′-(OC n H 2n ) l —O-3 ′ Formula (2)
    (In the formula, 5 ′ represents an oxygen atom of a phosphodiester bond on the 5 ′ side, 3 ′ represents a phosphate atom of a phosphodiester bond on the 3 ′ side, and n represents an integer of 2 or more and 4 or less. And l is an integer of 2 or more, and (n + 1) × l represents an integer of 40 or less.)
  8.  前記増幅工程は、複数の前記標的核酸に予め関連付けた複数の前記検出用プローブで検出可能に、前記第1のプライマーと前記第2のプライマーとからなる複数のセットを用いて核酸増幅を実施する工程であり、
     前記ハイブリダイゼーション工程は、前記増幅工程で得られた複数の前記増幅断片と前記固相体上の前記複数の検出用プローブとをハイブリダイズ可能に接触させる工程であり、
     前記検出工程は、前記固相体上の前記複数の増幅断片と前記複数の検出用プローブとのハイブリダイズ産物を検出する工程である、請求項1~7のいずれかに記載の方法。
    In the amplification step, nucleic acid amplification is performed using a plurality of sets of the first primer and the second primer so as to be detectable with a plurality of the detection probes previously associated with the plurality of target nucleic acids. Process,
    The hybridization step is a step of bringing the plurality of amplified fragments obtained in the amplification step into contact with the plurality of detection probes on the solid phase so as to be capable of hybridizing,
    The method according to any one of claims 1 to 7, wherein the detection step is a step of detecting a hybrid product of the plurality of amplified fragments on the solid phase body and the plurality of detection probes.
  9.  前記タグ配列は、塩基数が20以上50以下である、請求項1~8のいずれかに記載の方法。 The method according to any one of claims 1 to 8, wherein the tag sequence has 20 to 50 bases.
  10.  前記タグ配列は、塩基数が20以上25以下である、請求項9に記載の方法。 The method according to claim 9, wherein the tag sequence has 20 to 25 bases.
  11.  前記検出用プローブの前記所定の配列は、配列番号1~100で表される塩基配列及びその相補配列から選択される、請求項1~10のいずれかに記載の方法。 The method according to any one of claims 1 to 10, wherein the predetermined sequence of the detection probe is selected from a base sequence represented by SEQ ID NOs: 1 to 100 and a complementary sequence thereof.
  12.  前記検出用プローブの前記所定の配列は、以下の表に記載の配列番号で表される塩基配列及びその相補配列から選択される、請求項1~11のいずれかに記載の方法。
    Figure JPOXMLDOC01-appb-T000001
    The method according to any one of claims 1 to 11, wherein the predetermined sequence of the detection probe is selected from a base sequence represented by a sequence number shown in the following table and a complementary sequence thereof.
    Figure JPOXMLDOC01-appb-T000001
  13.  5’側から第1の任意の塩基配列と増幅しようとする核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の識別配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有するオリゴヌクレオチド誘導体を含む、核酸増幅法に用いる核酸増幅剤。 A first arbitrary base sequence from the 5 ′ side and a first identification sequence for identifying the first base sequence in the nucleic acid to be amplified, the first arbitrary base sequence and the first identification A nucleic acid amplification agent for use in a nucleic acid amplification method, comprising an oligonucleotide derivative having a linking site capable of suppressing or stopping a DNA polymerase reaction between sequences.
  14.  前記第1の塩基配列には、標識が結合されている、請求項13に記載の核酸増幅剤。 The nucleic acid amplification agent according to claim 13, wherein a label is bound to the first base sequence.
  15.  請求項13又は14に記載の核酸増幅剤を2種以上含む、核酸増幅キット。 A nucleic acid amplification kit comprising two or more nucleic acid amplification agents according to claim 13 or 14.
  16.  少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有し、前記一本鎖部分が、プローブ中の塩基配列を識別する識別配列を有する、DNA二重鎖断片を含む、プローブハイブリダイゼーション用組成物。 A DNA double-stranded fragment having a single-stranded portion on the 5 ′ side of at least one strand and having a double-stranded portion by base pairing, wherein at least one DNA strand comprises the single-stranded portion and the A DNA double-stranded fragment having a ligation site capable of suppressing or stopping the DNA polymerase reaction between the double-stranded binding moiety and the single-stranded moiety having an identification sequence for identifying the base sequence in the probe; A composition for probe hybridization, comprising:
  17.  他方の鎖の5’側にも一本鎖部分を有し、この一本鎖部分に標識が連結されている、請求項16に記載のプローブハイブリダイゼーション用組成物。 The composition for probe hybridization according to claim 16, further comprising a single-stranded portion on the 5 'side of the other strand, and a label linked to the single-stranded portion.
  18.  少なくとも一方の鎖の5’側に一本鎖部分を有し、塩基対合による二重鎖部分を有するDNA二重鎖断片であって、少なくとも一方のDNA鎖は、前記一本鎖部分と前記二重鎖結合部分との間にDNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する、DNA二重鎖断片。 A DNA double-stranded fragment having a single-stranded portion on the 5 ′ side of at least one strand and having a double-stranded portion by base pairing, wherein at least one DNA strand comprises the single-stranded portion and the A DNA double-stranded fragment having a linking site capable of suppressing or stopping a DNA polymerase reaction between the double-stranded binding moiety.
  19.  試料中の標的核酸を増幅する方法であって、
     第1の任意の塩基配列と前記標的核酸中の第1の塩基配列を識別する第1の識別配列とを含み、前記第1の任意の塩基配列と前記第1の認識配列との間に、DNAポリメラーゼ反応を抑制又は停止可能な連結部位を有する第1のプライマーを少なくとも用いて、前記試料の核酸増幅を実施する工程を、
    備える、方法。
     
    A method for amplifying a target nucleic acid in a sample, comprising:
    Including a first arbitrary base sequence and a first identification sequence for identifying the first base sequence in the target nucleic acid, between the first arbitrary base sequence and the first recognition sequence, Performing nucleic acid amplification of the sample using at least a first primer having a linking site capable of suppressing or terminating the DNA polymerase reaction,
    A method of providing.
PCT/JP2011/071048 2011-09-14 2011-09-14 Method for detecting target nucleic acid WO2013038534A1 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
PCT/JP2011/071048 WO2013038534A1 (en) 2011-09-14 2011-09-14 Method for detecting target nucleic acid
JP2013533406A JP5932808B2 (en) 2011-09-14 2011-09-14 Target nucleic acid detection method
JP2012173361A JP2013059320A (en) 2011-09-14 2012-08-03 Method for detecting target nucleic acid
JP2012173333A JP6182300B2 (en) 2011-09-14 2012-08-03 Target nucleic acid detection method
JP2012175283A JP6001374B2 (en) 2011-09-14 2012-08-07 Target nucleic acid detection method and kit used therefor
MYPI2014000740A MY157586A (en) 2011-09-14 2012-09-14 Method for detecting target nucleic acid
JP2012549585A JP5503021B2 (en) 2011-09-14 2012-09-14 Target nucleic acid detection method
PCT/JP2012/073710 WO2013039228A1 (en) 2011-09-14 2012-09-14 Method for detecting target nucleic acid
ES12832061T ES2736977T3 (en) 2011-09-14 2012-09-14 Method to detect target nucleic acid
EP12832061.1A EP2762562B1 (en) 2011-09-14 2012-09-14 Method for detecting target nucleic acid
SG11201400635UA SG11201400635UA (en) 2011-09-14 2012-09-14 Method for detecting target nucleic acid
CN201280045065.7A CN103797119B (en) 2011-09-14 2012-09-14 The detection method of target nucleic acid
JP2014023882A JP6076273B2 (en) 2011-09-14 2014-02-10 Target nucleic acid detection method
US14/208,070 US20140206567A1 (en) 2011-09-14 2014-03-13 Method for Detecting Target Nucleic Acid
US15/820,798 US20180119211A1 (en) 2011-09-14 2017-11-22 Method for Detecting Target Nucleic Acid
JP2018073278A JP2018143245A (en) 2011-09-14 2018-04-05 Method for detecting target nucleic acid
JP2021051302A JP2021100429A (en) 2011-09-14 2021-03-25 Method for detecting target nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071048 WO2013038534A1 (en) 2011-09-14 2011-09-14 Method for detecting target nucleic acid

Publications (1)

Publication Number Publication Date
WO2013038534A1 true WO2013038534A1 (en) 2013-03-21

Family

ID=47882793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071048 WO2013038534A1 (en) 2011-09-14 2011-09-14 Method for detecting target nucleic acid

Country Status (2)

Country Link
JP (4) JP5932808B2 (en)
WO (1) WO2013038534A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162026A1 (en) * 2012-04-27 2013-10-31 株式会社カネカ Method for amplifying nucleic acid and method for detecting amplified nucleic acid
WO2015076356A1 (en) * 2013-11-22 2015-05-28 株式会社カネカ Short-chain rna detection method
JP5967785B2 (en) * 2013-07-24 2016-08-10 日本碍子株式会社 Target nucleic acid detection method
WO2018038232A1 (en) * 2016-08-24 2018-03-01 国立大学法人東北大学 Method for producing amplification product of target nucleic acid, and use of said method
US9920356B2 (en) 2010-11-24 2018-03-20 Kaneka Corporation Amplified nucleic acid detection method and detection device
FR3102240A1 (en) 2019-10-18 2021-04-23 Safran Electronics & Defense Sensor with mechanical compensation for frequency anisotropy
WO2021132596A1 (en) * 2019-12-27 2021-07-01 株式会社カネカ Primer set and method for detecting target nucleic acid using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387606B2 (en) * 2013-11-27 2018-09-12 東ソー株式会社 Nucleic acid detection method
US20170260568A1 (en) * 2014-12-15 2017-09-14 Fondazione Istituto Italiano Di Tecnologia Method For The Colorimetric Detection Of The Amplification Of A Target Nucleic Acid Sequence
JP6977978B2 (en) * 2016-01-28 2021-12-08 株式会社Tba Method for detecting target nucleic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008728A1 (en) * 1990-11-08 1992-05-29 Hybridon, Inc. Incorporation of multiple reporter groups on synthetic oligonucleotides
WO1997024455A2 (en) * 1996-01-03 1997-07-10 Clontech Laboratories, Inc. METHODS AND COMPOSITIONS FOR FULL-LENGTH cDNA CLONING
WO2003050305A1 (en) * 2001-12-08 2003-06-19 Seegene, Inc. Annealing control primer and its uses
WO2004039825A2 (en) * 2002-10-30 2004-05-13 Nuevolution A/S Method for the synthesis of a bifunctional complex

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8920097D0 (en) * 1989-09-06 1989-10-18 Ici Plc Amplification processes
JP2004187607A (en) * 2002-12-12 2004-07-08 Olympus Corp Method for obtaining information concerning nucleic acid amplification product
US8883487B2 (en) * 2004-12-23 2014-11-11 Abbott Point Of Care Inc. Molecular diagnostics system and methods
WO2006095550A1 (en) * 2005-03-04 2006-09-14 Kyoto University Pcr primer, pcr method utilizing the same, and pcr amplified product, and device and dna-protein complex utilizing pcr amplified product
CN103215248B (en) * 2005-10-03 2016-05-18 应用生物系统有限责任公司 For composition, method and the kit of amplification of nucleic acid
JP2013512691A (en) * 2009-12-07 2013-04-18 プログノシス バイオサイエンシズ インコーポレイテッド Peptide presentation array
CN103228785B (en) * 2010-11-24 2016-09-07 株式会社钟化 The detection method of amplification of nucleic acid and detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008728A1 (en) * 1990-11-08 1992-05-29 Hybridon, Inc. Incorporation of multiple reporter groups on synthetic oligonucleotides
WO1997024455A2 (en) * 1996-01-03 1997-07-10 Clontech Laboratories, Inc. METHODS AND COMPOSITIONS FOR FULL-LENGTH cDNA CLONING
WO2003050305A1 (en) * 2001-12-08 2003-06-19 Seegene, Inc. Annealing control primer and its uses
WO2004039825A2 (en) * 2002-10-30 2004-05-13 Nuevolution A/S Method for the synthesis of a bifunctional complex

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920356B2 (en) 2010-11-24 2018-03-20 Kaneka Corporation Amplified nucleic acid detection method and detection device
US10829805B2 (en) 2010-11-24 2020-11-10 Kaneka Corporation Amplified nucleic acid detection method and detection device
WO2013162026A1 (en) * 2012-04-27 2013-10-31 株式会社カネカ Method for amplifying nucleic acid and method for detecting amplified nucleic acid
US9783844B2 (en) 2012-04-27 2017-10-10 Kaneka Corporation Method for amplifying nucleic acid and method for detecting amplified nucleic acid
JP2018038406A (en) * 2012-04-27 2018-03-15 株式会社カネカ Method of amplifying nucleic acid and method of detecting amplified nucleic acid
JP5967785B2 (en) * 2013-07-24 2016-08-10 日本碍子株式会社 Target nucleic acid detection method
WO2015076356A1 (en) * 2013-11-22 2015-05-28 株式会社カネカ Short-chain rna detection method
US10392652B2 (en) 2013-11-22 2019-08-27 Kaneka Corporation Micro RNA detection method using two primers to produce an amplified double stranded DNA fragment having a single stranded region at one end
WO2018038232A1 (en) * 2016-08-24 2018-03-01 国立大学法人東北大学 Method for producing amplification product of target nucleic acid, and use of said method
FR3102240A1 (en) 2019-10-18 2021-04-23 Safran Electronics & Defense Sensor with mechanical compensation for frequency anisotropy
CN114599935A (en) * 2019-10-18 2022-06-07 赛峰电子与防务公司 Sensor with mechanical compensation for frequency anisotropy
WO2021132596A1 (en) * 2019-12-27 2021-07-01 株式会社カネカ Primer set and method for detecting target nucleic acid using same

Also Published As

Publication number Publication date
JP6182300B2 (en) 2017-08-16
JP5932808B2 (en) 2016-06-08
JP2013059321A (en) 2013-04-04
JP2013059320A (en) 2013-04-04
JPWO2013038534A1 (en) 2015-03-23
JP2013059319A (en) 2013-04-04
JP6001374B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5932808B2 (en) Target nucleic acid detection method
AU2017203349B2 (en) Compositions of toehold primer duplexes and methods of use
JP6076273B2 (en) Target nucleic acid detection method
JP5663491B2 (en) Target nucleic acid detection method
JP5735213B2 (en) Preparation method of nucleic acid molecule
EP3055430B1 (en) Method for the detection of target nucleic acid sequences
JP6196611B2 (en) Target nucleic acid detection method
JP6321318B2 (en) Target nucleic acid detection method
JP5613160B2 (en) Method for detecting or analyzing a target sequence in genomic DNA
JP5165936B2 (en) Method and array for detecting mutations in target nucleic acid
JP6202455B2 (en) Target nucleic acid detection method
JP2007075052A (en) Method for detecting nucleic acid with single fluorescent labeled oligonucleotide
KR20100082214A (en) Method for analyzing target nucleic acid sequence and kit for same
JP2010172323A (en) Method for detecting single nucleotide polymorphism
Kamau-Gatogo Development of RNA microchip for pathogen and cancer direct detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872283

Country of ref document: EP

Kind code of ref document: A1