WO2013035630A1 - Dye, photoelectric conversion element using same, and photoelectrochemical cell - Google Patents

Dye, photoelectric conversion element using same, and photoelectrochemical cell Download PDF

Info

Publication number
WO2013035630A1
WO2013035630A1 PCT/JP2012/072076 JP2012072076W WO2013035630A1 WO 2013035630 A1 WO2013035630 A1 WO 2013035630A1 JP 2012072076 W JP2012072076 W JP 2012072076W WO 2013035630 A1 WO2013035630 A1 WO 2013035630A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
group
integer
dye
Prior art date
Application number
PCT/JP2012/072076
Other languages
French (fr)
Japanese (ja)
Inventor
木村 睦
正悟 森
小林 克
Original Assignee
富士フイルム株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 国立大学法人信州大学 filed Critical 富士フイルム株式会社
Priority to CN201280042643.1A priority Critical patent/CN103764768B/en
Priority to KR1020147009033A priority patent/KR20140062511A/en
Publication of WO2013035630A1 publication Critical patent/WO2013035630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/803Processes of preparation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a dye, a photoelectric conversion element, and a photoelectrochemical cell.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof.
  • a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy.
  • silicon solar cells have been researched and developed for a long time, and are spreading due to the policy considerations of each country.
  • silicon is an inorganic material, and its throughput and molecular modification are naturally limited.
  • Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique. Furthermore, the development of ruthenium complex-based sensitizing dyes continues to improve the photoelectric conversion efficiency (see Patent Documents 2 to 4).
  • an object of the present invention is to provide a photoelectric conversion element, a photoelectrochemical cell, and a dye used for them that achieve high photoelectric conversion efficiency and excellent durability. Furthermore, this invention aims at provision of the novel intermediate compound used for manufacture of the said pigment
  • M represents a transition metal selected from ruthenium, osmium, iron, rhenium, and technetium.
  • X represents NCS ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CN ⁇ , NCO ⁇ , or H 2 O.
  • Lt represents the formula (2).
  • R 1 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH).
  • R 2 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH).
  • La represents a single bond or an arylene group.
  • R 4 represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • n1 represents an integer of 1 to 3.
  • n2 and n3 each represents an integer of 1 to 4.
  • R 3 represents an alkyl group having 1 to 30 carbon atoms, or a group represented by the following formula (2-1), (2-2), (2-3), (2-4), or general formula (2-5). Represents a substituent. ] [Wherein R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms.
  • R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an amino group having 1 to 30 carbon atoms
  • 41 may be a hydrogen atom.
  • n11 represents an integer of 1 to 5.
  • n21 and n51 each represents an integer of 2 to 6.
  • n31 represents an integer of 1 to 6. * Represents a bond.
  • [2] The dye according to [1], wherein La in the formula (2) is a single bond.
  • R 3 in the formula (2) is represented by the formula (2-1), (2-2), (2-3), (2-4) or (2-5) [1] Or the pigment
  • R 3 is the formula of the formula (2) (2-2), according to any one of (2-3), or formula (2-4) [1] to [3] Dyes.
  • [6] The dye according to any one of [1] to [5], wherein R 3 in the formula (2) is represented by the formula (2-4).
  • a photoelectric conversion device comprising a photoreceptor layer containing the dye according to any one of [1] to [6] and semiconductor fine particles.
  • n1 represents an integer of 1 to 3.
  • n2 and n3 each represents an integer of 1 to 4.
  • R 3 is an alkyl group having 1 to 30 carbon atoms, or a substituent represented by the formula (2-1), (2-2), (2-3), (2-4), or (2-5) Represents a group.
  • R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms. And a substituent containing any one of a group and an amino group having 1 to 30 carbon atoms.
  • R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms
  • 41 may be a hydrogen atom.
  • n11 represents an integer of 1 to 5.
  • n21 and n51 each represents an integer of 2 to 6.
  • n31 represents an integer of 1 to 6. * Represents a bond.
  • R 101 represents an alkyl group. Hal represents a halogen atom.
  • n1 represents an integer of 1 to 3.
  • n2 and n3 each represents an integer of 1 to 4.
  • dye which goes through.
  • M represents a transition metal selected from ruthenium, osmium, iron, rhenium, and technetium.
  • X represents NCS ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CN ⁇ , NCO ⁇ , or H 2 O.
  • Lt ′ represents the formula (2 ′).
  • n1 represents an integer of 1 to 3.
  • n2 and n3 each represents an integer of 1 to 4.
  • R 3 is an alkyl group having 1 to 30 carbon atoms, or a substituent represented by the formula (2-1), (2-2), (2-3), (2-4), or (2-5) Represents a group.
  • R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms. And a substituent containing any one of a group and an amino group having 1 to 30 carbon atoms.
  • R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms
  • 41 may be a hydrogen atom.
  • n11 represents an integer of 1 to 5.
  • n21 and n51 each represents an integer of 2 to 6.
  • n31 represents an integer of 1 to 6. * Represents a bond.
  • R 101 represents an alkyl group. Hal represents a halogen atom. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. ]
  • the carbon-carbon double bond may be any of E type and Z type in the molecule.
  • the respective substituents or ligands may be the same or different from each other. Further, when a plurality of substituents and ligands are close to each other, they may be connected to each other or condensed to form a ring.
  • the photoelectric conversion element and the photoelectrochemical cell using the dye of the present invention achieve high photoelectric conversion efficiency and are excellent in durability.
  • the terpyridine compound of the present invention is a novel compound and is useful as a raw material for synthesizing the above dye. Furthermore, according to the manufacturing method of this invention, the said pigment
  • the metal complex dye of the present invention has a structure in which terpyridine is coordinated with a central metal, and thus, in a photoelectric conversion element, it exhibits high IPCE even in a long wavelength region exceeding 800 nm and realizes high photoelectric conversion efficiency. And higher durability. This reason includes unclear points, but can be explained as follows, including estimation. In other words, it is conceivable that the acidic groups added to the two pyridine ligands of terpyridine are adsorbed on the surface of the semiconductor fine particles, and the metal complexes are oriented so as to stand up there.
  • the functional substituents arranged to extend toward the charge transfer layer prevent the proximity of I 3 ⁇ ions to the semiconductor electrode and prevent the electrons injected into titania from moving to I 3 ⁇ . It is thought that it shows an action.
  • the functional substituents extending and arranged on the charge transfer layer side are considered to simultaneously prevent the water molecules from approaching the semiconductor electrode and suppress the detachment of the dye from the surface. As a result, it is considered that both high photoelectric conversion efficiency and improved durability are realized.
  • the present invention will be described in detail based on preferred embodiments thereof.
  • the photoelectric conversion element 10 includes a conductive support 1, a photosensitive layer 2, a charge transfer layer 3, and a counter electrode 4 arranged in that order on the conductive support 1.
  • the conductive support 1 and the photoreceptor 2 constitute a light receiving electrode 5.
  • the photoreceptor 2 has conductive fine particles 22 and a sensitizing dye 21, and the dye 21 is adsorbed on the conductive fine particles 22 at least in part (the dye is in an adsorption equilibrium state, It may be present in the partial charge transfer layer.)
  • the conductive support 1 on which the photoreceptor 2 is formed functions as a working electrode in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 can be operated as the photoelectrochemical cell system 100 by causing the external circuit 6 to work.
  • the light-receiving electrode 5 is an electrode composed of a conductive support 1 and a photosensitive layer (semiconductor film) 2 including semiconductor fine particles 22 adsorbed with a dye 21 coated on the conductive support.
  • a photosensitive layer (semiconductor film) 2 including semiconductor fine particles 22 adsorbed with a dye 21 coated on the conductive support.
  • Light incident on the photoreceptor layer (semiconductor film) 2 excites the dye.
  • the excited dye has high energy electrons. Therefore, the electrons are transferred from the dye 21 to the conduction band of the semiconductor fine particles 22 and further reach the conductive support 1 by diffusion. At this time, the molecule of the dye 21 is an oxidant.
  • Excited and oxidized dye accepts electrons from the reducing agent (eg, I ⁇ ) in the electrolyte and returns to the ground state dye while the electrons on the electrode work in the external circuit, thereby allowing the photoelectrochemical cell to Acts as At this time, the light receiving electrode 5 functions as a negative electrode of the battery.
  • the reducing agent eg, I ⁇
  • the photoelectric conversion element of this embodiment has a photoreceptor having a layer of porous semiconductor fine particles on which an after-mentioned dye is adsorbed on a conductive support. At this time, a part of the dye dissociated in the electrolyte may be present.
  • the photoreceptor is designed according to the purpose, and may have a single layer structure or a multilayer structure.
  • the photoconductor of the photoelectric conversion element of the present embodiment includes semiconductor fine particles adsorbed with a specific sensitizing dye, has high sensitivity, and can be used as a photoelectrochemical cell, and high conversion efficiency can be obtained.
  • the upper and lower sides of the photoelectric conversion element do not need to be defined in particular, but in this specification, based on what is illustrated, the side of the counter electrode 4 serving as the light receiving side is the upper (top) direction, and the support The side of 1 is the lower (bottom) direction.
  • M represents a transition metal selected from ruthenium, osmium, iron, rhenium, and technetium. Of these, ruthenium is preferable.
  • ⁇ X X represents NCS ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , CN ⁇ , NCO ⁇ , or H 2 O.
  • ⁇ Lt Lt is a ligand represented by the following formula (2).
  • R 1 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH).
  • the substitution position of La—R 1 is not particularly limited, but from the viewpoint of the orientation of the dye during adsorption, the 3-position or 4-position is preferred, and the 4-position is more preferred.
  • R 4 represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. Preferable examples of the alkyl group and the aryl group include the following examples of the substituent T.
  • R 2 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH).
  • the substitution position of R 2 is not particularly limited, but from the viewpoint of the orientation of the dye during adsorption, the 3-position or 4 is preferred, and the 4-position is more preferred.
  • R 4 represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. Preferable examples of the alkyl group and the aryl group include the following examples of the substituent T.
  • R 3 R 3 is an alkyl group having 1 to 30 carbon atoms, or represented by the following formula (2-1), (2-2), (2-3), (2-4) or formula (2-5) Represents a substituent.
  • R 3 in the formula (2) is more preferably represented by (2-1), (2-2), (2-3), (2-4) or the formula (2-5).
  • the general formula (2-2), (2-3), or the formula (2-4) is more preferable, the formula (2-3) or the formula (2-4) is more preferable, The formula (2-4) is particularly preferable.
  • R 11 , R 21 , R 31 , R 41 , R 42 , R 51 R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 are each an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, and carbon Represents a substituent containing a group selected from an amino group of 1 to 30;
  • the following examples of the substituent T are mentioned as a preferable thing of the said alkyl group, an aryl group, heteroaryl group, and an amino group.
  • R 42 is a heteroaryl group, an aryl group, an amino group
  • R 41 may be hydrogen atoms. Both R 41 and R 42 preferably have the substituents exemplified before the above proviso.
  • R 11 , R 21 , R 31 , R 41 , R 42 , R 51 are preferably an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms, Of the amino group having 1 to 30 carbon atoms, an alkyl group having 3 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms substituted by an alkyl group having 3 to 30 carbon atoms, and an alkyl group having 3 to 30 carbon atoms Substituted aryl group having 6 to 30 carbon atoms, heteroaryl group having 1 to 30 carbon atoms substituted by alkoxy group having 3 to 30 carbon atoms, aryl having 6 to 30 carbon atoms substituted by alkoxy group having 3 to 30 carbon atoms Group, an amino group substituted by an aryl group having 6 to 30 carbon atoms, or an amino group substituted by an alkyl group having 1 to 30 carbon atom
  • n11 represents an integer of 1 to 5.
  • n11 is preferably an integer of 1 to 3, more preferably 1 or 2.
  • n21 represents an integer of 2 to 6.
  • n21 is preferably an integer of 2 to 4, more preferably 2 or 3.
  • n31 represents an integer of 1 to 6.
  • n31 is preferably an integer of 1 to 3, and more preferably 1 or 2.
  • n51 represents an integer of 2 to 6.
  • R 3 is presumed to contribute to improvement in durability and open circuit voltage (Voc) in the photoelectric conversion element.
  • Voc open circuit voltage
  • R 1 and R 2 are used as scaffolds and the complex dye is arranged in an upright manner
  • R 3 is extended toward the charge transfer layer side.
  • the functional substituents arranged so as to extend to the charge transfer layer side so that this R 3 protects its own scaffold is prevented from approaching the I 3 ⁇ ions to the semiconductor electrode, and is injected into titania. electrons I 3 - prevent migration into. By doing so, it is considered that the decrease in Voc is prevented.
  • donor properties are imparted to R 3 , it is considered that the LUMO level of the dye molecule may be appropriately increased.
  • the substitution position of R 3 is preferably the 4th or 5th position (see the above formula (2)) and the 5th position is more preferred so that the association of the dyes is prevented and the parallel adsorption is more orderly.
  • La La represents a single bond or an arylene group.
  • La is an arylene group, it is preferably a phenylene group or a thienylene group.
  • La is particularly preferably a single bond.
  • n1 represents an integer of 1 to 3.
  • n2 and n3 each represents an integer of 1 to 4.
  • n1 represents an integer of 1 to 3.
  • n2 and n3 each represents an integer of 1 to 4.
  • R 3 is an alkyl group having 1 to 30 carbon atoms, or represented by the formula (2-1), (2-2), (2-3), (2-4), or (2-5). Represents a substituent. The preferable one is also as defined above.
  • R 101 represents an alkyl group, and is preferably a methyl group, an ethyl group, or a propyl group.
  • Hal represents a halogen atom, preferably fluorine, chlorine or bromine, more preferably bromine.
  • n1 represents an integer of 1 to 3.
  • n2 and n3 each represents an integer of 1 to 4.
  • substitution reaction of substituents Hal and given organic group R 3 is, Suzuki reaction, Stille coupling can be used cross-coupling, such as Negishi coupling.
  • the reaction of substituting the alkyl group R 101 with a hydrogen atom to form a carboxyl group may be performed by a normal hydrolysis reaction.
  • the dye represented by the formula (1) has a maximum absorption wavelength in an ethanol solution of preferably 500 to 700 nm, more preferably 550 to 650 nm. Although the preferable specific example of the pigment
  • a substituent for which substitution / non-substitution is not specified means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
  • the photoreceptor layer 2 is composed of a porous semiconductor layer composed of a layer of semiconductor fine particles 22 on which a dye described later is adsorbed. This dye may be partially dissociated in the electrolyte.
  • the photoreceptor layer 2 may be designed according to the purpose and may have a multilayer structure. As described above, since the photosensitive layer 2 includes the semiconductor fine particles 22 on which a specific dye is adsorbed, the light receiving sensitivity is high, and when used as the photoelectrochemical cell system 100, high photoelectric conversion efficiency can be obtained. It has higher durability.
  • the electrolyte composition used for the photoelectric conversion element 10 of the present invention includes, for example, a combination of iodine and iodide (for example, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, etc.) as an oxidation-reduction pair, alkyl Combinations of viologens (for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate) and reduced forms thereof, combinations of polyhydroxybenzenes (for example, hydroquinone, naphthohydroquinone, etc.) and oxidized forms thereof, bivalent and trivalent And a combination of iron complexes (for example, red blood salt and yellow blood salt). Of these, a combination of iodine and iodide is preferred.
  • a combination of iodine and iodide is preferred.
  • the cation of the iodine salt is preferably a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the compound represented by the general formula (1) is not an iodine salt, republished WO95 / 18456, JP-A-8-259543, Electrochemistry, Vol.65, No.11, p.923 (1997) It is preferable to use iodine salts such as pyridinium salts, imidazolium salts, and triazolium salts described in the above.
  • the electrolyte composition used for the photoelectric conversion element 10 of the present invention preferably contains iodine together with a heterocyclic quaternary salt compound.
  • the iodine content is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 5% by mass, based on the entire electrolyte composition.
  • the electrolyte composition used for the photoelectric conversion element 10 of the present invention may contain a solvent.
  • the content of the solvent in the electrolyte composition is preferably 50% by mass or less, more preferably 30% by mass or less, and particularly preferably 10% by mass or less based on the entire composition.
  • solvents include carbonate compounds (ethylene carbonate, propylene carbonate, etc.), heterocyclic compounds (3-methyl-2-oxazolidinone, etc.), ether compounds (dioxane, diethyl ether, etc.), chain ethers (ethylene glycol dialkyl ether, Propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), alcohols (methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.), Polyhydric alcohols (ethylene glycol, propylene glycol, polyethylene glycol , Propylene glycol, glycerin
  • a charge transport layer containing a hole conductor material may be used.
  • the hole conductor material 9,9'-spirobifluorene derivatives and the like can be used.
  • an electrode layer, a photoreceptor layer (photoelectric conversion layer), a charge transfer layer (hole transport layer), a conductive layer, and a counter electrode layer can be sequentially laminated.
  • a hole transport material that functions as a p-type semiconductor can be used as the hole transport layer.
  • an inorganic or organic hole transport material can be used as a preferable hole transport layer.
  • the inorganic hole transport material include CuI, CuO, and NiO.
  • the organic hole transport material include high molecular weight materials and low molecular weight materials, and examples of the high molecular weight materials include polyvinyl carbazole, polyamine, and organic polysilane.
  • organic polysilanes are preferable because, unlike conventional carbon-based polymers, ⁇ electrons delocalized along the main chain Si contribute to photoconductivity and have high hole mobility (Phys. Rev. B, 35, 2818 (1987)).
  • a photosensitive layer 2 in which a sensitizing dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1.
  • the photoreceptor layer 2 can be produced by immersing the dispersion of semiconductor fine particles in the dye solution of the present invention after coating and drying on a conductive support.
  • the conductive support 1 a glass or a polymer material having a conductive film on the surface can be used as the support itself, such as metal.
  • the conductive support 1 is preferably substantially transparent. Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, particularly preferably 80% or more.
  • a glass or polymer material coated with a conductive metal oxide can be used as the conductive support 1, a glass or polymer material coated with a conductive metal oxide can be used. The coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of glass or polymer material support. When a transparent conductive support is used, light is preferably incident from the support side.
  • tetraacetylcellulose TAC
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • Examples include polyarylate (PAR), polysulfone (PSF), polyethersulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy.
  • a surface may be provided with a light management function.
  • an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated, The light guide function described in JP-A-2002-260746 is improved.
  • a metal support can also be preferably used.
  • examples thereof include titanium, aluminum, copper, nickel, iron, and stainless steel. These metals may be alloys. More preferably, titanium, aluminum, and copper are preferable, and titanium and aluminum are particularly preferable.
  • a photosensitive layer 2 in which a sensitizing dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1.
  • the photoreceptor layer 2 can be produced by immersing the dispersion of the semiconductor fine particles 22 on the conductive support 1 and then immersing it in the above dye solution.
  • the semiconductor fine particles prepared using the specific surfactant are applied.
  • the semiconductor fine particle dispersion having a solid content other than the semiconductor fine particles of 10% by mass or less of the whole of the semiconductor fine particle dispersion is applied to the conductive support 1 and heated appropriately. Quality semiconductor fine particle coating layer can be obtained.
  • semiconductor fine particle dispersions can be prepared by depositing fine particles in a solvent and using them as they are when synthesizing semiconductors. And a method of mechanically pulverizing and crushing using a mill or a mortar.
  • the dispersion solvent one or more of water and various organic solvents can be used.
  • the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol, ketones such as acetone, esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
  • a polymer such as polyethylene glycol, hydroxyethyl cellulose, carboxymethyl cellulose, a surfactant, an acid, or a chelating agent may be used in a small amount as a dispersion aid.
  • these dispersing aids are preferably removed by a filtration method, a method using a separation membrane, a centrifugal method or the like before the step of forming a film on a conductive support.
  • the solid content other than the semiconductor fine particles can be 10% by mass or less of the total dispersion. This concentration is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less.
  • the solid content other than the solvent and the semiconductor fine particles can be 10% by mass or less of the entire semiconductor fine dispersion. It is preferable to consist essentially of semiconductor fine particles and a dispersion solvent.
  • the viscosity of the dispersion is preferably 10 to 300 N ⁇ s / m 2 at 25 ° C. More preferably, it is 50 to 200 N ⁇ s / m 2 at 25 ° C.
  • a roller method, a dip method, or the like can be used as an application method.
  • an air knife method, a blade method, etc. can be used as a metering method.
  • the application method and the metering method can be made the same part.
  • the wire bar method disclosed in Japanese Patent Publication No. 58-4589, the slide hopper method described in US Pat. No. 2,681,294, etc., the extrusion The method and the curtain method are preferable. It is also preferable to apply by a spin method or a spray method using a general-purpose machine.
  • the wet printing method intaglio, rubber plate, screen printing and the like are preferred, including the three major printing methods of letterpress, offset and gravure. From these, a preferred film forming method is selected according to the liquid viscosity and the wet thickness. Further, since the semiconductor fine particle dispersion of the present invention has a high viscosity and has a viscous property, it may have a strong cohesive force and may not be well adapted to the support during coating. In such a case, by performing cleaning and hydrophilization of the surface by UV ozone treatment, the binding force between the applied semiconductor fine particle dispersion and the surface of the conductive support 1 is increased, and it becomes easy to apply the semiconductor fine particle dispersion. .
  • the preferred thickness of the entire semiconductor fine particle layer is 0.1 ⁇ m to 100 ⁇ m.
  • the thickness of the semiconductor fine particle layer is further preferably 1 ⁇ m to 30 ⁇ m, and more preferably 2 ⁇ m to 25 ⁇ m.
  • the amount of the semiconductor fine particles supported per 1 m 2 of the support is preferably 0.5 g to 400 g, more preferably 5 g to 100 g.
  • the method for forming the film by applying the fine particle dispersion is not particularly limited, and a known method may be applied as appropriate.
  • the coating amount of the semiconductor fine particles 22 per 1 m 2 of the support is preferably 0.5 g to 500 g, more preferably 5 g to 100 g.
  • the sensitizing dye 21 In order to adsorb the sensitizing dye 21 to the semiconductor fine particles 22, it is preferable to immerse the well-dried semiconductor fine particles 22 in a dye adsorbing dye solution composed of the solution and the dye according to the present invention for a long time.
  • the solution used for the dye solution for dye adsorption can be used without particular limitation as long as it can dissolve the sensitizing dye 21 according to the present invention.
  • ethanol, methanol, isopropanol, toluene, t-butanol, acetonitrile, acetone, n-butanol and the like can be used. Among these, ethanol and toluene can be preferably used.
  • the total amount of the sensitizing dye 21 used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, particularly preferably 0.1 to 10 mmol per 1 m 2 of the support. .
  • the amount of the sensitizing dye 21 according to the present invention is preferably 5 mol% or more.
  • the adsorption amount of the sensitizing dye 21 to the semiconductor fine particles 22 is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles.
  • a sensitizing effect in a semiconductor can be sufficiently obtained.
  • the amount of the dye is small, the sensitizing effect is insufficient, and when the amount of the dye is too large, the dye not attached to the semiconductor floats and causes the sensitizing effect to be reduced.
  • the counter electrode 4 functions as a positive electrode of the photoelectrochemical cell.
  • the counter electrode 4 is usually synonymous with the conductive support 1 described above, but a support for the counter electrode is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity.
  • the material for the counter electrode 4 include platinum, carbon, and conductive polymer. Preferable examples include platinum, carbon, and conductive polymer.
  • the structure of the counter electrode 4 is preferably a structure having a high current collecting effect.
  • Preferred examples include JP-A-10-505192.
  • the light receiving electrode 5 may be a tandem type in order to increase the utilization rate of incident light.
  • Examples of preferred tandem type configurations include those described in JP-A Nos. 2000-90989 and 2002-90989.
  • a light management function for efficiently performing light scattering and reflection inside the layer of the light receiving electrode 5 may be provided.
  • Preferable examples include those described in JP-A-2002-93476.
  • a short-circuit prevention layer between the conductive support 1 and the porous semiconductor fine particle layer in order to prevent reverse current due to direct contact between the electrolyte and the electrode.
  • Preferable examples include Japanese Patent Application Laid-Open No. 06-507999.
  • a spacer or a separator In order to prevent contact between the light receiving electrode 5 and the counter electrode 4, it is preferable to use a spacer or a separator.
  • a preferable example is JP-A-2001-283941.
  • Cell and module sealing methods include polyisobutylene thermosetting resin, novolak resin, photo-curing (meth) acrylate resin, epoxy resin, ionomer resin, glass frit, method using aluminum alkoxide for alumina, low melting point glass paste It is preferable to use a laser melting method. When glass frit is used, powder glass mixed with acrylic resin as a binder may be used.
  • Dye104 was synthesized by the route shown in Scheme 2.
  • Compound I-1 1.5 g, Compound D-5-1 0.95 g, tetrakistriphenylphosphine palladium (0) 110 mg, potassium carbonate 0.69 g, water 2.8 ml, toluene 3 ml and tetrahydrofuran 5 ml were mixed for 12 hours. The mixture was heated to reflux, treated according to a conventional method, and purified by column chromatography to obtain 0.816 g (yield 46%) of Compound D-5-2 as a solid. The total amount of compound D-5-2 and 0.79 g of ruthenium chloride trihydrate were heated to reflux in ethanol for 3 hours to obtain 0.56 g (yield 49%) of compound D-5-3. .
  • Dye 101 to 613 were synthesized by a method similar to Dye104.
  • Example 2 Initial Performance Evaluation of Photovoltaic Cell Disol on the conductive surface side of 20 mm ⁇ 20 mm transparent conductive glass having a fluorine-doped tin oxide layer (manufactured by Nippon Sheet Glass Co., Ltd., surface resistance of about 10 ⁇ / cm 2 ) DSL 18NR-T made by the company was applied by screen printing. After coating, the film was dried at 25 ° C. for 30 minutes and baked on a hot plate at 500 ° C. for 30 minutes. The coating amount of titanium dioxide was 15.5 g / m 2 and the film thickness was 9 ⁇ m. Similarly, printing and baking were performed using Dersol WER2-0 to form a scattering layer having a thickness of 4 ⁇ m.
  • the mixture is cooled and immersed in 0.2 mmol / l (solvent: 1: 1 mixture of ethanol and acetonitrile) of the metal complex dye of the present invention and comparative dyes (A) and (B) for 20 hours, respectively. did.
  • the structures of the comparative dyes (A) and (B) are shown below.
  • the dyed titanium dioxide electrode was washed successively with ethanol and acetonitrile and dried in a dark place under a nitrogen stream to produce a titanium dioxide electrode.
  • the comparative dye A is a ruthenium complex dye described in International Publication No. 98/50393 pamphlet.
  • an electrolytic solution A a solution in which 1,3-dimethylimidazolium iodide (0.65 mol / l) and iodine (0.05 mol / l) are dissolved in acetonitrile
  • the counter electrode conductive layer substrate 4 made of the above was laminated in order and a photovoltaic cell sealed with an epoxy sealant was produced.
  • IPCE monochromatic light conversion efficiency
  • the photovoltaic cells 101 to 110 of the present invention have higher IPCE at 850 nm than the photovoltaic cells C11 and C12 using the comparative dyes (A) and (B), and are excellent in sensitizing efficiency of long-wavelength light. I understand. Moreover, according to this invention, it turns out that a performance improvement is seen in all of an open circuit voltage, a short circuit current, and conversion efficiency, maintaining a form factor in the favorable range.
  • Electrolytic solution B (3-methoxypropionitrile, 1,3-dimethylimidazolium iodide (0.65 mol / l), N-methylbenzimidazole (0.5 mol) / L) and iodine (0.1 mol / l dissolved solution), and each photovoltaic cell was prepared in the same manner as in Example 2.
  • Table 2 shows the rate of decrease in conversion efficiency after storage of these photovoltaic cells at 80 ° C. for 300 hours in the dark.
  • Table 2 shows that the photovoltaic cell using the dye of the present invention has very high temperature durability.
  • the dyes Dye 608 to 610 and Dye 612 and 613 were used in the same manner as in Example 1 to confirm the excellent effect of the present invention.
  • the metal complex dye of the present invention is excellent in the ability to absorb long-wavelength light
  • the photoelectric conversion element including the semiconductor fine particles adsorbing the metal complex dye has a wide wavelength range from the visible light region to the infrared region. High photoelectric conversion characteristics were shown. Moreover, high temperature durability was very high. A photovoltaic cell comprising such a photoelectric conversion element is extremely effective as a solar cell.

Abstract

A dye which is represented by formula (1): MX3Lt. (In formula (1), M represents a transition metal that is selected from among ruthenium, osmium, iron, rhenium and technetium; X represents NCS-, Cl-, Br-, I-, CN-, NCO- or H2O; and Lt represents a ligand that is represented by formula (2).) (In formula (2), each of R1 and R2 represents COOH, PO(OH)2, PO(OR4)(OH) or CO(NHOH); each of R3 and R4 represents a specific substituent; La represents a single bond or an arylene group; and each of n1-n3 represents a specific integer.)

Description

色素、これを用いた光電変換素子及び光電気化学電池Dye, photoelectric conversion element and photoelectrochemical cell using the same
 本発明は、色素、光電変換素子及び光電気化学電池に関する。 The present invention relates to a dye, a photoelectric conversion element, and a photoelectrochemical cell.
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。特に、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵のクリーンエネルギーを利用するものとして、その本格的な実用化が大いに期待されている。この中でも、シリコン系太陽電池については古くから研究開発が進められてきており、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループット及び分子修飾には自ずと限界がある。 Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like. Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof. In particular, a solar cell using non-depleting solar energy does not require fuel, and full-scale practical use is highly expected as it uses inexhaustible clean energy. Among these, silicon solar cells have been researched and developed for a long time, and are spreading due to the policy considerations of each country. However, silicon is an inorganic material, and its throughput and molecular modification are naturally limited.
 そこで色素増感型太陽電池の研究が精力的に行われている。とくにその契機となったのは、スイス ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した構造を採用し、アモルファスシリコン並の変換効率を実現した。これにより、色素増感型太陽電池が一躍世界の研究者から注目を集めるようになった。 Therefore, research on dye-sensitized solar cells has been conducted energetically. In particular, it was the results of research such as Graetzel of Lausanne University of Technology in Switzerland. They adopted a structure in which a dye composed of a ruthenium complex was fixed on the surface of a porous titanium oxide thin film, realizing conversion efficiency comparable to that of amorphous silicon. As a result, dye-sensitized solar cells have attracted a great deal of attention from researchers around the world.
 特許文献1には、この技術を応用し、ルテニウム錯体色素によって増感された半導体微粒子を用いた色素増感光電変換素子が記載されている。さらに、その後も光電変換効率の向上に向け、ルテニウム錯体系増感色素の開発が継続されている(特許文献2~4参照)。 Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique. Furthermore, the development of ruthenium complex-based sensitizing dyes continues to improve the photoelectric conversion efficiency (see Patent Documents 2 to 4).
米国特許第5463057号明細書US Pat. No. 5,463,057 中国特許公開公報1359901号Chinese Patent Publication No. 1359901 国際公開第2007/091525号パンフレットInternational Publication No. 2007/091525 Pamphlet 国際公開第98/50393号パンフレットInternational Publication No. 98/50393 Pamphlet
 上記特許文献2、3等の技術により、高い光電変換効率の素子が提供されてきた。しかしながら、本発明者は、グリーンエネルギーの本格的な供給源としてその一翼を担うことを見据え、その性能で十分とはせず、耐久性の向上を含むさらに高い特性を発揮する光電変換素子の開発を目指した。
 上記本技術分野の現状に鑑み、本発明は、高光電変換効率を達成し、しかも耐久性に優れる光電変換素子、光電気化学電池、及びそれらに用いられる色素の提供を目的とする。さらに、本発明は、上記色素の製造に用いられる新規な中間体化合物及びその製造方法、これを用いた色素の製造方法の提供を目的とする。
Devices with high photoelectric conversion efficiency have been provided by the techniques of Patent Documents 2 and 3 and the like. However, the present inventor is looking to play a part as a full-fledged source of green energy, and its performance is not sufficient, and development of photoelectric conversion elements that exhibit higher characteristics including improved durability Aimed at.
In view of the present state of the present technical field, an object of the present invention is to provide a photoelectric conversion element, a photoelectrochemical cell, and a dye used for them that achieve high photoelectric conversion efficiency and excellent durability. Furthermore, this invention aims at provision of the novel intermediate compound used for manufacture of the said pigment | dye, its manufacturing method, and the manufacturing method of a pigment | dye using the same.
 上記の課題は以下の手段により解決された。
〔1〕式(1)MXLtで表される色素。
[式中、Mはルテニウム、オスミウム、鉄、レニウム、およびテクネチウムから選ばれた遷移金属を表す。Xは、NCS、Cl、Br、I、CN、NCO、またはHOを表す。Ltは式(2)を表す。]
Figure JPOXMLDOC01-appb-C000010
[式中、Rは、COOH、PO(OH)、PO(OR)(OH)、またはCO(NHOH)を表す。Rは、COOH、PO(OH)、PO(OR)(OH)、またはCO(NHOH)を表す。Laは、単結合またはアリーレン基を表す。Rは、炭素数1~30のアルキル基または炭素数6~30のアリール基を表す。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。Rは、炭素数1~30のアルキル基、あるいは下記式(2-1)、(2-2)、(2-3)、(2-4)、または一般式(2-5)で表される置換基を表す。]
Figure JPOXMLDOC01-appb-C000011
[式中、R11、R21、R31、R41、R42、およびR51は、炭素数1~30のアルキル基、炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、および炭素数1~30のアミノ基のいずれかの基を含む置換基を表す。ただし、式(2-4)において、R42が炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、または炭素数1~30のアミノ基を含む置換基を表す場合、R41は水素原子であってもよい。n11は1~5の整数を表す。n21、n51は2~6の整数を表す。n31は1~6の整数を表す。*は結合手を表す。]
〔2〕前記式(2)のLaが単結合である〔1〕記載の色素。
〔3〕前記式(2)のRが前記式(2-1)、(2-2)、(2-3)、(2-4)または(2-5)で表される〔1〕または〔2〕に記載の色素。
〔4〕前記式(2)のRが前記式(2-2)、(2-3)、または(2-4)で表される〔1〕~〔3〕のいずれか1項に記載の色素。
〔5〕前記式(2)のRが前記式(2-3)または(2-4)で表される〔1〕~〔4〕のいずれか1項に記載の色素。
〔6〕前記式(2)のRが前記式(2-4)で表される〔1〕~〔5〕のいずれか1項に記載の色素。
〔7〕〔1〕~〔6〕のいずれか1項に記載の色素と半導体微粒子とを含む感光体層を具備する光電変換素子。
〔8〕〔7〕に記載の光電変換素子を用いた光電気化学電池。
〔9〕下記式(2’)のターピリジン化合物の製造方法であって、下記式(3)で表される化合物の置換基Halを、下記式(2’)の置換基Rに置換する工程と、下記式(3)の置換基CO101のR101をHに置換する工程とを経由するターピリジン化合物の製造方法。
Figure JPOXMLDOC01-appb-C000012
[式中、n1は1~3の整数を表す。n2、n3は1~4の整数を表す。Rは、炭素数1~30のアルキル基、あるいは式(2-1)、(2-2)、(2-3)、(2-4)、または(2-5)で表される置換基を表す。]
Figure JPOXMLDOC01-appb-C000013
[式中、R11、R21、R31、R41、R42、およびR51は、炭素数1~30のアルキル基、炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、および炭素数1~30のアミノ基のいずれかの基を含む置換基を表す。ただし、式(2-4)において、R42が炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、または炭素数1~30のアミノ基を含む置換基を表す場合、R41は水素原子であってもよい。n11は1~5の整数を表す。n21、n51は2~6の整数を表す。n31は1~6の整数を表す。*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000014
[R101はアルキル基を表す。Halはハロゲン原子を表す。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。]
〔10〕下記式(2’)で表されるターピリジン化合物を合成し、これを配位子として有する式(1’)MX3Lt’で表される色素を製造する方法であって、下記式(3)で表される化合物の置換基Halを下記式(2’)の置換基Rに置換する工程と、下記式(3)の置換基CO101のR101をHに置換する工程とを経由する色素の製造方法。
[式中、Mはルテニウム、オスミウム、鉄、レニウム、およびテクネチウムから選ばれた遷移金属を表す。Xは、NCS、Cl、Br、I、CN、NCO、またはHOを表す。Lt’は式(2’)を表す。]
Figure JPOXMLDOC01-appb-C000015
[式中、n1は1~3の整数を表す。n2、n3は1~4の整数を表す。Rは、炭素数1~30のアルキル基、あるいは式(2-1)、(2-2)、(2-3)、(2-4)、または(2-5)で表される置換基を表す。]
Figure JPOXMLDOC01-appb-C000016
[式中、R11、R21、R31、R41、R42、およびR51は、炭素数1~30のアルキル基、炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、および炭素数1~30のアミノ基のいずれかの基を含む置換基を表す。ただし、式(2-4)において、R42が炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、または炭素数1~30のアミノ基を含む置換基を表す場合、R41は水素原子であってもよい。n11は1~5の整数を表す。n21、n51は2~6の整数を表す。n31は1~6の整数を表す。*は結合手を表す。]
Figure JPOXMLDOC01-appb-C000017
[R101はアルキル基を表す。Halはハロゲン原子を表す。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。]
〔11〕下記式(3)で表されるターピリジン化合物。
Figure JPOXMLDOC01-appb-C000018
[R101はアルキル基を表す。Halはハロゲン原子を表す。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。]
The above problem has been solved by the following means.
[1] A dye represented by the formula (1) MX 3 Lt.
[Wherein M represents a transition metal selected from ruthenium, osmium, iron, rhenium, and technetium. X represents NCS , Cl , Br , I , CN , NCO , or H 2 O. Lt represents the formula (2). ]
Figure JPOXMLDOC01-appb-C000010
[Wherein R 1 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH). R 2 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH). La represents a single bond or an arylene group. R 4 represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. R 3 represents an alkyl group having 1 to 30 carbon atoms, or a group represented by the following formula (2-1), (2-2), (2-3), (2-4), or general formula (2-5). Represents a substituent. ]
Figure JPOXMLDOC01-appb-C000011
[Wherein R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms. And a substituent containing any one of a group and an amino group having 1 to 30 carbon atoms. However, in the formula (2-4), when R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an amino group having 1 to 30 carbon atoms, 41 may be a hydrogen atom. n11 represents an integer of 1 to 5. n21 and n51 each represents an integer of 2 to 6. n31 represents an integer of 1 to 6. * Represents a bond. ]
[2] The dye according to [1], wherein La in the formula (2) is a single bond.
[3] R 3 in the formula (2) is represented by the formula (2-1), (2-2), (2-3), (2-4) or (2-5) [1] Or the pigment | dye as described in [2].
[4] R 3 is the formula of the formula (2) (2-2), according to any one of (2-3), or formula (2-4) [1] to [3] Dyes.
[5] The dye according to any one of [1] to [4], wherein R 3 in the formula (2) is represented by the formula (2-3) or (2-4).
[6] The dye according to any one of [1] to [5], wherein R 3 in the formula (2) is represented by the formula (2-4).
[7] A photoelectric conversion device comprising a photoreceptor layer containing the dye according to any one of [1] to [6] and semiconductor fine particles.
[8] A photoelectrochemical cell using the photoelectric conversion element according to [7].
[9] A process for producing a terpyridine compound of the following formula (2 ′), wherein the substituent Hal of the compound represented by the following formula (3) is substituted with a substituent R 3 of the following formula (2 ′) And a step of substituting R 101 of substituent CO 2 R 101 of the following formula (3) with H, a method for producing a terpyridine compound.
Figure JPOXMLDOC01-appb-C000012
[Wherein n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. R 3 is an alkyl group having 1 to 30 carbon atoms, or a substituent represented by the formula (2-1), (2-2), (2-3), (2-4), or (2-5) Represents a group. ]
Figure JPOXMLDOC01-appb-C000013
[Wherein R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms. And a substituent containing any one of a group and an amino group having 1 to 30 carbon atoms. However, in the formula (2-4), when R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an amino group having 1 to 30 carbon atoms, 41 may be a hydrogen atom. n11 represents an integer of 1 to 5. n21 and n51 each represents an integer of 2 to 6. n31 represents an integer of 1 to 6. * Represents a bond. ]
Figure JPOXMLDOC01-appb-C000014
[R 101 represents an alkyl group. Hal represents a halogen atom. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. ]
[10] A method of synthesizing a terpyridine compound represented by the following formula (2 ′) and producing a dye represented by the formula (1 ′) MX3Lt ′ having this as a ligand, which comprises the following formula (3) the substituent Hal in the compound represented by) a step of substituting the substituent R 3 of the formula (2 '), a step of substituting the R 101 substituents CO 2 R 101 in formula (3) in H The manufacturing method of the pigment | dye which goes through.
[Wherein M represents a transition metal selected from ruthenium, osmium, iron, rhenium, and technetium. X represents NCS , Cl , Br , I , CN , NCO , or H 2 O. Lt ′ represents the formula (2 ′). ]
Figure JPOXMLDOC01-appb-C000015
[Wherein n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. R 3 is an alkyl group having 1 to 30 carbon atoms, or a substituent represented by the formula (2-1), (2-2), (2-3), (2-4), or (2-5) Represents a group. ]
Figure JPOXMLDOC01-appb-C000016
[Wherein R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms. And a substituent containing any one of a group and an amino group having 1 to 30 carbon atoms. However, in the formula (2-4), when R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an amino group having 1 to 30 carbon atoms, 41 may be a hydrogen atom. n11 represents an integer of 1 to 5. n21 and n51 each represents an integer of 2 to 6. n31 represents an integer of 1 to 6. * Represents a bond. ]
Figure JPOXMLDOC01-appb-C000017
[R 101 represents an alkyl group. Hal represents a halogen atom. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. ]
[11] A terpyridine compound represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000018
[R 101 represents an alkyl group. Hal represents a halogen atom. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. ]
 本明細書において、炭素-炭素二重結合については、分子内にE型及びZ型が存在する場合、そのいずれであってもよい。複数の置換基や配位子を同時に択一的に規定するときには、それぞれの置換基ないし配位子は互いに同一でも異なっていてもよい。また、複数の置換基や配位子が近接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい。 In this specification, the carbon-carbon double bond may be any of E type and Z type in the molecule. When a plurality of substituents or ligands are alternatively defined, the respective substituents or ligands may be the same or different from each other. Further, when a plurality of substituents and ligands are close to each other, they may be connected to each other or condensed to form a ring.
 本発明の色素を用いた光電変換素子及び光電気化学電池は、高光電変換効率を達成し、しかも耐久性に優れる。また、本発明のターピリジン化合物は、新規な化合物であり、上記色素の合成原料として有用である。さらに本発明の製造方法によれば、上記色素及び中間体化合物(ターピリジン化合物)を好適に製造することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
The photoelectric conversion element and the photoelectrochemical cell using the dye of the present invention achieve high photoelectric conversion efficiency and are excellent in durability. The terpyridine compound of the present invention is a novel compound and is useful as a raw material for synthesizing the above dye. Furthermore, according to the manufacturing method of this invention, the said pigment | dye and intermediate compound (terpyridine compound) can be manufactured suitably.
The above and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.
本発明の光電変換素子の一実施態様について模式的に示した断面図である。It is sectional drawing shown typically about one embodiment of the photoelectric conversion element of this invention.
 本発明の金属錯体色素は、中心金属に対してターピリジンが配位した構造を有し、これにより、光電変換素子において、800nm超という長波長領域でも高いIPCEを発揮し、高光電変換効率を実現し、さらに高い耐久性を実現した。
 この理由は未解明の点を含むが、推定を含めて下記のように説明できる。つまりターピリジンの2つのピリジンリガンドに付加された酸性基が半導体微粒子表面に吸着し、そこを足場にして金属錯体が起立するようにして配向することが考えられる。そうすると、ターピリジン構造の残りのピリジン環に導入された特定の機能性置換基が、突出するように配置し、電荷移動体層側に延出する。その結果、電荷移動体層から機能性置換基の側から効果的に電子を分子内に取り入れ、足場となった結合性基を通じて半導体微粒子にその電子を送り込むことができると解される。一方、上記電荷移動体層側に延出して配列した機能性置換基が、I イオンの半導体電極への近接を抑止し、チタニアに注入された電子がI へ移動するのを防ぐ作用を示していると考えられる。また、電荷移動体層側に延出して配列した機能性置換基は、同時に水分子の半導体電極への接近を防止し、その表面からの色素の脱離を抑えたとみられる。その結果、高光電変換効率と耐久性の向上の両立を実現したと考えられる。以下に本発明についてその好ましい実施態様に基づき、詳細に説明する。
The metal complex dye of the present invention has a structure in which terpyridine is coordinated with a central metal, and thus, in a photoelectric conversion element, it exhibits high IPCE even in a long wavelength region exceeding 800 nm and realizes high photoelectric conversion efficiency. And higher durability.
This reason includes unclear points, but can be explained as follows, including estimation. In other words, it is conceivable that the acidic groups added to the two pyridine ligands of terpyridine are adsorbed on the surface of the semiconductor fine particles, and the metal complexes are oriented so as to stand up there. If it does so, it will arrange | position so that the specific functional substituent introduce | transduced into the remaining pyridine ring of a terpyridine structure may protrude, and it will extend to the charge-transfer body layer side. As a result, it is understood that electrons can be effectively taken into the molecule from the side of the functional substituent from the charge transfer layer, and the electrons can be sent to the semiconductor fine particles through the binding group serving as a scaffold. On the other hand, the functional substituents arranged to extend toward the charge transfer layer prevent the proximity of I 3 ions to the semiconductor electrode and prevent the electrons injected into titania from moving to I 3 . It is thought that it shows an action. In addition, the functional substituents extending and arranged on the charge transfer layer side are considered to simultaneously prevent the water molecules from approaching the semiconductor electrode and suppress the detachment of the dye from the surface. As a result, it is considered that both high photoelectric conversion efficiency and improved durability are realized. Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
[素子の構造]
 本発明の色素を用いることができる光電変換素子の好ましい実施態様を、図面を参照して説明する。図1に示すように、光電変換素子10は、導電性支持体1、導電性支持体1上にその順序で配された、感光体層2、電荷移動体層3、及び対極4からなる。前記導電性支持体1と感光体2とにより受光電極5を構成している。その感光体2は導電性微粒子22と増感色素21とを有しており、色素21はその少なくとも一部において導電性微粒子22に吸着している(色素は吸着平衡状態になっており、一部電荷移動体層に存在していてもよい。)。感光体2が形成された導電性支持体1は光電変換素子10において作用電極として機能する。この光電変換素子10を外部回路6で仕事をさせるようにして、光電気化学電池システム100として作動させることができる。
[Element structure]
A preferred embodiment of a photoelectric conversion element that can use the dye of the present invention will be described with reference to the drawings. As shown in FIG. 1, the photoelectric conversion element 10 includes a conductive support 1, a photosensitive layer 2, a charge transfer layer 3, and a counter electrode 4 arranged in that order on the conductive support 1. The conductive support 1 and the photoreceptor 2 constitute a light receiving electrode 5. The photoreceptor 2 has conductive fine particles 22 and a sensitizing dye 21, and the dye 21 is adsorbed on the conductive fine particles 22 at least in part (the dye is in an adsorption equilibrium state, It may be present in the partial charge transfer layer.) The conductive support 1 on which the photoreceptor 2 is formed functions as a working electrode in the photoelectric conversion element 10. The photoelectric conversion element 10 can be operated as the photoelectrochemical cell system 100 by causing the external circuit 6 to work.
 受光電極5は、導電性支持体1および導電性支持体上に塗設される色素21の吸着した半導体微粒子22を含む感光体層(半導体膜)2よりなる電極である。感光体層(半導体膜)2に入射した光は色素を励起する。励起色素はエネルギーの高い電子を有している。そこでこの電子が色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素21の分子は酸化体となっている。電極上の電子が外部回路で仕事をしながら、励起されて酸化された色素は電解質中の還元剤(例えば、I)から電子を受け取り、基底状態の色素に戻ることにより、光電気化学電池として作用する。この際、受光電極5はこの電池の負極として働く。 The light-receiving electrode 5 is an electrode composed of a conductive support 1 and a photosensitive layer (semiconductor film) 2 including semiconductor fine particles 22 adsorbed with a dye 21 coated on the conductive support. Light incident on the photoreceptor layer (semiconductor film) 2 excites the dye. The excited dye has high energy electrons. Therefore, the electrons are transferred from the dye 21 to the conduction band of the semiconductor fine particles 22 and further reach the conductive support 1 by diffusion. At this time, the molecule of the dye 21 is an oxidant. Excited and oxidized dye accepts electrons from the reducing agent (eg, I ) in the electrolyte and returns to the ground state dye while the electrons on the electrode work in the external circuit, thereby allowing the photoelectrochemical cell to Acts as At this time, the light receiving electrode 5 functions as a negative electrode of the battery.
 本実施形態の光電変換素子は、導電性支持体上に後述の色素が吸着された多孔質半導体微粒子の層を有する感光体を有する。このとき色素において一部電解質中に解離したもの等があってもよい。感光体は目的に応じて設計され、単層構成でも多層構成でもよい。本実施形態の光電変換素子の感光体には、特定の増感色素が吸着した半導体微粒子を含み、感度が高く、光電気化学電池として使用する場合に、高い変換効率を得ることができる。
 なお、光電変換素子の上下は特に定めなくてもよいが、本明細書において、図示したものに基づいて言えば、受光側となる対極4の側を上部(天部)の方向とし、支持体1の側を下部(底部)の方向とする。
The photoelectric conversion element of this embodiment has a photoreceptor having a layer of porous semiconductor fine particles on which an after-mentioned dye is adsorbed on a conductive support. At this time, a part of the dye dissociated in the electrolyte may be present. The photoreceptor is designed according to the purpose, and may have a single layer structure or a multilayer structure. The photoconductor of the photoelectric conversion element of the present embodiment includes semiconductor fine particles adsorbed with a specific sensitizing dye, has high sensitivity, and can be used as a photoelectrochemical cell, and high conversion efficiency can be obtained.
The upper and lower sides of the photoelectric conversion element do not need to be defined in particular, but in this specification, based on what is illustrated, the side of the counter electrode 4 serving as the light receiving side is the upper (top) direction, and the support The side of 1 is the lower (bottom) direction.
[式(1)で表される色素]
 本発明の色素は下記式(1)で表される。
   式(1)    MXLt
[Dye represented by Formula (1)]
The coloring matter of the present invention is represented by the following formula (1).
Formula (1) MX 3 Lt
・M
 式中、Mはルテニウム、オスミウム、鉄、レニウム、およびテクネチウムから選ばれた遷移金属を表す。中でも、ルテニウムが好ましい。
・ M
In the formula, M represents a transition metal selected from ruthenium, osmium, iron, rhenium, and technetium. Of these, ruthenium is preferable.
・X
 Xは、NCS、Cl、Br、I、CN、NCO、またはHOを表す。
・ X
X represents NCS , Cl , Br , I , CN , NCO , or H 2 O.
・Lt
 Ltは下記式(2)で表される配位子である。
・ Lt
Lt is a ligand represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
・R
 式中、Rは、COOH、PO(OH)、PO(OR)(OH)、またはCO(NHOH)を表す。La-Rの置換位置は特に限定されないが、吸着時の色素の配向の観点から、3位または4位が好ましく、4位がさらに好ましい。Rは、炭素数1~30のアルキル基または炭素数6~30のアリール基を表す。アルキル基及びアリール基の好ましいものとしては、下記置換基Tの例が挙げられる。
・ R 1
In the formula, R 1 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH). The substitution position of La—R 1 is not particularly limited, but from the viewpoint of the orientation of the dye during adsorption, the 3-position or 4-position is preferred, and the 4-position is more preferred. R 4 represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. Preferable examples of the alkyl group and the aryl group include the following examples of the substituent T.
・R
 Rは、COOH、PO(OH)、PO(OR)(OH)、またはCO(NHOH)を表す。Rの置換位置は特に限定されないが、吸着時の色素の配向の観点から、3位または4が好ましく、4位がさらに好ましい。Rは、炭素数1~30のアルキル基または炭素数6~30のアリール基を表す。アルキル基及びアリール基の好ましいものとしては、下記置換基Tの例が挙げられる。
・ R 2
R 2 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH). The substitution position of R 2 is not particularly limited, but from the viewpoint of the orientation of the dye during adsorption, the 3-position or 4 is preferred, and the 4-position is more preferred. R 4 represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. Preferable examples of the alkyl group and the aryl group include the following examples of the substituent T.
・R
 Rは、炭素数1~30のアルキル基、または下記式(2-1)、(2-2)、(2-3)、(2-4)もしくは式(2-5)で表される置換基を表す。なかでも、前記式(2)のRは、(2-1)、(2-2)、(2-3)、(2-4)もしくは式(2-5)で表されることがより好ましく、一般式(2-2)、(2-3)、もしくは式(2-4)であることがさらに好ましく、式(2-3)もしくは式(2-4)であることがさらに好ましく、式(2-4)であることが特に好ましい。
・ R 3
R 3 is an alkyl group having 1 to 30 carbon atoms, or represented by the following formula (2-1), (2-2), (2-3), (2-4) or formula (2-5) Represents a substituent. Among them, R 3 in the formula (2) is more preferably represented by (2-1), (2-2), (2-3), (2-4) or the formula (2-5). Preferably, the general formula (2-2), (2-3), or the formula (2-4) is more preferable, the formula (2-3) or the formula (2-4) is more preferable, The formula (2-4) is particularly preferable.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
・R11、R21、R31、R41、R42、R51
 R11、R21、R31、R41、R42、およびR51は、炭素数1~30のアルキル基、炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、および炭素数1~30のアミノ基から選ばれる基を含む置換基を表す。なお、前記アルキル基、アリール基、ヘテロアリール基、アミノ基の好ましいものとしては、下記置換基Tの例が挙げられる。ただし、R42がヘテロアリール基、アリール基、アミノ基の場合は、R41が水素原子でもよい。R41、R42は共に前記ただし書きの前に例示した置換基を有することが好ましい。
R 11 , R 21 , R 31 , R 41 , R 42 , R 51
R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 are each an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, and carbon Represents a substituent containing a group selected from an amino group of 1 to 30; In addition, the following examples of the substituent T are mentioned as a preferable thing of the said alkyl group, an aryl group, heteroaryl group, and an amino group. However, if R 42 is a heteroaryl group, an aryl group, an amino group, R 41 may be hydrogen atoms. Both R 41 and R 42 preferably have the substituents exemplified before the above proviso.
 R11、R21、R31、R41、R42、R51として好ましくは、炭素数1~30のアルキル基、炭素数1~30のヘテロアリール基、または炭素数6~30のアリール基、炭素数1~30のアミノ基のうち、炭素数3~30のアルキル基、炭素数3~30のアルキル基が置換した炭素数1~30のヘテロアリール基、炭素数3~30のアルキル基が置換した炭素数6~30のアリール基、炭素数3~30のアルコキシ基が置換した炭素数1~30のヘテロアリール基、炭素数3~30のアルコキシ基が置換した炭素数6~30のアリール基、炭素数6~30のアリール基が置換したアミノ基、または炭素数1~30のアルキル基が置換したアミノ基であり、更に好ましくは、炭素数4~30のアルキル基、炭素数4~30のアルキル基が置換した炭素数1~30のヘテロアリール基、炭素数4~30のアルキル基が置換した炭素数6~30のアリール基、炭素数4~30のアルコキシ基が置換した炭素数1~30のヘテロアリール基または炭素数4~30のアルコキシ基が置換した炭素数6~30のアリール基であり、特に好ましくは、炭素数4~30のアルキル基または炭素数4~30のアルコキシ基が置換した炭素数6~30のアリール基である。 R 11 , R 21 , R 31 , R 41 , R 42 , R 51 are preferably an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms, Of the amino group having 1 to 30 carbon atoms, an alkyl group having 3 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms substituted by an alkyl group having 3 to 30 carbon atoms, and an alkyl group having 3 to 30 carbon atoms Substituted aryl group having 6 to 30 carbon atoms, heteroaryl group having 1 to 30 carbon atoms substituted by alkoxy group having 3 to 30 carbon atoms, aryl having 6 to 30 carbon atoms substituted by alkoxy group having 3 to 30 carbon atoms Group, an amino group substituted by an aryl group having 6 to 30 carbon atoms, or an amino group substituted by an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 4 to 30 carbon atoms, 30 a C1-C30 heteroaryl group substituted with a kill group, C6-C30 aryl group substituted with a C4-C30 alkyl group, C1-C30 alkoxy group substituted with a C1-C30 alkyl group An aryl group having 6 to 30 carbon atoms substituted by a 30 heteroaryl group or an alkoxy group having 4 to 30 carbon atoms, and particularly preferably an alkyl group having 4 to 30 carbon atoms or an alkoxy group having 4 to 30 carbon atoms. A substituted aryl group having 6 to 30 carbon atoms.
・n11,n21,n31、n51
 n11は1~5の整数を表す。n11は1~3の整数が好ましく、1または2がより好ましい。
 n21は2~6の整数を表す。n21は2~4の整数が好ましく、2または3がより好ましい。
 n31は1~6の整数を表す。n31は1~3の整数が好ましく、1または2がより好ましい。
 n51は2~6の整数を表す。
・ N11, n21, n31, n51
n11 represents an integer of 1 to 5. n11 is preferably an integer of 1 to 3, more preferably 1 or 2.
n21 represents an integer of 2 to 6. n21 is preferably an integer of 2 to 4, more preferably 2 or 3.
n31 represents an integer of 1 to 6. n31 is preferably an integer of 1 to 3, and more preferably 1 or 2.
n51 represents an integer of 2 to 6.
 *は結合手を表す。 * Represents a bond.
 本発明の色素において、Rは光電変換素子における耐久性向上及び開放電圧(Voc)の向上に寄与すると推定される。上記R、Rが足場になり錯体色素が起立配列すると、逆にRを電荷移動体層側に向け延出する。そのため、このRが自己の足場を守るようにして、電荷移動体層側に延出して配列した機能性置換基が、I イオンの半導体電極への近接を抑止し、チタニアに注入された電子がI へ移動するのを防ぐ。そうすることで、Vocの低下を防いでいると考えられる。また、Rにドナー性が付与された場合、色素分子のLUMO準位を適度に押し上げることがあると考えられる。これにより電子の注入効果が増し、開放電流(Jsc)を高めることが期待できる。さらに、電荷移動体層側に延出して配列した機能性置換基が、水分子の半導体電極への接近を防止し、その表面からの色素の脱離を抑えることで、耐久性を高めると考えられる。この観点から、色素の会合を防ぎ、より整然と並列吸着しやすいよう、Rの置換位置は4位または5位が好ましく(上記式(2)参照)、5位がより好ましい。 In the dye of the present invention, R 3 is presumed to contribute to improvement in durability and open circuit voltage (Voc) in the photoelectric conversion element. When R 1 and R 2 are used as scaffolds and the complex dye is arranged in an upright manner, R 3 is extended toward the charge transfer layer side. For this reason, the functional substituents arranged so as to extend to the charge transfer layer side so that this R 3 protects its own scaffold is prevented from approaching the I 3 ions to the semiconductor electrode, and is injected into titania. electrons I 3 - prevent migration into. By doing so, it is considered that the decrease in Voc is prevented. In addition, when donor properties are imparted to R 3 , it is considered that the LUMO level of the dye molecule may be appropriately increased. As a result, it is expected that the electron injection effect is increased and the open current (Jsc) is increased. In addition, functional substituents extending and arranged on the charge transfer layer side are thought to improve durability by preventing water molecules from approaching the semiconductor electrode and suppressing detachment of the dye from the surface. It is done. From this point of view, the substitution position of R 3 is preferably the 4th or 5th position (see the above formula (2)) and the 5th position is more preferred so that the association of the dyes is prevented and the parallel adsorption is more orderly.
・La
 Laは、単結合、またはアリーレン基を表す。Laがアリーレン基であるとき、フェニレン基、またはチエニレン基であることが好ましい。Laは単結合であることが特に好ましい。
・ La
La represents a single bond or an arylene group. When La is an arylene group, it is preferably a phenylene group or a thienylene group. La is particularly preferably a single bond.
・n1~n3
 n1は1~3の整数を表す。n2、n3は1~4の整数を表す。
・ N1 to n3
n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4.
[ターピリジン化合物の製造方法]
 本発明においては、前記式(2’)で表されるターピリジン化合物を合成し、これを配位子として有する下記式(1)で表される色素を製造するに際し、下記式(3)で表される化合物の置換基Halを式(2’)の置換基Rに置換する工程と、下記式(3)の置換基CO101のR101をHに置換する工程とを経由することが好ましい。
[Method for producing terpyridine compound]
In the present invention, when the terpyridine compound represented by the formula (2 ′) is synthesized and a dye represented by the following formula (1) having this as a ligand is produced, the terpyridine compound represented by the following formula (3) is used. going through the step of substituting substituents Hal of the compounds in the substituent R 3 of formula (2 '), and a step of substituting the R 101 substituents CO 2 R 101 in formula (3) in H Is preferred.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式中、n1は1~3の整数を表す。n2、n3は1~4の整数を表す。Rは、炭素数1~30のアルキル基、または前記式(2-1)、(2-2)、(2-3)、(2-4)、もしくは(2-5)で表される置換基を表す。その好ましいものも前記と同義である。 In the formula, n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. R 3 is an alkyl group having 1 to 30 carbon atoms, or represented by the formula (2-1), (2-2), (2-3), (2-4), or (2-5). Represents a substituent. The preferable one is also as defined above.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 R101はアルキル基を表し、メチル基、エチル基、プロピル基であることが好ましい。
Halはハロゲン原子を表し、フッ素、塩素、臭素であることが好ましく、臭素であることがより好ましい。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。
R 101 represents an alkyl group, and is preferably a methyl group, an ethyl group, or a propyl group.
Hal represents a halogen atom, preferably fluorine, chlorine or bromine, more preferably bromine. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4.
 上記の置換工程を含め詳細は後記実施例に記載の手順を参照することができる。置換基Halと所定の有機基Rの置換反応は、鈴木・宮浦カップリング、Stille カップリング、根岸カップリングなどのクロスカップリングを用いることができる。アルキル基R101を水素原子に置換しカルボキシル基にする反応は、通常の加水分解反応によればよい。 For details including the above-described substitution step, reference can be made to the procedures described in Examples below. Substitution reaction of substituents Hal and given organic group R 3 is, Suzuki reaction, Stille coupling can be used cross-coupling, such as Negishi coupling. The reaction of substituting the alkyl group R 101 with a hydrogen atom to form a carboxyl group may be performed by a normal hydrolysis reaction.
 式(1)で表される色素は、エタノール溶液における極大吸収波長が、好ましくは500~700nmの範囲であり、より好ましくは550~650nmの範囲である。
 以下に本発明の式(1)で表される色素の好ましい具体例を示すが、本発明がこれに限定されるものではない。
The dye represented by the formula (1) has a maximum absorption wavelength in an ethanol solution of preferably 500 to 700 nm, more preferably 550 to 650 nm.
Although the preferable specific example of the pigment | dye represented by Formula (1) of this invention below is shown, this invention is not limited to this.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(6-1)
 ・Dye606(R61:-C13,R62:H)
 ・Dye607(R61:-C13,R62:-C13
 ・Dye608(R61:H,R62:H)
 ・Dye609(R61:H,R62:-C13
 式(6-2)
 ・Dye610(R61:-C13,R62:H)
 ・Dye611(R61:-C13,R62:-C13
 ・Dye612(R61:H,R62:H)
 ・Dye613(R61:H,R62:-C13
Formula (6-1)
Dye 606 (R 61 : -C 6 H 13 , R 62 : H)
· Dye607 (R 61: -C 6 H 13, R 62: -C 6 H 13)
· Dye608 (R 61: H, R 62: H)
Dye 609 (R 61 : H, R 62 : -C 6 H 13 )
Formula (6-2)
Dye 610 (R 61 : -C 6 H 13 , R 62 : H)
· Dye611 (R 61: -C 6 H 13, R 62: -C 6 H 13)
· Dye612 (R 61: H, R 62: H)
Dye 613 (R 61 : H, R 62 : -C 6 H 13 )
 一般式(1)で表される化合物からなる色素の合成は、後記実施例に記載の方法を参考にして行うことができる。 The synthesis of the dye composed of the compound represented by the general formula (1) can be performed with reference to the methods described in Examples below.
 なお、本明細書において化合物(錯体、色素を含む)の表示については、当該化合物そのものほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の形態で修飾された誘導体を含む意味である。また、本明細書において置換・無置換を明記していない置換基(連結基を含む)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。 In addition, in this specification, about the display of a compound (a complex and a pigment | dye are included), it uses for the meaning containing the said compound itself, its salt, and its ion. Moreover, it is the meaning including the derivative modified with the predetermined form in the range with the desired effect. Further, in the present specification, a substituent (including a linking group) for which substitution / non-substitution is not specified means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T.
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルホンアミド、N-フェニルスルホンアミド等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、シアノ基、またはハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはシアノ基が挙げられる。複数の置換基Tが互いに結合して環構造を形成してもよい。
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, Phenyl, 1-naphthyl, 4-methoxyphenyl, -Chlorophenyl, 3-methylphenyl, etc.), heterocyclic groups (preferably heterocyclic groups having 2 to 20 carbon atoms, such as 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2 -Oxazolyl etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropyloxy, benzyloxy etc.), an aryloxy group (preferably an aryloxy group having 6 to 26 carbon atoms) For example, phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), alkoxycarbonyl groups (preferably alkoxycarbonyl groups having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, etc.) ), Amino group (preferably carbon Amino groups having 0 to 20 atoms, such as amino, N, N-dimethylamino, N, N-diethylamino, N-ethylamino, anilino, etc., sulfonamido groups (preferably sulfonamido having 0 to 20 carbon atoms) A group such as N, N-dimethylsulfonamide, N-phenylsulfonamide, etc., an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms such as acetyloxy, benzoyloxy, etc.), a carbamoyl group (preferably A carbamoyl group having 1 to 20 carbon atoms, such as N, N-dimethylcarbamoyl, N-phenylcarbamoyl, etc.), an acylamino group (preferably an acylamino group having 1 to 20 carbon atoms, such as acetylamino, benzoylamino, etc.) , Cyano group, or halogen atom (eg fluorine atom, chlorine atom, bromine) Atoms, iodine atoms, etc.), more preferably alkyl groups, alkenyl groups, aryl groups, heterocyclic groups, alkoxy groups, aryloxy groups, alkoxycarbonyl groups, amino groups, acylamino groups, cyano groups or halogen atoms, Particularly preferred are an alkyl group, an alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group, and a cyano group. A plurality of substituents T may be bonded to each other to form a ring structure.
[光電変換素子]
(感光体層)
 光電変換素子の実施態様については図1に基づき既に説明した。本実施形態において感光体層2は、後述の色素が吸着された半導体微粒子22の層からなる多孔質半導体層で構成されている。この色素は一部電解質中に解離したもの等があってもよい。また、感光体層2は目的に応じて設計され、多層構造からなるものであってもよい。
 上述したように感光体層2には、特定の色素が吸着した半導体微粒子22を含むことから、受光感度が高く、光電気化学電池システム100として使用する場合に、高い光電変換効率を得ることができ、さらに高い耐久性を有する。
[Photoelectric conversion element]
(Photoreceptor layer)
The embodiment of the photoelectric conversion element has already been described with reference to FIG. In the present embodiment, the photoreceptor layer 2 is composed of a porous semiconductor layer composed of a layer of semiconductor fine particles 22 on which a dye described later is adsorbed. This dye may be partially dissociated in the electrolyte. The photoreceptor layer 2 may be designed according to the purpose and may have a multilayer structure.
As described above, since the photosensitive layer 2 includes the semiconductor fine particles 22 on which a specific dye is adsorbed, the light receiving sensitivity is high, and when used as the photoelectrochemical cell system 100, high photoelectric conversion efficiency can be obtained. It has higher durability.
(電荷移動体)
 本発明の光電変換素子10に用いられる電解質組成物には、酸化還元対として、例えばヨウ素とヨウ化物(例えばヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム等)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体(例えば赤血塩と黄血塩)の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせが好ましい。
(Charge transfer body)
The electrolyte composition used for the photoelectric conversion element 10 of the present invention includes, for example, a combination of iodine and iodide (for example, lithium iodide, tetrabutylammonium iodide, tetrapropylammonium iodide, etc.) as an oxidation-reduction pair, alkyl Combinations of viologens (for example, methyl viologen chloride, hexyl viologen bromide, benzyl viologen tetrafluoroborate) and reduced forms thereof, combinations of polyhydroxybenzenes (for example, hydroquinone, naphthohydroquinone, etc.) and oxidized forms thereof, bivalent and trivalent And a combination of iron complexes (for example, red blood salt and yellow blood salt). Of these, a combination of iodine and iodide is preferred.
 ヨウ素塩のカチオンは5員環または6員環の含窒素芳香族カチオンであるのが好ましい。特に、一般式(1)により表される化合物がヨウ素塩でない場合は、再公表WO95/18456号公報、特開平8-259543号公報、電気化学,第65巻,11号,923頁(1997年)等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等のヨウ素塩を併用するのが好ましい。 The cation of the iodine salt is preferably a 5-membered or 6-membered nitrogen-containing aromatic cation. In particular, when the compound represented by the general formula (1) is not an iodine salt, republished WO95 / 18456, JP-A-8-259543, Electrochemistry, Vol.65, No.11, p.923 (1997) It is preferable to use iodine salts such as pyridinium salts, imidazolium salts, and triazolium salts described in the above.
 本発明の光電変換素子10に使用される電解質組成物中には、ヘテロ環4級塩化合物と共にヨウ素を含有するのが好ましい。ヨウ素の含有量は電解質組成物全体に対して0.1~20質量%であるのが好ましく、0.5~5質量%であるのがより好ましい。 The electrolyte composition used for the photoelectric conversion element 10 of the present invention preferably contains iodine together with a heterocyclic quaternary salt compound. The iodine content is preferably from 0.1 to 20% by mass, more preferably from 0.5 to 5% by mass, based on the entire electrolyte composition.
 本発明の光電変換素子10に用いられる電解質組成物は溶媒を含んでいてもよい。電解質組成物中の溶媒含有量は組成物全体の50質量%以下であるのが好ましく、30質量%以下であるのがより好ましく、10質量%以下であるのが特に好ましい。 The electrolyte composition used for the photoelectric conversion element 10 of the present invention may contain a solvent. The content of the solvent in the electrolyte composition is preferably 50% by mass or less, more preferably 30% by mass or less, and particularly preferably 10% by mass or less based on the entire composition.
 溶媒としては低粘度でイオン移動度が高いか、高誘電率で有効キャリアー濃度を高めることができるか、またはその両方であるために優れたイオン伝導性を発現できるものが好ましい。このような溶媒としてカーボネート化合物(エチレンカーボネート、プロピレンカーボネート等)、複素環化合物(3-メチル-2-オキサゾリジノン等)、エーテル化合物(ジオキサン、ジエチルエーテル等)、鎖状エーテル類(エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等)、アルコール類(メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等)、多価アルコール類(エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等)、ニトリル化合物(アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル、ビスシアノエチルエーテル等)、エステル類(カルボン酸エステル、リン酸エステル、ホスホン酸エステル等)、非プロトン性極性溶媒(ジメチルスルホキシド(DMSO)、スルフォラン等)、水、特開2002-110262記載の含水電解液、特開2000-36332号公報、特開2000-243134号公報、及び再公表WO/00-54361号公報記載の電解質溶媒などが挙げられる。これらの溶媒は二種以上を混合して用いてもよい。 As the solvent, those having a low viscosity and a high ion mobility, a high dielectric constant and an effective carrier concentration being increased, or both are preferable because they can exhibit excellent ion conductivity. Such solvents include carbonate compounds (ethylene carbonate, propylene carbonate, etc.), heterocyclic compounds (3-methyl-2-oxazolidinone, etc.), ether compounds (dioxane, diethyl ether, etc.), chain ethers (ethylene glycol dialkyl ether, Propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), alcohols (methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.), Polyhydric alcohols (ethylene glycol, propylene glycol, polyethylene glycol , Propylene glycol, glycerin, etc.), nitrile compounds (acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, biscyanoethyl ether, etc.), esters (carboxylic esters, phosphate esters, phosphonate esters, etc.) ), Aprotic polar solvent (dimethyl sulfoxide (DMSO), sulfolane, etc.), water, hydrous electrolyte described in JP-A No. 2002-110262, JP-A No. 2000-36332, JP-A No. 2000-243134, and republication Examples include electrolyte solvents described in WO / 00-54361. These solvents may be used as a mixture of two or more.
 また、本発明の電解質としては、正孔導体物質を含む電荷輸送層を用いても良い。正孔導体物質として、9,9’-スピロビフルオレン誘導体などを用いることができる。 Also, as the electrolyte of the present invention, a charge transport layer containing a hole conductor material may be used. As the hole conductor material, 9,9'-spirobifluorene derivatives and the like can be used.
 また、電極層、感光体層(光電変換層)、電荷移動体層(ホール輸送層)、伝導層、対極層を順次に積層することができる。p型半導体として機能するホール輸送材料をホール輸送層として用いることができる。好ましいホール輸送層としては、例えば無機系または有機系のホール輸送材料を用いることができる。無機系ホール輸送材料としては、CuI、CuO,NiO等が挙げられる。また、有機系ホール輸送材料としては、高分子系と低分子系のものが挙げられ、高分子系のものとしては、例えばポリビニルカルバゾール、ポリアミン、有機ポリシラン等が挙げられる。また、低分子系のものとしては、例えばトリフェニルアミン誘導体、スチルベン誘導体、ヒドラゾン誘導体、フェナミン誘導体等が挙げられる。この中でも有機ポリシランは、従来の炭素系高分子と異なり、主鎖のSiに沿って非局在化されたσ電子が光伝導に寄与し、高いホール移動度を有するため、好ましい(Phys. Rev. B, 35, 2818(1987))。 Also, an electrode layer, a photoreceptor layer (photoelectric conversion layer), a charge transfer layer (hole transport layer), a conductive layer, and a counter electrode layer can be sequentially laminated. A hole transport material that functions as a p-type semiconductor can be used as the hole transport layer. As a preferable hole transport layer, for example, an inorganic or organic hole transport material can be used. Examples of the inorganic hole transport material include CuI, CuO, and NiO. Examples of the organic hole transport material include high molecular weight materials and low molecular weight materials, and examples of the high molecular weight materials include polyvinyl carbazole, polyamine, and organic polysilane. Moreover, as a low molecular weight thing, a triphenylamine derivative, a stilbene derivative, a hydrazone derivative, a phenamine derivative etc. are mentioned, for example. Among these, organic polysilanes are preferable because, unlike conventional carbon-based polymers, σ electrons delocalized along the main chain Si contribute to photoconductivity and have high hole mobility (Phys. Rev. B, 35, 2818 (1987)).
(導電性支持体)
 図1に示すように、本発明の光電変換素子には、導電性支持体1上には多孔質の半導体微粒子22に増感色素21が吸着された感光体層2が形成されている。後述する通り、例えば、半導体微粒子の分散液を導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光体層2を製造することができる。
(Conductive support)
As shown in FIG. 1, in the photoelectric conversion element of the present invention, a photosensitive layer 2 in which a sensitizing dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1. As will be described later, for example, the photoreceptor layer 2 can be produced by immersing the dispersion of semiconductor fine particles in the dye solution of the present invention after coating and drying on a conductive support.
 導電性支持体1としては、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスや高分子材料を使用することができる。導電性支持体1は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。導電性支持体1としては、ガラスや高分子材料に導電性の金属酸化物を塗設したものを使用することができる。このときの導電性の金属酸化物の塗布量は、ガラスや高分子材料の支持体1m当たり、0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。好ましく使用される高分子材料の一例として、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリスルフォン(PSF)、ポリエーテルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を挙げることができる。導電性支持体1上には、表面に光マネージメント機能を施してもよく、例えば、特開2003-123859記載の高屈折膜及び低屈性率の酸化物膜を交互に積層した反射防止膜、特開2002-260746記載のライトガイド機能が上げられる。 As the conductive support 1, a glass or a polymer material having a conductive film on the surface can be used as the support itself, such as metal. The conductive support 1 is preferably substantially transparent. Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, particularly preferably 80% or more. As the conductive support 1, a glass or polymer material coated with a conductive metal oxide can be used. The coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of glass or polymer material support. When a transparent conductive support is used, light is preferably incident from the support side. As an example of a polymer material preferably used, tetraacetylcellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), Examples include polyarylate (PAR), polysulfone (PSF), polyethersulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy. On the conductive support 1, a surface may be provided with a light management function. For example, an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated, The light guide function described in JP-A-2002-260746 is improved.
 この他にも、金属支持体も好ましく使用することができる。その一例としては、チタン、アルミニウム、銅、ニッケル、鉄、ステンレスを挙げることができる。これらの金属は合金であってもよい。さらに好ましくは、チタン、アルミニウム、銅が好ましく、特に好ましくは、チタンやアルミニウムである。 In addition to this, a metal support can also be preferably used. Examples thereof include titanium, aluminum, copper, nickel, iron, and stainless steel. These metals may be alloys. More preferably, titanium, aluminum, and copper are preferable, and titanium and aluminum are particularly preferable.
(半導体微粒子)
 図1に示すように、本発明の光電変換素子10には、導電性支持体1上には多孔質の半導体微粒子22に増感色素21が吸着された感光体層2が形成されている。後述する通り、例えば、半導体微粒子22の分散液を前記導電性支持体1に塗布・乾燥後、上述の色素溶液に浸漬することにより、感光体層2を製造することができる。本発明においては半導体微粒子として、前記の特定の界面活性剤を用いて調製したものを適用する。
(Semiconductor fine particles)
As shown in FIG. 1, in the photoelectric conversion element 10 of the present invention, a photosensitive layer 2 in which a sensitizing dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1. As will be described later, for example, the photoreceptor layer 2 can be produced by immersing the dispersion of the semiconductor fine particles 22 on the conductive support 1 and then immersing it in the above dye solution. In the present invention, the semiconductor fine particles prepared using the specific surfactant are applied.
(半導体微粒子分散液)
 本発明においては、半導体微粒子以外の固形分の含量が、半導体微粒子分散液全体の10質量%以下よりなる半導体微粒子分散液を前記導電性支持体1に塗布し、適度に加熱することにより、多孔質半導体微粒子塗布層を得ることができる。
(Semiconductor fine particle dispersion)
In the present invention, the semiconductor fine particle dispersion having a solid content other than the semiconductor fine particles of 10% by mass or less of the whole of the semiconductor fine particle dispersion is applied to the conductive support 1 and heated appropriately. Quality semiconductor fine particle coating layer can be obtained.
 半導体微粒子分散液を作製する方法としては、ゾル・ゲル法の他に、半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法、微粒子に超音波などを照射して超微粒子に粉砕する方法、またはミルや乳鉢などを使って機械的に粉砕しすり潰す方法、等が挙げられる。分散溶媒としては、水及び各種の有機溶媒のうちの一つ以上を用いることができる。有機溶媒としては、メタノール,エタノール,イソプロピルアルコール,シトロネロール,ターピネオールなどのアルコール類、アセトンなどのケトン類、酢酸エチルなどのエステル類、ジクロロメタン、アセトニトリル等が挙げられる。 In addition to the sol-gel method, semiconductor fine particle dispersions can be prepared by depositing fine particles in a solvent and using them as they are when synthesizing semiconductors. And a method of mechanically pulverizing and crushing using a mill or a mortar. As the dispersion solvent, one or more of water and various organic solvents can be used. Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol, ketones such as acetone, esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
 分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸、またはキレート剤等を分散助剤として少量用いてもよい。しかし、これらの分散助剤は、導電性支持体上へ製膜する工程の前に、ろ過法や分離膜を用いる方法、あるいは遠心分離法などによって大部分を除去しておくことが好ましい。半導体微粒子分散液は、半導体微粒子以外の固形分の含量が分散液全体の10質量%以下とすることができる。この濃度は好ましくは5%以下であり、さらに好ましくは3%以下であり、特に好ましくは1%以下である。さらに好ましくは0.5%以下であり、特に好ましくは0.2%である。すなわち、半導体微粒子分散液中に、溶媒と半導体微粒子以外の固形分を半導体微分散液全体の10質量%以下とすることができる。実質的に半導体微粒子と分散溶媒のみからなることが好ましい。 When dispersing, if necessary, for example, a polymer such as polyethylene glycol, hydroxyethyl cellulose, carboxymethyl cellulose, a surfactant, an acid, or a chelating agent may be used in a small amount as a dispersion aid. However, most of these dispersing aids are preferably removed by a filtration method, a method using a separation membrane, a centrifugal method or the like before the step of forming a film on a conductive support. In the semiconductor fine particle dispersion, the solid content other than the semiconductor fine particles can be 10% by mass or less of the total dispersion. This concentration is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. More preferably, it is 0.5% or less, and particularly preferably 0.2%. That is, in the semiconductor fine particle dispersion, the solid content other than the solvent and the semiconductor fine particles can be 10% by mass or less of the entire semiconductor fine dispersion. It is preferable to consist essentially of semiconductor fine particles and a dispersion solvent.
 半導体微粒子分散液の粘度が高すぎると分散液が凝集してしまい製膜することができず、逆に半導体微粒子分散液の粘度が低すぎると液が流れてしまい製膜することができないことがある。したがって分散液の粘度は、25℃で10~300N・s/mが好ましい。さらに好ましくは、25℃で50~200N・s/mである。 If the viscosity of the semiconductor fine particle dispersion is too high, the dispersion will aggregate and cannot be formed into a film. Conversely, if the viscosity of the semiconductor fine particle dispersion is too low, the liquid will flow and cannot be formed into a film. is there. Therefore, the viscosity of the dispersion is preferably 10 to 300 N · s / m 2 at 25 ° C. More preferably, it is 50 to 200 N · s / m 2 at 25 ° C.
 半導体微粒子分散液の塗布方法としては、アプリケーション系の方法としてローラ法、ディップ法等を使用することができる。またメータリング系の方法としてエアーナイフ法、ブレード法等を使用することができる。またアプリケーション系の方法とメータリング系の方法を同一部分にできるものとして、特公昭58-4589号に開示されているワイヤーバー法、米国特許2681294号明細書等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機を使用してスピン法やスプレー法で塗布するのも好ましい。湿式印刷方法としては、凸版、オフセット及びグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。また本発明の半導体微粒子分散液は粘度が高く、粘稠性を有するため、凝集力が強いことがあり、塗布時に支持体とうまく馴染まない場合がある。このような場合に、UVオゾン処理で表面のクリーニングと親水化を行うことにより、塗布した半導体微粒子分散液と導電性支持体1表面の結着力が増し、半導体微粒子分散液の塗布が行い易くなる。 As a method for applying the semiconductor fine particle dispersion, a roller method, a dip method, or the like can be used as an application method. Moreover, an air knife method, a blade method, etc. can be used as a metering method. In addition, the application method and the metering method can be made the same part. The wire bar method disclosed in Japanese Patent Publication No. 58-4589, the slide hopper method described in US Pat. No. 2,681,294, etc., the extrusion The method and the curtain method are preferable. It is also preferable to apply by a spin method or a spray method using a general-purpose machine. As the wet printing method, intaglio, rubber plate, screen printing and the like are preferred, including the three major printing methods of letterpress, offset and gravure. From these, a preferred film forming method is selected according to the liquid viscosity and the wet thickness. Further, since the semiconductor fine particle dispersion of the present invention has a high viscosity and has a viscous property, it may have a strong cohesive force and may not be well adapted to the support during coating. In such a case, by performing cleaning and hydrophilization of the surface by UV ozone treatment, the binding force between the applied semiconductor fine particle dispersion and the surface of the conductive support 1 is increased, and it becomes easy to apply the semiconductor fine particle dispersion. .
 半導体微粒子層全体の好ましい厚さは0.1μm~100μmである。半導体微粒子層の厚さはさらに1μm~30μmが好ましく、2μm~25μmがより好ましい。半導体微粒子の支持体1m当りの担持量は0.5g~400gが好ましく、5g~100gがより好ましい。なお、上記微粒子分散液を塗布して製膜する方法は特に限定されず、公知の方法を適宜適用すればよい。 The preferred thickness of the entire semiconductor fine particle layer is 0.1 μm to 100 μm. The thickness of the semiconductor fine particle layer is further preferably 1 μm to 30 μm, and more preferably 2 μm to 25 μm. The amount of the semiconductor fine particles supported per 1 m 2 of the support is preferably 0.5 g to 400 g, more preferably 5 g to 100 g. The method for forming the film by applying the fine particle dispersion is not particularly limited, and a known method may be applied as appropriate.
 なお、半導体微粒子22の支持体1m当たりの塗布量は0.5g~500g、さらには5g~100gが好ましい。 The coating amount of the semiconductor fine particles 22 per 1 m 2 of the support is preferably 0.5 g to 500 g, more preferably 5 g to 100 g.
 半導体微粒子22に増感色素21を吸着させるには、溶液と本発明にかかる色素よりなる色素吸着用色素溶液の中に、よく乾燥した半導体微粒子22を長時間浸漬するのが好ましい。色素吸着用色素溶液に使用される溶液は、本発明にかかる増感色素21が溶解できる溶液なら特に制限なく使用することができる。例えば、エタノール、メタノール、イソプロパノール、トルエン、t-ブタノール、アセトニトリル、アセトン、n-ブタノールなどを使用することができる。その中でも、エタノール、トルエンを好ましく使用することができる。 In order to adsorb the sensitizing dye 21 to the semiconductor fine particles 22, it is preferable to immerse the well-dried semiconductor fine particles 22 in a dye adsorbing dye solution composed of the solution and the dye according to the present invention for a long time. The solution used for the dye solution for dye adsorption can be used without particular limitation as long as it can dissolve the sensitizing dye 21 according to the present invention. For example, ethanol, methanol, isopropanol, toluene, t-butanol, acetonitrile, acetone, n-butanol and the like can be used. Among these, ethanol and toluene can be preferably used.
 増感色素21の使用量は、全体で、支持体1m当たり0.01ミリモル~100ミリモルが好ましく、より好ましくは0.1ミリモル~50ミリモル、特に好ましくは0.1ミリモル~10ミリモルである。この場合、本発明にかかる増感色素21の使用量は5モル%以上とすることが好ましい。 The total amount of the sensitizing dye 21 used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, particularly preferably 0.1 to 10 mmol per 1 m 2 of the support. . In this case, the amount of the sensitizing dye 21 according to the present invention is preferably 5 mol% or more.
 また、増感色素21の半導体微粒子22に対する吸着量は半導体微粒子1gに対して0.001ミリモル~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。 Further, the adsorption amount of the sensitizing dye 21 to the semiconductor fine particles 22 is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, with respect to 1 g of the semiconductor fine particles.
 このような色素量とすることによって、半導体における増感効果が十分に得られる。これに対し、色素量が少ないと増感効果が不十分となり、色素量が多すぎると、半導体に付着していない色素が浮遊し増感効果を低減させる原因となる。 By using such a dye amount, a sensitizing effect in a semiconductor can be sufficiently obtained. On the other hand, when the amount of the dye is small, the sensitizing effect is insufficient, and when the amount of the dye is too large, the dye not attached to the semiconductor floats and causes the sensitizing effect to be reduced.
(対極)
 対極4は、光電気化学電池の正極として働くものである。対極4は、通常前述の導電性支持体1と同義であるが、強度が十分に保たれるような構成では対極の支持体は必ずしも必要でない。ただし、支持体を有する方が密閉性の点で有利である。対極4の材料としては、白金、カーボン、導電性ポリマー、などがあげられる。好ましい例としては、白金、カーボン、導電性ポリマーが挙げられる。
(Counter electrode)
The counter electrode 4 functions as a positive electrode of the photoelectrochemical cell. The counter electrode 4 is usually synonymous with the conductive support 1 described above, but a support for the counter electrode is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity. Examples of the material for the counter electrode 4 include platinum, carbon, and conductive polymer. Preferable examples include platinum, carbon, and conductive polymer.
 対極4の構造としては、集電効果が高い構造が好ましい。好ましい例としては、特開平10-505192号公報などが挙げられる。 The structure of the counter electrode 4 is preferably a structure having a high current collecting effect. Preferred examples include JP-A-10-505192.
(受光電極)
 受光電極5は、入射光の利用率を高めるなどのためにタンデム型にしても良い。好ましいタンデム型の構成例としては、特開2000-90989、特開2002-90989号公報等に記載の例が挙げられる。
(Reception electrode)
The light receiving electrode 5 may be a tandem type in order to increase the utilization rate of incident light. Examples of preferred tandem type configurations include those described in JP-A Nos. 2000-90989 and 2002-90989.
 受光電極5の層内部で光散乱、反射を効率的に行う光マネージメント機能を設けてもよい。好ましくは、特開2002-93476号公報に記載のものが挙げられる。 A light management function for efficiently performing light scattering and reflection inside the layer of the light receiving electrode 5 may be provided. Preferable examples include those described in JP-A-2002-93476.
 導電性支持体1と多孔質半導体微粒子層の間には、電解液と電極が直接接触することによる逆電流を防止する為、短絡防止層を形成することが好ましい。好ましい例としては、特開平06-507999号公報等が挙げられる。 It is preferable to form a short-circuit prevention layer between the conductive support 1 and the porous semiconductor fine particle layer in order to prevent reverse current due to direct contact between the electrolyte and the electrode. Preferable examples include Japanese Patent Application Laid-Open No. 06-507999.
 受光電極5と対極4の接触を防ぐ為に、スペーサーやセパレータを用いることが好ましい。好ましい例としては、特開2001-283941号公報が挙げられる。 In order to prevent contact between the light receiving electrode 5 and the counter electrode 4, it is preferable to use a spacer or a separator. A preferable example is JP-A-2001-283941.
 セル、モジュールの封止法としては、ポリイソブチレン系熱硬化樹脂、ノボラック樹脂、光硬化性(メタ)アクリレート樹脂、エポキシ樹脂、アイオノマー樹脂、ガラスフリット、アルミナにアルミニウムアルコキシドを用いる方法、低融点ガラスペーストをレーザー溶融する方法などが好ましい。ガラスフリットを用いる場合、粉末ガラスをバインダーとなるアクリル樹脂に混合したものでもよい。 Cell and module sealing methods include polyisobutylene thermosetting resin, novolak resin, photo-curing (meth) acrylate resin, epoxy resin, ionomer resin, glass frit, method using aluminum alkoxide for alumina, low melting point glass paste It is preferable to use a laser melting method. When glass frit is used, powder glass mixed with acrylic resin as a binder may be used.
 以下に実施例に基づき本発明について更に詳細に説明するが、本発明がこれに限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
(実施例1) 色素の合成例
 スキーム1で示したルートで中間体I-1を合成した。
Example 1 Synthesis Example of Dye Intermediate I-1 was synthesized by the route shown in Scheme 1.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(1)I-1-3の合成
 2,5-ジブロモピリジン(I-1-1)8g(33.7mmol)、トルエン337mlを窒素雰囲気下-40℃で攪拌した。これにn-ブチルリチウム1.6Mヘキサン溶液21.4ml(1.02 eq)を加え、40分攪拌し、N,N-ジメチルアセトアミド9.38ml(3.0 eq)を加えた後、攪拌しながら20℃までゆっくり昇温した。飽和塩化アンモニウム水溶液を加え反応をクエンチした。抽出・分液の後、カラムクロマトグラフィーで精製することで、2-アセチル-5-ブロモピリジン(化合物I-1-2)の白色固体6.74g(収率100%)を得た。
 水酸化ナトリウム4.73g(3.0eq)をメタノール394mlに加温溶解して0℃に冷却攪拌し、2-アセチル-5-ブロモピリジン(化合物I-1-2)7.88g(39.4mmol)と2-フラルデヒド3.26mlを加え、0℃で5時間攪拌した。溶媒を減圧濃縮し、ジクロロメタンで抽出・分液の後、カラムクロマトグラフィーで精製することで、化合物I-1-3の黄色固体8.24g(収率75%)を得た。構造は、NMRスペクトルで確認した。
(1) Synthesis of I-1-3 8 g (33.7 mmol) of 2,5-dibromopyridine (I-1-1) and 337 ml of toluene were stirred at −40 ° C. in a nitrogen atmosphere. To this was added 21.4 ml (1.02 eq) of a 1.6M hexane solution of n-butyllithium, and the mixture was stirred for 40 minutes. After adding 9.38 ml (3.0 eq) of N, N-dimethylacetamide, the mixture was stirred. The temperature was raised slowly to 20 ° C. Saturated aqueous ammonium chloride was added to quench the reaction. After extraction and liquid separation, purification was performed by column chromatography to obtain 6.74 g (yield 100%) of 2-acetyl-5-bromopyridine (Compound I-1-2) as a white solid.
Sodium hydroxide (4.73 g, 3.0 eq) was dissolved in 394 ml of methanol with heating, and the mixture was cooled and stirred at 0 ° C. to give 7.88 g (39.4 mmol) of 2-acetyl-5-bromopyridine (Compound I-1-2). ) And 3.26 ml of 2-furaldehyde, and the mixture was stirred at 0 ° C. for 5 hours. The solvent was concentrated under reduced pressure, extracted and separated with dichloromethane, and purified by column chromatography to obtain 8.24 g (yield 75%) of Compound I-1-3 as a yellow solid. The structure was confirmed by NMR spectrum.
(2)I-1-6の合成
 化合物I-1-4 10g(66.1mmol)、パラアルデヒド43.6ml(5eq)、及びアセトニトリル165mlを混合し室温で攪拌した。硫酸鉄七水和物305mg(0.0166eq)、トリフルオロ酢酸4.9ml(1eq)、及びt-ブチルパーオキシドを加え、130℃で4時間加熱還流した。冷却、減圧濃縮後、飽和炭酸ナトリウム水溶液を添加し酢酸エチルで抽出・分液の後、カラムクロマトグラフィーで精製することで、化合物I-1-5の黄色固体6.77g(収率53%)を得た。構造は、NMRスペクトルで確認した。
 化合物I-1-5 6.77g(35.0mmol)、ヨウ素8.89g(1eq)、及びピリジン23.3mlを混合し130℃で2時間加熱還流した。冷却後メタノールを加え減圧濃縮後、メタノールで再結晶し、濾過乾燥することで、化合物I-1-6の灰色固体10.2g(収率73%)を得た。構造は、NMRスペクトルで確認した。
(2) Synthesis of I-1-6 10 g (66.1 mmol) of Compound I-1-4, 43.6 ml (5 eq) of paraaldehyde, and 165 ml of acetonitrile were mixed and stirred at room temperature. Iron sulfate heptahydrate 305 mg (0.0166 eq), trifluoroacetic acid 4.9 ml (1 eq), and t-butyl peroxide were added, and the mixture was heated to reflux at 130 ° C. for 4 hours. After cooling and concentration under reduced pressure, a saturated aqueous sodium carbonate solution was added, extracted and separated with ethyl acetate, and purified by column chromatography to yield 6.77 g of Compound I-1-5 as a yellow solid (53% yield) Got. The structure was confirmed by NMR spectrum.
Compound I-1-5 6.77 g (35.0 mmol), iodine 8.89 g (1 eq), and 23.3 ml of pyridine were mixed and heated to reflux at 130 ° C. for 2 hours. After cooling, methanol was added and the mixture was concentrated under reduced pressure, recrystallized with methanol, filtered and dried to obtain 10.2 g (yield 73%) of a gray solid of Compound I-1-6. The structure was confirmed by NMR spectrum.
(3)I-1の合成
 化合物I-1-3 1.08g(3.88mmol)に酢酸アンモニウム、化合物I-1-6 2.31g(1.5eq)、およびメタノール39mlを加え、17時間加熱還流した。溶媒を減圧留去後、カラムクロマトグラフィーで精製することにより、化合物I-1-7の固体を743mg(収率43%)えた。構造は、NMRスペクトルで確認した。
 化合物I-1-7 1g(2.22mmol)、ピリジン22ml、水11mlを混合し、撹拌しながらこれに過マンガン酸カリウム1.75g(5eq)を加え、室温で7時間撹拌した。過剰の過マンガン酸カリウムをチオ硫酸ナトリウムで還元し、2M水酸化ナトリウム水溶液を加え、結晶を濾別してえられる濾液を減圧濃縮した。残渣を水酸化ナトリウム水溶液に溶解した後、希塩酸水溶液を加えて析出してくる固体を濾過乾燥することで、化合物I-1-8を得、そのまま全量を次のステップの反応に用いた。
 化合物I-1-8にエタノール14mlを加え撹拌し、濃硫酸296μl(4eq)を加え、42時間加熱還流撹拌した。減圧濃縮後、酢酸エチルと水で抽出分液して有機層を濾過後カラムクロマトグラフィーで精製することにより化合物I-1の固体を185mg(化合物I-1-7から収率37%)得ることに成功した。構造は、NMRスペクトルで確認した(融点:146℃)。
(3) Synthesis of I-1 To 1.08 g (3.88 mmol) of Compound I-1-3, ammonium acetate, 2.31 g (1.5 eq) of Compound I-1-6, and 39 ml of methanol were added and heated for 17 hours. Refluxed. After evaporating the solvent under reduced pressure, the residue was purified by column chromatography to obtain 743 mg (43% yield) of Compound I-1-7 solid. The structure was confirmed by NMR spectrum.
1 g (2.22 mmol) of compound I-1-7, 22 ml of pyridine, and 11 ml of water were mixed, and 1.75 g (5 eq) of potassium permanganate was added thereto while stirring, and the mixture was stirred at room temperature for 7 hours. Excess potassium permanganate was reduced with sodium thiosulfate, 2M aqueous sodium hydroxide solution was added, and the filtrate obtained by filtering the crystals was concentrated under reduced pressure. The residue was dissolved in aqueous sodium hydroxide solution, diluted aqueous hydrochloric acid solution was added, and the precipitated solid was filtered and dried to obtain compound I-1-8, and the entire amount was used as it was in the next step reaction.
14 ml of ethanol was added to compound I-1-8 and stirred, 296 μl (4 eq) of concentrated sulfuric acid was added, and the mixture was heated to reflux with stirring for 42 hours. Concentrate under reduced pressure, extract and separate with ethyl acetate and water, filter the organic layer, and purify by column chromatography to obtain 185 mg of Compound I-1 solid (37% yield from Compound I-1-7). succeeded in. The structure was confirmed by NMR spectrum (melting point: 146 ° C.).
 スキーム2で示したルートでDye104を合成した。 Dye104 was synthesized by the route shown in Scheme 2.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 化合物I-1 1.5g、化合物D-5-1 0.95g、テトラキストリフェニルホスフィンパラジウム(0)110mg、炭酸カリウム0.69g、水2.8ml、トルエン3ml、及びテトラヒドロフラン5mlを混合し12時間加熱還流し、常法に従い処理しカラムクロマトグラフィーで精製することにより、化合物D-5-2の固体0.816g(収率46%)を得た。
 得られた化合物D-5-2全量、塩化ルテニウム・3水和物0.79gをエタノール中で3時間加熱還流することで化合物D-5-3を0.56g(収率49%)得た。
 化合物D-5-3 0.55g、チオシアン酸アンモニウム 1.87g、DMFと水の混合溶媒中130℃で4時間攪拌した。後処理により化合物D-5-4の固体を取り出した。
得られた化合物D-5-4全量に、トリエチルアミン13.2gを加え、DMFと水の混合溶媒中130℃で24時間攪拌した。次にチオシアン酸テトラブチルアンモニウム0.25gを加え更に攪拌した。後処理、精製することでDye104の固体536mg(化合物D-5-3から収率72%)を得た(融点:250℃以上)。
Compound I-1 1.5 g, Compound D-5-1 0.95 g, tetrakistriphenylphosphine palladium (0) 110 mg, potassium carbonate 0.69 g, water 2.8 ml, toluene 3 ml and tetrahydrofuran 5 ml were mixed for 12 hours. The mixture was heated to reflux, treated according to a conventional method, and purified by column chromatography to obtain 0.816 g (yield 46%) of Compound D-5-2 as a solid.
The total amount of compound D-5-2 and 0.79 g of ruthenium chloride trihydrate were heated to reflux in ethanol for 3 hours to obtain 0.56 g (yield 49%) of compound D-5-3. .
Compound D-5-3 0.55 g, ammonium thiocyanate 1.87 g, and a mixed solvent of DMF and water were stirred at 130 ° C. for 4 hours. The solid of compound D-5-4 was taken out by post-treatment.
To the total amount of the obtained compound D-5-4, 13.2 g of triethylamine was added, and the mixture was stirred in a mixed solvent of DMF and water at 130 ° C. for 24 hours. Next, 0.25 g of tetrabutylammonium thiocyanate was added and further stirred. By post-treatment and purification, 536 mg of Dye 104 solid (yield 72% from compound D-5-3) was obtained (melting point: 250 ° C. or higher).
 Dye104と類似の方法で他のDye101~613を合成した。 Other Dye 101 to 613 were synthesized by a method similar to Dye104.
(実施例2)光電池の初期性能評価
20mm×20mmの、フッ素をドープした酸化スズ層を有する透明導電性ガラス(日本板硝子(株)製、表面抵抗約10Ω/cm)の導電面側にダイソル社製DSL 18NR-Tをスクリーン印刷で塗布した。塗布後25℃で30分間乾燥し、ホットプレートにて、500℃にて30分間焼成した。二酸化チタンの塗布量は15.5g/mであり、膜厚は9μmであった。同様にダイソル製WER2-0を用いて印刷、焼成し、膜厚4μmの散乱層を作成した。焼成終了後、冷却し、本発明の金属錯体色素、及び比較の比較用色素(A)および(B)の0.2mmol/l(溶媒:エタノールとアセトニトリルの1:1混合物)にそれぞれ20時間浸漬した。比較用色素(A)および(B)の構造を以下に示す。続いて色素の染着した二酸化チタン電極をエタノールおよびアセトニトリルで順次洗浄し、窒素気流下暗所において乾燥して二酸化チタン電極を作製した。なお、比較用色素Aは国際公開第98/50393号パンフレットに記載のルテニウム錯体色素である。 
Example 2 Initial Performance Evaluation of Photovoltaic Cell Disol on the conductive surface side of 20 mm × 20 mm transparent conductive glass having a fluorine-doped tin oxide layer (manufactured by Nippon Sheet Glass Co., Ltd., surface resistance of about 10 Ω / cm 2 ) DSL 18NR-T made by the company was applied by screen printing. After coating, the film was dried at 25 ° C. for 30 minutes and baked on a hot plate at 500 ° C. for 30 minutes. The coating amount of titanium dioxide was 15.5 g / m 2 and the film thickness was 9 μm. Similarly, printing and baking were performed using Dersol WER2-0 to form a scattering layer having a thickness of 4 μm. After the calcination, the mixture is cooled and immersed in 0.2 mmol / l (solvent: 1: 1 mixture of ethanol and acetonitrile) of the metal complex dye of the present invention and comparative dyes (A) and (B) for 20 hours, respectively. did. The structures of the comparative dyes (A) and (B) are shown below. Subsequently, the dyed titanium dioxide electrode was washed successively with ethanol and acetonitrile and dried in a dark place under a nitrogen stream to produce a titanium dioxide electrode. The comparative dye A is a ruthenium complex dye described in International Publication No. 98/50393 pamphlet.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上述のようにして作製した色素増感TiO電極基板(20mm×20mm)をこれと同じ大きさの白金蒸着ガラスと重ね合わせた。次に、両ガラスの隙間に毛細管現象を利用して電解液A(アセトニトリルにヨウ化1,3-ジメチルイミダゾリウム(0.65mol/l)およびヨウ素(0.05mol/l)を溶解した溶液)をしみこませTiO電極中に導入して、表1に示す各光電池を得た。本実施例により、図1に示すように導電性ガラスからなる導電性支持体層1、色素増感21とチタニア半導体層22からなる感光層2、上記電解液からなる電荷移動層3、及び白金からなる対極導電層基板4を順に積層しエポキシ系封止剤で封止された光電池を作製した。 The dye-sensitized TiO 2 electrode substrate (20 mm × 20 mm) produced as described above was superposed on a platinum-deposited glass having the same size. Next, an electrolytic solution A (a solution in which 1,3-dimethylimidazolium iodide (0.65 mol / l) and iodine (0.05 mol / l) are dissolved in acetonitrile) is used in the gap between the two glasses by utilizing capillary action. Was introduced into the TiO 2 electrode to obtain each photovoltaic cell shown in Table 1. As shown in FIG. 1, according to this example, a conductive support layer 1 made of conductive glass, a photosensitive layer 2 made of a dye sensitized 21 and a titania semiconductor layer 22, a charge transfer layer 3 made of the above electrolyte, and platinum. The counter electrode conductive layer substrate 4 made of the above was laminated in order and a photovoltaic cell sealed with an epoxy sealant was produced.
[長波長IPCEの評価]
 オプテル社製のIPCE(Incident Photon to Current Conversion Efficiency)測定装置を用いて、上記各光電池の400~900nmの単色光変換効率(IPCE)を10nm間隔で測定したところ、いずれの光電池も550~650nmの波長範囲にIPCEの極大値を有し700nmより長波長側で徐々に減衰する曲線を示した。表1に各光電池の850nmにおけるIPCE値(IPCE(%)=(発生した電子数/照射された光子数)×100)をピーク波長でのIPCEを100として規格化した値を示す。この値が大きい光電池ほど長波長光の変換効率が高く、本発明の目的に適うものであるといえる。
[Evaluation of long wavelength IPCE]
When the monochromatic light conversion efficiency (IPCE) of 400 to 900 nm of each of the above photovoltaic cells was measured at an interval of 10 nm using an IPCE (Incident Photo to Current Conversion Efficiency) measuring device manufactured by Optel, all the photovoltaic cells had a wavelength of 550 to 650 nm. A curve having a maximum value of IPCE in the wavelength range and gradually attenuated on the longer wavelength side than 700 nm is shown. Table 1 shows values obtained by standardizing the IPCE value (IPCE (%) = (number of generated electrons / number of irradiated photons) × 100) at 850 nm of each photovoltaic cell with the IPCE at the peak wavelength as 100. It can be said that a photovoltaic cell having a larger value has a higher conversion efficiency of long-wavelength light and is suitable for the object of the present invention.
[変換効率等の評価]
 上記各光電池の導電性ガラスの端部に銀ペーストを塗布して負極とし、この負極と白金蒸着ガラス(正極)を電流電圧測定装置(ケースレーSMU238型)に接続した。これらの光電池に、500Wのキセノンランプ(ウシオ電気(株)製)の光をAM1.5フィルター(Oriel社製AM1.5)を通すことにより発生させた模擬太陽光を垂直に照射しながら発生電流を測定した。光の強度は垂直面において100mW/cmであった。各光電池の太陽電池特性(短絡電流密度(Jsc)、開放電圧(Voc)、形状因子(FF)および変換効率(η))を併せて表1に示す。
[Evaluation of conversion efficiency]
A silver paste was applied to the end of the conductive glass of each of the photovoltaic cells to form a negative electrode, and the negative electrode and platinum-deposited glass (positive electrode) were connected to a current-voltage measuring device (Keutley SMU238 type). These photocells are irradiated with simulated solar light generated by passing light from a 500 W xenon lamp (manufactured by USHIO ELECTRIC CO., LTD.) Through an AM1.5 filter (AM1.5 manufactured by Oriel) while generating current. Was measured. The intensity of light was 100 mW / cm 2 on the vertical plane. Table 1 shows the solar cell characteristics (short-circuit current density (Jsc), open-circuit voltage (Voc), form factor (FF), and conversion efficiency (η)) of each photovoltaic cell.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表1より、本発明の光電池101~110は比較用色素(A)および(B)を用いた光電池C11およびC12に比べて850nmにおけるIPCEが高く、長波長光の増感効率に優れていることがわかる。また、本発明によれば、形状因子を良好な範囲に維持し、開放電圧、短絡電流、変換効率のすべてにおいて性能の向上が見られることが分かる。 From Table 1, the photovoltaic cells 101 to 110 of the present invention have higher IPCE at 850 nm than the photovoltaic cells C11 and C12 using the comparative dyes (A) and (B), and are excellent in sensitizing efficiency of long-wavelength light. I understand. Moreover, according to this invention, it turns out that a performance improvement is seen in all of an open circuit voltage, a short circuit current, and conversion efficiency, maintaining a form factor in the favorable range.
 (実施例3)光電池の耐久性評価
 電解液を電解液B(3-メトキシプロピオニトリルにヨウ化1,3-ジメチルイミダゾリウム(0.65mol/l)、N-メチルベンズイミダゾール(0.5mol/l)およびヨウ素(0.1mol/l)を溶解した溶液)に変え、実施例2と同様に各光電池を作成した。これらの光電池を、80℃で300時間暗所保存後の変換効率低下率を表2に示した。
(Embodiment 3) Durability Evaluation of Photovoltaic Cell The electrolytic solution was electrolytic solution B (3-methoxypropionitrile, 1,3-dimethylimidazolium iodide (0.65 mol / l), N-methylbenzimidazole (0.5 mol) / L) and iodine (0.1 mol / l dissolved solution), and each photovoltaic cell was prepared in the same manner as in Example 2. Table 2 shows the rate of decrease in conversion efficiency after storage of these photovoltaic cells at 80 ° C. for 300 hours in the dark.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表2から、本発明の色素を用いた光電池は、高温耐久性が非常に高いことがわかる。 Table 2 shows that the photovoltaic cell using the dye of the present invention has very high temperature durability.
 また、色素Dye608~610、及びDye612、613を利用して実施例1と同様に評価し、本発明の優れた効果を確認した。
 以上の結果により、本発明の金属錯体色素は長波長光の光吸収能に優れており、かかる金属錯体色素を吸着した半導体微粒子を含む光電変換素子は可視光域~赤外域にわたる広い波長域において高い光電変換特性を示した。また、高温耐久性が非常に高かった。かかる光電変換素子からなる光電池は太陽電池として極めて有効である。
Further, the dyes Dye 608 to 610 and Dye 612 and 613 were used in the same manner as in Example 1 to confirm the excellent effect of the present invention.
Based on the above results, the metal complex dye of the present invention is excellent in the ability to absorb long-wavelength light, and the photoelectric conversion element including the semiconductor fine particles adsorbing the metal complex dye has a wide wavelength range from the visible light region to the infrared region. High photoelectric conversion characteristics were shown. Moreover, high temperature durability was very high. A photovoltaic cell comprising such a photoelectric conversion element is extremely effective as a solar cell.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2011年9月8日に日本国で特許出願された特願2011-195638および2012年3月28日に日本国で特許出願された特願2012-074832に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
This application claims priority based on Japanese Patent Application No. 2011-195638 filed in Japan on September 8, 2011 and Japanese Patent Application No. 2012-074832 filed on March 28, 2012 in Japan. Which are hereby incorporated by reference herein as part of their description.
1 導電性支持体
2 感光体層
 21 色素
 22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 回路
10 光電変換素子
100 光電気化学電池システム
DESCRIPTION OF SYMBOLS 1 Conductive support body 2 Photoconductor layer 21 Dye 22 Semiconductor fine particle 3 Charge transfer body layer 4 Counter electrode 5 Photosensitive electrode 6 Circuit 10 Photoelectric conversion element 100 Photoelectrochemical cell system

Claims (11)

  1.  式(1)MXLtで表される色素。
    [式中、Mはルテニウム、オスミウム、鉄、レニウム、およびテクネチウムから選ばれた遷移金属を表す。Xは、NCS、Cl、Br、I、CN、NCO、またはHOを表す。Ltは式(2)を表す。]
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、COOH、PO(OH)、PO(OR)(OH)、またはCO(NHOH)を表す。Rは、COOH、PO(OH)、PO(OR)(OH)、またはCO(NHOH)を表す。Laは、単結合またはアリーレン基を表す。Rは、炭素数1~30のアルキル基または炭素数6~30のアリール基を表す。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。Rは、炭素数1~30のアルキル基、あるいは下記式(2-1)、(2-2)、(2-3)、(2-4)、または一般式(2-5)で表される置換基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R11、R21、R31、R41、R42、およびR51は、炭素数1~30のアルキル基、炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、および炭素数1~30のアミノ基のいずれかの基を含む置換基を表す。ただし、式(2-4)において、R42が炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、または炭素数1~30のアミノ基を含む置換基を表す場合、R41は水素原子であってもよい。n11は1~5の整数を表す。n21、n51は2~6の整数を表す。n31は1~6の整数を表す。*は結合手を表す。]
    Dye represented by the formula (1) MX 3 Lt.
    [Wherein M represents a transition metal selected from ruthenium, osmium, iron, rhenium, and technetium. X represents NCS , Cl , Br , I , CN , NCO , or H 2 O. Lt represents the formula (2). ]
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH). R 2 represents COOH, PO (OH) 2 , PO (OR 4 ) (OH), or CO (NHOH). La represents a single bond or an arylene group. R 4 represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. R 3 represents an alkyl group having 1 to 30 carbon atoms, or a group represented by the following formula (2-1), (2-2), (2-3), (2-4), or general formula (2-5). Represents a substituent. ]
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms. And a substituent containing any one of a group and an amino group having 1 to 30 carbon atoms. However, in the formula (2-4), when R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an amino group having 1 to 30 carbon atoms, 41 may be a hydrogen atom. n11 represents an integer of 1 to 5. n21 and n51 each represents an integer of 2 to 6. n31 represents an integer of 1 to 6. * Represents a bond. ]
  2.  前記式(2)のLaが単結合である請求項1記載の色素。 The dye according to claim 1, wherein La in the formula (2) is a single bond.
  3.  前記式(2)のRが前記式(2-1)、(2-2)、(2-3)、(2-4)または(2-5)で表される請求項1または2に記載の色素。 The R 3 in the formula (2) is represented by the formula (2-1), (2-2), (2-3), (2-4) or (2-5). The described dyes.
  4.  前記式(2)のRが前記式(2-2)、(2-3)、または(2-4)で表される請求項1~3のいずれか1項に記載の色素。 The dye according to any one of claims 1 to 3, wherein R 3 in the formula (2) is represented by the formula (2-2), (2-3), or (2-4).
  5.  前記式(2)のRが前記式(2-3)または(2-4)で表される請求項1~4のいずれか1項に記載の色素。 The dye according to any one of claims 1 to 4, wherein R 3 in the formula (2) is represented by the formula (2-3) or (2-4).
  6.  前記式(2)のRが前記式(2-4)で表される請求項1~5のいずれか1項に記載の色素。 The dye according to any one of claims 1 to 5, wherein R 3 in the formula (2) is represented by the formula (2-4).
  7.  請求項1~6のいずれか1項に記載の色素と半導体微粒子とを含む感光体層を具備する光電変換素子。 A photoelectric conversion device comprising a photoreceptor layer containing the dye according to any one of claims 1 to 6 and semiconductor fine particles.
  8.  請求項7に記載の光電変換素子を用いた光電気化学電池。 A photoelectrochemical cell using the photoelectric conversion element according to claim 7.
  9.  下記式(2’)のターピリジン化合物の製造方法であって、下記式(3)で表される化合物の置換基Halを、下記式(2’)の置換基Rに置換する工程と、下記式(3)の置換基CO101のR101をHに置換する工程とを経由するターピリジン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式中、n1は1~3の整数を表す。n2、n3は1~4の整数を表す。Rは、炭素数1~30のアルキル基、あるいは式(2-1)、(2-2)、(2-3)、(2-4)、または(2-5)で表される置換基を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、R11、R21、R31、R41、R42、およびR51は、炭素数1~30のアルキル基、炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、および炭素数1~30のアミノ基のいずれかの基を含む置換基を表す。ただし、式(2-4)において、R42が炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、または炭素数1~30のアミノ基を含む置換基を表す場合、R41は水素原子であってもよい。n11は1~5の整数を表す。n21、n51は2~6の整数を表す。n31は1~6の整数を表す。*は結合手を表す。]
    Figure JPOXMLDOC01-appb-C000005
    [R101はアルキル基を表す。Halはハロゲン原子を表す。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。]
    A method for producing a terpyridine compound of the following formula (2 ′), wherein a substituent Hal of a compound represented by the following formula (3) is substituted with a substituent R 3 of the following formula (2 ′); A method for producing a terpyridine compound via a step of substituting R 101 of substituent CO 2 R 101 of formula (3) with H.
    Figure JPOXMLDOC01-appb-C000003
    [Wherein n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. R 3 is an alkyl group having 1 to 30 carbon atoms, or a substituent represented by the formula (2-1), (2-2), (2-3), (2-4), or (2-5) Represents a group. ]
    Figure JPOXMLDOC01-appb-C000004
    [Wherein R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms. And a substituent containing any one of a group and an amino group having 1 to 30 carbon atoms. However, in the formula (2-4), when R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an amino group having 1 to 30 carbon atoms, 41 may be a hydrogen atom. n11 represents an integer of 1 to 5. n21 and n51 each represents an integer of 2 to 6. n31 represents an integer of 1 to 6. * Represents a bond. ]
    Figure JPOXMLDOC01-appb-C000005
    [R 101 represents an alkyl group. Hal represents a halogen atom. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. ]
  10.  下記式(2’)で表されるターピリジン化合物を合成し、これを配位子として有する式(1’)MXLt’で表される色素を製造する方法であって、下記式(3)で表される化合物の置換基Halを下記式(2’)の置換基Rに置換する工程と、下記式(3)の置換基CO101のR101をHに置換する工程とを経由する色素の製造方法。
    [式中、Mはルテニウム、オスミウム、鉄、レニウム、およびテクネチウムから選ばれた遷移金属を表す。Xは、NCS、Cl、Br、I、CN、NCO、またはHOを表す。Lt’は式(2’)を表す。]
    Figure JPOXMLDOC01-appb-C000006
    [式中、n1は1~3の整数を表す。n2、n3は1~4の整数を表す。Rは、炭素数1~30のアルキル基、あるいは式(2-1)、(2-2)、(2-3)、(2-4)、または(2-5)で表される置換基を表す。]
    Figure JPOXMLDOC01-appb-C000007
    [式中、R11、R21、R31、R41、R42、およびR51は、炭素数1~30のアルキル基、炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、および炭素数1~30のアミノ基のいずれかの基を含む置換基を表す。ただし、式(2-4)において、R42が炭素数1~30のヘテロアリール基、炭素数6~30のアリール基、または炭素数1~30のアミノ基を含む置換基を表す場合、R41は水素原子であってもよい。n11は1~5の整数を表す。n21、n51は2~6の整数を表す。n31は1~6の整数を表す。*は結合手を表す。]
    Figure JPOXMLDOC01-appb-C000008
    [R101はアルキル基を表す。Halはハロゲン原子を表す。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。]
    A method for producing a dye represented by the formula (1 ′) MX 3 Lt ′ having the terpyridine compound represented by the following formula (2 ′) as a ligand and having the terpyridine compound as a ligand. a step of substituting substituents Hal of the compound represented in the substituent R 3 of the formula (2 '), and a step of substituting the R 101 substituents CO 2 R 101 in formula (3) in H A method for producing a dye passing through.
    [Wherein M represents a transition metal selected from ruthenium, osmium, iron, rhenium, and technetium. X represents NCS , Cl , Br , I , CN , NCO , or H 2 O. Lt ′ represents the formula (2 ′). ]
    Figure JPOXMLDOC01-appb-C000006
    [Wherein n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. R 3 is an alkyl group having 1 to 30 carbon atoms, or a substituent represented by the formula (2-1), (2-2), (2-3), (2-4), or (2-5) Represents a group. ]
    Figure JPOXMLDOC01-appb-C000007
    [Wherein R 11 , R 21 , R 31 , R 41 , R 42 , and R 51 represent an alkyl group having 1 to 30 carbon atoms, a heteroaryl group having 1 to 30 carbon atoms, or an aryl having 6 to 30 carbon atoms. And a substituent containing any one of a group and an amino group having 1 to 30 carbon atoms. However, in the formula (2-4), when R 42 represents a substituent containing a heteroaryl group having 1 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an amino group having 1 to 30 carbon atoms, 41 may be a hydrogen atom. n11 represents an integer of 1 to 5. n21 and n51 each represents an integer of 2 to 6. n31 represents an integer of 1 to 6. * Represents a bond. ]
    Figure JPOXMLDOC01-appb-C000008
    [R 101 represents an alkyl group. Hal represents a halogen atom. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. ]
  11.  下記式(3)で表されるターピリジン化合物。
    Figure JPOXMLDOC01-appb-C000009
    [R101はアルキル基を表す。Halはハロゲン原子を表す。n1は1~3の整数を表す。n2、n3は1~4の整数を表す。]
    A terpyridine compound represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000009
    [R 101 represents an alkyl group. Hal represents a halogen atom. n1 represents an integer of 1 to 3. n2 and n3 each represents an integer of 1 to 4. ]
PCT/JP2012/072076 2011-09-08 2012-08-30 Dye, photoelectric conversion element using same, and photoelectrochemical cell WO2013035630A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280042643.1A CN103764768B (en) 2011-09-08 2012-08-30 Pigment and its manufacture method, photo-electric conversion element and photoelectrochemical cell and terpyridyl compounds and its manufacture method
KR1020147009033A KR20140062511A (en) 2011-09-08 2012-08-30 Dye, photoelectric conversion element using same, and photoelectrochemical cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011195638 2011-09-08
JP2011-195638 2011-09-08
JP2012-074832 2012-03-28
JP2012074832A JP5706846B2 (en) 2011-09-08 2012-03-28 Dye, photoelectric conversion element and photoelectrochemical cell using the same

Publications (1)

Publication Number Publication Date
WO2013035630A1 true WO2013035630A1 (en) 2013-03-14

Family

ID=47832077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072076 WO2013035630A1 (en) 2011-09-08 2012-08-30 Dye, photoelectric conversion element using same, and photoelectrochemical cell

Country Status (4)

Country Link
JP (1) JP5706846B2 (en)
KR (1) KR20140062511A (en)
CN (1) CN103764768B (en)
WO (1) WO2013035630A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102917A (en) * 2012-11-16 2014-06-05 Fujifilm Corp Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, dye adsorption electrode, and method of manufacturing dye-sensitized solar cell
JP2014181301A (en) * 2013-03-19 2014-09-29 Fujikura Ltd Photosensitizing dye, and dye-sensitized solar cell having the same
WO2015033749A1 (en) * 2013-09-05 2015-03-12 富士フイルム株式会社 Photovoltaic conversion element, dye-sensitized photovoltaic cell, and electron-transfer promoter for photovoltaic conversion element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782349B2 (en) * 2011-09-29 2015-09-24 富士フイルム株式会社 Photoelectric conversion element, photoelectrochemical cell, and dye used in these
JP2014043401A (en) * 2012-08-24 2014-03-13 Sharp Corp Metal complex and dye-sensitized solar cell using the same
EP3168848B1 (en) 2014-07-07 2019-05-22 Fujifilm Corporation Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterification product thereof
KR101982944B1 (en) 2014-07-07 2019-05-27 후지필름 가부시키가이샤 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and terpyridine compound or esterification product thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162718A (en) * 2003-12-05 2005-06-23 Sharp Corp Metal complex and dye sensitization solar cell using the same
WO2011105373A1 (en) * 2010-02-25 2011-09-01 保土谷化学工業株式会社 Substituted pyridyl compound and organic electroluminescent element
US20120247561A1 (en) * 2011-04-01 2012-10-04 Yun Chi 4,4'-dicarboxy-2,2'-bipyridine derived tridentate ligand, metal complex containing the same, and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383553B2 (en) * 2007-10-26 2013-02-26 Merck Patent Gmbh Dyes
JP5572029B2 (en) * 2010-08-03 2014-08-13 富士フイルム株式会社 Metal complex dye, photoelectric conversion element and photoelectrochemical cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162718A (en) * 2003-12-05 2005-06-23 Sharp Corp Metal complex and dye sensitization solar cell using the same
WO2011105373A1 (en) * 2010-02-25 2011-09-01 保土谷化学工業株式会社 Substituted pyridyl compound and organic electroluminescent element
US20120247561A1 (en) * 2011-04-01 2012-10-04 Yun Chi 4,4'-dicarboxy-2,2'-bipyridine derived tridentate ligand, metal complex containing the same, and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
91ST ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2011) KOEN YOKOSHU III, 11 March 2011 (2011-03-11), pages 859 *
THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 78 KAI TAIKAI KOEN YOSHISHU, 29 March 2011 (2011-03-29), pages 196 *
WU, KUAN-LIN ET AL.: "Dye Molecular Structure Device Open-Circuit Voltage Correlation in Ru(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitizerd Solar Cells", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, no. 17, 16 April 2012 (2012-04-16), pages 7488 - 7496, XP055234880, DOI: doi:10.1021/ja300828f *
YANG, SHEN-HAN ET AL.: "Tris(thiocyanate) Ruthenium(II) Sensitizers with Functionalized Dicarboxyterpyridine for Dye-Sensitized Solar Cells", ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 50, no. 36, 29 August 2011 (2011-08-29), pages 8270 - 8274 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102917A (en) * 2012-11-16 2014-06-05 Fujifilm Corp Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, dye adsorption electrode, and method of manufacturing dye-sensitized solar cell
JP2014181301A (en) * 2013-03-19 2014-09-29 Fujikura Ltd Photosensitizing dye, and dye-sensitized solar cell having the same
WO2015033749A1 (en) * 2013-09-05 2015-03-12 富士フイルム株式会社 Photovoltaic conversion element, dye-sensitized photovoltaic cell, and electron-transfer promoter for photovoltaic conversion element
JP2015053148A (en) * 2013-09-05 2015-03-19 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, and migration accelerator of electron for photoelectric conversion element

Also Published As

Publication number Publication date
JP2013067773A (en) 2013-04-18
KR20140062511A (en) 2014-05-23
JP5706846B2 (en) 2015-04-22
CN103764768B (en) 2016-10-19
CN103764768A (en) 2014-04-30

Similar Documents

Publication Publication Date Title
AU2016262730B2 (en) Dye, photoelectric conversion element using the same, photoelectrochemical cell, and method of producing dye
Tang et al. New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells
JP5940089B2 (en) Naphthalene monoimide derivatives and their use as photosensitizers in solar cells and photodetectors
JP5706846B2 (en) Dye, photoelectric conversion element and photoelectrochemical cell using the same
Maeda et al. Unsymmetrical squarylium dyes with π-extended heterocyclic components and their application to organic dye-sensitized solar cells
WO2013030737A1 (en) Asymmetric cyanine dyes for photovoltaic applications
JP5771092B2 (en) Dye, photoelectric conversion element and photoelectrochemical cell
WO2013121835A1 (en) Spirobifluorene derivative, dye for photoelectric conversion elements, semiconductor electrode using same, photoelectric conversion element, and photoelectrochemical cell
Cao et al. New D–π–A organic dyes containing a tert-butyl-capped indolo [3, 2, 1-jk] carbazole donor with bithiophene unit as π-linker for dye-sensitized solar cells
JP5816111B2 (en) Metal complex dye composition, photoelectric conversion element and photoelectrochemical cell
JP5809870B2 (en) Photoelectric conversion element, photoelectrochemical cell, and dye used in them
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
JP6204603B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
JP2007217581A (en) Cyclic compound
WO2012124482A1 (en) Metal complex pigment, metal complex pigment composition, photoelectric conversion element, and photoelectrochemical cell
US20130118570A1 (en) Dye for photoelectric conversion, semiconductor electrode, photoelectric conversion element, solar cell, and novel pyrroline-based compound
JP6410669B2 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye and dye solution
WO2011108613A1 (en) Photoelectric conversion element and photoelectrochemical cell
JP2016056276A (en) Dye, and photoelectric conversion element and photoelectrochemical cell using the same
JP2014210852A (en) Compound having 1,3-propanedione structure, dye for photoelectric conversion, semiconductor electrode using the same, photoelectric conversion element, and photoelectrochemical cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147009033

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12829486

Country of ref document: EP

Kind code of ref document: A1