WO2013035941A1 - Method for determining a pdsch start symbol of an ec between heterogeneous networks, and mobile communication system therefor - Google Patents

Method for determining a pdsch start symbol of an ec between heterogeneous networks, and mobile communication system therefor Download PDF

Info

Publication number
WO2013035941A1
WO2013035941A1 PCT/KR2011/010060 KR2011010060W WO2013035941A1 WO 2013035941 A1 WO2013035941 A1 WO 2013035941A1 KR 2011010060 W KR2011010060 W KR 2011010060W WO 2013035941 A1 WO2013035941 A1 WO 2013035941A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
start symbol
pdsch
bccc
pdsch start
Prior art date
Application number
PCT/KR2011/010060
Other languages
French (fr)
Korean (ko)
Inventor
김상하
박병성
장일두
이희봉
Original Assignee
엘지에릭슨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110140246A external-priority patent/KR20130026361A/en
Application filed by 엘지에릭슨 주식회사 filed Critical 엘지에릭슨 주식회사
Publication of WO2013035941A1 publication Critical patent/WO2013035941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a mobile communication system, and more particularly, to a method for determining a location of a physical downlink shared channel (PDSCH) start symbol of an extension carrier (EC) in a heterogeneous network (HetNet) environment.
  • PDSCH physical downlink shared channel
  • EC extension carrier
  • HetNet heterogeneous network
  • a method of providing a mobile communication service by installing a micro base station indoors to access a mobile communication core network through an indoor broadband network is proposed. It is becoming.
  • a method of deploying multiple small cells (femtocells) has been proposed as an alternative to meet the demand for high data rates and to provide a variety of services.
  • the micro base station that manages such a small cell is called a pico base station, indoor base station or femto base station, and 3GPP as Home-eNB and HeNB.
  • the present invention can improve the channel deterioration problem due to the attenuation of radio waves, which is caused when a single base station covers the entire cell area, and the inability to service shadow users. Has this advantage.
  • the mobile communication system has a cell structure for efficient system configuration.
  • a cell is a subdivision of a large area into smaller areas in order to use frequency efficiently.
  • Multiple access systems generally include multiple cells.
  • the base station is installed in the cell to relay the terminal.
  • HetNet is a method of using a plurality of base stations overlapping areas of different sizes instead of a single cell processing method. For example, small cells such as pico, femto cells, and relays are additionally installed in the macro cell area, thereby distributing networks in high-traffic areas from macro cells. By doing so, you can increase capacity and speed up data processing, increasing the overall efficiency of your network.
  • the Extension Carrier which is scheduled to be introduced in the 3GPP Release (hereinafter referred to as 'REL') 11, includes a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), a Physical Control Format Indicator Channel (PCFICH), and a Common Reference Signal (CRS). (BCS) because it does not transmit control signals and channels, such as PSS (Primary Synchronization Signal), Secondary Synchronization Signal (SSS), Physical Broadcast Channe (PBCH), System Information Block (SIB), Paging, etc.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channe
  • SIB System Information Block
  • SCCC Serving Component Carrier Set
  • SCC Backward Compatible Component Carrier
  • control signals and channels will be sensitive to interference, so ECs that do not transmit control signals and channels provide the advantage of not having to manage interference for these control signals and channels.
  • CA Carrier Aggregation
  • NC Normal Carrier
  • RRM Radio Resource Management
  • CCS Cross Carrier Scheduling
  • EICIC Enhanced Inter-Cell Interference Control
  • CC Component Carrier 1
  • CC2 which remains in CC 1
  • CC1 which is additionally persisted to CC2 as EC
  • the start symbol of the EC in one network should be determined in consideration of the PDSCH start symbol of the BCCC of the same frequency in the other network.
  • the current HetNet environment does not define the location of the PDSCH start symbol of the EC.
  • An object of the present invention is to provide a method for determining the position of the PDSCH start symbol of the EC in the HetNet environment and a mobile communication system therefor.
  • a method of determining a location for a PDSCH start symbol of an EC in a HetNet environment and a mobile communication system therefor are disclosed.
  • a physical downlink shared channel (PDSCH) start symbol of an EC Extension Carrier
  • another network (NC) Normal Carrier
  • BCCC Backward Compatible
  • PDSCH physical downlink shared channel
  • SC Normal Carrier
  • BCCC Backward Compatible
  • the present invention by determining the position of the PDSCH start symbol of the EC in the HetNet environment in consideration of the PDSCH start symbol of the BCCC of another network, there is an advantage that can increase the frequency use efficiency and reduce the interference to the PDCCH.
  • FIG. 1 illustrates an example of the use of EC in a HetNet environment.
  • FIG. 2 illustrates a configuration of an exemplary mobile communication network in which the present invention may be implemented.
  • 3 shows the relationship between PDSCH start symbols in a HetNet environment.
  • Fig. 5 shows a table specifying a range of CFI values of PCFICH.
  • FIG. 6 is a diagram illustrating a method of exchanging PDSCH start symbols using X2 and S1 interfaces in a HetNet environment according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a REL 11 X2-AP Load Information message for exchanging an NC PDSCH start symbol according to an embodiment of the present invention.
  • FIG. 8 illustrates a REL11 S1-AP eNB / MME X2-AP Transfer message for exchanging NC PDSCH start symbols according to an embodiment of the present invention.
  • 9 is a view showing a comparison result for the scheme for NC PDSCH start symbol exchange.
  • FIG. 2 is a diagram illustrating a configuration of an exemplary mobile communication network in which the present invention can be implemented.
  • the mobile communication network includes, for example, Global System for Mobile communication (GSM), 2G wireless communication network such as CDMA, LTE network, wireless Internet such as WiFi, Wireless Broadband Internet (WiBro) and World Interoperability for Microwave Access.
  • Mobile communication networks e.g., 3G mobile networks such as WCDMA or CDMA2000, 3.5G mobile networks such as High Speed Downlink Packet Access (HSDPA) or High Speed Uplink Packet Access (HSUPA)) 4G mobile network currently in service, etc.
  • macro base station macro eNB
  • micro base station Pico eNB, HeNB (Home-eNB)
  • UE UE
  • e-UTRAN evolved universal terrestrial radio access network
  • the mobile communication network may be composed of one or more network cells, and includes a HetNet environment in which different types of network cells may be mixed in the mobile communication network.
  • a mobile network is a very small base station (Pico eNB, HeNB, relay, etc.) (11-15, 21-23, 31-33) that manages a small number of network cells (eg, picocells, femtocells, etc.), and a wide range.
  • S-GW Serving Gateway
  • P-GW PDN Gateway
  • the macro base stations 10, 20, and 30 may be used in, for example, LTE, WiFi, WiBro, WiMax, WCDMA, CDMA, UMTS, GSM networks, for example, cells having a radius of about 1 km. It may include a feature of the macro cell base station for managing, but is not limited thereto.
  • the small base stations 11-15, 21-23, 31-33 can be used, for example, in LTE networks, WiFi networks, WiBro networks, WiMax networks, WCDMA networks, CDMA networks, UMTS networks, GSM networks, and the like. It may include, but is not limited to, features of a pico base station, an indoor base station or a femto base station, a relay that manages a cell having a radius of about m to several tens of meters.
  • the micro base stations 11 to 15, 21 to 23, 31 to 33 and the macro base stations 10, 20 and 30 may each independently have connectivity of the core network.
  • the UE 40 is used in 2G wireless communication networks such as GSM networks, CDMA networks, wireless Internet networks such as LTE networks, WiFi networks, mobile Internet networks such as WiBro networks and WiMax networks, or mobile communication networks supporting packet transmission. It may include features of the mobile terminal, but is not limited thereto.
  • the management server (O & M server) 70 which is a network management device of the micro base station, is responsible for the configuration information and management of the micro base stations 11 to 15, 21 to 23, 31 to 33 and the macro base stations 10, 20 and 30. .
  • the management server 70 may perform both functions of the SON server 50 and the MME 60.
  • the SON server 50 may include any server that functions to perform macro / miniature base station installation and optimization and to provide basic parameters or data required for each base station.
  • the MME 60 may include any entity used to manage mobility of the terminal 40 and the like.
  • each MME (61, 62) performs the function of a base station controller (BSC), resource allocation, call control, handover control, voice and packet processing for the base station (pico eNB, HeNB, macro eNB, etc.) connected to it And the like.
  • BSC base station controller
  • one management server 70 may perform the functions of both the SON server 50 and the MME 60, and the SON server 50 and the MME 60 may be one or more macro base stations 10. 20, 30 and one or more micro base stations 11 to 15, 21 to 23, 31 to 33 may be managed.
  • the network cell may be configured only by the macro cell, the pico cell, and the macro cell-femto cell.
  • connection mode In operation, access to the macro base stations 10, 20, and 30 is normally allowed to all terminals, but access to the micro base stations 11 to 15, 21 to 23, 31 to 33 is restricted to specific terminals (subscribers). There is an operation function that can be done. This is called a connection mode or an operation mode, and the connection modes of the small base stations 11 to 15, 21 to 23, 31 to 33 are classified according to which terminal provides a service. That is, it is divided into a closed connection mode, an open connection mode, and a hybrid connection mode. Closed access mode (closed access mode or CSG closed mode) allows access only to specific subscribers, and open access mode (open access mode or CSG open mode) is a mode that can be accessed by any subscriber without access permission conditions. Hybrid) is a compromise.
  • the micro base stations 11 to 15, 21 to 23, 31 to 33 may broadcast system information block type 1 (SIB 1), which is system information, in a femtocell area managed by the base station (11 to 15, 21 to 23, 31 to 33).
  • SIB 1 is a message that a base station (HeNB, macro eNB) broadcasts information about its cell to all the terminals 40.
  • the cell global identity (CGI) (the only cell delimiter in the network) and the CSG indication (miniature base station) It is a factor indicating that the (), CSG ID (ID for the CSG) and the like.
  • the LTE network is interworked with an inter-RAT network (WiFi network, WiBro network, WiMax network, WCDMA network, CDMA network, UMTS network, GSM network, etc.).
  • an inter-RAT network WiFi network, WiBro network, WiMax network, WCDMA network, CDMA network, UMTS network, GSM network, etc.
  • WiBro network WiMax network
  • WCDMA network CDMA network
  • UMTS network UMTS network
  • GSM network etc.
  • one network for example, LTE network
  • another network WiFi network, WiBro network, WiMax network, WCDMA network, CDMA network, UMTS network, GSM network, etc.
  • E-UTRAN composed of base station devices of LTE It has an IP-based flat structure and processes data traffic between the terminal 40 and the core network.
  • the MME 60 is responsible for controlling the signals between them.
  • the MME 60 is responsible for signal control between the base station apparatus and the S-GW (Serving Gateway) 80, and determines where to route the incoming data from the terminal 40.
  • S-GW Serving Gateway
  • S-GW (80) is responsible for the anchor (anchoring) function for the movement of the terminal between the base station and the base station, the 3GPP network and the E-UTRAN, P-GW (PDN (Packet Data Network) Gateway (90) Connect to IP network through
  • the MME 60 / S-GW 80 which is the core network equipment, manages a plurality of base station apparatuses, and each base station apparatus includes a plurality of cells.
  • the C-plane / U-plane is controlled between the base station apparatus and the MME 60 / S-GW 80 through the S1 interface, and uses the X2 interface for the handover and the SON function between the base station apparatuses.
  • the setup of the network interface is made by setting the S1 interface connecting with the MME 60 in the center of the system and the X2 interface, which is a network line for direct communication with the base station apparatus of other cells currently present in the system.
  • the S1 interface exchanges signals with the MME 60 to support movement of the UE 40.
  • the X2 interface exchanges signals for fast handover, load indicator information, and information for self-optimization between base station devices.
  • PCFICH Physical Control Format Indicator Channel
  • the number of PDCCH symbols for each CC is determined. That is, the location of the PDSCH start symbol is semi-statistically determined based on an independent decision by the corresponding eNB scheduler, and thus a radio resource control (RRC) reconfiguration message, which is a dedicated message, to the UE 40 using the CC as a non-PDCCH serving cell. Is directed through.
  • RRC radio resource control
  • the PDSCH start symbol of a specific frequency CC used as an EC in a layer (macro cell or small cell) in a HetNet environment is affected by the number of PDCCH symbols using the same frequency as another NC.
  • 3 is a diagram illustrating a relationship between PDSCH start symbols in a HetNet environment.
  • (case 1) is a case where the same PDSCH start symbol as the BCCC of its layer is applied to the EC without considering the PDSCH start symbol of the BCCC of another layer in the HetNet environment.
  • the start symbol of FA1, BCCC in the macro cell is smaller than the start symbol of FA1, EC in the small cell, the PDSCH symbol of the small cell EC will be wasted, whereas the small cell If the start symbol of FA2, which is BCCC at, is larger than FA2, which is EC at macrocell, interference with the last symbol of PDCCH in BCCC FA2 will occur in the small cell.
  • (Case 2 to 4) is a case where the PDSCH start symbol of the EC is determined while considering the PDSCH start symbol of BCCC of another layer in the HetNet environment.
  • (case 2) will not cause serious errors such as PDCCH decoding error (decoding error).
  • (case 4) is the case in which the same PDSCH start symbol is set for all CCs in a HetNet environment, in which case PDCCH resource waste may be caused.
  • the PDSCH start symbol of the EC in one network should be determined in consideration of the PDSCH start symbol of the BCCC of the same frequency in the other network.
  • REL 10 uses ABS for eICIC on the time side, and uses X2 interface for ABS (Almost Blank Sub-frame) pattern exchange between eNBs.
  • the ABS pattern is determined by the operator through measurement of various environments such as UE activity, user average transmission speed, handover delay, antenna shape, and UE measurement performance in the cell.
  • the PDSCH start symbol of the EC is influenced by the PDSCH start symbol of the NC of the same frequency of another network, and the NC PDSCH is dynamically determined by the eNB scheduler, so that it is not determined and set by an operator and is not determined by an operator. It is changed by UE activity per NC controlled by. Therefore, there is a slight difference between the ABS pattern and the PDSCH start symbol of the EC.
  • the ABS pattern and the PDSCH start symbol of the EC are semi-statistically changed by the eNB scheduler like the PDSCH start symbol of the NC SCell (Secondary Serving Cell) in REL 10 CA, the update cycle to the new value is ABS.
  • the pattern information may take a shorter period than the PDSCH start symbol of the EC.
  • the ABS pattern information of any femtocell is determined by the operator to the femto ABS pattern and directed to other femtocells and the corresponding macrocell through the management server 70.
  • the ABS pattern information of the macrocell will be first transmitted to the macrocell through the management server 70 by the operator to determine the macro ABS pattern, and the macrocell is transmitted to the picocell using the X2 interface. You will be notified of your ABS pattern.
  • the PDSCH start symbols of the EC are interchanged in the same manner as the ABS pattern, it can be divided into a method of exchange by the management server 70 through the operator's intervention and a method without the operator's intervention as follows.
  • the exchange method by the management server 70 through the intervention of the operator corresponds to Scheme 2 of FIG. 9, in which the operator has a specific carrier-specific UE activity in order for the operator to take over the role of all eNB schedulers configuring the HetNet.
  • PDSCH start symbol synchronization between the multiple eNBs in the PDSCH start symbol of the NC that can be changed in units of Transmission Time Interval (TTI) It won't be easy.
  • TTI Transmission Time Interval
  • the method without the operator's intervention can be classified into two types as follows.
  • Scheme 1 of Figure 9 corresponds to this.
  • This method determines the PDSCH start symbol with the maximum number of PDCCH symbols + 1 according to the bandwidth and configuration information of the carrier based on a table specifying the range of the CFI value of the PCFICH shown in FIG. 5, and waste of resources may exist. However, no exchange between networks is required.
  • FIG. 6 shows a scheme for exchanging NC PDSCH start symbols using X2 and S1 interfaces under different types of HetNet environments.
  • IEs for indicating the PDSCH start symbol of the NC and the frequency of the NC and the application time of the new start symbol will be required, which is a message for the ICIC of the REL10 X2-AP. It would be most effective to add the corresponding Information Elements (IE) to the Load Information message.
  • the Load Information message will indicate the position of PDSCH start symbol of its BCCC between macro-pico through X2-AP, which is commonly applied to schemes 2 and 3 of FIG.
  • the lower IEs 7a are new IEs for the corresponding procedure, and a new value "PDSCH Start information" is added to a predefined Invoke Indication.
  • the eNB that receives the message exchanges the PDSCH start information for the NC to the eNB that sent the message when the Invoke Indication value is "PDSCH Start information".
  • the frequency band of downlink NC corresponding to a maximum of 5 cells is indicated by EAFCN IE.
  • the PDSCH of the EC is transmitted to the UE using EC through an RRC-only message. Indicating the start symbol, the BCCC NC recognizes the PDSCH start symbol directly through the PCFICH channel.
  • a change is required in S1-AP for exchanging corresponding information between macro-femto.
  • it can be divided into "6a” and "6b".
  • "6b” indicates a REL 11 X2-AP Load Information message (see FIG. 7) defined for information exchange between macro-pico (see REL11 S1-AP eNB / of FIG. 8).
  • MME X2-AP Transfer message is included in the form of a container and exchanged. This method does not require any change in the S1-AP procedure defined in REL 10, and can be used for exchanging ABS pattern information between macro-femto. Therefore, the present invention proposes "6b", and for this purpose, a new eNB / MME X2-AP Transfer message (REL 11 X2-AP Load Information message of FIG. 7), which is a REL 11 S1-AP message for NC PDSCH start symbol exchange, is newly proposed. It defines and specifies the detailed procedures for the procedure.
  • the REL 11 X2-AP Load Information message of FIG. 7 is included in the X2-AP container of the new S1-AP message (REL11 S1-AP eNB / MME X2-AP Transfer message) of FIG. 8 and transmitted by the MME 60. It is transparently delivered to the target eNB through the target eNB-ID set by.
  • the receiving eNB uses the information contained in the X2-AP Load Information message of the transmitting eNB, generates a X2-AP Load Information message indicating its NC PDSCH start symbol in response, and determines the source eNB determined by the transmitting eNB.
  • -ID is determined as the target eNB-ID and transmitted to the MME 60.
  • the MME 60 transparently delivers the X2-AP container to the target eNB through the target eNB-ID set by the transmitting eNB. This exchanges information about the PDSCH start symbol between eNBs.
  • the REL11 S1-AP eNB / MME X2-AP Transfer message may be used for ABS pattern information exchange in eICIC between macro-femto in terms of time.
  • FIG. 9 is a comparison chart for the three schemes. As shown in FIG. 9, in the case of scheme 2, the UE activity monitoring is required for each operator's career, and in the case of scheme 3, the operator's intervention is not required, but like scheme 2, 100% cannot be supported for resource wasting and PDCCH decoding error. The reason is that it is difficult to determine the dynamic PDSCH start symbol by UE activity for 256ms due to the same activation synchronization between heterogeneous networks and delay period of SFms maximum length of 256ms in X2-AP, S1-AP, O & M message exchange.
  • each network applies a dedicated signal to the UE 40 using the EC in each network to apply the position of the new PDSCH start symbol of the EC to the next SFN 0 according to the PDSCH start symbol received from the other network.
  • a dedicated signal to the UE 40 using the EC in each network to apply the position of the new PDSCH start symbol of the EC to the next SFN 0 according to the PDSCH start symbol received from the other network.
  • all UEs 40 since it is not possible to guarantee that all UEs 40 always activate the new value at the same time in SFN 0, they may not be able to 100% avoid resource waste and PDCCH decoding error per individual UE.
  • the EC has already included IE such as CrossCarrierSchedulingConfig-r10 IE in the message in consideration of the introduction of EC when defining the RRC, MAC, and PHY messages in the REL10 CA.
  • the CrossCarrierSchedulingConfig-r10 IE defined to indicate the PDSCH start symbol of the NC non-scheduling SCell in the REL 10 RRC Reconfiguration message defined in FIG. 11.
  • Figures 12 and 13 show a signal scheme for instructing the PDSCH start symbol of the EC to the UE in the HetNet environment consisting of two carriers of 10MHz (PRB number 50) and 1.4Mhz (PRB number 6), respectively .
  • PRB number 50 10MHz
  • PRB number 6 1.4Mhz
  • PDSCH start symbols on the first two carriers are "3" and "4" by the eNB scheduler, and when the position of the PDSCH start symbol is required due to the increase of the UE activity of the macro cell, macro
  • the HetNet environment (11a) of the -pico environment proposes a new PDSCH start symbol for its NC through an X2-AP message
  • the received picocell may also signal the position of its PDSCH start symbol based on UE activity.
  • each network sends a dedicated signal to the UE 40 using the EC in each network at an appropriate time to apply the position of the new PDSCH start symbol of the EC to the next SFN 0 according to the PDSCH start symbol received from the other network.
  • the UE 40 using the EC will always indicate the value of the PDSCH start symbol of the same EC through a dedicated signal, which is the maximum number of PDCCH symbols + 1 of the corresponding carrier, and thus FIG. 12.
  • a dedicated signal which is the maximum number of PDCCH symbols + 1 of the corresponding carrier, and thus FIG. 12.
  • the bands X and Y in the macro cell and the small cell will always be fixedly signaled through the L1 channel and the RRC dedicated channel with PDSCH start symbols of " 3 " and " 4 "
  • PCFICH always indicates the maximum number of PDCCH symbols of a corresponding carrier.
  • Scheme 1 which always signals the maximum number of PDCCH symbols + 1 of the corresponding carrier to the UE 40 using the EC through an RRC dedicated message is preferred.
  • Scheme 3 we propose the message structure specified in Figs. 8 and 9 in X2-AP and S1-AP.
  • Computer-readable recording media include all kinds of recording devices that store data that can be read by a computer system. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like, which are also implemented in the form of carrier waves (for example, transmission over the Internet). Include.
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the above embodiments can be easily inferred by programmers in the art to which the present invention belongs.

Abstract

In a HetNet environment having mixed heterogeneous networks, the physical downlink shared channel (PDSCH) start symbol of an extension carrier (EC) is determined by one network in consideration of the start symbol of a normal carrier (NC) backward-compatible component carrier (BCCC) on the same frequency in a different network.

Description

이기종 망간에 EC의 PDSCH 시작심볼 결정 방법 및 그를 위한 이동통신 시스템Method for Determining ECS PD Start Signal of Heterogeneous Manganese and Mobile Communication System
본 발명은 이동통신 시스템에 관한 것으로, 특히 HetNet(Heterogeneous Network) 환경에서 EC(Extension Carrier)의 PDSCH(Physical downlink shared channel) 시작심볼에 대한 위치를 결정하는 방법에 관한 것이다. The present invention relates to a mobile communication system, and more particularly, to a method for determining a location of a physical downlink shared channel (PDSCH) start symbol of an extension carrier (EC) in a heterogeneous network (HetNet) environment.
"본 연구는 방송통신위원회의 차세대통신네트워크원천기술개발사업의 연구결과로 수행되었음"(KCA-2011-10913-04002) "This study was conducted as a result of the next generation communication network source technology development project of the Korea Communications Commission" (KCA-2011-10913-04002)
최근 가정 내에서 휴대전화 이용과 모바일 데이터의 수요가 지속적으로 증가하고 있는데, 이러한 추세에 따라 옥내 브로드밴드 망을 통해 이동통신 핵심망에 접속하도록 초소형 기지국을 옥내 등에 설치하여 이동통신 서비스를 제공하는 방법이 제안되고 있다. 특히 차세대 네트워크 시스템에서는 높은 데이터 전송률에 대한 요구를 충족시키고 다양한 서비스의 안정적인 제공을 위하여 그 대안으로서 여러 개의 소규모 셀(펨토셀)들을 배치하는 방법이 제시되고 있다. 이러한 소규모 셀을 관장하는 초소형 기지국을 피코(pico) 기지국, 옥내용 기지국 또는 펨토(femto) 기지국, 3GPP에서는 Home-eNB, HeNB 등으로 부른다. 이처럼 옥내 환경에서 서비스할 수 있을 정도로 셀의 크기를 줄임으로써 높은 주파수 대역을 사용하는 차세대 네트워크 시스템의 효율을 높일 수 있고 작은 크기의 셀을 여러 개 사용하는 것은 주파수 재사용 횟수를 늘릴 수 있는 측면에서 유리하다. 또한 기존에 하나의 기지국이 전체 셀 영역을 커버할 때 발생하였던 전파 감쇄로 인한 채널 상황 악화 문제, 음영지역 사용자에 대한 서비스 불능 문제 등을 개선시킬 수 있다는 점에서 작은 크기의 다중 셀들을 통한 서비스 방법이 장점을 갖는다. Recently, the use of mobile phones and mobile data in homes is continuously increasing, and according to this trend, a method of providing a mobile communication service by installing a micro base station indoors to access a mobile communication core network through an indoor broadband network is proposed. It is becoming. In particular, in the next generation network system, a method of deploying multiple small cells (femtocells) has been proposed as an alternative to meet the demand for high data rates and to provide a variety of services. The micro base station that manages such a small cell is called a pico base station, indoor base station or femto base station, and 3GPP as Home-eNB and HeNB. By reducing the size of the cell to service the indoor environment, the efficiency of the next-generation network system using the high frequency band can be improved, and the use of multiple small cells can increase the frequency reuse frequency. Do. In addition, the present invention can improve the channel deterioration problem due to the attenuation of radio waves, which is caused when a single base station covers the entire cell area, and the inability to service shadow users. Has this advantage.
이처럼 이동통신 시스템은 효율적인 시스템 구성을 위해 셀(cell) 구조를 갖는다. 셀이란 주파수를 효율적으로 이용하기 위하여 넓은 지역을 작은 구역으로 세분한 구역을 의미한다. 다중 접속 시스템(multiple access system)은 일반적으로 다중 셀을 포함한다. 일반적으로 셀 내에는 기지국을 설치하여 단말을 중계한다.As such, the mobile communication system has a cell structure for efficient system configuration. A cell is a subdivision of a large area into smaller areas in order to use frequency efficiently. Multiple access systems generally include multiple cells. In general, the base station is installed in the cell to relay the terminal.
HetNet는 하나의 기지국으로 한 셀을 처리하던 방식 대신 서로 다른 크기의 영역을 담당하는 복수 개의 기지국을 중첩하여 사용하는 방식이다. 예컨대 매크로셀(macro cell) 영역 내에 소형셀(small cell), 즉 피코(pico), 펨토(femto) 셀, 릴레이(relay) 등을 추가로 설치하여 통신량이 많은 지역의 네트워크를 매크로셀에서 분산시켜 처리함으로써, capacity를 증가시키고 데이터 처리 속도를 증가시켜 네트워크의 전체 효율을 높일 수 있다. HetNet is a method of using a plurality of base stations overlapping areas of different sizes instead of a single cell processing method. For example, small cells such as pico, femto cells, and relays are additionally installed in the macro cell area, thereby distributing networks in high-traffic areas from macro cells. By doing so, you can increase capacity and speed up data processing, increasing the overall efficiency of your network.
3GPP Release(이하 'REL'이라 함) 11에 도입 예정인 EC(Extension Carrier)는 PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid ARQ Indicator Channel), PCFICH(Physical Control Format Indicator Channel, CRS(Common Reference Signal), PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal), PBCH(Physical Broadcast Channe), SIB(System Information Block), 페이징(Paging) 등과 같은 제어신호 및 채널을 전송하지 않기 때문에 적어도 하나의 BCCC(Backward Compatible Component Carrier)가 포함된 SCCC(Serving Component Carrier Set) 내에서 해당 BCCC에 존속되어 존재해야 하며, 이동성(mobility)은 BCCC에 대한 측정(measurement)에 기반한다. 따라서 EC는 이런 제어신호에 대한 오버헤드를 최소화하면서 peak data rate와 셀 스펙트럼 효율성을 높여 주기 때문에 CA(Carrier Aggregation)시에 연관 BCCC와 함께 UE(User Equipment)의 initial cell camping이 가용치 않은 data only carrier로서 사용된다. The Extension Carrier (EC), which is scheduled to be introduced in the 3GPP Release (hereinafter referred to as 'REL') 11, includes a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), a Physical Control Format Indicator Channel (PCFICH), and a Common Reference Signal (CRS). (BCS) because it does not transmit control signals and channels, such as PSS (Primary Synchronization Signal), Secondary Synchronization Signal (SSS), Physical Broadcast Channe (PBCH), System Information Block (SIB), Paging, etc. In the Serving Component Carrier Set (SCCC) that includes the Backward Compatible Component Carrier (SCC), it must exist and exist in the BCCC, and mobility is based on the measurement of the BCCC. Dat where initial cell camping of UE (User Equipment) is not available with associated BCCC during CA (Carrier Aggregation) because it increases peak data rate and cell spectrum efficiency while minimizing overhead used as a only carrier.
특히 HetNet 환경에서 제어신호 및 채널은 간섭(interference)에 민감하게 될 것이기에 제어신호 및 채널을 전송하지 않는 EC는 이들 제어신호 및 채널들에 대해 간섭(interference)을 관리할 필요가 없는 이점을 제공하며, UE 측면에서 동일한 대역폭의 NC(Normal Carrier)를 통한 CA(Carrier Aggregation)에 비하여, RRM(Radio Resource Management) 측정을 허용치 않아 효율적인 UE 전력소모와 CCS(Cross Carrier Scheduling)의 사용으로 인한 주파수 측면에서의 eICIC(Enhanced Inter-Cell Interference Control) 기능을 제공한다. In the HetNet environment, control signals and channels will be sensitive to interference, so ECs that do not transmit control signals and channels provide the advantage of not having to manage interference for these control signals and channels. In comparison with CA (Carrier Aggregation) through the same bandwidth of NC (Normal Carrier) on the UE side, it does not allow RRM (Radio Resource Management) measurement, and in terms of frequency due to efficient UE power consumption and the use of Cross Carrier Scheduling (CCS) EICIC (Enhanced Inter-Cell Interference Control) is provided.
도1은 HetNet 환경에서 EC의 사용예를 도시한 도면이다. 예컨대, 2개의 캐리어로 HetNet을 운용하는 경우, 매크로셀(macro cell)에 CC(Component Carrier)1을 BCCC로 하면서 동시에 CC1에 존속된 CC2를 EC로 설정하여 제공하는 한편, 소형셀(small cell)에서는 매크로셀의 EC에 해당하는 CC2를 BCCC로 하면서 해당 CC2에 추가적으로 존속하는 CC1을 EC로 설정하여 운용함으로써, PDCCH에 대한 CCS(Cross Carrier Scheduling) 스킴을 통해 PDCCH의 간섭을 최소화하면서 CA를 제공한다. 1 is a diagram showing an example of the use of the EC in the HetNet environment. For example, in the case of operating HetNet with two carriers, CC (Component Carrier) 1 is set to BCCC in a macro cell, and CC2, which remains in CC 1, is set to EC and provided to a small cell. By setting CC2 corresponding to EC of macrocell as BCCC and setting CC1 which is additionally persisted to CC2 as EC, it provides CA while minimizing interference of PDCCH through CCS (Cross Carrier Scheduling) scheme for PDCCH. .
상기와 같은 HetNet 환경하에서 한 망에서의 EC의 시작심볼은 다른 망에서의 동일 주파수의 BCCC의 PDSCH 시작심볼을 고려하여 결정되어야 한다. 하지만 현재 HetNet 환경에서는 EC의 PDSCH 시작심볼에 대한 위치를 정의하고 있지 않다. In the above HetNet environment, the start symbol of the EC in one network should be determined in consideration of the PDSCH start symbol of the BCCC of the same frequency in the other network. However, the current HetNet environment does not define the location of the PDSCH start symbol of the EC.
본 발명의 목적은 HetNet 환경에서 EC의 PDSCH 시작심볼에 대한 위치를 결정하는 방법 및 그를 위한 이동통신 시스템을 제공하는 것이다. An object of the present invention is to provide a method for determining the position of the PDSCH start symbol of the EC in the HetNet environment and a mobile communication system therefor.
본 발명의 일 특징에 따르면, HetNet 환경에서 EC의 PDSCH 시작심볼에 대한 위치를 결정하는 방법 및 그를 위한 이동통신 시스템이 개시된다. 본 발명에 의하면, 이기종 망이 혼재된 HetNet 환경에서, 일 망은 EC(Extension Carrier)의 PDSCH(Physical downlink shared channel) 시작심볼 결정시에, 타 망에서 동일 주파수인 NC(Normal Carrier) BCCC(Backward Compatible Component Carrier)의 시작심볼을 고려하여 결정한다. 이때 일 망과 타 망은 동일한 또는 서로 다른 네트워크 인터페이스를 이용한다. According to an aspect of the present invention, a method of determining a location for a PDSCH start symbol of an EC in a HetNet environment and a mobile communication system therefor are disclosed. According to the present invention, in a HetNet environment in which heterogeneous networks are mixed, when one network determines a physical downlink shared channel (PDSCH) start symbol of an EC (Extension Carrier), another network (NC) (Normal Carrier) BCCC (Backward Compatible) is the same frequency in another network. Determine in consideration of start symbol of Component Carrier). In this case, one network and the other network use the same or different network interfaces.
본 발명에 의하면, HetNet 환경에서 EC의 PDSCH 시작심볼에 대한 위치를 다른 망의 BCCC의 PDSCH 시작심볼을 고려하여 결정함으로써, 주파수 사용 효율을 증대시키고 PDCCH에 대한 간섭을 감소시킬 수 있는 이점이 있다. According to the present invention, by determining the position of the PDSCH start symbol of the EC in the HetNet environment in consideration of the PDSCH start symbol of the BCCC of another network, there is an advantage that can increase the frequency use efficiency and reduce the interference to the PDCCH.
도1은 HetNet 환경하에서 EC의 사용예를 도시한 도면. 1 illustrates an example of the use of EC in a HetNet environment.
도2는 본 발명이 실시될 수 있는 예시적인 이동통신망의 구성을 도시한 도면.2 illustrates a configuration of an exemplary mobile communication network in which the present invention may be implemented.
도3은 HetNet 환경하에서 PDSCH 시작심볼의 관계를 보여주는 도면. 3 shows the relationship between PDSCH start symbols in a HetNet environment.
도4는 HetNet 환경하에서 기지국 간의 인터페이스를 정의한 도면. 4 defines an interface between base stations in a HetNet environment.
도5는 PCFICH의 CFI 값의 범위를 명시하는 테이블을 도시한 도면. Fig. 5 shows a table specifying a range of CFI values of PCFICH.
도6은 본 발명의 실시예에 따라 HetNet 환경하에서 X2, S1 인터페이스를 이용하여 PDSCH 시작심볼을 교환하는 방식을 도시한 도면. 6 is a diagram illustrating a method of exchanging PDSCH start symbols using X2 and S1 interfaces in a HetNet environment according to an embodiment of the present invention.
도7은 본 발명의 실시예에 따라 NC PDSCH 시작심볼 교환을 위한 REL 11 X2-AP Load Information 메시지를 보여주는 도면. 7 is a diagram illustrating a REL 11 X2-AP Load Information message for exchanging an NC PDSCH start symbol according to an embodiment of the present invention.
도8은 본 발명의 실시예에 따라 NC PDSCH 시작심볼 교환을 위한 REL11 S1-AP eNB/MME X2-AP Transfer 메시지를 보여주는 도면. 8 illustrates a REL11 S1-AP eNB / MME X2-AP Transfer message for exchanging NC PDSCH start symbols according to an embodiment of the present invention.
도9는 NC PDSCH 시작심볼 교환을 위한 방안에 대한 비교결과를 도시한 도면.9 is a view showing a comparison result for the scheme for NC PDSCH start symbol exchange.
도10 및 도11은 REL 10 RRC Reconfiguration 메시지를 보여주는 도면. 10 and 11 illustrate REL 10 RRC Reconfiguration messages.
도12 및 도13은 본 발명의 실시예에 따라 EC의 PDSCH 시작심볼 지시를 위한 신호스킴을 비교한 도면. 12 and 13 compare signal schemes for PDSCH start symbol indication of an EC according to an embodiment of the present invention.
이하 첨부된 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 다만, 이하의 설명에서는 본 발명의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in the following description, when there is a risk of unnecessarily obscuring the gist of the present invention, a detailed description of well-known functions and configurations will be omitted.
도2는 본 발명이 실시될 수 있는 예시적인 이동통신망의 구성을 도시한 도면이다.2 is a diagram illustrating a configuration of an exemplary mobile communication network in which the present invention can be implemented.
일실시예에 있어서, 이동통신망은, 예컨대 GSM(Global System for Mobile communication), CDMA와 같은 2G 무선통신망, LTE망, WiFi와 같은 무선인터넷, WiBro(Wireless Broadband Internet) 및 WiMax(World Interoperability for Microwave Access)와 같은 휴대인터넷 또는 패킷 전송을 지원하는 이동통신망(예컨대, WCDMA 또는 CDMA2000과 같은 3G 이동통신망, HSDPA(High Speed Downlink Packet Access) 또는 HSUPA(High Speed Uplink Packet Access)와 같은 3.5G 이동통신망, 또는 현재 서비스 진행중인 4G 이동통신망 등) 및 매크로 기지국(macro eNB), 초소형 기지국(Pico eNB, HeNB(Home-eNB)) 및 단말(UE)을 구성요소로 포함하는 임의의 기타 이동통신망을 포함할 수 있지만, 이에 제한되는 것은 아니다. 이하에서는 LTE의 무선접속망인 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)을 위주로 설명한다. In one embodiment, the mobile communication network includes, for example, Global System for Mobile communication (GSM), 2G wireless communication network such as CDMA, LTE network, wireless Internet such as WiFi, Wireless Broadband Internet (WiBro) and World Interoperability for Microwave Access. Mobile communication networks (e.g., 3G mobile networks such as WCDMA or CDMA2000, 3.5G mobile networks such as High Speed Downlink Packet Access (HSDPA) or High Speed Uplink Packet Access (HSUPA)) 4G mobile network currently in service, etc.) and macro base station (macro eNB), micro base station (Pico eNB, HeNB (Home-eNB)) and any other mobile communication network including the UE (UE) as a component However, the present invention is not limited thereto. Hereinafter, an evolved universal terrestrial radio access network (e-UTRAN), which is a wireless access network of LTE, will be described.
도2에 도시된 바와 같이, 이동통신망은 하나 이상의 네트워크 셀로 구성될 수도 있고, 이동통신망에 서로 다른 종류의 네트워크 셀이 혼재할 수 있는 HetNet 환경을 포함한다. 이동통신망은 소규모의 네트워크 셀(예컨대, '피코셀', '펨토셀' 등)을 관리하는 초소형 기지국(Pico eNB, HeNB, relay 등)(11~15,21~23,31~33), 넓은 범위의 셀(예컨대, '매크로셀')을 관리하는 매크로 기지국(macro eNB)(10,20,30), 단말(UE)(40), SON(Self Organizing&optimizing Networks) 서버(50), MME(Mobility Management Entity)(60), S-GW(Serving Gateway)(80) 및 P-GW(PDN Gateway)(90)를 포함할 수 있다. 도2에 도시된 각 구성요소의 개수는 예시적인 것으로, 본 발명이 실시될 수 있는 무선통신망의 각 구성요소의 개수가 도면에 도시된 개수에 제한되는 것은 아니다.As shown in FIG. 2, the mobile communication network may be composed of one or more network cells, and includes a HetNet environment in which different types of network cells may be mixed in the mobile communication network. A mobile network is a very small base station (Pico eNB, HeNB, relay, etc.) (11-15, 21-23, 31-33) that manages a small number of network cells (eg, picocells, femtocells, etc.), and a wide range. Macro eNBs 10, 20, 30, UEs 40, Self Organizing & Optimizing Networks (SON) server 50, and MME (Mobility Management) to manage cells (eg, 'macro cells') It may include an entity (60), a Serving Gateway (S-GW) 80 and a PDN Gateway (P-GW) 90. The number of components shown in FIG. 2 is exemplary, and the number of components of the wireless communication network to which the present invention can be implemented is not limited to the number shown in the drawings.
매크로 기지국(10,20,30)은, 예컨대 LTE망, WiFi망, WiBro망, WiMax망, WCDMA망, CDMA망, UMTS망, GSM망 등에서 사용될 수 있는, 예를 들어 1km 내외의 반경을 갖는 셀을 관리하는 매크로셀 기지국의 특징을 포함할 수 있지만, 이에 제한되는 것은 아니다.The macro base stations 10, 20, and 30 may be used in, for example, LTE, WiFi, WiBro, WiMax, WCDMA, CDMA, UMTS, GSM networks, for example, cells having a radius of about 1 km. It may include a feature of the macro cell base station for managing, but is not limited thereto.
초소형 기지국(11~15,21~23,31~33)은, 예컨대 LTE망, WiFi망, WiBro망, WiMax망, WCDMA망, CDMA망, UMTS망, GSM망 등에서 사용될 수 있는, 예를 들어 수 m ~ 수십 m 내외의 반경을 갖는 셀을 관리하는 피코 기지국, 옥내용 기지국 또는 펨토 기지국, 릴레이(relay)의 특징을 포함할 수 있지만, 이에 제한되는 것은 아니다. The small base stations 11-15, 21-23, 31-33 can be used, for example, in LTE networks, WiFi networks, WiBro networks, WiMax networks, WCDMA networks, CDMA networks, UMTS networks, GSM networks, and the like. It may include, but is not limited to, features of a pico base station, an indoor base station or a femto base station, a relay that manages a cell having a radius of about m to several tens of meters.
초소형 기지국(11~15,21~23,31~33)이나 매크로 기지국(10,20,30)은 각각 독자적으로 코어망의 접속성을 가질 수 있다. The micro base stations 11 to 15, 21 to 23, 31 to 33 and the macro base stations 10, 20 and 30 may each independently have connectivity of the core network.
단말(UE)(40)은 GSM망, CDMA망와 같은 2G 무선통신망, LTE망, WiFi망과 같은 무선인터넷망, WiBro망 및 WiMax망과 같은 휴대인터넷망 또는 패킷 전송을 지원하는 이동통신망에서 사용되는 이동 단말기의 특징을 포함할 수 있지만, 이에 제한되는 것은 아니다. The UE 40 is used in 2G wireless communication networks such as GSM networks, CDMA networks, wireless Internet networks such as LTE networks, WiFi networks, mobile Internet networks such as WiBro networks and WiMax networks, or mobile communication networks supporting packet transmission. It may include features of the mobile terminal, but is not limited thereto.
초소형 기지국의 네트워크 관리 장치인 관리 서버(O&M 서버)(70)는 초소형 기지국(11~15,21~23,31~33)과 매크로 기지국(10,20,30)의 구성정보 및 관리를 담당한다. 관리 서버(70)는 SON 서버(50) 및 MME(60)의 기능을 모두 수행할 수 있다. SON 서버(50)는 매크로/초소형 기지국 설치 및 최적화를 수행하고 각 기지국에 필요한 기본 파라미터 또는 데이터를 제공하는 기능을 하는 임의의 서버를 포함할 수 있다. MME(60)는 단말(40)의 이동성 등을 관리하기 위하여 사용되는 임의의 개체를 포함할 수 있다. 또한 각 MME(61,62)는 기지국 제어기(BSC)의 기능을 수행하며, 자신에 연결된 기지국(pico eNB, HeNB, macro eNB 등)에 대하여 자원 할당, 호 제어, 핸드오버 제어, 음성 및 패킷 처리 등을 수행할 수 있다.The management server (O & M server) 70, which is a network management device of the micro base station, is responsible for the configuration information and management of the micro base stations 11 to 15, 21 to 23, 31 to 33 and the macro base stations 10, 20 and 30. . The management server 70 may perform both functions of the SON server 50 and the MME 60. The SON server 50 may include any server that functions to perform macro / miniature base station installation and optimization and to provide basic parameters or data required for each base station. The MME 60 may include any entity used to manage mobility of the terminal 40 and the like. In addition, each MME (61, 62) performs the function of a base station controller (BSC), resource allocation, call control, handover control, voice and packet processing for the base station (pico eNB, HeNB, macro eNB, etc.) connected to it And the like.
일실시예에 있어서, 하나의 관리 서버(70)가 SON 서버(50)와 MME(60)의 기능을 모두 수행할 수 있고, SON 서버(50) 및 MME(60)는 하나 이상의 매크로 기지국(10,20,30)과 하나 이상의 초소형 기지국(11~15,21~23,31~33)을 관리할 수 있다. In one embodiment, one management server 70 may perform the functions of both the SON server 50 and the MME 60, and the SON server 50 and the MME 60 may be one or more macro base stations 10. 20, 30 and one or more micro base stations 11 to 15, 21 to 23, 31 to 33 may be managed.
상기 이동통신망에서 매크로셀, 피코셀 및 펨토셀이 혼재된 네트워크 셀을 가정하였지만, 네트워크 셀은 매크로셀-피코셀, 매크로셀-펨토셀 만으로도 구성 가능하다. In the mobile communication network, it is assumed that a macro cell, a pico cell, and a femto cell are mixed, but the network cell may be configured only by the macro cell, the pico cell, and the macro cell-femto cell.
운용에 있어서, 매크로 기지국(10,20,30)으로의 액세스는 통상 모든 단말에게 허용되지만, 초소형 기지국(11~15,21~23,31~33)으로의 액세스는 특정 단말(가입자)로 제한할 수 있는 운용기능이 있다. 이는 접속모드 또는 운용모드로 불리우는데, 초소형 기지국(11~15,21~23,31~33)의 접속모드는 어떤 단말에게 서비스를 제공하느냐에 따라 구분된다. 즉 폐쇄형 접속모드, 개방형 접속모드, 하이브리드 접속모드로 구분된다. 폐쇄형 접속모드(Closed Access mode 또는 CSG Closed mode)는 특정가입자에게만 접속을 허용하며, 개방형 접속모드(Open Access mode 또는 CSG Open mode)는 접속허용조건이 없이 어떤 가입자든 접속가능한 모드이며, 하이브리드(Hybrid)는 절충형이라고 볼 수 있다.In operation, access to the macro base stations 10, 20, and 30 is normally allowed to all terminals, but access to the micro base stations 11 to 15, 21 to 23, 31 to 33 is restricted to specific terminals (subscribers). There is an operation function that can be done. This is called a connection mode or an operation mode, and the connection modes of the small base stations 11 to 15, 21 to 23, 31 to 33 are classified according to which terminal provides a service. That is, it is divided into a closed connection mode, an open connection mode, and a hybrid connection mode. Closed access mode (closed access mode or CSG closed mode) allows access only to specific subscribers, and open access mode (open access mode or CSG open mode) is a mode that can be accessed by any subscriber without access permission conditions. Hybrid) is a compromise.
구체적으로, 초소형 기지국(11~15,21~23,31~33)은 자신이 관리하는 펨토셀 영역에 시스템 정보인 SIB 1(System Information Block type 1)을 브로드캐스팅할 수 있는데, 이 SIB 1에는 해당 펨토셀로의 액세스가 제한되어 있는지 여부를 표시하는 CSG 지시자(Closed Subscriber Group indicator)가 포함되어 있다. SIB 1은 기지국(HeNB, macro eNB)이 자신의 셀에 대한 정보를 모든 단말(40)에게 브로드캐스팅하는 메시지로서, CGI(Cell Global Identity)(망내에서 유일한 셀 구분인자), CSG indication(초소형 기지국임을 알려주는 인자), CSG ID(CSG에 대한 ID) 등을 포함한다.Specifically, the micro base stations 11 to 15, 21 to 23, 31 to 33 may broadcast system information block type 1 (SIB 1), which is system information, in a femtocell area managed by the base station (11 to 15, 21 to 23, 31 to 33). A Closed Subscriber Group indicator is included to indicate whether access to the femtocell is restricted. SIB 1 is a message that a base station (HeNB, macro eNB) broadcasts information about its cell to all the terminals 40. The cell global identity (CGI) (the only cell delimiter in the network) and the CSG indication (miniature base station) It is a factor indicating that the (), CSG ID (ID for the CSG) and the like.
상기의 이동통신망을 LTE망으로 가정하는 경우, LTE망은 inter-RAT망(WiFi망, WiBro망, WiMax망, WCDMA망, CDMA망, UMTS망, GSM망 등)에 연동된다. inter-RAT망 중 하나(예컨대, WiBro망)가 상기 이동통신망인 경우 역시, 타 망(LTE망, WiFI망, WiMax망, WCDMA망, CDMA망, UMTS망, GSM망 등)에 연동된다. 도면에는 일 망(예컨대, LTE망)과 타 망(WiFi망, WiBro망, WiMax망, WCDMA망, CDMA망, UMTS망, GSM망 등)이 이격되어 도시되어 있지만, 일 망과 타 망은 오버랩(Overlay)되어 있음을 전제로 한다. If the mobile communication network is assumed to be an LTE network, the LTE network is interworked with an inter-RAT network (WiFi network, WiBro network, WiMax network, WCDMA network, CDMA network, UMTS network, GSM network, etc.). If one of the inter-RAT networks (for example, WiBro network) is the mobile communication network, it is also linked to other networks (LTE network, WiFI network, WiMax network, WCDMA network, CDMA network, UMTS network, GSM network, etc.). In the drawing, one network (for example, LTE network) and another network (WiFi network, WiBro network, WiMax network, WCDMA network, CDMA network, UMTS network, GSM network, etc.) are shown spaced apart from each other, but one network and the other network overlap. It is assumed that it is (Overlay).
초소형 기지국(11~15,21~23,31~33) 또는/및 매크로 기지국(10,20,30)을 '기지국장치'로 통칭하여 명명하면, LTE의 기지국장치로 구성되어 있는 E-UTRAN은 IP 기반의 플랫(flat)한 구조를 가지고 단말(40)과 코어망 간의 데이터 트래픽(data traffic)을 처리한다. 이들 간의 신호 제어는 MME(60)가 담당한다. MME(60)는 기지국장치와 S-GW(Serving Gateway)(80) 간의 신호제어를 담당하고, 단말(40)로부터 인입되는 데이터를 어느 곳으로 라우팅할지를 결정한다. S-GW(80)는 기지국장치와 기지국장치 간, 3GPP 네트워크와 E-UTRAN 간의 단말 이동에  대한 앵커(anchoring) 기능을 담당하고, P-GW(PDN(Packet Data Network) Gateway)(90)를 통해 IP 망에 접속한다. 핵심망 장비인 MME(60)/S-GW(80)는 다수 개의 기지국장치를 관장하며, 각 기지국 장치는 여러 개의 셀로 구성된다. 기지국장치와 MME(60)/S-GW(80)간에는 S1 인터페이스를 통해 C-plane/U-plane이 제어되며, 기지국장치 간 핸드오버 및 SON 기능을 위해 X2 인터페이스를 사용한다. When the micro base stations 11 to 15, 21 to 23, 31 to 33 and / or macro base stations 10, 20 and 30 are collectively named as 'base station devices', E-UTRAN composed of base station devices of LTE It has an IP-based flat structure and processes data traffic between the terminal 40 and the core network. The MME 60 is responsible for controlling the signals between them. The MME 60 is responsible for signal control between the base station apparatus and the S-GW (Serving Gateway) 80, and determines where to route the incoming data from the terminal 40. S-GW (80) is responsible for the anchor (anchoring) function for the movement of the terminal between the base station and the base station, the 3GPP network and the E-UTRAN, P-GW (PDN (Packet Data Network) Gateway (90) Connect to IP network through The MME 60 / S-GW 80, which is the core network equipment, manages a plurality of base station apparatuses, and each base station apparatus includes a plurality of cells. The C-plane / U-plane is controlled between the base station apparatus and the MME 60 / S-GW 80 through the S1 interface, and uses the X2 interface for the handover and the SON function between the base station apparatuses.
네트워크 인터페이스의 셋업은 시스템 중앙의 MME(60)와 연결하는 S1 인터페이스와 현재 시스템상에 존재하는 다른 셀들의 기지국장치와의 직접적인 통신을 위한 네트워크 라인인 X2 인터페이스를 설정함으로써 이루어진다. S1 인터페이스는 MME(60)와 신호를 교환함으로써 UE(40)의 이동을 지원하기 위한 OAM(Operation andThe setup of the network interface is made by setting the S1 interface connecting with the MME 60 in the center of the system and the X2 interface, which is a network line for direct communication with the base station apparatus of other cells currently present in the system. The S1 interface exchanges signals with the MME 60 to support movement of the UE 40.
Management) 정보를 주고받는다. 또한 X2 인터페이스는 기지국장치 간에 fast handover를 위한 신호 및 load indicator 정보, Self-optimization을 위한 정보를 교환하는 역할을 수행한다.Management) Send and receive information. Also, the X2 interface exchanges signals for fast handover, load indicator information, and information for self-optimization between base station devices.
서로 다른 종류의 네트워크 셀이 혼재된 HetNet 환경하에서 EC를 이용한 CA의 경우 EC 자체에는 제어신호 및 채널의 일종인 PDCCH가 존재하지 않으므로 PDCCH 심볼 수를 지시하는 PCFICH(Physical Control Format Indicator Channel) 채널이 존재하지 않기 때문에, EC를 이용하여 데이터를 수신하는 UE(40)는 EC상에서 PDSCH 시작심볼의 위치를 인지할 수 없다. 반면에, 해당 EC와 연관된 NC(Normal Carrier, backward compatible carrier) BCCC, 즉 EC에 대한 PDCCH를 신호하는 캐리어에는 PCFICH 채널이 존재하기 때문에, UE(40)는 NC BCCC의 PDSCH 시작심볼의 위치를 L1 신호에 의해 인지할 수 있다. In case of CA using EC in HetNet environment where different types of network cells are mixed, there is no PDCCH, which is a kind of control signal and channel, in the EC itself, so there is a Physical Control Format Indicator Channel (PCFICH) channel indicating the number of PDCCH symbols. Since the UE 40 receives the data using the EC, the UE cannot recognize the position of the PDSCH start symbol on the EC. On the other hand, since the PCFICH channel exists in the NC (Normal Carrier, backward compatible carrier) BCCC associated with the EC, that is, the carrier signaling the PDCCH for the EC, the UE 40 determines the position of the PDSCH start symbol of the NC BCCC by L1. It can be recognized by the signal.
일반적으로 UE(40)에게 다수의 CC(Component Carrier)를 할당하여 광대역을 제공하는 REL 10 CA의 경우 이들 다수의 CC는 모두 하나의 eNB에 의해 관장되는 CC이므로, 각각의 CC를 위한 PDCCH 심볼 수, 즉 PDSCH 시작심볼의 위치는 해당 eNB 스케줄러에 의한 독자적인 결정에 기반하여 semi-statistic하게 결정되어 해당 CC를 non PDCCH serving cell로 사용하는 UE(40)에게 전용메시지인 RRC(Radio Resource Control) Reconfiguration 메시지를 통해 지시된다. 그러나, HetNet 환경하에 어떤 layer(macro cell or small cell)에서 EC로 사용하는 특정 주파수 CC의 PDSCH 시작심볼은 다른 layer에서 동일 주파수를 NC로 사용하는 PDCCH 심볼 수에 영향을 받게 된다. 도3은 HetNet 환경하에서 PDSCH 시작심볼의 관계를 보여주는 도면이다. In general, in case of an REL 10 CA that provides a wide bandwidth by allocating a plurality of component carriers (CCs) to the UE 40, since the plurality of CCs are all CCs managed by one eNB, the number of PDCCH symbols for each CC is determined. That is, the location of the PDSCH start symbol is semi-statistically determined based on an independent decision by the corresponding eNB scheduler, and thus a radio resource control (RRC) reconfiguration message, which is a dedicated message, to the UE 40 using the CC as a non-PDCCH serving cell. Is directed through. However, the PDSCH start symbol of a specific frequency CC used as an EC in a layer (macro cell or small cell) in a HetNet environment is affected by the number of PDCCH symbols using the same frequency as another NC. 3 is a diagram illustrating a relationship between PDSCH start symbols in a HetNet environment.
도3에서 (case 1)은 HetNet 환경하에서 다른 layer의 BCCC의 PDSCH 시작심볼을 고려하지 않고 자신의 layer의 BCCC와 동일한 PDSCH 시작심볼을 EC에 적용한 경우이다. 이 경우 매크로셀(macro cell)에서의 BCCC인 FA1의 시작심볼이 소형셀(small cell)에서의 EC인 FA1의 시작심볼 보다 적으면 소형셀 EC의 PDSCH 심볼에 낭비를 가져올 것이며, 반면에 소형셀에서의 BCCC인 FA2의 시작심볼이 매크로셀에서의 EC인 FA2 보다 크면 소형셀에서 BCCC FA2에서의 PDCCH의 마지막 심볼에 대한 간섭이 발생할 것이다. In FIG. 3, (case 1) is a case where the same PDSCH start symbol as the BCCC of its layer is applied to the EC without considering the PDSCH start symbol of the BCCC of another layer in the HetNet environment. In this case, if the start symbol of FA1, BCCC in the macro cell, is smaller than the start symbol of FA1, EC in the small cell, the PDSCH symbol of the small cell EC will be wasted, whereas the small cell If the start symbol of FA2, which is BCCC at, is larger than FA2, which is EC at macrocell, interference with the last symbol of PDCCH in BCCC FA2 will occur in the small cell.
또한 (Case 2~4)는 HetNet 환경에서 다른 layer의 BCCC의 PDSCH 시작심볼을 고려하면서 자신의 EC의 PDSCH 시작심볼을 결정한 경우이다. 또한, (case 2)는 (case 1)과 달리 PDCCH 디코딩 에러(decoding error)와 같은 심각한 에러는 유발되지 않을 것이다. 또한, (case 4)는 HetNet 환경에서 모든 CC에 동일한 PDSCH 시작심볼을 설정한 경우이며, 이 경우 PDCCH 자원낭비가 유발될 수 있다. Also, (Case 2 to 4) is a case where the PDSCH start symbol of the EC is determined while considering the PDSCH start symbol of BCCC of another layer in the HetNet environment. In addition, unlike (case 1), (case 2) will not cause serious errors such as PDCCH decoding error (decoding error). In addition, (case 4) is the case in which the same PDSCH start symbol is set for all CCs in a HetNet environment, in which case PDCCH resource waste may be caused.
따라서, 한 망에서의 EC의 PDSCH 시작심볼은 다른 망에서의 동일 주파수의 BCCC의 PDSCH 시작심볼을 고려하여 결정되어야 한다. Therefore, the PDSCH start symbol of the EC in one network should be determined in consideration of the PDSCH start symbol of the BCCC of the same frequency in the other network.
이러한 문제를 회피하기 위해 기타 ICIC 관련 변수의 교환처럼 eNB간에 X2를 이용한 상호교환을 적용하는 것을 고려해 볼 수 있겠지만, macro-femto 환경의 HetNet 환경에서는 X2 인터페이스를 가지지 않기 때문에 적용이 불가능하다. 구체적으로, REL 10에서 X2 인터페이스는 도4에 도시된 바와 같이 MME(60)에 접속 제어(access control)를 가지지 않으면서 동일한 CSG ID를 가진 closed/hybrid access HeNB들 간에 또는 이들과 open acess HeNB 사이에만 가능할 뿐이다, 즉 소형셀인 피코셀에서는 X2 인터페이스를 이용하는 것이 가능하지만, 펨토셀에서는 X2 인터페이스를 사용할 수 없어 macro-pico 환경에서의 절차를 macro-femto 환경에 동일하게 적용할 수 없다. 그 해결 방안을 구체적으로 살펴보면 다음과 같다. In order to circumvent this problem, we may consider applying X2 interchange between eNBs like the exchange of other ICIC-related variables, but it is not applicable in HetNet environment of macro-femto because it does not have X2 interface. Specifically, in REL 10 the X2 interface is between closed / hybrid access HeNBs with the same CSG ID or between them and an open acess HeNB without having access control to the MME 60 as shown in FIG. In other words, it is possible to use X2 interface in small picocell, but femtocell cannot use X2 interface, so the procedure in macro-pico environment cannot be applied to macro-femto environment. The solution is as follows.
현재 REL 10에서 time측에서의 eICIC를 위해 ABS를 적용하고 있으며, eNB간 ABS(Almost Blank Sub-frame) 패턴 교환을 위해 X2 인터페이스를 사용하고 있다. ABS 패턴은 셀 내에서 UE activity, User 평균전송 속도, Handover 지연, 안테나 형상, UE measurement 성능 등 여러 가지 환경에 대한 측정을 통해 운영자에 의해 결정된다. 그러나, EC의 PDSCH 시작심볼은 다른 망의 동일한 주파수의 NC의 PDSCH 시작심볼에 영향을 받게 되며, 해당 NC PDSCH는 eNB 스케줄러에 의해 동적으로 결정되므로 운영자에 의해 결정 및 설정되지 않고 다른 망의 eNB 스케줄러에 의해 제어되는 NC별 UE activity에 의해 변경된다. 따라서, ABS 패턴과 EC의 PDSCH 시작심볼의 변수는 약간의 차이가 있다. 그러나, ABS 패턴과 EC의 PDSCH 시작심볼은 REL 10 CA에서 NC SCell(Secondary Serving Cell)의 PDSCH 시작심볼 처럼 eNB 스케줄러에 의해 semi-statistic하게 변경되는 성격은 동일하지만, 새로운 값으로의 갱신주기는 ABS 패턴 정보가 EC의 PDSCH 시작심볼 보다 한층 짧은 주기가 소요될 것이다. Currently, REL 10 uses ABS for eICIC on the time side, and uses X2 interface for ABS (Almost Blank Sub-frame) pattern exchange between eNBs. The ABS pattern is determined by the operator through measurement of various environments such as UE activity, user average transmission speed, handover delay, antenna shape, and UE measurement performance in the cell. However, the PDSCH start symbol of the EC is influenced by the PDSCH start symbol of the NC of the same frequency of another network, and the NC PDSCH is dynamically determined by the eNB scheduler, so that it is not determined and set by an operator and is not determined by an operator. It is changed by UE activity per NC controlled by. Therefore, there is a slight difference between the ABS pattern and the PDSCH start symbol of the EC. However, although the ABS pattern and the PDSCH start symbol of the EC are semi-statistically changed by the eNB scheduler like the PDSCH start symbol of the NC SCell (Secondary Serving Cell) in REL 10 CA, the update cycle to the new value is ABS. The pattern information may take a shorter period than the PDSCH start symbol of the EC.
도9의 스킴2에 해당하는 macro-femto 환경에서 임의의 펨토셀의 ABS 패턴 정보는 운영자가 femto ABS 패턴을 결정하여 관리 서버(70)를 통해 다른 펨토셀과 해당 매크로셀에게 지시된다. 또한, macro-pico 환경에서 매크로셀의 ABS 패턴 정보는 우선적으로 운영자가 macro ABS 패턴을 결정하여 관리 서버(70)를 통해 해당 매크로셀에게 전송될 것이며, 해당 매크로셀은 X2 인터페이스를 이용해 피코셀에게 자신의 ABS 패턴을 통보할 것이다. In the macro-femto environment corresponding to Scheme 2 of FIG. 9, the ABS pattern information of any femtocell is determined by the operator to the femto ABS pattern and directed to other femtocells and the corresponding macrocell through the management server 70. In addition, in the macro-pico environment, the ABS pattern information of the macrocell will be first transmitted to the macrocell through the management server 70 by the operator to determine the macro ABS pattern, and the macrocell is transmitted to the picocell using the X2 interface. You will be notified of your ABS pattern.
반면에, EC의 PDSCH 시작심볼을 ABS 패턴과 동일한 방식으로 상호 교환하는 경우에는 다음과 같이 운영자의 개입을 통한 관리 서버(70)에 의한 교환 방식과, 운영자의 개입이 없는 방식으로 구분할 수 있다. On the other hand, when the PDSCH start symbols of the EC are interchanged in the same manner as the ABS pattern, it can be divided into a method of exchange by the management server 70 through the operator's intervention and a method without the operator's intervention as follows.
먼저, 운영자의 개입을 통한 관리 서버(70)에 의한 교환 방식은, 도9의 스킴2에 해당하는 것으로, HetNet을 구성하는 모든 eNB 스케줄러의 역할을 운영자가 대신하기 위해 운영자가 특정 캐리어별 UE activity를 모니터링해야 하는 문제가 존재하여 망 운용에 있어서 운영자의 부담이 가중될 것이며, TTI(Transmission Time Interval) 단위로 변경될 수 있는 NC의 PDSCH 시작심볼을 망 내에 위치한 다수의 eNB 간에 PDSCH 시작심볼 동기화가 쉽지 않을 것이다. First, the exchange method by the management server 70 through the intervention of the operator corresponds to Scheme 2 of FIG. 9, in which the operator has a specific carrier-specific UE activity in order for the operator to take over the role of all eNB schedulers configuring the HetNet. There is a problem that needs to be monitored to increase the burden on the operator in the network operation, PDSCH start symbol synchronization between the multiple eNBs in the PDSCH start symbol of the NC that can be changed in units of Transmission Time Interval (TTI) It won't be easy.
상기 운영자의 개입이 없는 방식은 다음과 같이 두 가지로 구분할 수 있다. The method without the operator's intervention can be classified into two types as follows.
첫 째는 도3의 (case 4) 처럼 운용자 뿐만 아니라, 다른 eNB와의 연동 없이 해당 캐리어의 시스템 변수에 따라 결정하는 방식으로, 도9의 스킴1이 이에 해당한다. 이 방식은 도5에 도시된 PCFICH의 CFI 값의 범위를 명시하는 테이블에 기반하여 캐리어의 대역폭 및 설정정보에 따라 최대 PDCCH 심볼 수+1로 PDSCH 시작심볼을 결정하는 것으로, 자원의 낭비는 존재할 수 있지만 망 간에 교환이 요구되지 않는다.First, as shown in (case 4) of Figure 3, not only the operator, but also determined in accordance with the system parameters of the carrier without interworking with other eNB, Scheme 1 of Figure 9 corresponds to this. This method determines the PDSCH start symbol with the maximum number of PDCCH symbols + 1 according to the bandwidth and configuration information of the carrier based on a table specifying the range of the CFI value of the PCFICH shown in FIG. 5, and waste of resources may exist. However, no exchange between networks is required.
둘째는 도3의 (case 3) 처럼 각 eNB 스케줄러에 의해 결정된 BCCC의 PDSCH 시작심볼을 X2 인터페이스를 통해 상호 교환한ㄴ 방식으로, 도8의 스킴3이 이에 해당한다. 이 방식은 자원의 낭비 및 PDCCH 디코딩 에러를 회피할 수 있다. Secondly, as shown in case 3 of FIG. 3, the PDSCH start symbol of BCCC determined by each eNB scheduler is interchanged through the X2 interface. Scheme 3 of FIG. 8 corresponds to this. This approach can avoid wasted resources and PDCCH decoding errors.
도6은 다른 type의 HetNet 환경 하에서 X2와 S1 인터페이스를 이용해 NC PDSCH 시작심볼을 교환하는 방안을 보여준다. 우선 X2-AP에서 해당 정보에 관련한 변수를 살펴보면, NC의 PDSCH 시작심볼과 해당 NC의 주파수 및 새로운 시작심볼의 적용시점을 지시하기 위한 IE들이 요구될 것이며, REL10 X2-AP의 ICIC를 위한 메시지인 Load Information 메시지에 해당 IE(Information element)들을 추가하는 것이 가장 효과적일 것이다. Load Information 메시지는 도6에서 처럼 macro-pico 간에 자신의 BCCC의 PDSCH 시작심볼의 위치를 X2-AP를 통해 지시하게 될 것이며, 이는 도9의 스킴2,3에 공통 적용된다. 한편 macro-femto 간에는 X2 인터페이스가 존재치 않으므로 S1 인터페이스를 통해 해당 정보를 교환할 때 다음과 같이 두 가지 방안을 고려할 수 있다. 하나는 REL 10에 기 정의된 S1-AP 메시지에 관련 정보를 위한 새로운 IE를 추가하여 교환하는 방식이다. 다른 하나는 eNB간에 eICIC를 위해 새로운 REL 11 S1-AP 메시지를 정의하여 X2 load information 메시지를 container 형태로 포함시켜 전송하는 방식이다. 도7은 NC PDSCH 시작심볼 교환을 위한 REL 11 X2-AP Load Information 메시지에 대한 변경을 명시한다. 6 shows a scheme for exchanging NC PDSCH start symbols using X2 and S1 interfaces under different types of HetNet environments. First of all, when looking at the variables related to the information in X2-AP, IEs for indicating the PDSCH start symbol of the NC and the frequency of the NC and the application time of the new start symbol will be required, which is a message for the ICIC of the REL10 X2-AP. It would be most effective to add the corresponding Information Elements (IE) to the Load Information message. As shown in Fig. 6, the Load Information message will indicate the position of PDSCH start symbol of its BCCC between macro-pico through X2-AP, which is commonly applied to schemes 2 and 3 of FIG. On the other hand, since there is no X2 interface between macro-femto, two methods can be considered when exchanging corresponding information through S1 interface. One is a method of exchanging a new IE for related information in the S1-AP message defined in REL 10. The other is a method of defining a new REL 11 S1-AP message for eICIC between eNBs and transmitting the X2 load information message in a container form. 7 specifies a change to the REL 11 X2-AP Load Information message for NC PDSCH start symbol exchange.
도7에서 하단의 IE들(7a)이 해당절차를 위한 새로운 IE들이며, 기 정의된 Invoke Indication에 새로운 값 "PDSCH Start information"을 추가한 것이다. 추가된 값의 의미를 살펴보면, 해당 메시지를 수신한 eNB는 Invoke Indication 값이 "PDSCH Start information"인 경우 NC에 대한 PDSCH start 정보를 메시지를 송신한 eNB로 전송하여 상호 교환하게 된다. 예컨대, CA의 경우 최대 5개의 셀에 해당하는 하향링크 NC의 주파수밴드를 EAFCN IE로 지시하며, 수신측에서는 해당 주파수가 자신의 layer에서 EC이므로 EC를 사용하는 UE에게 RRC 전용메시지를 통해 EC의 PDSCH 시작심볼을 지시하며, BCCC인 NC는 PCFICH 채널을 통해 직접적으로 PDSCH 시작심볼을 인지시킨다. In FIG. 7, the lower IEs 7a are new IEs for the corresponding procedure, and a new value "PDSCH Start information" is added to a predefined Invoke Indication. Looking at the meaning of the added value, the eNB that receives the message exchanges the PDSCH start information for the NC to the eNB that sent the message when the Invoke Indication value is "PDSCH Start information". For example, in case of CA, the frequency band of downlink NC corresponding to a maximum of 5 cells is indicated by EAFCN IE. On the receiving side, since the corresponding frequency is EC in its layer, the PDSCH of the EC is transmitted to the UE using EC through an RRC-only message. Indicating the start symbol, the BCCC NC recognizes the PDSCH start symbol directly through the PCFICH channel.
구체적으로 살펴보면, 도6에 도시된 바와 같이 macro-femto 간에 해당 정보교환을 위해서 S1-AP에 변경이 요구된다. 이 경우 "6a" 및 "6b"로 구분할 수 있다. Specifically, as shown in FIG. 6, a change is required in S1-AP for exchanging corresponding information between macro-femto. In this case, it can be divided into "6a" and "6b".
도6에서 "6a"는 REL 10 S1-AP에 eICIC를 정보 교환하기 위한 기 정의된 메시지가 존재하지 않아 SON 정보를 주고받기 위해 정의된 eNB/MME Configuration Transfer 메시지 관련 정보를 위한 새로운 IE들을 추가하여 정보를 교환하는 방식이다. 이 방식은 eNB/MME Configuration Transfer의 세부절차에 있어서 변경이 요구된다. In FIG. 6, "6a" indicates that there is no predefined message for exchanging eICIC in REL 10 S1-AP, so that new IEs for eNB / MME Configuration Transfer message related information defined for exchanging SON information are added. It is a way of exchanging information. This method requires a change in the detailed procedure of eNB / MME Configuration Transfer.
또한, 도6에서 "6b"는 macro-pico 간에 정보 교환을 위해 정의된 REL 11 X2-AP Load Information 메시지(도7 참조)를 새로운 REL 11 S1-AP 메시지(도8의 REL11 S1-AP eNB/MME X2-AP Transfer 메시지)에 container 형태로 포함하여 교환하는 방식이다. 이 방식은 REL 10에 기 정의된 S1-AP 절차에 있어서 어떠한 변경도 요구되지 않으며, macro-femto 간 ABS 패턴 정보의 교환을 위해서도 사용될 수 있는 방식이다. 따라서 본 발명에서는 "6b"를 제안하며, 이를 위해 NC PDSCH 시작심볼 교환을 위한 REL 11 S1-AP 메시지인 eNB/MME X2-AP Transfer 메시지(도7의 REL 11 X2-AP Load Information 메시지)를 새로이 정의하며 해당절차에 대한 세부절차를 명시한다. In addition, in FIG. 6, "6b" indicates a REL 11 X2-AP Load Information message (see FIG. 7) defined for information exchange between macro-pico (see REL11 S1-AP eNB / of FIG. 8). MME X2-AP Transfer message) is included in the form of a container and exchanged. This method does not require any change in the S1-AP procedure defined in REL 10, and can be used for exchanging ABS pattern information between macro-femto. Therefore, the present invention proposes "6b", and for this purpose, a new eNB / MME X2-AP Transfer message (REL 11 X2-AP Load Information message of FIG. 7), which is a REL 11 S1-AP message for NC PDSCH start symbol exchange, is newly proposed. It defines and specifies the detailed procedures for the procedure.
도7의 REL 11 X2-AP Load Information 메시지는 도8의 새로운 S1-AP 메시지(REL11 S1-AP eNB/MME X2-AP Transfer 메시지)의 X2-AP container에 포함되어 MME(60)에 의해 송신 eNB에 의해 설정된 Target eNB-ID를 통해 target eNB로 투명하게 전달된다. 이에 대해 수신 eNB는 송신측 eNB의 X2-AP Load Information 메시지에 포함된 정보를 이용하며, 응답으로 자신의 NC PDSCH 시작심볼을 지시하는 X2-AP Load Information 메시지를 생성하여 송신 eNB에 의해 결정된 Source eNB-ID를 target eNB-ID로 결정하여 MME(60)로 전송한다. 그러면, MME(60)는 송신 eNB에 의해 설정된 Target eNB-ID를 통해 target eNB로 X2-AP container를 투명하게 전달한다. 이로써 eNB 간에 PDSCH 시작심볼에 대한 정보를 교환한다. 다른 실시예에 있어서, time 측면에서 macro-femto간의 eICIC에 ABS 패턴 정보 교환을 위해 REL11 S1-AP eNB/MME X2-AP Transfer 메시지를 사용할 수도 있다. The REL 11 X2-AP Load Information message of FIG. 7 is included in the X2-AP container of the new S1-AP message (REL11 S1-AP eNB / MME X2-AP Transfer message) of FIG. 8 and transmitted by the MME 60. It is transparently delivered to the target eNB through the target eNB-ID set by. In response, the receiving eNB uses the information contained in the X2-AP Load Information message of the transmitting eNB, generates a X2-AP Load Information message indicating its NC PDSCH start symbol in response, and determines the source eNB determined by the transmitting eNB. -ID is determined as the target eNB-ID and transmitted to the MME 60. Then, the MME 60 transparently delivers the X2-AP container to the target eNB through the target eNB-ID set by the transmitting eNB. This exchanges information about the PDSCH start symbol between eNBs. In another embodiment, the REL11 S1-AP eNB / MME X2-AP Transfer message may be used for ABS pattern information exchange in eICIC between macro-femto in terms of time.
도9는 상기 세 가지 스킴에 대한 비교 도표이다. 도9에서 보는 것처럼 스킴2의 경우에는 운영자의 커리어별 UE activity 모니터링이 요구되며, 스킴3의 경우 운영자의 개입은 요구치 않으나 스킴2와 마찬가지로 resource wasting 및 PDCCH decoding error에 대해 100% 지원할 수 없다. 그 이유는 X2-AP, S1-AP, O&M 메시지 교환시 지연으로 인한 이기종 망간에 동일한 activation 동기화 및 SFN 최대 길이인 256ms 단위 갱신주기에 의해 256ms 동안에 UE activity에 의한 동적인 PDSCH 시작심볼의 결정이 어렵기 때문이며, 또한 각각의 망은 상대망으로부터 수신한 PDSCH 시작심볼에 따라 EC의 새로운 PDSCH 시작심볼의 위치를 다음번 SFN 0에 적용하기 위해 (각각의 망에서 EC를 사용하는 UE(40)에게 전용신호를 통해 전송하나) 항상 SFN 0에 모든 UE(40)들이 새로운 값으로 동시에 activation하는 것을 보장할 수 없으므로 개별 UE 단위의 자원낭비 및 PDCCH 디코딩 에러를 100% 회피할 수 없을 것이다. 9 is a comparison chart for the three schemes. As shown in FIG. 9, in the case of scheme 2, the UE activity monitoring is required for each operator's career, and in the case of scheme 3, the operator's intervention is not required, but like scheme 2, 100% cannot be supported for resource wasting and PDCCH decoding error. The reason is that it is difficult to determine the dynamic PDSCH start symbol by UE activity for 256ms due to the same activation synchronization between heterogeneous networks and delay period of SFms maximum length of 256ms in X2-AP, S1-AP, O & M message exchange. In addition, each network applies a dedicated signal to the UE 40 using the EC in each network to apply the position of the new PDSCH start symbol of the EC to the next SFN 0 according to the PDSCH start symbol received from the other network. However, since it is not possible to guarantee that all UEs 40 always activate the new value at the same time in SFN 0, they may not be able to 100% avoid resource waste and PDCCH decoding error per individual UE.
EC는 REL10 CA에서 RRC, MAC, PHY 메시지 정의시 이미 EC의 도입을 고려하여 CrossCarrierSchedulingConfig-r10 IE 같은 IE를 메시지에 이미 포함시켰으며, EC 또한 UE 입장에서 하나의 Non-scheduling SCell로 동작하므로 도10 및 도11에 정의된 REL 10 RRC Reconfiguration 메시지에 NC Non-scheduling SCell의 PDSCH 시작심볼을 지시하도록 정의된 CrossCarrierSchedulingConfig-r10 IE를 재사용할 수 있다. 다만, EC의 PDSCH 시작심볼을 위해 동일한 주파수 밴드의 다른 망에서 사용되는 BCCC NC의 PDSCH 시작심볼에 대한 결정을 위해 도9의 스킴 중에서 어느 하나를 사용하여 EC를 사용하는 UE(40)에게 결정된 값에 대한 지시를 위해 RRC Reconfiguration를 사용하게 될 것이다. The EC has already included IE such as CrossCarrierSchedulingConfig-r10 IE in the message in consideration of the introduction of EC when defining the RRC, MAC, and PHY messages in the REL10 CA. And the CrossCarrierSchedulingConfig-r10 IE defined to indicate the PDSCH start symbol of the NC non-scheduling SCell in the REL 10 RRC Reconfiguration message defined in FIG. 11. However, a value determined for the UE 40 using the EC using any one of the schemes of FIG. 9 to determine the PDSCH start symbol of the BCCC NC used in another network of the same frequency band for the PDSCH start symbol of the EC. You will use RRC Reconfiguration to indicate this.
구체적인 예를 살펴보면, 도12 및 도13은 각각 10MHz(PRB 개수 50)와 1.4Mhz(PRB 개수 6)인 두 개의 캐리어로 구성된 HetNet 환경에서 해당 UE에게 EC의 PDSCH 시작심볼을 지시하는 신호방안을 보여준다. 도9의 스킴3을 사용하는 경우 초기 두 개의 캐리어 상에 PDSCH 시작심볼은 eNB 스케줄러의 의해 "3", "4"이며, 매크로셀의 UE activity 증가로 PDSCH 시작심볼의 위치 증가가 요구될 경우 macro-pico 환경의 HetNet 환경(11a)이라면 X2-AP 메시지를 통해 자신의 NC에 대한 새로운 PDSCH 시작심볼을 제안하고, 이를 수신한 피코셀 또한 UE activity를 기반하여 자신의 PDSCH 시작심볼의 위치를 신호할 것이다. 이때 각각의 망은 상대망으로부터 수신한 PDSCH 시작심볼에 따라 EC의 새로운 PDSCH 시작심볼의 위치를 다음번 SFN 0에 적용하기 위해 각각의 망에서 EC를 사용하는 UE(40)에게 적절한 시간에 전용신호를 통해 전송해야 한다. "11b"는 macro-femto HetNet 환경에 적용한 것이다. 마지막으로 스킴1을 사용한다면 EC를 사용하는 UE(40)에게 전용신호를 통해 항상 동일한 EC의 PDSCH 시작심볼의 값을 지시할 것이며, 해당 캐리어의 최대 PDCCH 심볼 수 + 1의 값이며, 따라서 도12 및 도13의 경우 매크로셀과 소형셀에서의 밴드 X, Y는 항상 각각의 eNB 스케줄러에 "3", "4"의 PDSCH 시작심볼로 L1 채널과 RRC 전용채널을 통해 고정적으로 신호될 것이다. Looking at a specific example, Figures 12 and 13 show a signal scheme for instructing the PDSCH start symbol of the EC to the UE in the HetNet environment consisting of two carriers of 10MHz (PRB number 50) and 1.4Mhz (PRB number 6), respectively . In the case of using scheme 3 of FIG. 9, PDSCH start symbols on the first two carriers are "3" and "4" by the eNB scheduler, and when the position of the PDSCH start symbol is required due to the increase of the UE activity of the macro cell, macro If the HetNet environment (11a) of the -pico environment proposes a new PDSCH start symbol for its NC through an X2-AP message, the received picocell may also signal the position of its PDSCH start symbol based on UE activity. will be. At this time, each network sends a dedicated signal to the UE 40 using the EC in each network at an appropriate time to apply the position of the new PDSCH start symbol of the EC to the next SFN 0 according to the PDSCH start symbol received from the other network. Must be sent via "11b" applies to the macro-femto HetNet environment. Finally, if the scheme 1 is used, the UE 40 using the EC will always indicate the value of the PDSCH start symbol of the same EC through a dedicated signal, which is the maximum number of PDCCH symbols + 1 of the corresponding carrier, and thus FIG. 12. In the case of FIG. 13, the bands X and Y in the macro cell and the small cell will always be fixedly signaled through the L1 channel and the RRC dedicated channel with PDSCH start symbols of " 3 " and " 4 "
결론적으로 본 발명에서 EC의 PDSCH 시작심볼에 대한 지시를 위해 운영자의 개입과 상호 eNB 간에 정보교환 없이 각각의 eNB 스케줄러에 의해 항상 자신이 관리하는 NC BCCC의 경우 항상 해당 캐리어의 최대 PDCCH 심볼 수를 PCFICH 채널을 통해 신호하며, 연관 EC의 경우 항상 해당 캐리어의 최대 PDCCH 심볼 수 + 1의 값을 RRC 전용메시지를 통해 EC를 사용하는 UE(40)에게 신호하는 스킴1을 선호한다. 그러나 운영자의 선택에 의해 스킴3을 사용하는 경우 X2-AP, S1-AP에 도8 및 도9를 통해 명시된 메시지 구조체를 제안한다. In conclusion, in the present invention, in the case of NC BCCC, which is always managed by each eNB scheduler without an operator's intervention and information exchange between eNBs for indication of PDSCH start symbol of EC, PCFICH always indicates the maximum number of PDCCH symbols of a corresponding carrier. In the case of the associated EC, and in the case of the associated EC, Scheme 1 which always signals the maximum number of PDCCH symbols + 1 of the corresponding carrier to the UE 40 using the EC through an RRC dedicated message is preferred. However, when using Scheme 3 at the operator's choice, we propose the message structure specified in Figs. 8 and 9 in X2-AP and S1-AP.
상기 방법은 특정 실시예들을 통하여 설명되었지만, 상기 방법은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등이 있으며, 또한 케리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한, 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 실시예들을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.Although the method has been described through specific embodiments, the method may also be embodied as computer readable code on a computer readable recording medium. Computer-readable recording media include all kinds of recording devices that store data that can be read by a computer system. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like, which are also implemented in the form of carrier waves (for example, transmission over the Internet). Include. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. In addition, functional programs, codes, and code segments for implementing the above embodiments can be easily inferred by programmers in the art to which the present invention belongs.
본 명세서에서는 본 발명이 일부 실시예들과 관련하여 설명되었지만, 본 발명이 속하는 기술분야의 당업자가 이해할 수 있는 본 발명의 정신 및 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 변형 및 변경은 본 명세서에 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다. While the invention has been described in connection with some embodiments herein, it should be understood that various modifications and changes can be made without departing from the spirit and scope of the invention as would be understood by those skilled in the art. something to do. Also, such modifications and variations are intended to fall within the scope of the claims appended hereto.

Claims (15)

  1. 이기종 망간에 EC(Extension Carrier)의 PDSCH(Physical downlink shared channel) 시작심볼 결정 방법으로서, As a method for determining a physical downlink shared channel (PDSCH) start symbol of an extension carrier (EC) in heterogeneous manganese,
    일 망에서 EC의 PDSCH 시작심볼 결정시에, 타 망에서 동일 주파수인 NC(Normal Carrier) BCCC(Backward Compatible Component Carrier)의 시작심볼을 고려하여 결정하는, EC의 PDSCH 시작심볼 결정 방법. In determining the PDSCH start symbol of the EC in one network, the PDSCH start symbol determination method of the EC is determined in consideration of the start symbol of a normal carrier (NC) backward compatible component carrier (BCCC) which is the same frequency in the other network.
  2. 제1항에 있어서, The method of claim 1,
    상기 일 망과 상기 타 망은 동일한 또는 서로 다른 네트워크 인터페이스를 이용하는, EC의 PDSCH 시작심볼 결정 방법. The one network and the other network using the same or different network interface, ECSCH PDSCH start symbol determination method.
  3. 제2항에 있어서, The method of claim 2,
    상기 일 망 및 상기 타 망 중 어느 한 망의 매크로셀과 상대 망의 피코셀 간에는 X2 인터페이스를 이용하여 NC BCCC의 시작심볼을 교환하는, EC의 PDSCH 시작심볼 결정 방법. The ECSCH PDSCH start symbol determination method for exchanging the start symbol of the NC BCCC between the macrocell of any one of the network and the other network and the picocell of the other network using an X2 interface.
  4. 제3항에 있어서, The method of claim 3,
    상기 매크로셀과 상기 피코셀 간에는 Release 11 S1-AP Load Information 메시지에 PDSCH 시작정보와 관련된 IE(Information Element)를 추가하여 NC BCCC의 시작심볼을 교환하는, EC의 PDSCH 시작심볼 결정 방법. And a start symbol of an NC BCCC is exchanged between the macrocell and the picocell by adding an information element (IE) related to PDSCH start information to a Release 11 S1-AP Load Information message.
  5. 제2항에 있어서, The method of claim 2,
    상기 일 망 및 상기 타 망 중 어느 한 망의 매크로셀과 상대 망의 펨토셀 간에는 MME(Mobility Management Entity)와의 S1 인터페이스를 이용하여 NC BCCC의 시작심볼을 교환하는, EC의 PDSCH 시작심볼 결정 방법. The ECSCH PDSCH start symbol determination method for exchanging the start symbol of the NC BCCC between the macrocell of any one of the network and the other network and the femtocell of the other network using the S1 interface with the Mobility Management Entity (MME).
  6. 제5항에 있어서, The method of claim 5,
    상기 매크로셀과 펨토셀 간에는 새롭게 정의된 Release 11 S1-AP 메시지인 eNB/MME X2-AP Transfer 메시지를 이용하여 NC BCCC의 시작심볼을 교환하는, EC의 PDSCH 시작심볼 결정 방법.The ECSCH PDSCH start symbol determination method between the macro cell and the femtocell exchanges the start symbol of the NC BCCC using the eNB / MME X2-AP Transfer message, a newly defined Release 11 S1-AP message.
  7. 제1항에 있어서, The method of claim 1,
    상기 일 망과 상기 타 망은 상대 망으로부터 수신한 NC BCCC의 시작심볼에 따라 새로운 PDSCH 시작심볼의 위치를 각각의 망에서 EC를 사용하는 단말에게 RRC(Radio Resource Control) 전용메시지를 통해 전송하는, EC의 PDSCH 시작심볼 결정 방법. The one network and the other network to transmit the position of the new PDSCH start symbol according to the start symbol of the NC BCCC received from the other network to the terminal using the EC in each network through a radio resource control (RRC) dedicated message, How ECSCH determines PDSCH start symbol.
  8. 제1항에 있어서, The method of claim 1,
    상기 일 망에서 캐리어의 대역폭 및 설정정보에 따라 최대 PDCCH(Physical Downlink Control Channel) 심볼수+1로 PDSCH의 시작심볼을 결정하는, EC의 PDSCH 시작심볼 결정 방법. And determining the start symbol of the PDSCH with a maximum number of physical downlink control channel (PDCCH) symbols according to the bandwidth and configuration information of the carrier in the network.
  9. 이기종 망이 혼재된 이동통신 시스템으로서, As a heterogeneous mobile communication system,
    일 망에서 EC(Extension Carrier)의 PDSCH(Physical downlink shared channel) 시작심볼 결정시에, 타 망에서 동일 주파수인 NC(Normal Carrier) BCCC(Backward Compatible Component Carrier)의 시작심볼을 고려하여 결정하는, 이동통신 시스템. When determining the physical downlink shared channel (PDSCH) start symbol of an EC (Extension Carrier) in one network, the mobile communication, which is determined in consideration of the start symbol of the NC (Normal Carrier) BCCC (Backward Compatible Component Carrier) which is the same frequency in another network system.
  10. 제9항에 있어서, The method of claim 9,
    상기 일 망과 상기 타 망은 동일한 또는 서로 다른 네트워크 인터페이스를 이용하는, 이동통신 시스템. And the one network and the other network use the same or different network interfaces.
  11. 제10항에 있어서, The method of claim 10,
    상기 일 망 및 상기 타 망 중 어느 한 망의 매크로셀과 상대 망의 피코셀 간에는 X2 인터페이스를 이용하여 NC BCCC의 시작심볼을 교환하고, Between the macrocell of one network and the other network and the picocell of the other network, a start symbol of NC BCCC is exchanged using an X2 interface;
    상기 매크로셀과 상기 피코셀 간에는 Release 11 S1-AP Load Information 메시지에 PDSCH 시작정보와 관련된 IE(Information Element)를 추가하여 NC BCCC의 시작심볼을 교환하는, 이동통신 시스템. And a start symbol of NC BCCC between the macro cell and the pico cell by adding an information element (IE) related to PDSCH start information to a Release 11 S1-AP Load Information message.
  12. 제10항에 있어서, The method of claim 10,
    상기 일 망 및 상기 타 망 중 어느 한 망의 매크로셀과 상대 망의 펨토셀 간에는 MME(Mobility Management Entity)와의 S1 인터페이스를 이용하여 NC BCCC의 시작심볼을 교환하고, Between the macrocell of one network and the other network and the femtocell of the other network, a start symbol of NC BCCC is exchanged using an S1 interface with a mobility management entity (MME);
    상기 매크로셀과 펨토셀 간에는 새롭게 정의된 REL 11 S1-AP 메시지인 eNB/MME X2-AP Transfer 메시지를 이용하여 NC BCCC의 시작심볼을 교환하는, 이동통신 시스템. A mobile communication system for exchanging a start symbol of an NC BCCC between the macrocell and the femtocell using an eNB / MME X2-AP Transfer message, which is a newly defined REL 11 S1-AP message.
  13. 제9항에 있어서, The method of claim 9,
    상기 일 망과 상기 타 망은 상대 망으로부터 수신한 NC BCCC의 시작심볼에 따라 새로운 PDSCH 시작심볼의 위치를 각각의 망에서 EC를 사용하는 단말에게 RRC(Radio Resource Control) 전용메시지를 통해 전송하는, EC의 PDSCH 시작심볼 결정 방법. The one network and the other network to transmit the position of the new PDSCH start symbol according to the start symbol of the NC BCCC received from the other network to the terminal using the EC in each network through a radio resource control (RRC) dedicated message, How ECSCH determines PDSCH start symbol.
  14. 제9항에 있어서, The method of claim 9,
    상기 일 망에서 캐리어의 대역폭 및 설정정보에 따라 최대 PDCCH(Physical Downlink Control Channel) 심볼수+1로 PDSCH의 시작심볼을 결정하는, EC의 PDSCH 시작심볼 결정 방법. And determining the start symbol of the PDSCH with a maximum number of physical downlink control channel (PDCCH) symbols according to the bandwidth and configuration information of the carrier in the network.
  15. 제9항에 있어서, The method of claim 9,
    상기 이기종 망은, 서로 다른 크기의 영역을 담당하는 복수 개의 기지국을 중첩하여 사용하는 HetNet(Heterogeneous Network) 환경인, 이동통신 시스템. The heterogeneous network is a HetNet (Heterogeneous Network) environment in which a plurality of base stations overlapping areas of different sizes are used.
PCT/KR2011/010060 2011-09-05 2011-12-23 Method for determining a pdsch start symbol of an ec between heterogeneous networks, and mobile communication system therefor WO2013035941A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0089856 2011-09-05
KR20110089856 2011-09-05
KR10-2011-0140246 2011-12-22
KR1020110140246A KR20130026361A (en) 2011-09-05 2011-12-22 Method for deciding pdsch start symbol of extension carrier and mobile telecommunication system for the same

Publications (1)

Publication Number Publication Date
WO2013035941A1 true WO2013035941A1 (en) 2013-03-14

Family

ID=47832358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010060 WO2013035941A1 (en) 2011-09-05 2011-12-23 Method for determining a pdsch start symbol of an ec between heterogeneous networks, and mobile communication system therefor

Country Status (1)

Country Link
WO (1) WO2013035941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016141845A1 (en) * 2015-03-09 2016-09-15 电信科学技术研究院 Sending and receiving method and apparatus for downlink common channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040106942A (en) * 2003-06-05 2004-12-20 한국전자통신연구원 A method for hand over in OFDMA cellular system and an apparatus used therin
KR20070037278A (en) * 2005-09-30 2007-04-04 엘지전자 주식회사 Method for transmitting and receiving data using a plurality of carriers
KR20090034261A (en) * 2007-10-02 2009-04-07 엘지전자 주식회사 Method for supporting mobility of mobile terminal, and mobile terminal thereof
KR20100019290A (en) * 2008-08-08 2010-02-18 삼성전자주식회사 Method and apparatus for activation of hsdpa service of supplementary cell in a dual-cell hsdpa system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040106942A (en) * 2003-06-05 2004-12-20 한국전자통신연구원 A method for hand over in OFDMA cellular system and an apparatus used therin
KR20070037278A (en) * 2005-09-30 2007-04-04 엘지전자 주식회사 Method for transmitting and receiving data using a plurality of carriers
KR20090034261A (en) * 2007-10-02 2009-04-07 엘지전자 주식회사 Method for supporting mobility of mobile terminal, and mobile terminal thereof
KR20100019290A (en) * 2008-08-08 2010-02-18 삼성전자주식회사 Method and apparatus for activation of hsdpa service of supplementary cell in a dual-cell hsdpa system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016141845A1 (en) * 2015-03-09 2016-09-15 电信科学技术研究院 Sending and receiving method and apparatus for downlink common channel
CN106034325A (en) * 2015-03-09 2016-10-19 电信科学技术研究院 Method for transmitting downlink common channel, method for receiving downlink common channel, device for transmitting downlink common channel and device for receiving downlink common channel
CN106034325B (en) * 2015-03-09 2019-05-28 电信科学技术研究院 A kind of method of sending and receiving and device of common down channel

Similar Documents

Publication Publication Date Title
JP6910409B2 (en) Mobile communication system and base station equipment
JP7463447B2 (en) Mobile communication system, base station and mobile terminal
CN112887003B (en) Mobile communication system, communication terminal and method
JP6866338B2 (en) Mobile communication system and base station
JP5744266B2 (en) Mobile communication system
US9603060B2 (en) Mobile communication system
WO2016032304A1 (en) Method and apparatus for communicating using unlicensed bands in mobile communication system
CN105900473B (en) Communication system
WO2011132968A2 (en) Method and apparatus of transmitting and receiving signal in a distributed antenna system
US20120071190A1 (en) Base stations and radio devices
WO2010018928A2 (en) Method for avoiding interference in mobile communication system
EP2858400A1 (en) Communication controller, base station, terminal equipment and communication control method
WO2013025034A2 (en) Device and method for selecting a cell according to a speed of a terminal in a mobile communication network
EP2975898A1 (en) System and method for coordinating interference between communications nodes
CN111093210B (en) Communication system
Kim et al. SON and femtocell technology for LTE-advanced system
WO2016076564A1 (en) Method and apparatus for supporting local gateway service for dual connectivity in wireless communication system
WO2013035941A1 (en) Method for determining a pdsch start symbol of an ec between heterogeneous networks, and mobile communication system therefor
KR101417150B1 (en) Method for providing mobility between node-b and relay, and mobile telecommunication system for the same
KR20130026361A (en) Method for deciding pdsch start symbol of extension carrier and mobile telecommunication system for the same
KR20120076898A (en) Radio resource allocation apparatus for improving handover and base station for the same
KR20130026371A (en) Method for processing signal of extension carrier and mobile telecommunication system for the same
KR20140128723A (en) Method and apparatus of small cell autonomous configuration to avoid inter-cell interference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872146

Country of ref document: EP

Kind code of ref document: A1