WO2013035784A1 - Device for controlling dual-clutch automatic transmission - Google Patents

Device for controlling dual-clutch automatic transmission Download PDF

Info

Publication number
WO2013035784A1
WO2013035784A1 PCT/JP2012/072732 JP2012072732W WO2013035784A1 WO 2013035784 A1 WO2013035784 A1 WO 2013035784A1 JP 2012072732 W JP2012072732 W JP 2012072732W WO 2013035784 A1 WO2013035784 A1 WO 2013035784A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
clutch
clutches
gear
transmission
Prior art date
Application number
PCT/JP2012/072732
Other languages
French (fr)
Japanese (ja)
Inventor
年雄 水野
熊沢 厚
Original Assignee
ダイムラー・アクチェンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイムラー・アクチェンゲゼルシャフト filed Critical ダイムラー・アクチェンゲゼルシャフト
Publication of WO2013035784A1 publication Critical patent/WO2013035784A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/183Rate of change of accelerator position, i.e. pedal or throttle change gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration

Definitions

  • the present invention relates to a control device for a dual clutch automatic transmission, and more particularly to a control device capable of smoothly reversing the engagement / disengagement state of both clutches without a shock during gear shifting.
  • some so-called parallel shaft type transmissions used for trucks, buses, and the like have automatic shifting operations and clutch connecting / disconnecting operations using actuators for the purpose of simplifying driving operations.
  • this type of automatic transmission is not equipped with a torque converter, it is suitable for transmission of a large driving force.
  • a so-called dual clutch type automatic transmission has been put into practical use in order to solve such problems of the parallel shaft type automatic transmission.
  • a first gear mechanism composed of a plurality of odd speed stages is connected to a driving power source such as an engine via a first clutch, and a plurality of even numbers are connected via a second clutch.
  • a second gear mechanism composed of a shift stage is connected, and the driving force from the engine can be transmitted to the driving wheel side selectively through these two systems of driving paths.
  • any even gear speed is determined depending on the acceleration / deceleration state of the vehicle.
  • the second gear mechanism is switched to the next shift stage by predicting the shift stage as the next shift stage (hereinafter referred to as preselection). Then, when the shift timing to the next shift stage is reached, the connection state of both clutches is reversed to complete the shift to the next shift stage without interrupting power transmission (this is the actual shift stage). Since it corresponds to the time of shifting, it is hereinafter referred to as shifting).
  • Such reverse rotation of the clutch engaged / disengaged state at the time of shifting is performed, for example, by operating one clutch to the disconnected side and operating the other clutch to the connected side. Both clutch operations need to be linked appropriately, and if the linkage is inappropriate, the torque transmitted through each clutch (hereinafter referred to as clutch torque) is not properly controlled, It becomes a factor that deteriorates the shift feeling such as torque loss.
  • Patent Document 1 As a technique related to clutch control at the time of shifting, a technique described in Patent Document 1 has been proposed.
  • the clutch torque is controlled based on the engine rotational speed.
  • the clutch torque increases in response to the increase in the engine rotational speed. Since the clutch is suddenly engaged, a shift shock is generated. Therefore, when the accelerator pedal is increased during coast down shift, the decrease gradient of the release-side clutch capacity is set smaller than the case where the accelerator pedal is not increased to suppress the increase of the engine speed and the sudden engagement of the clutch. The shift shock is prevented.
  • FIG. 5 is a control block diagram showing the actual engine torque and requested torque input status to the T / M-ECU in the prior art.
  • the T / M-ECU 12 that controls the transmission including the clutch control receives the actual engine torque and the driver's required torque as information from the E / G-ECU 11 side of the engine control.
  • the actual engine torque can be used as an index, the actual engine torque increases or decreases during engine shift due to engine rotation control in response to switching from the current gear to the next gear.
  • the vehicle behavior is jerky due to the clutch control. Therefore, the actual engine torque is basically used for the shift control and clutch control executed on the T / M-ECU 12 side, while the request from the driver treated as the target value on the engine control side only during the shift.
  • the torque is regarded as the engine torque, and the clutch torque is controlled based on this required torque. Therefore, for example, when the accelerator is stepped on during shifting, both clutch torques are controlled to increase according to the increase in required torque, and clutch slippage is suppressed
  • the time chart of FIG. 6 shows the increase state of the required torque and the actual engine torque at this time.
  • the actual engine torque indicated by the solid line does not follow the stepwise increase of the required torque indicated by the broken line, It can be seen that there is a large transitional difference.
  • the clutch torque is controlled based on a higher required torque.
  • each clutch torque is set to increase in a stepwise manner in order to suppress slipping of the clutch, and there is a problem that a shock is generated by both clutches being rapidly controlled in the connecting direction.
  • Patent Document 1 that controls the clutch torque using the engine rotation speed as an index.
  • the present invention has been made to solve such problems, and the object of the present invention is to smoothly reverse the connection and disconnection states of both clutches without shock even if the accelerator is stepped on during shifting. It is an object of the present invention to provide a control device for a dual clutch type automatic transmission capable of realizing a good speed change feeling.
  • a pair of gear mechanisms comprising a plurality of shift speeds are connected to the traveling power source side through clutches, and one of the gear mechanisms is connected by corresponding one clutch.
  • the transmission torque of both clutches is controlled based on the driver's required torque applied to the control of the driving power source, and the clutch is disconnected.
  • the transmission torque of the clutch on the side is continuously reduced, the transmission torque of the clutch on the connection side is continuously increased, and the required torque is increased by stepping on the accelerator during shifting
  • the clutch control means during shifting that controls the transmission torque of both clutches in an increasing direction to prevent clutch slipping, and the actual torque of the driving power source that follows the increase in the required torque due to increased accelerator depression with a delay Filter means for smoothing the required torque so as to approximate the characteristics
  • the clutch control means during shifting controls the transmission torque of both clutches based on the required torque after the smoothing process by the filter means.
  • the filter means sequentially corresponds to the rising characteristics in each torque area.
  • the required torque is smoothed.
  • the actual torque of the driving power source rises when the accelerator is stepped on during the shift that reverses the clutch engagement / disengagement state.
  • the driver's required torque is smoothed by the filter means, and the transmission torque of both clutches is controlled based on the processed required torque to reverse the connection / disconnection state. Therefore, even if the actual engine torque is delayed following the required torque during the shift, the request after the annealing process that substantially matches the torque that is actually transmitted via both clutches. Based on the torque, the transmission torque of the clutch is controlled.
  • each transmission torque is controlled in the increasing direction so as to correspond to the increase in the required torque after the annealing process without being controlled stepwise in the increasing direction based on the excessive required torque. Therefore, after preventing a shock due to the sudden engagement of the clutch, it is possible to smoothly complete the shift by suppressing the clutch slip resulting from the increased depression of the accelerator during the shift, and to realize a good shift feeling.
  • control apparatus for a dual clutch type automatic transmission of the second invention in addition to the configuration of the first invention, when the actual torque rising characteristics differ for each of the plurality of torque areas, the rising in each torque area The required torque is gradually processed according to the characteristics. Therefore, both clutch torques can be appropriately controlled even with the actual engine torque rising characteristic.
  • FIG. 3 is a control block diagram illustrating an input state of actual engine torque and required torque to the T / M-ECU of the embodiment. It is a time chart which shows the filter processing condition of the demand torque at the time of accelerator depression of 1st Embodiment. It is a time chart which shows the filter processing condition of the demand torque at the time of the accelerator depression of 2nd Embodiment. It is a control block diagram which shows the input condition of the real engine torque and request torque to T / M-ECU of a prior art. It is a time chart which shows the control condition of the clutch torque at the time of accelerator depression of a prior art.
  • FIG. 1 is an overall configuration diagram showing a control device for a dual clutch type automatic transmission according to the present embodiment.
  • a vehicle is equipped with a diesel engine (hereinafter referred to as an engine) 1 as a driving power source.
  • the engine 1 is configured as a so-called common rail engine that supplies high-pressure fuel accumulated in a common rail by a pressurizing pump to the fuel injection valves of each cylinder and injects the fuel into the cylinder as each fuel injection valve opens.
  • An output shaft 1a of the engine 1 protrudes rearward of the vehicle (rightward in the figure) and is connected to an input shaft 2a of an automatic transmission (hereinafter simply referred to as a transmission) 2.
  • the transmission 2 has six forward speeds (first to sixth speeds) and one reverse speed. After the power of the engine 1 is input to the transmission 2 through the input shaft 2a, the transmission 2 according to the gear speed. The speed is changed and transmitted from the output shaft 2b to the drive wheel (not shown). Needless to say, the gear position of the transmission 2 is not limited to the above and can be arbitrarily changed.
  • the transmission 2 is configured as a so-called dual clutch transmission.
  • the details of the dual clutch transmission are described in, for example, Japanese Patent Application Laid-Open No. 2009-035168.
  • FIG. 1 shows the transmission 2 in a schematic representation different from the actual mechanism, and the configuration and operating state of the transmission 2 will also be conceptually described in the following description.
  • a dual clutch type transmission is provided with an odd-numbered gear stage and an even-numbered gear stage as mutually independent power transmission systems, and when one of them is transmitting power, the other is predicted next. By switching to the gear in advance, the system completes the switch to the next gear without interrupting power transmission.
  • the input shaft 2a of the transmission 2 is connected to a gear mechanism G1 consisting of odd gears (first, third, and fifth gears) via a clutch C1, and the clutch C2 is also connected to the input shaft 2a.
  • a gear mechanism G2 composed of even-numbered speed stages (2, 4, and 6 speed stages) is connected to the output side of these gear mechanisms G1 and G2, and is connected to the common output shaft 2b.
  • the transmission 2 includes a power transmission system including the clutch C1 and the gear mechanism G1 and a power transmission system including the clutch C2 and the gear mechanism G2, which are independent from each other.
  • both the clutches C1 and C2 are double-sided with the clutch C1 on the odd-numbered gear side being the inner peripheral side and the clutch C2 on the even-numbered gear side being the outer peripheral side. It is arranged. Therefore, in the following description, the odd-numbered speed side clutch C1 is referred to as an inner clutch, and the even-numbered speed side clutch C2 is referred to as an outer clutch.
  • a hydraulic cylinder 3 is connected to each of the inner clutch C1 and the outer clutch C2, and both hydraulic cylinders 3 are connected to a hydraulic supply source 6 via an oil passage 5 in which an electromagnetic valve 4 is interposed.
  • the system of the clutches C1 and C2 is not limited to this, and for example, air drive may be adopted instead of hydraulic drive with respect to the drive system.
  • the gear shift unit 7 is provided in each of the gear mechanism G1 for odd-numbered gears and the gear mechanism G2 for even-numbered gears of the transmission 2.
  • the gear shift unit 7 incorporates a plurality of hydraulic cylinders that operate shift forks corresponding to the respective gear positions in the gear mechanisms G1 and G2, and a plurality of electromagnetic valves that operate each hydraulic cylinder.
  • the gear shift unit 7 is connected to the above-described hydraulic supply source 6 through an oil passage 8, and hydraulic oil from the hydraulic supply source 6 is supplied to a corresponding hydraulic cylinder in accordance with the opening and closing of each solenoid valve.
  • the gear stages of the corresponding gear mechanisms G1 and G2 are switched according to the switching operation.
  • the vehicle according to the present embodiment is a truck, it is assumed that the vehicle will start at the second speed.
  • each gear stage is sequentially switched to the upshift side or the downshift side at the second speed stage or higher.
  • the state of connection / disconnection of the inner clutch C1 and the outer clutch C2 is always switched in the reverse direction.
  • the gear mechanisms G1 and G2 are in a state where none of the gears transmits power.
  • an E / G-ECU 11 that controls the engine 1 and a T / M-ECU 12 that controls the transmission 2 including clutch control are installed in the vehicle interior.
  • a storage device (ROM, RAM, etc.) used for storing a control map, a central processing unit (CPU), a timer counter, and the like are provided.
  • devices such as a common rail pressure increasing pump attached to the engine 1 and fuel injection valves for each cylinder are connected.
  • the engine rotation speed sensor 22 and the vehicle speed sensor 28 are connected to the input side of the T / M-ECU 12, and the clutch rotation for detecting the rotation speeds Ncl and Nc2 on the output side of the inner clutch C1 and the outer clutch C2.
  • Sensors such as a speed sensor 23, a lever position sensor 24 for detecting the switching position of the change lever 9 provided in the driver's seat, and a gear position sensor 25 for detecting the gear position of the gear mechanisms G1 and G2 are connected.
  • Devices such as the electromagnetic valves 4 of the clutches C1 and C2 and the electromagnetic valves of the gear shift unit 7 are connected to the output side of the T / M-ECU 12. Note that the engine 1 and the transmission 2 may be controlled together by a common ECU without separately providing the ECUs 11 and 12 on the engine 1 side and the transmission 2 side as described above.
  • the E / G-ECU 11 calculates the driver's required torque based on the accelerator operation amount ⁇ acc detected by the accelerator sensor 27, the engine rotational speed Ne detected by the engine rotational speed sensor 22, and the like, and based on this required torque.
  • the rail pressure of the common rail, the fuel injection amount to each cylinder, and the fuel injection timing are calculated.
  • the pressurization pump is driven and controlled based on these calculated values, and the engine 1 is operated while driving the fuel injection valve of each cylinder to achieve the required torque.
  • the driver's required torque is used as an index for executing shift control and clutch control on the T / M-ECU 12 side together with the actual engine torque.
  • the E / G-ECU 11 calculates actual engine torque from the engine rotational speed Ne, the fuel injection amount, and the like, and outputs these actual engine torque and required torque to the T / M-ECU 12 side.
  • the T / M-ECU 12 selects the automatic transmission mode when the lever position sensor 24 detects that the change lever 9 is switched to the D range (drive range), and the accelerator operation amount ⁇ acc and the vehicle speed sensor 28 Based on the detected vehicle speed V, shift control is performed to achieve a target shift stage determined from a shift map (not shown), and the shift to the next shift stage predicted from acceleration / deceleration of the vehicle prior to shifting to the target shift stage is performed. Perform pre-selection.
  • the gear stage on the high gear side adjacent to the current gear stage is predicted as the next gear stage, and the hydraulic cylinder is operated by opening and closing predetermined electromagnetic valves of the gear mechanisms G1 and G2 that interrupt power transmission.
  • the clutches of the gear mechanisms G1 and G2 on the side having the target gear position by the hydraulic cylinder 3 are used. C1 and C2 are connected and the other clutches C1 and C2 are disconnected to complete the shift to the target shift stage.
  • Such reverse rotation of the clutch engagement / disengagement state at the time of shifting continuously decreases the clutch torque (transmission torque) on the disconnect side to 100-0% and continuously decreases the clutch torque on the connection side to 0-100%. It is done by increasing.
  • the clutch torque during the shift is controlled based on the required torque input from the E / G-ECU 11. For example, when the accelerator is stepped on during the shift, both clutch torques increase as the required torque increases. Is controlled to suppress clutch slippage (clutch control means during shifting).
  • FIG. 2 is a control block diagram showing an input state of the actual engine torque and the required torque to the T / M-ECU 12.
  • the actual engine torque and the driver's requested torque are input to the T / M-ECU 12 as information from the E / G-ECU 11 side.
  • a filter circuit 29 (filter means) is added to the T / M-ECU 12, and the required torque input from the E / G-ECU 11 is changed to the filter circuit. 29, and the processed required torque (hereinafter referred to as the post-filter required torque and distinguished from the pre-filter required torque) is applied to control of the clutch torque.
  • the filter circuit 29 is set to the characteristics described below.
  • the E / G-ECU 11 side rail pressure control and fuel injection control are executed so as to achieve the driver's required torque. Due to the responsiveness of these engine controls, the actual engine The torque follows with a delay. For this reason, as shown in FIG. 6 showing the prior art, on the T / M-ECU 12 side, when the required torque indicated by the broken line increases stepwise due to the stepping on the accelerator during shifting, the actual engine torque indicated by the solid line does not follow. It rises with a delay, causing a large difference between them and causing a shock.
  • the characteristics of the filter circuit 29 are set based on the rising characteristics of the actual engine torque at this time so that the required torque can be smoothed by approximating this characteristic.
  • the difference in the actual engine torque rise characteristics is a phase difference such as the rise and fall of the rise (the magnitude of the follow-up delay) and the increasing process (for example, approximating to the primary delay or approximating the secondary delay) It depends on the specifications of the engine 1 (for example, the type of diesel or gasoline, the intake / exhaust system layout, the shape of the combustion chamber, etc.).
  • the rise and fall of the rise is dealt with by appropriately setting the time constant of the filter circuit 29.
  • the rise of the rise is handled by a transfer function of the filter circuit 29 that is close to the rise. This can be dealt with by setting (set as a first-order lag filter in FIG. 3).
  • the setting of the filter circuit 29 is not limited to this as long as it can approximate the actual engine torque.
  • it may be handled by a method such as limiting the moving average or the amount of increase per unit time, and for the increase process, a first-order lag filter is used. Instead, a second-order lag filter may be used.
  • the required torque is smoothed by the filter circuit 29 set as described above, the required torque input from the E / G-ECU 11 side is stepwise when the accelerator is stepped on during shifting. Although increasing, the required torque after filtering as shown by the broken line in the time chart of FIG. 3 increases more gently so as to approximate the rising characteristic of the actual engine torque indicated by the solid line.
  • both clutches C1 and C2 that is, the actual engine torque
  • the clutch torque is controlled based on an index (that is, the required torque after the filter) that is substantially the same.
  • both clutch torques are controlled in the increasing direction so as to correspond to the increase in the required torque after filtering without being controlled stepwise in the increasing direction based on the excessive required torque.
  • the shock caused by the sudden contact of the clutches C1 and C2 can be prevented, and the clutch slip caused by the increased stepping on the accelerator during the shift can be suppressed and the shift can be completed smoothly, and a good shift feeling can be realized.
  • the filter circuit 29 is added to the T / M-ECU 12 as compared with the control device of the prior art, and the output information (actual engine torque and request) of the E / G-ECU 11 is added. (Torque) is not changed at all. For this reason, it is not necessary to change the specifications of the E / G-ECU 11, and it is possible to cope with the change by simply adding the filter circuit 29 on the T / M-ECU 12 side.
  • the engine 1 has various specifications. For example, there is also a specification in which the rising characteristics of the actual engine torque are multistaged with emphasis on improving the exhaust characteristics of the engine out.
  • FIG. 4 is a time chart showing the rising characteristics of the actual engine torque when the accelerator is further depressed during shifting in such an engine specification.
  • the rising characteristic of the actual engine torque is divided into two torque regions with the switching point T as a boundary. As shown by the solid line, the actual engine torque suddenly increases in the region E1 from the start of increasing the accelerator to the switching point T. In the region E2 beyond the switching point T, it gradually increases.
  • Such a rise characteristic is a measure that takes into account that if the actual engine torque is suddenly increased in the region E2 above the switching point T, the exhaust gas characteristic is significantly deteriorated.
  • the required torque after filtering according to the first embodiment indicated by a two-point difference line in the figure cannot approximate the required torque to the actual engine torque in both regions E1 and E2 having the switching point T as a boundary. Therefore, a countermeasure considering the above points will be described below as a second embodiment.
  • the filter circuit 29 approximates a sudden increase in the actual engine torque in the region E1 below the switching point T, and a region E2 above the switching point T for smoothing the required torque.
  • a second time constant for smoothing the required torque is set to approximate a gradual increase in the actual engine torque at, and these time constants can be arbitrarily switched.
  • the switching of the time constant of the filter circuit 29 is executed with the switching point T as a threshold value, the first time constant is used in the region E1 below the switching point T, and the second time constant is used in the region E2 above the switching point T. It is done.
  • the required torque after filtering increases rapidly in the region E1, increases more gradually in the region E2, and the required torque is the actual engine torque indicated by the solid line in any region E1, E2. It increases to approximate the rise characteristic of. Accordingly, even in the case of the actual engine torque rising characteristic, both clutch torques can be appropriately controlled when the accelerator is increased during shifting, so that the connection / disconnection state of both clutches C1 and C2 can be made without shock. It is possible to realize a good shift feeling by smoothly reversing the rotation.
  • two types of time constants are set in the filter circuit 29 corresponding to the two-stage rising characteristics of the actual engine torque. However, the actual engine torque rising characteristics have three or more stages according to the engine specifications. If so, the time constant may be set accordingly.
  • the diesel engine 1 is mounted on the vehicle as a driving power source.
  • the driving power source is not limited to this, and can be arbitrarily changed.
  • the driving power source may be changed to a gasoline engine or an electric motor. .

Abstract

Provided is a device for controlling a dual-clutch automatic transmission able to smoothly and without shocks reverse the engagement/disengagement state of both clutches even while increasing the depression of an accelerator during shifting, and thus can achieve a favorable shifting feeling. During shifting that reverses the engagement/disengagement state of the clutches (C1, C2), both clutch torques are controlled on the basis of a request torque applied in engine control, and meanwhile when the accelerator is depressed more during shifting, the request torque is subjected to moderating processing by a filter circuit (29) in a manner so as to increase similarly to the rise of actual engine torque that, with a lag, tracks the stepped increase of the request torque, and clutch torque is controlled on the basis of the post-processing request torque.

Description

デュアルクラッチ式自動変速機の制御装置Control device for dual clutch automatic transmission
 本発明はデュアルクラッチ式自動変速機の制御装置に係り、詳しくは変速時に両クラッチの断接状態をショックなく円滑に逆転可能な制御装置に関する。 The present invention relates to a control device for a dual clutch automatic transmission, and more particularly to a control device capable of smoothly reversing the engagement / disengagement state of both clutches without a shock during gear shifting.
 例えばトラックやバスなどに用いられる所謂平行軸式の変速機には、運転操作の簡略化を目的として変速操作及びクラッチ断接操作をアクチュエータにより自動化したものがある。この種の自動変速機はトルクコンバータを備えないことから大きな駆動力の伝達に適するという特徴がある反面、変速時にクラッチ遮断により動力伝達が一時的に中断されるため変速フィーリングの点で改善の余地があった。
 このような並行軸式の自動変速機の不具合を解決すべく、所謂デュアルクラッチ式自動変速機が実用化されている。このデュアルクラッチ式自動変速機は、エンジンなどの走行動力源に対して、第1クラッチを介して複数の奇数変速段からなる第1歯車機構を連結すると共に、第2クラッチを介して複数の偶数変速段からなる第2歯車機構を連結し、これらの2系統の駆動経路を選択的に介してエンジンからの駆動力を駆動輪側に伝達し得るように構成されている。
For example, some so-called parallel shaft type transmissions used for trucks, buses, and the like have automatic shifting operations and clutch connecting / disconnecting operations using actuators for the purpose of simplifying driving operations. Although this type of automatic transmission is not equipped with a torque converter, it is suitable for transmission of a large driving force. There was room.
A so-called dual clutch type automatic transmission has been put into practical use in order to solve such problems of the parallel shaft type automatic transmission. In this dual clutch type automatic transmission, a first gear mechanism composed of a plurality of odd speed stages is connected to a driving power source such as an engine via a first clutch, and a plurality of even numbers are connected via a second clutch. A second gear mechanism composed of a shift stage is connected, and the driving force from the engine can be transmitted to the driving wheel side selectively through these two systems of driving paths.
 例えば、第1クラッチの接続により第1歯車機構の何れかの奇数変速段を介してエンジンからの駆動力を駆動輪側に伝達しているときには、車両の加減速状況などから何れかの偶数変速段を次変速段として予測して、第2歯車機構を次変速段に切り換えている(以下、この変速段の切換をプリセレクトという)。そして、次変速段への変速タイミングに至った時点で両クラッチの断接状態を逆転させることにより、動力伝達を中断することなく次変速段への変速を完了している(このときが実際の変速時に相当するため、以下、変速という)。このような変速時のクラッチ断接状態の逆転は、例えば一方のクラッチを切断側に操作しながら他方のクラッチを接続側に操作することにより行われる。双方のクラッチ操作は適切に連携させる必要があり、連携が不適切な場合には、それぞれのクラッチを介して伝達されるトルク(以下、クラッチトルクという)が適切に制御されずに、ショック発生やトルク抜けなどの変速フィーリングを悪化させる要因になる。 For example, when the driving force from the engine is transmitted to the driving wheel side via any odd gear position of the first gear mechanism by connecting the first clutch, any even gear speed is determined depending on the acceleration / deceleration state of the vehicle. The second gear mechanism is switched to the next shift stage by predicting the shift stage as the next shift stage (hereinafter referred to as preselection). Then, when the shift timing to the next shift stage is reached, the connection state of both clutches is reversed to complete the shift to the next shift stage without interrupting power transmission (this is the actual shift stage). Since it corresponds to the time of shifting, it is hereinafter referred to as shifting). Such reverse rotation of the clutch engaged / disengaged state at the time of shifting is performed, for example, by operating one clutch to the disconnected side and operating the other clutch to the connected side. Both clutch operations need to be linked appropriately, and if the linkage is inappropriate, the torque transmitted through each clutch (hereinafter referred to as clutch torque) is not properly controlled, It becomes a factor that deteriorates the shift feeling such as torque loss.
 変速時のクラッチ制御に関する技術として、特許文献1に記載されたものが提案されている。当該特許文献1の技術では、クラッチトルクをエンジン回転速度に基づき制御しているが、コーストダウン時の変速中にアクセル踏み増しが行われると、エンジン回転速度の上昇に呼応してクラッチトルクが増加側に制御されるため、クラッチが急接されて変速ショックを生じてしまう。そこで、コーストダウン変速中にアクセル踏み増しがなされたときには、アクセル踏み増し無しの場合よりも解放側クラッチ容量の減少勾配を小さく設定してエンジン回転速度の上昇、ひいてはクラッチの急接を抑制して変速ショックの防止を図っている。
 一方、エンジン回転速度を指標としてクラッチトルクを制御する特許文献1の技術とは別に、エンジントルクを指標とする技術も実施されている。指標としてエンジントルクを用いるのは、両クラッチがエンジンからのトルクを分担して伝達しており、この点についてはクラッチ断接状態の逆転によりトルク分担が変化する変速中でも相違ないことを鑑みたものである。
As a technique related to clutch control at the time of shifting, a technique described in Patent Document 1 has been proposed. In the technique of Patent Document 1, the clutch torque is controlled based on the engine rotational speed. However, if the accelerator is stepped on during the gear shift during the coast down, the clutch torque increases in response to the increase in the engine rotational speed. Since the clutch is suddenly engaged, a shift shock is generated. Therefore, when the accelerator pedal is increased during coast down shift, the decrease gradient of the release-side clutch capacity is set smaller than the case where the accelerator pedal is not increased to suppress the increase of the engine speed and the sudden engagement of the clutch. The shift shock is prevented.
On the other hand, apart from the technique of Patent Document 1 that controls the clutch torque using the engine rotation speed as an index, a technique using the engine torque as an index has also been implemented. The engine torque is used as an index because both clutches share the torque from the engine, and this point is taken into consideration that the torque sharing does not change even when the torque sharing changes due to the reverse rotation of the clutch connection / disconnection state. It is.
 図5は従来技術におけるT/M-ECUへの実エンジントルク及び要求トルクの入力状況を示す制御ブロック図である。クラッチ制御を含めた変速機の制御を司るT/M-ECU12には、エンジン制御のE/G―ECU11側から情報として実エンジントルクと運転者の要求トルクとが入力されている。指標として実際のエンジントルクを用いることもできるが、変速中には現変速段から次変速段への切換に応じたエンジン回転制御により実エンジントルクは増減することから、これを指標にすると不適切なクラッチ制御により車両挙動がギクシャクしてしまう。そこで、T/M-ECU12側で実行する変速制御やクラッチ制御には基本的に実エンジントルクを用いる一方、変速中に限っては、エンジン制御側で目標値として取り扱われている運転者の要求トルクをエンジントルクと見なし、この要求トルクに基づきクラッチトルクを制御している。従って、例えば変速中にアクセルが踏み増しされると、要求トルクの増加に応じて双方のクラッチトルクが増加側に制御されてクラッチ滑りの抑制が図られる。 FIG. 5 is a control block diagram showing the actual engine torque and requested torque input status to the T / M-ECU in the prior art. The T / M-ECU 12 that controls the transmission including the clutch control receives the actual engine torque and the driver's required torque as information from the E / G-ECU 11 side of the engine control. Although the actual engine torque can be used as an index, the actual engine torque increases or decreases during engine shift due to engine rotation control in response to switching from the current gear to the next gear. The vehicle behavior is jerky due to the clutch control. Therefore, the actual engine torque is basically used for the shift control and clutch control executed on the T / M-ECU 12 side, while the request from the driver treated as the target value on the engine control side only during the shift. The torque is regarded as the engine torque, and the clutch torque is controlled based on this required torque. Therefore, for example, when the accelerator is stepped on during shifting, both clutch torques are controlled to increase according to the increase in required torque, and clutch slippage is suppressed.
特開2009-127792号公報JP 2009-127772 A
 ところが、エンジン制御の応答性に起因して、要求トルクに対して実エンジントルクに一時的な追従遅れが生じる。図6のタイムチャートは、このときの要求トルク及び実エンジントルクの増加状態を示しており、破線で示す要求トルクのステップ的な増加に対して実線で示す実エンジントルクが追従せず、両者間に過渡的に大きな差が生じていることが判る。
 このような状況では実エンジントルク、換言すれば両クラッチを介して実際に伝達されているトルクが低いにも拘わらず、それよりも高い要求トルクに基づきクラッチトルクが制御されることになる。結果として、クラッチの滑りの抑制のためにそれぞれのクラッチトルクがステップ的に増加方向に設定されて、両クラッチが共に接続方向に急速に制御されることによりショックを発生するという問題があった。
 言うまでもなく、エンジン回転速度を指標としてクラッチトルクを制御する特許文献1の技術では以上の不具合は解決できないことは明らかである。
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、変速中にアクセル踏み増しがなされても両クラッチの断接状態をショックなく円滑に逆転でき、もって良好な変速フィーリングを実現することができるデュアルクラッチ式自動変速機の制御装置を提供することにある。
However, due to the responsiveness of engine control, a temporary follow-up delay occurs in the actual engine torque with respect to the required torque. The time chart of FIG. 6 shows the increase state of the required torque and the actual engine torque at this time. The actual engine torque indicated by the solid line does not follow the stepwise increase of the required torque indicated by the broken line, It can be seen that there is a large transitional difference.
In such a situation, although the actual engine torque, in other words, the torque actually transmitted via both clutches is low, the clutch torque is controlled based on a higher required torque. As a result, each clutch torque is set to increase in a stepwise manner in order to suppress slipping of the clutch, and there is a problem that a shock is generated by both clutches being rapidly controlled in the connecting direction.
Needless to say, it is obvious that the above-described problem cannot be solved by the technique of Patent Document 1 that controls the clutch torque using the engine rotation speed as an index.
The present invention has been made to solve such problems, and the object of the present invention is to smoothly reverse the connection and disconnection states of both clutches without shock even if the accelerator is stepped on during shifting. It is an object of the present invention to provide a control device for a dual clutch type automatic transmission capable of realizing a good speed change feeling.
 上記目的を達成するため、第1の発明は、複数の変速段からなる一対の歯車機構をそれぞれクラッチを介して走行動力源側と接続し、一方のクラッチを接続して対応する一方の歯車機構の変速段を介した動力伝達中に他方の歯車機構を予め次変速段に切り換えるプリセレクトを実行し、プリセレクト後に両クラッチの断接状態を逆転させて次変速段への切換を完了するデュアルクラッチ式自動変速機の制御装置において、クラッチの断接状態を逆転させる変速中に、走行動力源の制御に適用される運転者の要求トルクに基づき両クラッチの伝達トルクをそれぞれ制御して、切断側のクラッチの伝達トルクを連続的に低下させ、接続側のクラッチの伝達トルクを連続的に増加させると共に、変速中のアクセル踏み増しによる要求トルクの増加に応じて、クラッチ滑りを防止すべく両クラッチの伝達トルクを増加方向に制御する変速中クラッチ制御手段と、アクセル踏み増しによる要求トルクの増加に対して遅れをもって追従する走行動力源の実トルクの立ち上がり特性と近似するように、要求トルクをなまし処理するフィルタ手段とを備え、変速中クラッチ制御手段が、フィルタ手段によるなまし処理後の要求トルクに基づき両クラッチの伝達トルクを制御するものである。 To achieve the above object, according to a first aspect of the present invention, a pair of gear mechanisms comprising a plurality of shift speeds are connected to the traveling power source side through clutches, and one of the gear mechanisms is connected by corresponding one clutch. The pre-selection to switch the other gear mechanism to the next gear stage in advance during power transmission through the first gear stage, and the pre-selection to reverse the connection and disconnection states of both clutches to complete the switch to the next gear stage. In the control device of the clutch type automatic transmission, during the shift to reverse the clutch connection / disconnection state, the transmission torque of both clutches is controlled based on the driver's required torque applied to the control of the driving power source, and the clutch is disconnected. The transmission torque of the clutch on the side is continuously reduced, the transmission torque of the clutch on the connection side is continuously increased, and the required torque is increased by stepping on the accelerator during shifting In response, the clutch control means during shifting that controls the transmission torque of both clutches in an increasing direction to prevent clutch slipping, and the actual torque of the driving power source that follows the increase in the required torque due to increased accelerator depression with a delay Filter means for smoothing the required torque so as to approximate the characteristics, and the clutch control means during shifting controls the transmission torque of both clutches based on the required torque after the smoothing process by the filter means. .
 第2の発明は、上記自動変速機の制御装置において、フィルタ手段が、走行動力源の実トルクの立ち上がり特性が複数のトルク領域毎に異なるとき、各トルク領域での立ち上がり特性に対応して順次要求トルクをなまし処理するものである。 According to a second aspect of the present invention, in the control device for an automatic transmission, when the rising characteristics of the actual torque of the driving power source are different for each of the plurality of torque areas, the filter means sequentially corresponds to the rising characteristics in each torque area. The required torque is smoothed.
 以上説明したように第1の発明のデュアルクラッチ式自動変速機の制御装置によれば、クラッチの断接状態を逆転させる変速中にアクセル踏み増しがなされたときの走行動力源の実トルクの立ち上がり特性と近似するように、運転者の要求トルクをフィルタ手段によりなまし処理し、処理後の要求トルクに基づき両クラッチの伝達トルクを制御して断接状態を逆転させるようにした。
 従って、変速中において要求トルクに対して実エンジントルクが追従遅れを生じている期間であっても、両クラッチを介して実際に伝達されているトルクに対して略一致するなまし処理後の要求トルクに基づきクラッチの伝達トルクが制御される。このため、それぞれの伝達トルクは過剰な要求トルクに基づき増加方向にステップ的に制御されることなく、なまし処理後の要求トルクの増加と対応するように緩やかに増加方向に制御される。よって、クラッチの急接によるショックを防止した上で、変速中のアクセル踏み増しに起因するクラッチ滑りを抑制して円滑に変速を完了でき、良好な変速フィーリングを実現することができる。
As described above, according to the control apparatus for the dual clutch type automatic transmission of the first aspect of the present invention, the actual torque of the driving power source rises when the accelerator is stepped on during the shift that reverses the clutch engagement / disengagement state. To approximate the characteristics, the driver's required torque is smoothed by the filter means, and the transmission torque of both clutches is controlled based on the processed required torque to reverse the connection / disconnection state.
Therefore, even if the actual engine torque is delayed following the required torque during the shift, the request after the annealing process that substantially matches the torque that is actually transmitted via both clutches. Based on the torque, the transmission torque of the clutch is controlled. For this reason, each transmission torque is controlled in the increasing direction so as to correspond to the increase in the required torque after the annealing process without being controlled stepwise in the increasing direction based on the excessive required torque. Therefore, after preventing a shock due to the sudden engagement of the clutch, it is possible to smoothly complete the shift by suppressing the clutch slip resulting from the increased depression of the accelerator during the shift, and to realize a good shift feeling.
 第2の発明のデュアルクラッチ式自動変速機の制御装置によれば、第1の発明の構成に加えて、実トルクの立ち上がり特性が複数のトルク領域毎に異なるときに、各トルク領域での立ち上がり特性に対応して順次要求トルクをなまし処理するようにした。従って、このような実エンジントルクの立ち上がり特性でも、両クラッチトルクを適切に制御することができる。 According to the control apparatus for a dual clutch type automatic transmission of the second invention, in addition to the configuration of the first invention, when the actual torque rising characteristics differ for each of the plurality of torque areas, the rising in each torque area The required torque is gradually processed according to the characteristics. Therefore, both clutch torques can be appropriately controlled even with the actual engine torque rising characteristic.
実施形態のデュアルクラッチ式自動変速機の制御装置を示す全体構成図である。It is a whole lineblock diagram showing the control device of the dual clutch type automatic transmission of an embodiment. 実施形態のT/M-ECUへの実エンジントルク及び要求トルクの入力状況を示す制御ブロック図である。FIG. 3 is a control block diagram illustrating an input state of actual engine torque and required torque to the T / M-ECU of the embodiment. 第1実施形態のアクセル踏み増し時の要求トルクのフィルタ処理状況を示すタイムチャートである。It is a time chart which shows the filter processing condition of the demand torque at the time of accelerator depression of 1st Embodiment. 第2実施形態のアクセル踏み増し時の要求トルクのフィルタ処理状況を示すタイムチャートである。It is a time chart which shows the filter processing condition of the demand torque at the time of the accelerator depression of 2nd Embodiment. 従来技術のT/M-ECUへの実エンジントルク及び要求トルクの入力状況を示す制御ブロック図である。It is a control block diagram which shows the input condition of the real engine torque and request torque to T / M-ECU of a prior art. 従来技術のアクセル踏み増し時のクラッチトルクの制御状況を示すタイムチャートである。It is a time chart which shows the control condition of the clutch torque at the time of accelerator depression of a prior art.
[第1実施形態]
 以下、本発明を具体化したデュアルクラッチ式自動変速機の制御装置の第1実施形態を説明する。
 図1は本実施形態のデュアルクラッチ式自動変速機の制御装置を示す全体構成図である。車両には走行動力源としてディーゼルエンジン(以下、エンジンという)1が搭載されている。エンジン1は、加圧ポンプによりコモンレールに蓄圧した高圧燃料を各気筒の燃料噴射弁に供給し、各燃料噴射弁の開弁に伴って筒内に噴射する所謂コモンレール式機関として構成されている。
[First Embodiment]
Hereinafter, a first embodiment of a control apparatus for a dual clutch automatic transmission embodying the present invention will be described.
FIG. 1 is an overall configuration diagram showing a control device for a dual clutch type automatic transmission according to the present embodiment. A vehicle is equipped with a diesel engine (hereinafter referred to as an engine) 1 as a driving power source. The engine 1 is configured as a so-called common rail engine that supplies high-pressure fuel accumulated in a common rail by a pressurizing pump to the fuel injection valves of each cylinder and injects the fuel into the cylinder as each fuel injection valve opens.
 エンジン1の出力軸1aは車両後方(図の右方)に突出し、自動変速機(以下、単に変速機という)2の入力軸2aに接続されている。変速機2は前進6段(1速段~6速段)及び後退1段を備えており、エンジン1の動力は入力軸2aを介して変速機2に入力された後に、変速段に応じて変速されて出力軸2bから図示しない駆動輪側に伝達されるようになっている。
 言うまでもないが、変速機2の変速段は上記に限ることなく任意に変更可能である。
An output shaft 1a of the engine 1 protrudes rearward of the vehicle (rightward in the figure) and is connected to an input shaft 2a of an automatic transmission (hereinafter simply referred to as a transmission) 2. The transmission 2 has six forward speeds (first to sixth speeds) and one reverse speed. After the power of the engine 1 is input to the transmission 2 through the input shaft 2a, the transmission 2 according to the gear speed. The speed is changed and transmitted from the output shaft 2b to the drive wheel (not shown).
Needless to say, the gear position of the transmission 2 is not limited to the above and can be arbitrarily changed.
 変速機2は、所謂デュアルクラッチ式変速機として構成されている。当該デュアルクラッチ式変速機の詳細は、例えば特開2009-035168号公報などに記載されているため、本実施形態では概略説明にとどめる。このため、図1では変速機2を実際の機構とは異なる模式的な表現で示しており、以下の説明でも変速機2の構成及び作動状態を概念的に述べる。
 周知のようにデュアルクラッチ式変速機は、奇数変速段と偶数変速段とを相互に独立した動力伝達系として設け、何れか一方で動力伝達しているときに他方を次に予測される次変速段に予め切り換えておくことで、動力伝達を中断することなく次変速段への切換を完了するシステムである。
The transmission 2 is configured as a so-called dual clutch transmission. The details of the dual clutch transmission are described in, for example, Japanese Patent Application Laid-Open No. 2009-035168. For this reason, FIG. 1 shows the transmission 2 in a schematic representation different from the actual mechanism, and the configuration and operating state of the transmission 2 will also be conceptually described in the following description.
As is well known, a dual clutch type transmission is provided with an odd-numbered gear stage and an even-numbered gear stage as mutually independent power transmission systems, and when one of them is transmitting power, the other is predicted next. By switching to the gear in advance, the system completes the switch to the next gear without interrupting power transmission.
 即ち、図1に示すように、変速機2の入力軸2aにはクラッチC1を介して奇数変速段(1,3,5速段)からなる歯車機構G1が接続されると共に、同じくクラッチC2を介して偶数変速段(2,4,6速段)からなる歯車機構G2が接続され、これらの歯車機構G1,G2の出力側は上記した共通の出力軸2bに連結されている。
 これにより変速機2は、相互に独立したクラッチC1及び歯車機構G1からなる動力伝達系とクラッチC2及び歯車機構G2からなる動力伝達系とを備えている。
That is, as shown in FIG. 1, the input shaft 2a of the transmission 2 is connected to a gear mechanism G1 consisting of odd gears (first, third, and fifth gears) via a clutch C1, and the clutch C2 is also connected to the input shaft 2a. A gear mechanism G2 composed of even-numbered speed stages (2, 4, and 6 speed stages) is connected to the output side of these gear mechanisms G1 and G2, and is connected to the common output shaft 2b.
Accordingly, the transmission 2 includes a power transmission system including the clutch C1 and the gear mechanism G1 and a power transmission system including the clutch C2 and the gear mechanism G2, which are independent from each other.
 ここで、変速機2内のスペース効率化のために両クラッチC1,C2は、奇数変速段側のクラッチC1を内周側とし、偶数変速段側のクラッチC2を外周側とした内外2重に配設されている。そこで、以下の説明では、奇数変速段側のクラッチC1をインナクラッチと称し、偶数変速段側のクラッチC2をアウタクラッチと称する。
 インナクラッチC1及びアウタクラッチC2にはそれぞれ油圧シリンダ3が接続され、両油圧シリンダ3は電磁弁4が介装された油路5を介して油圧供給源6に接続されている。電磁弁4の開弁時には油圧供給源6から油路5を介して油圧シリンダ3に作動油が供給され、油圧シリンダ3が作動して対応するクラッチC1,C2が接続状態から切断状態に切り換えられる。一方、電磁弁4が閉弁すると、作動油の供給中止により油圧シリンダ3が作動しなくなることから、クラッチC1,C2は図示しないプレッシャスプリングにより切断状態から接続状態に切り換えられる。
Here, in order to improve the space efficiency in the transmission 2, both the clutches C1 and C2 are double-sided with the clutch C1 on the odd-numbered gear side being the inner peripheral side and the clutch C2 on the even-numbered gear side being the outer peripheral side. It is arranged. Therefore, in the following description, the odd-numbered speed side clutch C1 is referred to as an inner clutch, and the even-numbered speed side clutch C2 is referred to as an outer clutch.
A hydraulic cylinder 3 is connected to each of the inner clutch C1 and the outer clutch C2, and both hydraulic cylinders 3 are connected to a hydraulic supply source 6 via an oil passage 5 in which an electromagnetic valve 4 is interposed. When the electromagnetic valve 4 is opened, hydraulic oil is supplied from the hydraulic supply source 6 to the hydraulic cylinder 3 via the oil passage 5, and the hydraulic cylinder 3 is operated to switch the corresponding clutches C1 and C2 from the connected state to the disconnected state. . On the other hand, when the solenoid valve 4 is closed, the hydraulic cylinder 3 is not operated due to the supply of hydraulic oil being stopped, so that the clutches C1 and C2 are switched from a disconnected state to a connected state by a pressure spring (not shown).
 なお、クラッチC1,C2のシステムはこれに限ることはなく,例えば駆動方式に関して油圧駆動に変えてエア駆動を採用してもよい。
 また、変速機2の奇数変速段の歯車機構G1及び偶数変速段の歯車機構G2にはそれぞれギヤシフトユニット7が設けられている。図示はしないがギヤシフトユニット7は、歯車機構G1,G2内の各変速段に対応するシフトフォークを作動させる複数の油圧シリンダ、及び各油圧シリンダを作動させる複数の電磁弁を内蔵している。ギヤシフトユニット7は油路8を介して上記した油圧供給源6と接続されており、各電磁弁の開閉に応じて油圧供給源6からの作動油が対応する油圧シリンダに供給され、その油圧シリンダが作動してシフトフォークを切換操作すると、切換操作に応じて対応する歯車機構G1,G2の変速段が切り換えられる。
Note that the system of the clutches C1 and C2 is not limited to this, and for example, air drive may be adopted instead of hydraulic drive with respect to the drive system.
Further, the gear shift unit 7 is provided in each of the gear mechanism G1 for odd-numbered gears and the gear mechanism G2 for even-numbered gears of the transmission 2. Although not shown, the gear shift unit 7 incorporates a plurality of hydraulic cylinders that operate shift forks corresponding to the respective gear positions in the gear mechanisms G1 and G2, and a plurality of electromagnetic valves that operate each hydraulic cylinder. The gear shift unit 7 is connected to the above-described hydraulic supply source 6 through an oil passage 8, and hydraulic oil from the hydraulic supply source 6 is supplied to a corresponding hydraulic cylinder in accordance with the opening and closing of each solenoid valve. When the shift fork is switched by operating, the gear stages of the corresponding gear mechanisms G1 and G2 are switched according to the switching operation.
 本実施形態の車両はトラックであるため2速発進を前提としており、車両の加減速時には2速段以上で各変速段がシフトアップ側或いはシフトダウン側に順次切り換えられる。この変速時において、基本的にインナクラッチC1及びアウタクラッチC2の断接状態は常に逆方向に切り換えられる。このため、一方のクラッチC1,C2の接続により対応する歯車機構G1,G2の何れかの変速段が達成されて動力伝達されているときには、他方のクラッチC1,C2が切断されることで対応する歯車機構G1,G2では何れの変速段も動力伝達していない状態にある。よって、他方の歯車機構G1,G2では、事前に次変速段(現在の変速段に隣接する高ギヤ側または低ギヤ側の変速段)に切り換えるプリセレクトが可能になり、その後に変速タイミングに至ると、インナクラッチC1及びアウタクラッチC2の断接状態を逆転させることにより動力伝達を中断することなく変速が完了する。 Since the vehicle according to the present embodiment is a truck, it is assumed that the vehicle will start at the second speed. When the vehicle is accelerated or decelerated, each gear stage is sequentially switched to the upshift side or the downshift side at the second speed stage or higher. At the time of this shifting, the state of connection / disconnection of the inner clutch C1 and the outer clutch C2 is always switched in the reverse direction. For this reason, when one of the gears G1 and G2 corresponding to the gears G1 and G2 is connected and the power is transmitted by the connection of one of the clutches C1 and C2, the other clutch C1 and C2 is disengaged. The gear mechanisms G1 and G2 are in a state where none of the gears transmits power. Therefore, in the other gear mechanisms G1 and G2, it is possible to perform pre-selection to switch to the next shift stage (the shift stage on the high gear side or the low gear side adjacent to the current shift stage) in advance, and then the shift timing is reached. Then, the transmission is completed without interrupting the power transmission by reversing the connection / disconnection state of the inner clutch C1 and the outer clutch C2.
 一方、車室内には、エンジン1の制御を司るE/G―ECU11及びクラッチ制御を含めた変速機2の制御を司るT/M-ECU12が設置され、それぞれ図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAMなど)、中央処理装置(CPU)、タイマカウンタなどを備えている。
 E/G―ECU11の入力側には、エンジン1の回転速度Neを検出するエンジン回転速度センサ22、アクセルペダル26の操作量θaccを検出するアクセルセンサ27、車速Vを検出する車速センサ28などのセンサ類が接続されている。E/G―ECU11の出力側には、図示はしないが、エンジン1に付設されたコモンレール蓄圧用の加圧ポンプや各気筒の燃料噴射弁などのデバイス類が接続されている。
On the other hand, an E / G-ECU 11 that controls the engine 1 and a T / M-ECU 12 that controls the transmission 2 including clutch control are installed in the vehicle interior. A storage device (ROM, RAM, etc.) used for storing a control map, a central processing unit (CPU), a timer counter, and the like are provided.
On the input side of the E / G-ECU 11, there are an engine speed sensor 22 that detects the speed Ne of the engine 1, an accelerator sensor 27 that detects the operation amount θacc of the accelerator pedal 26, a vehicle speed sensor 28 that detects the vehicle speed V, and the like. Sensors are connected. On the output side of the E / G-ECU 11, although not shown in the figure, devices such as a common rail pressure increasing pump attached to the engine 1 and fuel injection valves for each cylinder are connected.
 また、T/M-ECU12の入力側には、上記エンジン回転速度センサ22、車速センサ28が接続されると共に、インナクラッチC1及びアウタクラッチC2の出力側の回転速度Ncl, Nc2を検出するクラッチ回転速度センサ23、運転席に設けられたチェンジレバー9の切換位置を検出するレバー位置センサ24、及び歯車機構G1,G2の変速段を検出するギヤ位置センサ25などのセンサ類が接続されている。T/M-ECU12の出力側には、クラッチC1,C2の電磁弁4、ギヤシフトユニット7の各電磁弁などのデバイス類が接続されている。
 なお、このようにエンジン1側と変速機2側とに個別にECU11,12を設けることなく、共通のECUによりエンジン1及び変速機2を共に制御するようにしてもよい。
The engine rotation speed sensor 22 and the vehicle speed sensor 28 are connected to the input side of the T / M-ECU 12, and the clutch rotation for detecting the rotation speeds Ncl and Nc2 on the output side of the inner clutch C1 and the outer clutch C2. Sensors such as a speed sensor 23, a lever position sensor 24 for detecting the switching position of the change lever 9 provided in the driver's seat, and a gear position sensor 25 for detecting the gear position of the gear mechanisms G1 and G2 are connected. Devices such as the electromagnetic valves 4 of the clutches C1 and C2 and the electromagnetic valves of the gear shift unit 7 are connected to the output side of the T / M-ECU 12.
Note that the engine 1 and the transmission 2 may be controlled together by a common ECU without separately providing the ECUs 11 and 12 on the engine 1 side and the transmission 2 side as described above.
 例えばE/G―ECU11は、アクセルセンサ27により検出されたアクセル操作量θaccやエンジン回転速度センサ22により検出されたエンジン回転速度Neなどに基づき運転者の要求トルクを算出し、この要求トルクに基づいてコモンレールのレール圧や各気筒への燃料噴射量及び燃料噴射時期を算出する。そして、これらの算出値に基づき加圧ポンプを駆動制御すると共に、各気筒の燃料噴射弁を駆動制御して上記要求トルクを達成させながらエンジン1を運転させる。以下に述べるように運転者の要求トルクは、実エンジントルクと共にT/M-ECU12側で変速制御やクラッチ制御を実行するための指標として用いられる。そのためにE/G―ECU11は、エンジン回転速度Neや燃料噴射量などから実エンジントルクを算出し、これらの実エンジントルク及び要求トルクをT/M-ECU12側に出力する。
 また、T/M-ECU12は、例えばレバー位置センサ24によりチェンジレバー9のDレンジ(ドライブレンジ)への切換が検出されているときには自動変速モードを選択し、アクセル操作量θacc及び車速センサ28により検出された車速Vに基づき、図示しないシフトマップから決定した目標変速段を達成すべく変速制御を実行すると共に、目標変速段への変速に先だって車両の加減速などから予測した次変速段へのプリセレクトを行う。
For example, the E / G-ECU 11 calculates the driver's required torque based on the accelerator operation amount θacc detected by the accelerator sensor 27, the engine rotational speed Ne detected by the engine rotational speed sensor 22, and the like, and based on this required torque. Thus, the rail pressure of the common rail, the fuel injection amount to each cylinder, and the fuel injection timing are calculated. The pressurization pump is driven and controlled based on these calculated values, and the engine 1 is operated while driving the fuel injection valve of each cylinder to achieve the required torque. As will be described below, the driver's required torque is used as an index for executing shift control and clutch control on the T / M-ECU 12 side together with the actual engine torque. For this purpose, the E / G-ECU 11 calculates actual engine torque from the engine rotational speed Ne, the fuel injection amount, and the like, and outputs these actual engine torque and required torque to the T / M-ECU 12 side.
The T / M-ECU 12 selects the automatic transmission mode when the lever position sensor 24 detects that the change lever 9 is switched to the D range (drive range), and the accelerator operation amount θacc and the vehicle speed sensor 28 Based on the detected vehicle speed V, shift control is performed to achieve a target shift stage determined from a shift map (not shown), and the shift to the next shift stage predicted from acceleration / deceleration of the vehicle prior to shifting to the target shift stage is performed. Perform pre-selection.
 例えば車両加速時には、現変速段に隣接する高ギヤ側の変速段を次変速段として予測し、動力伝達を中断している歯車機構G1,G2の所定の電磁弁を開閉して油圧シリンダを作動させることで次変速段をプリセレクトする。その後、車両加速に伴って上昇中のエンジン回転速度Neが上記シフトマップ上の次変速段へのシフトアップ線を横切ると、油圧シリンダ3により目標変速段を有する側の歯車機構G1,G2のクラッチC1,C2を接続すると共に、他方のクラッチC1,C2を切断して目標変速段への変速を完了する。
 このような変速時のクラッチ断接状態の逆転は、切断側のクラッチトルク(伝達トルク)を100-0%に連続的に低下させると共に、接続側のクラッチトルクを0-100%に連続的に増加させることで行われる。また、変速中のクラッチトルクは上記E/G―ECU11から入力される要求トルクに基づき制御され、例えば変速中にアクセルが踏み増しされると、要求トルクの増加に応じて双方のクラッチトルクが増加側に制御されてクラッチ滑りの抑制が図られる(変速中クラッチ制御手段)。
For example, at the time of vehicle acceleration, the gear stage on the high gear side adjacent to the current gear stage is predicted as the next gear stage, and the hydraulic cylinder is operated by opening and closing predetermined electromagnetic valves of the gear mechanisms G1 and G2 that interrupt power transmission. To preselect the next gear position. After that, when the engine speed Ne that is increasing as the vehicle accelerates crosses the upshift line to the next gear position on the shift map, the clutches of the gear mechanisms G1 and G2 on the side having the target gear position by the hydraulic cylinder 3 are used. C1 and C2 are connected and the other clutches C1 and C2 are disconnected to complete the shift to the target shift stage.
Such reverse rotation of the clutch engagement / disengagement state at the time of shifting continuously decreases the clutch torque (transmission torque) on the disconnect side to 100-0% and continuously decreases the clutch torque on the connection side to 0-100%. It is done by increasing. The clutch torque during the shift is controlled based on the required torque input from the E / G-ECU 11. For example, when the accelerator is stepped on during the shift, both clutch torques increase as the required torque increases. Is controlled to suppress clutch slippage (clutch control means during shifting).
 ところが、[発明が解決しようとする課題]で述べたように、そのままの要求トルクに基づきクラッチトルクを制御する特許文献1の技術では、変速中にアクセル踏み増しがなされたときに双方のクラッチトルクがステップ的に増加方向に設定されて、クラッチC1,C2の急接によりショックを発生させるという問題がある。本発明者は、この不具合の原因が、要求トルクに対する実エンジントルクの追従遅れに起因して、両クラッチC1,C2を介して伝達されているトルクが低いにも拘わらず、高い要求トルクに基づきクラッチトルクがステップ的に増加方向に制御される現象にあることを見出し、不具合の解消のためにはアクセル踏み増し時の要求トルクの増加を緩やかにする必要があるという知見に至った。
 そこで、本実施形態では、E/G―ECU11側から入力される要求トルクの立ち上がりをフィルタ処理により緩慢化する対策を講じており、以下、当該対策について詳述する。
However, as described in [Problems to be Solved by the Invention], in the technique of Patent Document 1 in which the clutch torque is controlled based on the required torque as it is, both clutch torques when the accelerator is stepped on during the shift. Is set to increase in a stepwise manner, and there is a problem that a shock is generated by the sudden contact of the clutches C1 and C2. The present inventor has found that the cause of this malfunction is based on the high demand torque even though the torque transmitted through both clutches C1 and C2 is low due to the delay in following the actual engine torque with respect to the demand torque. It was found that the clutch torque is controlled in a stepwise increasing direction, and has come to the knowledge that it is necessary to moderate the increase in the required torque when the accelerator is stepped on in order to solve the problem.
Therefore, in this embodiment, a measure is taken to slow down the rising of the required torque input from the E / G-ECU 11 side by filtering, and the measure will be described in detail below.
 図2はT/M-ECU12への実エンジントルク及び要求トルクの入力状況を示す制御ブロック図である。上記のようにT/M-ECU12にはE/G―ECU11側から情報として実エンジントルクと運転者の要求トルクとが入力されている。図4に示す従来技術との比較から明らかなように、本実施形態ではT/M-ECU12にフィルタ回路29(フィルタ手段)が追加され、E/G―ECU11から入力される要求トルクがフィルタ回路29により処理され、処理後の要求トルク(以下、フィルタ後の要求トルクと称してフィルタ前の要求トルクと区別する)がクラッチトルクの制御に適用される。
 フィルタ回路29は、以下に述べる特性に設定されている。
 E/G―ECU11側では、運転者の要求トルクを達成するようにレール圧制御や燃料噴射制御を実行しているが、これらのエンジン制御の応答性に起因し、要求トルクに対して実エンジントルクは遅れをもって追従している。このため従来技術を示す図6のように、T/M-ECU12側では、変速中にアクセル踏み増しにより破線で示す要求トルクがステップ的に増加したとき、実線で示す実エンジントルクは追従せずに遅れをもって立ち上がり、両者間に過渡的に大きな差が生じてショック発生の要因となる。本実施形態では、このときの実エンジントルクの立ち上がり特性に基づき、この特性に近似して要求トルクをなまし処理できるようにフィルタ回路29の特性が設定されている。
FIG. 2 is a control block diagram showing an input state of the actual engine torque and the required torque to the T / M-ECU 12. As described above, the actual engine torque and the driver's requested torque are input to the T / M-ECU 12 as information from the E / G-ECU 11 side. As is clear from the comparison with the prior art shown in FIG. 4, in this embodiment, a filter circuit 29 (filter means) is added to the T / M-ECU 12, and the required torque input from the E / G-ECU 11 is changed to the filter circuit. 29, and the processed required torque (hereinafter referred to as the post-filter required torque and distinguished from the pre-filter required torque) is applied to control of the clutch torque.
The filter circuit 29 is set to the characteristics described below.
On the E / G-ECU 11 side, rail pressure control and fuel injection control are executed so as to achieve the driver's required torque. Due to the responsiveness of these engine controls, the actual engine The torque follows with a delay. For this reason, as shown in FIG. 6 showing the prior art, on the T / M-ECU 12 side, when the required torque indicated by the broken line increases stepwise due to the stepping on the accelerator during shifting, the actual engine torque indicated by the solid line does not follow. It rises with a delay, causing a large difference between them and causing a shock. In the present embodiment, the characteristics of the filter circuit 29 are set based on the rising characteristics of the actual engine torque at this time so that the required torque can be smoothed by approximating this characteristic.
 実エンジントルクの立ち上がり特性の相違は、具体的には、立ち上がりの緩急(追従遅れの大小)や増加過程(例えば一次遅れに近似するか2次遅れに近似するか)などの違相であり、エンジン1の仕様(例えばディーゼルやガソリンなどの形式、吸排気系レイアウト、燃焼室形状など)に応じて異なる。このため本実施形態では立ち上がりの緩急に対しては、フィルタ回路29の時定数を適切に設定することで対応し、立ち上がりの増加過程に対しては、増加過程に近いフィルタ回路29の伝達関数を設定(図3では一次遅れフィルタとして設定)することで対応する。
 但し、実エンジントルクに近似できるものであれば、フィルタ回路29の設定はこれに限るものではない。例えば、立ち上がりの緩急に対しては時定数で対応する他に、移動平均や単位時間当たりの増加量を限定するなど手法で対応してもよいし、増加過程に対しては、一次遅れフィルタに代えて二次遅れフィルタを用いてもよい。
 以上のように設定されたフィルタ回路29により要求トルクがなまし処理されることにより、変速中にアクセルの踏み増しがなされると、E/G―ECU11側から入力される要求トルクはステップ的に増加するものの、図3のタイムチャートに破線で示すようにフィルタ後の要求トルクは、実線で示す実エンジントルクの立ち上がり特性に近似するようにより緩やかに増加する。
Specifically, the difference in the actual engine torque rise characteristics is a phase difference such as the rise and fall of the rise (the magnitude of the follow-up delay) and the increasing process (for example, approximating to the primary delay or approximating the secondary delay) It depends on the specifications of the engine 1 (for example, the type of diesel or gasoline, the intake / exhaust system layout, the shape of the combustion chamber, etc.). For this reason, in this embodiment, the rise and fall of the rise is dealt with by appropriately setting the time constant of the filter circuit 29. The rise of the rise is handled by a transfer function of the filter circuit 29 that is close to the rise. This can be dealt with by setting (set as a first-order lag filter in FIG. 3).
However, the setting of the filter circuit 29 is not limited to this as long as it can approximate the actual engine torque. For example, in addition to dealing with the rise and fall of the rise, in addition to dealing with a time constant, it may be handled by a method such as limiting the moving average or the amount of increase per unit time, and for the increase process, a first-order lag filter is used. Instead, a second-order lag filter may be used.
When the required torque is smoothed by the filter circuit 29 set as described above, the required torque input from the E / G-ECU 11 side is stepwise when the accelerator is stepped on during shifting. Although increasing, the required torque after filtering as shown by the broken line in the time chart of FIG. 3 increases more gently so as to approximate the rising characteristic of the actual engine torque indicated by the solid line.
 これは、変速中において要求トルクに対して実エンジントルクが追従遅れを生じている期間であっても、両クラッチC1,C2を介して実際に伝達されているトルク(即ち、実エンジントルク)に対して略一致する指標(即ち、フィルタ後の要求トルク)に基づきクラッチトルクが制御されることを意味する。結果として双方のクラッチトルクは、過剰な要求トルクに基づき増加方向にステップ的に制御されることなく、フィルタ後の要求トルクの増加と対応するように緩やかに増加方向に制御される。これによりクラッチC1,C2の急接によるショックを防止した上で、変速中のアクセル踏み増しに起因するクラッチ滑りを抑制して円滑に変速を完了でき、良好な変速フィーリングを実現することができる。
 また、以上の説明から明らかなように、従来技術の制御装置に比較してT/M-ECU12にフィルタ回路29を追加するだけであり、E/G―ECU11の出力情報(実エンジントルク及び要求トルク)は何ら変更していない。このためE/G―ECU11を仕様変更する必要は一切なく、T/M-ECU12側にフィルタ回路29を追加するだけの小変更により対応でき、最小限のコストで実施することができる。
This is because the torque actually transmitted via both clutches C1 and C2 (that is, the actual engine torque) even during a period in which the actual engine torque is delayed in response to the required torque during gear shifting. On the other hand, it means that the clutch torque is controlled based on an index (that is, the required torque after the filter) that is substantially the same. As a result, both clutch torques are controlled in the increasing direction so as to correspond to the increase in the required torque after filtering without being controlled stepwise in the increasing direction based on the excessive required torque. As a result, the shock caused by the sudden contact of the clutches C1 and C2 can be prevented, and the clutch slip caused by the increased stepping on the accelerator during the shift can be suppressed and the shift can be completed smoothly, and a good shift feeling can be realized. .
Further, as is apparent from the above description, only the filter circuit 29 is added to the T / M-ECU 12 as compared with the control device of the prior art, and the output information (actual engine torque and request) of the E / G-ECU 11 is added. (Torque) is not changed at all. For this reason, it is not necessary to change the specifications of the E / G-ECU 11, and it is possible to cope with the change by simply adding the filter circuit 29 on the T / M-ECU 12 side.
 ところで、上記のようにエンジン1には種々の仕様があり、例えばエンジンアウトの排ガス特性の改善に重点をおいて、実エンジントルクの立ち上がり特性を多段化した仕様も存在する。図4はこのようなエンジン仕様において変速中にアクセル踏み増しがなされたときの実エンジントルクの立ち上がり特性を示すタイムチャートである。
 実エンジントルクの立ち上がり特性は切換点Tを境界として2つのトルク領域に区分されており、実線で示すように実エンジントルクはアクセル踏み増しの開始から切換点Tに達するまでの領域E1で急激に増加し、切換点Tを越えた領域E2では緩やかに増加する。このような立ち上がり特性は、切換点T以上の領域E2での急激に実エンジントルクを増加させると甚だしい排ガス特性の悪化を招くことを考慮した対策である。そして、図中に二点差線で示した第1実施形態のフィルタ後の要求トルクでは、切換点Tを境界とする双方の領域E1,E2で要求トルクを実エンジントルクに近似させることはできない。そこで、以上の点を考慮した対策を第2実施形態として以下に説明する。
By the way, as described above, the engine 1 has various specifications. For example, there is also a specification in which the rising characteristics of the actual engine torque are multistaged with emphasis on improving the exhaust characteristics of the engine out. FIG. 4 is a time chart showing the rising characteristics of the actual engine torque when the accelerator is further depressed during shifting in such an engine specification.
The rising characteristic of the actual engine torque is divided into two torque regions with the switching point T as a boundary. As shown by the solid line, the actual engine torque suddenly increases in the region E1 from the start of increasing the accelerator to the switching point T. In the region E2 beyond the switching point T, it gradually increases. Such a rise characteristic is a measure that takes into account that if the actual engine torque is suddenly increased in the region E2 above the switching point T, the exhaust gas characteristic is significantly deteriorated. The required torque after filtering according to the first embodiment indicated by a two-point difference line in the figure cannot approximate the required torque to the actual engine torque in both regions E1 and E2 having the switching point T as a boundary. Therefore, a countermeasure considering the above points will be described below as a second embodiment.
[第2実施形態]
 本実施形態のデュアルクラッチ式自動変速機の制御装置の構成は、図1,2に基づき述べた第1実施形態のものと同様であり、相違点はフィルタ回路29の機能にある。そこで、共通する構成の箇所は同一部材番号を付して説明を省略し、相違点であるフィルタ回路29の機能について詳述する。
 本実施形態のフィルタ回路29は、上記切換点Tを境界とする双方の領域E1,E2の実エンジントルクの立ち上がり特性に基づき、2種のフィルタ特性が設定されている。具体的にはフィルタ回路29は、切換点T未満の領域E1での実エンジントルクの急激な増加に近似して要求トルクをなまし処理する第1の時定数、及び切換点T以上の領域E2での実エンジントルクの緩やかな増加に近似して要求トルクをなまし処理する第2の時定数が設定され、これらの時定数を任意に切換可能に構成されている。フィルタ回路29の時定数の切換は切換点Tを閾値として実行され、切換点T未満の領域E1では第1の時定数が用いられ、切換点T以上の領域E2では第2の時定数が用いられる。
[Second Embodiment]
The configuration of the control device for the dual clutch type automatic transmission of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 and 2, and the difference is in the function of the filter circuit 29. Therefore, the parts having the same configuration are denoted by the same member numbers, the description thereof is omitted, and the function of the filter circuit 29 which is a difference will be described in detail.
In the filter circuit 29 of this embodiment, two types of filter characteristics are set based on the rising characteristics of the actual engine torque in both regions E1 and E2 having the switching point T as a boundary. Specifically, the filter circuit 29 approximates a sudden increase in the actual engine torque in the region E1 below the switching point T, and a region E2 above the switching point T for smoothing the required torque. A second time constant for smoothing the required torque is set to approximate a gradual increase in the actual engine torque at, and these time constants can be arbitrarily switched. The switching of the time constant of the filter circuit 29 is executed with the switching point T as a threshold value, the first time constant is used in the region E1 below the switching point T, and the second time constant is used in the region E2 above the switching point T. It is done.
 結果として図4に破線で示すように、フィルタ後の要求トルクは領域E1で急激に増加し、領域E2ではより緩やかに増加し、何れの領域E1,E2でも要求トルクは実線で示す実エンジントルクの立ち上がり特性に近似して増加することになる。従って、このような実エンジントルクの立ち上がり特性の場合においても、変速中にアクセル踏み増しがなされたときに双方のクラッチトルクを適切に制御でき、もって両クラッチC1,C2の断接状態をショックなく円滑に逆転して良好な変速フィーリングを実現することができる。
 なお、本実施形態では、実エンジントルクの2段階の立ち上がり特性に対応してフィルタ回路29に2種の時定数を設定したが、エンジン仕様に応じて実エンジントルクの立ち上がり特性が3段階以上になる場合には、それに応じて時定数を設定すればよい。
As a result, as indicated by a broken line in FIG. 4, the required torque after filtering increases rapidly in the region E1, increases more gradually in the region E2, and the required torque is the actual engine torque indicated by the solid line in any region E1, E2. It increases to approximate the rise characteristic of. Accordingly, even in the case of the actual engine torque rising characteristic, both clutch torques can be appropriately controlled when the accelerator is increased during shifting, so that the connection / disconnection state of both clutches C1 and C2 can be made without shock. It is possible to realize a good shift feeling by smoothly reversing the rotation.
In the present embodiment, two types of time constants are set in the filter circuit 29 corresponding to the two-stage rising characteristics of the actual engine torque. However, the actual engine torque rising characteristics have three or more stages according to the engine specifications. If so, the time constant may be set accordingly.
 以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では、走行動力源としてディーゼルエンジン1を車両に搭載したが、走行動力源はこれに限ることはなく任意に変更可能であり、例えばガソリンエンジンや電動モータに変更してもよい。 This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the diesel engine 1 is mounted on the vehicle as a driving power source. However, the driving power source is not limited to this, and can be arbitrarily changed. For example, the driving power source may be changed to a gasoline engine or an electric motor. .
 1     エンジン(走行動力源)
 12    T/M-ECU(変速中クラッチ制御手段)
 29    フィルタ回路(フィルタ手段)
 C1,C2 クラッチ
 G1,G2 歯車機構
 E1,E2 領域
1 Engine (driving power source)
12 T / M-ECU (Clutch control means during shifting)
29 Filter circuit (filter means)
C1, C2 Clutch G1, G2 Gear mechanism E1, E2 area

Claims (2)

  1.  複数の変速段からなる一対の歯車機構をそれぞれクラッチを介して走行動力源側と接続し、一方のクラッチを接続して対応する一方の歯車機構の変速段を介した動力伝達中に他方の歯車機構を予め次変速段に切り換えるプリセレクトを実行し、該プリセレクト後に上記両クラッチの断接状態を逆転させて上記次変速段への切換を完了するデュアルクラッチ式自動変速機の制御装置において、
     上記クラッチの断接状態を逆転させる変速中に、上記走行動力源の制御に適用される運転者の要求トルクに基づき両クラッチの伝達トルクをそれぞれ制御して、切断側のクラッチの伝達トルクを連続的に低下させ、接続側のクラッチの伝達トルクを連続的に増加させると共に、該変速中のアクセル踏み増しによる上記要求トルクの増加に応じて、クラッチ滑りを防止すべく上記両クラッチの伝達トルクを増加方向に制御する変速中クラッチ制御手段と、
     上記アクセル踏み増しによる要求トルクの増加に対して遅れをもって追従する上記走行動力源の実トルクの立ち上がり特性と近似するように、上記要求トルクをなまし処理するフィルタ手段とを備え、
     上記変速中クラッチ制御手段は、上記フィルタ手段によるなまし処理後の要求トルクに基づき上記両クラッチの伝達トルクを制御することを特徴とするデュアルクラッチ式自動変速機の制御装置。
    A pair of gear mechanisms composed of a plurality of gear speeds are connected to the driving power source side via respective clutches, and the other gear is connected during power transmission via the gear speed of the corresponding one gear mechanism by connecting one clutch. In a control apparatus for a dual clutch automatic transmission that performs preselection to switch the mechanism to the next shift stage in advance, and reverses the connection / disconnection state of both clutches after the preselection to complete the switch to the next shift stage,
    During a shift that reverses the clutch engagement / disengagement state, the transmission torque of both clutches is controlled based on the driver's required torque applied to the control of the driving power source, so that the transmission torque of the disconnection side clutch is continuously maintained. The transmission torque of both clutches is increased in order to prevent clutch slipping in response to an increase in the required torque due to an increase in accelerator depression during the shift. Clutch control means during shifting to control in the increasing direction;
    Filter means for smoothing the required torque so as to approximate the rise characteristic of the actual torque of the traveling power source that follows the increase in the required torque due to the accelerator depression with a delay,
    The dual-clutch automatic transmission control apparatus, wherein the shifting clutch control means controls the transmission torque of both clutches based on the required torque after the smoothing process by the filter means.
  2.  上記フィルタ手段は、上記走行動力源の実トルクの立ち上がり特性が複数のトルク領域毎に異なるとき、各トルク領域での立ち上がり特性に対応して順次上記要求トルクをなまし処理することを特徴とする請求項1記載のデュアルクラッチ式自動変速機の制御装置。 The filter means, when the rising characteristic of the actual torque of the traveling power source is different for each of a plurality of torque areas, performs the smoothing process on the required torque sequentially corresponding to the rising characteristics in each torque area. The control apparatus for a dual clutch type automatic transmission according to claim 1.
PCT/JP2012/072732 2011-09-08 2012-09-06 Device for controlling dual-clutch automatic transmission WO2013035784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-196407 2011-09-08
JP2011196407A JP5580268B2 (en) 2011-09-08 2011-09-08 Control device for dual clutch automatic transmission

Publications (1)

Publication Number Publication Date
WO2013035784A1 true WO2013035784A1 (en) 2013-03-14

Family

ID=47832224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072732 WO2013035784A1 (en) 2011-09-08 2012-09-06 Device for controlling dual-clutch automatic transmission

Country Status (2)

Country Link
JP (1) JP5580268B2 (en)
WO (1) WO2013035784A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592695B1 (en) 2014-05-21 2016-02-15 현대자동차주식회사 Shift control method for a vehicle with dct
KR101673814B1 (en) 2015-10-08 2016-11-08 현대자동차주식회사 Shifting control method for vehicle
DE112017000355T5 (en) * 2016-01-13 2018-09-27 Aisin Ai Co., Ltd. CONTROL UNIT FOR VEHICLE DUAL CLUTCH GEAR
KR101856331B1 (en) * 2016-06-27 2018-05-10 현대자동차주식회사 Shift control method for vehicle with dct
KR101856337B1 (en) 2016-07-15 2018-05-10 현대자동차주식회사 Clutch control method of vehicle
CN107763201B (en) * 2016-08-19 2019-12-24 上海汽车集团股份有限公司 Gear shifting control method and control device of double-clutch transmission under sliding downshift working condition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170441A (en) * 2005-12-19 2007-07-05 Hitachi Ltd Automatic transmission starting clutch control device and its method, and automatic transmission device
JP2009127792A (en) * 2007-11-27 2009-06-11 Nissan Motor Co Ltd Transmission controller of vehicle
JP2011047511A (en) * 2009-08-28 2011-03-10 Yamaha Motor Co Ltd Multiple clutch transmission control apparatus and multiple clutch transmission control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623146B2 (en) * 2008-06-17 2011-02-02 トヨタ自動車株式会社 Vehicle control apparatus and control method
JP5237891B2 (en) * 2009-06-26 2013-07-17 本田技研工業株式会社 Vehicle control device
JP2011105022A (en) * 2009-11-12 2011-06-02 Mitsubishi Fuso Truck & Bus Corp Shift control device for hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170441A (en) * 2005-12-19 2007-07-05 Hitachi Ltd Automatic transmission starting clutch control device and its method, and automatic transmission device
JP2009127792A (en) * 2007-11-27 2009-06-11 Nissan Motor Co Ltd Transmission controller of vehicle
JP2011047511A (en) * 2009-08-28 2011-03-10 Yamaha Motor Co Ltd Multiple clutch transmission control apparatus and multiple clutch transmission control method

Also Published As

Publication number Publication date
JP5580268B2 (en) 2014-08-27
JP2013057373A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
US7534195B2 (en) Method of controlling a vehicle and system of controlling the same
JP5374726B2 (en) Clutch control device and μ correction coefficient calculation method
JP5580268B2 (en) Control device for dual clutch automatic transmission
JP3719442B2 (en) Power transmission system for hybrid electric vehicle
AU2008233813B2 (en) Flow rate control valve for clutch control device
US8171824B2 (en) Vehicular power transmission control apparatus
JP4375010B2 (en) Automotive control device and driving force transmission device thereof
US7976432B2 (en) Sequential automatic transmission
US20160221580A1 (en) Control device for vehicle
JP2011002007A (en) Speed change control device and speed change control method of automatic transmission
JP2002021883A (en) Clutch control device
JP5322751B2 (en) Vehicle power transmission control device
US8556775B2 (en) System and method for regulating torque transmission in a vehicle powertrain and a vehicle powertrain using same
JP5930541B2 (en) Shift control device for electric vehicle
JP2007333129A (en) Controller for automatic transmission
JP2007239832A (en) Controller for automobile and controlling method for automobile
JP5260227B2 (en) Shift control method for automatic transmission for vehicle
JP5692919B2 (en) Control device for dual clutch automatic transmission
JP2014098452A (en) Shift control device for electric car
JP5496056B2 (en) Control device for dual clutch automatic transmission
JP5752375B2 (en) Torque characteristic map correction device for friction engagement element of vehicle transmission
JP2013057375A (en) Device for controlling dual-clutch automatic transmission
JP5880828B2 (en) Automatic transmission clutch control device
JP3845555B2 (en) Control device and control method for automatic transmission
JP2007232046A (en) Device and method for controlling automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830578

Country of ref document: EP

Kind code of ref document: A1