WO2013035470A1 - Tracking control method and tracking control device - Google Patents

Tracking control method and tracking control device Download PDF

Info

Publication number
WO2013035470A1
WO2013035470A1 PCT/JP2012/069953 JP2012069953W WO2013035470A1 WO 2013035470 A1 WO2013035470 A1 WO 2013035470A1 JP 2012069953 W JP2012069953 W JP 2012069953W WO 2013035470 A1 WO2013035470 A1 WO 2013035470A1
Authority
WO
WIPO (PCT)
Prior art keywords
track
tracking
sled
cross signal
signal
Prior art date
Application number
PCT/JP2012/069953
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 金武
俊哉 的崎
伸夫 竹下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013035470A1 publication Critical patent/WO2013035470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08517Methods for track change, selection or preliminary positioning by moving the head with tracking pull-in only

Definitions

  • the present invention relates to a tracking control method and a tracking control apparatus for performing tracking pull-in to an optical disc.
  • optical disk devices compatible with optical disks such as BD (Bru-ray Disk), DVD (Digital Versatile Disk), and CD (Compact Disk).
  • BD Bru-ray Disk
  • DVD Digital Versatile Disk
  • CD Compact Disk
  • the components of surface runout and eccentricity are sinusoidal waves with the time taken for one round of the optical disk as a cycle and the amount of surface runout and the amount of eccentricity as amplitudes, respectively.
  • tracking control for causing the objective lens to follow the eccentricity of the optical disk will be described.
  • tracking pull-in is performed after the period in which the objective lens crosses the track of the optical disk (hereinafter referred to as the track crossing period) becomes larger than a predetermined value.
  • the “predetermined value” is set to a value that is equal to or greater than the limit value of the track crossing period that allows tracking pull-in. Since the speed at which the objective lens crosses the track of the optical disk (hereinafter referred to as the track crossing speed) is proportional to the reciprocal of the track crossing period, the tracking pull-in is performed after the track crossing speed becomes smaller than the limit value of the track crossing speed. Is done.
  • the limit value of the track crossing speed varies depending on the configuration of the optical disc device and the type of the optical disc (BD / DVD / CD, or read-only type / write-once type / rewritable type), since it is almost zero, tracking pull-in is performed. This is the case when the track crossing speed becomes almost zero.
  • the absolute value of the eccentric component of the optical disk is substantially maximized, the reference position of the objective lens that follows the eccentricity of the optical disk changes after tracking. Thereby, an offset (hereinafter referred to as a lens offset) from the neutral position of the objective lens (the center position of the optical pickup) occurs.
  • the lens offset amount is obtained by subtracting the eccentric component of the optical disc when tracking pull-in is performed by the center value of the eccentric component of the optical disc. Therefore, if the amount of eccentricity of the optical disk is large, the amount of lens offset increases.
  • the objective lens When the lens offset is large, the objective lens is caused to follow the eccentricity of the optical disk in the state where the offset is generated, which may exceed the movable range of the objective lens in the track direction, and may cause damage to the objective lens.
  • Patent Documents 1 to 3 describe configurations for suppressing lens offset.
  • the lens shift amount is measured before tracing the lens of the optical pickup to the recording start address. If the lens shift amount exceeds a predetermined threshold, tracing to the recording start address of the lens is performed. There is a description of a configuration in which the lens seek is repeated without performing the steps, and the lens is traced to the recording start address after the lens shift amount falls within a predetermined threshold.
  • Patent Document 2 in a disk drive device in which a thread motor is feedforward controlled with a thread drive voltage to stop the optical pickup by moving the optical pickup onto a track in the radial direction of the disk, the optical pickup is stopped based on the previous thread drive voltage.
  • a configuration is described in which the amount of swing in the track direction of the actuator (objective lens driving device) at the position is detected, and the setting value of the sled driving voltage at the next movement of the optical pickup is corrected based on the detection result.
  • an offset representative value is calculated based on values of a plurality of tracking drive signals for one round of an optical disk, and a thread position of an optical pickup is calculated based on a comparison result between the offset representative value and the offset center value.
  • a configuration for adjusting the is described.
  • JP 2007-087545 A Japanese Patent Laid-Open No. 2007-066358 JP 2002-208154 A
  • an object of the present invention is to provide a tracking control method and a tracking control device that can quickly suppress a lens offset at the time of tracking pull-in.
  • the tracking control method includes: A method for tracking control of an optical pickup that condenses and irradiates an information recording surface of an optical disc with a laser beam by an objective lens, receives reflected light from the information recording surface of the optical disc and converts it into an electrical signal, A track zero-cross signal acquisition step of acquiring a track zero-cross signal obtained by binarizing a tracking error signal generated from the electrical signal with a predetermined threshold; A determination step of determining whether an edge of the track zero-cross signal has changed when the objective lens passes a mark on a track of the optical disc when the track is off; Based on the determination result of the determination step, a tracking pull-in step for starting tracking pull-in at a timing when the edge changes; A moving direction determining step for determining a moving direction of a sled that moves the optical pickup based on an edge of the track zero-cross signal at the start of the tracking pull-in; A sled moving step of moving the sled by a predetermined amount of movement in the determined moving direction simultaneously
  • the tracking control device is A tracking control device for an optical pickup that condenses and irradiates an information recording surface of an optical disc with a laser beam by an objective lens, receives reflected light from the information recording surface of the optical disc and converts it into an electrical signal
  • Track zero cross signal acquisition means for acquiring a track zero cross signal obtained by binarizing a tracking error signal generated from the electrical signal with a predetermined threshold
  • Determining means for determining whether an edge of the track zero cross signal has changed when the objective lens passes a mark on a track of the optical disc at the time of track off
  • Tracking pull-in means for starting tracking pull-in at the timing when the edge changes based on the determination result of the determination means
  • a moving direction determining means for determining a moving direction of a sled that moves the optical pickup based on an edge of the track zero-cross signal at the start of the tracking pull-in
  • a sled moving means for moving the sled by a predetermined moving amount in the determined moving direction simultaneously with the tracking pull-in
  • FIG. 1 It is a figure which shows schematically the structure of the optical disk apparatus containing the tracking control apparatus which concerns on embodiment of this invention.
  • (A)-(d) is a figure which shows the process until tracking drawing is performed from a track-off state when a thread
  • (a) is a tracking error signal waveform,
  • (b) is a lens error signal. Waveform,
  • (c) shows the relative position of the objective lens viewed from the optical disc, and (d) shows the track crossing speed.
  • (A)-(e) is a figure which shows the process until the thread control after tracking pull-in is performed from the track-off state at the time of using the technique of patent document 3,
  • (a) is a tracking error.
  • (B) is a lens error signal waveform
  • (c) is a relative position of the objective lens viewed from the optical disk
  • (d) is a track crossing speed
  • (e) is a thread control waveform.
  • (A) to (e) and (b ′) to (e ′) are diagrams showing a track-off state, (a) is an eccentric component of the optical disc, (b) is a tracking error signal waveform, and (c). Is a track zero cross signal waveform, (d) is a top envelope signal waveform, (e) is a mirror signal waveform, (b ′) is a partially enlarged view of a tracking error signal waveform, and (c ′) is a partially enlarged view of a track zero cross signal waveform.
  • (D ′) is a partially enlarged view of the top envelope signal waveform
  • (e ′) is a partially enlarged view of the mirror signal waveform.
  • (A) to (e) are diagrams showing the process from the track-off state until the tracking pull-in and thread control are performed, in which (a) is a tracking error signal waveform, and (b) is a lens error.
  • (C) shows the relative position of the objective lens viewed from the optical disc, (d) shows the track crossing speed, and (e) shows the thread control waveform. It is a flowchart which shows an example of the tracking control by the tracking control apparatus which concerns on embodiment of this invention. It is a flowchart which shows another example of the tracking control by the tracking control apparatus which concerns on embodiment of this invention.
  • FIG. 1 is a diagram schematically showing the configuration of an optical disc apparatus 10 including a tracking control apparatus according to an embodiment of the present invention (that is, an apparatus capable of performing the tracking control method according to the embodiment of the present invention). It is.
  • the optical disc device 10 is a device that performs at least one of recording and reproduction of information with respect to the optical disc 40.
  • the optical disc 40 is, for example, a BD, a DVD, or a CD, and may include those classified into a read-only type, a write-once type, and a rewritable type, respectively.
  • the optical disc apparatus 10 includes an optical pickup 11, a spindle motor 12, a laser control unit 13, a spindle control unit 14, a tracking error generation unit 15, a track zero cross signal generation unit 16, a reproduction signal generation unit 17, It has a top envelope signal generation unit 19, a mirror signal generation unit 20, an objective lens control unit 21, a thread control unit 22, a central control unit 30, and a storage unit 31.
  • the storage unit 31 in the central control unit 30 stores the laser power value of the optical pickup 11, and the rotation speed and rotation method of the spindle motor 12.
  • the laser power value of the optical pickup 11 and the rotation speed and rotation method of the spindle motor 12 differ depending on the type of the BD / DVD / CD or read-only / write-once / rewritable optical disc.
  • the data is input to the control unit 13 and the spindle control unit 14.
  • the rotation method of the spindle motor 12 is divided into a constant angular velocity CAV (Constant Angular Velocity) and a constant linear velocity CLV (Constant Linear Velocity).
  • the laser control unit 13 controls the optical pickup 11 to irradiate and irradiate the information recording surface of the optical disc 40 with the laser light by the objective lens 11 a in the optical pickup 11. Further, the spindle control unit 14 controls the spindle motor 12 to rotate the optical disc 40.
  • Reflected light from the information recording surface of the optical disc 40 is input to the light receiving element 11 b in the optical pickup 11.
  • the light receiving element 11b converts the received optical signal into an electrical signal and outputs it.
  • the converted electrical signal is input to the tracking error generation unit 15.
  • the tracking error generator 15 generates a tracking error signal detected when the objective lens 11 a in the optical pickup 11 crosses the track of the optical disc 40.
  • a known method such as a push-pull method, a DPP (Differential Push-Pull) method, a DPD (Differential Phase Detection) method, or the like can be used.
  • the tracking error signal generated by the tracking error generator 15 is input to the track zero cross signal generator 16.
  • the track zero cross signal generator 16 generates a track zero cross signal by binarizing the tracking error signal with a predetermined threshold. Therefore, the track zero cross signal takes a binary value of 0 or 1.
  • the method for generating the track zero cross signal is not limited to this.
  • the track zero cross signal is input to the central control unit 30.
  • the central control unit 30 refers to the track zero cross signal when performing tracking pull-in to the optical disc. Details of this will be described later.
  • the reproduction signal generation unit 17 generates a reproduction signal based on the electrical signal output from the light receiving element 11b in the optical pickup 11.
  • the generated reproduction signal is input to the top envelope signal generation unit 19 and the mirror signal generation unit 20.
  • the top envelope signal generation unit 19 generates a top envelope signal of the reproduction signal.
  • the mirror signal generator 20 generates a mirror signal from the reproduction signal. Specifically, the mirror signal generation unit 20 generates a bottom envelope signal of the reproduction signal, and generates a mirror signal obtained by binarizing the bottom envelope signal with a predetermined threshold. Therefore, the mirror signal takes a binary value of 0 or 1.
  • the optical disk 40 has an infinite number of spiral tracks, and each track has two irregular shapes. Usually, a mark (a recording mark when the optical disc is a write-once type / rewritable type and an information pit when the optical disc is a read-only type) is formed in the concave portion. That is, a mark exists in the concave portion of the track, and no mark exists in the convex portion of the track.
  • the optical disc 40 has a configuration in which such irregularities are alternately arranged in the radial direction of the optical disc.
  • the tracking pull-in is performed in the concave portion where the mark exists, and the objective lens 11a follows the concave portion thereafter.
  • tracking-off only the optical disk is decentered with the objective lens 11a stopped (the track moves in the radial direction of the optical disk due to the decentering of the optical disk).
  • the objective lens 11a apparently crosses the track of the optical disk.
  • the objective lens 11a passes through both the concave and convex portions of the track, so that the reproduction signal has a wavy waveform corresponding to the concave and convex portions. That is, the amplitude of the reproduction signal increases in the concave portion where the mark exists, and the amplitude of the reproduction signal decreases in the convex portion where the mark does not exist.
  • the mirror signal is a signal obtained by binarizing the bottom envelope signal of the reproduction signal, when the mirror signal is 0, the objective lens 11a passes through the concave portion where the mark exists, and the mirror signal is 1 In this case, the objective lens 11a passes through a convex portion where no mark exists.
  • the method for generating the mirror signal is not limited to the above.
  • the objective lens control unit 21 controls the objective lens 11a and causes the objective lens 11a to follow the eccentricity of the optical disc when tracking is pulled. Specifically, the objective lens control unit 21 controls an objective lens actuator (not shown) in the optical pickup 11 so as to be in the radial direction (track direction) of the optical disc and in the direction perpendicular to the information recording surface of the optical disc (focus direction). The objective lens 11a is driven.
  • the thread control unit 22 controls a thread (not shown) that moves the optical pickup 11, and moves the optical pickup 11 to a desired radial position.
  • the sled control unit 22 controls a sled driving device (for example, a sled motor) (not shown) to move the sled mounted with the optical pickup 11 in the radial direction of the optical disc.
  • the central control unit 30 includes a track zero cross signal acquisition unit 32, an eccentricity measurement unit 33, a determination unit 34, a tracking pull-in unit 35, a movement direction determination unit 36, a movement amount determination unit 37, and a sled movement unit 38. including.
  • the function of each part of the central control unit 30 will be apparent from the following description.
  • the tracking control device according to the embodiment of the present invention is realized by the central control unit 30.
  • the configuration of the tracking control device is not limited to the configuration of FIG.
  • FIG. 2 shows a tracking error signal waveform (FIG. 2A), a lens error signal waveform (FIG. 2B), an optical disc in the process from the track-off state to the tracking pull-in when the sled is not moved.
  • FIG. 2A shows the relative position (the figure (c)) and the track crossing speed (the figure (d)) of the objective lens seen from FIG.
  • the lens error signal is obtained by converting the position of the objective lens based on the neutral position into an electric signal.
  • the relative position of the objective lens viewed from the optical disk is the relative position of the objective lens with respect to a specific track of the optical disk in the radial direction of the optical disk.
  • the track crossing speed is obtained by differentiating the relative position of the objective lens as viewed from the optical disc with respect to time.
  • the center value of the dotted line in FIGS. 9A and 9B indicates the reference voltage
  • the center value of the dotted line in FIG. 10C indicates the center value of the eccentric component of the optical disk
  • the dotted line in FIG. The center value indicates zero.
  • the limit value of the track crossing speed at which tracking pull-in is possible is determined by the configuration of the optical disk device and the type of the optical disk, but is mostly close to zero, and tracking pull-in is performed near the shaded portion in the figure.
  • This shaded portion is a portion where the tracking error signal waveform is sparse (FIG. (A)), the portion where the absolute value of the eccentric component of the optical disk is maximum ((c)), and crossing the track. This is the location where the speed is zero ((d) in the figure).
  • FIG. 6C since tracking pull-in is performed near the maximum absolute value of the eccentricity component of the optical disc, the reference position of the objective lens that follows the eccentricity of the optical disc changes after the tracking pull-in.
  • a lens offset occurs as shown in FIG.
  • the objective lens is made to follow the eccentricity of the optical disc in the state where the offset occurs, so that the movable range in the track direction of the objective lens can be exceeded at the location surrounded by the solid circle in FIG. And may cause damage to the objective lens.
  • an arrow A1 indicates tracking pull-in
  • an arrow B1 indicates occurrence of a lens offset.
  • FIG. 3 shows a tracking error signal waveform (FIG. 3A) and a lens error signal in the process from the track-off state until the thread control after the tracking pull-in is performed when the technique described in Patent Document 3 is used.
  • Waveform (FIG. (B)) relative position of objective lens viewed from optical disc (FIG. (C)), track crossing speed (FIG. (D)), and thread control waveform (FIG. (E)) are shown.
  • FIG. Specifically, the thread control waveform is a waveform of a signal for controlling movement of the thread, and is, for example, a waveform of a thread control signal supplied from the central control unit 30 to the thread control unit 22.
  • the center value of the dotted line in FIGS. 3A, 3B, and 3E indicates the reference voltage
  • the center value of the dotted line in FIG. 3C indicates the center value of the eccentric component of the optical disc
  • FIG. The center value of the dotted line in) indicates zero.
  • the thread is moved after waiting for the optical disk to make one round after the tracking pull-in.
  • the reason for waiting for the optical disk to make one round is to determine whether the lens offset has occurred in the inner circumference side or the outer circumference side during one round and to measure the lens offset amount. .
  • the sled is moved as shown in FIG.
  • the direction of movement of the sled is the direction in which lens offset occurs, and the amount of movement of the sled corresponds to the amount of lens offset.
  • the lens offset is suppressed by moving the sled.
  • arrow A2 indicates tracking pull-in
  • arrow B2 indicates the occurrence of lens offset
  • arrow C2 indicates the start of movement of the sled
  • arrow D2 indicates suppression of lens offset
  • arrow T2 indicates the period of one round of the optical disc.
  • FIG. 4 shows the eccentric component of the optical disc (FIG. 4A), tracking error signal waveform (FIG. 4B), track zero cross signal waveform (FIG. 4C), and top envelope signal waveform in the track-off state. (Drawing (d)) and a figure which shows a mirror signal waveform (figure (e)).
  • the center value of the dotted line in FIG. 7B indicates the reference voltage
  • the center value of the dotted line in FIGS. 9A and 9C indicates zero.
  • 4 (b ′) to (e ′) are enlarged views of parts of FIGS. 4 (b) to (e), and are enlarged at two locations. Specifically, the rectangular areas X1 and X2 in FIG.
  • each waveform shown in FIG. 4 is a waveform depending on the eccentric component of the optical disk.
  • the track zero cross signal is a signal obtained by binarizing the tracking error signal with a center value (reference voltage).
  • the top envelope signal is positive, the mirror signal is 0, and when the top envelope signal is negative, the mirror signal is 1.
  • an arrow T3 represents a period of one round of the optical disc.
  • the portion where the absolute value of the eccentric component of the optical disk is maximized is indicated by a shaded square, and when the objective lens passes the mark (
  • the edge portion of the track zero cross signal when the top envelope signal is positive and the mirror signal is 0 is indicated by a circle.
  • a circle without shading represents a rising edge
  • a shaded circle represents a falling edge.
  • the edge of the track zero-cross signal indicated by a circle changes from a rising state to a falling state with a square shaded portion as a boundary.
  • the edge of the track zero cross signal indicated by a circle changes from a falling state to a rising state with a square shaded portion as a boundary.
  • the eccentricity is folded back from above.
  • the edge of the track zero cross signal when the objective lens passes the mark changes at the turn-back timing of the eccentricity of the optical disk.
  • the relationship between the edge of the track zero-cross signal when the objective lens passes the mark and the eccentric direction of the optical disk is unique depending on the configuration of the optical disk device and the type of optical disk.
  • the decentering direction of the optical disk can be found at the edge change point of the track zero cross signal when the objective lens passes the mark.
  • the relationship between the edge of the track zero cross signal when the objective lens passes the mark and the eccentric direction of the optical disc needs to be obtained in advance for each type of optical disc.
  • the tracking pull-in is performed at the timing when the edge of the track zero cross signal changes when the objective lens passes the mark. Then, the thread is moved simultaneously with the tracking pull-in.
  • “simultaneously” includes not only the case where the tracking pull-in and the movement of the thread are performed completely simultaneously, but also the case where both are performed substantially simultaneously.
  • the problems described in the technique disclosed in Patent Document 3 are solved at the same time, and in one example, the thread is moved immediately after the tracking pull-in.
  • the eccentric direction of the optical disc can be determined by how the edge of the track zero cross signal changes when the objective lens passes the mark. Move it.
  • the absolute value of the eccentric component of the optical disc becomes the maximum at the edge change point of the track zero cross signal when the objective lens passes the mark.
  • the sled may be moved by the amount of eccentricity of the optical disk.
  • the amount of eccentricity corresponds to Dh in FIG. 4A, that is, the amplitude value on one side of the eccentric component of the optical disk.
  • the sled is moved after waiting for the optical disk to make one round after the tracking pull-in, whereas in this embodiment, the sled is moved simultaneously with the tracking pull-in.
  • FIG. 5 shows a tracking error signal waveform (FIG. 5A) and a lens error signal waveform (FIG. 5B) in the process from the track-off state to the tracking pull-in and thread control in the present embodiment.
  • FIG. 5 is a diagram showing a relative position of the objective lens as viewed from the optical disc (FIG. 3C), a track crossing speed (FIG. 4D), and a thread control waveform (FIG. 3E).
  • the center value of the dotted line in FIGS. 5A, 5B, and 5E indicates the reference voltage
  • the center value of the dotted line in FIG. 5C indicates the center value of the eccentric component of the optical disc
  • FIG. The center value of the dotted line in) indicates zero.
  • FIG. 5E in this embodiment, since the thread is moved simultaneously with the tracking pull-in, no lens offset occurs after the tracking pull-in as shown in FIG. 5B.
  • the thread control waveform for moving the thread is not limited to that shown in FIG. In FIG. 5, an arrow A4 indicates tracking pull-in, and an arrow C4 indicates the start of sled movement.
  • FIG. 6 is a flowchart showing an example of tracking control by the tracking control apparatus according to the embodiment of the present invention.
  • the central control unit 30 acquires a track zero cross signal (step S1). Specifically, the track zero cross signal generation unit 16 generates a tracking error signal based on the electrical signal from the optical pickup 11, binarizes the tracking error signal to generate a track zero cross signal, and the central control unit 30. Obtains a track zero-cross signal from the track zero-cross signal generator 16.
  • step S3 determines whether a tracking pull-in command has been issued. If a tracking pull-in command is issued (step S3: YES), the process proceeds to the next step S4. If the tracking pull-in command is not issued (step S3: NO), the determination is continued.
  • step S4 the central control unit 30 monitors the track zero cross signal when the objective lens 11a passes the mark based on the top envelope signal or the mirror signal. That is, it is checked in real time whether the edge of the track zero cross signal when the objective lens 11a passes the mark rises or falls.
  • the monitoring result in step S4 is stored in the storage unit 31 in real time.
  • the central control unit 30 determines whether or not the edge of the track zero cross signal when the objective lens 11a passes the mark has changed (step S5). Specifically, it is determined whether the edge has changed from rising to falling or falling to rising. If the edge changes (step S5: YES), the central control unit 30 performs tracking pull-in at the edge change timing (step S6). If the edge does not change (step S5: NO), the track zero cross signal is continuously monitored until it changes.
  • step S7 determines whether the tracking pull-in is successful. If it succeeds (step S7: YES), the process proceeds to the next step S8. If it fails (step S7: NO), the process returns to step S4 and the track zero cross signal is monitored again.
  • step S8 the central control unit 30 determines the moving direction of the sled based on the edge of the track zero cross signal at the start of tracking pull-in. Specifically, in step S5, the central control unit 30 determines how the edge of the track zero cross signal at the time of on-track has changed (whether the edge has changed from rising to falling, or has changed from falling to rising). ) To determine the moving direction of the sled. More specifically, the central control unit 30 is based on the relationship between the edge of the track zero-cross signal when the objective lens passes the mark and the eccentric direction of the optical disc, which is obtained in advance for each type of optical disc. The moving direction of the sled is determined from the type of the optical disk to be tracked and the change in edge at the time of tracking pull-in. The above relationship is stored in the storage unit 31, for example.
  • the central control unit 30 determines the moving amount of the thread based on the eccentricity measured in step S2 (step S9). For example, the central control unit 30 determines the eccentric amount Dh measured in step S2 as the movement amount of the thread.
  • the central control unit 30 controls the thread control unit 22 to move the thread by the movement amount determined in step S9 in the movement direction determined in step S8 (step S10).
  • step S10 when the movement of the thread is completed, the central control unit 30 ends the tracking control.
  • the thread control method is not limited.
  • step S10 if the sled is moved by the amount of eccentricity of the optical disk immediately after the tracking pull-in, the sled may move more than the set sled movement due to the influence of sled vibration or the like.
  • the central control unit 30 limits the movement amount of the thread to a predetermined amount (upper limit value) or less in step S10.
  • the predetermined amount may be arbitrary and may not be limited.
  • steps S1, S2, S5, S6, S8, S9, and S10 in FIG. 6 include, for example, the track zero cross signal acquisition unit 32, the eccentricity measurement unit 33, the determination unit 34, and the tracking pull-in unit 35 in FIG. This is executed by the movement direction determination unit 36, the movement amount determination unit 37, and the sled movement unit 38.
  • FIG. 7 is a flowchart showing another example of tracking control by the tracking control apparatus according to the embodiment of the present invention.
  • the flowchart of FIG. 7 is obtained by adding step S11 to the flowchart of FIG. Steps S1 to S10 in FIG. 7 are the same as steps S1 to S10 in FIG.
  • the central control unit 30 measures the track crossing period and determines whether the track crossing period is equal to or greater than a predetermined value (Ste S11).
  • the central control unit 30 measures the track crossing period in real time.
  • the track crossing period corresponds to the period of the track zero cross signal, and the period measurement is performed using the track zero cross signal.
  • the measurement result of the track crossing period is an index for determining the timing of tracking pull-in.
  • the reason for introducing the step S11 is that the track zero cross signal may not be accurately generated due to the f characteristic (frequency characteristics) in the portion where the tracking error signal waveform is dense in FIG.
  • step S5 After the track crossing period has increased to some extent.
  • the lens offset can be suppressed quickly. Therefore, for example, it can be avoided that the objective lens exceeds the movable range, and a stable servo operation can be realized.
  • the tracking control device and the tracking control method according to the embodiment described above may be realized only by hardware resources such as an electronic circuit, or may be realized by cooperation of hardware resources and software.
  • the tracking control device and the tracking control method are realized by, for example, a computer program being executed by a computer, and more specifically, ROM (Read Only Memory). This is realized by reading a computer program recorded on a recording medium such as a main storage device and executing it by a central processing unit (CPU).
  • the computer program may be provided by being recorded on a computer-readable recording medium such as an optical disk, or may be provided via a communication line such as the Internet.
  • the configuration including the top envelope signal generation unit 19 and the mirror signal generation unit 20 is illustrated, but a configuration including only one of them may be used.
  • the tracking control apparatus may selectively use the top envelope signal and the mirror signal according to the type of the optical disc. For example, some optical discs do not detect a mirror signal. In this case, tracking control is performed based on the top envelope signal.
  • the timing at which the objective lens passes the mark is detected by the top envelope signal or the mirror signal.
  • the present invention is not limited to these signals, and any other signal may be used as long as it is a signal for detecting the mark. May be detected.
  • a signal for detecting the mark can be generated by reflected light from the information recording surface of the optical disc.
  • the configuration in which the amount of movement of the thread is determined based on the measured amount of eccentricity is exemplified.
  • the amount of movement of the thread may be determined by other methods, for example, set in advance. It may be a fixed value.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

The invention rapidly inhibits lens offset during tracking lock-in. A tracking control method for an optical pickup that shines a laser beam on an information-recording surface of an optical disk while using an objective lens to condense said laser beam, receives reflected light, and converts said reflected light to an electrical signal comprises: a step (S1) that acquires a track zero-crossing signal obtained by binarizing a tracking error signal generated from the abovementioned electrical signal; a step (S5) that evaluates whether an edge of the track zero-crossing signal changed when the objective lens passed a mark on a track of the optical disk; a step (S6) that starts tracking lock-in in the timing at which the edge changes; a step (S8) that sets a thread movement direction on the basis of the edge of the track zero-crossing signal that exists when tracking lock-in starts; and a step (S10) that moves a thread by only a given amount in the set movement direction.

Description

トラッキング制御方法及びトラッキング制御装置Tracking control method and tracking control apparatus
 本発明は、光ディスクに対しトラッキング引き込みを行うためのトラッキング制御方法及びトラッキング制御装置に関する。 The present invention relates to a tracking control method and a tracking control apparatus for performing tracking pull-in to an optical disc.
 BD(Bru-ray Disk)、DVD(Digital Versatile Disk)、CD(Compact Disk)等の光ディスクに対応した光ディスク装置がある。このような光ディスクから情報を読み取る為には、光ディスクの回転中に発生する面振れ(フォーカス方向の揺れ)、及び偏芯(トラック方向の揺れ)に対し、対物レンズを追従させる必要がある。面振れ、偏芯の成分は、光ディスク1周分の時間を周期とし、それぞれ面振れ量、偏芯量を振幅とする正弦波となる。ここでは、光ディスクの偏芯に対し対物レンズを追従させる、トラッキング制御について述べる。 There are optical disk devices compatible with optical disks such as BD (Bru-ray Disk), DVD (Digital Versatile Disk), and CD (Compact Disk). In order to read information from such an optical disk, it is necessary to cause the objective lens to follow surface vibration (focus direction fluctuation) and eccentricity (track direction fluctuation) that occur during rotation of the optical disk. The components of surface runout and eccentricity are sinusoidal waves with the time taken for one round of the optical disk as a cycle and the amount of surface runout and the amount of eccentricity as amplitudes, respectively. Here, tracking control for causing the objective lens to follow the eccentricity of the optical disk will be described.
 通常、対物レンズが光ディスクのトラックを横断する周期(以下、トラック横断周期と称す)が、所定の値よりも大きくなってからトラッキング引き込みが行われる。この“所定の値”には、トラッキング引き込みが可能なトラック横断周期の限界値以上の値が設定される。対物レンズが光ディスクのトラックを横断する速度(以下、トラック横断速度と称す)は、トラック横断周期の逆数に比例するので、トラック横断速度が、トラック横断速度の限界値よりも小さくなってからトラッキング引き込みが行われる。トラック横断速度の限界値は、光ディスク装置の構成や光ディスクの種類(BD/DVD/CD、あるいは再生専用型/追記型/書換型)によって異なるものの、大概はゼロに近い為、トラッキング引き込みが行われるのは、トラック横断速度がほぼゼロになる場合である。この場合、光ディスクの偏芯成分の絶対値がほぼ最大となるので、トラッキング引き込み後に、光ディスクの偏芯に追従する対物レンズの基準位置が変化する。これにより、対物レンズの中立位置(光ピックアップの中心位置)からのオフセット(以下、レンズオフセットと称す)が発生する。レンズオフセット量は、トラッキング引き込みが行われる時の光ディスクの偏芯成分を、光ディスクの偏芯成分の中心値で差し引いたものである。よって、光ディスクの偏芯量が大きいと、このレンズオフセット量は大きくなる。 Usually, tracking pull-in is performed after the period in which the objective lens crosses the track of the optical disk (hereinafter referred to as the track crossing period) becomes larger than a predetermined value. The “predetermined value” is set to a value that is equal to or greater than the limit value of the track crossing period that allows tracking pull-in. Since the speed at which the objective lens crosses the track of the optical disk (hereinafter referred to as the track crossing speed) is proportional to the reciprocal of the track crossing period, the tracking pull-in is performed after the track crossing speed becomes smaller than the limit value of the track crossing speed. Is done. Although the limit value of the track crossing speed varies depending on the configuration of the optical disc device and the type of the optical disc (BD / DVD / CD, or read-only type / write-once type / rewritable type), since it is almost zero, tracking pull-in is performed. This is the case when the track crossing speed becomes almost zero. In this case, since the absolute value of the eccentric component of the optical disk is substantially maximized, the reference position of the objective lens that follows the eccentricity of the optical disk changes after tracking. Thereby, an offset (hereinafter referred to as a lens offset) from the neutral position of the objective lens (the center position of the optical pickup) occurs. The lens offset amount is obtained by subtracting the eccentric component of the optical disc when tracking pull-in is performed by the center value of the eccentric component of the optical disc. Therefore, if the amount of eccentricity of the optical disk is large, the amount of lens offset increases.
 レンズオフセットが大きいと、オフセットが発生した状態で対物レンズを光ディスクの偏芯に追従させる為、対物レンズのトラック方向の可動範囲を超える可能性があり、対物レンズの損傷を引き起こす可能性がある。 When the lens offset is large, the objective lens is caused to follow the eccentricity of the optical disk in the state where the offset is generated, which may exceed the movable range of the objective lens in the track direction, and may cause damage to the objective lens.
 特許文献1~3には、レンズオフセットを抑制するための構成が記載されている。 Patent Documents 1 to 3 describe configurations for suppressing lens offset.
 特許文献1には、光ピックアップのレンズを記録開始アドレスへトレースする前に、レンズシフト量を測定し、レンズシフト量が所定の閾値を超えていた場合には、レンズの記録開始アドレスへのトレースを行わずにレンズのシークを繰り返し、レンズシフト量が所定の閾値以内になった後に、レンズを記録開始アドレスへトレースする構成が記載されている。 In Patent Document 1, the lens shift amount is measured before tracing the lens of the optical pickup to the recording start address. If the lens shift amount exceeds a predetermined threshold, tracing to the recording start address of the lens is performed. There is a description of a configuration in which the lens seek is repeated without performing the steps, and the lens is traced to the recording start address after the lens shift amount falls within a predetermined threshold.
 特許文献2には、スレッドモータをスレッド駆動電圧でフィードフォワード制御してディスクの半径方向のトラック上に光ピックアップを移動させて停止させるディスク駆動装置において、前回のスレッド駆動電圧に基づく光ピックアップの停止位置におけるアクチュエータ(対物レンズ駆動装置)のトラック方向視野振り量を検出し、検出結果に基づいて次回の光ピックアップの移動時のスレッド駆動電圧の設定値を補正する構成が記載されている。 In Patent Document 2, in a disk drive device in which a thread motor is feedforward controlled with a thread drive voltage to stop the optical pickup by moving the optical pickup onto a track in the radial direction of the disk, the optical pickup is stopped based on the previous thread drive voltage. A configuration is described in which the amount of swing in the track direction of the actuator (objective lens driving device) at the position is detected, and the setting value of the sled driving voltage at the next movement of the optical pickup is corrected based on the detection result.
 特許文献3には、光ディスクの1周分の複数のトラッキングドライブ信号の値をもとにオフセット代表値を演算し、オフセット代表値とオフセット中心値との比較結果に基づいて、光ピックアップのスレッド位置を調整する構成が記載されている。 In Patent Document 3, an offset representative value is calculated based on values of a plurality of tracking drive signals for one round of an optical disk, and a thread position of an optical pickup is calculated based on a comparison result between the offset representative value and the offset center value. A configuration for adjusting the is described.
特開2007-087545号公報JP 2007-087545 A 特開2007-066358号公報Japanese Patent Laid-Open No. 2007-066358 特開2002-208154号公報JP 2002-208154 A
 光ディスク装置においては、トラッキング引き込みの際のレンズオフセットを早く抑制したいという要望がある。例えば、特許文献3に記載の技術を用いた場合には、トラッキング引き込み後に光ディスク1周分の時間を待ってからスレッドを移動させることになり、レンズオフセットをすぐに抑制することができず、光ディスク1周の間に対物レンズのトラック方向の可動範囲を超える可能性がある。 In optical disk devices, there is a desire to quickly suppress lens offset during tracking pull-in. For example, when the technique described in Patent Document 3 is used, the sled is moved after waiting for a time corresponding to one round of the optical disk after tracking pull-in, and the lens offset cannot be suppressed immediately, and the optical disk There is a possibility that the movable range of the objective lens in the track direction may be exceeded during one round.
 そこで、本発明は、トラッキング引き込みの際のレンズオフセットを早く抑制することができるトラッキング制御方法及びトラッキング制御装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a tracking control method and a tracking control device that can quickly suppress a lens offset at the time of tracking pull-in.
 本発明に係るトラッキング制御方法は、
 光ディスクの情報記録面にレーザー光を対物レンズにより集光して照射し、該光ディスクの情報記録面からの反射光を受光して電気信号に変換する光ピックアップのトラッキング制御方法であって、
 前記電気信号から生成されるトラッキングエラー信号を所定の閾値で2値化することによって得られるトラックゼロクロス信号を取得するトラックゼロクロス信号取得ステップと、
 トラックオフ時に、前記対物レンズが前記光ディスクのトラック上のマークを通過する時の前記トラックゼロクロス信号のエッジが変化したかどうかを判定する判定ステップと、
 前記判定ステップの判定結果に基づき、前記エッジが変化するタイミングでトラッキング引き込みを開始するトラッキング引き込みステップと、
 前記トラッキング引き込みの開始時における前記トラックゼロクロス信号のエッジを基に、前記光ピックアップを移動させるスレッドの移動方向を決定する移動方向決定ステップと、
 前記トラッキング引き込みが行われると同時に、前記決定された移動方向に所定の移動量だけ前記スレッドを移動させるスレッド移動ステップと、
 を有することを特徴としている。
The tracking control method according to the present invention includes:
A method for tracking control of an optical pickup that condenses and irradiates an information recording surface of an optical disc with a laser beam by an objective lens, receives reflected light from the information recording surface of the optical disc and converts it into an electrical signal,
A track zero-cross signal acquisition step of acquiring a track zero-cross signal obtained by binarizing a tracking error signal generated from the electrical signal with a predetermined threshold;
A determination step of determining whether an edge of the track zero-cross signal has changed when the objective lens passes a mark on a track of the optical disc when the track is off;
Based on the determination result of the determination step, a tracking pull-in step for starting tracking pull-in at a timing when the edge changes;
A moving direction determining step for determining a moving direction of a sled that moves the optical pickup based on an edge of the track zero-cross signal at the start of the tracking pull-in;
A sled moving step of moving the sled by a predetermined amount of movement in the determined moving direction simultaneously with the tracking pull-in;
It is characterized by having.
 また、本発明に係るトラッキング制御装置は、
 光ディスクの情報記録面にレーザー光を対物レンズにより集光して照射し、該光ディスクの情報記録面からの反射光を受光して電気信号に変換する光ピックアップのトラッキング制御装置であって、
 前記電気信号から生成されるトラッキングエラー信号を所定の閾値で2値化することによって得られるトラックゼロクロス信号を取得するトラックゼロクロス信号取得手段と、
 トラックオフ時に、前記対物レンズが前記光ディスクのトラック上のマークを通過する時の前記トラックゼロクロス信号のエッジが変化したかどうかを判定する判定手段と、
 前記判定手段の判定結果に基づき、前記エッジが変化するタイミングでトラッキング引き込みを開始するトラッキング引き込み手段と、
 前記トラッキング引き込みの開始時における前記トラックゼロクロス信号のエッジを基に、前記光ピックアップを移動させるスレッドの移動方向を決定する移動方向決定手段と、
 前記トラッキング引き込みが行われると同時に、前記決定された移動方向に所定の移動量だけ前記スレッドを移動させるスレッド移動手段と、
 を有することを特徴としている。
The tracking control device according to the present invention is
A tracking control device for an optical pickup that condenses and irradiates an information recording surface of an optical disc with a laser beam by an objective lens, receives reflected light from the information recording surface of the optical disc and converts it into an electrical signal,
Track zero cross signal acquisition means for acquiring a track zero cross signal obtained by binarizing a tracking error signal generated from the electrical signal with a predetermined threshold;
Determining means for determining whether an edge of the track zero cross signal has changed when the objective lens passes a mark on a track of the optical disc at the time of track off;
Tracking pull-in means for starting tracking pull-in at the timing when the edge changes based on the determination result of the determination means;
A moving direction determining means for determining a moving direction of a sled that moves the optical pickup based on an edge of the track zero-cross signal at the start of the tracking pull-in;
A sled moving means for moving the sled by a predetermined moving amount in the determined moving direction simultaneously with the tracking pull-in;
It is characterized by having.
 本発明によれば、トラッキング引き込みの際のレンズオフセットを早く抑制することができるトラッキング制御方法及びトラッキング制御装置を提供することができる。 According to the present invention, it is possible to provide a tracking control method and a tracking control device that can quickly suppress lens offset at the time of tracking pull-in.
本発明の実施の形態に係るトラッキング制御装置を含む光ディスク装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the optical disk apparatus containing the tracking control apparatus which concerns on embodiment of this invention. (a)~(d)は、スレッドを移動させない場合の、トラックオフ状態からトラッキング引き込みが行われるまでの過程を示す図であり、(a)はトラッキングエラー信号波形、(b)はレンズエラー信号波形、(c)は光ディスクから見た対物レンズの相対位置、(d)はトラック横断速度を示す。(A)-(d) is a figure which shows the process until tracking drawing is performed from a track-off state when a thread | sled is not moved, (a) is a tracking error signal waveform, (b) is a lens error signal. Waveform, (c) shows the relative position of the objective lens viewed from the optical disc, and (d) shows the track crossing speed. (a)~(e)は、特許文献3に記載の技術を用いた場合の、トラックオフ状態からトラッキング引き込み後のスレッド制御が行われるまでの過程を示す図であり、(a)はトラッキングエラー信号波形、(b)はレンズエラー信号波形、(c)は光ディスクから見た対物レンズの相対位置、(d)はトラック横断速度、(e)はスレッド制御波形を示す。(A)-(e) is a figure which shows the process until the thread control after tracking pull-in is performed from the track-off state at the time of using the technique of patent document 3, (a) is a tracking error. (B) is a lens error signal waveform, (c) is a relative position of the objective lens viewed from the optical disk, (d) is a track crossing speed, and (e) is a thread control waveform. (a)~(e)および(b’)~(e’)は、トラックオフ状態を示す図であり、(a)は光ディスクの偏芯成分、(b)はトラッキングエラー信号波形、(c)はトラックゼロクロス信号波形、(d)はトップエンベロープ信号波形、(e)はミラー信号波形、(b’)はトラッキングエラー信号波形の部分拡大図、(c’)はトラックゼロクロス信号波形の部分拡大図、(d’)はトップエンベロープ信号波形の部分拡大図、(e’)はミラー信号波形の部分拡大図を示す。(A) to (e) and (b ′) to (e ′) are diagrams showing a track-off state, (a) is an eccentric component of the optical disc, (b) is a tracking error signal waveform, and (c). Is a track zero cross signal waveform, (d) is a top envelope signal waveform, (e) is a mirror signal waveform, (b ′) is a partially enlarged view of a tracking error signal waveform, and (c ′) is a partially enlarged view of a track zero cross signal waveform. , (D ′) is a partially enlarged view of the top envelope signal waveform, and (e ′) is a partially enlarged view of the mirror signal waveform. (a)~(e)は、実施の形態の、トラックオフ状態からトラッキング引き込み及びスレッド制御が行われるまでの過程を示す図であり、(a)はトラッキングエラー信号波形、(b)はレンズエラー信号波形、(c)は光ディスクから見た対物レンズの相対位置、(d)はトラック横断速度、(e)はスレッド制御波形を示す。(A) to (e) are diagrams showing the process from the track-off state until the tracking pull-in and thread control are performed, in which (a) is a tracking error signal waveform, and (b) is a lens error. (C) shows the relative position of the objective lens viewed from the optical disc, (d) shows the track crossing speed, and (e) shows the thread control waveform. 本発明の実施の形態に係るトラッキング制御装置によるトラッキング制御の一例を示すフローチャートである。It is a flowchart which shows an example of the tracking control by the tracking control apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係るトラッキング制御装置によるトラッキング制御の別の一例を示すフローチャートである。It is a flowchart which shows another example of the tracking control by the tracking control apparatus which concerns on embodiment of this invention.
 以下、本発明の実施の形態を図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施の形態に係るトラッキング制御装置(すなわち、本発明の実施の形態に係るトラッキング制御方法を実施することができる装置)を含む光ディスク装置10の構成を概略的に示す図である。この光ディスク装置10は、光ディスク40に対して情報の記録及び再生の少なくとも一方を行う装置である。光ディスク40は、例えば、BD、DVD、CDであり、それぞれ再生専用型、追記型、書換型に分類されるものを含み得る。 FIG. 1 is a diagram schematically showing the configuration of an optical disc apparatus 10 including a tracking control apparatus according to an embodiment of the present invention (that is, an apparatus capable of performing the tracking control method according to the embodiment of the present invention). It is. The optical disc device 10 is a device that performs at least one of recording and reproduction of information with respect to the optical disc 40. The optical disc 40 is, for example, a BD, a DVD, or a CD, and may include those classified into a read-only type, a write-once type, and a rewritable type, respectively.
 図1に示されるように、光ディスク装置10は、光ピックアップ11、スピンドルモーター12、レーザー制御部13、スピンドル制御部14、トラッキングエラー生成部15、トラックゼロクロス信号生成部16、再生信号生成部17、トップエンベロープ信号生成部19、ミラー信号生成部20、対物レンズ制御部21、スレッド制御部22、中央制御部30、及び記憶部31を有する。 As shown in FIG. 1, the optical disc apparatus 10 includes an optical pickup 11, a spindle motor 12, a laser control unit 13, a spindle control unit 14, a tracking error generation unit 15, a track zero cross signal generation unit 16, a reproduction signal generation unit 17, It has a top envelope signal generation unit 19, a mirror signal generation unit 20, an objective lens control unit 21, a thread control unit 22, a central control unit 30, and a storage unit 31.
 中央制御部30内の記憶部31は、光ピックアップ11のレーザーパワー値、及びスピンドルモーター12の回転数や回転方式を格納する。光ピックアップ11のレーザーパワー値や、スピンドルモーター12の回転数や回転方式は、BD/DVD/CDや再生専用型/追記型/書換型の光ディスクの種類によって異なり、それぞれの光ディスクに応じて、レーザー制御部13とスピンドル制御部14に入力される。なお、スピンドルモーター12の回転方式は、角速度一定のCAV(Constant Angular Velocity)と線速度一定のCLV(Constant Linear Velocity)に分けられる。レーザー制御部13は、光ピックアップ11を制御し、光ディスク40の情報記録面にレーザー光を光ピックアップ11内の対物レンズ11aにより集光して照射させる。また、スピンドル制御部14は、スピンドルモーター12を制御し、光ディスク40を回転させる。 The storage unit 31 in the central control unit 30 stores the laser power value of the optical pickup 11, and the rotation speed and rotation method of the spindle motor 12. The laser power value of the optical pickup 11 and the rotation speed and rotation method of the spindle motor 12 differ depending on the type of the BD / DVD / CD or read-only / write-once / rewritable optical disc. The data is input to the control unit 13 and the spindle control unit 14. The rotation method of the spindle motor 12 is divided into a constant angular velocity CAV (Constant Angular Velocity) and a constant linear velocity CLV (Constant Linear Velocity). The laser control unit 13 controls the optical pickup 11 to irradiate and irradiate the information recording surface of the optical disc 40 with the laser light by the objective lens 11 a in the optical pickup 11. Further, the spindle control unit 14 controls the spindle motor 12 to rotate the optical disc 40.
 光ディスク40の情報記録面からの反射光は、光ピックアップ11内の受光素子11bに入力される。受光素子11bは、受光した光信号を電気信号に変換して出力する。変換された電気信号は、トラッキングエラー生成部15に入力される。トラッキングエラー生成部15では、光ピックアップ11内の対物レンズ11aが、光ディスク40のトラック上を横断する際に検出されるトラッキングエラー信号を生成する。トラッキングエラー生成部15によるトラッキングエラー信号の生成方法としては、公知の方法、例えば、プッシュプル法やDPP(Differential Push-Pull)法、DPD(Differential Phase Detection)法などを用いることができる。 Reflected light from the information recording surface of the optical disc 40 is input to the light receiving element 11 b in the optical pickup 11. The light receiving element 11b converts the received optical signal into an electrical signal and outputs it. The converted electrical signal is input to the tracking error generation unit 15. The tracking error generator 15 generates a tracking error signal detected when the objective lens 11 a in the optical pickup 11 crosses the track of the optical disc 40. As a method for generating a tracking error signal by the tracking error generator 15, a known method such as a push-pull method, a DPP (Differential Push-Pull) method, a DPD (Differential Phase Detection) method, or the like can be used.
 トラッキングエラー生成部15で生成されたトラッキングエラー信号は、トラックゼロクロス信号生成部16に入力される。トラックゼロクロス信号生成部16は、トラッキングエラー信号を所定の閾値で2値化することによってトラックゼロクロス信号を生成する。よって、トラックゼロクロス信号は、0か1の2値を取る。なお、トラックゼロクロス信号を生成する方法はこれに限定されない。 The tracking error signal generated by the tracking error generator 15 is input to the track zero cross signal generator 16. The track zero cross signal generator 16 generates a track zero cross signal by binarizing the tracking error signal with a predetermined threshold. Therefore, the track zero cross signal takes a binary value of 0 or 1. The method for generating the track zero cross signal is not limited to this.
 上記トラックゼロクロス信号は、中央制御部30に入力される。中央制御部30では、光ディスクに対しトラッキング引き込みを行う際、トラックゼロクロス信号を参照する。この詳細は後に説明する。 The track zero cross signal is input to the central control unit 30. The central control unit 30 refers to the track zero cross signal when performing tracking pull-in to the optical disc. Details of this will be described later.
 再生信号生成部17は、光ピックアップ11内の受光素子11bから出力された電気信号を基に、再生信号を生成する。生成された再生信号は、トップエンベロープ信号生成部19及びミラー信号生成部20に入力される。 The reproduction signal generation unit 17 generates a reproduction signal based on the electrical signal output from the light receiving element 11b in the optical pickup 11. The generated reproduction signal is input to the top envelope signal generation unit 19 and the mirror signal generation unit 20.
 トップエンベロープ信号生成部19は、上記再生信号のトップエンベロープ信号を生成する。 The top envelope signal generation unit 19 generates a top envelope signal of the reproduction signal.
 ミラー信号生成部20は、上記再生信号からミラー信号を生成する。具体的には、ミラー信号生成部20は、上記再生信号のボトムエンベロープ信号を生成し、該ボトムエンベロープ信号を所定の閾値で2値化することで得られるミラー信号を生成する。よって、ミラー信号は、0か1の2値を取る。光ディスク40には、らせん状にトラックが無数に存在し、各トラックは凸凹の2つの形状で構成される。通常、マーク(光ディスクが追記型/書換型の場合は記録マーク、再生専用型の場合は情報ピット)が、凹部分に形成される。すなわちトラックの凹部分にはマークが存在し、トラックの凸部分にはマークが存在しない。光ディスク40は、このような凹凸が光ディスクの半径方向に交互に並んでいる構成を有する。トラッキング引き込みは、マークが存在する凹部分で行われ、以降凹部分を対物レンズ11aが追従する。しかし、トラッキング引き込みを行う前のトラックオフ(トラッキングオフともいう)時は、対物レンズ11aが停止した状態で、光ディスクのみが偏芯しているので(光ディスクの偏芯によってトラックが光ディスクの半径方向に変位するので)、見かけ上対物レンズ11aが光ディスクのトラックを横断する。よって、トラックオフ時は対物レンズ11aがトラックの凹凸の両方を通過する為、再生信号は凹凸に応じた波状の波形となる。すなわち、マークが存在する凹部分では再生信号の振幅が大きくなり、マークが存在しない凸部分では再生信号の振幅が小さくなる。上で述べたように、ミラー信号は再生信号のボトムエンベロープ信号を2値化した信号なので、ミラー信号が0の場合は、対物レンズ11aがマークが存在する凹部分を通過し、ミラー信号が1の場合は、対物レンズ11aがマークが存在しない凸部分を通過することになる。なお、ミラー信号を生成する方法は上記に限定されない。 The mirror signal generator 20 generates a mirror signal from the reproduction signal. Specifically, the mirror signal generation unit 20 generates a bottom envelope signal of the reproduction signal, and generates a mirror signal obtained by binarizing the bottom envelope signal with a predetermined threshold. Therefore, the mirror signal takes a binary value of 0 or 1. The optical disk 40 has an infinite number of spiral tracks, and each track has two irregular shapes. Usually, a mark (a recording mark when the optical disc is a write-once type / rewritable type and an information pit when the optical disc is a read-only type) is formed in the concave portion. That is, a mark exists in the concave portion of the track, and no mark exists in the convex portion of the track. The optical disc 40 has a configuration in which such irregularities are alternately arranged in the radial direction of the optical disc. The tracking pull-in is performed in the concave portion where the mark exists, and the objective lens 11a follows the concave portion thereafter. However, at the time of track-off before tracking pull-in (also referred to as tracking-off), only the optical disk is decentered with the objective lens 11a stopped (the track moves in the radial direction of the optical disk due to the decentering of the optical disk). The objective lens 11a apparently crosses the track of the optical disk. Therefore, when the track is off, the objective lens 11a passes through both the concave and convex portions of the track, so that the reproduction signal has a wavy waveform corresponding to the concave and convex portions. That is, the amplitude of the reproduction signal increases in the concave portion where the mark exists, and the amplitude of the reproduction signal decreases in the convex portion where the mark does not exist. As described above, since the mirror signal is a signal obtained by binarizing the bottom envelope signal of the reproduction signal, when the mirror signal is 0, the objective lens 11a passes through the concave portion where the mark exists, and the mirror signal is 1 In this case, the objective lens 11a passes through a convex portion where no mark exists. The method for generating the mirror signal is not limited to the above.
 対物レンズ制御部21は、対物レンズ11aを制御し、トラッキング引き込み時には光ディスクの偏芯に対し、対物レンズ11aを追従させる。具体的には、対物レンズ制御部21は、光ピックアップ11内の図示しない対物レンズアクチュエータを制御して、光ディスクの半径方向(トラック方向)及び光ディスクの情報記録面に垂直な方向(フォーカス方向)に対物レンズ11aを駆動する。 The objective lens control unit 21 controls the objective lens 11a and causes the objective lens 11a to follow the eccentricity of the optical disc when tracking is pulled. Specifically, the objective lens control unit 21 controls an objective lens actuator (not shown) in the optical pickup 11 so as to be in the radial direction (track direction) of the optical disc and in the direction perpendicular to the information recording surface of the optical disc (focus direction). The objective lens 11a is driven.
 スレッド制御部22は、光ピックアップ11を移動させる図示しないスレッドを制御し、光ピックアップ11を所望の半径位置に移動させる。具体的には、スレッド制御部22は、図示しないスレッド駆動装置(例えばスレッドモータ)を制御して、光ピックアップ11を搭載したスレッドを光ディスクの半径方向に移動させる。 The thread control unit 22 controls a thread (not shown) that moves the optical pickup 11, and moves the optical pickup 11 to a desired radial position. Specifically, the sled control unit 22 controls a sled driving device (for example, a sled motor) (not shown) to move the sled mounted with the optical pickup 11 in the radial direction of the optical disc.
 図1において、中央制御部30は、トラックゼロクロス信号取得部32、偏芯量測定部33、判定部34、トラッキング引き込み部35、移動方向決定部36、移動量決定部37、及びスレッド移動部38を含む。該中央制御部30の各部の機能は、後述の説明により明らかとなる。 In FIG. 1, the central control unit 30 includes a track zero cross signal acquisition unit 32, an eccentricity measurement unit 33, a determination unit 34, a tracking pull-in unit 35, a movement direction determination unit 36, a movement amount determination unit 37, and a sled movement unit 38. including. The function of each part of the central control unit 30 will be apparent from the following description.
 なお、図1の例では、本発明の実施の形態に係るトラッキング制御装置は、中央制御部30により実現されている。ただし、トラッキング制御装置の構成は、図1の構成に限定されない。 In the example of FIG. 1, the tracking control device according to the embodiment of the present invention is realized by the central control unit 30. However, the configuration of the tracking control device is not limited to the configuration of FIG.
 図2は、スレッドを移動させない場合の、トラックオフ状態からトラッキング引き込みが行われるまでの過程における、トラッキングエラー信号波形(同図(a))、レンズエラー信号波形(同図(b))、光ディスクから見た対物レンズの相対位置(同図(c))、及びトラック横断速度(同図(d))を示す図である。レンズエラー信号は、中立位置を基準とした対物レンズの位置を電気信号に変換したものである。光ディスクから見た対物レンズの相対位置は、光ディスクの半径方向における、光ディスクのある特定のトラックに対する対物レンズの相対位置である。トラック横断速度は、光ディスクから見た対物レンズの相対位置を時間で微分したものである。同図(a)、(b)における点線の中心値は基準電圧を示し、同図(c)における点線の中心値は光ディスクの偏芯成分の中心値を示し、同図(d)における点線の中心値はゼロを示す。 FIG. 2 shows a tracking error signal waveform (FIG. 2A), a lens error signal waveform (FIG. 2B), an optical disc in the process from the track-off state to the tracking pull-in when the sled is not moved. It is a figure which shows the relative position (the figure (c)) and the track crossing speed (the figure (d)) of the objective lens seen from FIG. The lens error signal is obtained by converting the position of the objective lens based on the neutral position into an electric signal. The relative position of the objective lens viewed from the optical disk is the relative position of the objective lens with respect to a specific track of the optical disk in the radial direction of the optical disk. The track crossing speed is obtained by differentiating the relative position of the objective lens as viewed from the optical disc with respect to time. The center value of the dotted line in FIGS. 9A and 9B indicates the reference voltage, the center value of the dotted line in FIG. 10C indicates the center value of the eccentric component of the optical disk, and the dotted line in FIG. The center value indicates zero.
 トラッキング引き込みが可能なトラック横断速度の限界値は、光ディスク装置の構成や光ディスクの種類により決定されるが、大概はゼロに近く、同図の網掛け箇所近傍でトラッキング引き込みが行われる。この網掛け箇所は、トラッキングエラー信号波形が疎になる箇所(同図(a))であり、光ディスクの偏芯成分の絶対値が最大となる箇所(同図(c))であり、トラック横断速度がゼロとなる箇所(同図(d))である。同図(c)に示すように、光ディスクの偏芯成分の絶対値の最大値近傍でトラッキング引き込みが行われる為、トラッキング引き込み後に、光ディスクの偏芯に追従する対物レンズの基準位置が変化する。その結果、同図(b)で示すように、レンズオフセットが発生する。レンズオフセットが発生すると、オフセットが発生した状態で対物レンズを光ディスクの偏芯に追従させる為、同図(b)の丸の実線で囲った箇所で、対物レンズのトラック方向の可動範囲を超える可能性があり、対物レンズの損傷を引き起こす可能性がある。なお、図2において、矢印A1はトラッキング引き込みを、矢印B1はレンズオフセットの発生を表す。 The limit value of the track crossing speed at which tracking pull-in is possible is determined by the configuration of the optical disk device and the type of the optical disk, but is mostly close to zero, and tracking pull-in is performed near the shaded portion in the figure. This shaded portion is a portion where the tracking error signal waveform is sparse (FIG. (A)), the portion where the absolute value of the eccentric component of the optical disk is maximum ((c)), and crossing the track. This is the location where the speed is zero ((d) in the figure). As shown in FIG. 6C, since tracking pull-in is performed near the maximum absolute value of the eccentricity component of the optical disc, the reference position of the objective lens that follows the eccentricity of the optical disc changes after the tracking pull-in. As a result, a lens offset occurs as shown in FIG. When a lens offset occurs, the objective lens is made to follow the eccentricity of the optical disc in the state where the offset occurs, so that the movable range in the track direction of the objective lens can be exceeded at the location surrounded by the solid circle in FIG. And may cause damage to the objective lens. In FIG. 2, an arrow A1 indicates tracking pull-in, and an arrow B1 indicates occurrence of a lens offset.
 トラッキング引き込み後のレンズオフセットを抑制する為に、上記特許文献3に記載の技術を用い、トラッキング引き込み後にスレッドを移動させる方法が考えられる。スレッドを移動させることで、例えば対物レンズの中立位置(光ピックアップの中心位置)に対物レンズが配置されるようになる。以下、当該方法について、図3を用いて説明する。 In order to suppress the lens offset after the tracking pull-in, a method of moving the sled after the tracking pull-in using the technique described in Patent Document 3 can be considered. By moving the sled, for example, the objective lens is arranged at the neutral position of the objective lens (the center position of the optical pickup). Hereinafter, this method will be described with reference to FIG.
 図3は、特許文献3に記載の技術を用いた場合の、トラックオフ状態からトラッキング引き込み後のスレッド制御が行われるまでの過程における、トラッキングエラー信号波形(同図(a))、レンズエラー信号波形(同図(b))、光ディスクから見た対物レンズの相対位置(同図(c))、トラック横断速度(同図(d))、及びスレッド制御波形(同図(e))を示す図である。スレッド制御波形は、具体的には、スレッドの移動を制御するための信号の波形であり、例えば、中央制御部30からスレッド制御部22に供給されるスレッド制御信号の波形である。図3(a)、(b)、(e)における点線の中心値は基準電圧を示し、図3(c)における点線の中心値は光ディスクの偏芯成分の中心値を示し、図3(d)における点線の中心値はゼロを示す。 FIG. 3 shows a tracking error signal waveform (FIG. 3A) and a lens error signal in the process from the track-off state until the thread control after the tracking pull-in is performed when the technique described in Patent Document 3 is used. Waveform (FIG. (B)), relative position of objective lens viewed from optical disc (FIG. (C)), track crossing speed (FIG. (D)), and thread control waveform (FIG. (E)) are shown. FIG. Specifically, the thread control waveform is a waveform of a signal for controlling movement of the thread, and is, for example, a waveform of a thread control signal supplied from the central control unit 30 to the thread control unit 22. The center value of the dotted line in FIGS. 3A, 3B, and 3E indicates the reference voltage, the center value of the dotted line in FIG. 3C indicates the center value of the eccentric component of the optical disc, and FIG. The center value of the dotted line in) indicates zero.
 図3に示されるスレッド制御においては、トラッキング引き込み後に光ディスクが1周するのを待ってからスレッドを移動させる。光ディスクが1周するのを待つ理由は、1周の間にレンズオフセットが光ディスクの内周側と外周側のどちらの方向に発生したかを判別するのと、レンズオフセット量を計測する為である。トラッキング引き込みが完了してから光ディスク1周の時間が経過すると、図3(e)に示すようにスレッドを移動させる。スレッドの移動方向は、レンズオフセットの発生方向であり、スレッドの移動量は、レンズオフセット量に相当する。図3(b)に示すように、スレッドを移動させることでレンズオフセットが抑制される。しかし、トラッキング引き込みが完了してから光ディスクが1周するのを待つ為、この間はレンズオフセットが発生した状態である。よって、図3(b)の丸の実線で囲った箇所において、対物レンズのトラック方向の可動範囲を超える可能性がある。なお、図3において、矢印A2はトラッキング引き込みを、矢印B2はレンズオフセットの発生を、矢印C2はスレッドの移動開始を、矢印D2はレンズオフセットの抑制を、矢印T2は光ディスク1周の期間を表す。 In the thread control shown in FIG. 3, the thread is moved after waiting for the optical disk to make one round after the tracking pull-in. The reason for waiting for the optical disk to make one round is to determine whether the lens offset has occurred in the inner circumference side or the outer circumference side during one round and to measure the lens offset amount. . When the time for one round of the optical disk has elapsed after the tracking pull-in is completed, the sled is moved as shown in FIG. The direction of movement of the sled is the direction in which lens offset occurs, and the amount of movement of the sled corresponds to the amount of lens offset. As shown in FIG. 3B, the lens offset is suppressed by moving the sled. However, in order to wait for the optical disk to make one revolution after the tracking pull-in is completed, the lens offset is generated during this period. Therefore, there is a possibility that the movable range in the track direction of the objective lens may be exceeded at the location surrounded by the round solid line in FIG. In FIG. 3, arrow A2 indicates tracking pull-in, arrow B2 indicates the occurrence of lens offset, arrow C2 indicates the start of movement of the sled, arrow D2 indicates suppression of lens offset, and arrow T2 indicates the period of one round of the optical disc. .
 図4は、トラックオフ状態における、光ディスクの偏芯成分(同図(a))、トラッキングエラー信号波形(同図(b))、トラックゼロクロス信号波形(同図(c))、トップエンベロープ信号波形(同図(d))、及びミラー信号波形(同図(e))を示す図である。同図(b)における点線の中心値は基準電圧を示し、同図(a)、(c)~(e)における点線の中心値はゼロを示す。また、図4(b’)~(e’)はそれぞれ、図4(b)~(e)の一部を拡大したものであり、2箇所拡大している。具体的には、図4の矩形領域X1およびX2は、それぞれ図4の矩形領域Y1およびY2を拡大したものである。トラッキングエラー信号は、トラッキングエラー生成部15で生成され、トラックゼロクロス信号は、トラックゼロクロス信号生成部16で生成され、トップエンベロープ信号は、トップエンベロープ信号生成部19で生成され、ミラー信号はミラー信号生成部20で生成される。トラックオフ時は、対物レンズが停止している為、図4に示す各波形は、光ディスクの偏芯成分に依存した波形となる。図4において、トラックゼロクロス信号は、トラッキングエラー信号を中心値(基準電圧)で2値化した信号となる。また、トップエンベロープ信号が正の場合はミラー信号が0、トップエンベロープ信号が負の場合はミラー信号が1となる。なお、図4において、矢印T3は光ディスク1周の期間を表す。 FIG. 4 shows the eccentric component of the optical disc (FIG. 4A), tracking error signal waveform (FIG. 4B), track zero cross signal waveform (FIG. 4C), and top envelope signal waveform in the track-off state. (Drawing (d)) and a figure which shows a mirror signal waveform (figure (e)). The center value of the dotted line in FIG. 7B indicates the reference voltage, and the center value of the dotted line in FIGS. 9A and 9C indicates zero. 4 (b ′) to (e ′) are enlarged views of parts of FIGS. 4 (b) to (e), and are enlarged at two locations. Specifically, the rectangular areas X1 and X2 in FIG. 4 are obtained by enlarging the rectangular areas Y1 and Y2 in FIG. 4, respectively. The tracking error signal is generated by the tracking error generation unit 15, the track zero cross signal is generated by the track zero cross signal generation unit 16, the top envelope signal is generated by the top envelope signal generation unit 19, and the mirror signal is generated by the mirror signal. Generated by the unit 20. Since the objective lens is stopped when the track is off, each waveform shown in FIG. 4 is a waveform depending on the eccentric component of the optical disk. In FIG. 4, the track zero cross signal is a signal obtained by binarizing the tracking error signal with a center value (reference voltage). When the top envelope signal is positive, the mirror signal is 0, and when the top envelope signal is negative, the mirror signal is 1. In FIG. 4, an arrow T3 represents a period of one round of the optical disc.
 図4(b’)~(e’)の2つの拡大波形において、光ディスクの偏芯成分の絶対値が最大となる箇所を四角の網掛けで示しており、対物レンズがマークを通過する時(トップエンベロープ信号が正でミラー信号が0の時)のトラックゼロクロス信号のエッジ部分を丸で示している。ここで、網掛けのない丸はエッジの立ち上がりを表し、網掛けされた丸はエッジの立ち下がりを表す。拡大図の左側の例では、四角の網掛け箇所を境に、丸で示すトラックゼロクロス信号のエッジが立ち上がりの状態から立ち下がりの状態に変化しており、図4(a)において光ディスクの偏芯は下方向から上方向に折り返す。また、拡大図の右側の例では、四角の網掛け箇所を境に、丸で示すトラックゼロクロス信号のエッジが立ち下がりの状態から立ち上がりの状態に変化しており、図4(a)において光ディスクの偏芯は上方向から下方向に折り返す。すなわち、光ディスクの偏芯の折り返しタイミングで、対物レンズがマークを通過する時のトラックゼロクロス信号のエッジが変化する。対物レンズがマークを通過する時のトラックゼロクロス信号のエッジと、光ディスクの偏芯方向(光ディスクの偏芯によるトラック方向におけるトラックの変位の向き)の関係は、光ディスク装置の構成や光ディスクの種類によって一意に決まるので、対物レンズがマークを通過する時のトラックゼロクロス信号のエッジ変化点で、光ディスクの偏芯方向が分かる。但し、対物レンズがマークを通過する時のトラックゼロクロス信号のエッジと、光ディスクの偏芯方向の関係は、予め光ディスクの種類毎に求める必要がある。 In the two enlarged waveforms shown in FIGS. 4 (b ′) to (e ′), the portion where the absolute value of the eccentric component of the optical disk is maximized is indicated by a shaded square, and when the objective lens passes the mark ( The edge portion of the track zero cross signal when the top envelope signal is positive and the mirror signal is 0 is indicated by a circle. Here, a circle without shading represents a rising edge, and a shaded circle represents a falling edge. In the example on the left side of the enlarged view, the edge of the track zero-cross signal indicated by a circle changes from a rising state to a falling state with a square shaded portion as a boundary. In FIG. Wraps from bottom to top. Further, in the example on the right side of the enlarged view, the edge of the track zero cross signal indicated by a circle changes from a falling state to a rising state with a square shaded portion as a boundary. In FIG. The eccentricity is folded back from above. In other words, the edge of the track zero cross signal when the objective lens passes the mark changes at the turn-back timing of the eccentricity of the optical disk. The relationship between the edge of the track zero-cross signal when the objective lens passes the mark and the eccentric direction of the optical disk (the direction of the track displacement in the track direction due to the eccentricity of the optical disk) is unique depending on the configuration of the optical disk device and the type of optical disk. Therefore, the decentering direction of the optical disk can be found at the edge change point of the track zero cross signal when the objective lens passes the mark. However, the relationship between the edge of the track zero cross signal when the objective lens passes the mark and the eccentric direction of the optical disc needs to be obtained in advance for each type of optical disc.
 本実施の形態では、対物レンズがマークを通過する時のトラックゼロクロス信号のエッジが変化するタイミングでトラッキング引き込みを行う。そして、トラッキング引き込みが行われると同時にスレッドを移動させる。ここで、「同時」とは、トラッキング引き込みとスレッドの移動とが完全に同時に行われる場合のみならず、両者が略同時に行われる場合も含む。例えば、上記特許文献3に記載の技術を用いた場合の問題を解消できる程度に同時であればよく、一例では、トラッキング引き込み直後にスレッドを移動させる。上記で示したように、対物レンズがマークを通過する時のトラックゼロクロス信号のエッジがどのように変化するかによって、光ディスクの偏芯方向が分かるので、トラッキング引き込みと同時にその方向に対してスレッドを移動させればよい。また、対物レンズがマークを通過する時のトラックゼロクロス信号のエッジの変化点では、光ディスクの偏芯成分の絶対値が最大となる為、トラッキング引き込み前に予め光ディスクの偏芯量を測定し、トラッキング引き込みと同時に、光ディスクの偏芯量分だけスレッドを移動させればよい。偏芯量は、図4(a)中のDh、すなわち光ディスクの偏芯成分の片側の振幅値に相当する。図3の例では、トラッキング引き込み後に光ディスクが1周するのを待ってからスレッドを移動させるのに対し、本実施の形態では、トラッキング引き込みと同時にスレッドを移動させる。 In this embodiment, the tracking pull-in is performed at the timing when the edge of the track zero cross signal changes when the objective lens passes the mark. Then, the thread is moved simultaneously with the tracking pull-in. Here, “simultaneously” includes not only the case where the tracking pull-in and the movement of the thread are performed completely simultaneously, but also the case where both are performed substantially simultaneously. For example, it is sufficient that the problems described in the technique disclosed in Patent Document 3 are solved at the same time, and in one example, the thread is moved immediately after the tracking pull-in. As shown above, the eccentric direction of the optical disc can be determined by how the edge of the track zero cross signal changes when the objective lens passes the mark. Move it. In addition, the absolute value of the eccentric component of the optical disc becomes the maximum at the edge change point of the track zero cross signal when the objective lens passes the mark. Simultaneously with the drawing, the sled may be moved by the amount of eccentricity of the optical disk. The amount of eccentricity corresponds to Dh in FIG. 4A, that is, the amplitude value on one side of the eccentric component of the optical disk. In the example of FIG. 3, the sled is moved after waiting for the optical disk to make one round after the tracking pull-in, whereas in this embodiment, the sled is moved simultaneously with the tracking pull-in.
 図5は、本実施の形態の、トラックオフ状態からトラッキング引き込み及びスレッド制御が行われるまでの過程における、トラッキングエラー信号波形(同図(a))、レンズエラー信号波形(同図(b))、光ディスクから見た対物レンズの相対位置(同図(c))、トラック横断速度(同図(d))、及びスレッド制御波形(同図(e))を示す図である。図5(a)、(b)、(e)における点線の中心値は基準電圧を示し、図5(c)における点線の中心値は光ディスクの偏芯成分の中心値を示し、図5(d)における点線の中心値はゼロを示す。 FIG. 5 shows a tracking error signal waveform (FIG. 5A) and a lens error signal waveform (FIG. 5B) in the process from the track-off state to the tracking pull-in and thread control in the present embodiment. FIG. 5 is a diagram showing a relative position of the objective lens as viewed from the optical disc (FIG. 3C), a track crossing speed (FIG. 4D), and a thread control waveform (FIG. 3E). The center value of the dotted line in FIGS. 5A, 5B, and 5E indicates the reference voltage, the center value of the dotted line in FIG. 5C indicates the center value of the eccentric component of the optical disc, and FIG. The center value of the dotted line in) indicates zero.
 図5(e)で示すように、本実施の形態では、トラッキング引き込みを行うと同時にスレッドを移動させる為、図5(b)で示すように、トラッキング引き込み後にレンズオフセットが発生せずに済む。なお、スレッドを移動させる為のスレッド制御波形は、図5(e)に示すものに限定されない。また、図5において、矢印A4はトラッキング引き込みを、矢印C4はスレッドの移動開始を表す。 As shown in FIG. 5E, in this embodiment, since the thread is moved simultaneously with the tracking pull-in, no lens offset occurs after the tracking pull-in as shown in FIG. 5B. The thread control waveform for moving the thread is not limited to that shown in FIG. In FIG. 5, an arrow A4 indicates tracking pull-in, and an arrow C4 indicates the start of sled movement.
 次に、図6及び図7を参照して、本発明の実施の形態に係るトラッキング制御装置の動作(トラッキング制御方法)を詳細に説明する。 Next, the operation (tracking control method) of the tracking control apparatus according to the embodiment of the present invention will be described in detail with reference to FIGS.
 図6は、本発明の実施の形態に係るトラッキング制御装置によるトラッキング制御の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of tracking control by the tracking control apparatus according to the embodiment of the present invention.
 トラッキング制御が開始されると(例えば中央制御部30に格納されるプログラムがトラッキング制御の実行を開始すると)、中央制御部30は、トラックゼロクロス信号を取得する(工程S1)。具体的には、トラックゼロクロス信号生成部16は、光ピックアップ11からの電気信号を基にトラッキングエラー信号を生成し、該トラッキングエラー信号を2値化してトラックゼロクロス信号を生成し、中央制御部30は、トラックゼロクロス信号生成部16からトラックゼロクロス信号を取得する。 When the tracking control is started (for example, when a program stored in the central control unit 30 starts executing the tracking control), the central control unit 30 acquires a track zero cross signal (step S1). Specifically, the track zero cross signal generation unit 16 generates a tracking error signal based on the electrical signal from the optical pickup 11, binarizes the tracking error signal to generate a track zero cross signal, and the central control unit 30. Obtains a track zero-cross signal from the track zero-cross signal generator 16.
 次に、中央制御部30は、上記トラックゼロクロス信号を用いて、光ディスクの偏芯量を測定する(工程S2)。具体的には、中央制御部30は、トラックオフ状態で光ディスクが1周する間に、対物レンズ11aが光ディスクのトラックを横断する本数(以下、トラック横断本数と称す)を測定する。トラック横断本数は、トラックゼロクロス信号の1周期を1本とカウントし、光ディスクが1周するまでカウントし続けることで得られる。中央制御部30は、測定されたトラック横断本数から偏芯量を算出する。但し、ここで言う偏芯量は、図4(a)におけるDhに相当し、トラック横断本数をCT、光ディスクのトラックピッチをtpとすると、2×Dh=tp×CT/2となる。なお、算出された光ディスクの偏芯量は記憶部31に格納される。 Next, the central control unit 30 measures the eccentricity of the optical disk using the track zero cross signal (step S2). Specifically, the central control unit 30 measures the number of the objective lenses 11a traversing the track of the optical disc (hereinafter referred to as the track traversing number) while the optical disc makes one round in the track-off state. The number of track crossings can be obtained by counting one cycle of the track zero cross signal as one and continuing counting until the optical disk makes one round. The central control unit 30 calculates the amount of eccentricity from the measured number of track crossings. However, the eccentricity referred to here corresponds to Dh in FIG. 4A, and is 2 × Dh = tp × CT / 2, where CT is the number of track crossings and tp is the track pitch of the optical disk. The calculated eccentricity of the optical disk is stored in the storage unit 31.
 次に、中央制御部30は、トラッキング引き込みコマンドが発行されたかどうかの判定を行う(工程S3)。もしトラッキング引き込みコマンドが発行された場合は(工程S3:YES)、次の工程S4に進む。もしトラッキング引き込みコマンドが発行されない場合は(工程S3:NO)、判定し続ける。 Next, the central control unit 30 determines whether a tracking pull-in command has been issued (step S3). If a tracking pull-in command is issued (step S3: YES), the process proceeds to the next step S4. If the tracking pull-in command is not issued (step S3: NO), the determination is continued.
 工程S4では、中央制御部30は、トップエンベロープ信号又はミラー信号に基づき、対物レンズ11aがマークを通過する時のトラックゼロクロス信号を監視する。すなわち、対物レンズ11aがマークを通過する時のトラックゼロクロス信号のエッジが立ち上がりか立ち下がりかをリアルタイムで確認する。工程S4での監視結果は、記憶部31にリアルタイムに格納される。 In step S4, the central control unit 30 monitors the track zero cross signal when the objective lens 11a passes the mark based on the top envelope signal or the mirror signal. That is, it is checked in real time whether the edge of the track zero cross signal when the objective lens 11a passes the mark rises or falls. The monitoring result in step S4 is stored in the storage unit 31 in real time.
 次に、中央制御部30は、対物レンズ11aがマークを通過する時のトラックゼロクロス信号のエッジが変化したかどうかの判定を行う(工程S5)。具体的には、エッジが立ち上がりから立ち下がり又は立ち下がりから立ち上がりに変化したかどうかの判定を行う。そして、もしエッジが変化した場合は(工程S5:YES)、中央制御部30は、エッジの変化タイミングでトラッキング引き込みを行う(工程S6)。もしエッジが変化しない場合は(工程S5:NO)、変化するまでトラックゼロクロス信号を監視し続ける。 Next, the central control unit 30 determines whether or not the edge of the track zero cross signal when the objective lens 11a passes the mark has changed (step S5). Specifically, it is determined whether the edge has changed from rising to falling or falling to rising. If the edge changes (step S5: YES), the central control unit 30 performs tracking pull-in at the edge change timing (step S6). If the edge does not change (step S5: NO), the track zero cross signal is continuously monitored until it changes.
 次に、中央制御部30は、トラッキング引き込みが成功したかどうかの判定を行う(工程S7)。もし成功すれば(工程S7:YES)、次の工程S8に進み、失敗した場合は(工程S7:NO)、工程S4に戻り、再びトラックゼロクロス信号を監視する。 Next, the central control unit 30 determines whether the tracking pull-in is successful (step S7). If it succeeds (step S7: YES), the process proceeds to the next step S8. If it fails (step S7: NO), the process returns to step S4 and the track zero cross signal is monitored again.
 工程S8では、中央制御部30は、トラッキング引き込みの開始時におけるトラックゼロクロス信号のエッジを基に、スレッドの移動方向を決定する。具体的には、中央制御部30は、工程S5において、オントラック時のトラックゼロクロス信号のエッジがどのように変化したか(エッジが立ち上がりから立ち下がりに変化したか、立ち下がりから立ち上がりに変化したか)によって、スレッドの移動方向を決定する。より具体的には、中央制御部30は、予め光ディスクの種類毎に求められた、対物レンズがマークを通過する時のトラックゼロクロス信号のエッジと、光ディスクの偏芯方向との関係を基に、トラッキング制御対象の光ディスクの種類と、トラッキング引き込み時のエッジの変化とから、スレッドの移動方向を決定する。上記の関係は、例えば記憶部31に記憶されている。 In step S8, the central control unit 30 determines the moving direction of the sled based on the edge of the track zero cross signal at the start of tracking pull-in. Specifically, in step S5, the central control unit 30 determines how the edge of the track zero cross signal at the time of on-track has changed (whether the edge has changed from rising to falling, or has changed from falling to rising). ) To determine the moving direction of the sled. More specifically, the central control unit 30 is based on the relationship between the edge of the track zero-cross signal when the objective lens passes the mark and the eccentric direction of the optical disc, which is obtained in advance for each type of optical disc. The moving direction of the sled is determined from the type of the optical disk to be tracked and the change in edge at the time of tracking pull-in. The above relationship is stored in the storage unit 31, for example.
 次に、中央制御部30は、工程S2で測定された偏芯量を基に、スレッドの移動量を決定する(工程S9)。例えば、中央制御部30は、工程S2で測定された偏芯量Dhをスレッドの移動量として決定する。 Next, the central control unit 30 determines the moving amount of the thread based on the eccentricity measured in step S2 (step S9). For example, the central control unit 30 determines the eccentric amount Dh measured in step S2 as the movement amount of the thread.
 次に、中央制御部30は、スレッド制御部22を制御して、工程S8で決定された移動方向に、工程S9で決定された移動量だけスレッドを移動させる(工程S10)。 Next, the central control unit 30 controls the thread control unit 22 to move the thread by the movement amount determined in step S9 in the movement direction determined in step S8 (step S10).
 工程S10において、スレッドが移動完了した場合、中央制御部30は、トラッキング制御を終了する。本実施の形態におけるトラッキング制御終了後は、スレッド制御方法に制限はない。 In step S10, when the movement of the thread is completed, the central control unit 30 ends the tracking control. After the end of tracking control in this embodiment, the thread control method is not limited.
 また、工程S10において、トラッキング引き込み直後に、光ディスクの偏芯量分だけスレッドを移動させると、スレッドの振動等の影響で、設定するスレッド移動量よりも多くスレッドが移動する場合がある。この対応策として、スレッド移動量に制限が設けられる。具体的には、中央制御部30は、工程S10において、スレッドの移動量を所定量(上限値)以下に制限する。但し、所定量は任意でよく、また制限は行われなくてもよい。 In step S10, if the sled is moved by the amount of eccentricity of the optical disk immediately after the tracking pull-in, the sled may move more than the set sled movement due to the influence of sled vibration or the like. As a countermeasure, there is a limit on the amount of thread movement. Specifically, the central control unit 30 limits the movement amount of the thread to a predetermined amount (upper limit value) or less in step S10. However, the predetermined amount may be arbitrary and may not be limited.
 なお、図6の工程S1、S2、S5、S6、S8、S9、S10は、例えば、それぞれ図1のトラックゼロクロス信号取得部32、偏芯量測定部33、判定部34、トラッキング引き込み部35、移動方向決定部36、移動量決定部37、及びスレッド移動部38により実行される。 Note that the steps S1, S2, S5, S6, S8, S9, and S10 in FIG. 6 include, for example, the track zero cross signal acquisition unit 32, the eccentricity measurement unit 33, the determination unit 34, and the tracking pull-in unit 35 in FIG. This is executed by the movement direction determination unit 36, the movement amount determination unit 37, and the sled movement unit 38.
 図7は、本発明の実施の形態に係るトラッキング制御装置によるトラッキング制御の別の一例を示すフローチャートである。図7のフローチャートは、図6のフローチャートに工程S11が追加されたものである。
 図7の工程S1~S10は、図6の工程S1~S10と同様の為、説明は省略する。
FIG. 7 is a flowchart showing another example of tracking control by the tracking control apparatus according to the embodiment of the present invention. The flowchart of FIG. 7 is obtained by adding step S11 to the flowchart of FIG.
Steps S1 to S10 in FIG. 7 are the same as steps S1 to S10 in FIG.
 図7では、工程S5においてトラックゼロクロス信号のエッジが変化するかどうかを判定する前に、中央制御部30は、トラック横断周期を測定し、トラック横断周期が所定の値以上かどうかを判定する(工程S11)。この場合、中央制御部30は、トラック横断周期をリアルタイムで計測する。トラック横断周期は、トラックゼロクロス信号の周期に相当し、トラックゼロクロス信号を用いて周期計測が行われる。トラック横断周期の計測結果は、トラッキング引き込みのタイミングを決める際の指標となる。工程S11を導入する理由は、図4においてトラッキングエラー信号波形が密になる箇所、すなわちトラック横断周期が小さくなる箇所では、f特(周波数特性)によりトラックゼロクロス信号が正確に生成されない可能性があり、これにより、対物レンズがマークを通過する時のトラックゼロクロス信号のエッジが、トラッキングエラー波形が密になる箇所で変化する可能性があるからである。このエッジの変化によるトラッキング引き込み開始を防ぐ為に、トラック横断周期がある程度大きくなってから、工程S5に進む。 In FIG. 7, before determining whether the edge of the track zero cross signal changes in step S5, the central control unit 30 measures the track crossing period and determines whether the track crossing period is equal to or greater than a predetermined value ( Step S11). In this case, the central control unit 30 measures the track crossing period in real time. The track crossing period corresponds to the period of the track zero cross signal, and the period measurement is performed using the track zero cross signal. The measurement result of the track crossing period is an index for determining the timing of tracking pull-in. The reason for introducing the step S11 is that the track zero cross signal may not be accurately generated due to the f characteristic (frequency characteristics) in the portion where the tracking error signal waveform is dense in FIG. This is because the edge of the track zero cross signal when the objective lens passes the mark may change at a location where the tracking error waveform is dense. In order to prevent the start of tracking pull-in due to this edge change, the process proceeds to step S5 after the track crossing period has increased to some extent.
 以上に説明したように、実施の形態に係るトラッキング制御装置及びトラッキング制御方法によれば、光ディスク40に対してトラッキング引き込みを行うと同時にスレッドを移動させるので、レンズオフセットを早く抑制することができる。これにより、例えば、対物レンズが可動範囲を超えることを回避することができ、安定したサーボ動作を実現することができる。 As described above, according to the tracking control device and the tracking control method according to the embodiment, since the thread is moved simultaneously with the tracking pull-in to the optical disc 40, the lens offset can be suppressed quickly. Thereby, for example, it can be avoided that the objective lens exceeds the movable range, and a stable servo operation can be realized.
 以上説明した実施の形態に係るトラッキング制御装置及びトラッキング制御方法は、電子回路などのハードウェア資源のみにより実現されてもよいし、ハードウェア資源とソフトウェアとの協働により実現されてもよい。ハードウェア資源とソフトウェアとの協働により実現される場合、トラッキング制御装置及びトラッキング制御方法は、例えばコンピュータプログラムがコンピュータにより実行されることによって実現され、より具体的には、ROM(Read Only Memory)等の記録媒体に記録されたコンピュータプログラムが主記憶装置に読み出されて中央処理装置(CPU:Central Processing Unit)により実行されることによって実現される。コンピュータプログラムは、光ディスク等のコンピュータ読み取り可能な記録媒体に記録されて提供されてもよいし、インターネット等の通信回線を介して提供されてもよい。 The tracking control device and the tracking control method according to the embodiment described above may be realized only by hardware resources such as an electronic circuit, or may be realized by cooperation of hardware resources and software. When realized by the cooperation of hardware resources and software, the tracking control device and the tracking control method are realized by, for example, a computer program being executed by a computer, and more specifically, ROM (Read Only Memory). This is realized by reading a computer program recorded on a recording medium such as a main storage device and executing it by a central processing unit (CPU). The computer program may be provided by being recorded on a computer-readable recording medium such as an optical disk, or may be provided via a communication line such as the Internet.
 なお、本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の態様で実施することができる。 It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the gist of the present invention.
 例えば、上記実施の形態では、トップエンベロープ信号生成部19及びミラー信号生成部20を有する構成を例示したが、いずれか一方のみを有する構成であってもよい。トップエンベロープ信号生成部19及びミラー信号生成部20を有する構成では、トラッキング制御装置は、光ディスクの種類等に応じて、トップエンベロープ信号及びミラー信号を選択的に使用してもよい。例えば、光ディスクによってミラー信号が検出されないものがあるが、この場合、トップエンベロープ信号を基にトラッキング制御を行う。また、上記実施の形態では、対物レンズがマークを通過するタイミングを、トップエンベロープ信号、又はミラー信号で検知しているが、これらの信号に限らず、マークを検出する信号であれば他の信号で検知してもよい。マークを検知するための信号は、光ディスクの情報記録面からの反射光により生成することができる。 For example, in the above-described embodiment, the configuration including the top envelope signal generation unit 19 and the mirror signal generation unit 20 is illustrated, but a configuration including only one of them may be used. In the configuration having the top envelope signal generation unit 19 and the mirror signal generation unit 20, the tracking control apparatus may selectively use the top envelope signal and the mirror signal according to the type of the optical disc. For example, some optical discs do not detect a mirror signal. In this case, tracking control is performed based on the top envelope signal. In the above embodiment, the timing at which the objective lens passes the mark is detected by the top envelope signal or the mirror signal. However, the present invention is not limited to these signals, and any other signal may be used as long as it is a signal for detecting the mark. May be detected. A signal for detecting the mark can be generated by reflected light from the information recording surface of the optical disc.
 また、上記実施の形態では、測定された偏芯量を基にスレッドの移動量を決定する構成を例示したが、スレッドの移動量は他の方法で決められてもよく、例えば予め設定された固定値でもよい。 In the above-described embodiment, the configuration in which the amount of movement of the thread is determined based on the measured amount of eccentricity is exemplified. However, the amount of movement of the thread may be determined by other methods, for example, set in advance. It may be a fixed value.
 10 光ディスク装置、 11 光ピックアップ、 11a 対物レンズ、 11b 受光素子、 12 スピンドルモーター、 13 レーザー制御部、 14 スピンドル制御部、 15 トラッキングエラー生成部、 16 トラックゼロクロス信号生成部、 17 再生信号生成部、 19 トップエンベロープ信号生成部、 20 ミラー信号生成部、 21 対物レンズ制御部、 22 スレッド制御部、 30 中央制御部、 31 記憶部、 32 トラックゼロクロス信号取得部、 33 偏芯量測定部、 34 判定部、 35 トラッキング引き込み部、 36 移動方向決定部、 37 移動量決定部、 38 スレッド移動部、 40 光ディスク。 10 optical disk device, 11 optical pickup, 11a objective lens, 11b light receiving element, 12 spindle motor, 13 laser control unit, 14 spindle control unit, 15 tracking error generation unit, 16 track zero cross signal generation unit, 17 reproduction signal generation unit, 19 Top envelope signal generation unit, 20 mirror signal generation unit, 21 objective lens control unit, 22 thread control unit, 30 central control unit, 31 storage unit, 32 track zero cross signal acquisition unit, 33 eccentricity measurement unit, 34 determination unit, 35 tracking pull-in unit, 36 moving direction determining unit, 37 moving amount determining unit, 38 thread moving unit, 40 optical disk.

Claims (10)

  1.  光ディスクの情報記録面にレーザー光を対物レンズにより集光して照射し、該光ディスクの情報記録面からの反射光を受光して電気信号に変換する光ピックアップのトラッキング制御方法であって、
     前記電気信号から生成されるトラッキングエラー信号を所定の閾値で2値化することによって得られるトラックゼロクロス信号を取得するトラックゼロクロス信号取得ステップと、
     トラックオフ時に、前記対物レンズが前記光ディスクのトラック上のマークを通過する時の前記トラックゼロクロス信号のエッジが変化したかどうかを判定する判定ステップと、
     前記判定ステップの判定結果に基づき、前記エッジが変化するタイミングでトラッキング引き込みを開始するトラッキング引き込みステップと、
     前記トラッキング引き込みの開始時における前記トラックゼロクロス信号のエッジを基に、前記光ピックアップを移動させるスレッドの移動方向を決定する移動方向決定ステップと、
     前記トラッキング引き込みが行われると同時に、前記決定された移動方向に所定の移動量だけ前記スレッドを移動させるスレッド移動ステップと、
     を有することを特徴とするトラッキング制御方法。
    A method for tracking control of an optical pickup that condenses and irradiates an information recording surface of an optical disc with a laser beam by an objective lens, receives reflected light from the information recording surface of the optical disc and converts it into an electrical signal,
    A track zero-cross signal acquisition step of acquiring a track zero-cross signal obtained by binarizing a tracking error signal generated from the electrical signal with a predetermined threshold;
    A determination step of determining whether an edge of the track zero-cross signal has changed when the objective lens passes a mark on a track of the optical disc when the track is off;
    Based on the determination result of the determination step, a tracking pull-in step for starting tracking pull-in at a timing when the edge changes;
    A moving direction determining step for determining a moving direction of a sled that moves the optical pickup based on an edge of the track zero-cross signal at the start of the tracking pull-in;
    A sled moving step of moving the sled by a predetermined amount of movement in the determined moving direction simultaneously with the tracking pull-in;
    A tracking control method comprising:
  2.  トラックオフ時に、前記トラックゼロクロス信号を用いて、前記光ディスクの偏芯量を測定する偏芯量測定ステップと、
     前記測定された偏芯量を基に、前記スレッドの移動量を決定する移動量決定ステップと、
     をさらに有し、
     前記スレッド移動ステップでは、前記決定された移動量だけ前記スレッドを移動させることを特徴とする請求項1に記載のトラッキング制御方法。
    An eccentricity measuring step for measuring the eccentricity of the optical disc using the track zero-cross signal when the track is off;
    A moving amount determining step for determining a moving amount of the thread based on the measured eccentricity amount;
    Further comprising
    The tracking control method according to claim 1, wherein in the sled moving step, the sled is moved by the determined moving amount.
  3.  前記移動量決定ステップでは、前記スレッドの移動量を所定量以下に制限することを特徴とする請求項2に記載のトラッキング制御方法。 3. The tracking control method according to claim 2, wherein in the movement amount determination step, the movement amount of the thread is limited to a predetermined amount or less.
  4.  前記トラックゼロクロス信号を基に、トラック横断周期を測定し、該トラック横断周期が所定の値以上になった場合に、前記判定ステップを実行することを特徴とする請求項1から3のいずれか1項に記載のトラッキング制御方法。 4. The track crossing period is measured based on the track zero cross signal, and the determination step is executed when the track crossing period becomes a predetermined value or more. The tracking control method according to the item.
  5.  前記移動方向決定ステップでは、予め光ディスクの種類毎に求められた、前記トラックゼロクロス信号のエッジと光ディスクの偏芯方向との関係を基に、前記スレッドの移動方向を決定することを特徴とする請求項1から4のいずれか1項に記載のトラッキング制御方法。 The moving direction determining step determines the moving direction of the sled based on the relationship between the edge of the track zero cross signal and the eccentric direction of the optical disk, which is obtained in advance for each type of optical disk. Item 5. The tracking control method according to any one of Items 1 to 4.
  6.  光ディスクの情報記録面にレーザー光を対物レンズにより集光して照射し、該光ディスクの情報記録面からの反射光を受光して電気信号に変換する光ピックアップのトラッキング制御装置であって、
     前記電気信号から生成されるトラッキングエラー信号を所定の閾値で2値化することによって得られるトラックゼロクロス信号を取得するトラックゼロクロス信号取得手段と、
     トラックオフ時に、前記対物レンズが前記光ディスクのトラック上のマークを通過する時の前記トラックゼロクロス信号のエッジが変化したかどうかを判定する判定手段と、
     前記判定手段の判定結果に基づき、前記エッジが変化するタイミングでトラッキング引き込みを開始するトラッキング引き込み手段と、
     前記トラッキング引き込みの開始時における前記トラックゼロクロス信号のエッジを基に、前記光ピックアップを移動させるスレッドの移動方向を決定する移動方向決定手段と、
     前記トラッキング引き込みが行われると同時に、前記決定された移動方向に所定の移動量だけ前記スレッドを移動させるスレッド移動手段と、
     を有することを特徴とするトラッキング制御装置。
    A tracking control device for an optical pickup that condenses and irradiates an information recording surface of an optical disc with a laser beam by an objective lens, receives reflected light from the information recording surface of the optical disc and converts it into an electrical signal,
    Track zero cross signal acquisition means for acquiring a track zero cross signal obtained by binarizing a tracking error signal generated from the electrical signal with a predetermined threshold;
    Determining means for determining whether an edge of the track zero cross signal has changed when the objective lens passes a mark on a track of the optical disc at the time of track off;
    Tracking pull-in means for starting tracking pull-in at the timing when the edge changes based on the determination result of the determination means;
    A moving direction determining means for determining a moving direction of a sled that moves the optical pickup based on an edge of the track zero-cross signal at the start of the tracking pull-in;
    A sled moving means for moving the sled by a predetermined moving amount in the determined moving direction simultaneously with the tracking pull-in;
    A tracking control device comprising:
  7.  トラックオフ時に、前記トラックゼロクロス信号を用いて、前記光ディスクの偏芯量を測定する偏芯量測定手段と、
     前記測定された偏芯量を基に、前記スレッドの移動量を決定する移動量決定手段と、
     をさらに有し、
     前記スレッド移動手段は、前記決定された移動量だけ前記スレッドを移動させることを特徴とする請求項6に記載のトラッキング制御装置。
    Eccentricity measuring means for measuring the eccentricity of the optical disc using the track zero cross signal when the track is off,
    A moving amount determining means for determining a moving amount of the thread based on the measured eccentricity amount;
    Further comprising
    The tracking control apparatus according to claim 6, wherein the sled moving unit moves the sled by the determined amount of movement.
  8.  前記移動量決定手段は、前記スレッドの移動量を所定量以下に制限することを特徴とする請求項7に記載のトラッキング制御装置。 The tracking control device according to claim 7, wherein the movement amount determination means limits the movement amount of the thread to a predetermined amount or less.
  9.  前記トラックゼロクロス信号を基に、トラック横断周期を測定し、該トラック横断周期が所定の値以上になった場合に、前記判定手段による判定を実行することを特徴とする請求項6から8のいずれか1項に記載のトラッキング制御装置。 9. The track crossing period is measured based on the track zero cross signal, and the determination by the determination unit is executed when the track crossing period exceeds a predetermined value. The tracking control device according to claim 1.
  10.  前記移動方向決定手段は、予め光ディスクの種類毎に求められた、前記トラックゼロクロス信号のエッジと光ディスクの偏芯方向との関係を基に、前記スレッドの移動方向を決定することを特徴とする請求項6から9のいずれか1項に記載のトラッキング制御装置。 The moving direction determining means determines the moving direction of the sled based on the relationship between the edge of the track zero cross signal and the eccentric direction of the optical disk, which is obtained in advance for each type of optical disk. Item 10. The tracking control device according to any one of Items 6 to 9.
PCT/JP2012/069953 2011-09-08 2012-08-06 Tracking control method and tracking control device WO2013035470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011195662A JP2014225306A (en) 2011-09-08 2011-09-08 Tracking control method and tracking controller
JP2011-195662 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035470A1 true WO2013035470A1 (en) 2013-03-14

Family

ID=47831922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069953 WO2013035470A1 (en) 2011-09-08 2012-08-06 Tracking control method and tracking control device

Country Status (2)

Country Link
JP (1) JP2014225306A (en)
WO (1) WO2013035470A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278021A (en) * 1988-09-14 1990-03-19 Nec Corp Recording disk controller
JPH03207029A (en) * 1990-01-10 1991-09-10 Ricoh Co Ltd Decentering detector
JP2008299963A (en) * 2007-05-31 2008-12-11 Hitachi Ltd Optical disk device, and tracking and slider control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278021A (en) * 1988-09-14 1990-03-19 Nec Corp Recording disk controller
JPH03207029A (en) * 1990-01-10 1991-09-10 Ricoh Co Ltd Decentering detector
JP2008299963A (en) * 2007-05-31 2008-12-11 Hitachi Ltd Optical disk device, and tracking and slider control method

Also Published As

Publication number Publication date
JP2014225306A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
JP2002117534A (en) Optical disk reproducing device and kind of disk discriminating method
KR101051858B1 (en) Tracking control device, tracking control method and recording medium of optical disc
JP4672558B2 (en) Disc discriminating method and disc discriminating apparatus
US5577009A (en) Tracking control system for generating a variable still jump signal
JP5314884B2 (en) Optical disk drive device
WO2013035470A1 (en) Tracking control method and tracking control device
CN100367377C (en) Optical pickup device and optical disk device
JP4099550B2 (en) Disk drive device
JP5355773B2 (en) Disk unit
US20150085631A1 (en) Tracking control method, tracking control device, and optical disc device
JP5762657B2 (en) TRACKING CONTROL DEVICE, TRACKING CONTROL METHOD, AND OPTICAL DISK DEVICE
US8189441B2 (en) Method of recognizing track pitch of optical disk
JP2008282439A (en) Optical pickup device and optical disk unit using the same
JP3937173B2 (en) Disk unit
US20110164485A1 (en) Apparatus and method for controlling layer jump in optical disc drive
JP2010135018A (en) Optical disk device, track position error detecting method, and program
JP5076846B2 (en) Optical disk device
JP4396707B2 (en) Optical disk device
JP3946165B2 (en) Radial tilt detection method, radial tilt detection device, disk drive, and disk recording or playback device
JP2007328876A (en) Optical disk signal processor, optical disk drive including the same, and method for controlling the optical disk drive
JP2009003988A (en) Tracking control device
WO2007040055A1 (en) Servo control device, servo control method, and servo control program
JP2006065909A (en) Optical disk reproducing apparatus
JP2004046921A (en) Optical disk device and revolution control method of optical disk
JP2011181126A (en) Optical disk discriminating device, optical disk playback device, optical disk discriminating method, optical disk discriminating program, and recording medium with the optical disk discriminating program stored therein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP