WO2013035179A1 - Vehicle and vehicle control method - Google Patents

Vehicle and vehicle control method Download PDF

Info

Publication number
WO2013035179A1
WO2013035179A1 PCT/JP2011/070455 JP2011070455W WO2013035179A1 WO 2013035179 A1 WO2013035179 A1 WO 2013035179A1 JP 2011070455 W JP2011070455 W JP 2011070455W WO 2013035179 A1 WO2013035179 A1 WO 2013035179A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper limit
value
change rate
limit value
drive torque
Prior art date
Application number
PCT/JP2011/070455
Other languages
French (fr)
Japanese (ja)
Inventor
英司 福代
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/070455 priority Critical patent/WO2013035179A1/en
Publication of WO2013035179A1 publication Critical patent/WO2013035179A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/106Output power
    • B60W2510/1065Transmission of zero torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/109Direction of power flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • B60W2710/1055Output torque change rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to control of driving torque for vehicle travel.
  • Patent Document 1 in a hybrid vehicle capable of switching between the power mode and the normal mode, the driving torque for traveling is set to a larger value in the power mode than in the normal mode. Is disclosed.
  • Patent Document 2 JP 2009-184383 A discloses that in a hybrid vehicle capable of switching between a power mode, a normal mode, and an eco mode, in the power mode, in other modes (normal mode and eco mode). In comparison, it is disclosed that the driving torque for traveling is set to a large value.
  • the present invention has been made in order to solve the above-described problems, and its purpose is to improve acceleration response in the power mode while suppressing abnormal noise generated when the driving torque is switched between positive and negative. It is.
  • a vehicle is configured to include at least a motor, and generates a driving torque of the vehicle with at least the torque of the motor, and controls the torque generating device so that the driving torque is within a predetermined region including zero.
  • a control device that performs a zero cross process for making the change rate upper limit value of the drive torque when it is included smaller than the change rate upper limit value when the drive torque is not included in the predetermined region.
  • the control device sets the change rate upper limit value in the power mode in which acceleration response is more important than in the non-power mode to a value larger than the change rate upper limit value in the non-power mode.
  • the control device sets the change rate upper limit value to a smaller value as the drive torque is closer to zero in the non-power mode, and the change rate upper limit to be closer to zero in the power mode. While the value is set to a small value, it is set to a value larger than the change rate upper limit value in the non-power mode.
  • the torque generator generates a drive torque by a motor torque.
  • the torque generating device further includes an engine in addition to the motor, and generates a driving torque with power of at least one of the motor and the engine.
  • a vehicle control method is a vehicle control method for generating a drive torque of a vehicle with at least a motor torque, and determines whether or not the drive torque is included in a predetermined region including zero. And a step of performing a zero-cross process for making the change rate upper limit value of the drive torque when the drive torque is included in the predetermined region smaller than the change rate upper limit value when the drive torque is not included in the predetermined region.
  • the zero cross processing step when performing the zero cross processing, the change rate upper limit value in the power mode where acceleration response is more important than in the non-power mode is set to a value larger than the change rate upper limit value in the non-power mode.
  • the present invention it is possible to improve acceleration response in the power mode while suppressing abnormal noise that occurs when switching between positive and negative driving torque.
  • 1 is an overall block diagram of a vehicle. It is the figure which showed the state of the engine, 1st MG, and 2nd MG on the alignment chart. It is a functional block diagram of ECU. It is a figure which shows typically an example of map (alpha) and (beta) for setting the change rate upper limit R of a drive torque. It is a flowchart which shows the process sequence of ECU. It is the figure which illustrated the mode of the time change of each state quantity, such as change rate upper limit R in a present Example.
  • FIG. 1 is an overall block diagram of a vehicle 1 according to an embodiment of the present invention.
  • vehicle 1 includes a torque generator 2, a speed reducer 50, a drive shaft 51, drive wheels 80, and an ECU (Electronic Control Unit) 200.
  • ECU Electronic Control Unit
  • the torque generator 2 generates drive torque for running the vehicle 1.
  • the torque generator 2 includes an engine 10, a first MG (Motor Generator) 20, a second MG 30, a power split device 40, a PCU (Power Control Unit) 60, and a battery 70.
  • MG Motor Generator
  • PCU Power Control Unit
  • first MG 20 and second MG 30 are connected via power split device 40.
  • the vehicle 1 travels with driving force output from at least one of the engine 10 and the second MG 30.
  • the power generated by the engine 10 is divided into two paths by the power split device 40. That is, one is a path transmitted to the drive wheel 80 via the speed reducer 50 and the other is a path transmitted to the first MG 20.
  • First MG 20 and second MG 30 are AC motors, for example, three-phase AC synchronous motors.
  • First MG 20 generates power using the power of engine 10 divided by power split device 40.
  • Second MG 30 generates a driving force using at least one of the electric power stored in battery 70 and the electric power generated by first MG 20. Then, the driving force of the second MG 30 is transmitted to the driving wheels 80 via the speed reducer 50.
  • the second MG 30 is driven by the drive wheels 80 via the speed reducer 50, and the second MG 30 operates as a generator.
  • 2nd MG30 functions also as a regenerative brake which converts kinetic energy of vehicles into electric power.
  • the regenerative power generated by second MG 30 is stored in battery 70.
  • the power split device 40 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 10.
  • the sun gear is connected to the rotation shaft of the first MG 20.
  • the ring gear is connected to the rotation shaft of second MG 30 and speed reducer 50.
  • the engine 10, the first MG 20 and the second MG 30 are connected via the power split device 40 made of planetary gears, so that the rotational speed of the engine 10 (hereinafter referred to as “engine rotational speed Ne”), the first MG 20 The rotational speed (hereinafter referred to as “first MG rotational speed Nm1”) and the rotational speed of the second MG 30 (hereinafter referred to as “second MG rotational speed Nm2”) are connected by a straight line in the nomographic chart (see FIG. 2 described later). .
  • the PCU 60 is controlled by a control signal S2 from the ECU 200.
  • PCU 60 converts the DC power stored in battery 70 into AC power that can drive first MG 20 and second MG 30 and outputs the converted AC power to first MG 20 and / or second MG 30.
  • first MG 20 and / or second MG 30 are driven by the electric power stored in battery 70.
  • the PCU 60 converts the AC power generated by the first MG 20 and / or the second MG 30 into DC power that can charge the battery 70 and outputs the DC power to the battery 70.
  • battery 70 is charged with the electric power generated by first MG 20 and / or second MG 30.
  • the battery 70 is a DC power source that stores electric power for driving the first MG 20 and / or the second MG 30, and is formed of, for example, a secondary battery such as nickel metal hydride or lithium ion.
  • the voltage of the battery 70 is about 200V, for example. Note that a large-capacity capacitor can also be used as the battery 70.
  • the ECU 200 is connected with a rotation speed sensor 11, resolvers 12, 13, a vehicle speed sensor 14, an accelerator position sensor 15, a mode sensor 16, an acceleration sensor 17, and the like.
  • Rotational speed sensor 11 detects engine rotational speed (rotational speed of crankshaft of engine 10) Ne.
  • the resolver 12 detects the first MG rotation speed Nm1.
  • the resolver 13 detects the second MG rotation speed Nm2.
  • the vehicle speed sensor 14 detects the vehicle speed V from the rotational speed of the drive shaft.
  • the accelerator position sensor 15 detects an accelerator pedal operation amount A by the user.
  • the mode sensor 16 detects the state of a power switch (not shown) that is pressed by the user when the user requests traveling in the power mode.
  • the power mode is a mode in which the acceleration response of the vehicle 1 is more important than the non-power mode. If the accelerator pedal operation amount A is the same, the driving torque in the power mode is controlled to a value larger than the driving torque in the non-power mode.
  • the non-power mode may include a plurality of modes (for example, a normal mode and a fuel consumption mode in which fuel consumption is more important than the normal mode).
  • the acceleration sensor 17 detects an acceleration G acting in the vehicle longitudinal direction. Each of these sensors transmits a signal representing the detection result to ECU 200.
  • the ECU 200 includes a CPU (Central Processing Unit) (not shown) and a memory, and is configured to execute a predetermined calculation process based on information stored in the memory and information from each sensor.
  • a CPU Central Processing Unit
  • the ECU 200 generates a driving torque Tp for causing the vehicle 1 to travel with the power of at least one of the engine 10 and the second MG 30 from the torque generator 2 and applies the driving torque Tp to the driving shaft 51.
  • FIG. 2 is a diagram showing the states of the engine 10, the first MG 20, and the second MG 30 controlled by the ECU 200 on an alignment chart.
  • the torque of the engine 10 is referred to as “engine torque Te”
  • the torque of the first MG 20 is referred to as “first MG torque Tm1”
  • the torque of the second MG 30 is referred to as “second MG torque Tm2”.
  • the engine rotational speed Ne, the first MG rotational speed Nm1, and the second MG rotational speed Nm2 are connected by a straight line in the alignment chart.
  • the second MG rotation speed Nm2 is a value corresponding to the vehicle speed V.
  • “Tep” indicates the torque (hereinafter referred to as “engine direct torque”) at which the engine torque Te is transmitted to the ring gear of the power split device 40. Therefore, in this embodiment, the sum of the second MG torque Tm2 and the engine direct torque Tep is the drive torque Tp.
  • the ECU 200 sets an upper limit value (hereinafter, also referred to as “change rate upper limit value R”) of the change rate (change amount per unit time) of the drive torque Tp, and the drive torque Control is performed so that the actual change rate of Tp does not exceed the change rate upper limit value R.
  • change rate upper limit value R an upper limit value of the change rate (change amount per unit time) of the drive torque Tp
  • the ECU 200 determines the change rate upper limit R when the drive torque Tp is included in a predetermined region (zero cross region) including zero in the normal region other than the zero cross region. Processing for making the change rate upper limit value R smaller (hereinafter also referred to as “zero cross processing”) is performed.
  • the ECU 200 When performing this “zero cross processing”, the ECU 200 does not uniformly reduce the change rate upper limit value R, but changes the amount of decrease in the change rate upper limit value R depending on whether or not it is in the power mode. More specifically, the ECU 200 considers that the importance of the acceleration response is higher in the power mode than in the non-power mode than in the noise and shock suppression, and the change rate upper limit value R in the power mode. Is reduced more than the reduction amount (limit amount) of the change rate upper limit value R in the non-power mode. This is the most characteristic point of the present invention.
  • FIG. 3 is a functional block diagram of the ECU 200 when the zero cross process is performed. Each functional block shown in FIG. 3 may be realized by hardware or software.
  • ECU 200 includes a zero-cross determination unit 210, a rate upper limit setting unit 220, a drive torque command value setting unit 250, and a storage unit 260.
  • the rate upper limit setting unit 220 includes a normal processing unit 230 and a zero cross processing unit 240.
  • the zero cross determination unit 210 reads the previous value of the drive torque command value Tpcom (hereinafter also referred to as “drive torque command previous value Tpcom (n ⁇ 1)”) from the storage unit 260, and drives the drive torque command previous value Tpcom (n ⁇ 1). ) Is included in the zero cross region.
  • drive torque command previous value Tpcom hereinafter also referred to as “drive torque command previous value Tpcom (n ⁇ 1)”
  • the change rate upper limit value R is set by the normal processing unit 230.
  • the normal processing unit 230 sets the change rate upper limit value R to the positive upper limit fixed value Rmax (+) when the drive torque command previous value Tpcom (n ⁇ 1) is positive, and sets the drive torque command previous value Tpcom (n).
  • the change rate upper limit value R is set to the negative upper limit fixed value Rmax (-).
  • the positive upper limit fixed value Rmax (+) and the negative upper limit fixed value Rmax ( ⁇ ) may be the same value.
  • the change rate upper limit value R is set by the zero cross processing unit 240.
  • the zero cross processing unit 240 limits the change rate upper limit value R in the zero cross region to the change rate upper limit value R in the normal region. More specifically, when the drive torque command previous value Tpcom (n ⁇ 1) is positive, the change rate upper limit value R is set to a value smaller than the positive side upper limit fixed value Rmax (+), and the drive torque command previous value Tpcom is set. When (n ⁇ 1) is negative, the change rate upper limit R is set to a value smaller than the negative upper limit fixed value Rmax ( ⁇ ). This processing is “zero cross processing”.
  • the zero cross processing unit 240 When performing the “zero cross processing”, the zero cross processing unit 240 reduces the amount of decrease in the change rate upper limit value R in the power mode more than the amount of decrease in the change rate upper limit value R in the non-power mode.
  • the zero cross processing unit 240 includes a power mode determination unit 241 and a restriction unit 242.
  • the power mode determination unit 241 determines whether it is in the power mode or the non-power mode based on the output of the mode sensor 16.
  • the restriction unit 242 sets the change rate upper limit value R using the power mode map ⁇ when the power mode is set. On the other hand, in the non-power mode, limiting unit 242 sets change rate upper limit R using non-power mode map ⁇ .
  • FIG. 4 is a diagram schematically showing an example of the maps ⁇ and ⁇ for setting the change rate upper limit value R of the drive torque.
  • the region where the drive torque command previous value Tpcom (n ⁇ 1) shown on the horizontal axis is from the predetermined value T1 ( ⁇ 0) to the predetermined value T2 (> 0) is the “zero cross region”.
  • the area is a normal area.
  • the change rate upper limit value R set in the non-power mode map ⁇ is set to a smaller value as the drive torque command previous value Tpcom (n ⁇ 1) is closer to zero.
  • the change rate upper limit R set in the power mode map ⁇ is also set to a smaller value as the drive torque command previous value Tpcom (n ⁇ 1) is closer to 0, but the change rate upper limit in the non-power mode.
  • a value larger than R is set. That is, the decrease amount (limit amount) of the change rate upper limit value R set in the power mode map ⁇ is more relaxed than the decrease amount (limit amount) of the change rate upper limit value R in the non-power mode.
  • the drive torque command value setting unit 250 performs control so that the actual change rate of the drive torque command value Tpcom does not exceed the change rate upper limit value R set by the normal processing unit 230 or the zero cross processing unit 240. To do. Specifically, the drive torque command value setting unit 250 obtains a drive torque Tp requested by the user from the vehicle speed V, the accelerator pedal operation amount A, and the like (hereinafter referred to as “drive torque request value Tpreq”), and this drive torque request It is determined whether or not the value Tpreq is more than the change rate upper limit value R with respect to the drive torque command previous value Tpcom (n ⁇ 1).
  • the drive torque request value Tpreq is not more than the change rate upper limit value R with respect to the drive torque command previous value Tpcom (n ⁇ 1)
  • the drive torque request value Tpreq is directly used as the current value of the drive torque command value Tpcom (hereinafter referred to as the drive torque command value Tpcom , Also referred to as “driving torque command current value Tpcom (n)”).
  • a value obtained by subtracting the change rate upper limit value R from Tpcom (n ⁇ 1) is set as the drive torque command current value Tpcom (n).
  • the drive torque command value setting unit 250 outputs a control signal for controlling the actual drive torque Tp to the drive torque command current value Tpcom (n) to the torque generator 2.
  • the storage unit 260 stores the drive torque command current value Tpcom (n).
  • the drive torque command current value Tpcom (n) stored in the storage unit 260 is used as the drive torque command previous value Tpcom (n ⁇ 1) in the next cycle.
  • FIG. 5 is a flowchart showing a processing procedure of the ECU 200 for realizing the above-described functions. This flowchart is repeatedly executed in a predetermined cycle.
  • ECU 200 reads drive torque command previous value Tpcom (n-1) stored in the previous cycle.
  • ECU 200 determines whether or not drive torque command previous value Tpcom (n-1) is included in the zero cross region.
  • ECU 200 determines in S12 whether or not it is in the power mode.
  • ECU 200 sets change rate upper limit value R in S13 using map ⁇ for power mode shown in FIG.
  • the current mode is the non-power mode (NO in S12)
  • ECU 200 sets change rate upper limit R in S14 using map ⁇ for non-power mode shown in FIG.
  • ECU 200 performs normal processing. That is, ECU 200 determines whether or not drive torque command previous value Tpcom (n ⁇ 1) is positive in S15. If it is positive (YES in S15), ECU 200 determines change rate upper limit value R in S16. Positive upper limit fixed value Rmax (+) is set, and if negative (NO in S15), change rate upper limit value R is set to negative upper limit fixed value Rmax (-) in S17.
  • ECU 200 calculates drive torque request value Tpreq from vehicle speed V, accelerator pedal operation amount A, and the like.
  • ECU 200 sets drive torque command current value Tpcom (n) from drive torque request value Tpreq and change rate upper limit value R. That is, when the drive torque request value Tpreq is not more than the change rate upper limit value R with respect to the drive torque command previous value Tpcom (n ⁇ 1), the ECU 200 uses the drive torque request value Tpreq as it is as the drive torque command current value Tpcom ( n), otherwise, the value obtained by adding the change rate upper limit value R to the drive torque command previous value Tpcom (n-1) or the change rate upper limit value R from the drive torque command previous value Tpcom (n-1). The reduced value is set to the drive torque command current value Tpcom (n).
  • the ECU 200 outputs a control signal for controlling the actual drive torque Tp to the drive torque command current value Tpcom (n) to the torque generator 2.
  • FIG. 6 exemplifies a state of time change of each state quantity (vehicle speed V, accelerator pedal operation amount A, drive torque command value Tpcom, acceleration G, change rate upper limit value R) such as the change rate upper limit value R in the present embodiment.
  • FIG. 6 exemplifies a state of time change of each state quantity (vehicle speed V, accelerator pedal operation amount A, drive torque command value Tpcom, acceleration G, change rate upper limit value R) such as the change rate upper limit value R in the present embodiment.
  • the accelerator pedal operation amount A Prior to time t1, the accelerator pedal operation amount A is substantially zero, and the drive torque command value Tpcom is set slightly on the negative side (deceleration side) from zero.
  • the drive torque command value Tpcom starts to increase, and at time t2, the drive torque command value Tpcom is switched from negative (deceleration direction) to positive (acceleration direction).
  • the change rate upper limit value R in the zero cross region is lower than the change rate upper limit value R in the normal region by the above-described zero cross processing, so that rattling noise and shock are prevented.
  • the amount of decrease in the change rate upper limit value R is changed depending on whether or not the power mode is in effect. That is, the amount of decrease in the change rate upper limit value R (solid line) in the power mode is more moderate than the amount of decrease in the change rate upper limit value R (dotted line) in the non-power mode.
  • the driving force response (acceleration response) in the power mode can be improved compared to the non-power mode, and the user's request can be answered.
  • the amount of decrease in the drive torque change rate upper limit value R in the power mode is set to the decrease in the drive torque change rate upper limit value R in the non-power mode. Relax more than the amount. As a result, the acceleration response in the power mode can be improved while suppressing the noise generated when the sign of the driving torque is switched.
  • the target of the zero cross process is “drive torque”, but the target of the zero cross process may be the first MG torque Tm1 or the second MG torque Tm2. That is, the zero cross process of the first MG torque Tm1 or the second MG torque Tm2 may be performed in a region where the state of the first MG 20 or the second MG 30 is switched between power running and regeneration.
  • the present invention does not include an engine and uses the torque of the motor.
  • the present invention can also be applied to an electric vehicle that generates driving torque. In such an electric vehicle, since the motor torque becomes the driving torque, the region where the state of the motor is switched between power running and regeneration coincides with the region where the positive / negative driving torque is switched (zero cross region). Therefore, the zero cross process may be performed in a region where the motor state is switched between power running and regeneration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

When the previous drive torque command value is within a predetermined region including zero (zero cross region), an ECU (200) performs "zero crossing processing" (240), said zero crossing processing limiting a rate of change upper limit value (R) of the drive torque to a value smaller than the rate of change upper limit value (R) in a normal region other than the zero cross region. When performing this "zero crossing processing," the ECU mitigates the amount of a drop in the rate of change upper limit value (R) in a power mode to become lower than the amount of a drop in the rate of change upper limit value (R) in a non-power mode.

Description

車両および車両の制御方法Vehicle and vehicle control method
 本発明は、車両走行用の駆動トルクの制御に関する。 The present invention relates to control of driving torque for vehicle travel.
 特開2009-184382号公報(特許文献1)には、パワーモードとノーマルモードとの切替が可能なハイブリッド自動車において、パワーモード時には、ノーマルモード時に比べて、走行用の駆動トルクを大きい値に設定することが開示されている。 In JP 2009-184382 A (Patent Document 1), in a hybrid vehicle capable of switching between the power mode and the normal mode, the driving torque for traveling is set to a larger value in the power mode than in the normal mode. Is disclosed.
 また、特開2009-184383号公報(特許文献2)には、パワーモードとノーマルモードとエコモードとの切替が可能なハイブリッド自動車において、パワーモード時には、他のモード(ノーマルモードおよびエコモード)時に比べて、走行用の駆動トルクを大きい値に設定することが開示されている。 JP 2009-184383 A (Patent Document 2) discloses that in a hybrid vehicle capable of switching between a power mode, a normal mode, and an eco mode, in the power mode, in other modes (normal mode and eco mode). In comparison, it is disclosed that the driving torque for traveling is set to a large value.
特開2009-184382号公報JP 2009-184382 A 特開2009-184383号公報JP 2009-184383 A
 ところで、ハイブリッド自動車において、駆動トルクの正負が切り替る際(駆動トルクの向きが加速方向と減速方向との間で切り替る際)、エンジンおよびモータから駆動輪までの動力伝達経路で生じる異音を防止するために、駆動トルクがゼロを含む所定領域(以下、「ゼロクロス領域」という)に含まれるときの駆動トルクの変化レート上限値を他の領域よりも小さくする場合がある。しかしながら、上述の特許文献1、2には、このようなゼロクロス領域における駆動トルクを各モードに応じてどのように設定するかについて何ら具体的な言及はない。 By the way, in the hybrid vehicle, when the positive / negative of the driving torque is switched (when the direction of the driving torque is switched between the acceleration direction and the deceleration direction), an abnormal noise generated in the power transmission path from the engine and the motor to the driving wheel is generated. In order to prevent this, there is a case where the upper limit value of the change rate of the drive torque when the drive torque is included in a predetermined region including zero (hereinafter referred to as “zero cross region”) is smaller than that in other regions. However, Patent Documents 1 and 2 mentioned above do not specifically mention how to set the driving torque in such a zero-cross region according to each mode.
 本発明は、上述の課題を解決するためになされたものであって、その目的は、駆動トルクの正負が切り替る際に生じる異音を抑制しつつ、パワーモード時の加速応答性を高めることである。 The present invention has been made in order to solve the above-described problems, and its purpose is to improve acceleration response in the power mode while suppressing abnormal noise generated when the driving torque is switched between positive and negative. It is.
 この発明に係る車両は、少なくともモータを含んで構成され、少なくともモータのトルクで車両の駆動トルクを発生するトルク発生装置と、トルク発生装置を制御することによって、駆動トルクがゼロを含む所定領域に含まれるときの駆動トルクの変化レート上限値を駆動トルクが所定領域に含まれないときの変化レート上限値よりも小さくするゼロクロス処理を行なう制御装置とを備える。制御装置は、ゼロクロス処理を行なう際、非パワーモード時よりも加速応答性が重視されるパワーモード時の変化レート上限値を、非パワーモード時の変化レート上限値よりも大きい値に設定する。 A vehicle according to the present invention is configured to include at least a motor, and generates a driving torque of the vehicle with at least the torque of the motor, and controls the torque generating device so that the driving torque is within a predetermined region including zero. And a control device that performs a zero cross process for making the change rate upper limit value of the drive torque when it is included smaller than the change rate upper limit value when the drive torque is not included in the predetermined region. When performing the zero-cross processing, the control device sets the change rate upper limit value in the power mode in which acceleration response is more important than in the non-power mode to a value larger than the change rate upper limit value in the non-power mode.
 好ましくは、制御装置は、ゼロクロス処理を行なう際、非パワーモード時は駆動トルクがゼロに近いほど変化レート上限値を小さい値に設定し、パワーモード時は駆動トルクがゼロに近いほど変化レート上限値を小さい値に設定しつつ非パワーモード時の変化レート上限値よりも大きい値に設定する。 Preferably, when the zero cross process is performed, the control device sets the change rate upper limit value to a smaller value as the drive torque is closer to zero in the non-power mode, and the change rate upper limit to be closer to zero in the power mode. While the value is set to a small value, it is set to a value larger than the change rate upper limit value in the non-power mode.
 好ましくは、トルク発生装置は、モータのトルクで駆動トルクを発生する。
 好ましくは、トルク発生装置は、モータに加えてエンジンをさらに含み、モータおよびエンジンの少なくともいずれかの動力で駆動トルクを発生する。
Preferably, the torque generator generates a drive torque by a motor torque.
Preferably, the torque generating device further includes an engine in addition to the motor, and generates a driving torque with power of at least one of the motor and the engine.
 この発明の別の局面に係る車両の制御方法は、少なくともモータのトルクで車両の駆動トルクを発生する車両の制御方法であって、駆動トルクがゼロを含む所定領域に含まれるか否かを判定するステップと、駆動トルクが所定領域に含まれるときの駆動トルクの変化レート上限値を駆動トルクが所定領域に含まれないときの変化レート上限値よりも小さくするゼロクロス処理を行なうステップとを含む。ゼロクロス処理を行なうステップは、ゼロクロス処理を行なう際、非パワーモード時よりも加速応答性が重視されるパワーモード時の変化レート上限値を、非パワーモード時の変化レート上限値よりも大きい値に設定する。 A vehicle control method according to another aspect of the present invention is a vehicle control method for generating a drive torque of a vehicle with at least a motor torque, and determines whether or not the drive torque is included in a predetermined region including zero. And a step of performing a zero-cross process for making the change rate upper limit value of the drive torque when the drive torque is included in the predetermined region smaller than the change rate upper limit value when the drive torque is not included in the predetermined region. In the zero cross processing step, when performing the zero cross processing, the change rate upper limit value in the power mode where acceleration response is more important than in the non-power mode is set to a value larger than the change rate upper limit value in the non-power mode. Set.
 本発明によれば、駆動トルクの正負が切り替る際に生じる異音を抑制しつつ、パワーモード時の加速応答性を高めることができる。 According to the present invention, it is possible to improve acceleration response in the power mode while suppressing abnormal noise that occurs when switching between positive and negative driving torque.
車両の全体ブロック図である。1 is an overall block diagram of a vehicle. エンジン、第1MG、第2MGの状態を共線図上に示した図である。It is the figure which showed the state of the engine, 1st MG, and 2nd MG on the alignment chart. ECUの機能ブロック図である。It is a functional block diagram of ECU. 駆動トルクの変化レート上限値Rを設定するためのマップα,βの一例を模式的に示す図である。It is a figure which shows typically an example of map (alpha) and (beta) for setting the change rate upper limit R of a drive torque. ECUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of ECU. 本実施例における変化レート上限値Rなどの各状態量の時間変化の様子を例示した図である。It is the figure which illustrated the mode of the time change of each state quantity, such as change rate upper limit R in a present Example.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 図1は、本発明の実施の形態に従う車両1の全体ブロック図である。図1を参照して、この車両1は、トルク発生装置2と、減速機50と、駆動軸51と、駆動輪80と、ECU(Electronic Control Unit)200とを備える。 FIG. 1 is an overall block diagram of a vehicle 1 according to an embodiment of the present invention. Referring to FIG. 1, vehicle 1 includes a torque generator 2, a speed reducer 50, a drive shaft 51, drive wheels 80, and an ECU (Electronic Control Unit) 200.
 トルク発生装置2は、車両1を走行させるための駆動トルクを発生する。トルク発生装置2は、エンジン10と、第1MG(Motor Generator)20と、第2MG30と、動力分割装置40と、PCU(Power Control Unit)60と、バッテリ70とを備える。 The torque generator 2 generates drive torque for running the vehicle 1. The torque generator 2 includes an engine 10, a first MG (Motor Generator) 20, a second MG 30, a power split device 40, a PCU (Power Control Unit) 60, and a battery 70.
 エンジン10、第1MG20および第2MG30は、動力分割装置40を介して連結される。そして、この車両1は、エンジン10および第2MG30の少なくとも一方から出力される駆動力によって走行する。エンジン10が発生する動力は、動力分割装置40によって2経路に分割される。すなわち、一方は減速機50を介して駆動輪80へ伝達される経路であり、もう一方は第1MG20へ伝達される経路である。 Engine 10, first MG 20 and second MG 30 are connected via power split device 40. The vehicle 1 travels with driving force output from at least one of the engine 10 and the second MG 30. The power generated by the engine 10 is divided into two paths by the power split device 40. That is, one is a path transmitted to the drive wheel 80 via the speed reducer 50 and the other is a path transmitted to the first MG 20.
 エンジン10は、ECU200からの制御信号S1によって制御される。第1MG20および第2MG30は、交流電動機であり、たとえば、三相交流同期電動機である。第1MG20は、動力分割装置40によって分割されたエンジン10の動力を用いて発電する。第2MG30は、バッテリ70に蓄えられた電力および第1MG20により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、第2MG30の駆動力は、減速機50を介して駆動輪80に伝達される。なお、車両の制動時等には、減速機50を介して駆動輪80により第2MG30が駆動され、第2MG30が発電機として動作する。これにより、第2MG30は、車両の運動エネルギを電力に変換する回生ブレーキとしても機能する。第2MG30により発電された回生電力は、バッテリ70に蓄えられる。 The engine 10 is controlled by a control signal S1 from the ECU 200. First MG 20 and second MG 30 are AC motors, for example, three-phase AC synchronous motors. First MG 20 generates power using the power of engine 10 divided by power split device 40. Second MG 30 generates a driving force using at least one of the electric power stored in battery 70 and the electric power generated by first MG 20. Then, the driving force of the second MG 30 is transmitted to the driving wheels 80 via the speed reducer 50. When the vehicle is braked, the second MG 30 is driven by the drive wheels 80 via the speed reducer 50, and the second MG 30 operates as a generator. Thereby, 2nd MG30 functions also as a regenerative brake which converts kinetic energy of vehicles into electric power. The regenerative power generated by second MG 30 is stored in battery 70.
 動力分割装置40は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン10のクランクシャフトに連結される。サンギヤは、第1MG20の回転軸に連結される。リングギヤは第2MG30の回転軸および減速機50に連結される。このように、エンジン10、第1MG20および第2MG30が、遊星歯車からなる動力分割装置40を介して連結されることで、エンジン10の回転速度(以下「エンジン回転速度Ne」という)、第1MG20の回転速度(以下「第1MG回転速度Nm1」という)および第2MG30の回転速度(以下「第2MG回転速度Nm2」という)は、共線図において直線で結ばれる関係になる(後述の図2参照)。 The power split device 40 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear. The pinion gear engages with the sun gear and the ring gear. The carrier supports the pinion gear so as to be capable of rotating, and is connected to the crankshaft of the engine 10. The sun gear is connected to the rotation shaft of the first MG 20. The ring gear is connected to the rotation shaft of second MG 30 and speed reducer 50. As described above, the engine 10, the first MG 20 and the second MG 30 are connected via the power split device 40 made of planetary gears, so that the rotational speed of the engine 10 (hereinafter referred to as “engine rotational speed Ne”), the first MG 20 The rotational speed (hereinafter referred to as “first MG rotational speed Nm1”) and the rotational speed of the second MG 30 (hereinafter referred to as “second MG rotational speed Nm2”) are connected by a straight line in the nomographic chart (see FIG. 2 described later). .
 PCU60は、ECU200からの制御信号S2によって制御される。PCU60は、バッテリ70に蓄えられた直流電力を第1MG20および第2MG30を駆動可能な交流電力に変換して第1MG20および/または第2MG30に出力する。これにより、バッテリ70に蓄えられた電力で第1MG20および/または第2MG30が駆動される。また、PCU60は、第1MG20および/または第2MG30によって発電される交流電力をバッテリ70に充電可能な直流電力に変換してバッテリ70へ出力する。これにより、第1MG20および/または第2MG30が発電した電力でバッテリ70が充電される。 The PCU 60 is controlled by a control signal S2 from the ECU 200. PCU 60 converts the DC power stored in battery 70 into AC power that can drive first MG 20 and second MG 30 and outputs the converted AC power to first MG 20 and / or second MG 30. Thereby, first MG 20 and / or second MG 30 are driven by the electric power stored in battery 70. Further, the PCU 60 converts the AC power generated by the first MG 20 and / or the second MG 30 into DC power that can charge the battery 70 and outputs the DC power to the battery 70. Thereby, battery 70 is charged with the electric power generated by first MG 20 and / or second MG 30.
 バッテリ70は、第1MG20および/または第2MG30を駆動するための電力を蓄える直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。バッテリ70の電圧は、たとえば200V程度である。なお、バッテリ70として、大容量のキャパシタも採用可能である。 The battery 70 is a DC power source that stores electric power for driving the first MG 20 and / or the second MG 30, and is formed of, for example, a secondary battery such as nickel metal hydride or lithium ion. The voltage of the battery 70 is about 200V, for example. Note that a large-capacity capacitor can also be used as the battery 70.
 また、ECU200には、回転速度センサ11、レゾルバ12,13、車速センサ14、アクセルポジションセンサ15、モードセンサ16、加速度センサ17などが接続される。 Also, the ECU 200 is connected with a rotation speed sensor 11, resolvers 12, 13, a vehicle speed sensor 14, an accelerator position sensor 15, a mode sensor 16, an acceleration sensor 17, and the like.
 回転速度センサ11は、エンジン回転速度(エンジン10のクランクシャフトの回転速度)Neを検出する。レゾルバ12は、第1MG回転速度Nm1を検出する。レゾルバ13は、第2MG回転速度Nm2を検出する。車速センサ14は、ドライブシャフトの回転速度から車速Vを検出する。アクセルポジションセンサ15は、ユーザによるアクセルペダル操作量Aを検出する。モードセンサ16は、ユーザがパワーモードでの走行を要求するときにユーザによって押されるパワースイッチ(図示せず)の状態を検出する。パワーモードとは、非パワーモードよりも車両1の加速応答性が重視されるモードである。アクセルペダル操作量Aが同じであるとすると、パワーモード時の駆動トルクは、非パワーモード時の駆動トルクよりも大きい値に制御される。パワースイッチが一度押されるとパワーモードが選択され、パワースイッチが再び押されるとパワーモードの選択が解除され、非パワーモードが選択される。なお、非パワーモードに、複数のモード(たとえばノーマルモードと、ノーマルモードよりも燃費が重視される燃費モードと)が含まれていてもよい。加速度センサ17は、車両前後方向に作用する加速度Gを検出する。これらの各センサは、検出結果を表わす信号をECU200に送信する。 Rotational speed sensor 11 detects engine rotational speed (rotational speed of crankshaft of engine 10) Ne. The resolver 12 detects the first MG rotation speed Nm1. The resolver 13 detects the second MG rotation speed Nm2. The vehicle speed sensor 14 detects the vehicle speed V from the rotational speed of the drive shaft. The accelerator position sensor 15 detects an accelerator pedal operation amount A by the user. The mode sensor 16 detects the state of a power switch (not shown) that is pressed by the user when the user requests traveling in the power mode. The power mode is a mode in which the acceleration response of the vehicle 1 is more important than the non-power mode. If the accelerator pedal operation amount A is the same, the driving torque in the power mode is controlled to a value larger than the driving torque in the non-power mode. When the power switch is pressed once, the power mode is selected, and when the power switch is pressed again, the selection of the power mode is canceled and the non-power mode is selected. The non-power mode may include a plurality of modes (for example, a normal mode and a fuel consumption mode in which fuel consumption is more important than the normal mode). The acceleration sensor 17 detects an acceleration G acting in the vehicle longitudinal direction. Each of these sensors transmits a signal representing the detection result to ECU 200.
 ECU200は、図示しないCPU(Central Processing Unit)およびメモリを内蔵し、当該メモリに記憶された情報や各センサからの情報に基づいて、所定の演算処理を実行するように構成される。 The ECU 200 includes a CPU (Central Processing Unit) (not shown) and a memory, and is configured to execute a predetermined calculation process based on information stored in the memory and information from each sensor.
 ECU200は、エンジン10および第2MG30の少なくともいずれかの動力によって車両1を走行させるための駆動トルクTpをトルク発生装置2から発生させて駆動軸51に付与させる。 The ECU 200 generates a driving torque Tp for causing the vehicle 1 to travel with the power of at least one of the engine 10 and the second MG 30 from the torque generator 2 and applies the driving torque Tp to the driving shaft 51.
 図2は、ECU200によって制御されるエンジン10、第1MG20、第2MG30の状態を共線図上に示した図である。なお、以下では、エンジン10のトルクを「エンジントルクTe」、第1MG20のトルクを「第1MGトルクTm1」、第2MG30のトルクを「第2MGトルクTm2」と示す。 FIG. 2 is a diagram showing the states of the engine 10, the first MG 20, and the second MG 30 controlled by the ECU 200 on an alignment chart. Hereinafter, the torque of the engine 10 is referred to as “engine torque Te”, the torque of the first MG 20 is referred to as “first MG torque Tm1”, and the torque of the second MG 30 is referred to as “second MG torque Tm2”.
 上述したように、エンジン回転速度Ne、第1MG回転速度Nm1、第2MG回転速度Nm2は、共線図において直線で結ばれる関係になる。第2MG回転速度Nm2は、車速Vに対応した値である。なお、図2において、「Tep」はエンジントルクTeが動力分割装置40のリングギヤに伝達されるトルク(以下、「エンジン直行トルク」という)を示す。したがって、本実施例においては、第2MGトルクTm2とエンジン直行トルクTepとの合計が駆動トルクTpとなる。 As described above, the engine rotational speed Ne, the first MG rotational speed Nm1, and the second MG rotational speed Nm2 are connected by a straight line in the alignment chart. The second MG rotation speed Nm2 is a value corresponding to the vehicle speed V. In FIG. 2, “Tep” indicates the torque (hereinafter referred to as “engine direct torque”) at which the engine torque Te is transmitted to the ring gear of the power split device 40. Therefore, in this embodiment, the sum of the second MG torque Tm2 and the engine direct torque Tep is the drive torque Tp.
 以上のような構成を備える車両1において、ECU200は、駆動トルクTpの変化レート(単位時間あたりの変化量)の上限値(以下、「変化レート上限値R」ともいう)を設定し、駆動トルクTpの実変化レートがこの変化レート上限値Rを超えないように制御する。 In the vehicle 1 having the above-described configuration, the ECU 200 sets an upper limit value (hereinafter, also referred to as “change rate upper limit value R”) of the change rate (change amount per unit time) of the drive torque Tp, and the drive torque Control is performed so that the actual change rate of Tp does not exceed the change rate upper limit value R.
 ところで、駆動トルクTpの作用方向が負方向(減速方向)と正方向(加速方向)との間で切り替る際、エンジン10、第1MG20、第2MG30から駆動輪80までの動力伝達経路上に設けられたギヤ(たとえば減速機50やトルク発生装置2の内部に備えられる動力分割装置40(遊星歯車)など)のバックラッシュが詰まることによる異音(いわゆる歯打ち音)やショックが生じる場合がある。このような異音やショックを防止するために、ECU200は、駆動トルクTpがゼロを含む所定領域(ゼロクロス領域)に含まれるときの変化レート上限値Rを駆動トルクがゼロクロス領域以外の通常領域の変化レート上限値Rよりも小さくする処理(以下、「ゼロクロス処理」ともいう)を行なう。 By the way, when the action direction of the drive torque Tp is switched between the negative direction (deceleration direction) and the positive direction (acceleration direction), it is provided on the power transmission path from the engine 10, the first MG 20, the second MG 30 to the drive wheels 80. There is a case where an abnormal noise (so-called rattling noise) or a shock is generated due to clogging of a backlash of a generated gear (for example, a power reduction device 40 (planetary gear) provided in the reduction gear 50 or the torque generator 2). . In order to prevent such noise and shock, the ECU 200 determines the change rate upper limit R when the drive torque Tp is included in a predetermined region (zero cross region) including zero in the normal region other than the zero cross region. Processing for making the change rate upper limit value R smaller (hereinafter also referred to as “zero cross processing”) is performed.
 この「ゼロクロス処理」を行なう際、ECU200は、変化レート上限値Rを一律に小さくするのではなく、パワーモード時であるのか否かに応じて変化レート上限値Rの低下量を変更する。より具体的には、ECU200は、パワーモード時は非パワーモード時に比べて異音やショックの抑制よりも加速応答性の重要度が高いことを考慮して、パワーモード時の変化レート上限値Rの低下量(制限量)を非パワーモード時の変化レート上限値Rの低下量(制限量)よりも緩和させる。この点が本発明の最も特徴的な点である。 When performing this “zero cross processing”, the ECU 200 does not uniformly reduce the change rate upper limit value R, but changes the amount of decrease in the change rate upper limit value R depending on whether or not it is in the power mode. More specifically, the ECU 200 considers that the importance of the acceleration response is higher in the power mode than in the non-power mode than in the noise and shock suppression, and the change rate upper limit value R in the power mode. Is reduced more than the reduction amount (limit amount) of the change rate upper limit value R in the non-power mode. This is the most characteristic point of the present invention.
 図3は、ゼロクロス処理を行なう場合のECU200の機能ブロック図である。図3に示した各機能ブロックは、ハードウェアによって実現してもよいし、ソフトウェアによって実現してもよい。 FIG. 3 is a functional block diagram of the ECU 200 when the zero cross process is performed. Each functional block shown in FIG. 3 may be realized by hardware or software.
 ECU200は、ゼロクロス判定部210、レート上限値設定部220、駆動トルク指令値設定部250、記憶部260を含む。レート上限値設定部220は、通常処理部230とゼロクロス処理部240とを含む。 ECU 200 includes a zero-cross determination unit 210, a rate upper limit setting unit 220, a drive torque command value setting unit 250, and a storage unit 260. The rate upper limit setting unit 220 includes a normal processing unit 230 and a zero cross processing unit 240.
 ゼロクロス判定部210は、駆動トルク指令値Tpcomの前回値(以下、「駆動トルク指令前回値Tpcom(n-1)」ともいう)を記憶部260から読み出し、駆動トルク指令前回値Tpcom(n-1)がゼロクロス領域に含まれるか否かを判定する。 The zero cross determination unit 210 reads the previous value of the drive torque command value Tpcom (hereinafter also referred to as “drive torque command previous value Tpcom (n−1)”) from the storage unit 260, and drives the drive torque command previous value Tpcom (n−1). ) Is included in the zero cross region.
 駆動トルク指令前回値Tpcom(n-1)がゼロクロス領域以外の通常領域に含まれる場合、変化レート上限値Rは通常処理部230で設定される。通常処理部230は、駆動トルク指令前回値Tpcom(n-1)が正である場合は変化レート上限値Rを正側上限固定値Rmax(+)に設定し、駆動トルク指令前回値Tpcom(n-1)が負である場合は変化レート上限値Rを負側上限固定値Rmax(-)に設定する。なお、正側上限固定値Rmax(+)と負側上限固定値Rmax(-)とは同じ値であってもよい。 When the drive torque command previous value Tpcom (n−1) is included in the normal region other than the zero cross region, the change rate upper limit value R is set by the normal processing unit 230. The normal processing unit 230 sets the change rate upper limit value R to the positive upper limit fixed value Rmax (+) when the drive torque command previous value Tpcom (n−1) is positive, and sets the drive torque command previous value Tpcom (n). When -1) is negative, the change rate upper limit value R is set to the negative upper limit fixed value Rmax (-). The positive upper limit fixed value Rmax (+) and the negative upper limit fixed value Rmax (−) may be the same value.
 一方、駆動トルク指令前回値Tpcom(n-1)がゼロクロス領域に含まれる場合、変化レート上限値Rはゼロクロス処理部240で設定される。ゼロクロス処理部240は、ゼロクロス領域の変化レート上限値Rを通常領域の変化レート上限値Rよりも制限する。より具体的には、駆動トルク指令前回値Tpcom(n-1)が正である場合は変化レート上限値Rを正側上限固定値Rmax(+)よりも小さい値にし、駆動トルク指令前回値Tpcom(n-1)が負である場合は変化レート上限値Rを負側上限固定値Rmax(-)よりも小さい値にする。この処理が「ゼロクロス処理」である。 On the other hand, when the drive torque command previous value Tpcom (n−1) is included in the zero cross region, the change rate upper limit value R is set by the zero cross processing unit 240. The zero cross processing unit 240 limits the change rate upper limit value R in the zero cross region to the change rate upper limit value R in the normal region. More specifically, when the drive torque command previous value Tpcom (n−1) is positive, the change rate upper limit value R is set to a value smaller than the positive side upper limit fixed value Rmax (+), and the drive torque command previous value Tpcom is set. When (n−1) is negative, the change rate upper limit R is set to a value smaller than the negative upper limit fixed value Rmax (−). This processing is “zero cross processing”.
 この「ゼロクロス処理」を行なう際、ゼロクロス処理部240は、パワーモード時の変化レート上限値Rの低下量を、非パワーモード時の変化レート上限値Rの低下量よりも緩和させる。 When performing the “zero cross processing”, the zero cross processing unit 240 reduces the amount of decrease in the change rate upper limit value R in the power mode more than the amount of decrease in the change rate upper limit value R in the non-power mode.
 ゼロクロス処理部240は、パワーモード判定部241と、制限部242とを含む。
 パワーモード判定部241は、モードセンサ16の出力に基づいてパワーモード時であるのか非パワーモード時であるのかを判定する。
The zero cross processing unit 240 includes a power mode determination unit 241 and a restriction unit 242.
The power mode determination unit 241 determines whether it is in the power mode or the non-power mode based on the output of the mode sensor 16.
 制限部242は、パワーモード時である場合、変化レート上限値Rをパワーモード用のマップαを用いて設定する。一方、制限部242は、非パワーモード時である場合、変化レート上限値Rを非パワーモード用のマップβを用いて設定する。 The restriction unit 242 sets the change rate upper limit value R using the power mode map α when the power mode is set. On the other hand, in the non-power mode, limiting unit 242 sets change rate upper limit R using non-power mode map β.
 図4は、駆動トルクの変化レート上限値Rを設定するためのマップα,βの一例を模式的に示す図である。なお、図4において、横軸に示す駆動トルク指令前回値Tpcom(n-1)が所定値T1(<0)から所定値T2(>0)までの領域が「ゼロクロス領域」であり、その他の領域が通常領域である。 FIG. 4 is a diagram schematically showing an example of the maps α and β for setting the change rate upper limit value R of the drive torque. In FIG. 4, the region where the drive torque command previous value Tpcom (n−1) shown on the horizontal axis is from the predetermined value T1 (<0) to the predetermined value T2 (> 0) is the “zero cross region”. The area is a normal area.
 図4に示すように、非パワーモード用のマップβで設定される変化レート上限値Rは、駆動トルク指令前回値Tpcom(n-1)が0に近いほど小さい値に設定される。パワーモード用のマップαで設定される変化レート上限値Rも、駆動トルク指令前回値Tpcom(n-1)が0に近いほど小さい値に設定されるが、非パワーモード時の変化レート上限値Rよりも大きい値に設定される。すなわち、パワーモード用のマップαで設定される変化レート上限値Rの低下量(制限量)は、非パワーモード時の変化レート上限値Rの低下量(制限量)よりも緩和される。これにより、ゼロクロス領域においても、パワーモード時の駆動力応答性を非パワーモード時の駆動力応答性よりも高めることができ、ユーザの要求に答えることができる。 As shown in FIG. 4, the change rate upper limit value R set in the non-power mode map β is set to a smaller value as the drive torque command previous value Tpcom (n−1) is closer to zero. The change rate upper limit R set in the power mode map α is also set to a smaller value as the drive torque command previous value Tpcom (n−1) is closer to 0, but the change rate upper limit in the non-power mode. A value larger than R is set. That is, the decrease amount (limit amount) of the change rate upper limit value R set in the power mode map α is more relaxed than the decrease amount (limit amount) of the change rate upper limit value R in the non-power mode. As a result, even in the zero cross region, the driving force response in the power mode can be improved more than the driving force response in the non-power mode, and the user's request can be answered.
 図3に戻って、駆動トルク指令値設定部250は、駆動トルク指令値Tpcomの実変化レートが、通常処理部230あるいはゼロクロス処理部240で設定された変化レート上限値Rを超えないように制御する。具体的には、駆動トルク指令値設定部250は、車速Vやアクセルペダル操作量Aなどからユーザが要求する駆動トルクTp(以下、「駆動トルク要求値Tpreq」という)を求め、この駆動トルク要求値Tpreqが駆動トルク指令前回値Tpcom(n-1)に対して変化レート上限値R以上離れているか否かを判定する。そして、駆動トルク要求値Tpreqが駆動トルク指令前回値Tpcom(n-1)に対して変化レート上限値R以上離れていない場合は駆動トルク要求値Tpreqをそのまま駆動トルク指令値Tpcomの今回値(以下、「駆動トルク指令今回値Tpcom(n)」ともいう)に設定し、そうでない場合は駆動トルク指令前回値Tpcom(n-1)に変化レート上限値Rを加えた値あるいは駆動トルク指令前回値Tpcom(n-1)から変化レート上限値Rを減じた値を駆動トルク指令今回値Tpcom(n)に設定する。 Returning to FIG. 3, the drive torque command value setting unit 250 performs control so that the actual change rate of the drive torque command value Tpcom does not exceed the change rate upper limit value R set by the normal processing unit 230 or the zero cross processing unit 240. To do. Specifically, the drive torque command value setting unit 250 obtains a drive torque Tp requested by the user from the vehicle speed V, the accelerator pedal operation amount A, and the like (hereinafter referred to as “drive torque request value Tpreq”), and this drive torque request It is determined whether or not the value Tpreq is more than the change rate upper limit value R with respect to the drive torque command previous value Tpcom (n−1). If the drive torque request value Tpreq is not more than the change rate upper limit value R with respect to the drive torque command previous value Tpcom (n−1), the drive torque request value Tpreq is directly used as the current value of the drive torque command value Tpcom (hereinafter referred to as the drive torque command value Tpcom , Also referred to as “driving torque command current value Tpcom (n)”). Otherwise, the value obtained by adding the change rate upper limit value R to the previous driving torque command value Tpcom (n−1) or the previous value of the driving torque command. A value obtained by subtracting the change rate upper limit value R from Tpcom (n−1) is set as the drive torque command current value Tpcom (n).
 そして、駆動トルク指令値設定部250は、実際の駆動トルクTpを駆動トルク指令今回値Tpcom(n)に制御するための制御信号をトルク発生装置2に出力する。 Then, the drive torque command value setting unit 250 outputs a control signal for controlling the actual drive torque Tp to the drive torque command current value Tpcom (n) to the torque generator 2.
 記憶部260は、駆動トルク指令今回値Tpcom(n)を記憶する。記憶部260に記憶された駆動トルク指令今回値Tpcom(n)は、次のサイクルで駆動トルク指令前回値Tpcom(n-1)として用いられる。 The storage unit 260 stores the drive torque command current value Tpcom (n). The drive torque command current value Tpcom (n) stored in the storage unit 260 is used as the drive torque command previous value Tpcom (n−1) in the next cycle.
 図5は、上述の機能を実現するためのECU200の処理手順を示すフローチャートである。このフローチャートは、予め定められたサイクルで繰り返し実行される。 FIG. 5 is a flowchart showing a processing procedure of the ECU 200 for realizing the above-described functions. This flowchart is repeatedly executed in a predetermined cycle.
 S10にて、ECU200は、前回サイクルで記憶された駆動トルク指令前回値Tpcom(n-1)を読み出す。 In S10, ECU 200 reads drive torque command previous value Tpcom (n-1) stored in the previous cycle.
 S11にて、ECU200は、駆動トルク指令前回値Tpcom(n-1)がゼロクロス領域に含まれるか否かを判定する。 In S11, ECU 200 determines whether or not drive torque command previous value Tpcom (n-1) is included in the zero cross region.
 駆動トルク指令前回値Tpcom(n-1)がゼロクロス領域に含まれる場合(S11にてYES)、ECU200は、S12にてパワーモード時であるか否かを判定する。パワーモード時である場合(S12にてYES)、ECU200は、S13にて、図4に示したパワーモード用のマップαを用いて変化レート上限値Rを設定する。一方、非パワーモードである場合(S12にてNO)、ECU200は、S14にて、図4に示した非パワーモード用のマップβを用いて変化レート上限値Rを設定する。 When drive torque command previous value Tpcom (n−1) is included in the zero cross region (YES in S11), ECU 200 determines in S12 whether or not it is in the power mode. When in power mode (YES in S12), ECU 200 sets change rate upper limit value R in S13 using map α for power mode shown in FIG. On the other hand, when the current mode is the non-power mode (NO in S12), ECU 200 sets change rate upper limit R in S14 using map β for non-power mode shown in FIG.
 一方、駆動トルク指令前回値Tpcom(n-1)が通常領域に含まれる場合(S11にてNO)、ECU200は、通常処理を行なう。すなわち、ECU200は、S15にて駆動トルク指令前回値Tpcom(n-1)が正であるか否かを判定し、正である場合(S15にてYES)はS16にて変化レート上限値Rを正側上限固定値Rmax(+)に設定し、負である場合(S15にてNO)はS17にて変化レート上限値Rを負側上限固定値Rmax(-)に設定する。 On the other hand, when drive torque command previous value Tpcom (n−1) is included in the normal region (NO in S11), ECU 200 performs normal processing. That is, ECU 200 determines whether or not drive torque command previous value Tpcom (n−1) is positive in S15. If it is positive (YES in S15), ECU 200 determines change rate upper limit value R in S16. Positive upper limit fixed value Rmax (+) is set, and if negative (NO in S15), change rate upper limit value R is set to negative upper limit fixed value Rmax (-) in S17.
 S18にて、ECU200は、車速Vやアクセルペダル操作量Aなどから駆動トルク要求値Tpreqを算出する。 In S18, ECU 200 calculates drive torque request value Tpreq from vehicle speed V, accelerator pedal operation amount A, and the like.
 S19にて、ECU200は、上述したように、駆動トルク要求値Tpreqおよび変化レート上限値Rから、駆動トルク指令今回値Tpcom(n)を設定する。すなわち、ECU200は、駆動トルク要求値Tpreqが駆動トルク指令前回値Tpcom(n-1)に対して変化レート上限値R以上離れていない場合は駆動トルク要求値Tpreqをそのまま駆動トルク指令今回値Tpcom(n)に設定し、そうでない場合は駆動トルク指令前回値Tpcom(n-1)に変化レート上限値Rを加えた値あるいは駆動トルク指令前回値Tpcom(n-1)から変化レート上限値Rを減じた値を駆動トルク指令今回値Tpcom(n)に設定する。 In S19, as described above, ECU 200 sets drive torque command current value Tpcom (n) from drive torque request value Tpreq and change rate upper limit value R. That is, when the drive torque request value Tpreq is not more than the change rate upper limit value R with respect to the drive torque command previous value Tpcom (n−1), the ECU 200 uses the drive torque request value Tpreq as it is as the drive torque command current value Tpcom ( n), otherwise, the value obtained by adding the change rate upper limit value R to the drive torque command previous value Tpcom (n-1) or the change rate upper limit value R from the drive torque command previous value Tpcom (n-1). The reduced value is set to the drive torque command current value Tpcom (n).
 S20にて、ECU200は、実際の駆動トルクTpを駆動トルク指令今回値Tpcom(n)に制御するための制御信号をトルク発生装置2に出力する。 In S20, the ECU 200 outputs a control signal for controlling the actual drive torque Tp to the drive torque command current value Tpcom (n) to the torque generator 2.
 S21にて、ECU200は、駆動トルク指令今回値Tpcom(n)を記憶する。
 図6は、本実施例における変化レート上限値Rなどの各状態量(車速V、アクセルペダル操作量A、駆動トルク指令値Tpcom、加速度G、変化レート上限値R)の時間変化の様子を例示した図である。
In S21, ECU 200 stores drive torque command current value Tpcom (n).
FIG. 6 exemplifies a state of time change of each state quantity (vehicle speed V, accelerator pedal operation amount A, drive torque command value Tpcom, acceleration G, change rate upper limit value R) such as the change rate upper limit value R in the present embodiment. FIG.
 時刻t1以前は、アクセルペダル操作量Aが略ゼロであり、駆動トルク指令値Tpcomがゼロよりもやや負側(減速側)に設定されている。 Prior to time t1, the accelerator pedal operation amount A is substantially zero, and the drive torque command value Tpcom is set slightly on the negative side (deceleration side) from zero.
 時刻t1でアクセルペダルが踏まれると、駆動トルク指令値Tpcomが増加し始め、時刻t2で駆動トルク指令値Tpcomが負(減速方向)から正(加速方向)へ切り替えらる。この際、上述したゼロクロス処理によって、ゼロクロス領域の変化レート上限値Rが通常領域の変化レート上限値Rよりも低下されるため、歯打ち音やショックが防止される。 When the accelerator pedal is depressed at time t1, the drive torque command value Tpcom starts to increase, and at time t2, the drive torque command value Tpcom is switched from negative (deceleration direction) to positive (acceleration direction). At this time, the change rate upper limit value R in the zero cross region is lower than the change rate upper limit value R in the normal region by the above-described zero cross processing, so that rattling noise and shock are prevented.
 このゼロクロス処理の際、本実施例では、図6に示すように、パワーモード時であるのか否かに応じて変化レート上限値Rの低下量が変更される。すなわち、パワーモード時の変化レート上限値R(実線)の低下量が非パワーモード時の変化レート上限値R(一点鎖線)の低下量よりも緩和される。これにより、ゼロクロス領域においても、パワーモード時の駆動力応答性(加速応答性)を非パワーモード時よりも高めることができ、ユーザの要求に答えることができる。 In this zero crossing process, in this embodiment, as shown in FIG. 6, the amount of decrease in the change rate upper limit value R is changed depending on whether or not the power mode is in effect. That is, the amount of decrease in the change rate upper limit value R (solid line) in the power mode is more moderate than the amount of decrease in the change rate upper limit value R (dotted line) in the non-power mode. As a result, even in the zero cross region, the driving force response (acceleration response) in the power mode can be improved compared to the non-power mode, and the user's request can be answered.
 以上のように、本実施例による車両1では、ゼロクロス処理を行なう際、パワーモード時の駆動トルクの変化レート上限値Rの低下量を非パワーモード時の駆動トルクの変化レート上限値Rの低下量よりも緩和させる。これにより、駆動トルクの正負が切り替る際に生じる異音を抑制しつつ、パワーモード時の加速応答性を高めることができる。 As described above, in the vehicle 1 according to this embodiment, when the zero cross process is performed, the amount of decrease in the drive torque change rate upper limit value R in the power mode is set to the decrease in the drive torque change rate upper limit value R in the non-power mode. Relax more than the amount. As a result, the acceleration response in the power mode can be improved while suppressing the noise generated when the sign of the driving torque is switched.
 なお、本実施例は、たとえば以下のように変更することもできる。
 本実施例では、ゼロクロス処理の対象を「駆動トルク」としたが、ゼロクロス処理の対象を第1MGトルクTm1あるいは第2MGトルクTm2としてもよい。すなわち、第1MG20あるいは第2MG30の状態が力行と回生との間で切り替る領域で第1MGトルクTm1あるいは第2MGトルクTm2のゼロクロス処理を行なうようにしてもよい。
The present embodiment can be modified as follows, for example.
In the present embodiment, the target of the zero cross process is “drive torque”, but the target of the zero cross process may be the first MG torque Tm1 or the second MG torque Tm2. That is, the zero cross process of the first MG torque Tm1 or the second MG torque Tm2 may be performed in a region where the state of the first MG 20 or the second MG 30 is switched between power running and regeneration.
 また、本実施例では、車両1をエンジン10および第2MG30の少なくともいずれかの動力によって駆動トルクTpを発生するハイブリッド自動車とする場合を説明したが、本発明は、エンジンを備えずモータのトルクで駆動トルクを発生する電気自動車にも適用可能である。このような電気自動車においては、モータトルクが駆動トルクとなるため、モータの状態が力行と回生との間で切り替る領域と駆動トルクの正負が切り替わる領域(ゼロクロス領域)とが一致する。そのため、モータの状態が力行と回生との間で切り替る領域でゼロクロス処理を行なえばよい。 In the present embodiment, the case where the vehicle 1 is a hybrid vehicle that generates the drive torque Tp by the power of at least one of the engine 10 and the second MG 30 has been described. However, the present invention does not include an engine and uses the torque of the motor. The present invention can also be applied to an electric vehicle that generates driving torque. In such an electric vehicle, since the motor torque becomes the driving torque, the region where the state of the motor is switched between power running and regeneration coincides with the region where the positive / negative driving torque is switched (zero cross region). Therefore, the zero cross process may be performed in a region where the motor state is switched between power running and regeneration.
 今回開示された実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 車両、2 トルク発生装置、10 エンジン、11 回転速度センサ、12,13 レゾルバ、14 車速センサ、15 アクセルポジションセンサ、16 モードセンサ、17 加速度センサ、20 第1MG、30 第2MG、40 動力分割装置、50 減速機、51 駆動軸、70 バッテリ、80 駆動輪、200 ECU、210 ゼロクロス判定部、220 レート上限値設定部、230 通常処理部、240 ゼロクロス処理部、241 パワーモード判定部、242 制限部、250 駆動トルク指令値設定部、260 記憶部。 1 vehicle, 2 torque generator, 10 engine, 11 rotation speed sensor, 12, 13 resolver, 14 vehicle speed sensor, 15 accelerator position sensor, 16 mode sensor, 17 acceleration sensor, 20 1st MG, 30 2nd MG, 40 power split device , 50 reducer, 51 drive shaft, 70 battery, 80 drive wheel, 200 ECU, 210 zero cross determination unit, 220 rate upper limit setting unit, 230 normal processing unit, 240 zero cross processing unit, 241 power mode determination unit, 242 limiting unit 250 drive torque command value setting unit, 260 storage unit.

Claims (5)

  1.  少なくともモータ(30)を含んで構成され、少なくとも前記モータのトルクで車両の駆動トルクを発生するトルク発生装置(2)と、
     前記トルク発生装置を制御することによって、前記駆動トルクがゼロを含む所定領域に含まれるときの前記駆動トルクの変化レート上限値を前記駆動トルクが前記所定領域に含まれないときの前記変化レート上限値よりも小さくするゼロクロス処理を行なう制御装置(200)とを備え、
     前記制御装置は、前記ゼロクロス処理を行なう際、非パワーモード時よりも加速応答性が重視されるパワーモード時の前記変化レート上限値を、前記非パワーモード時の前記変化レート上限値よりも大きい値に設定する、車両。
    A torque generator (2) configured to include at least a motor (30), and generating a drive torque of the vehicle by at least the torque of the motor;
    By controlling the torque generator, the change rate upper limit value when the drive torque is not included in the predetermined region is set as the change rate upper limit value of the drive torque when the drive torque is included in the predetermined region including zero. A control device (200) that performs zero-cross processing to make the value smaller than the value,
    The control device, when performing the zero-cross processing, the change rate upper limit value in the power mode in which acceleration response is more important than in the non-power mode is larger than the change rate upper limit value in the non-power mode The vehicle to set to the value.
  2.  前記制御装置は、前記ゼロクロス処理を行なう際、前記非パワーモード時は前記駆動トルクがゼロに近いほど前記変化レート上限値を小さい値に設定し、前記パワーモード時は前記駆動トルクがゼロに近いほど前記変化レート上限値を小さい値に設定しつつ前記非パワーモード時の前記変化レート上限値よりも大きい値に設定する、請求項1に記載の車両。 When performing the zero-crossing process, the control device sets the upper limit value of the change rate to a smaller value as the driving torque is closer to zero in the non-power mode, and the driving torque is closer to zero in the power mode. The vehicle according to claim 1, wherein the vehicle is set to a value larger than the change rate upper limit value in the non-power mode while setting the change rate upper limit value to a smaller value.
  3.  前記トルク発生装置は、前記モータのトルクで前記駆動トルクを発生する、請求項1に記載の車両。 The vehicle according to claim 1, wherein the torque generator generates the driving torque by the torque of the motor.
  4.  前記トルク発生装置は、前記モータに加えてエンジン(10)をさらに含み、前記モータおよび前記エンジンの少なくともいずれかの動力で前記駆動トルクを発生する、請求項1に記載の車両。 The vehicle according to claim 1, wherein the torque generation device further includes an engine (10) in addition to the motor, and generates the drive torque with at least one of the power of the motor and the engine.
  5.  少なくともモータ(30)のトルクで車両の駆動トルクを発生する車両の制御方法であって、
     前記駆動トルクがゼロを含む所定領域に含まれるか否かを判定するステップと、
     前記駆動トルクが前記所定領域に含まれるときの前記駆動トルクの変化レート上限値を前記駆動トルクが前記所定領域に含まれないときの前記変化レート上限値よりも小さくするゼロクロス処理を行なうステップとを含み、
     前記ゼロクロス処理を行なうステップは、前記ゼロクロス処理を行なう際、非パワーモード時よりも加速応答性が重視されるパワーモード時の前記変化レート上限値を、前記非パワーモード時の前記変化レート上限値よりも大きい値に設定する、車両の制御方法。
    A vehicle control method for generating a drive torque of a vehicle with at least the torque of a motor (30),
    Determining whether the driving torque is included in a predetermined region including zero;
    Performing a zero cross process for making the change rate upper limit value of the drive torque when the drive torque is included in the predetermined region smaller than the change rate upper limit value when the drive torque is not included in the predetermined region; Including
    The step of performing the zero cross processing includes the change rate upper limit value in the power mode in which acceleration response is more important than in the non-power mode when performing the zero cross processing, and the change rate upper limit value in the non-power mode. The vehicle control method is set to a larger value.
PCT/JP2011/070455 2011-09-08 2011-09-08 Vehicle and vehicle control method WO2013035179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070455 WO2013035179A1 (en) 2011-09-08 2011-09-08 Vehicle and vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070455 WO2013035179A1 (en) 2011-09-08 2011-09-08 Vehicle and vehicle control method

Publications (1)

Publication Number Publication Date
WO2013035179A1 true WO2013035179A1 (en) 2013-03-14

Family

ID=47831665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070455 WO2013035179A1 (en) 2011-09-08 2011-09-08 Vehicle and vehicle control method

Country Status (1)

Country Link
WO (1) WO2013035179A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233131A (en) * 2013-05-28 2014-12-11 富士重工業株式会社 Vehicle control device
CN110254250A (en) * 2019-06-26 2019-09-20 四川阿尔特新能源汽车有限公司 Motor torque Super-zero control method, apparatus, controller, vehicle and storage medium
CN110682798A (en) * 2018-07-05 2020-01-14 蔚来汽车有限公司 Motor torque control method, device, system and computer storage medium
CN110920412A (en) * 2018-09-19 2020-03-27 河南森源重工有限公司 Electric automobile torque control method and system
CN112440971A (en) * 2019-09-05 2021-03-05 长城汽车股份有限公司 Torque control method and device and vehicle
US11458976B2 (en) 2020-03-25 2022-10-04 Aisin Corporation Vehicle control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029261A (en) * 2007-07-26 2009-02-12 Toyota Motor Corp Vehicle driving force control device
JP2009184382A (en) * 2008-02-01 2009-08-20 Toyota Motor Corp Hybrid vehicle and its control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029261A (en) * 2007-07-26 2009-02-12 Toyota Motor Corp Vehicle driving force control device
JP2009184382A (en) * 2008-02-01 2009-08-20 Toyota Motor Corp Hybrid vehicle and its control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233131A (en) * 2013-05-28 2014-12-11 富士重工業株式会社 Vehicle control device
CN110682798A (en) * 2018-07-05 2020-01-14 蔚来汽车有限公司 Motor torque control method, device, system and computer storage medium
CN110682798B (en) * 2018-07-05 2023-08-18 蔚来(安徽)控股有限公司 Motor torque control method, device, system and computer storage medium
CN110920412A (en) * 2018-09-19 2020-03-27 河南森源重工有限公司 Electric automobile torque control method and system
CN110254250A (en) * 2019-06-26 2019-09-20 四川阿尔特新能源汽车有限公司 Motor torque Super-zero control method, apparatus, controller, vehicle and storage medium
CN112440971A (en) * 2019-09-05 2021-03-05 长城汽车股份有限公司 Torque control method and device and vehicle
US11458976B2 (en) 2020-03-25 2022-10-04 Aisin Corporation Vehicle control device

Similar Documents

Publication Publication Date Title
JP5826402B2 (en) Hybrid vehicle
JP5879251B2 (en) Electric motor drive control device
JP5278617B1 (en) Vehicle status display device in hybrid vehicle
JP5804074B2 (en) Vehicle and vehicle control method
JP6627788B2 (en) Hybrid vehicle
WO2013065168A1 (en) Vehicle and vehicle control method
JP6213497B2 (en) Hybrid vehicle
WO2013035179A1 (en) Vehicle and vehicle control method
JP5729475B2 (en) Vehicle and vehicle control method
JP2015016810A (en) Vehicle control system
JP2010173610A (en) Electric motor vehicle
JP6179504B2 (en) Hybrid vehicle
JP2007210418A (en) Controller for vehicle
JP5696790B2 (en) Vehicle and vehicle control method
WO2012101798A1 (en) Vehicle, and vehicle control method
JP5423565B2 (en) Regenerative braking control device
WO2013046310A1 (en) Vehicle and control method for vehicle
JP5304957B2 (en) Electric vehicle and control method thereof
WO2013061414A1 (en) Vehicle and method for controlling vehicle
JP6213498B2 (en) Hybrid vehicle
JP2012224304A (en) Damping control device of vehicle
JP2015104149A (en) Vehicle
JP2013193587A (en) Vehicle
JP5724840B2 (en) Hybrid vehicle
JP5786473B2 (en) Motor control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP