WO2013035368A1 - Elevator stopping position-detecting device - Google Patents

Elevator stopping position-detecting device Download PDF

Info

Publication number
WO2013035368A1
WO2013035368A1 PCT/JP2012/059470 JP2012059470W WO2013035368A1 WO 2013035368 A1 WO2013035368 A1 WO 2013035368A1 JP 2012059470 W JP2012059470 W JP 2012059470W WO 2013035368 A1 WO2013035368 A1 WO 2013035368A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
coil
circuit
test
resonance
Prior art date
Application number
PCT/JP2012/059470
Other languages
French (fr)
Japanese (ja)
Inventor
猪又 憲治
西沢 博志
鹿井 正博
白附 晶英
佳正 渡邊
甚 井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2013035368A1 publication Critical patent/WO2013035368A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils

Definitions

  • the present invention relates to an apparatus for detecting a stop position of an elevator car, for example, a landing position on each floor.
  • the elevator needs to move the car on which the passenger is boarding up and down and to stop the car accurately on each floor.
  • an elevator stop position sensor is used.
  • a metallic triangular plate is installed on the wall of each floor, and the triangular plate is detected by a magnetic coupling sensor or an eddy current sensor attached to the car.
  • the triangle plate is installed on the wall so that the deepest part of the depression of the triangle plate comes to the front of the eddy current sensor when the height of the cage floor and the floor coincide. As a result, it is determined that the height of the basket floor and the floor coincide with each other when the eddy current is minimized.
  • the stop position is detected by using a protruding structure such as a metal plate attached to the wall side. And in order to detect an eddy current, it is necessary to make the space
  • An object of the present invention is to provide an elevator stop position detection device that can safely and accurately detect a stop position of an elevator car.
  • the first aspect of the present invention includes a reference member installed on the wall side of a building,
  • An elevator stop position detection device comprising a position detection unit installed on a moving body of an elevator,
  • the reference member includes a test resonance circuit including a test coil,
  • the position detector is A first detection coil and a second detection coil which are electromagnetically coupled to the test coil and are arranged in parallel along a moving direction of the moving body;
  • a differential circuit for outputting a difference between the output of the first detection coil and the output of the second detection coil;
  • An adder circuit for outputting the sum of the output of the first detection coil and the output of the second detection coil;
  • An arithmetic circuit that outputs a displacement direction and a displacement amount of the moving body from a value obtained by normalizing the output of the differential circuit with the output of the adder circuit.
  • the position detection unit further includes a determination circuit that outputs an elevator door open / close permission signal when the calculated displacement amount is within a predetermined range.
  • the position detection unit includes a series circuit including the first detection coil and the second detection coil, and a detection resonance circuit having the same resonance frequency as the resonance frequency F of the resonance circuit to be detected; It is preferable to further include an oscillator that supplies a sinusoidal signal including a resonance frequency F to the detection resonance circuit.
  • the coil of the reference member preferably has a twist shape in which coil windings intersect.
  • the reference member includes a first test resonance circuit including a first test coil and a second test resonance circuit including a second test coil, and the resonance of the first test resonance circuit.
  • the frequency F1 is different from the resonance frequency F2 of the second test resonance circuit, and the first test coil and the second test coil have different lengths along the moving direction of the moving body.
  • the position detection unit includes a first detection resonance circuit including a series circuit including the first detection coil and the second detection coil, and having the same resonance frequency as the resonance frequency F1 of the first detection resonance circuit; It is preferable to include a second detection resonance circuit including a series circuit including the first detection coil and the second detection coil, and having the same resonance frequency as the resonance frequency F2 of the second resonance circuit to be tested.
  • the reference member includes an information transmission device that operates by power received by the test coil
  • the information transmitting device includes an arithmetic processing unit that operates according to a program stored in advance, and transmits information to the position detecting unit by changing a resonance frequency of the resonance circuit to be tested based on an output of the arithmetic processing unit. It is preferable.
  • the present invention by utilizing the electromagnetic coupling between the test coil of the reference member and the first and second detection coils of the position detection unit, it is not necessary to make both approach excessively and there is a risk of contact or the like. There is no. Further, since it is fundamentally different from the conventional eddy current type, no malfunction occurs even if there is a metal around it. Furthermore, by using the output of the first detection coil and the output of the second detection coil, it is possible to measure the displacement amount and the displacement direction from the zero point.
  • FIG. 1 is a cross-sectional view showing a typical elevator landing state.
  • the elevator car 1 is suspended by one end of a rope, and a counterweight is fixed to the other end of the rope.
  • the rope is stretched around a sheave that is rotationally driven by a motor.
  • the motor is generally provided with an encoder for detecting the rotational position, and the moving direction and moving amount of the rope are managed by an elevator control device (not shown).
  • an elevator control device not shown.
  • a device for detecting the stop position of the car 1 is separately provided.
  • a landing reference plate 6 is installed for each floor on the wall side of the building, while a position detector 5 is attached to the elevator car 1 via a mounting plate 4. Is installed.
  • the landing reference plate 6 of each floor is positioned so as to face the position detection unit 5 in a state where the floor surface 2 and the car floor surface 3 of the landing are coincident with each other in a horizontal plane (landing zero point). 1 shows an example in which the landing reference plate 6 is installed below the entrance opening on each floor, the landing reference plate 6 may be installed above or on the side of the entrance opening.
  • the installation position of the position detector 5 can be changed according to the installation position of the floor reference plate.
  • the cable 7 is a bundle of a power cable that supplies power between the car 1 and the elevator control device, a signal cable that transmits signals, and the like.
  • FIG. 2 is a block diagram showing a configuration according to Embodiment 1 of the present invention.
  • the landing reference plate 6 includes a test resonance circuit including a test coil 11 and a capacitor 12.
  • a capacitor is provided at both ends of a coil formed of a circuit pattern on a printed circuit board or a planar enameled wire. It can be realized by mounting.
  • the test coil 11 and the capacitor 12 are preferably embedded in an electrically insulating plate for dust prevention and waterproofing.
  • the position detection unit 5 includes two detection coils 13 and 14 arranged in parallel along the moving direction of the cage 1.
  • the detection coils 13 and 14 have the same self-inductance and are connected in series, and both ends thereof are connected to an oscillator 17 via capacitors 15 and 16 having the same capacitance.
  • a detection resonance circuit composed of a series circuit of the detection coils 13 and 14 and a series circuit of the capacitors 15 and 16 is configured, and the resonance frequency thereof is set to coincide with the resonance frequency F of the resonance circuit to be tested.
  • the oscillator 17 supplies a sine wave signal including the resonance frequency F to the detection resonance circuit.
  • the magnetic coupling amount M1 between the test coil 11 and the detection coil 13 is as follows.
  • the magnetic coupling amount M2 between the detection coil 11 and the detection coil 14 becomes larger.
  • the detection coils 13 and 14 are each provided with an intermediate tap.
  • a signal S1 is output from the intermediate tap of the detection coil 13 with the connection point of the detection coils 13 and 14 as a reference voltage, and from the intermediate tap of the detection coil 14 Signal S2 is output.
  • the detection circuit 18 detects and smoothes the signal S1 and converts it to a DC voltage signal V1.
  • the detection circuit 19 detects and smoothes the signal S2 and converts it to a DC voltage signal V2.
  • the variable gain amplifier circuit 22 is configured so that the amplification factor changes according to the magnitude of the addition signal ⁇ V, and outputs a signal ⁇ D obtained by normalizing the difference signal ⁇ V with the addition signal ⁇ V. This signal ⁇ D represents the displacement amount and the displacement direction from the detection zero point.
  • the determination circuit 23 is composed of a window comparator or the like, and compares the normalized signal ⁇ D with the two reference voltages VR1 and VR2 output from the reference voltage circuit 24.
  • the reference voltage VR1 corresponds to the upper limit of the allowable landing range
  • the reference voltage VR2 corresponds to the lower limit of the allowable landing range.
  • the determination circuit 23 outputs the door opening / closing permission signal EN at a high level if the normalization signal ⁇ D is within the allowable landing range, and sets the opening / closing permission signal EN to a low level if it is outside the allowable landing range.
  • the opening / closing permission signal EN is transmitted to the elevator control device via the determination terminal 70, the signal ⁇ D via the terminal 71, and the addition signal ⁇ V via the terminal 73.
  • FIG. 3 is a graph showing the relationship between the relative positions of the landing reference plate 6 and the position detector 5 and the voltage signals V1 and V2.
  • the horizontal axis indicates the voltage signal V1
  • the vertical axis indicates the voltage signal V2.
  • V1 V2 is a zero landing point, that is, in a straight line connecting the center of the detection coil 13 and the center of the detection coil 14 on the vertical line at the center of the coil 11 to be detected.
  • the voltage signals V1 and V2 are on the line segment 25.
  • the magnitudes of the voltage signals V1 and V2 change because the distance between the landing reference plate 6 and the position detector 5 varies.
  • the line segment orthogonal to the line segment 25 represents that the voltage signals V1 and V2 change according to the interval variation between the landing reference plate 6 and the position detection unit 5.
  • the line segment 26 shows changes in the voltage signals V1 and V2 when the position detection unit 5 moves in the vertical direction in a state where the interval is larger by 0.5 cm than the reference interval (0 cm).
  • the line segment 27 indicates voltage signals V1 and V2 when the distance between the landing reference plate 6 and the position detection unit 5 changes in a state where the position detection unit 5 is displaced by 1 cm downward from the landing reference plate 6. Showing change.
  • the relative positions of the landing reference plate 6 and the position detection unit 5 in the horizontal and vertical directions can be determined by converting the measured voltage signals V1 and V2 with the graph of FIG.
  • the vertical displacement is obtained from the difference signal ⁇ V between the voltage signals V1 and V2.
  • 9.7 V is a value approximately 1.01 times larger than 9.6 V
  • 0.0989 V which is a value obtained by dividing the difference signal ⁇ V by this ratio 1.01, is obtained, and a constant value is obtained as a correction coefficient.
  • the difference signal ⁇ V varies even if the vertical displacement amount is the same. Therefore, by normalizing the difference signal ⁇ V with the addition signal ⁇ V, it is possible to compensate for an error due to a variation in the distance between the landing reference plate 6 and the position detection unit 5.
  • a memory mapping method may be adopted as an alternative. That is, instead of the differential circuit 20, the adder circuit 21, and the variable gain amplifier circuit 22, a computer incorporating a memory and an A / D converter is used, and the voltage signals V1, V2 as shown in FIG.
  • the relationship between the distance fluctuation amount and the vertical displacement amount between the landing reference plate 6 and the position detection unit 5 is stored in advance in a memory as a map, and when the actually measured voltage signals V1 and V2 are input, these values are set.
  • the corresponding interval fluctuation amount and vertical displacement amount are output.
  • the method using the four arithmetic operations can simplify the device configuration and reduce the price, while the memory mapping method can easily perform non-linear operations and achieve high accuracy.
  • the resonance frequency F is transmitted and received using the resonance circuit to be tested of the landing reference plate 6 and the detection resonance circuit of the position detection unit 5, even if there is a metal plate around it, there is an effect.
  • the coupling amount changes due to the influence of eddy current. Therefore, when the metal approaches the landing reference plate 6, the magnetic property is placed between the landing reference plate 6 and the metal. It is preferable to put a sheet. In this case, it is preferable to apply the magnetic sheet in the same manner to the landing reference plates 6 of all the floors.
  • the relative position between the landing reference plate 6 and the position detection unit 5 can be measured with high accuracy. Therefore, by controlling the stop position of the car 1, the floor 2 and the car floor of the landing are controlled. The surface 3 can be exactly matched. In addition, since the interval between the landing reference plate 6 and the position detection unit 5 can be measured with high accuracy, application such as failure diagnosis becomes possible.
  • FIG. FIG. 4 is a block diagram showing a configuration according to Embodiment 2 of the present invention.
  • the present embodiment is the same as the first embodiment with respect to the position detection unit 5, but is different in that the test coil 11 of the landing reference plate 6 has a twist shape.
  • the test coil 11 can be constituted by a circuit pattern on a printed board or an enameled wire wound in a planar shape, and in this embodiment, coil windings intersect twice in the middle.
  • the number of twists may be one or three or more.
  • the center point of the center ring is arranged so as to be positioned in front of the position detection unit 5 when the landing floor surface 2 and the basket floor surface 3 coincide with each other. To do.
  • the midpoint of the upper and lower rings should be at the door zone position. Since the length of the door zone is usually 30 cm in a conventional elevator using a landing plate, the distance between the midpoints of the upper ring and the lower ring is set to 30 cm again.
  • FIG. 5 is a graph showing voltage signals V1, V2 and a difference signal ⁇ V detected when the elevator car 1 moves vertically.
  • a waveform 61 shows a change in the voltage signal V ⁇ b> 1 of the detection coil 13 with respect to the vertical position of the position detector 5.
  • a waveform 62 shows the change of the voltage signal V2 of the detection coil 14 with respect to the vertical position of the position detector 5. From the waveforms 61 and 62, it can be seen that the voltage signals V1 and V2 coincide at the midpoint of the upper ring, the midpoint of the center ring, and the midpoint of the lower ring.
  • a waveform 63 indicates a change in the difference signal ⁇ V between the voltage signal V1 and the voltage signal V2.
  • the waveform 63 is positive, and at the midpoint of the upper ring.
  • the elevator control device monitors the normalization signal ⁇ D from the terminal 71.
  • the detection coil 13 or the detection coil 14 is approaching the upper ring or the lower ring of the coil 11 to be tested. Can be recognized in advance, and then it can be determined that the vehicle has entered the door zone when the signal ⁇ D becomes 0V.
  • the elevator control device can smoothly shift to the motor deceleration operation and the brake operation, and then control the cage stop position so that the signal ⁇ D becomes 0 V, thereby making the cage floor surface the floor of the landing. It can be exactly matched to the surface.
  • FIG. FIG. 6 is a block diagram showing a configuration according to Embodiment 3 of the present invention.
  • This embodiment has the same configuration as that of the first embodiment, but the landing reference plate 6 includes a plurality of resonance circuits to be tested having different resonance frequencies F1 and F2, and the position detection unit 5 has a corresponding resonance. The difference is that a plurality of detection resonance circuits having frequencies F1 and F2 are provided.
  • the landing reference plate 6 includes a first test resonance circuit including the test coil 11 and the capacitor 12, and a second test resonance circuit including the test coil 36 and the capacitor 37.
  • the test coils 11 and 36 can be constituted by, for example, a circuit pattern on a printed circuit board or an enameled wire wound in a planar shape, and an electric insulating layer is interposed therebetween.
  • the resonance frequency F1 of the first test resonance circuit is different from the resonance frequency F2 of the second test resonance circuit.
  • test coil 11 has the same shape as that of the first embodiment in order to detect landing, but the test coil 36 is longer in the vertical direction than the test coil 11 in order to perform door zone detection. , Having a short shape in the horizontal direction. It is preferable that the center of the test coil 11 and the center of the test coil 36 coincide.
  • the position detection unit 5 includes two detection coils 13 and 14 arranged in parallel along the moving direction of the cage 1.
  • the detection coils 13 and 14 are connected in series, and an oscillator 17 is provided at both ends via capacitors 15 and 16, and an oscillator 31 is added via capacitors 32 and 33.
  • a first detection resonance circuit including a series circuit of the detection coils 13 and 14 and a series circuit of the capacitors 15 and 16, or a series circuit of the detection coils 13 and 14 and the capacitors 15, 16, 32, and 33
  • the second detection resonance circuit composed of the series circuit is configured to be selectable.
  • the resonance frequency of the first detection resonance circuit is set to coincide with the resonance frequency F1 of the first resonance circuit to be tested, and the oscillator 17 supplies a sine wave signal including the resonance frequency F1 to the first detection resonance circuit.
  • the resonance frequency of the second detection resonance circuit is set to coincide with the resonance frequency F2 of the second resonance circuit to be tested, and the oscillator 31 supplies a sine wave signal including the resonance frequency F2 to the second detection resonance circuit.
  • the resonance frequency F2 is set to a frequency lower than the resonance frequency F1 (F1> F2).
  • the switch 34 operates in response to a switching signal Q transmitted from the elevator control device via the terminal 72.
  • the switching signal Q is also supplied to the reference voltage circuit 24, and the reference voltages VR1 and VR2 are also switched according to switching of the resonance frequencies F1 and F2 of the detection coils 13 and 14.
  • the reference voltages VR1 and VR2 correspond to the upper and lower limits of the landing allowable range when the resonance frequency F1 is selected, but correspond to the upper and lower limits of the door zone when the resonance frequency F2 is selected.
  • the resonance frequency of the detection coils 13 and 14 is set to F2 in order to detect the test coil 36 first.
  • the second test resonance circuit including the test coil 36 and the detection coils 13 and 14 are magnetically coupled, and the voltage signal V1 relating to the resonance frequency F2 is detected.
  • V2 a difference signal ⁇ V, an addition signal ⁇ V, and a normalization signal ⁇ D.
  • the determination circuit 23 outputs the signal EN at a high level in the sense of the door zone signal if the signal ⁇ D is within the range of the reference voltages VR1 and VR2, and the signal EN is low if it is outside the range of the reference voltages VR1 and VR2. To level.
  • the elevator control device determines that the car has entered the door zone, and shifts to a motor deceleration operation or a brake operation.
  • the resonance frequency of the detection coils 13 and 14 is set to F1.
  • the first resonance circuit including the coil 11 to be detected and the detection coils 13 and 14 are magnetically coupled to generate voltage signals V1 and V2, a difference signal ⁇ V, an addition signal ⁇ V, and a normalization signal ⁇ D related to the resonance frequency F1. .
  • FIG. FIG. 7 is a block diagram showing a configuration according to Embodiment 4 of the present invention.
  • the present embodiment has the same configuration as that of the first embodiment, but is different in that the landing reference plate 6 includes an information transmission device 41.
  • FIG. 8 is a circuit diagram showing an example of the information transmission device 41.
  • the information transmission device 41 includes, for example, a modulation circuit unit 43, a power supply circuit unit 46, a processing device 50, and a memory 51 so that the information transmission device 41 can be operated by the power received by the coil 11 to be tested.
  • the test resonance circuit including the test coil 11 and the capacitor 12 serves as an AC power source. Function.
  • the diode 47 rectifies the AC voltage from the resonance circuit to be tested, and the capacitor 49 smoothes and supplies the DC voltage.
  • the Zener diode 48 clips the smoothed DC voltage so that the voltage does not rise above a certain level.
  • the processing device 50 is composed of a low-power microprocessor or the like, and operates according to a program stored in the memory 51 in advance.
  • the memory 51 includes a non-volatile memory and stores programs and data. In the present embodiment, information such as the number of the floor on which the landing reference plate 6 is installed is stored.
  • the modulation circuit unit 43 includes a series circuit of a capacitor 44 and a transistor 45, and has a function of switching the resonance frequency of the resonance circuit to be tested by connecting the capacitor 44 in parallel to the capacitor 12 when the transistor 45 is conductive.
  • the processing device 50 starts a program operation, reads information such as a floor number from the memory 51, and outputs the transistor 45 as serial binary data. Output to.
  • the transistor 45 is turned on or off according to the binary data.
  • the resonance frequency changes to a resonance value corresponding to the combined capacitance value due to the parallel connection of the capacitor 44 and the capacitor 12.
  • the transistor 45 is in the OFF state, the capacitor 44 is disconnected from the circuit, and the resonance circuit under test returns to the original resonance frequency.
  • the addition signal ⁇ V of the addition circuit 21 changes as binary data, information such as a floor number can be transmitted to the elevator control device via the terminal 73.
  • Such signal transmission operation is preferably performed before and after the landing detection operation or before and after the door zone detection operation.
  • the data adopts a Manchuster code that always changes 0 and 1 so that the low frequency component is reduced, and the variable gain amplifier circuit 22 is reduced. It is preferable to increase the time constant of the gain fluctuation, that is, to make the data rate a high frequency component so that the gain does not change at the data rate.
  • the landing reference plate 6 With the information transmitting device 41 that operates by the power received by the coil 11 to be tested, it becomes possible to transmit information such as the floor number to the position detecting unit 5.
  • the present invention is extremely useful industrially in that the stop position of the elevator car can be detected safely and with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

The elevator stopping position-detecting device is provided with floor arrival reference plates (6) that are disposed on the wall of a building and a position-detecting unit (5) disposed on the elevator car (1). The floor arrival reference plates (6) are provided with a detected resonance circuit comprising a detected coil (11). The position-detecting unit (5) is provided with: detecting coils (13, 14) that are set parallel along the movement direction of the car (1) and connect electromagnetically to the detected coil (11); detecting circuits (18, 19) that output the direction of displacement and magnitude of displacement of the car (1) based on the output of the detecting coils (13, 14); a differential circuit (20); an adder circuit (21); a variable gain amplifier circuit (22); etc. As a result of said configuration, the stopping position of the elevator car can be detected safely and with high precision.

Description

エレベータ停止位置検出装置Elevator stop position detection device
 本発明は、エレベータの乗りカゴの停止位置、例えば、各階での着床位置などを検出するための装置に関する。 The present invention relates to an apparatus for detecting a stop position of an elevator car, for example, a landing position on each floor.
 エレベータは、乗客が搭乗するカゴを上下に移動させるとともに、カゴを各階フロアに正確に停止させる必要がある。これを実現するために、エレベータ停止位置センサが使用される。下記特許文献1に記載されたエレベータの位置検出装置は、金属性の三角形状板を各階フロアの壁に設置し、カゴに取り付けた磁気結合センサや渦電流センサで三角形状板を検出する。カゴ床面とフロアの高さが一致するところで三角形状板のくぼみの最深部が渦電流センサの正面に来るように三角形状板を壁に設置する。これにより渦電流が最も小さくなった状態でカゴ床面とフロアの高さが一致していると判定している。 The elevator needs to move the car on which the passenger is boarding up and down and to stop the car accurately on each floor. To achieve this, an elevator stop position sensor is used. In the elevator position detection apparatus described in Patent Document 1 below, a metallic triangular plate is installed on the wall of each floor, and the triangular plate is detected by a magnetic coupling sensor or an eddy current sensor attached to the car. The triangle plate is installed on the wall so that the deepest part of the depression of the triangle plate comes to the front of the eddy current sensor when the height of the cage floor and the floor coincide. As a result, it is determined that the height of the basket floor and the floor coincide with each other when the eddy current is minimized.
特開2009-263108号公報JP 2009-263108 A 特開2005-300494号公報JP-A-2005-300494 特開平10-194615号公報Japanese Patent Laid-Open No. 10-194615 米国特許第7441631号明細書US Pat. No. 7,441,631 特開平6-323803号公報JP-A-6-323803 特開平11-73600号公報Japanese Patent Laid-Open No. 11-73600 特開2000-186904号公報JP 2000-186904 A
 特許文献1では、壁側に取り付けた金属板など、飛び出た構造物を使って停止位置を検出している。そして、渦電流を検出するため金属板とセンサの間隔を近づける必要がある。そのため取り付け精度が悪いと、エレベータのカゴが金属板に接触する事故が発生する可能性がある。 In Patent Document 1, the stop position is detected by using a protruding structure such as a metal plate attached to the wall side. And in order to detect an eddy current, it is necessary to make the space | interval of a metal plate and a sensor close. For this reason, if the mounting accuracy is poor, an accident may occur in which the elevator car contacts the metal plate.
 また、壁側に取り付けた金属板の有無や形状を渦電流式で検知するため、周囲に金属があると磁気の状態が変化し、読み出した値に偏差が発生し正確に停止位置を検出できない。そのため、金属板の周囲に金属構造物を置けないなど、一定の制約を受ける。 In addition, since the presence and shape of the metal plate attached to the wall side is detected by the eddy current method, if there is metal around it, the magnetic state will change, and the read value will deviate and the stop position cannot be detected accurately. . Therefore, there are certain restrictions such as the inability to place metal structures around the metal plate.
 また、カゴの床面とフロアが一致するゼロ点の検出は可能であるが、ゼロ点からの上下方向のズレ量や、上下どちらにずれているかを示すズレ方向を検出していないため、床面が正確に一致するようにエレベータを制御することが困難である。 In addition, it is possible to detect the zero point where the floor of the cage matches the floor, but since the amount of deviation from the zero point in the vertical direction and the deviation direction indicating whether the floor is displaced are not detected, the floor It is difficult to control the elevator so that the planes match exactly.
 本発明の目的は、エレベータの乗りカゴの停止位置を安全に高精度で検出できるエレベータ停止位置検出装置を提供することである。 An object of the present invention is to provide an elevator stop position detection device that can safely and accurately detect a stop position of an elevator car.
 上記目的を達成するために、本発明の第1態様は、建物の壁側に設置された基準部材と、
 エレベータの移動体に設置された位置検出部とを備えたエレベータ停止位置検出装置であって、
 前記基準部材は、被検コイルを含む被検共振回路を備え、
 前記位置検出部は、
 前記被検コイルと電磁的に結合し、前記移動体の移動方向に沿って並設された第1検出コイルおよび第2検出コイルと、
 前記第1検出コイルの出力と前記第2検出コイルの出力との差分を出力する差動回路と、
 前記第1検出コイルの出力と前記第2検出コイルの出力との合計を出力する加算回路と、
 前記差動回路の出力を前記加算回路の出力で正規化した値から前記移動体の変位方向および変位量を出力する演算回路と、を備える。
In order to achieve the above object, the first aspect of the present invention includes a reference member installed on the wall side of a building,
An elevator stop position detection device comprising a position detection unit installed on a moving body of an elevator,
The reference member includes a test resonance circuit including a test coil,
The position detector is
A first detection coil and a second detection coil which are electromagnetically coupled to the test coil and are arranged in parallel along a moving direction of the moving body;
A differential circuit for outputting a difference between the output of the first detection coil and the output of the second detection coil;
An adder circuit for outputting the sum of the output of the first detection coil and the output of the second detection coil;
An arithmetic circuit that outputs a displacement direction and a displacement amount of the moving body from a value obtained by normalizing the output of the differential circuit with the output of the adder circuit.
 本発明において、前記位置検出部は、計算した変位量が所定の範囲内であった場合、エレベータのドアの開閉許可信号を出力する判定回路をさらに備えることが好ましい。 In the present invention, it is preferable that the position detection unit further includes a determination circuit that outputs an elevator door open / close permission signal when the calculated displacement amount is within a predetermined range.
 本発明において、前記位置検出部は、前記第1検出コイルと前記第2検出コイルからなる直列回路を含み、被検共振回路の共振周波数Fと同じ共振周波数を有する検出共振回路と、
 共振周波数Fを含む正弦波信号を前記検出共振回路に供給する発振器とをさらに備えることが好ましい。
In the present invention, the position detection unit includes a series circuit including the first detection coil and the second detection coil, and a detection resonance circuit having the same resonance frequency as the resonance frequency F of the resonance circuit to be detected;
It is preferable to further include an oscillator that supplies a sinusoidal signal including a resonance frequency F to the detection resonance circuit.
 本発明において、前記基準部材のコイルは、コイル巻線が交差したツイスト形状を有することが好ましい。 In the present invention, the coil of the reference member preferably has a twist shape in which coil windings intersect.
 本発明において、前記基準部材は、第1被検コイルを含む第1被検共振回路と、第2被検コイルを含む第2被検共振回路とを備え、前記第1被検共振回路の共振周波数F1は前記第2被検共振回路の共振周波数F2と相違しており、前記第1被検コイルおよび前記第2被検コイルは、移動体の移動方向に沿った長さが相違しており、
 前記位置検出部は、前記第1検出コイルと前記第2検出コイルからなる直列回路を含み、前記第1被検共振回路の共振周波数F1と同じ共振周波数を有する第1検出共振回路と、
 前記第1検出コイルと前記第2検出コイルからなる直列回路を含み、前記第2被検共振回路の共振周波数F2と同じ共振周波数を有する第2検出共振回路と、を備えることが好ましい。
In the present invention, the reference member includes a first test resonance circuit including a first test coil and a second test resonance circuit including a second test coil, and the resonance of the first test resonance circuit. The frequency F1 is different from the resonance frequency F2 of the second test resonance circuit, and the first test coil and the second test coil have different lengths along the moving direction of the moving body. ,
The position detection unit includes a first detection resonance circuit including a series circuit including the first detection coil and the second detection coil, and having the same resonance frequency as the resonance frequency F1 of the first detection resonance circuit;
It is preferable to include a second detection resonance circuit including a series circuit including the first detection coil and the second detection coil, and having the same resonance frequency as the resonance frequency F2 of the second resonance circuit to be tested.
 本発明において、前記基準部材は、被検コイルが受けた電力によって動作する情報送信装置を備え、
 該情報送信装置は、予め記憶したプログラムに従って動作する演算処理部を含み、該演算処理部の出力に基づいて被検共振回路の共振周波数を変化させることによって、情報を前記位置検出部へ送信することが好ましい。
In the present invention, the reference member includes an information transmission device that operates by power received by the test coil,
The information transmitting device includes an arithmetic processing unit that operates according to a program stored in advance, and transmits information to the position detecting unit by changing a resonance frequency of the resonance circuit to be tested based on an output of the arithmetic processing unit. It is preferable.
 本発明によれば、基準部材の被検コイルと位置検出部の第1および第2検出コイルとの間の電磁結合を利用することによって、両者を過度に接近させる必要はなく、接触等の恐れが無い。また、従来の渦電流式とは原理的に相違するため、周囲に金属があっても誤動作しない。さらに、第1検出コイルの出力および第2検出コイルの出力を利用することによって、ゼロ点からの変位量及び変位方向を計測することが可能になる。 According to the present invention, by utilizing the electromagnetic coupling between the test coil of the reference member and the first and second detection coils of the position detection unit, it is not necessary to make both approach excessively and there is a risk of contact or the like. There is no. Further, since it is fundamentally different from the conventional eddy current type, no malfunction occurs even if there is a metal around it. Furthermore, by using the output of the first detection coil and the output of the second detection coil, it is possible to measure the displacement amount and the displacement direction from the zero point.
典型的なエレベータの着床状態を示す断面図である。It is sectional drawing which shows the landing state of a typical elevator. 本発明の実施の形態1に係る構成を示すブロック図である。It is a block diagram which shows the structure which concerns on Embodiment 1 of this invention. 着床基準板と位置検出部の相対位置と電圧信号との関係を示すグラフである。It is a graph which shows the relationship between the relative position of a landing reference board and a position detection part, and a voltage signal. 本発明の実施の形態2に係る構成を示すブロック図である。It is a block diagram which shows the structure which concerns on Embodiment 2 of this invention. エレベータのカゴが垂直に移動した場合に検出される電圧信号および差分信号を示すグラフである。It is a graph which shows the voltage signal and difference signal which are detected when the elevator car moves vertically. 本発明の実施の形態3に係る構成を示すブロック図である。It is a block diagram which shows the structure which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る構成を示すブロック図である。It is a block diagram which shows the structure which concerns on Embodiment 4 of this invention. 情報送信装置の一例を示す回路図である。It is a circuit diagram which shows an example of an information transmitter.
実施の形態1.
 図1は、典型的なエレベータの着床状態を示す断面図である。エレベータのカゴ1は、ロープの一端によって吊り下げられ、ロープの他端には釣り合い錘が固定される。ロープは、モータによって回転駆動されるシーブに掛け渡されている。モータには、一般に、回転位置を検出するためのエンコーダが設けられ、エレベータ制御装置(不図示)によってロープの移動方向および移動量が管理されている。しかしながら、ロープの伸縮や滑り等に起因して、エンコーダの検出位置とカゴ1の停止位置が相違することがあるため、カゴ1の停止位置を検出する装置が別途設けられる。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a typical elevator landing state. The elevator car 1 is suspended by one end of a rope, and a counterweight is fixed to the other end of the rope. The rope is stretched around a sheave that is rotationally driven by a motor. The motor is generally provided with an encoder for detecting the rotational position, and the moving direction and moving amount of the rope are managed by an elevator control device (not shown). However, since the encoder detection position may be different from the stop position of the car 1 due to the expansion and contraction of the rope, the slip, and the like, a device for detecting the stop position of the car 1 is separately provided.
 図1に示すように、エレベータ停止位置検出装置として、建物の壁側には各階ごとに着床基準板6が設置され、一方、エレベータのカゴ1には取り付け板4を介して位置検出部5が設置される。各階の着床基準板6は、乗り場の床面2とカゴ床面3が水平面で一致した状態(着床ゼロ点)で、位置検出部5と正対するように位置決めされる。なお、図1では、各階の乗降開口部の下方に着床基準板6を設置した例を示したが、乗降開口部の上方または側方に着床基準板6を設置してもよく、着床基準板の設置位置に応じて位置検出部5の設置位置が変更できる。ケーブル7は、カゴ1とエレベータ制御装置との間で電力供給を行う電源ケーブルおよび信号伝達を行う信号ケーブル等を束ねたものである。 As shown in FIG. 1, as an elevator stop position detection device, a landing reference plate 6 is installed for each floor on the wall side of the building, while a position detector 5 is attached to the elevator car 1 via a mounting plate 4. Is installed. The landing reference plate 6 of each floor is positioned so as to face the position detection unit 5 in a state where the floor surface 2 and the car floor surface 3 of the landing are coincident with each other in a horizontal plane (landing zero point). 1 shows an example in which the landing reference plate 6 is installed below the entrance opening on each floor, the landing reference plate 6 may be installed above or on the side of the entrance opening. The installation position of the position detector 5 can be changed according to the installation position of the floor reference plate. The cable 7 is a bundle of a power cable that supplies power between the car 1 and the elevator control device, a signal cable that transmits signals, and the like.
 図2は、本発明の実施の形態1に係る構成を示すブロック図である。着床基準板6は、被検コイル11およびコンデンサ12を含む被検共振回路を備え、例えば、プリント基板上の回路パターンまたは平面状に巻回したエナメル線で構成したコイルの両端に、コンデンサを実装することで実現できる。被検コイル11およびコンデンサ12は、防塵や防水のために、電気絶縁性のプレートの内部に埋め込むことが好ましい。この被検共振回路の共振周波数Fは、被検コイル11の自己インダクタンスLとコンデンサの静電容量Cを用いて、F=2π/(L・C)1/2 で表される。 FIG. 2 is a block diagram showing a configuration according to Embodiment 1 of the present invention. The landing reference plate 6 includes a test resonance circuit including a test coil 11 and a capacitor 12. For example, a capacitor is provided at both ends of a coil formed of a circuit pattern on a printed circuit board or a planar enameled wire. It can be realized by mounting. The test coil 11 and the capacitor 12 are preferably embedded in an electrically insulating plate for dust prevention and waterproofing. The resonance frequency F of the test resonance circuit is expressed by F = 2π / (L · C) 1/2 using the self-inductance L of the test coil 11 and the capacitance C of the capacitor.
 位置検出部5は、カゴ1の移動方向に沿って並設された2つの検出コイル13,14を備える。検出コイル13,14は、同じ自己インダクタンスを有し、直列接続されており、その両端には、同じ静電容量を有するコンデンサ15,16を介して発振器17が接続されている。こうして検出コイル13,14の直列回路とコンデンサ15,16の直列回路からなる検出共振回路が構成され、その共振周波数は、被検共振回路の共振周波数Fと一致するように設定される。発振器17は、共振周波数Fを含む正弦波信号を検出共振回路に供給する。 The position detection unit 5 includes two detection coils 13 and 14 arranged in parallel along the moving direction of the cage 1. The detection coils 13 and 14 have the same self-inductance and are connected in series, and both ends thereof are connected to an oscillator 17 via capacitors 15 and 16 having the same capacitance. In this way, a detection resonance circuit composed of a series circuit of the detection coils 13 and 14 and a series circuit of the capacitors 15 and 16 is configured, and the resonance frequency thereof is set to coincide with the resonance frequency F of the resonance circuit to be tested. The oscillator 17 supplies a sine wave signal including the resonance frequency F to the detection resonance circuit.
 図2に示すように、検出コイル13,14の基準面が着床基準板6の基準面から下方にΔrだけ変位した場合、被検コイル11と検出コイル13との磁気結合量M1は、被検コイル11と検出コイル14との磁気結合量M2より大きくなる。 As shown in FIG. 2, when the reference planes of the detection coils 13 and 14 are displaced downward by Δr from the reference plane of the landing reference plate 6, the magnetic coupling amount M1 between the test coil 11 and the detection coil 13 is as follows. The magnetic coupling amount M2 between the detection coil 11 and the detection coil 14 becomes larger.
 検出コイル13,14は、中間タップをそれぞれ備えており、検出コイル13,14の接続点を基準電圧として、検出コイル13の中間タップからは信号S1が出力され、検出コイル14の中間タップからは信号S2が出力される。検波回路18は、信号S1を検波、平滑化して直流の電圧信号V1に変換する。検波回路19は、信号S2を検波、平滑化して直流の電圧信号V2に変換する。 The detection coils 13 and 14 are each provided with an intermediate tap. A signal S1 is output from the intermediate tap of the detection coil 13 with the connection point of the detection coils 13 and 14 as a reference voltage, and from the intermediate tap of the detection coil 14 Signal S2 is output. The detection circuit 18 detects and smoothes the signal S1 and converts it to a DC voltage signal V1. The detection circuit 19 detects and smoothes the signal S2 and converts it to a DC voltage signal V2.
 差動回路20は、検波回路18の電圧信号V1と検波回路19の電圧信号V2との差分信号ΔV(=V1-V2)を出力する。加算回路21は、検波回路18の電圧信号V1と検波回路19の電圧信号V2との加算信号ΣV(=V1+V2)を出力する。可変利得増幅回路22は、加算信号ΣVの大きさに応じて増幅率が変化するように構成され、差分信号ΔVを加算信号ΣVで正規化した信号ΔDを出力する。この信号ΔDは、検出ゼロ点からの変位量及び変位方向を表すことになる。 The differential circuit 20 outputs a difference signal ΔV (= V1−V2) between the voltage signal V1 of the detection circuit 18 and the voltage signal V2 of the detection circuit 19. The addition circuit 21 outputs an addition signal ΣV (= V1 + V2) of the voltage signal V1 of the detection circuit 18 and the voltage signal V2 of the detection circuit 19. The variable gain amplifier circuit 22 is configured so that the amplification factor changes according to the magnitude of the addition signal ΣV, and outputs a signal ΔD obtained by normalizing the difference signal ΔV with the addition signal ΣV. This signal ΔD represents the displacement amount and the displacement direction from the detection zero point.
 ここで、エレベータのカゴ1がフロア間を移動して、位置検出部5の検出エリア内に着床基準板6が存在しない場合、V1=V2=0となって、差動回路20の差分信号ΔVも0Vとなり、着床ゼロ点の場合と区別できない。一方、加算回路21の加算信号ΣVは、カゴ1がフロア間を移動しているときはΣV=0であるが、着床ゼロ点の場合にはΣV>0Vとなる。従って、加算信号ΣVを利用することによって、カゴ1の検出エリア外の場合と着床ゼロ点の場合を正確に区別することができる。 Here, when the elevator car 1 moves between floors and the landing reference plate 6 does not exist in the detection area of the position detection unit 5, V1 = V2 = 0, and the differential signal of the differential circuit 20 ΔV is also 0 V, which is indistinguishable from the zero landing point. On the other hand, the addition signal ΣV of the addition circuit 21 is ΣV = 0 when the car 1 is moving between floors, but ΣV> 0V when the landing zero point. Therefore, by using the addition signal ΣV, it is possible to accurately distinguish the case outside the detection area of the car 1 from the case of the landing zero point.
 判定回路23は、ウインドウコンパレータ等で構成され、正規化信号ΔDを、基準電圧回路24が出力する2つの基準電圧VR1,VR2と比較する。基準電圧VR1は着床許容範囲の上限に対応し、基準電圧VR2は着床許容範囲の下限に対応している。判定回路23は、正規化信号ΔDが着床許容範囲内であれば、ドアの開閉許可信号ENをハイレベルで出力し、着床許容範囲外であれば開閉許可信号ENをローレベルにする。 The determination circuit 23 is composed of a window comparator or the like, and compares the normalized signal ΔD with the two reference voltages VR1 and VR2 output from the reference voltage circuit 24. The reference voltage VR1 corresponds to the upper limit of the allowable landing range, and the reference voltage VR2 corresponds to the lower limit of the allowable landing range. The determination circuit 23 outputs the door opening / closing permission signal EN at a high level if the normalization signal ΔD is within the allowable landing range, and sets the opening / closing permission signal EN to a low level if it is outside the allowable landing range.
 開閉許可信号ENは判定端子70を経由し、信号ΔDは端子71を経由し、加算信号ΣVは端子73を経由して、エレベータ制御装置へそれぞれ送信される。 The opening / closing permission signal EN is transmitted to the elevator control device via the determination terminal 70, the signal ΔD via the terminal 71, and the addition signal ΣV via the terminal 73.
 図3は、着床基準板6と位置検出部5の相対位置と電圧信号V1,V2との関係を示すグラフである。横軸は電圧信号V1を示し、縦軸は電圧信号V2を示す。グラフ中の線分25は、V1=V2の着床ゼロ点である状態、即ち、被検コイル11の中央の垂線上に、検出コイル13の中央と検出コイル14の中央とを結ぶ直線の中点(図2では、明確化のために検出コイル13,14の接続点として表示)が来たときに、電圧信号V1,V2が線分25上に乗ることを示している。電圧信号V1,V2の大きさが変化するのは、着床基準板6と位置検出部5との間隔が変動することに起因している。 FIG. 3 is a graph showing the relationship between the relative positions of the landing reference plate 6 and the position detector 5 and the voltage signals V1 and V2. The horizontal axis indicates the voltage signal V1, and the vertical axis indicates the voltage signal V2. A line segment 25 in the graph is in a state where V1 = V2 is a zero landing point, that is, in a straight line connecting the center of the detection coil 13 and the center of the detection coil 14 on the vertical line at the center of the coil 11 to be detected. When a point (shown as a connection point of the detection coils 13 and 14 in FIG. 2 for the sake of clarity) comes, the voltage signals V1 and V2 are on the line segment 25. The magnitudes of the voltage signals V1 and V2 change because the distance between the landing reference plate 6 and the position detector 5 varies.
 線分25と直交する線分は、着床基準板6と位置検出部5との間隔変動に応じて電圧信号V1,V2が変化することを表す。特に、線分26は、基準間隔(0cm)より0.5cmだけ間隔が大きい状態で、位置検出部5が上下方向に移動したときの電圧信号V1,V2の変化を示す。線分27は、位置検出部5が着床基準板6より下方向に1cmだけ変位した状態で、着床基準板6と位置検出部5との間隔が変化したときの電圧信号V1,V2の変化を示す。従って、線分26と線分27が交差する点28は、(V1,V2)=(約4.8V,約4.9V)の座標で表され、位置検出部5が着床基準板6より下方向に1cmに変位し、両者の間隔は基準間隔より0.5cmだけ大きいことを示す。 The line segment orthogonal to the line segment 25 represents that the voltage signals V1 and V2 change according to the interval variation between the landing reference plate 6 and the position detection unit 5. In particular, the line segment 26 shows changes in the voltage signals V1 and V2 when the position detection unit 5 moves in the vertical direction in a state where the interval is larger by 0.5 cm than the reference interval (0 cm). The line segment 27 indicates voltage signals V1 and V2 when the distance between the landing reference plate 6 and the position detection unit 5 changes in a state where the position detection unit 5 is displaced by 1 cm downward from the landing reference plate 6. Showing change. Therefore, the point 28 where the line segment 26 and the line segment 27 intersect is represented by the coordinates of (V1, V2) = (about 4.8V, about 4.9V), and the position detecting unit 5 is based on the landing reference plate 6. It is displaced downward by 1 cm, indicating that the distance between them is 0.5 cm larger than the reference distance.
 このように、測定した電圧信号V1,V2を図3のグラフで換算することによって、着床基準板6と位置検出部5の水平方向および垂直方向に関する相対位置を決定することができる。 Thus, the relative positions of the landing reference plate 6 and the position detection unit 5 in the horizontal and vertical directions can be determined by converting the measured voltage signals V1 and V2 with the graph of FIG.
 回路の動作としては、電圧信号V1,V2の差分信号ΔVから上下変位量が求められる。この場合、差分信号ΔVは4.9-4.8=0.1V、加算信号ΣVは4.9+4.8=9.7Vである。ここで、上下変位量が0cm、着床基準板6と位置検出部5との間隔が基準間隔である場合の加算信号ΣVは、4.8+4.8=9.6Vである。よって、9.7Vは9.6Vよりも約1.01倍大きな値であり、差分信号ΔVをこの比率1.01で割った値である0.0989Vを求め、これに補正係数として一定値の10.104を乗じると、1Vとなり、上下変位1cm当り1Vの割合で変化する正規化電圧が得られることになる。 As the operation of the circuit, the vertical displacement is obtained from the difference signal ΔV between the voltage signals V1 and V2. In this case, the difference signal ΔV is 4.9-4.8 = 0.1V, and the addition signal ΣV is 4.9 + 4.8 = 9.7V. Here, when the vertical displacement is 0 cm and the interval between the landing reference plate 6 and the position detection unit 5 is the reference interval, the addition signal ΣV is 4.8 + 4.8 = 9.6V. Therefore, 9.7 V is a value approximately 1.01 times larger than 9.6 V, and 0.0989 V, which is a value obtained by dividing the difference signal ΔV by this ratio 1.01, is obtained, and a constant value is obtained as a correction coefficient. When multiplied by 10.104, 1V is obtained, and a normalized voltage that changes at a rate of 1V per 1 cm of vertical displacement is obtained.
 着床基準板6と位置検出部5との間隔が変動すると、上下変位量が同じでも、差分信号ΔVは変動する。そこで、差分信号ΔVを加算信号ΣVで正規化することによって、着床基準板6と位置検出部5との間隔変動による誤差を補償することができる。また、正規化信号ΔDに基づいてカゴ1の上下変位量を精度よく決定できるため、エレベータ制御装置がカゴ1の停止位置をΔD=0となるように制御することによって、乗り場の床面2とカゴ床面3とを正確に一致させることできる。 When the interval between the landing reference plate 6 and the position detection unit 5 varies, the difference signal ΔV varies even if the vertical displacement amount is the same. Therefore, by normalizing the difference signal ΔV with the addition signal ΣV, it is possible to compensate for an error due to a variation in the distance between the landing reference plate 6 and the position detection unit 5. In addition, since the vertical displacement amount of the car 1 can be accurately determined based on the normalized signal ΔD, the elevator control device controls the stop position of the car 1 so that ΔD = 0, so that The basket floor surface 3 can be exactly matched.
 ここでは、四則演算を用いてカゴ1の上下変位量を算出する手法について説明したが、代替としてメモリマッピング手法を採用してもよい。即ち、差動回路20、加算回路21および可変利得増幅回路22の代わりに、メモリおよびA/D変換器を内蔵したコンピュータを使用し、図3に示したような、電圧信号V1,V2と、着床基準板6と位置検出部5との間隔変動量および上下変位量との関係を予めマップとしてメモリに保存しておき、実際に測定した電圧信号V1,V2を入力すると、それらの値に対応した間隔変動量および上下変位量が出力されるようになる。四則演算を用いた手法は、装置構成の簡略化、低価格化が図られ、一方、メモリマッピング手法は非線形演算が容易であり、高精度化が図られる。 Here, although the method of calculating the vertical displacement amount of the basket 1 using the four arithmetic operations has been described, a memory mapping method may be adopted as an alternative. That is, instead of the differential circuit 20, the adder circuit 21, and the variable gain amplifier circuit 22, a computer incorporating a memory and an A / D converter is used, and the voltage signals V1, V2 as shown in FIG. The relationship between the distance fluctuation amount and the vertical displacement amount between the landing reference plate 6 and the position detection unit 5 is stored in advance in a memory as a map, and when the actually measured voltage signals V1 and V2 are input, these values are set. The corresponding interval fluctuation amount and vertical displacement amount are output. The method using the four arithmetic operations can simplify the device configuration and reduce the price, while the memory mapping method can easily perform non-linear operations and achieve high accuracy.
 本実施形態では、着床基準板6の被検共振回路および位置検出部5の検出共振回路を用いて共振周波数Fの信号授受を行っているため、周囲に金属板が存在していても影響されにくいという利点がある。但し、着床基準板6に金属が密着すると、渦電流の影響で結合量が変化するため、着床基準板6に金属が接近する場合は、着床基準板6と金属との間に磁性シートを入れることが好ましい。この場合、全ての階の着床基準板6について同じように磁性シートを貼り付けることが好ましい。 In the present embodiment, since the resonance frequency F is transmitted and received using the resonance circuit to be tested of the landing reference plate 6 and the detection resonance circuit of the position detection unit 5, even if there is a metal plate around it, there is an effect. There is an advantage that it is hard to be done. However, when the metal comes into close contact with the landing reference plate 6, the coupling amount changes due to the influence of eddy current. Therefore, when the metal approaches the landing reference plate 6, the magnetic property is placed between the landing reference plate 6 and the metal. It is preferable to put a sheet. In this case, it is preferable to apply the magnetic sheet in the same manner to the landing reference plates 6 of all the floors.
 以上のように本実施形態によれば、着床基準板6と位置検出部5の相対位置を精度よく測定できるため、カゴ1の停止位置を制御することによって、乗り場の床面2とカゴ床面3とを正確に一致させることができる。また、着床基準板6と位置検出部5との間隔を精度よく測定できるため、故障診断などの応用が可能になる。 As described above, according to the present embodiment, the relative position between the landing reference plate 6 and the position detection unit 5 can be measured with high accuracy. Therefore, by controlling the stop position of the car 1, the floor 2 and the car floor of the landing are controlled. The surface 3 can be exactly matched. In addition, since the interval between the landing reference plate 6 and the position detection unit 5 can be measured with high accuracy, application such as failure diagnosis becomes possible.
実施の形態2.
 図4は、本発明の実施の形態2に係る構成を示すブロック図である。本実施形態は、位置検出部5については実施の形態1と同様であるが、着床基準板6の被検コイル11がツイスト形状を有する点で相違する。
Embodiment 2. FIG.
FIG. 4 is a block diagram showing a configuration according to Embodiment 2 of the present invention. The present embodiment is the same as the first embodiment with respect to the position detection unit 5, but is different in that the test coil 11 of the landing reference plate 6 has a twist shape.
 被検コイル11は、上述のように、プリント基板上の回路パターンまたは平面状に巻回したエナメル線で構成でき、本実施形態では、コイル巻線が途中で2回交差している。なおツイスト回数は、1回でもよく、3回以上でも構わない。 As described above, the test coil 11 can be constituted by a circuit pattern on a printed board or an enameled wire wound in a planar shape, and in this embodiment, coil windings intersect twice in the middle. The number of twists may be one or three or more.
 被検コイル11およびコンデンサ12は被検共振回路を構成し、その共振周波数Fは、被検コイル11の自己インダクタンスLとコンデンサの静電容量Cを用いて、F=2π/(L・C)1/2 で表される。 The test coil 11 and the capacitor 12 constitute a test resonance circuit, and the resonance frequency F is F = 2π / (L · C) using the self-inductance L of the test coil 11 and the capacitance C of the capacitor. It is represented by 1/2 .
 2回ツイスト形状の場合、3つのリング状の領域が形成される。中央リングの中点は、実施の形態1と同じように、乗り場の床面2とカゴ床面3とが一致する着床ゼロ点のときに、位置検出部5の正面に位置するように配置する。上リングと下リングの中点は、ドアゾーンの位置に来るようにする。ドアゾーンの長さは、着床板を用いた従来のエレベータでは通常30cmの長さであるため、今回も上リングと下リングの中点の間隔は30cmに設定している。 In the case of the twisted shape twice, three ring-shaped regions are formed. As in the first embodiment, the center point of the center ring is arranged so as to be positioned in front of the position detection unit 5 when the landing floor surface 2 and the basket floor surface 3 coincide with each other. To do. The midpoint of the upper and lower rings should be at the door zone position. Since the length of the door zone is usually 30 cm in a conventional elevator using a landing plate, the distance between the midpoints of the upper ring and the lower ring is set to 30 cm again.
 図5は、エレベータのカゴ1が垂直に移動した場合に検出される電圧信号V1,V2および差分信号ΔVを示すグラフである。波形61は、位置検出部5の上下方向の位置に対する検出コイル13の電圧信号V1の変化を示す。波形62は、位置検出部5の上下方向の位置に対する検出コイル14の電圧信号V2の変化を示す。波形61,62を見ると、電圧信号V1,V2は、上リングの中点、中央リングの中点および下リングの中点で一致することが判る。 FIG. 5 is a graph showing voltage signals V1, V2 and a difference signal ΔV detected when the elevator car 1 moves vertically. A waveform 61 shows a change in the voltage signal V <b> 1 of the detection coil 13 with respect to the vertical position of the position detector 5. A waveform 62 shows the change of the voltage signal V2 of the detection coil 14 with respect to the vertical position of the position detector 5. From the waveforms 61 and 62, it can be seen that the voltage signals V1 and V2 coincide at the midpoint of the upper ring, the midpoint of the center ring, and the midpoint of the lower ring.
 波形63は、電圧信号V1と電圧信号V2との差分信号ΔVの変化を示すもので、位置検出部5の基準面が上リングの中点より上方にある場合は正、上リングの中点でゼロ、上リングの中点から中央リングの中点までは負、中央リングの中点でゼロ、中央リングの中点から下リングの中点までは正、下リングの中点でゼロ、下リングの中点より下方にある場合は負になる。 A waveform 63 indicates a change in the difference signal ΔV between the voltage signal V1 and the voltage signal V2. When the reference plane of the position detection unit 5 is above the midpoint of the upper ring, the waveform 63 is positive, and at the midpoint of the upper ring. Zero, negative from midpoint of upper ring to midpoint of center ring, zero at midpoint of center ring, positive from midpoint of center ring to midpoint of lower ring, zero at midpoint of lower ring, lower ring It is negative if it is below the midpoint.
 エレベータ制御装置は、端子71からの正規化信号ΔDを監視している。カゴが着床位置に向かって下降または上昇し、信号ΔDが正負どちらかに一定値以上上昇すると、検出コイル13または検出コイル14が被検コイル11の上リングまたは下リングに接近していることが事前に認識でき、続いて信号ΔDが0Vとなった時点でドアゾーンに進入したことを判別できる。これによりエレベータ制御装置は、モータの減速動作やブレーキ動作に円滑に移行することができ、続いて信号ΔDが0Vになるようにカゴの停止位置を制御することによって、カゴ床面を乗り場の床面に正確に一致させることができる。 The elevator control device monitors the normalization signal ΔD from the terminal 71. When the cage descends or rises toward the landing position and the signal ΔD rises to a positive or negative value by a certain value or more, the detection coil 13 or the detection coil 14 is approaching the upper ring or the lower ring of the coil 11 to be tested. Can be recognized in advance, and then it can be determined that the vehicle has entered the door zone when the signal ΔD becomes 0V. As a result, the elevator control device can smoothly shift to the motor deceleration operation and the brake operation, and then control the cage stop position so that the signal ΔD becomes 0 V, thereby making the cage floor surface the floor of the landing. It can be exactly matched to the surface.
 このように被検コイル11に1回以上のツイスト形状を付与することによって、ゼロ点検出の回数を増やすことが可能になり、これによりエレベータの段階的制御が容易になり、その結果、カゴの着床誤差を低減できる。 Thus, by giving the test coil 11 a twist shape one or more times, it becomes possible to increase the number of times of zero point detection, thereby facilitating stepwise control of the elevator, and as a result, The landing error can be reduced.
実施の形態3.
 図6は、本発明の実施の形態3に係る構成を示すブロック図である。本実施形態は、実施の形態1と同様な構成を有するが、着床基準板6が異なる共振周波数F1,F2を有する複数の被検共振回路を備え、位置検出部5が、それぞれ対応した共振周波数F1,F2を有する複数の検出共振回路を備える点で相違する。
Embodiment 3 FIG.
FIG. 6 is a block diagram showing a configuration according to Embodiment 3 of the present invention. This embodiment has the same configuration as that of the first embodiment, but the landing reference plate 6 includes a plurality of resonance circuits to be tested having different resonance frequencies F1 and F2, and the position detection unit 5 has a corresponding resonance. The difference is that a plurality of detection resonance circuits having frequencies F1 and F2 are provided.
 着床基準板6は、被検コイル11およびコンデンサ12を含む第1被検共振回路と、被検コイル36およびコンデンサ37を含む第2被検共振回路とを備える。被検コイル11,36は、例えば、プリント基板上の回路パターンまたは平面状に巻回したエナメル線で構成でき、両者間には電気絶縁層が介在している。第1被検共振回路の共振周波数F1は第2被検共振回路の共振周波数F2と相違している。 The landing reference plate 6 includes a first test resonance circuit including the test coil 11 and the capacitor 12, and a second test resonance circuit including the test coil 36 and the capacitor 37. The test coils 11 and 36 can be constituted by, for example, a circuit pattern on a printed circuit board or an enameled wire wound in a planar shape, and an electric insulating layer is interposed therebetween. The resonance frequency F1 of the first test resonance circuit is different from the resonance frequency F2 of the second test resonance circuit.
 また、被検コイル11は、着床検出を行うため、実施の形態1と同様な形状を有するが、被検コイル36は、ドアゾーン検出を行うため、被検コイル11と比べて上下方向に長く、水平方向に短い形状を有する。被検コイル11の中心と被検コイル36の中心は一致することが好ましい。 In addition, the test coil 11 has the same shape as that of the first embodiment in order to detect landing, but the test coil 36 is longer in the vertical direction than the test coil 11 in order to perform door zone detection. , Having a short shape in the horizontal direction. It is preferable that the center of the test coil 11 and the center of the test coil 36 coincide.
 位置検出部5は、カゴ1の移動方向に沿って並設された2つの検出コイル13,14を備える。検出コイル13,14は、直列接続されており、その両端にはコンデンサ15,16を介して発振器17が設けられ、さらにコンデンサ32,33を介して発振器31が追加されている。スイッチ34の切り替え動作により、検出コイル13,14の直列回路とコンデンサ15,16の直列回路からなる第1検出共振回路、または、検出コイル13,14の直列回路とコンデンサ15,16,32,33の直列回路からなる第2検出共振回路が選択可能なように構成される。 The position detection unit 5 includes two detection coils 13 and 14 arranged in parallel along the moving direction of the cage 1. The detection coils 13 and 14 are connected in series, and an oscillator 17 is provided at both ends via capacitors 15 and 16, and an oscillator 31 is added via capacitors 32 and 33. By the switching operation of the switch 34, a first detection resonance circuit including a series circuit of the detection coils 13 and 14 and a series circuit of the capacitors 15 and 16, or a series circuit of the detection coils 13 and 14 and the capacitors 15, 16, 32, and 33 The second detection resonance circuit composed of the series circuit is configured to be selectable.
 第1検出共振回路の共振周波数は、第1被検共振回路の共振周波数F1と一致するように設定され、発振器17は、共振周波数F1を含む正弦波信号を第1検出共振回路に供給する。第2検出共振回路の共振周波数は、第2被検共振回路の共振周波数F2と一致するように設定され、発振器31は、共振周波数F2を含む正弦波信号を第2検出共振回路に供給する。例えば、共振周波数F2は共振周波数F1より低い周波数に設定される(F1>F2)。 The resonance frequency of the first detection resonance circuit is set to coincide with the resonance frequency F1 of the first resonance circuit to be tested, and the oscillator 17 supplies a sine wave signal including the resonance frequency F1 to the first detection resonance circuit. The resonance frequency of the second detection resonance circuit is set to coincide with the resonance frequency F2 of the second resonance circuit to be tested, and the oscillator 31 supplies a sine wave signal including the resonance frequency F2 to the second detection resonance circuit. For example, the resonance frequency F2 is set to a frequency lower than the resonance frequency F1 (F1> F2).
 スイッチ34は、エレベータ制御装置から端子72を経由して送信される切替信号Qに応じて動作する。切替信号Qは、基準電圧回路24にも供給されており、検出コイル13,14の共振周波数F1,F2の切り替えに応じて、基準電圧VR1,VR2も切り替えられる。基準電圧VR1,VR2は、共振周波数F1の選択時は着床許容範囲の上限および下限に対応しているが、共振周波数F2の選択時はドアゾーンの上限および下限に対応している。 The switch 34 operates in response to a switching signal Q transmitted from the elevator control device via the terminal 72. The switching signal Q is also supplied to the reference voltage circuit 24, and the reference voltages VR1 and VR2 are also switched according to switching of the resonance frequencies F1 and F2 of the detection coils 13 and 14. The reference voltages VR1 and VR2 correspond to the upper and lower limits of the landing allowable range when the resonance frequency F1 is selected, but correspond to the upper and lower limits of the door zone when the resonance frequency F2 is selected.
 次に動作を説明する。カゴがフロア間を移動して、位置検出部5の検出エリア内に着床基準板6が存在しない場合、最初に被検コイル36を検出するために、検出コイル13,14の共振周波数をF2に設定する。カゴが着床位置に向かって下降または上昇し、ドアゾーンに進入すると、最初に被検コイル36を含む第2被検共振回路と検出コイル13,14が磁気結合し、共振周波数F2に関する電圧信号V1,V2、差分信号ΔV、加算信号ΣVおよび正規化信号ΔDが発生する。 Next, the operation will be described. When the basket moves between the floors and the landing reference plate 6 does not exist in the detection area of the position detection unit 5, the resonance frequency of the detection coils 13 and 14 is set to F2 in order to detect the test coil 36 first. Set to. When the cage descends or rises toward the landing position and enters the door zone, first, the second test resonance circuit including the test coil 36 and the detection coils 13 and 14 are magnetically coupled, and the voltage signal V1 relating to the resonance frequency F2 is detected. , V2, a difference signal ΔV, an addition signal ΣV, and a normalization signal ΔD.
 判定回路23は、信号ΔDが基準電圧VR1,VR2の範囲内にあれば、ドアゾーン内信号という意味で信号ENをハイレベルで出力し、基準電圧VR1,VR2の範囲外であれば信号ENをローレベルにする。エレベータ制御装置は、共振周波数F2の選択時に信号ENがハイレベルである場合、カゴがドアゾーン内に進入したと判断して、モータの減速動作やブレーキ動作に移行するとともに、切替信号Qの切り替えによって検出コイル13,14の共振周波数をF1に設定する。このとき被検コイル11を含む第1被検共振回路と検出コイル13,14が磁気結合し、共振周波数F1に関する電圧信号V1,V2、差分信号ΔV、加算信号ΣVおよび正規化信号ΔDが発生する。 The determination circuit 23 outputs the signal EN at a high level in the sense of the door zone signal if the signal ΔD is within the range of the reference voltages VR1 and VR2, and the signal EN is low if it is outside the range of the reference voltages VR1 and VR2. To level. When the signal EN is at the high level when the resonance frequency F2 is selected, the elevator control device determines that the car has entered the door zone, and shifts to a motor deceleration operation or a brake operation. The resonance frequency of the detection coils 13 and 14 is set to F1. At this time, the first resonance circuit including the coil 11 to be detected and the detection coils 13 and 14 are magnetically coupled to generate voltage signals V1 and V2, a difference signal ΔV, an addition signal ΣV, and a normalization signal ΔD related to the resonance frequency F1. .
 続いてカゴがさらに移動して、検出コイル13,14の基準面が着床基準板6の基準面に接近すると、正規化信号ΔDもゼロに接近する。このときエレベータ制御装置は、カゴの停止位置をΔD=0となるように制御することによって、乗り場の床面2とカゴ床面3とを正確に一致させることできる。 Subsequently, when the cage further moves and the reference surfaces of the detection coils 13 and 14 approach the reference surface of the landing reference plate 6, the normalized signal ΔD also approaches zero. At this time, the elevator control device can accurately match the floor 2 and the floor 3 of the platform by controlling the stop position of the car so that ΔD = 0.
 このように上下方向の長さが異なる複数の被検コイル11,36を用いることによって、ドアゾーンの進入検知が可能になり、その結果、カゴの着床誤差を低減できる。 By using the plurality of test coils 11 and 36 having different vertical lengths as described above, it becomes possible to detect the entrance of the door zone, and as a result, the landing error of the basket can be reduced.
実施の形態4.
 図7は、本発明の実施の形態4に係る構成を示すブロック図である。本実施形態は、実施の形態1と同様な構成を有するが、着床基準板6が情報送信装置41を備える点で相違する。
Embodiment 4 FIG.
FIG. 7 is a block diagram showing a configuration according to Embodiment 4 of the present invention. The present embodiment has the same configuration as that of the first embodiment, but is different in that the landing reference plate 6 includes an information transmission device 41.
 図8は、情報送信装置41の一例を示す回路図である。情報送信装置41は、被検コイル11が受けた電力によって動作可能なように、例えば、変調回路部43、電源回路部46、処理装置50、メモリ51を有する。 FIG. 8 is a circuit diagram showing an example of the information transmission device 41. The information transmission device 41 includes, for example, a modulation circuit unit 43, a power supply circuit unit 46, a processing device 50, and a memory 51 so that the information transmission device 41 can be operated by the power received by the coil 11 to be tested.
 位置検出部5が着床基準板6に接近すると、検出コイル13,14と被検コイル11との磁気結合量が増加し、被検コイル11およびコンデンサ12を含む被検共振回路は交流電源として機能する。電源回路部46では、ダイオード47が被検共振回路からの交流電圧を整流し、コンデンサ49が平滑化して直流電圧を供給する。ツェナーダイオード48は、平滑化された直流電圧をクリッピングし、一定以上に電圧が上がらないようにする。 When the position detection unit 5 approaches the landing reference plate 6, the amount of magnetic coupling between the detection coils 13 and 14 and the test coil 11 increases, and the test resonance circuit including the test coil 11 and the capacitor 12 serves as an AC power source. Function. In the power supply circuit unit 46, the diode 47 rectifies the AC voltage from the resonance circuit to be tested, and the capacitor 49 smoothes and supplies the DC voltage. The Zener diode 48 clips the smoothed DC voltage so that the voltage does not rise above a certain level.
 処理装置50は、低電力マイクロプロセッサなどで構成され、メモリ51に予め記憶されたプログラムに従って動作する。メモリ51は、不揮発性メモリ等を有し、プログラムやデータを記憶する。本実施形態では、着床基準板6が設置された階の番号などの情報が保存される。 The processing device 50 is composed of a low-power microprocessor or the like, and operates according to a program stored in the memory 51 in advance. The memory 51 includes a non-volatile memory and stores programs and data. In the present embodiment, information such as the number of the floor on which the landing reference plate 6 is installed is stored.
 変調回路部43は、コンデンサ44とトランジスタ45の直列回路で構成され、トランジスタ45の導通時にコンデンサ12に対してコンデンサ44を並列接続することによって、被検共振回路の共振周波数を切り替える機能を有する。 The modulation circuit unit 43 includes a series circuit of a capacitor 44 and a transistor 45, and has a function of switching the resonance frequency of the resonance circuit to be tested by connecting the capacitor 44 in parallel to the capacitor 12 when the transistor 45 is conductive.
 次に動作を説明する。カゴが移動して、位置検出部5が着床基準板6に接近すると、処理装置50はプログラム動作を開始し、メモリ51から階番号など情報を読み出して、シリアル形式の2値データとしてトランジスタ45に出力する。トランジスタ45は、2値データに従ってONかOFFの状態になる。トランジスタ45がON状態となると、コンデンサ44とコンデンサ12の並列接続による合成容量値に対応した共振周波数に変化する。トランジスタ45がOFF状態のときは、コンデンサ44は回路から切り離され、被検共振回路は元の共振周波数に戻る。 Next, the operation will be described. When the car moves and the position detection unit 5 approaches the landing reference plate 6, the processing device 50 starts a program operation, reads information such as a floor number from the memory 51, and outputs the transistor 45 as serial binary data. Output to. The transistor 45 is turned on or off according to the binary data. When the transistor 45 is turned on, the resonance frequency changes to a resonance value corresponding to the combined capacitance value due to the parallel connection of the capacitor 44 and the capacitor 12. When the transistor 45 is in the OFF state, the capacitor 44 is disconnected from the circuit, and the resonance circuit under test returns to the original resonance frequency.
 こうした共振周波数の切り替え動作により、検出コイル13,14と被検コイル11との磁気結合量が変化し、検出コイル13,14の端子間電圧が変化する。すると、加算回路21の加算信号ΣVが2値データとして変化するため、端子73を経由してエレベータ制御装置へ階番号など情報を伝送することができる。 By such switching operation of the resonance frequency, the amount of magnetic coupling between the detection coils 13 and 14 and the test coil 11 changes, and the voltage between the terminals of the detection coils 13 and 14 changes. Then, since the addition signal ΣV of the addition circuit 21 changes as binary data, information such as a floor number can be transmitted to the elevator control device via the terminal 73.
 こうした信号伝送動作は、着床検出動作の前後またはドアゾーン検出動作の前後で実施することが好ましい。また、可変利得増幅回路22の動作が不安定になるのを防ぐために、データは常に0と1を変化させるマンチャスター符号を採用して、低周波成分が少なくなるようにし、可変利得増幅回路22の利得変動は時定数を大きくし、つまり、データレートを高周波成分にし、データレートでは利得が変化しないようにすることが好ましい。 Such signal transmission operation is preferably performed before and after the landing detection operation or before and after the door zone detection operation. Further, in order to prevent the operation of the variable gain amplifier circuit 22 from becoming unstable, the data adopts a Manchuster code that always changes 0 and 1 so that the low frequency component is reduced, and the variable gain amplifier circuit 22 is reduced. It is preferable to increase the time constant of the gain fluctuation, that is, to make the data rate a high frequency component so that the gain does not change at the data rate.
 このように着床基準板6に、被検コイル11が受けた電力によって動作する情報送信装置41を設けることによって、階番号などの情報を位置検出部5へ伝送することが可能になる。 As described above, by providing the landing reference plate 6 with the information transmitting device 41 that operates by the power received by the coil 11 to be tested, it becomes possible to transmit information such as the floor number to the position detecting unit 5.
 本発明は、エレベータの乗りカゴの停止位置を安全に高精度で検出できる点で、産業上極めて有用である。 The present invention is extremely useful industrially in that the stop position of the elevator car can be detected safely and with high accuracy.
 1 カゴ、 2,3 床面、 4 取り付け板、 5 位置検出部、 6 着床基準板、 7 ケーブル、 11,36 被検コイル、 13,14 検出コイル、 17,31 発振器、 18,19 検波回路、 20 差動回路、 21 加算回路、 22 可変利得増幅回路、 23 判定回路、 24 基準電圧回路、 34 スイッチ、 41 情報送信装置、 43 変調回路部、 46 電源回路部、 50 処理装置、 51 メモリ。 1 basket, 2, 3 floor, 4 mounting plate, 5 position detection unit, 6 landing reference plate, 7 cable, 11, 36 test coil, 13, 14 detection coil, 17, 31 oscillator, 18, 19 detection circuit , 20 differential circuit, 21 adder circuit, 22 variable gain amplifier circuit, 23 determination circuit, 24 reference voltage circuit, 34 switch, 41 information transmission device, 43 modulation circuit unit, 46 power supply circuit unit, 50 processing device, 51 memory.

Claims (6)

  1.  建物の壁側に設置された基準部材と、
     エレベータの移動体に設置された位置検出部とを備えたエレベータ停止位置検出装置であって、
     前記基準部材は、被検コイルを含む被検共振回路を備え、
     前記位置検出部は、
     前記被検コイルと電磁的に結合し、前記移動体の移動方向に沿って並設された第1検出コイルおよび第2検出コイルと、
     前記第1検出コイルの出力と前記第2検出コイルの出力との差分を出力する差動回路と、
     前記第1検出コイルの出力と前記第2検出コイルの出力との合計を出力する加算回路と、
     前記差動回路の出力を前記加算回路の出力で正規化した値から前記移動体の変位方向および変位量を出力する演算回路と、を備えることを特徴とするエレベータ停止位置検出装置。
    A reference member installed on the wall side of the building;
    An elevator stop position detection device comprising a position detection unit installed on a moving body of an elevator,
    The reference member includes a test resonance circuit including a test coil,
    The position detector is
    A first detection coil and a second detection coil which are electromagnetically coupled to the test coil and are arranged in parallel along a moving direction of the moving body;
    A differential circuit for outputting a difference between the output of the first detection coil and the output of the second detection coil;
    An adder circuit for outputting the sum of the output of the first detection coil and the output of the second detection coil;
    An elevator stop position detection device comprising: an arithmetic circuit that outputs a displacement direction and a displacement amount of the moving body from a value obtained by normalizing an output of the differential circuit with an output of the adder circuit.
  2.  前記位置検出部は、計算した変位量が所定の範囲内であった場合、エレベータのドアの開閉許可信号を出力する判定回路をさらに備えることを特徴とする請求項1記載のエレベータ停止位置検出装置。 2. The elevator stop position detecting device according to claim 1, further comprising a determination circuit that outputs an opening / closing permission signal for an elevator door when the calculated displacement amount is within a predetermined range. .
  3.  前記位置検出部は、前記第1検出コイルと前記第2検出コイルからなる直列回路を含み、被検共振回路の共振周波数Fと同じ共振周波数を有する検出共振回路と、
     共振周波数Fを含む正弦波信号を前記検出共振回路に供給する発振器とをさらに備えることを特徴とする請求項1記載のエレベータ停止位置検出装置。
    The position detection unit includes a series circuit including the first detection coil and the second detection coil, and a detection resonance circuit having the same resonance frequency as the resonance frequency F of the resonance circuit to be detected;
    The elevator stop position detecting device according to claim 1, further comprising an oscillator for supplying a sine wave signal including a resonance frequency F to the detection resonance circuit.
  4.  前記基準部材のコイルは、コイル巻線が交差したツイスト形状を有することを特徴とする請求項1~3のいずれかに記載のエレベータ停止位置検出装置。 4. The elevator stop position detecting device according to claim 1, wherein the coil of the reference member has a twist shape in which coil windings intersect.
  5.  前記基準部材は、第1被検コイルを含む第1被検共振回路と、第2被検コイルを含む第2被検共振回路とを備え、前記第1被検共振回路の共振周波数F1は前記第2被検共振回路の共振周波数F2と相違しており、前記第1被検コイルおよび前記第2被検コイルは、移動体の移動方向に沿った長さが相違しており、
     前記位置検出部は、前記第1検出コイルと前記第2検出コイルからなる直列回路を含み、前記第1被検共振回路の共振周波数F1と同じ共振周波数を有する第1検出共振回路と、
     前記第1検出コイルと前記第2検出コイルからなる直列回路を含み、前記第2被検共振回路の共振周波数F2と同じ共振周波数を有する第2検出共振回路と、を備えることを特徴とする請求項1記載のエレベータ停止位置検出装置。
    The reference member includes a first test resonance circuit including a first test coil and a second test resonance circuit including a second test coil, and the resonance frequency F1 of the first test resonance circuit is The resonance frequency F2 of the second test resonance circuit is different, and the first test coil and the second test coil have different lengths along the moving direction of the moving body,
    The position detection unit includes a first detection resonance circuit including a series circuit including the first detection coil and the second detection coil, and having the same resonance frequency as the resonance frequency F1 of the first detection resonance circuit;
    A second detection resonance circuit including a series circuit including the first detection coil and the second detection coil and having the same resonance frequency as a resonance frequency F2 of the second resonance circuit to be tested is provided. Item 2. The elevator stop position detection device according to Item 1.
  6.  前記基準部材は、被検コイルが受けた電力によって動作する情報送信装置を備え、
     該情報送信装置は、予め記憶したプログラムに従って動作する演算処理部を含み、該演算処理部の出力に基づいて被検共振回路の共振周波数を変化させることによって、情報を前記位置検出部へ送信することを特徴とする請求項1~5のいずれかに記載のエレベータ停止位置検出装置。
    The reference member includes an information transmission device that operates by power received by the coil to be examined.
    The information transmitting device includes an arithmetic processing unit that operates according to a program stored in advance, and transmits information to the position detecting unit by changing a resonance frequency of the resonance circuit to be tested based on an output of the arithmetic processing unit. The elevator stop position detecting device according to any one of claims 1 to 5, wherein
PCT/JP2012/059470 2011-09-09 2012-04-06 Elevator stopping position-detecting device WO2013035368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011196607A JP2014223954A (en) 2011-09-09 2011-09-09 Elevator stop position detection device
JP2011-196607 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035368A1 true WO2013035368A1 (en) 2013-03-14

Family

ID=47831834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059470 WO2013035368A1 (en) 2011-09-09 2012-04-06 Elevator stopping position-detecting device

Country Status (2)

Country Link
JP (1) JP2014223954A (en)
WO (1) WO2013035368A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160187162A1 (en) * 2012-11-02 2016-06-30 Stemco Kaiser Incorporated Air spring height measurement arrangement
US9567188B2 (en) 2014-02-06 2017-02-14 Thyssenkrupp Elevator Corporation Absolute position door zone device
WO2023181165A1 (en) * 2022-03-23 2023-09-28 三菱電機株式会社 Elevator and face-to-face position detection device for same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119837B2 (en) * 2016-07-06 2018-11-06 Biosense Webster (Israel) Ltd. Magnetic-field generating circuit for a tracking system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755499A (en) * 1993-08-13 1995-03-03 Sakata Denki Kk Device for measuring displacement
JPH11183108A (en) * 1997-10-15 1999-07-09 Mitsutoyo Corp Absolute position detector
JP2000082194A (en) * 1998-09-07 2000-03-21 Hiisuto Kk Vehicle position recognizing device
JP2000123286A (en) * 1998-10-12 2000-04-28 Oki Electric Ind Co Ltd Vehicle position recognizing device
JP2005300494A (en) * 2004-04-16 2005-10-27 Fuji Electric Fa Components & Systems Co Ltd Position detector and elevator provided therewith
JP2011063354A (en) * 2009-09-16 2011-03-31 Hitachi Ltd Elevator system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755499A (en) * 1993-08-13 1995-03-03 Sakata Denki Kk Device for measuring displacement
JPH11183108A (en) * 1997-10-15 1999-07-09 Mitsutoyo Corp Absolute position detector
JP2000082194A (en) * 1998-09-07 2000-03-21 Hiisuto Kk Vehicle position recognizing device
JP2000123286A (en) * 1998-10-12 2000-04-28 Oki Electric Ind Co Ltd Vehicle position recognizing device
JP2005300494A (en) * 2004-04-16 2005-10-27 Fuji Electric Fa Components & Systems Co Ltd Position detector and elevator provided therewith
JP2011063354A (en) * 2009-09-16 2011-03-31 Hitachi Ltd Elevator system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160187162A1 (en) * 2012-11-02 2016-06-30 Stemco Kaiser Incorporated Air spring height measurement arrangement
US9683870B2 (en) * 2012-11-02 2017-06-20 Stemco Kaiser Incorporated Air spring height measurement arrangement
US9567188B2 (en) 2014-02-06 2017-02-14 Thyssenkrupp Elevator Corporation Absolute position door zone device
WO2023181165A1 (en) * 2022-03-23 2023-09-28 三菱電機株式会社 Elevator and face-to-face position detection device for same

Also Published As

Publication number Publication date
JP2014223954A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US9890016B2 (en) Position recovery via dummy landing patterns
WO2013035368A1 (en) Elevator stopping position-detecting device
US9809419B2 (en) Elevator apparatus
US11535488B2 (en) Elevator position detection systems
US9035662B2 (en) Method and device for accurate capacitive measured value acquisition
CN108521238A (en) Method, the method for measuring linear motor position, inductive sensing device and elevator device for the control linear motor that suspends
WO2013118317A1 (en) Elevator car location detector device
US11831178B2 (en) Wireless power systems with foreign object detection
CN103086215B (en) Interlayer distance adjustment type double-layer elevator
EP3584208B1 (en) Position reference device for elevator
KR20180081709A (en) System and method for determining relative position and / or orientation between primary and secondary winding structures
US11888331B2 (en) Sub-surface wireless charging and associated method
JP4317863B2 (en) Elevator
EP2414269B1 (en) Elevator system
CN104140019A (en) Control device and control method of elevator lift car position
JP4599427B2 (en) Elevator position detection device and elevator device
CN113644624B (en) Transmission and distribution system with electric shock protection function and operation method thereof
CN101817468A (en) Elevator with position detecting device
JP6218969B2 (en) Elevator position detection device
US20220242257A1 (en) Foreign matter detection device, power transmission device, power reception device, and power transmission system
US20230339125A1 (en) Method for detecting a change in the environment of a cable
KR102040838B1 (en) Movement detection device of vehicle control element
CN110482343B (en) Motor control method for elevator system
CN112787422A (en) Wireless power transmission device, elevator and method for wirelessly transmitting power in elevator
CN113985117A (en) Current detection device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP