WO2013035651A1 - Micro-flow path device and micro-flow path analysis device - Google Patents

Micro-flow path device and micro-flow path analysis device Download PDF

Info

Publication number
WO2013035651A1
WO2013035651A1 PCT/JP2012/072296 JP2012072296W WO2013035651A1 WO 2013035651 A1 WO2013035651 A1 WO 2013035651A1 JP 2012072296 W JP2012072296 W JP 2012072296W WO 2013035651 A1 WO2013035651 A1 WO 2013035651A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchannel
winding
belt
side wall
wall forming
Prior art date
Application number
PCT/JP2012/072296
Other languages
French (fr)
Japanese (ja)
Inventor
章弘 藤本
松本 朗彦
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013035651A1 publication Critical patent/WO2013035651A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00009Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with a sample supporting tape, e.g. with absorbent zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0812Bands; Tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material

Definitions

  • the present invention relates to a microchannel device that can be applied to a micro TAS (Micro-Total Analysis Systems) analyzer that performs biochemical analysis and the like.
  • a micro TAS Micro-Total Analysis Systems
  • Patent Documents 1 and 2 describe a microchannel chip in which a microchannel is formed on a substrate such as a glass substrate.
  • Patent Documents 3 and 4 describe a microchannel device in which a microchannel is formed by a flexible strip (tape) composed of a plurality of layers.
  • a flexible belt-like body (tape) having a microchannel formed thereon is wound into a roll shape, and this is unwound and wound up so as to be sequentially applied to the inspection unit of the microchannel analyzer.
  • the sending device configuration is described.
  • the shape of the microchannel can be maintained with a desired dimensional accuracy by the rigidity of the substrate and other layers forming the microchannel.
  • the microchannel chip must be replaced for each inspection, and the inspection work efficiency is not good. For this reason, cost also becomes high.
  • the microchannel device described in Patent Document 4 a large number of independent channels are continuously formed, and unwinding and winding up facilitate the replacement of the inspection target portion. And high inspection work efficiency can be expected.
  • the accuracy of holding the shape of the microchannel is lowered, and there is a possibility that it is deformed to a shape deviating from a desired shape during analysis use.
  • the accuracy of maintaining the shape of the microchannel is important because it can cause a decrease in analysis accuracy, for example, by affecting the mixing ratio of the sample and the reagent.
  • the present invention has been made in view of the above-described problems in the prior art, and in a microchannel device in which a microchannel is formed by a flexible belt-shaped body composed of a plurality of layers, the microchannel device can be wound in a roll shape.
  • the invention according to claim 1 for solving the above-mentioned problems is a microchannel device in which a microchannel is formed by a flexible belt-shaped body composed of a plurality of layers.
  • the side wall forming layer has a higher flexural modulus than the lid layer.
  • the belt-like body is wound and held
  • the microchannel device according to claim 1 wherein the side wall forming layer and the lid layer are wound and held by deformation within an elastic limit.
  • the minimum winding diameter in the winding and holding state of the belt-shaped body is 30 mm or more and 150 mm or less
  • the thickness of the side wall forming layer is 1 ⁇ m or more and 300 ⁇ m or less
  • the bending of the side wall forming layer The microchannel device according to claim 2, wherein the elastic modulus is 1000 MPa or more and 5000 MPa or less.
  • the minimum winding diameter in the winding and holding state of the belt-shaped body is 10 mm or more and less than 30 mm
  • the thickness of the sidewall forming layer is 1 ⁇ m or more and 200 ⁇ m or less
  • the bending of the sidewall forming layer is The microchannel device according to claim 2, wherein the elastic modulus is 1000 MPa or more and 5000 MPa or less.
  • Claim 5 is a microchannel device of Claim 3 or Claim 4 whose tensile elasticity modulus of the said side wall formation layer is 1000 Mpa or more.
  • the invention according to claim 6 is the microchannel device according to any one of claims 2 to 5, wherein the lid layer is disposed outside the microchannel and is wound and held. is there.
  • the invention according to claim 7 is the microchannel device according to any one of claims 2 to 5, wherein the lid layer is arranged on the inside with respect to the microchannel and held by winding. is there.
  • the invention according to claim 8 is characterized in that the side wall forming layer has a slit, a long hole, or a long groove extending in a direction intersecting with the winding direction of the belt-like body in a region between the microchannels independent of each other. It is a microchannel device as described in any one of Claims 1-7.
  • Claim 9 is a microchannel device as described in any one of Claims 2-8 provided with the winding holder
  • the invention according to claim 10 is characterized in that the winding holder has a winding shaft that winds and holds the belt-like body, and a rotational force that rotates the winding shaft to wind or wind the belt-like body. It is a microchannel device of Claim 9 which has a rotational drive force connection part connected so that it can transmit to.
  • a pair of the winding cages are provided, one of the winding cages winds and holds the belt-like body from one end, and the other winding cage holds the belt-like body. Hold it from the edge,
  • the microchannel according to claim 9 or 10 wherein the belt-like body can be unwound from at least one of the winding cages, and the belt-like body can be taken up by the other winding cage. It is a device.
  • the invention according to claim 12 includes a cross connection portion that protects a portion of the belt-like body that crosses between the pair of winding cages and connects the pair of winding cages to each other, It is a microchannel device of Claim 11 which has a window which enables an effect
  • the invention according to claim 13 is the microchannel device according to claim 11 or 12, wherein the distance between the pair of winding cages is variably configured.
  • the invention according to claim 14 is the microchannel device according to any one of claims 9 to 13, wherein the winding retainer has a case body in which the winding portion of the belt-like body is housed. is there.
  • the microchannel device according to any one of the first to fourteenth aspects is made detachable, and a substance is placed in the microchannel formed in the microchannel device. It is a microchannel analyzer for injecting and analyzing substances.
  • the invention according to claim 16 is the microchannel analyzer according to claim 15, further comprising a drive unit that feeds and drives the belt-like body of the microchannel device.
  • a seventeenth aspect of the present invention is the microchannel analyzer according to the sixteenth aspect, wherein a tension of 1N to 10N is applied to the portion of the belt-like body unwound by the driving device by the driving device. .
  • a microchannel device in which a microchannel is formed by a flexible strip having a plurality of layers is formed, and the side wall forming layer forming the side wall of the microchannel is higher in bending elasticity than the lid layer.
  • the lid layer which is placed on the surface layer outside the microchannel, is easy to bend and has a low flexural modulus, making it easy to bend the entire band and winding the band into a roll with a desired winding diameter.
  • the side wall forming layer having a relatively high bending elastic modulus when the strip is unwound and used for analysis and when the bending stress at the time of winding is released to reduce the stress.
  • the microchannel can be recovered to a certain degree of accuracy with a small error relative to the ideal shape in the no-load state. it can.
  • microchannel device concerning one embodiment of the present invention. It is a front view of the microchannel device concerning one embodiment of the present invention. It is a bottom view of the microchannel device concerning one embodiment of the present invention. It is A section detail drawing of the microchannel device concerning one embodiment of the present invention. It is a front view of the microchannel analyzer concerning one embodiment of the present invention, and shows the state where a microchannel device is not equipped. It is a front view of the microchannel analyzer concerning one embodiment of the present invention, and shows the state where a microchannel device was equipped. 1 is a front view of a microchannel analyzer according to an embodiment of the present invention, showing a state in which a microchannel device is mounted and an actuator is close to a microchannel.
  • FIG. 7A It is sectional drawing at the time of winding holding
  • FIG. 7A It is a schematic diagram of the cartridge which concerns on other embodiment of this invention, and has a winding holder only on one side.
  • FIG. 7A It is a schematic diagram of the cartridge which concerns on other embodiment of this invention, and a pair of winding holder
  • the microchannel device 1 of the present embodiment includes a band 2 having a microchannel formed therein, winding holders 3 and 4 that wind and hold the band 2, and winding holders 3 and 4. It is a cartridge-type thing provided with the transition connection part 5 which does.
  • the belt-like body 2 is housed in the winding holders 3 and 4 and the cross connection part 5 to constitute a replacement cartridge that can be easily attached to and detached from the microchannel analyzer.
  • One winding cage 3 has a case body 3a in which the winding portion 2a of the belt-like body 2 is housed.
  • the winding part 2a is an unused part, and the thickness decreases with unwinding during use.
  • the other winding cage 4 has a case body 4a in which the winding portion 2b of the belt-like body 2 is housed.
  • the winding part 2b is a used part, and the thickness increases with winding during use. When not in use, it is sufficient that at least one end of the belt-like body 2 is connected to the winding shaft 4b, and the winding portion 2b may not be formed.
  • the winding holders 3 and 4 respectively provide winding shafts 3b and 4b for winding and holding the belt-like body 2 and a rotational force for rotating the winding shafts 3b and 4b to wind or wind the belt-like body 2.
  • the winding shaft 3b may rotate only in the unwinding direction, and the winding shaft 4b may rotate only in the winding direction.
  • the winding shaft 3b and the winding shaft 4b may be configured to rotate in both directions of the unwinding and winding directions, respectively.
  • the strip 2 can be rewound.
  • a pair of winding holders 3 and 4 are provided.
  • One winding cage 3 winds and holds the strip 2 from one end, and the other winding cage 4 winds and holds the strip 2 from the other end.
  • the belt-shaped body 2 can be unwound from at least one winding cage 3, and the belt-shaped body 2 can be wound around the other winding cage 4.
  • the guide rollers 3d and 4d are for fixing the traveling position of the portion 2c across the winding holders 3 and 4 of the belt-like body 2.
  • FIG. 3 show an outline of the microchannel analyzer of this embodiment.
  • the microchannel analyzer 10 includes a pipette 11 that injects a sample, a reagent, and the like into the microchannel m, a micropump 12 that performs processing such as movement and mixing of substances injected into the microchannel m, and a light irradiation device 13. , Optical reader 14, heater 15 and the like.
  • the crossover connecting portion 5 protects the portion 2c of the belt-like body 2 between the winding holders 3 and 4. Therefore, the cross connection part 5 takes the form which surrounds and covers the part 2c.
  • the crossover connecting portion 5 is formed with a window that enables the action and observation of the microchannel m.
  • a pipette connection port 5a, a micropump connection port 5b, a light incident window 5c, and an optical reading window 5d are provided. Note that the entire region A indicated by the alternate long and short dash line in FIG. 1A may be open.
  • the microchannel analyzer 10 includes a feed driving device that feeds and drives the belt-like body 2, and its output ends 16 and 17 are shown in FIG. 2A.
  • the output terminals 16 and 17 are rotationally driven and controlled by driving a motor (not shown), for example.
  • the microchannel device (cartridge) 1 is mounted on the microchannel analyzer 10 as shown in FIG. 2B.
  • the output ends 16 and 17 are connected to the rotational driving force connecting portions 3c and 4c.
  • the pipette 11, the micropump 12, and the heater 15 are supported by a mechanism that moves up and down in order to approach the microchannel m. As shown in FIG.
  • the pipette 11, the micropump 12, and the light irradiation device 13 are disposed above the portion 2 c of the strip 2, and the optical reading device 14 and the heater 15 are disposed below.
  • the pipette 11 is lowered as shown in FIG. 2C, and the tip of the injection portion of the pipette 11 passes through the pipette connection port 5a and the micro flow path.
  • the sample, reagent, etc. are injected into the micro flow channel m by the pipette 11. Note that an injection hole is provided in the lid layer constituting the injection chamber of the microchannel m. Further, as shown in FIG.
  • the micropump 12 is lowered, the working end of the micropump 12 is connected to the microchannel m through the micropump connection port 5b, and the micropump 12 moves the reagent and mixes the sample and the reagent. Etc. are processed. Further, if necessary for the reaction between the specimen and the reagent, the heater 15 is driven to generate heat, and as shown in FIG. 2C, the heater 15 is raised and placed close to the micro flow path m. Thereafter, the light emitted from the light irradiation device 13 is irradiated to the analysis target substance in the reaction chamber of the micro flow channel m through the light incident window 5c, and the light emitted from the analysis target substance is passed through the optical reading window 5d.
  • the optical reader 14 reads the data, and the microchannel analyzer 10 analyzes the substance.
  • the light emitted from the light irradiation device 13 is excitation light that excites fluorescence, and the optical reader 14 reads the fluorescence from the light emitted from the analysis target substance, but the measurement principle is not particularly limited. .
  • the configuration of the belt-like body 2 having the above-described configuration and in which the microchannel m of the microchannel device 1 used for substance analysis is formed will be further described.
  • the belt-like body 2 is composed of a plurality of layers, and has flexibility enough to be wound around the winding holders 3 and 4 while being elastically deformed as described above.
  • the belt-like body 2 includes a side wall forming layer 20 and a lid layer 21 (22).
  • the side wall forming layer 20 forms the side wall of the microchannel m.
  • the side wall forming layer 20 is formed in a groove shape as shown in FIG. 4B, or is formed so as to penetrate in the layer thickness direction as shown in FIG. 4C, and forms opposite side walls of the microchannel m.
  • the side wall forming layer 20 also forms one end surface (bottom surface in FIG. 4B) of the microchannel m in the stacking direction, and the opening in the stacking direction of the microchannel m (upper end opening in FIG. 4B) is the lid layer. 21 is covered.
  • the stacking direction is the stacking direction of the side wall forming layer 20 and the lid layer 21 (the same applies hereinafter).
  • Sidewall forming layer 20 has a higher flexural modulus than lid layer 21. In the case of FIG.
  • the lid layer 21 covers one opening (the upper end opening in FIG. 4C) in the stacking direction of the microchannel m, and the lid layer 22 covers the other opening (the lower end opening in FIG. 4C).
  • Sidewall forming layer 20 has a higher flexural modulus than lid layers 21 and 22. It is sufficient that the lid layer 21 and the lid layer 22 have the same bending elastic modulus.
  • the side wall forming layer 20 and the lid layer 21 have mechanical properties that are wound and held by the winding holder 3 by deformation within the elastic limit. As shown in FIG. 5A, the winding method may be such that the lid layer 21 is arranged on the outside with respect to the microchannel m and is wound and held by the winding holders 3 and 4.
  • the lid layer 21 may be arranged on the inner side with respect to the microchannel and wound and held by the winding holders 3 and 4 as shown in FIG. In the configuration shown in FIG. 4C having the lid layers 21 and 22 on the front and back sides, it is natural that the lid layer 21 (22) is disposed outside and inside the microchannel m at the time of winding.
  • the belt-like body 2 When the belt-like body 2 is wound and held, the belt-like body 2 is bent and deformed.
  • the lid layer 21 (22) having a low bending elastic modulus is arranged on the outer side or the inner side away from the neutral surface where strain and stress are zero when the band-like body 2 is bent, so that the bending rigidity of the whole band-like body 2 is increased. And the belt-like body 2 is easily bent and deformed. Thereby, the strip
  • the side wall forming layer 20 having a relatively high bending elastic modulus is formed. Since the microchannel m is recovered to a smaller strain and the microchannel m is recovered to a certain accuracy with a small error with respect to the ideal shape in the no-load state, the microchannel m having a high shape retaining property at the time of analysis use can be obtained at the portion 2c. Can be configured.
  • belt-shaped body A comprised with the same bending elastic modulus of a cover layer and a side wall formation layer with the same total thickness of a strip
  • the strip-shaped body B is compared, and the strip-shaped body A and the strip-shaped body B are assumed to have the same bending elastic modulus, the bending elastic modulus of the side wall forming layer of the strip-shaped body B can be set high.
  • the total bending elastic modulus of the band B can be lowered.
  • the inventor of the present application has recovered the belt from the rolled state to the flat state by configuring the band-shaped body with the side wall forming layer having a higher bending elastic modulus than the bending elastic modulus of the lid layer.
  • the present invention is configured by conceiving that the compatibility of the shape retention of the side wall forming layer becomes easier.
  • the thickness of the side wall forming layer is 1 ⁇ m or more and 300 ⁇ m or less when the minimum winding diameter of the belt-like body 2 is 30 mm or more and 150 mm or less.
  • the flexural modulus is preferably 1000 MPa or more and 5000 MPa or less.
  • the thickness of the side wall forming layer is preferably 1 ⁇ m or more and 200 ⁇ m or less, and the flexural modulus is preferably 1000 MPa or more and 5000 MPa or less.
  • the tensile modulus of elasticity of the side wall forming layer is preferably 1000 MPa or more, and more preferably 2000 MPa or more.
  • a tension of 1N to 10N is applied to the portion of the belt-like body 2 unwound by the feed driving device by the feed driving device.
  • the inspection operation can be performed while quickly feeding the portion 2c while holding the portion 2c in a plane.
  • the tension at 10 N or less the shape retention of the microchannel can be ensured.
  • the side wall forming layer 20 has a high bending elastic modulus with respect to the lid layer 21 (22) in order to improve the shape retention when the microchannel is used for analysis.
  • the slit S shown in FIGS. 6A-B is used.
  • the slit S is formed in a region between a plurality of microchannels m and m independent of each other.
  • the slit S extends in a direction orthogonal to the winding direction of the strip 2. Even if the slit S is slanted, there is an effect if it extends in the direction intersecting with the winding direction of the strip 2.
  • 6A shows a state in which the slit S is formed in a part in the width direction, but the slit S may be formed from the end surface to the end surface in the width direction.
  • the slit S when the slit S is opened, the side wall forming layer 20 is easily bent, and the winding property of the entire belt-like body 2 is improved.
  • the slit S can absorb the dimensional difference between the inner and outer circumferences of the wound belt-like body 2 ( ⁇ t when the thickness of the belt-like body 2 is t), and unnecessary stress is applied to the belt-like body 2. Can be suppressed.
  • the long hole H is formed in a region between a plurality of microchannels m and m that are independent of each other.
  • the long hole H extends in a direction orthogonal to the winding direction of the strip 2. Even if the long hole H is slanted, it is effective if it extends in the direction intersecting with the winding direction of the band 2.
  • 7A shows a state in which the long hole H is formed in a part in the width direction, but the long hole H may be formed from the end surface to the end surface in the width direction. In the case of providing the long hole H, even if the side wall forming layer 20 is wound with the side wall forming layer 20 inside as shown in FIG. Overall ease of winding is improved.
  • the long hole H is configured to penetrate the side wall forming layer 20. It may be a long groove that does not penetrate the side wall forming layer 20 and leaves the bottom. In this case, it is preferable to join the bottom of the long groove to the lid layer 21.
  • the long hole H or the long groove widens or narrows the width difference between the inner circumference and the outer circumference of the wound band 2 ( ⁇ t where the thickness of the band 2 is t). It can absorb, and it can suppress that unnecessary stress is applied to the strip 2.
  • a pair of winding holders 3 and 4 for winding and holding the belt-like body 2 are provided in the microchannel device (cartridge) 1 described above.
  • the belt-like body 2 is wound from one end.
  • Only one winding holder 30 that is rotated and unwound at the time of use may be configured as a cartridge to be attached to and detached from the apparatus main body.
  • a winding device having a winding shaft is provided in the microchannel analyzer, that is, a configuration corresponding to the winding shaft 4b in FIG.
  • the material of the replacement part can be saved by unwinding the belt-shaped body 2 from 30 and unwinding and replacing the belt-shaped body 2 around the winding holder 30 after using the cartridge.
  • disconnects and discards a use part is also possible.
  • the pair of winding holders 31 and 32 for winding and holding the belt-like body 2 are not always fixed, and the distance between the pair of winding holders 31 and 32 is variable. It is also effective to do. With this configuration, when not in use, the opposing surfaces 31a and 32a of the winding holders 31 and 32 are closed together (in this case, the winding holders 31 and 32 may be fixed).
  • the band-like body 2 can be protected without being exposed, and when used, the winding cages 31 and 32 are separated to freely change the distance between the opposing surfaces 31a and 32a, and the distance between the winding axes is different. It can be applied to a plurality of types of microchannel analyzers, and the versatility of the microchannel device (cartridge) is improved.
  • the opposing surface 31a and the opposing surface 32a are each provided with an entrance / exit of the belt-like body 2.
  • the crossover connecting portion 5 is provided with an expansion / contraction mechanism such as a slide type and a bellows type, and the pair of winding retainers 3 and 4 are connected to each other by the crossover connecting portion 5. The distance between the winding holders 3 and 4 can be changed.
  • the micro-channel device is a cartridge type having a winding holder and a case body, but the configuration attached to the belt-like body 2 is simplified as much as possible regardless of this. Also good.
  • worn with the analyzer main body can be considered.
  • the cylindrical winding core corresponds to the simplest winding cage.
  • belt-shaped body 2 in roll shape with a predetermined internal diameter without a winding core, and equips this with the analyzer main body may be implemented.
  • the evaluation criterion is that the change amount of the channel cross-sectional area in the winding direction with respect to the channel cross-sectional area before winding formed in the side wall forming layer is less than 5%, and 5% to 10% is ⁇ . What exceeded% was made into x. Table 1 shows the results.
  • the thickness of the side wall forming layer 20 is preferably 1 ⁇ m or more and 300 ⁇ m or less, and the flexural modulus is preferably 1000 MPa or more and 5000 MPa or less. Recognize. Moreover, when the minimum winding diameter of the winding holding
  • Side wall forming layer width 200 (mm)
  • Side wall forming layer thickness 10, 100, 400 ( ⁇ m)
  • Materials for side wall forming layer polytetrafluoroethylene (PTFE (flexural modulus 500 MPa)), methylpentene (TPX (flexural modulus 1300 MPa)), cyclic olefin copolymer (COC (flexural modulus 2100 MPa, 3000 MPa)), polyamideimide ( Flow path width (winding direction) ⁇ length (width direction) formed in sheet material side wall forming layer of PAI (flexural modulus 4900 MPa): 70 ( ⁇ m) ⁇ 30 (mm) Channel depth: side wall forming layer thickness x 0.7 cross-section as a rectangular groove, The winding diameter is set to 10, 30, 50, 150 (mm), and then wound, released, and given a tension of 1N, 10N, 30N in the winding direction, and the channel cross-sectional area in the winding direction of the channel shape was measured.
  • PTFE polytetra
  • the evaluation criterion is that the change amount of the channel cross-sectional area in the winding direction with respect to the channel cross-sectional area formed in the side wall forming layer is less than 5%, and 5% to 10% is more than ⁇ 10%.
  • the present invention can be used for micro-TAS (Micro-Total Analysis Systems) that performs biochemical analysis and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided is a micro-flow path device in which a micro-flow path is formed by a flexible tape having a plurality of layers, which, while being capable of being wound into a roll, configures a micro-flow path with high shape retention when being used in analysis. A micro-flow path device wherein a micro-flow path (m) is formed by a flexible tape (2) having a plurality of layers comprises: a lateral wall forming layer (20) which forms a lateral wall of a micro-flow path; and a lid layer (20 (21)) which covers an aperture in the layering direction of the micro-flow path. The lateral wall forming layer has a higher bend elastic constant than the lid layer. With the lid layer bend elastic constant being low, a micro-flow path with high shape retention when used in analysis is configured in which implementing ease of bending of the tape overall and winding same in a roll with a desired winding diameter is possible, while, when the tape is unwound and used in analysis, the bending stress when wound is released and the stress is lowered, recovering elastically to a smaller distortion than the lateral wall forming layer with the comparatively high bend elastic constant.

Description

マイクロ流路デバイス及びマイクロ流路分析装置Microchannel device and microchannel analyzer
 本発明は、生体化学分析等を行うマイクロTAS(Micro-Total Analysis Systems)分析装置に適用できるマイクロ流路デバイスに関する。 The present invention relates to a microchannel device that can be applied to a micro TAS (Micro-Total Analysis Systems) analyzer that performs biochemical analysis and the like.
 近年、マイクロ流路を用いた試料分析が行われるようになってきており、マイクロ流路に試料を流し込んで(充填して)光を照射することにより、少量の試料でも十分にその特性を分析することができるようになっている。
 特許文献1,2には、ガラス基板等の基板上にマイクロ流路が形成されたマイクロ流路チップが記載されている。
 一方、特許文献3,4には、複数層からなる可撓性の帯状体(テープ)によりマイクロ流路が形成されたマイクロ流路デバイスが記載されている。さらに特許文献4にあっては、マイクロ流路を形成した可撓性の帯状体(テープ)をロール状に巻回し、これを巻き出し、巻き取ることでマイクロ流路分析装置の検査部に順次送る装置構成が記載されている。
In recent years, sample analysis using micro-channels has been performed, and by irradiating light after filling the micro-channels with samples, the characteristics of even a small amount of samples can be analyzed sufficiently. Can be done.
Patent Documents 1 and 2 describe a microchannel chip in which a microchannel is formed on a substrate such as a glass substrate.
On the other hand, Patent Documents 3 and 4 describe a microchannel device in which a microchannel is formed by a flexible strip (tape) composed of a plurality of layers. Furthermore, in Patent Document 4, a flexible belt-like body (tape) having a microchannel formed thereon is wound into a roll shape, and this is unwound and wound up so as to be sequentially applied to the inspection unit of the microchannel analyzer. The sending device configuration is described.
特開2006-153823号公報JP 2006-153823 A 特開2007-51964号公報JP 2007-51964 A 特開2004-163427号公報JP 2004-163427 A 国際公開2001-036958号公報International Publication 2001-036958
 特許文献1,2に記載されるようなマイクロ流路チップにあっては、基板その他のマイクロ流路を形成する層の剛性によって、マイクロ流路の形状を所望の寸法精度で保つことができる。その反面、検査毎にマイクロ流路チップを交換しなければならず、検査作業効率が良好でない。このため、コストも高くなる。
 これに対し、特許文献4に記載のマイクロ流路デバイスにあっては、独立した流路を多数連続して形成しておき、巻き出し、巻き取ることで検査対象部分の交替を容易に進めることができ、高い検査作業効率が望める。その反面、ロール状に巻回できるほどの可撓性を有するために、マイクロ流路の形状保持精度が低下し、分析使用時に所望の形状から逸脱した形状に変形しているおそれがある。マイクロ流路の形状保持精度は、例えば、試料と試薬の混合比に影響するなど、分析精度の低下要因ともなり得るため、重要である。
In the microchannel chip as described in Patent Documents 1 and 2, the shape of the microchannel can be maintained with a desired dimensional accuracy by the rigidity of the substrate and other layers forming the microchannel. On the other hand, the microchannel chip must be replaced for each inspection, and the inspection work efficiency is not good. For this reason, cost also becomes high.
On the other hand, in the microchannel device described in Patent Document 4, a large number of independent channels are continuously formed, and unwinding and winding up facilitate the replacement of the inspection target portion. And high inspection work efficiency can be expected. On the other hand, since it is flexible enough to be wound in a roll shape, the accuracy of holding the shape of the microchannel is lowered, and there is a possibility that it is deformed to a shape deviating from a desired shape during analysis use. The accuracy of maintaining the shape of the microchannel is important because it can cause a decrease in analysis accuracy, for example, by affecting the mixing ratio of the sample and the reagent.
 本発明は以上の従来技術における問題に鑑みてなされたものであって、複数層からなる可撓性の帯状体によりマイクロ流路が形成されたマイクロ流路デバイスにおいて、ロール状に巻回可能にしつつ、分析使用時の形状保持性の高いマイクロ流路を構成することを課題とする。 The present invention has been made in view of the above-described problems in the prior art, and in a microchannel device in which a microchannel is formed by a flexible belt-shaped body composed of a plurality of layers, the microchannel device can be wound in a roll shape. On the other hand, it is an object of the present invention to configure a microchannel having a high shape retaining property during analysis use.
 以上の課題を解決するための請求項1記載の発明は、複数層からなる可撓性の帯状体によりマイクロ流路が形成されたマイクロ流路デバイスにおいて、
前記マイクロ流路の側壁を形成する側壁形成層と、前記マイクロ流路の積層方向の開口を蓋う蓋層と、を備え、
前記側壁形成層が前記蓋層より高い曲げ弾性率を有するマイクロ流路デバイスである。
The invention according to claim 1 for solving the above-mentioned problems is a microchannel device in which a microchannel is formed by a flexible belt-shaped body composed of a plurality of layers.
A side wall forming layer that forms a side wall of the microchannel, and a lid layer that covers an opening in the stacking direction of the microchannel,
In the microchannel device, the side wall forming layer has a higher flexural modulus than the lid layer.
 請求項2記載の発明は、前記帯状体が巻回保持され、
前記側壁形成層及び前記蓋層が弾性限度内の変形により巻回保持された請求項1に記載のマイクロ流路デバイスである。
In the invention according to claim 2, the belt-like body is wound and held,
The microchannel device according to claim 1, wherein the side wall forming layer and the lid layer are wound and held by deformation within an elastic limit.
 請求項3記載の発明は、前記帯状体の巻回保持状態の最小巻き径が30mm以上、150mm以下であり、前記側壁形成層の厚みが1μm以上、300μm以下であり、前記側壁形成層の曲げ弾性率が1000MPa以上5000MPa以下である請求項2に記載のマイクロ流路デバイスである。 According to a third aspect of the present invention, the minimum winding diameter in the winding and holding state of the belt-shaped body is 30 mm or more and 150 mm or less, the thickness of the side wall forming layer is 1 μm or more and 300 μm or less, and the bending of the side wall forming layer The microchannel device according to claim 2, wherein the elastic modulus is 1000 MPa or more and 5000 MPa or less.
 請求項4記載の発明は、前記帯状体の巻回保持状態の最小巻き径が10mm以上、30mm未満であり、前記側壁形成層の厚みが1μm以上、200μm以下であり、前記側壁形成層の曲げ弾性率が1000MPa以上5000MPa以下である請求項2に記載のマイクロ流路デバイスである。 According to a fourth aspect of the present invention, the minimum winding diameter in the winding and holding state of the belt-shaped body is 10 mm or more and less than 30 mm, the thickness of the sidewall forming layer is 1 μm or more and 200 μm or less, and the bending of the sidewall forming layer is The microchannel device according to claim 2, wherein the elastic modulus is 1000 MPa or more and 5000 MPa or less.
 請求項5記載の発明は、前記側壁形成層の引張り弾性率が1000MPa以上である請求項3又は請求項4に記載のマイクロ流路デバイスである。 Invention of Claim 5 is a microchannel device of Claim 3 or Claim 4 whose tensile elasticity modulus of the said side wall formation layer is 1000 Mpa or more.
 請求項6記載の発明は、前記蓋層が前記マイクロ流路に対して外側に配されて巻回保持された請求項2から請求項5のうちいずれか一項に記載のマイクロ流路デバイスである。 The invention according to claim 6 is the microchannel device according to any one of claims 2 to 5, wherein the lid layer is disposed outside the microchannel and is wound and held. is there.
 請求項7記載の発明は、前記蓋層が前記マイクロ流路に対して内側に配されて巻回保持された請求項2から請求項5のうちいずれか一項に記載のマイクロ流路デバイスである。 The invention according to claim 7 is the microchannel device according to any one of claims 2 to 5, wherein the lid layer is arranged on the inside with respect to the microchannel and held by winding. is there.
 請求項8記載の発明は、前記側壁形成層は、互いに独立した前記マイクロ流路の間の領域に、前記帯状体の巻き方向に交わる方向に延在するスリット、長孔又は長溝を有する請求項1から請求項7のうちいずれか一項に記載のマイクロ流路デバイスである。 The invention according to claim 8 is characterized in that the side wall forming layer has a slit, a long hole, or a long groove extending in a direction intersecting with the winding direction of the belt-like body in a region between the microchannels independent of each other. It is a microchannel device as described in any one of Claims 1-7.
 請求項9記載の発明は、前記帯状体を巻回保持する巻回保持器を備える請求項2から請求項8のうちいずれか一項に記載のマイクロ流路デバイスである。 Invention of Claim 9 is a microchannel device as described in any one of Claims 2-8 provided with the winding holder | retainer which winds and hold | maintains the said strip | belt-shaped body.
 請求項10記載の発明は、前記巻回保持器は、前記帯状体を巻回保持する巻き軸と、前記帯状体を巻き出し又は巻き取るために前記巻き軸を回転させる回転力を前記巻き軸に伝達可能に接続させる回転駆動力接続部とを有する請求項9に記載のマイクロ流路デバイスである。 The invention according to claim 10 is characterized in that the winding holder has a winding shaft that winds and holds the belt-like body, and a rotational force that rotates the winding shaft to wind or wind the belt-like body. It is a microchannel device of Claim 9 which has a rotational drive force connection part connected so that it can transmit to.
 請求項11記載の発明は、前記巻回保持器が一対設けられ、一方の前記巻回保持器は前記帯状体を一端から巻回保持し、他方の前記巻回保持器は前記帯状体を他端から巻回保持し、
少なくとも一方の前記巻回保持器から前記帯状体を巻き出し可能で、他方の前記巻回保持器に前記帯状体を巻き取り可能に構成された請求項9又は請求項10に記載のマイクロ流路デバイスである。
According to an eleventh aspect of the present invention, a pair of the winding cages are provided, one of the winding cages winds and holds the belt-like body from one end, and the other winding cage holds the belt-like body. Hold it from the edge,
The microchannel according to claim 9 or 10, wherein the belt-like body can be unwound from at least one of the winding cages, and the belt-like body can be taken up by the other winding cage. It is a device.
 請求項12記載の発明は、前記帯状体の一対の前記巻回保持器間を渡る部分を保護し、一対の前記巻回保持器を互いに連結する渡り連結部を備え、
前記渡り連結部に、前記マイクロ流路に対する作用・観察を可能とする窓を有する請求項11に記載のマイクロ流路デバイスである。
The invention according to claim 12 includes a cross connection portion that protects a portion of the belt-like body that crosses between the pair of winding cages and connects the pair of winding cages to each other,
It is a microchannel device of Claim 11 which has a window which enables an effect | action and observation with respect to the said microchannel in the said cross connection part.
 請求項13記載の発明は、一対の前記巻回保持器間の距離が可変に構成された請求項11又は請求項12に記載のマイクロ流路デバイスである。 The invention according to claim 13 is the microchannel device according to claim 11 or 12, wherein the distance between the pair of winding cages is variably configured.
 請求項14記載の発明は、前記巻回保持器は前記帯状体の巻回部を内部に納めるケース体を有する請求項9から請求項13のうちいずれか一項に記載のマイクロ流路デバイスである。 The invention according to claim 14 is the microchannel device according to any one of claims 9 to 13, wherein the winding retainer has a case body in which the winding portion of the belt-like body is housed. is there.
 請求項15記載の発明は、請求項1から請求項14のうちいずれか一項に記載のマイクロ流路デバイスを着脱自在にされ、当該マイクロ流路デバイスに形成されたマイクロ流路中に物質を注入し物質の分析を行うマイクロ流路分析装置である。 According to a fifteenth aspect of the present invention, the microchannel device according to any one of the first to fourteenth aspects is made detachable, and a substance is placed in the microchannel formed in the microchannel device. It is a microchannel analyzer for injecting and analyzing substances.
 請求項16記載の発明は、前記マイクロ流路デバイスの前記帯状体を送り駆動する駆動装置を備える請求項15に記載のマイクロ流路分析装置である。 The invention according to claim 16 is the microchannel analyzer according to claim 15, further comprising a drive unit that feeds and drives the belt-like body of the microchannel device.
 請求項17記載の発明は、前記帯状体の前記駆動装置により巻き出された部分には、前記駆動装置により1N~10Nの張力が付与される請求項16に記載のマイクロ流路分析装置である。 A seventeenth aspect of the present invention is the microchannel analyzer according to the sixteenth aspect, wherein a tension of 1N to 10N is applied to the portion of the belt-like body unwound by the driving device by the driving device. .
 本発明によれば、複数層からなる可撓性の帯状体によりマイクロ流路が形成されたマイクロ流路デバイスを構成し、マイクロ流路の側壁を形成する側壁形成層が蓋層より高い曲げ弾性率を有する。マイクロ流路より外側の表層等に配置されて曲げ応力を受け易い蓋層の曲げ弾性率が低いことで、帯状体全体の曲げ易さを実現し帯状体を所望の巻き径でロール状に巻回することを可能にする一方で、帯状体が巻き出されて分析使用に供され、巻回時の曲げ応力が開放されて応力が小さくなったときには、比較的曲げ弾性率の高い側壁形成層がより小さい歪にまで弾性回復し、無負荷状態における理想形状に対し誤差の小さい一定の精度にマイクロ流路を回復させるので、分析使用時の形状保持性の高いマイクロ流路を構成することができる。 According to the present invention, a microchannel device in which a microchannel is formed by a flexible strip having a plurality of layers is formed, and the side wall forming layer forming the side wall of the microchannel is higher in bending elasticity than the lid layer. Have a rate. The lid layer, which is placed on the surface layer outside the microchannel, is easy to bend and has a low flexural modulus, making it easy to bend the entire band and winding the band into a roll with a desired winding diameter. While it is possible to rotate, the side wall forming layer having a relatively high bending elastic modulus when the strip is unwound and used for analysis and when the bending stress at the time of winding is released to reduce the stress. However, the microchannel can be recovered to a certain degree of accuracy with a small error relative to the ideal shape in the no-load state. it can.
本発明の一実施形態に係るマイクロ流路デバイスの上面図である。It is a top view of the microchannel device concerning one embodiment of the present invention. 本発明の一実施形態に係るマイクロ流路デバイスの正面図である。It is a front view of the microchannel device concerning one embodiment of the present invention. 本発明の一実施形態に係るマイクロ流路デバイスの下面図である。It is a bottom view of the microchannel device concerning one embodiment of the present invention. 本発明の一実施形態に係るマイクロ流路デバイスのA部詳細図である。It is A section detail drawing of the microchannel device concerning one embodiment of the present invention. 本発明の一実施形態に係るマイクロ流路分析装置の正面図であり、マイクロ流路デバイスが未装着の状態を示す。It is a front view of the microchannel analyzer concerning one embodiment of the present invention, and shows the state where a microchannel device is not equipped. 本発明の一実施形態に係るマイクロ流路分析装置の正面図であり、マイクロ流路デバイスが装着された状態を示す。It is a front view of the microchannel analyzer concerning one embodiment of the present invention, and shows the state where a microchannel device was equipped. 本発明の一実施形態に係るマイクロ流路分析装置の正面図であり、マイクロ流路デバイスが装着されアクチュエータがマイクロ流路に接近した状態を示す。1 is a front view of a microchannel analyzer according to an embodiment of the present invention, showing a state in which a microchannel device is mounted and an actuator is close to a microchannel. マイクロ流路分析における注入や測定の様子が示される主な要素の斜視図である。It is a perspective view of the main elements in which the state of injection and measurement in microchannel analysis is shown. 本発明の一実施形態に係るマイクロ流路が形成された帯状体の平面図である。It is a top view of the strip | belt shaped object in which the microchannel based on one Embodiment of this invention was formed. 本発明の一実施形態に係るマイクロ流路が形成された帯状体の断面図である。It is sectional drawing of the strip | belt shaped object in which the microchannel based on one Embodiment of this invention was formed. 本発明の一実施形態に係るマイクロ流路が形成された帯状体の断面図であり、図4Bとは異なる形態を示す。It is sectional drawing of the strip | belt shaped object in which the microchannel based on one Embodiment of this invention was formed, and shows a different form from FIG. 4B. 本発明の一実施形態に係るマイクロ流路が形成された帯状体の巻回保持時の断面図である。It is sectional drawing at the time of winding holding | maintenance of the strip | belt shaped object in which the microchannel based on one Embodiment of this invention was formed. 本発明の一実施形態に係るマイクロ流路が形成された帯状体の巻回保持時の断面図であり、図5Aとは表裏が逆である点で異なる。It is sectional drawing at the time of winding holding | maintenance of the strip | belt shaped object in which the microchannel which concerns on one Embodiment of this invention was formed, and it differs by the point by which the front and back are reverse. 本発明の他の実施形態に係り、マイクロ流路及びスリットが形成された帯状体の平面図である。It is a top view of the strip | belt shaped object in connection with other embodiment of this invention in which the microchannel and the slit were formed. 図6Aに示す本発明の他の実施形態に係り、マイクロ流路及びスリットが形成された帯状体の巻回保持時の断面図である。It is sectional drawing at the time of winding holding | maintenance concerning the other embodiment of this invention shown to FIG. 6A at the time of winding holding | maintenance of the strip | belt shaped object in which the microchannel and the slit were formed. 本発明の他の実施形態に係り、マイクロ流路及び長孔が形成された帯状体の平面図である。It is a top view of the strip | belt shaped object in connection with other embodiment of this invention in which the microchannel and the long hole were formed. 図7Aに示す本発明の他の実施形態に係り、マイクロ流路及び長孔が形成された帯状体の巻回保持時の断面図である。It is sectional drawing at the time of winding holding | maintenance of the strip | belt shaped object concerning other embodiment of this invention shown to FIG. 7A in which the microchannel and the long hole were formed. 本発明の他の実施形態に係り、巻回保持器を片側だけ有したカートリッジの模式図である。It is a schematic diagram of the cartridge which concerns on other embodiment of this invention, and has a winding holder only on one side. 本発明の他の実施形態に係り、一対の巻回保持器が分離可能なカートリッジの模式図である。It is a schematic diagram of the cartridge which concerns on other embodiment of this invention, and a pair of winding holder | retainer is separable.
 以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.
 図1A-Dに、本実施形態のマイクロ流路デバイス1が示される。本実施形態のマイクロ流路デバイス1は、マイクロ流路が形成された帯状体2と、帯状体2を巻回保持する巻回保持器3,4と、巻回保持器3,4を互いに連結する渡り連結部5とを備えるカートリッジ式のものである。巻回保持器3,4及び渡り連結部5に帯状体2が収められ、マイクロ流路分析装置に容易に着脱できる交換用カードリッジが構成される。 1A to 1D show the microchannel device 1 of the present embodiment. The microchannel device 1 of the present embodiment includes a band 2 having a microchannel formed therein, winding holders 3 and 4 that wind and hold the band 2, and winding holders 3 and 4. It is a cartridge-type thing provided with the transition connection part 5 which does. The belt-like body 2 is housed in the winding holders 3 and 4 and the cross connection part 5 to constitute a replacement cartridge that can be easily attached to and detached from the microchannel analyzer.
 一方の巻回保持器3は、帯状体2の巻回部2aを内部に納めるケース体3aを有する。巻回部2aは未使用部分であり、使用時の巻き出しに伴い厚みが減少する。他方の巻回保持器4は、帯状体2の巻回部2bを内部に納めるケース体4aを有する。巻回部2bは使用済み部分であり、使用時の巻き取りに伴い厚みが増加する。未使用時には少なくとも帯状体2の一端が巻き軸4bに連結されていればよく、巻回部2bが形成されていなくてもよい。 One winding cage 3 has a case body 3a in which the winding portion 2a of the belt-like body 2 is housed. The winding part 2a is an unused part, and the thickness decreases with unwinding during use. The other winding cage 4 has a case body 4a in which the winding portion 2b of the belt-like body 2 is housed. The winding part 2b is a used part, and the thickness increases with winding during use. When not in use, it is sufficient that at least one end of the belt-like body 2 is connected to the winding shaft 4b, and the winding portion 2b may not be formed.
 巻回保持器3,4はそれぞれ、帯状体2を巻回保持する巻き軸3b,4bと、帯状体2を巻き出し又は巻き取るために巻き軸3b,4bを回転させる回転力を巻き軸3b,4bに伝達可能に接続させる回転駆動力接続部3c、4cとを有する。一方向に限定する場合は、巻き軸3bが巻き出し方向のみに回転するように、巻き軸4bが巻き取り方向のみに回転するように限定する。この場合は、未使用部を収めるケース体3aから一旦出した部分を元に戻すことはできない。巻き軸3b及び巻き軸4bをそれぞれ巻き出し及び巻き取り方向の双方向に回転するように構成してもよい。この場合、帯状体2の巻き戻しも可能である。
 このように、一対の巻回保持器3,4が設けられる。一方の巻回保持器3は帯状体2を一端から巻回保持し、他方の巻回保持器4は帯状体2を他端から巻回保持する。少なくとも一方の巻回保持器3から帯状体2を巻き出し可能で、他方の巻回保持器4に帯状体2を巻き取り可能に構成される。なお、ガイドローラー3d、4dは、帯状体2の巻回保持器3,4間を渡る部分2cの走行位置を固定するためのものである。
The winding holders 3 and 4 respectively provide winding shafts 3b and 4b for winding and holding the belt-like body 2 and a rotational force for rotating the winding shafts 3b and 4b to wind or wind the belt-like body 2. , 4b and a rotational driving force connecting portion 3c, 4c connected to be able to transmit. When limiting to one direction, it limits so that the winding shaft 3b may rotate only in the unwinding direction, and the winding shaft 4b may rotate only in the winding direction. In this case, the part once taken out from the case body 3a that accommodates the unused part cannot be restored. The winding shaft 3b and the winding shaft 4b may be configured to rotate in both directions of the unwinding and winding directions, respectively. In this case, the strip 2 can be rewound.
Thus, a pair of winding holders 3 and 4 are provided. One winding cage 3 winds and holds the strip 2 from one end, and the other winding cage 4 winds and holds the strip 2 from the other end. The belt-shaped body 2 can be unwound from at least one winding cage 3, and the belt-shaped body 2 can be wound around the other winding cage 4. The guide rollers 3d and 4d are for fixing the traveling position of the portion 2c across the winding holders 3 and 4 of the belt-like body 2.
 図2A-C及び図3に、本実施形態のマイクロ流路分析装置の概要が示される。マイクロ流路分析装置10は、マイクロ流路mに検体、試薬などを注入するピペット11、マイクロ流路m中に注入された物質の移動、混合等の処理を行うマイクロポンプ12、光照射装置13、光学読取装置14、ヒーター15等を備える。
 図1A-Dに示すように渡り連結部5は、帯状体2の巻回保持器3,4間を渡る部分2cを保護する。そのために渡り連結部5は、部分2cを囲んで覆う形態をとる。但し、渡り連結部5には、マイクロ流路mに対する作用・観察を可能とする窓が形成されている。この窓としては、ピペット接続口5a、マイクロポンプ接続口5b、光入射窓5c、光学読取用窓5dが設けられている。なお、図1Aにおいて一点鎖線で示す領域A全体が開口して形成されているようなものでもよい。
2A to 2C and FIG. 3 show an outline of the microchannel analyzer of this embodiment. The microchannel analyzer 10 includes a pipette 11 that injects a sample, a reagent, and the like into the microchannel m, a micropump 12 that performs processing such as movement and mixing of substances injected into the microchannel m, and a light irradiation device 13. , Optical reader 14, heater 15 and the like.
As shown in FIGS. 1A to 1D, the crossover connecting portion 5 protects the portion 2c of the belt-like body 2 between the winding holders 3 and 4. Therefore, the cross connection part 5 takes the form which surrounds and covers the part 2c. However, the crossover connecting portion 5 is formed with a window that enables the action and observation of the microchannel m. As the windows, a pipette connection port 5a, a micropump connection port 5b, a light incident window 5c, and an optical reading window 5d are provided. Note that the entire region A indicated by the alternate long and short dash line in FIG. 1A may be open.
 マイクロ流路分析装置10は、帯状体2を送り駆動する送り駆動装置を備え、図2Aにその出力端16,17が示される。出力端16,17は、不図示の例えばモータ等の駆動により回転駆動制御される。
 使用するには、まず図2Bに示すようにマイクロ流路デバイス(カートリッジ)1をマイクロ流路分析装置10に装着する。このとき、出力端16、17と回転駆動力接続部3c、4cとが接続される。
 ピペット11、マイクロポンプ12、ヒーター15は、マイクロ流路mに接近するために、上下動する機構に支持されている。図2Bに示すように、帯状体2の部分2cに対して上方にピペット11、マイクロポンプ12及び光照射装置13が配置され、下方に光学読取装置14及びヒーター15が配置される。帯状体2の送り制御によりマイクロ流路mの位置制御が逐次実行される一方、図2Cに示すようにピペット11が下降し、ピペット11の注入部先端がピペット接続口5aを通ってマイクロ流路mに接続し、ピペット11により検体、試薬などがマイクロ流路mに注入される。なお、マイクロ流路mの注入室を構成する蓋層には注入用の孔が設けられている。さらに図2Cに示すようにマイクロポンプ12が下降し、マイクロポンプ12の作用端がマイクロポンプ接続口5bを通ってマイクロ流路mに接続し、マイクロポンプ12により試薬の移動、検体と試薬の混合などが処理される。また、検体と試薬の反応のために必要であればヒーター15が発熱駆動され、図2Cに示すようにヒーター15が上昇してマイクロ流路mに近接配置される。
 その後、光照射装置13から出射した光が光入射窓5cを介してマイクロ流路mの反応室にある分析対象物質に照射され、分析対象物質から放射される光を光学読取用窓5dを介して光学読取装置14が読み取り、マイクロ流路分析装置10は当該物質の分析を行う。例えば、光照射装置13から出射する光は蛍光を励起する励起光で、光学読取装置14が分析対象物質から放射される光の中から蛍光を読み取るが、測定原理は特に限定されるものではない。
The microchannel analyzer 10 includes a feed driving device that feeds and drives the belt-like body 2, and its output ends 16 and 17 are shown in FIG. 2A. The output terminals 16 and 17 are rotationally driven and controlled by driving a motor (not shown), for example.
To use, first, the microchannel device (cartridge) 1 is mounted on the microchannel analyzer 10 as shown in FIG. 2B. At this time, the output ends 16 and 17 are connected to the rotational driving force connecting portions 3c and 4c.
The pipette 11, the micropump 12, and the heater 15 are supported by a mechanism that moves up and down in order to approach the microchannel m. As shown in FIG. 2B, the pipette 11, the micropump 12, and the light irradiation device 13 are disposed above the portion 2 c of the strip 2, and the optical reading device 14 and the heater 15 are disposed below. While the position control of the micro flow path m is sequentially performed by the feed control of the belt-like body 2, the pipette 11 is lowered as shown in FIG. 2C, and the tip of the injection portion of the pipette 11 passes through the pipette connection port 5a and the micro flow path. The sample, reagent, etc. are injected into the micro flow channel m by the pipette 11. Note that an injection hole is provided in the lid layer constituting the injection chamber of the microchannel m. Further, as shown in FIG. 2C, the micropump 12 is lowered, the working end of the micropump 12 is connected to the microchannel m through the micropump connection port 5b, and the micropump 12 moves the reagent and mixes the sample and the reagent. Etc. are processed. Further, if necessary for the reaction between the specimen and the reagent, the heater 15 is driven to generate heat, and as shown in FIG. 2C, the heater 15 is raised and placed close to the micro flow path m.
Thereafter, the light emitted from the light irradiation device 13 is irradiated to the analysis target substance in the reaction chamber of the micro flow channel m through the light incident window 5c, and the light emitted from the analysis target substance is passed through the optical reading window 5d. The optical reader 14 reads the data, and the microchannel analyzer 10 analyzes the substance. For example, the light emitted from the light irradiation device 13 is excitation light that excites fluorescence, and the optical reader 14 reads the fluorescence from the light emitted from the analysis target substance, but the measurement principle is not particularly limited. .
 以上説明した構成を有し、物質の分析に使用されるマイクロ流路デバイス1のマイクロ流路mが形成される帯状体2の構成につき、さらに説明する。
 図4Aに示すように、帯状体2には互いに独立した複数のマイクロ流路mが連続して帯状体2の長手方向(=巻き方向)に並んで構成されている。
 図4B又は図4Cに示すように、帯状体2は複数層からなり、上述したように巻回保持器3,4に弾性変形しつつ巻回されるだけの可撓性を有する。
 帯状体2は、側壁形成層20と、蓋層21(22)とを備える。側壁形成層20は、マイクロ流路mの側壁を形成する。側壁形成層20は、図4Bに示すように溝状に形成されるか、図4Cに示すように層厚方向に貫通して構成され、マイクロ流路mの相対する両側壁を形成する。
 図4Bの場合、側壁形成層20はマイクロ流路mの積層方向の一端面(図4Bにおいて底面)をも形成し、マイクロ流路mの積層方向の開口(図4Bにおいて上端開口)を蓋層21が蓋う。ここで、積層方向とは、側壁形成層20と蓋層21の積層方向である(以下同じ)。側壁形成層20が蓋層21より高い曲げ弾性率を有する。
 図4Cの場合、マイクロ流路mの積層方向の一方の開口(図4Cにおいて上端開口)を蓋層21が蓋い、他方の開口(図4Cにおいて下端開口)を蓋層22が蓋う。側壁形成層20が蓋層21,22より高い曲げ弾性率を有する。蓋層21と蓋層22とは、同じ曲げ弾性率とすれば足りる。
 側壁形成層20及び蓋層21は、巻回保持器3に弾性限度内の変形により巻回保持される機械的特性を有する。
 巻き方は、図5Aに示すように、蓋層21がマイクロ流路mに対して外側に配されて巻回保持器3,4に巻回保持される形態であってもよいし、図5Bに示すように蓋層21がマイクロ流路に対して内側に配されて巻回保持器3,4に巻回保持される形態であってもよい。なお、表裏に蓋層21、22を有する図4Cに示した構成にあっては、巻回時にマイクロ流路mの外側及び内側に蓋層21(22)が配置されることは当然である。
The configuration of the belt-like body 2 having the above-described configuration and in which the microchannel m of the microchannel device 1 used for substance analysis is formed will be further described.
As shown in FIG. 4A, a plurality of independent microchannels m are continuously arranged in the belt-like body 2 in the longitudinal direction (= winding direction) of the belt-like body 2.
As shown in FIG. 4B or FIG. 4C, the belt-like body 2 is composed of a plurality of layers, and has flexibility enough to be wound around the winding holders 3 and 4 while being elastically deformed as described above.
The belt-like body 2 includes a side wall forming layer 20 and a lid layer 21 (22). The side wall forming layer 20 forms the side wall of the microchannel m. The side wall forming layer 20 is formed in a groove shape as shown in FIG. 4B, or is formed so as to penetrate in the layer thickness direction as shown in FIG. 4C, and forms opposite side walls of the microchannel m.
In the case of FIG. 4B, the side wall forming layer 20 also forms one end surface (bottom surface in FIG. 4B) of the microchannel m in the stacking direction, and the opening in the stacking direction of the microchannel m (upper end opening in FIG. 4B) is the lid layer. 21 is covered. Here, the stacking direction is the stacking direction of the side wall forming layer 20 and the lid layer 21 (the same applies hereinafter). Sidewall forming layer 20 has a higher flexural modulus than lid layer 21.
In the case of FIG. 4C, the lid layer 21 covers one opening (the upper end opening in FIG. 4C) in the stacking direction of the microchannel m, and the lid layer 22 covers the other opening (the lower end opening in FIG. 4C). Sidewall forming layer 20 has a higher flexural modulus than lid layers 21 and 22. It is sufficient that the lid layer 21 and the lid layer 22 have the same bending elastic modulus.
The side wall forming layer 20 and the lid layer 21 have mechanical properties that are wound and held by the winding holder 3 by deformation within the elastic limit.
As shown in FIG. 5A, the winding method may be such that the lid layer 21 is arranged on the outside with respect to the microchannel m and is wound and held by the winding holders 3 and 4. The lid layer 21 may be arranged on the inner side with respect to the microchannel and wound and held by the winding holders 3 and 4 as shown in FIG. In the configuration shown in FIG. 4C having the lid layers 21 and 22 on the front and back sides, it is natural that the lid layer 21 (22) is disposed outside and inside the microchannel m at the time of winding.
 帯状体2の巻回保持には、帯状体2が曲げ変形する。帯状体2の曲げ変形時において歪及び応力がゼロとなる中立面から離れた外側又は内側に曲げ弾性率の低い蓋層21(22)が配置されることで、帯状体2全体の曲げ剛性が低くなり、帯状体2は容易に曲げ変形しやすくなる。これにより、帯状体2をその弾性限度内で容易に所望の巻き径でロール状に巻回することができる。
 その一方で、帯状体2が巻き出されて部分2cで分析使用に供され、巻回時の曲げ応力が開放されて応力が小さくなったときには、比較的曲げ弾性率の高い側壁形成層20がより小さい歪にまで弾性回復し、無負荷状態における理想形状に対し誤差の小さい一定の精度にマイクロ流路mを回復させるので、分析使用時の形状保持性の高いマイクロ流路mを部分2cで構成することができる。
When the belt-like body 2 is wound and held, the belt-like body 2 is bent and deformed. The lid layer 21 (22) having a low bending elastic modulus is arranged on the outer side or the inner side away from the neutral surface where strain and stress are zero when the band-like body 2 is bent, so that the bending rigidity of the whole band-like body 2 is increased. And the belt-like body 2 is easily bent and deformed. Thereby, the strip | belt-shaped body 2 can be easily wound in roll shape with a desired winding diameter within the elastic limit.
On the other hand, when the strip 2 is unwound and used for analysis in the portion 2c, and the bending stress at the time of winding is released and the stress is reduced, the side wall forming layer 20 having a relatively high bending elastic modulus is formed. Since the microchannel m is recovered to a smaller strain and the microchannel m is recovered to a certain accuracy with a small error with respect to the ideal shape in the no-load state, the microchannel m having a high shape retaining property at the time of analysis use can be obtained at the portion 2c. Can be configured.
 また、帯状体の総厚が同じで、蓋層と側壁形成層の曲げ弾性率が同じもので構成した帯状体Aと、蓋層の曲げ弾性率よりも高い曲げ弾性率の側壁形成層で構成された帯状体Bとを比較した場合、帯状体Aと帯状体Bが同じ曲げ弾性率と仮定した場合には、帯状体Bの側壁形成層の曲げ弾性率を高く設定できる。また、帯状体Aと帯状体Bの側壁形成層の曲げ弾性率が同じもので構成されている場合には、帯状体Bのトータルの曲げ弾性率を低くできる。 Moreover, it is comprised with the strip | belt-shaped body A comprised with the same bending elastic modulus of a cover layer and a side wall formation layer with the same total thickness of a strip | belt body, and the side wall formation layer of a bending elastic modulus higher than the bending elastic modulus of a cover layer. When the strip-shaped body B is compared, and the strip-shaped body A and the strip-shaped body B are assumed to have the same bending elastic modulus, the bending elastic modulus of the side wall forming layer of the strip-shaped body B can be set high. Moreover, when the bending elastic modulus of the side wall forming layer of the band A and the band B is the same, the total bending elastic modulus of the band B can be lowered.
 すなわち、本願発明者は、蓋層の曲げ弾性率よりも高い曲げ弾性率の側壁形成層で帯状体を構成することにより、巻回の容易性と、巻かれた状態から平坦な状態に回復した際の側壁形成層の形状保持性の両立がより容易になるということに想到し、本発明を構成したものである。 That is, the inventor of the present application has recovered the belt from the rolled state to the flat state by configuring the band-shaped body with the side wall forming layer having a higher bending elastic modulus than the bending elastic modulus of the lid layer. The present invention is configured by conceiving that the compatibility of the shape retention of the side wall forming layer becomes easier.
 また、側壁形成層の形状保持性を良好に保つには、帯状体2の巻回保持状態の最小巻き径が30mm以上、150mm以下の場合には、側壁形成層の厚みが1μm以上、300μm以下で曲げ弾性率が1000MPa以上5000MPa以下であることが好ましい。
 また、帯状体の巻回保持状態の最小巻き径が10mm以上、30mm未満の場合には、側壁形成層の厚みが1μm以上、200μm以下で曲げ弾性率が1000MPa以上5000MPa以下であることが好ましい。
In order to maintain the shape retaining property of the side wall forming layer well, the thickness of the side wall forming layer is 1 μm or more and 300 μm or less when the minimum winding diameter of the belt-like body 2 is 30 mm or more and 150 mm or less. The flexural modulus is preferably 1000 MPa or more and 5000 MPa or less.
Further, when the minimum winding diameter of the belt-like body is 10 mm or more and less than 30 mm, the thickness of the side wall forming layer is preferably 1 μm or more and 200 μm or less, and the flexural modulus is preferably 1000 MPa or more and 5000 MPa or less.
 更に、側壁形成層の引張り弾性率は、1000MPa以上であることが好ましく、2000MPa以上であればより好ましい。
 帯状体2の送り駆動装置により巻き出された部分には、送り駆動装置により1N~10Nの張力が付与される。張力が1N以上あることによって、部分2cを平面的に保持しつつ迅速に送りながら検査動作を遂行できる。張力を10N以下とすることで、マイクロ流路の形状保持性を確保できる。
Furthermore, the tensile modulus of elasticity of the side wall forming layer is preferably 1000 MPa or more, and more preferably 2000 MPa or more.
A tension of 1N to 10N is applied to the portion of the belt-like body 2 unwound by the feed driving device by the feed driving device. When the tension is 1N or more, the inspection operation can be performed while quickly feeding the portion 2c while holding the portion 2c in a plane. By maintaining the tension at 10 N or less, the shape retention of the microchannel can be ensured.
 以上のように側壁形成層20は、マイクロ流路の分析使用時の形状保持性を良好にするために蓋層21(22)に対して高い曲げ弾性率を有する。マイクロ流路の分析使用時の形状保持性を損なうことなく、側壁形成層20の曲げ変形を容易にし、帯状体2全体の巻回容易性を向上させるために、図6A-Bに示すスリットSや、図7A-Bに示す長孔Hを側壁形成層20に形成することも有効である。 As described above, the side wall forming layer 20 has a high bending elastic modulus with respect to the lid layer 21 (22) in order to improve the shape retention when the microchannel is used for analysis. In order to facilitate bending deformation of the side wall forming layer 20 and improve the ease of winding of the entire belt-like body 2 without impairing the shape retention during analysis use of the microchannel, the slit S shown in FIGS. 6A-B is used. Alternatively, it is also effective to form the long holes H shown in FIGS. 7A and 7B in the sidewall forming layer 20.
 図6Aに示すようにスリットSは、互いに独立した複数のマイクロ流路m,mの間の領域に形成される。スリットSは帯状体2の巻き方向に直交する方向に延在する。仮にスリットSを斜めにしても、帯状体2の巻き方向に交わる方向に延在させれば効果はある。なお、図6Aでは、幅方向の一部にスリットSが形成された状態を示しているが、幅方向端面から端面までスリットSが形成されていてもよい。スリットSを設ける場合は、図6Bに示すように側壁形成層20を外側にして巻回する。これにより図6Bに示すようにスリットSが開くことで、側壁形成層20が曲がり易くなり、帯状体2全体の巻回容易性が向上する。また、巻回された帯状体2の内周と外周の寸法差(帯状体2の厚みをtとするとπt)をスリットSが開くことで吸収でき、帯状体2に不要な応力がかかることを抑えることができる。 As shown in FIG. 6A, the slit S is formed in a region between a plurality of microchannels m and m independent of each other. The slit S extends in a direction orthogonal to the winding direction of the strip 2. Even if the slit S is slanted, there is an effect if it extends in the direction intersecting with the winding direction of the strip 2. 6A shows a state in which the slit S is formed in a part in the width direction, but the slit S may be formed from the end surface to the end surface in the width direction. When providing the slit S, as shown to FIG. 6B, it winds by making the side wall formation layer 20 outside. Thereby, as shown in FIG. 6B, when the slit S is opened, the side wall forming layer 20 is easily bent, and the winding property of the entire belt-like body 2 is improved. In addition, the slit S can absorb the dimensional difference between the inner and outer circumferences of the wound belt-like body 2 (πt when the thickness of the belt-like body 2 is t), and unnecessary stress is applied to the belt-like body 2. Can be suppressed.
 図7Aに示すように長孔Hは、互いに独立した複数のマイクロ流路m,mの間の領域に形成される。長孔Hは帯状体2の巻き方向に直交する方向に延在する。仮に長孔Hを斜めにしても、帯状体2の巻き方向に交わる方向に延在させれば効果はある。なお、図7Aでは、幅方向の一部に長孔Hが形成された状態を示しているが、幅方向端面から端面まで長孔Hが形成されていてもよい。長孔Hを設ける場合は、図7Bに示すように側壁形成層20を内側にして巻回しても、長孔Hの側面同士が近づくことで、側壁形成層20が曲がり易くなり、帯状体2全体の巻回容易性が向上する。もちろん、側壁形成層20を外側にして巻回しても、長孔Hの側面同士が離れることで、側壁形成層20が曲がり易くなり、帯状体2全体の巻回容易性が向上する。したがって、長孔Hを設ける場合は、表裏の配置に拘わらず、帯状体2の巻回容易性が向上する効果がある。なお、長孔Hに代えて長溝としても効果がある。長孔Hは側壁形成層20を貫通する構成である。側壁形成層20を貫通せず、底を残した長溝としてもよい。この場合、長溝の底を蓋層21に接合することが好ましい。このようにしても、巻回された帯状体2の内周と外周の寸法差(帯状体2の厚みをtとするとπt)を長孔H又は長溝がその幅を広げたり狭めたりすることで吸収でき、帯状体2に不要な応力がかかることを抑えることができる。 As shown in FIG. 7A, the long hole H is formed in a region between a plurality of microchannels m and m that are independent of each other. The long hole H extends in a direction orthogonal to the winding direction of the strip 2. Even if the long hole H is slanted, it is effective if it extends in the direction intersecting with the winding direction of the band 2. 7A shows a state in which the long hole H is formed in a part in the width direction, but the long hole H may be formed from the end surface to the end surface in the width direction. In the case of providing the long hole H, even if the side wall forming layer 20 is wound with the side wall forming layer 20 inside as shown in FIG. Overall ease of winding is improved. Of course, even if the side wall forming layer 20 is wound outside, the side surfaces of the long holes H are separated from each other, whereby the side wall forming layer 20 is easily bent, and the winding property of the entire belt-like body 2 is improved. Therefore, when providing the long hole H, there exists an effect which the winding ease of the strip | belt-shaped body 2 improves irrespective of arrangement | positioning of front and back. In addition, it is effective as a long groove instead of the long hole H. The long hole H is configured to penetrate the side wall forming layer 20. It may be a long groove that does not penetrate the side wall forming layer 20 and leaves the bottom. In this case, it is preferable to join the bottom of the long groove to the lid layer 21. Even in this case, the long hole H or the long groove widens or narrows the width difference between the inner circumference and the outer circumference of the wound band 2 (πt where the thickness of the band 2 is t). It can absorb, and it can suppress that unnecessary stress is applied to the strip 2.
 以上説明したマイクロ流路デバイス(カートリッジ)1にあっては、帯状体2を巻回保持する巻回保持器3,4を一対設けたが、図8Aに示すように帯状体2を一端から巻回し、使用時に巻き出す巻回保持器30を一つだけカートリッジに構成して装置本体への着脱を行ってもよい。この場合、例えば、マイクロ流路分析装置に巻き軸を有した巻取装置を設ける、すなわち、図1Bの巻き軸4bに相当する構成等を装置本体側に常設して、これにより巻回保持器30から帯状体2を巻き出し、カートリッジの使用後に帯状体2を巻回保持器30に巻き戻して交換することで、交換部分の材料を節減できる。また、帯状体2を巻き出し、分析に使用した後は、使用部分を切断して廃棄する構成も可能である。 In the microchannel device (cartridge) 1 described above, a pair of winding holders 3 and 4 for winding and holding the belt-like body 2 are provided. However, as shown in FIG. 8A, the belt-like body 2 is wound from one end. Only one winding holder 30 that is rotated and unwound at the time of use may be configured as a cartridge to be attached to and detached from the apparatus main body. In this case, for example, a winding device having a winding shaft is provided in the microchannel analyzer, that is, a configuration corresponding to the winding shaft 4b in FIG. The material of the replacement part can be saved by unwinding the belt-shaped body 2 from 30 and unwinding and replacing the belt-shaped body 2 around the winding holder 30 after using the cartridge. Moreover, after unwinding the strip | belt-shaped body 2 and using it for an analysis, the structure which cut | disconnects and discards a use part is also possible.
 また、図8Bに示すように、帯状体2を巻回保持する一対の巻回保持器31,32同士を常時固定せずに、一対の巻回保持器31,32間の距離を可変に構成することも有効である。この構成であれば、未使用時には巻回保持器31,32の対向面31a,32a同士を合わせて閉じておく(このときは巻回保持器31,32同士を固定してもよい)ことで帯状体2を露出させることなく保護することができ、使用時には、巻回保持器31,32を分離して対向面31a,32a間の距離を自由に変化させて、巻き軸間距離等が異なる複数種のマイクロ流路分析装置に適用することができ、マイクロ流路デバイス(カートリッジ)の汎用性が向上する。対向面31a及び対向面32aにはそれぞれ帯状体2の出入口が設けられる。 Further, as shown in FIG. 8B, the pair of winding holders 31 and 32 for winding and holding the belt-like body 2 are not always fixed, and the distance between the pair of winding holders 31 and 32 is variable. It is also effective to do. With this configuration, when not in use, the opposing surfaces 31a and 32a of the winding holders 31 and 32 are closed together (in this case, the winding holders 31 and 32 may be fixed). The band-like body 2 can be protected without being exposed, and when used, the winding cages 31 and 32 are separated to freely change the distance between the opposing surfaces 31a and 32a, and the distance between the winding axes is different. It can be applied to a plurality of types of microchannel analyzers, and the versatility of the microchannel device (cartridge) is improved. The opposing surface 31a and the opposing surface 32a are each provided with an entrance / exit of the belt-like body 2.
 なお、一対の巻回保持器間の距離を可変に構成することは、上述の渡り連結部5を有した構成でも可能である。渡り連結部5に、スライド式、蛇腹式等の伸縮機構を設けて、渡り連結部5により一対の巻回保持器3,4同士を連結しながらも、渡り連結部5が伸縮することにより一対の巻回保持器3,4間の距離を変化させることができる。 In addition, it is also possible to configure the distance between the pair of winding cages to be variable even in the configuration having the above-described transition coupling portion 5. The crossover connecting portion 5 is provided with an expansion / contraction mechanism such as a slide type and a bellows type, and the pair of winding retainers 3 and 4 are connected to each other by the crossover connecting portion 5. The distance between the winding holders 3 and 4 can be changed.
 以上の実施形態においてはマイクロ流路デバイスを、巻回保持器やケース体を有したカートリッジ式としたが、これに拘わらず帯状体2に付属する構成を可及的に簡素化して実施しても良い。その場合、未使用の帯状体2を円筒状の巻き芯に巻き付けた状態で提供し、これを分析装置本体に装着する形態が考えられる。このとき、円筒状の巻き芯は、最も簡単な巻回保持器に相当する。また、巻き芯無しで所定の内径で帯状体2をロール状に巻いた状態で提供し、これを分析装置本体に装着する形態を実施してもよい。 In the above embodiment, the micro-channel device is a cartridge type having a winding holder and a case body, but the configuration attached to the belt-like body 2 is simplified as much as possible regardless of this. Also good. In that case, the form which provides the unused strip | belt-shaped body 2 in the state wound around the cylindrical winding core, and with which this is mounted | worn with the analyzer main body can be considered. At this time, the cylindrical winding core corresponds to the simplest winding cage. Moreover, the form which provides in the state which wound the strip | belt-shaped body 2 in roll shape with a predetermined internal diameter without a winding core, and equips this with the analyzer main body may be implemented.
 本マイクロ流路デバイスに必要とされる側壁形成層の特性(分析使用時の形状保持性)を実験により求めた。 The characteristics of the side wall forming layer required for this microchannel device (shape retention during analysis use) were determined by experiments.
 実験条件は、以下のとおりである。
側壁形成層の幅:200(mm)
側壁形成層の厚み:1、10、100、200、300、400、500(μm)
側壁形成層の材料:ポリテトラフルオロエチレン(PTFE(曲げ弾性率500MPa))、メチルペンテン(TPX(曲げ弾性率1300MPa))、環状オレフィンコポリマー(COC(曲げ弾性率2100MPa、3000MPa))、ポリアミドイミド(PAI(曲げ弾性率4900MPa))、ポリフェニレンサルファイド(PPS(曲げ弾性率8000MPa))のシート材
側壁形成層に形成した流路幅(巻き方向)×長さ(幅方向):70(μm)×30(mm)
流路の深さ:側壁形成層の厚み×0.7の断面が矩形の溝
として、
巻き径を、10、30、50、100、150、200(mm)として、それぞれ巻いた後、解放し、流路形状の巻き方向の流路断面積を測定した。
The experimental conditions are as follows.
Side wall forming layer width: 200 (mm)
Side wall forming layer thickness: 1, 10, 100, 200, 300, 400, 500 (μm)
Materials for side wall forming layer: polytetrafluoroethylene (PTFE (flexural modulus 500 MPa)), methylpentene (TPX (flexural modulus 1300 MPa)), cyclic olefin copolymer (COC (flexural modulus 2100 MPa, 3000 MPa)), polyamideimide ( PAI (bending elastic modulus 4900 MPa)), polyphenylene sulfide (PPS (flexural elastic modulus 8000 MPa)) sheet material side wall forming layer width (winding direction) × length (width direction): 70 (μm) × 30 (Mm)
Channel depth: side wall forming layer thickness x 0.7 cross-section as a rectangular groove,
The winding diameter was set to 10, 30, 50, 100, 150, and 200 (mm), respectively, and then released, and the channel cross-sectional area in the winding direction of the channel shape was measured.
 評価基準は、側壁形成層に形成された巻く前の流路断面積に対して、巻き方向の流路断面積の変化量が、5%未満を○とし、5%~10%を△、10%を超えるものを×とした。表1にその結果を示す。 The evaluation criterion is that the change amount of the channel cross-sectional area in the winding direction with respect to the channel cross-sectional area before winding formed in the side wall forming layer is less than 5%, and 5% to 10% is Δ. What exceeded% was made into x. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1より、帯状体2の巻回保持状態の最小巻き径が30mm以上、150mm以下の場合、側壁形成層20の厚みが1μm以上、300μm以下、曲げ弾性率が1000MPa以上5000MPa以下が好ましいことがわかる。また、帯状体2の巻回保持状態の最小巻き径が10mm以上、30mm未満の場合、側壁形成層20の厚みが1μm以上、200μm以下、曲げ弾性率が1000MPa以上5000MPa以下が好ましいことがわかる。 From Table 1, when the minimum winding diameter of the wound state of the belt-like body 2 is 30 mm or more and 150 mm or less, the thickness of the side wall forming layer 20 is preferably 1 μm or more and 300 μm or less, and the flexural modulus is preferably 1000 MPa or more and 5000 MPa or less. Recognize. Moreover, when the minimum winding diameter of the winding holding | maintenance state of the strip | belt-shaped body 2 is 10 mm or more and less than 30 mm, it turns out that the thickness of the side wall formation layer 20 is 1 micrometer or more and 200 micrometers or less, and a bending elastic modulus is 1000 MPa or more and 5000 MPa or less.
 次いで、
側壁形成層の幅:200(mm)
側壁形成層の厚み:10、100、400(μm)
側壁形成層の材料:ポリテトラフルオロエチレン(PTFE(曲げ弾性率500MPa))、メチルペンテン(TPX(曲げ弾性率1300MPa))、環状オレフィンコポリマー(COC(曲げ弾性率2100MPa、3000MPa))、ポリアミドイミド(PAI(曲げ弾性率4900MPa))のシート材
側壁形成層に形成した流路幅(巻き方向)×長さ(幅方向):70(μm)×30(mm)
流路の深さ:側壁形成層の厚み×0.7の断面が矩形の溝
として、
巻き径を、10、30、50、150(mm)として、それぞれに巻いた後、解放し、巻き方向に1N、10N、30Nの張力を与えて、流路形状の巻き方向の流路断面積を測定した。
Then
Side wall forming layer width: 200 (mm)
Side wall forming layer thickness: 10, 100, 400 (μm)
Materials for side wall forming layer: polytetrafluoroethylene (PTFE (flexural modulus 500 MPa)), methylpentene (TPX (flexural modulus 1300 MPa)), cyclic olefin copolymer (COC (flexural modulus 2100 MPa, 3000 MPa)), polyamideimide ( Flow path width (winding direction) × length (width direction) formed in sheet material side wall forming layer of PAI (flexural modulus 4900 MPa): 70 (μm) × 30 (mm)
Channel depth: side wall forming layer thickness x 0.7 cross-section as a rectangular groove,
The winding diameter is set to 10, 30, 50, 150 (mm), and then wound, released, and given a tension of 1N, 10N, 30N in the winding direction, and the channel cross-sectional area in the winding direction of the channel shape Was measured.
 評価基準は、側壁形成層に形成された流路断面積に対して、巻き方向の流路断面積の変化量が、5%未満を○とし、5%~10%を△、10%を超えるものを×とした。表2に結果を示す。 The evaluation criterion is that the change amount of the channel cross-sectional area in the winding direction with respect to the channel cross-sectional area formed in the side wall forming layer is less than 5%, and 5% to 10% is more than Δ10%. The thing was made into x. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表2より、いずれの側壁形成層の厚みであっても、側壁形成層の引張り弾性率を1000MPa以上のものとすることで、張力を1N~10Nの範囲内で付与しても、良好な形状保存性を有することがわかる。なお、表2より、側壁形成層の引張り弾性率は、2000MPa以上であれば、より好ましいことがわかる。 From Table 2, it is possible to obtain a good shape even if the tension is applied within the range of 1N to 10N by setting the tensile modulus of elasticity of the side wall forming layer to 1000 MPa or more regardless of the thickness of any side wall forming layer. It turns out that it has preservability. Table 2 shows that the tensile modulus of elasticity of the side wall forming layer is more preferably 2000 MPa or more.
 本発明は、生体化学分析等を行うマイクロTAS(Micro-Total Analysis Systems)に利用することができる。 The present invention can be used for micro-TAS (Micro-Total Analysis Systems) that performs biochemical analysis and the like.
1 マイクロ流路デバイス
2 帯状体
3 巻回保持器
3a ケース体
3b 巻き軸
3c 回転駆動力接続部
3d ガイドローラー
4 巻回保持器
4a ケース体
4b 巻き軸
4c 回転駆動力接続部
4d ガイドローラー
5 渡り連結部
5a ピペット接続口
5b マイクロポンプ接続口
5c 光入射窓
5d 光学読取用窓
10 マイクロ流路分析装置
11 ピペット
12 マイクロポンプ
13 光照射装置
14 光学読取装置
15 ヒーター
16,17 送り駆動装置の出力端
20 側壁形成層
21,22 蓋層
30 巻回保持器
31,32 巻回保持器
H 長孔
m マイクロ流路
S スリット
DESCRIPTION OF SYMBOLS 1 Microchannel device 2 Strip | belt-shaped body 3 Winding holder 3a Case body 3b Winding shaft 3c Rotation driving force connection part 3d Guide roller 4 Winding holder 4a Case body 4b Winding shaft 4c Rotation driving force connection part 4d Guide roller 5 Transition Connecting portion 5a Pipette connection port 5b Micropump connection port 5c Light incident window 5d Optical reading window 10 Microchannel analyzer 11 Pipette 12 Micropump 13 Light irradiation device 14 Optical reader 15 Heaters 16, 17 Output end of feed drive device 20 Side wall forming layers 21, 22 Lid layer 30 Winding cage 31, 32 Winding cage H Long hole m Micro flow path S Slit

Claims (17)

  1. 複数層からなる可撓性の帯状体によりマイクロ流路が形成されたマイクロ流路デバイスにおいて、
    前記マイクロ流路の側壁を形成する側壁形成層と、前記マイクロ流路の積層方向の開口を蓋う蓋層と、を備え、
    前記側壁形成層が前記蓋層より高い曲げ弾性率を有するマイクロ流路デバイス。
    In a microchannel device in which a microchannel is formed by a flexible belt-shaped body composed of a plurality of layers,
    A side wall forming layer that forms a side wall of the microchannel, and a lid layer that covers an opening in the stacking direction of the microchannel,
    A microchannel device in which the side wall forming layer has a higher flexural modulus than the lid layer.
  2. 前記帯状体が巻回保持され、
    前記側壁形成層及び前記蓋層が弾性限度内の変形により巻回保持された請求項1に記載のマイクロ流路デバイス。
    The belt-like body is wound and held,
    The microchannel device according to claim 1, wherein the side wall forming layer and the lid layer are wound and held by deformation within an elastic limit.
  3. 前記帯状体の巻回保持状態の最小巻き径が30mm以上、150mm以下であり、前記側壁形成層の厚みが1μm以上、300μm以下であり、前記側壁形成層の曲げ弾性率が1000MPa以上5000MPa以下である請求項2に記載のマイクロ流路デバイス。 The minimum winding diameter in the winding holding state of the belt-shaped body is 30 mm or more and 150 mm or less, the thickness of the side wall forming layer is 1 μm or more and 300 μm or less, and the bending elastic modulus of the side wall forming layer is 1000 MPa or more and 5000 MPa or less. The microchannel device according to claim 2.
  4. 前記帯状体の巻回保持状態の最小巻き径が10mm以上、30mm未満であり、前記側壁形成層の厚みが1μm以上、200μm以下であり、前記側壁形成層の曲げ弾性率が1000MPa以上5000MPa以下である請求項2に記載のマイクロ流路デバイス。 The minimum winding diameter in the winding holding state of the belt-like body is 10 mm or more and less than 30 mm, the thickness of the side wall forming layer is 1 μm or more and 200 μm or less, and the bending elastic modulus of the side wall forming layer is 1000 MPa or more and 5000 MPa or less. The microchannel device according to claim 2.
  5. 前記側壁形成層の引張り弾性率が、1000MPa以上である請求項3又は請求項4に記載のマイクロ流路デバイス。 The microchannel device according to claim 3 or 4, wherein the tensile modulus of elasticity of the side wall forming layer is 1000 MPa or more.
  6. 前記蓋層が前記マイクロ流路に対して外側に配されて巻回保持された請求項2から請求項5のうちいずれか一項に記載のマイクロ流路デバイス。 The microchannel device according to any one of claims 2 to 5, wherein the lid layer is arranged on the outer side with respect to the microchannel and held by winding.
  7. 前記蓋層が前記マイクロ流路に対して内側に配されて巻回保持された請求項2から請求項5のうちいずれか一項に記載のマイクロ流路デバイス。 The microchannel device according to any one of claims 2 to 5, wherein the lid layer is disposed inside and wound around the microchannel.
  8. 前記側壁形成層は、互いに独立した前記マイクロ流路の間の領域に、前記帯状体の巻き方向に交わる方向に延在するスリット、長孔又は長溝を有する請求項1から請求項7のうちいずれか一項に記載のマイクロ流路デバイス。 The said side wall formation layer has a slit, a long hole, or a long groove extended in the direction between the winding directions of the said strip | belt-shaped body in the area | region between the said microchannels mutually independent. The microchannel device according to claim 1.
  9. 前記帯状体を巻回保持する巻回保持器を備える請求項2から請求項8のうちいずれか一項に記載のマイクロ流路デバイス。 The microchannel device according to any one of claims 2 to 8, further comprising a winding holder that winds and holds the belt-like body.
  10. 前記巻回保持器は、前記帯状体を巻回保持する巻き軸と、前記帯状体を巻き出し又は巻き取るために前記巻き軸を回転させる回転力を前記巻き軸に伝達可能に接続させる回転駆動力接続部とを有する請求項9に記載のマイクロ流路デバイス。 The winding cage includes a winding shaft that winds and holds the belt-like body, and a rotational drive that connects a rotational force that rotates the winding shaft to unwind or wind the belt-like body so as to be transmitted to the winding shaft. The microchannel device according to claim 9, further comprising a force connection portion.
  11. 前記巻回保持器が一対設けられ、一方の前記巻回保持器は前記帯状体を一端から巻回保持し、他方の前記巻回保持器は前記帯状体を他端から巻回保持し、
    少なくとも一方の前記巻回保持器から前記帯状体を巻き出し可能で、他方の前記巻回保持器に前記帯状体を巻き取り可能に構成された請求項9又は請求項10に記載のマイクロ流路デバイス。
    A pair of the winding cages are provided, one of the winding cages winds and holds the strip from one end, and the other winding cage winds and holds the strip from the other end,
    The microchannel according to claim 9 or 10, wherein the belt-like body can be unwound from at least one of the winding cages, and the belt-like body can be taken up by the other winding cage. device.
  12. 前記帯状体の一対の前記巻回保持器間を渡る部分を保護し、一対の前記巻回保持器を互いに連結する渡り連結部を備え、
    前記渡り連結部に、前記マイクロ流路に対する作用・観察を可能とする窓を有する請求項11に記載のマイクロ流路デバイス。
    Protecting a portion of the belt-like body that crosses between the pair of winding cages, and comprising a cross connection portion that couples the pair of winding cages to each other,
    The microchannel device according to claim 11, wherein the crossover connecting portion has a window that allows the microchannel to act and observe.
  13. 一対の前記巻回保持器間の距離が可変に構成された請求項11又は請求項12に記載のマイクロ流路デバイス。 The microchannel device according to claim 11 or 12, wherein a distance between the pair of winding cages is variably configured.
  14. 前記巻回保持器は前記帯状体の巻回部を内部に納めるケース体を有する請求項9から請求項13のうちいずれか一項に記載のマイクロ流路デバイス。 The microchannel device according to any one of claims 9 to 13, wherein the winding cage has a case body in which the winding portion of the strip-shaped body is housed.
  15. 請求項1から請求項14のうちいずれか一項に記載のマイクロ流路デバイスを着脱自在にされ、当該マイクロ流路デバイスに形成されたマイクロ流路中に物質を注入し物質の分析を行うマイクロ流路分析装置。 A microchannel device according to any one of claims 1 to 14, wherein the microchannel device is detachable, and a substance is injected into a microchannel formed in the microchannel device to analyze the substance. Flow path analyzer.
  16. 前記マイクロ流路デバイスの前記帯状体を送り駆動する駆動装置を備える請求項15に記載のマイクロ流路分析装置。 The microchannel analyzer according to claim 15, further comprising a driving device that feeds and drives the belt-like body of the microchannel device.
  17. 前記帯状体の前記駆動装置により巻き出された部分には、前記駆動装置により1N~10Nの張力が付与される請求項16に記載のマイクロ流路分析装置。 The microchannel analyzer according to claim 16, wherein a tension of 1N to 10N is applied to the portion of the belt-like body unwound by the driving device by the driving device.
PCT/JP2012/072296 2011-09-06 2012-09-03 Micro-flow path device and micro-flow path analysis device WO2013035651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011193487A JP2014224679A (en) 2011-09-06 2011-09-06 Micro-flow path device and micro-flow path analyzer
JP2011-193487 2011-09-06

Publications (1)

Publication Number Publication Date
WO2013035651A1 true WO2013035651A1 (en) 2013-03-14

Family

ID=47832096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072296 WO2013035651A1 (en) 2011-09-06 2012-09-03 Micro-flow path device and micro-flow path analysis device

Country Status (2)

Country Link
JP (1) JP2014224679A (en)
WO (1) WO2013035651A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142928A1 (en) * 2018-01-19 2019-07-25 日東電工株式会社 Flow path, measurement tape, and measuring device
WO2023008398A1 (en) * 2021-07-27 2023-02-02 凸版印刷株式会社 Microfluidic chip and method for manufacturing microfluidic microchip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201611442D0 (en) * 2016-06-30 2016-08-17 Lumiradx Tech Ltd Fluid control
CN112088210A (en) * 2018-06-08 2020-12-15 株式会社岛津制作所 Cell culture apparatus and cell culture method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132966A (en) * 1987-11-18 1989-05-25 Fuji Photo Film Co Ltd Test film cassette loading system
JPH09156666A (en) * 1995-12-07 1997-06-17 Dainippon Printing Co Ltd Combination body of package and containing box
JP2001520377A (en) * 1997-10-15 2001-10-30 アクレイラ バイオサイエンシズ,インコーポレイティド Laminated micro structural device and method of manufacturing laminated micro structural device
JP2003515133A (en) * 1999-11-18 2003-04-22 スリーエム イノベイティブ プロパティズ カンパニー Film-based addressable programmable electronic matrix article and method of making and using same
JP2003529061A (en) * 2000-03-28 2003-09-30 ダイアビ−ティ−ズ・ダイアグノスティックス・インコ−ポレイテッド Continuous manufacturing method of disposable electrochemical sensor
JP2004163427A (en) * 2002-10-31 2004-06-10 Agilent Technol Inc Composite flexible array substrate with flexible support
JP2004243193A (en) * 2003-02-13 2004-09-02 Pentax Corp Labo-on-a-chip, method for manufacturing the sane and apparatus for the same
JP2005534039A (en) * 2002-07-22 2005-11-10 シーメンス アクチエンゲゼルシヤフト Method for high throughput analysis and apparatus for performing the method
JP2006113068A (en) * 2004-10-13 2006-04-27 Boehringer Ingelheim Microparts Gmbh System, measuring device, and method for storing, inspecting or operating sample liquid in platform of micro fluid
JP2011047708A (en) * 2009-08-25 2011-03-10 Fujikura Kasei Co Ltd Liquid flow path device and method of manufacturing same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132966A (en) * 1987-11-18 1989-05-25 Fuji Photo Film Co Ltd Test film cassette loading system
JPH09156666A (en) * 1995-12-07 1997-06-17 Dainippon Printing Co Ltd Combination body of package and containing box
JP2001520377A (en) * 1997-10-15 2001-10-30 アクレイラ バイオサイエンシズ,インコーポレイティド Laminated micro structural device and method of manufacturing laminated micro structural device
JP2003515133A (en) * 1999-11-18 2003-04-22 スリーエム イノベイティブ プロパティズ カンパニー Film-based addressable programmable electronic matrix article and method of making and using same
JP2003529061A (en) * 2000-03-28 2003-09-30 ダイアビ−ティ−ズ・ダイアグノスティックス・インコ−ポレイテッド Continuous manufacturing method of disposable electrochemical sensor
JP2005534039A (en) * 2002-07-22 2005-11-10 シーメンス アクチエンゲゼルシヤフト Method for high throughput analysis and apparatus for performing the method
JP2004163427A (en) * 2002-10-31 2004-06-10 Agilent Technol Inc Composite flexible array substrate with flexible support
JP2004243193A (en) * 2003-02-13 2004-09-02 Pentax Corp Labo-on-a-chip, method for manufacturing the sane and apparatus for the same
JP2006113068A (en) * 2004-10-13 2006-04-27 Boehringer Ingelheim Microparts Gmbh System, measuring device, and method for storing, inspecting or operating sample liquid in platform of micro fluid
JP2011047708A (en) * 2009-08-25 2011-03-10 Fujikura Kasei Co Ltd Liquid flow path device and method of manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142928A1 (en) * 2018-01-19 2019-07-25 日東電工株式会社 Flow path, measurement tape, and measuring device
JP2019128354A (en) * 2018-01-19 2019-08-01 日東電工株式会社 Flow channel, measurement tape, and measurement device
CN111630395A (en) * 2018-01-19 2020-09-04 日东电工株式会社 Flow path, measuring tape, and measuring device
JP7343277B2 (en) 2018-01-19 2023-09-12 日東電工株式会社 Flow path, measuring tape, and measuring device
WO2023008398A1 (en) * 2021-07-27 2023-02-02 凸版印刷株式会社 Microfluidic chip and method for manufacturing microfluidic microchip

Also Published As

Publication number Publication date
JP2014224679A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
WO2013035651A1 (en) Micro-flow path device and micro-flow path analysis device
US7481777B2 (en) Lancet integrated test element tape dispenser
CA2593196C (en) Test tape unit, in particular for blood sugar tests
CN101060932B (en) Bent microstructure
ES2734309T3 (en) Automated smear manufacturing method
WO2017069256A1 (en) Nano-fluid device and chemical analysis apparatus
US9335333B2 (en) Test tape cassette and analytical test tape therefor
EP3438654B1 (en) Analysis chip
JP4796598B2 (en) Puncture wound formation system
CN108693202B (en) X-ray analysis apparatus
DE102020201112A1 (en) Optical readout of processes within a microfluidic device
JP4763001B2 (en) Tape unit and tape cassette
US8496876B2 (en) Folded carrier tape having consumable elements
AU2017203476B2 (en) Test tape cassette and analytical test tape therefor
WO2021177120A1 (en) Observation system, sheet arrangement adjustment mechanism, sheet supply cartridge, sheet collection cartridge, and observation method
US9872646B2 (en) Method for producing a membrane ring or test strip ring and ring magazine
JP5192949B2 (en) Micro fluid feeding device
JP2005294182A (en) Bulk section sample holder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP