WO2013032028A1 - New compound material, medicine containing same, and cancer treatment method using same - Google Patents

New compound material, medicine containing same, and cancer treatment method using same Download PDF

Info

Publication number
WO2013032028A1
WO2013032028A1 PCT/JP2012/072659 JP2012072659W WO2013032028A1 WO 2013032028 A1 WO2013032028 A1 WO 2013032028A1 JP 2012072659 W JP2012072659 W JP 2012072659W WO 2013032028 A1 WO2013032028 A1 WO 2013032028A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
polymer
gene
cationic
mycobacterium tuberculosis
Prior art date
Application number
PCT/JP2012/072659
Other languages
French (fr)
Japanese (ja)
Inventor
義之 小山
智恵子 芳原
Original Assignee
株式会社アルファ・ナノ・メディカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルファ・ナノ・メディカ filed Critical 株式会社アルファ・ナノ・メディカ
Publication of WO2013032028A1 publication Critical patent/WO2013032028A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/04Mycobacterium, e.g. Mycobacterium tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6093Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine

Definitions

  • the present invention relates to a complex of a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent, a medicine containing them, and a method for treating cancer using them.
  • Gene therapy has been expected and attempted as a radical treatment method for treating a disease by giving a normal gene to a patient with a genetic disease caused by a gene deficiency or abnormality.
  • the first gene therapy performed for therapeutic purposes following formal procedures was conducted in 1990 for patients with ADA (adenosine deaminase) deficiency.
  • ADA adenosine deaminase
  • gene introduction systems include (1) a viral gene introduction system and (2) And non-viral gene transfer systems such as cationic polymers or cationic lipids.
  • Many gene therapy clinical trials that have been conducted so far utilize a viral gene transfer system.
  • Retrovirus (2) Adenovirus (Ad) (3) Adeno-associated virus (AAV) and the like have been used.
  • viruses that have been recombined to selectively kill only tumor cells using the cytolytic activity of the virus have been developed as a new technique for cancer gene therapy. These are called oncolytic viruses, restricted-proliferating viruses, and the like, and are proliferating in tumor cells, but are attracting attention as highly safe anti-tumor virus preparations because of their low proliferation activity in normal cells ( Non-patent literature 1).
  • Viruses that proliferate selectively in tumors have been found in nature, for example, by replacing the promoter of the E1 region of adenovirus with a promoter that is selectively expressed only in tumor cells.
  • telomerase promoter As tumor selective promoters, telomerase promoter, midkine promoter, IAI3B promoter and the like have been used.
  • the antitumor activity of these viruses is not only due to their own cytocidal action, but rather to induce antitumor immunity of the host, It is claimed that the effect to activate is great. That is, when an oncolytic virus is administered, anti-tumor immunity is elicited in the host, and the tumor effectively regresses due to its immune effect.
  • Non-patent Document 2 Viruses that are highly infectious to animal cells are used. However, many treatments require multiple administrations, and by repeating administration, antiviral antibodies are produced, and infection and gene transfer are significantly inhibited. Therefore, a treatment system using an oncolytic adenovirus or an adenovirus incorporating a p53 gene has been approved and used in China, but a sufficient healing effect has not been obtained. However, the non-viral gene transfer system has very low activity in vivo except for a few examples of the applicants (Non-patent Document 3), and has not led to a therapeutic effect.
  • the present inventors have examined in detail the mechanism of anti-tumor immune activation by oncolytic viruses, and as a result, the expression of microbial antigen protein in infected tumor cells or cells in the vicinity of the tumor is anti-tumor.
  • Tumor cells infected with viruses are thought to elicit these immune responses by presenting or secreting proteins unique to the microorganisms or their degradation products on the surface of the cell membrane.
  • the present inventors devised that expression of such microbial antigen protein in tumor cells can be achieved not only by viral infection but also by gene transfer using DNA.
  • Non-patent Document 3 plasmids encoding the genes of ESAT-6 and Ag85B, which are antigenic proteins derived from Mycobacterium tuberculosis, were constructed, a gene transfer system consisting of the ionic complex was prepared, and administered locally to tumor-bearing model mice. Then, a much higher antitumor effect was confirmed than the comparative example using the plasmid which coded the gene of GM-CSF which is a cytokine with a high antitumor effect.
  • the present invention (1) A complex containing a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent. (2) The complex according to (1) above, wherein the microorganism is Mycobacterium tuberculosis. (3) The complex according to (2), wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M. tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B. (4) The complex according to any one of (1) to (3) above, wherein the vector is a plasmid vector.
  • the gene introduction reagent comprises a cationic polymer or a cationic lipid and an anionic polymer.
  • the cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer.
  • Polymer polyamidoamine dendrimer, polylysine dendrimer, protamine, histone, Hel ⁇ 1, gelatin, poly-L-lysine, polyarginine, polyornithine, polyvinylimidazole, a polymer having an ethylenediamine structure in the side chain and a copolymer thereof, or The complex according to (5) or (6) above, wherein at least one of these salts is selected.
  • the cationic lipid is DC-Chol (3 ⁇ - (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N- (1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS (diheptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate) ), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-d
  • PEG derivative having carboxyl side chain polymer or copolymer of acrylic acid or methacrylic acid, sulfate ester of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid , One or more of hyaluronic acid, chondroitin, chondroitin sulfate, keratan sulfate, heparin, deltaman sulfate or a derivative thereof, and a salt thereof.
  • a medicament containing a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent (12) The medicament according to (11) above, wherein the microorganism is Mycobacterium tuberculosis. (13) The medicament according to (12) above, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M. tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B. (14) The medicament according to any one of (11) to (13) above, wherein the vector is a plasmid vector.
  • the gene introduction reagent comprises one or more compounds selected from a cationic polymer, a cationic lipid, and an anionic polymer.
  • the gene introduction reagent comprises a cationic polymer or cationic lipid and an anionic polymer.
  • the cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer.
  • Polymer polyamidoamine dendrimer, polylysine dendrimer, protamine, histone, Hel ⁇ 1, gelatin, poly-L-lysine, polyarginine, polyornithine, polyvinylimidazole, a polymer having an ethylenediamine structure in the side chain and a copolymer thereof, or The medicament according to (15) or (16) above, wherein one or more salts thereof are selected.
  • the cationic lipid is DC-Chol (3 ⁇ - (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N- (1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS (diheptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate) ), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-d
  • (19) PEG derivative having carboxyl side chain, polymer or copolymer of acrylic acid or methacrylic acid, sulfate of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid
  • (20) The medicament according to any one of (11) to (19), which has been freeze-dried.
  • a pharmaceutical composition comprising a vector encoding a microorganism-derived antigen protein gene and a complex containing a gene introduction reagent, and a combination of a vector encoding an immunostimulatory cytokine gene and a complex containing a gene introduction reagent.
  • the medicament according to (22) above, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (6 kDa early secreted antigenic target) and / or Ag85B.
  • the immunostimulatory cytokine is one or more cytokines selected from interleukin-2 (IL-2), interleukin-12 (IL-12), and GM-CSF
  • IL-2 interleukin-2
  • IL-12 interleukin-12
  • GM-CSF GM-CSF
  • a method for treating cancer comprising administering an effective amount of a complex containing a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent.
  • the microorganism is Mycobacterium tuberculosis.
  • the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M.
  • the vector is a plasmid vector.
  • the gene introduction reagent comprises one or more compounds selected from a cationic polymer, a cationic lipid, and an anionic polymer.
  • the gene introduction reagent comprises a cationic polymer or a cationic lipid and an anionic polymer.
  • the cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer.
  • the cationic lipid is DC-Chol (3 ⁇ - (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N- (1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS (diheptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate) ), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-d
  • An anionic polymer is a PEG derivative having a carboxyl side chain, a polymer or copolymer of acrylic acid or methacrylic acid, a sulfate ester of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid.
  • the immunostimulatory cytokine is one or more cytokines selected from interleukin-2 (IL-2), interleukin-12 (IL-12), and GM-CSF The method of treatment described.
  • the complex of the vector encoding the microorganism-derived antigen protein gene of the present invention and the gene introduction reagent is capable of efficiently introducing the M. tuberculosis-derived antigen protein gene into the cell and has excellent long-term storage stability. It is effective for the treatment.
  • the microorganism-derived antigen protein gene includes ESAT-6 gene, Ag85A gene, Ag85B gene, Ag85C gene, CFP-10 gene, TB7.7 gene, MPT51 gene, HSP65 gene and other tuberculosis bacteria, Pseudomonas aeruginosa, P24 antigen gene of rabies virus G protein gene, prM protein and E protein gene of West Nile virus, those derived from bacteria such as pneumococci and streptococci, adenovirus capsid antigens hexon, penton, and fiber genes , Viruses derived from viruses such as the M1 protein and NP protein gene of influenza virus, and those derived from microorganisms such as rickettsia, chlamydia, protozoa, etc., which are partially deleted or partially replaced The tongue, etc.
  • ESAT-6 gene means a gene encoding Mycobacterium tuberculosis 6 kDa early secreted antigenic target
  • Ag85B gene means a secreted protein of Mycobacterium tuberculosis having 30 kDa mycolyl transferase activity, antigen 85B.
  • immunostimulatory cytokine genes such as GM-CSF, IL-2, and IL-12 may be used at the same time as the microorganism-derived antigen protein gene.
  • Cytokine genes such as GM-CSF, IL-2, and IL-12, in addition to genes encoding GM-CSF, IL-2, and IL-12, those that have been partially deleted or replaced Means a gene encoding a protein or peptide that exhibits the function of GM-CSF, IL-2 or IL-12, and animals such as human GM-CSF, IL-2, IL-12 and dogs and cats GM-CSF, IL-2, and IL-12 are also meant.
  • microorganism-derived antigen protein gene and immunostimulatory cytokine gene when both these microorganism-derived antigen protein gene and immunostimulatory cytokine gene are used, for example, a microorganism-derived antigen protein gene expression cassette and an immunostimulatory cytokine gene expression cassette inserted into a vector in tandem can be used. . Further, a complex containing both a plasmid encoding a microorganism-derived antigen protein gene and a plasmid encoding an immunostimulatory cytokine gene, or a mixture of these complexes may be used.
  • the vector means a nucleic acid molecule that is used in gene recombination techniques to amplify, maintain, and introduce recombinant DNA, and is generally used as a plasmid vector such as pCMV, pcDNA, pACT;
  • a cosmid vector means a vector usually used in the art, such as an artificial chromosome vector such as a PAC vector, a YAC vector, and a BAC vector.
  • the gene introduction reagent means a reagent used for the purpose of introducing a gene, for example, a cationic polymer, a cationic lipid, an anionic polymer, etc., which are usually used. It also means a combination of.
  • a vector encoding a gene in the complex of the present invention forms a complex by ionic bonding with a cationic polymer or a cationic lipid or an aggregate containing the same.
  • an anionic polymer When an anionic polymer is added, the anionic polymer is ionically bonded to the cationic polymer or the cationic lipid. Depending on the mixing ratio, mixing order, etc., these can form a complex mainly covered with an anionic polymer.
  • the cationic polymer that can be used in the complex of the present invention is a naturally-derived or synthetic polymer having a positively charged molecular weight of about 1,000 to 3,000,000, and a functional group that can form a complex with DNA in water.
  • a polymer having a plurality of, preferably 5 or more in a molecule can be used.
  • functional groups include amino groups or ammonium groups which may be substituted, or salts thereof (these groups are And an organic amino group such as an imino group, an imidazolyl group, and a guanidino group, which may be mono- or polysubstituted by an alkyl group having 1 to 6 carbon atoms, a phenyl group, or the like.
  • Examples of such cationic polymers include positively charged proteins and polypeptides; positively charged dendrimers; positively charged synthetic polymers; and positively charged polysaccharide derivatives, or grafts thereof. Or a block copolymer and a salt thereof, and a combination thereof.
  • the molecular weight of the positively charged protein or positively charged polypeptide that can be used as the cationic polymer in the complex of the present invention is preferably about 1,000 to 500,000.
  • proteins and polypeptides include proteins and polypeptides such as protamine, histone, Hel ⁇ 1, gelatin, and polyamino acids containing positively charged amino acid residues are also exemplified. It can be illustrated.
  • polyamino acid containing a positively charged amino acid residue include poly-L-lysine, polyarginine, polyornithine and the like.
  • salts of these proteins and polypeptides include hydrochlorides, sulfates, phosphates, borates and the like.
  • the positively charged dendrimer having a functional group as described above which can be used as a cationic polymer is an amino group or ammonium group which may be substituted at the terminal or inside of a branched molecular chain or a salt thereof
  • These groups are dendrimers having, for example, a mono- or poly-substituted group having, for example, an alkyl group having 1 to 6 carbon atoms or a phenyl group, and the molecular weight thereof is preferably about 1,000 to 500,000.
  • Specific examples of dendrimers include polyamidoamine dendrimers and polylysine dendrimers.
  • the dendrimer salt include hydrochloride, sulfate, phosphate, borate and the like.
  • a positively charged synthetic polymer that can be used as a cationic polymer is a synthetic polymer having a plurality of, preferably five or more, functional groups that can form a complex with DNA in water as described above.
  • the synthetic polymer preferably has a molecular weight of 1,000 to 3,000,000.
  • Specific examples of the synthetic polymer include polyethyleneimine (including linear polyethyleneimine or polybranched ethyleneimine), a polymer or copolymer of 2-dimethylaminoethyl methacrylate, and a polymer of 2-trimethylaminoethyl methacrylate.
  • Examples thereof include a polymer or a copolymer, polyvinyl imidazole, a polymer having an ethylenediamine structure in the side chain and a copolymer thereof, or a salt thereof.
  • the molecular weight of polyethyleneimine which is an example of a synthetic polymer, is preferably about 1,000 to 500,000, more preferably about 5,000 to 200,000, and most preferably about 10,000 to 100,000. Or it is a block copolymer obtained by combining shorter polyethyleneimine.
  • Examples of the polyethyleneimine salt include hydrochloride, sulfate, phosphate, borate and the like.
  • the positively charged polysaccharide derivative that can be used as the cationic polymer has a plurality of, preferably 5 or more, functional groups capable of forming a complex with DNA in water, and has a molecular weight of preferably 1000 to
  • the polysaccharide derivative is 3 million, more preferably 5000 to 500,000.
  • Specific examples of such polysaccharides include chitosan and dextran derivatives introduced with the above functional groups. Of these, the molecular weight of chitosan is preferably about 1,000 to 500,000, more preferably about 5,000 to 200,000, and most preferably about 10,000 to 100,000.
  • Examples of the salt of chitosan include hydrochloride and acetate.
  • the molecular weight of the dextran derivative is preferably 3,000 to 1,000,000.
  • the cationic polymer may be a polymer that is positively charged by introducing a functional group such as an amino group into a conventionally non-positively charged polymer. Moreover, even if it is not normally positively charged, it can be used as long as it is positively charged at the time of complex formation, and if necessary, it can be further modified with a sugar chain, oligopeptide, antibody or the like. It may be.
  • Cationic lipids that can be used in the complex of the present invention include DC-Chol (3 ⁇ - (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol), DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N- (1,2-dimyristyloxyprop-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS (diheptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- ( 2- (sperminecarboxamido) ethyl) -N, N-dimethylammonium trifluoro Cetate), DOTAP (N- (1- (1-
  • assembly containing a cationic lipid what mixed the said cationic lipid (for example, DOSPA), and neutral substances, such as DOPE (dioleoylphosphatidylethanolamine), cholesterol, etc. can be used.
  • DOSPA dioleoylphosphatidylethanolamine
  • cholesterol dioleoylphosphatidylethanolamine
  • the cationic polymer includes polyethyleneimine; protamine; Hel ⁇ 1; dendrimers such as polyamidoamine dendrimer and polylysine dendrimer; chitosan; polymer or copolymer of 2-dimethylaminoethyl methacrylate; 2-trimethyl
  • a polymer or copolymer of aminoethyl methacrylate can be preferably used, and polyethyleneimine, polyamidoamine dendrimer, polylysine dendrimer, and chitosan can be particularly preferably used.
  • lipofectamine (the above-mentioned 3: 1 w / w mixture liposome of DOSPA and DOPE) can be preferably used.
  • the anionic polymer used in the composite of the present invention is a negatively charged, naturally-occurring or synthetic polymer having a molecular weight of about 5 to 4 million, containing an anionic group in the molecule.
  • a polymer having a plurality of, preferably 5 or more, functional groups capable of forming a complex with a cation can be used. Examples of such functional groups include a carboxyl group, -OSO, and the like. 3 H group, -SO 3 H groups, phosphate groups, and salts thereof can be mentioned.
  • anionic polymers include amphoteric polymers.
  • the anionic polymer includes a carboxyl group, -OSO. 3 H group, -SO 3 Polysaccharides or derivatives thereof having functional groups selected from H groups, phosphate groups, and salts thereof; polyamino acids containing amino acid residues having negatively charged side chains; PEG derivatives having carboxyl side chains; carboxyl Group, -OSO 3 H group, -SO 3 Synthetic polymer having a functional group selected from H group, phosphoric acid group, and salts thereof; carboxyl group, -OSO 3 H group, -SO 3 H group, phosphate group, and functional group selected from salts thereof, and optionally substituted amino group or ammonium group or a salt thereof (for example, these groups are alkyl groups having 1 to 6 carbon atoms, phenyl Macromolecules which may be mono- or polysubstituted), as well as combinations thereof, can be used.
  • glycosaminoglycan can be preferably used as the polysaccharide having a functional group as described above that can be used as an anionic polymer in the complex of the present invention or a derivative thereof.
  • the molecular weight of such glycosaminoglycan is preferably 1,000 to 4,000,000, more preferably 4,000 to 3,000,000.
  • Specific examples of such glycosaminoglycans include hyaluronic acid, chondroitin, chondroitin sulfate, keratan sulfate, heparin, dermatan sulfate and the like. Of these, chondroitin sulfate and hyaluronic acid can be preferably used.
  • Chondroitin sulfate can also be used as a salt thereof or a negatively charged derivative.
  • the molecular weight may be 1,000 or more, preferably 3,000 or more, and more preferably 7,000 to 50,000.
  • Examples of the salt of chondroitin sulfate include sodium salt, potassium salt, ammonium salt and the like.
  • Examples of chondroitin sulfate derivatives include those obtained by introducing polyethylene glycol, peptides, sugars, proteins, iodic acid, antibodies or parts thereof into chondroitin sulfate, and introduce spermine, spermidine, etc. And zwitterionic derivatives having a positively charged moiety.
  • Hyaluronic acid can also be used as its salt or a negatively charged derivative.
  • the molecular weight may be 5,000 or more, preferably 10,000 or more, and more preferably 100,000 to 3,000,000.
  • the salt of hyaluronic acid include sodium salt, potassium salt, ammonium salt and the like.
  • examples of the derivatives of hyaluronic acid include those obtained by introducing polyethylene glycol, peptides, sugars, proteins, iodic acid, antibodies or parts thereof into hyaluronic acid, and spermine, spermidine, etc. are introduced. And zwitterionic derivatives having a positively charged moiety.
  • the polyamino acid containing an amino acid residue having a negatively charged side chain that can be used as an anionic polymer in the complex of the present invention is a carboxyl group, -O-SO.
  • polyamino acids include polyglutamic acid and polyaspartic acid.
  • the PEG derivative having a carboxyl side chain that can be used as an anionic polymer in the complex of the present invention has a plurality of, preferably 5 or more, carboxyl side chains per PEG molecule, 500 or more, preferably 2000 or more, more preferably Is a PEG derivative having a molecular weight of 4000-40000.
  • a PEG derivative having a carboxyl side chain can also be used as a salt thereof or a negatively charged derivative.
  • these salts include sodium salts, potassium salts, ammonium salts and the like. Specific examples of such PEG derivatives include those described in J. Org. Biometer. Sci. Polymer Edn. Vol. 14, pp 515-531 (2003) and the like.
  • the synthetic polymer having a functional group selected from H group, phosphoric acid group, and salts thereof includes a plurality of, preferably 5 or more, carboxyl groups, —O—SO per molecule.
  • Specific examples of such a polymer or copolymer include a polymer or copolymer of acrylic acid or methacrylic acid having a molecular weight of 1,000,000 to 3,000,000, a sulfate ester of polyvinyl alcohol, or succinimidylated poly-L-lysine. Etc. can be illustrated.
  • a carboxyl group that can be used as an anionic polymer in the complex of the present invention -OSO 3 H group, -SO 3 H group, phosphate group, and functional group selected from salts thereof, and optionally substituted amino group or ammonium group or a salt thereof (for example, these groups are alkyl groups having 1 to 6 carbon atoms, phenyl And a polymer having a mono- or poly-substituted group such as a carboxyl group, -OSO per molecule 3 H group, -SO 3 A plurality of functional groups selected from H groups, phosphoric acid groups, and salts thereof, preferably 5 or more, and 500 or more having an amino group or ammonium group or a salt thereof optionally substituted as described above
  • the polymer is preferably a polymer having a molecular weight of 2000 or more, more preferably 4000 to 40000.
  • a polymer preferably, a PEG derivative having a carboxyl side chain and the amino group or ammonium group or a salt thereof equal to or less than the carboxyl side chain can be mentioned, specifically, Macromol. Biosci. Vol. 2, pp 251-256 (2002), and the like.
  • the anionic polymer that can be used in the composite of the present invention may be one that has been negatively charged by introducing a functional group such as a carboxyl group into a conventionally non-negatively charged one. Even if it is not negatively charged normally, it can be used as long as it is negatively charged at the time of complex formation, and if necessary, it may be further modified with sugar chain, oligopeptide, antibody, etc. Good.
  • anionic polymer hyaluronic acid, chondroitin sulfate, PEG derivatives having a carboxyl side chain
  • anionic polymers such as polyacrylic acid or salts thereof can be preferably used.
  • a PEG derivative having a carboxyl side chain or a salt thereof can be particularly preferably used.
  • anionic polymer having a specific adhesion ability to a target cell for gene introduction for example, when chondroitin sulfate is used as the anionic polymer, cells having cell surface molecules such as CD44 variants that specifically bind to chondroitin sulfate can be targeted.
  • hyaluronic acid When hyaluronic acid is used as the anionic polymer, cells having cell surface molecules such as CD44 that specifically bind to hyaluronic acid can be targeted.
  • many types of tumor cells can be targeted by using an anionic polymer into which an RGD peptide has been introduced, and hepatocytes or liver-derived cells by using an anionic polymer into which a galactose side chain has been introduced. Can be targeted.
  • the combination of the cationic polymer or the cationic lipid or the assembly containing the cationic polymer and the anionic polymer includes polyethyleneimine and hyaluronic acid; polyethyleneimine and chondroitin sulfate; polyethyleneimine and carboxyl side chain.
  • PEG derivatives; aggregates containing DOSPA (eg, lipofectamine (3: 1 w / w mixture liposome of DOSPA and DOPE)) and hyaluronic acid; aggregates containing DOSPA (eg, lipofectamine) and PEG derivatives having carboxyl side chains are preferred. be able to.
  • the molar ratio (negative charge: positive charge ratio) of each charged group of the nucleic acid or the like used in the complex of the present invention and the cationic polymer or cationic lipid or the assembly containing the same is the target cell, nucleic acid, etc. Although it varies depending on the type of polymer or the like, it is preferably 1: 0.8 to 1: 100, preferably 1: 1 to 1:50, more preferably 1: 1.2 to 1:30.
  • the compounding ratio of the nucleic acid and the like here and the cationic polymer or the cationic lipid or the assembly containing the same is a molar ratio of each charged group, specifically, phosphoric acid of nucleic acid, oligonucleic acid, or a derivative thereof.
  • Negative charge by anion refers to the molar ratio of the positively charged or functional group capable of being positively charged of a cationic polymer or cationic lipid or an assembly containing the same.
  • the molar ratio (negative charge: negative charge ratio) between the nucleic acid used in the complex of the present invention and each charged group of the anionic polymer varies depending on the type of the target cell, nucleic acid, etc., anionic polymer, but 1: 0 2 to 1: 1000, preferably 1: 0.2 to 1: 100, and more preferably 1: 1 to 1:60.
  • the compounding ratio of the nucleic acid and the anionic polymer here is a molar ratio of each charged group.
  • the negative charge by the phosphate anion of the nucleic acid, oligonucleic acid, or derivative thereof: negative of the anionic polymer It refers to the molar ratio of functional groups that can be charged or negatively charged.
  • the mixing ratio of nucleic acid or the like to chondroitin sulfate or hyaluronic acid may be 1: 0.2 to 1: 1000, preferably 1: 0.2. ⁇ 1: 100, more preferably 1: 1 to 1:60.
  • the mixing ratio of nucleic acid and the like: polyethyleneimine: chondroitin sulfate (or hyaluronic acid) is 1: 2 to 60: 1 to 240, The ratio is preferably 1: 4 to 24: 1 to 160, more preferably 1: 5 to 20: 2 to 60, and particularly preferably 1: 6 to 14: 2 to 32.
  • lipofectamine 3: 1 w / w mixture liposome of DOSPA and DOPE
  • chondroitin sulfate or hyaluronic acid is used as an anionic polymer, nucleic acid or the like: lipofectamine: chondroitin sulfate (or hyaluron) Acid
  • the mixing ratio is 1: 1 to 50: 0.2 to 240, preferably 1: 1.2 to 48: 0.2 to 160, more preferably 1: 1.5 to 30: 0.5. ⁇ 60, particularly preferably 1: 1.8 to 16: 1 to 32.
  • the preferred mixing ratio of the nucleic acid and the like contained in the complex of the present invention; the cationic polymer or the cationic lipid or the aggregate containing the same; and the anionic polymer is as described above, but the number of cells into which the nucleic acid or the like is introduced Since the optimum conditions vary depending on the type, the mixing ratio can be appropriately determined by those skilled in the art according to the type of cells, nucleic acids, and the like used.
  • the complex of the present invention is formed by mixing the above-described nucleic acid or the like; a cationic polymer or a cationic lipid or an aggregate containing the same; and if necessary, an anionic polymer in the above-described mixing ratio.
  • the order of mixing is [1] nucleic acid or the like; [2] cationic polymer or cationic lipid or aggregate containing the same, [3] order of anionic polymer, or [1] nucleic acid or the like; [2] anion
  • the order of the functional polymer, [3] cationic polymer or cationic lipid or an assembly containing the same is preferred.
  • a nucleic acid or the like is a complex in which a cationic polymer or a cationic lipid or an assembly containing the same is bonded by an ionic bond, and the cationic polymer or the cationic lipid or an assembly including the ion is also ionically bonded to an anionic polymer. It is formed.
  • an anionic polymer mainly coats the outer shell of such a complex structure, and an embodiment having a negative surface potential is formed.
  • the resulting complex is then lyophilized if necessary. Freeze-drying can be performed under normal freeze-drying conditions.
  • outside air temperature -78 ° C to 60 ° C, preferably -30 ° C to 40 ° C. can be done by drying with. The time required for drying varies depending on the degree of vacuum and the amount of solvent, and is usually completed in 1 hour to 2 days.
  • the complex of the present invention prepared as described above can be used for various gene therapy and immunotherapy for humans and animals, or creation of experimental animals and cells into which a microorganism-derived antigen protein gene or immunostimulatory cytokine gene is introduced. Can do.
  • the complex of the present invention When freeze-dried, the complex of the present invention is used as a rehydrate by suspending or dissolving the complex of the present invention in a solvent such as water, physiological saline, buffer solution, glucose solution, medium solution or the like before use. be able to.
  • a solvent such as water, physiological saline, buffer solution, glucose solution, medium solution or the like before use. be able to.
  • the lyophilized product is suspended or diluted with a solvent, for example, 100 to 10,000 times (by weight) the nucleic acid or derivative thereof. Since different amounts of solvents and different types of solvents can be used before lyophilization, comparatively high concentration suspensions and solutions (for example, solutions containing 1 mg of DNA in 1 ml) can be easily prepared. Can do.
  • the complex of the present invention specifically includes, for example, a complex of the present invention in which target cells taken out of the body in a well are hydrated.
  • Direct gene such as ex vivo method (vaccine therapy) in which the gene is introduced by treatment with the body and then the cells are returned to the living body to express the target gene, or in vivo, in situ method, etc. Any method commonly used for introducing a nucleic acid or a derivative thereof into a living cell, such as an introduction method, can be used.
  • the complex of the present invention can be brought into contact with a cell to which nucleic acid or the like is introduced without being rehydrated after lyophilization, or transferred to an animal to which nucleic acid or the like is introduced, or introduced into nucleic acid or the like. It can also be administered by means such as transplanting within, on or near the target tissue.
  • the amount of the complex of the present invention applied to the cells varies depending on the introduction method, the type of disease, etc. described above. For example, the amount of nucleic acid or a derivative thereof is 1 to 2 cm in diameter in the ex vivo method or the in situ method.
  • the complex of the present invention or a hydrated lyophilized hydrate of the present invention is injected into a vein, subcutaneous or muscle, abdominal cavity, intratumoral, in the vicinity of a tumor, or the like.
  • the anionic polymer neutralizes the positive charge of the complex of a normal nucleic acid or the like and a cationic polymer or a cationic lipid or an assembly containing the same, and the neutralization thereof. Since the action is retained even after administration to a living body or a cell, interaction such as aggregation between the complex and serum protein, blood cell, extracellular matrix, etc. is blocked. In addition, since enzymatic degradation of derivatives thereof or the like is prevented, nucleic acids are efficiently taken up by cells and their expression efficiency is high.
  • the complex of the present invention can be used as a preparation or reagent for introducing a nucleic acid or a derivative thereof, or as a kit for introducing a nucleic acid or a derivative thereof.
  • the immunostimulatory cytokine gene of the plasmid or derivative thereof used in the present invention can be freely selected from human cytokines, cat cytokines, canine cytokines and the like depending on the animal species of interest.
  • the promoter of the plasmid or derivative thereof used in the present invention may be a cytomegavirus-derived promoter, a RSV (Rous Sarcoma virus) -derived promoter, or SV40 (simian virus 40 (simian virus 40), depending on the animal species or cell type. )) Origin promoter, Cancer selective promoter such as Evolution Factor 1a promoter, etc.
  • Curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a plasmid / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex encoding the gene for ESAT-6 (vertical axis: tumor volume mm 3 , horizontal axis: drug administration) Indicates the number of days since the start (the same applies to FIGS.
  • Example 1 Curative effect on subcutaneously transplanted B16 cells by intratumoral injection of plasmid (pDNA-ESAT-6) / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex encoding ESAT-6 gene pDNA-ESAT-6, PEI
  • the three-component complex consisting of CS was administered intratumorally to mice transplanted subcutaneously with B16 derived from mouse melanoma cells, and the tumor growth inhibitory effect was confirmed.
  • As the CS a shark-derived product manufactured by Seikagaku Corporation was used.
  • the PBS used was a solution of Phosphate Buffered Salts (Tablet) manufactured by Roman Industries in distilled ion-exchanged water.
  • [Operating procedure] [1] The synthesis of pDNA-ESAT-6 was requested from Takara Bio Inc. As an expression vector, pcDNA3.1 (+) of Invitrogen Corporation was used. [2] B16 cells were seeded in a cell culture bottle and incubated using MEM medium containing 10% FBS, 25 U penicillin and 25 ⁇ g streptomycin to prepare cells for transplantation.
  • a plasmid complex was prepared by the following method. 119 ⁇ l of an aqueous solution containing 594 ⁇ g of CS is added to 4820 ⁇ l of 7.4 mM phosphate buffer (pH 7.4) containing pDNA-ESAT-6 (100 ⁇ g), and then 59 ⁇ l of an aqueous solution containing 293.5 ⁇ g of PEI is added and stirred.
  • the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
  • the mice to which the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was administered locally in the tumor, Clear suppression of tumor growth was observed.
  • Example 2 The curative effect with respect to the subcutaneous transplantation B16 cell by the local injection of the tumor which used the plasmid (pDNA-GM-CSF) composite_body
  • a pDNA-GM-CSF / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared in the same manner as in Example 1, and the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (prepared in Example 1) CS) complex and lyophilized. After rehydration, B16 derived from mouse melanoma cells was subcutaneously administered to mice transplanted subcutaneously, and the tumor growth inhibitory effect was confirmed.
  • One dose was such that the total amount of plasmid was 100 ⁇ g.
  • Tumor size was measured once a day. [result] The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
  • the mice in which both were mixed and administered into the tumor tissue had a greater tumor growth inhibitory effect and a synergistic effect was recognized.
  • Example 3 The curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a plasmid (pDNA-IL-2) complex that encodes the mouse mouse IL-2 gene in combination with the pDNA-ESAT-6 complex.
  • a pDNA-IL-2 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared in the same manner as in Example 1, and the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (prepared in Example 1) CS) complex and lyophilized.
  • B16 derived from mouse melanoma cells was subcutaneously administered to mice transplanted subcutaneously, and the tumor growth inhibitory effect was confirmed.
  • One dose was such that the total amount of plasmid was 100 ⁇ g.
  • Tumor size was measured once a day. [result] The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
  • the mice in which both were mixed and administered into the tumor tissue had a greater tumor growth inhibitory effect and a synergistic effect was recognized.
  • Example 4 The curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a plasmid (pDNA-IL-12) complex encoding a mouse mouse IL-12 gene in combination with a pDNA-ESAT-6 complex.
  • a pDNA-IL-12 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared in the same manner as in Example 1, and the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (prepared in Example 1) CS) complex and lyophilized.
  • B16 derived from mouse melanoma cells was subcutaneously administered to mice transplanted subcutaneously, and the tumor growth inhibitory effect was confirmed.
  • One dose was such that the total amount of plasmid was 100 ⁇ g.
  • Tumor size was measured once a day. [result] The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
  • the mice administered with both of them mixed and administered into the tumor tissue had a greater tumor growth inhibitory effect and a synergistic effect Was recognized.
  • Example 5 Healing effect on subcutaneously transplanted B16 cells by intratumoral injection of Ag85B gene-encoding plasmid (pDNA-Ag85B) / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex
  • pDNA-Ag85B polyethyleneimine
  • PEI polyethyleneimine
  • CS chondroitin sulfate
  • Three components consisting of pDNA-Ag85B, PEI and CS The above complex was administered intratumorally to mice transplanted subcutaneously with B16 derived from mouse melanoma cells, and the tumor growth inhibitory effect was confirmed.
  • [Operating procedure] [1] The synthesis of pDNA-Ag85B was requested from Takara Bio Inc. As an expression vector, pcDNA3.1 (+) of Invitrogen Corporation was used.
  • the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
  • the mice to which the pDNA-Ag85B / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was administered locally it was clear. Tumor growth suppression was observed.
  • PEI polyethyleneimine
  • CS chondroitin sulfate
  • a pDNA-Ag85B / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared in the same manner as in Example 5, and the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (CS) prepared in Example 1 was used. Mixed with the complex and lyophilized. After rehydration, B16 derived from mouse melanoma cells was subcutaneously administered to mice transplanted subcutaneously, and the tumor growth inhibitory effect was confirmed.
  • One dose was such that the total amount of plasmid was 100 ⁇ g.
  • Tumor size was measured once a day. [result] The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
  • the mice administered with both mixed and administered in the tumor tissue had a greater tumor growth inhibitory effect and a synergistic effect was observed. It was.

Abstract

The present invention relates to a compound material of a gene transfer reagent and a vector of an encoded microbe-derived antigen protein gene, a medicine containing the same, and a cancer treatment method using the same.

Description

新規な複合体、それを含有する医薬及び癌の治療方法NOVEL COMPLEX, MEDIUM CONTAINING THE SAME AND CANCER TREATMENT METHOD
 本発明は、微生物由来抗原タンパク質遺伝子をコードしたベクター及び遺伝子導入試薬との複合体、それらを含有する医薬並びにそれらを用いる癌の治療方法に関する。 The present invention relates to a complex of a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent, a medicine containing them, and a method for treating cancer using them.
 遺伝子治療は、遺伝子に欠損や異常があることによる遺伝子疾患の患者に、正常遺伝子を与えて病気を治す、根治的な治療法として期待され、試みられてきた。正式な手続きを踏み、治療目的として行われた初めての遺伝子治療は、1990年に、ADA(アデノシンデアミナーゼ)欠損症の患者に対して行われた。治療に必要な遺伝子をコードしたDNAを目的の細胞に導入するためには、多くの場合、遺伝子導入システムが使用される、遺伝子導入システムには現在(1)ウイルス型遺伝子導入システムと(2)カチオン性ポリマー、あるいはカチオン性脂質などの非ウイルス遺伝子導入システムとがある。
 これまで行われてきた遺伝子治療臨床試験の多くはウイルス型遺伝子導入システムを利用したものである。(1)レトロウイルス(2)アデノウイルス(Ad)(3)アデノ随伴ウイルス(AAV)などが使用されてきた。
 一方、ウイルスの細胞溶解活性を利用して、腫瘍細胞のみを選択的に殺すように組み替えたウイルスが、癌遺伝子治療の新しい手法として開発された。これらは、腫瘍溶解性ウイルス、制限増殖型ウイルスなどと呼ばれ、腫瘍細胞中では増殖するが、正常細胞中での増殖活性が低いことから安全性の高い抗腫瘍ウイルス製剤として注目されている(非特許文献①)。
 腫瘍選択的に増殖するウイルスは、天然にもその存在が見出されているほか、例えばアデノウイルスのE1領域のプロモーターを腫瘍細胞でのみ選択的に発現するプロモーターで置換するなどして、遺伝子工学的にも得られる。腫瘍選択的プロモーターとしては、テロメラーゼプロモーター、ミドカインプロモーター、IAI3Bプロモーターなどが利用されてきた。
 一方、近年の多くの実験的、臨床的所見から、これらのウイルスの抗腫瘍活性は、ウイルスが本来持っているそれ自体の殺細胞作用によるものだけではなく、むしろ宿主の抗腫瘍免疫を惹起、活性化する効果が大きいことが主張されている。すなわち、腫瘍溶解性ウイルスを投与すると、宿主に抗腫瘍免疫が惹起され、その免疫効果によって腫瘍が効果的に退縮するという考え方である。これは、ウイルス治療を施した腫瘍から離れた部位の腫瘍の退縮や、治療後長期間継続する同種の腫瘍細胞の再移植に対する抵抗性などから支持される(非特許文献②)。
 ウイルスには動物細胞への感染性が強いものが使用される。しかし、多くの治療では複数回の投与が必要であり、投与を繰り返すことで抗ウイルス抗体ができ、感染、遺伝子導入は著しく阻害される。そのために、腫瘍溶解性アデノウイルスやp53遺伝子を組み込んだアデノウイルスを使用した治療システムが中国では認可され使用されているが、十分治癒効果は得られていない。しかしまた、非ウイルス型遺伝子導入システムは、本申請者らのわずかな例(非特許文献③)を除いては生体内での活性は極めて低く、治療効果を導くには至っていない。
Gene therapy has been expected and attempted as a radical treatment method for treating a disease by giving a normal gene to a patient with a genetic disease caused by a gene deficiency or abnormality. The first gene therapy performed for therapeutic purposes following formal procedures was conducted in 1990 for patients with ADA (adenosine deaminase) deficiency. In order to introduce a DNA encoding a gene required for treatment into a target cell, a gene introduction system is often used. Currently, gene introduction systems include (1) a viral gene introduction system and (2) And non-viral gene transfer systems such as cationic polymers or cationic lipids.
Many gene therapy clinical trials that have been conducted so far utilize a viral gene transfer system. (1) Retrovirus (2) Adenovirus (Ad) (3) Adeno-associated virus (AAV) and the like have been used.
On the other hand, viruses that have been recombined to selectively kill only tumor cells using the cytolytic activity of the virus have been developed as a new technique for cancer gene therapy. These are called oncolytic viruses, restricted-proliferating viruses, and the like, and are proliferating in tumor cells, but are attracting attention as highly safe anti-tumor virus preparations because of their low proliferation activity in normal cells ( Non-patent literature ①).
Viruses that proliferate selectively in tumors have been found in nature, for example, by replacing the promoter of the E1 region of adenovirus with a promoter that is selectively expressed only in tumor cells. Can also be obtained. As tumor selective promoters, telomerase promoter, midkine promoter, IAI3B promoter and the like have been used.
On the other hand, from many experimental and clinical findings in recent years, the antitumor activity of these viruses is not only due to their own cytocidal action, but rather to induce antitumor immunity of the host, It is claimed that the effect to activate is great. That is, when an oncolytic virus is administered, anti-tumor immunity is elicited in the host, and the tumor effectively regresses due to its immune effect. This is supported by the regression of tumors at sites away from tumors treated with virus therapy and the resistance to re-transplantation of the same type of tumor cells that continues for a long time after treatment (Non-patent Document 2).
Viruses that are highly infectious to animal cells are used. However, many treatments require multiple administrations, and by repeating administration, antiviral antibodies are produced, and infection and gene transfer are significantly inhibited. Therefore, a treatment system using an oncolytic adenovirus or an adenovirus incorporating a p53 gene has been approved and used in China, but a sufficient healing effect has not been obtained. However, the non-viral gene transfer system has very low activity in vivo except for a few examples of the applicants (Non-patent Document 3), and has not led to a therapeutic effect.
 このような状況下、本発明者らは、腫瘍溶解性ウイルスによる抗腫瘍免疫活性化のメカニズムを詳細に検討した結果、感染した腫瘍細胞、または腫瘍近傍の細胞における微生物抗原タンパクの発現が、抗腫瘍免疫の成立に関わっている可能性を見いだした。ウイルスに感染した腫瘍細胞は、その微生物特有のタンパク、あるいはその分解物を細胞膜表面に提示したり、分泌したりすることによって、これらの免疫応答を引き出すものと思われる。
 本発明者らは、このような微生物抗原タンパクの腫瘍細胞内での発現は、ウイルス感染のみではなく、DNAを用いた遺伝子導入によっても達成できることを考案した。さらに我々は、DNAを用いた遺伝子導入のためのツールとして、生体内で高発現するプラスミドDNAのシステムを固有技術として持っている(非特許文献③)。そこで、結核菌由来抗原タンパク質であるESAT−6やAg85Bの遺伝子をコードしたプラスミドを構築し、そのイオン複合体からなる遺伝子導入システムを調製し、担癌モデルマウスに腫瘍局所内投与してみた。すると、抗腫瘍効果が高いサイトカインであるGM−CSFの遺伝子をコードしたプラスミドを用いた比較例よりも、はるかに高い抗腫瘍効果が確認された。
 また、前述の腫瘍溶解性ウイルスによる抗腫瘍効果の発現には、GM−CSFの同時投与が有効であることが知られている。そこで、ESAT−6の遺伝子をコードしたプラスミド複合体とGM−CSFの遺伝子をコードしたプラスミド複合体を混合して担癌モデルマウスに腫瘍局所内投与したところ、ESAT−6の遺伝子をコードしたプラスミド複合体単独よりもさらに高い抗腫瘍効果が認められた。あるいはまた、IL−2やIL−12などの免疫活性化サイトカインの遺伝子を導入したウイルスが高い抗腫瘍活性を持つことも報告されている。そこで、ESAT−6の遺伝子をコードしたプラスミド複合体とIL−2、IL−12などの遺伝子をコードしたプラスミド複合体を混合して担癌モデルマウスに腫瘍局所内投与したところ、ESAT−6の遺伝子をコードしたプラスミド複合体単独よりもさらに高い抗腫瘍効果が認められた。
Under such circumstances, the present inventors have examined in detail the mechanism of anti-tumor immune activation by oncolytic viruses, and as a result, the expression of microbial antigen protein in infected tumor cells or cells in the vicinity of the tumor is anti-tumor. We found the possibility of being involved in the establishment of tumor immunity. Tumor cells infected with viruses are thought to elicit these immune responses by presenting or secreting proteins unique to the microorganisms or their degradation products on the surface of the cell membrane.
The present inventors devised that expression of such microbial antigen protein in tumor cells can be achieved not only by viral infection but also by gene transfer using DNA. In addition, as a tool for gene transfer using DNA, we have a plasmid DNA system that is highly expressed in vivo as a unique technology (Non-patent Document 3). Therefore, plasmids encoding the genes of ESAT-6 and Ag85B, which are antigenic proteins derived from Mycobacterium tuberculosis, were constructed, a gene transfer system consisting of the ionic complex was prepared, and administered locally to tumor-bearing model mice. Then, a much higher antitumor effect was confirmed than the comparative example using the plasmid which coded the gene of GM-CSF which is a cytokine with a high antitumor effect.
Moreover, it is known that the simultaneous administration of GM-CSF is effective for the expression of the antitumor effect by the oncolytic virus. Therefore, when a plasmid complex encoding the ESAT-6 gene and a plasmid complex encoding the GM-CSF gene were mixed and administered intratumorally to a tumor-bearing model mouse, a plasmid encoding the ESAT-6 gene was obtained. A higher antitumor effect was observed than the complex alone. Alternatively, it has also been reported that a virus into which an immune-activating cytokine gene such as IL-2 or IL-12 has been introduced has high antitumor activity. Therefore, when a plasmid complex encoding a gene of ESAT-6 and a plasmid complex encoding a gene such as IL-2 and IL-12 were mixed and administered to a tumor-bearing model mouse locally, tumors of ESAT-6 were obtained. An antitumor effect higher than that of the plasmid complex encoding the gene alone was observed.
 本発明は、
(1)微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体。
(2)微生物が結核菌であることを特徴とする上記(1)記載の複合体。
(3)結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする上記(2)記載の複合体。
(4)ベクターがプラスミドベクターであることを特徴とする上記(1)~(3)いずれか記載の複合体。
(5)遺伝子導入試薬が、カチオン性ポリマー、カチオン性脂質及びアニオン性ポリマーから選択される1以上の化合物からなることを特徴とする上記(1)~(4)いずれか記載の複合体。
(6)遺伝子導入試薬が、カチオン性ポリマー又はカチオン性脂質と、アニオン性ポリマーからなることを特徴とする上記(5)記載の複合体。
(7)カチオン性ポリマーが、ポリエチレンイミン(直鎖状ポリエチレンイミン又はポリ分枝型エチレンイミン)、2−ジメチルアミノエチルメタクリレートの重合体又は共重合体、2−トリメチルアミノエイルメタクリレートの重合体又は共重合体、ポリアミドアミンデンドリマー、ポリリジンデンドリマー、プロタミン、ヒストン、HelΔ1、ゼラチン、ポリ−L−リジン、ポリアルギニン、ポリオルニチン、ポリビニルイミダゾール、側鎖にエチレンジアミン構造を有する高分子及びそれらの共重合体、またはそれらの塩から1つ以上選択される上記(5)又は(6)記載の複合体。
(8)カチオン性脂質が、DC−Chol(3β−(N−(N‘,N’−ジメチルアミノエタン)カルバモイル)コレステロール、DDAB(N,N−ジステアリル−N,N−ジメチルアンモニウムブロミド)、DMRI(N−(1,2−ジミリスチルオキシプパ−3−イル)−N,N−ジメチル−N−ヒドロキシエチルアンモニウムブロミド)、DODAC(N,N−ジオレイル−N,N−ジメチルアンモニウムクロリド)、DOGS(ジヘプタデシルアミドグリシルスペルミジン)、DOSPA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N−(2−(スペルミンカルボキサミド)−N,N−ジメチルアンモニウムトリフルオロアセタート)、DOTAP(N−(1−(2,3−ジオレイルオキシ)プロピル)−N,N,N−トリメチルアンモニウムクロリド)及びDOTMA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N、N、N−トリメチルアンモニウムクロリド)およびそれらの異なる酸との塩から1つ以上選択される上記(5)又は(6)記載の複合体。
 (9)アニオン性ポリマーが、カルボキシル側鎖を持つPEG誘導体、アクリル酸又はメタクリル酸の重合体若しくは共重合体、ポリビニルアルコールの硫酸エステル体、サクシニミジル化ポリ−L−リジン、ポリグルタミン酸、ポリアスパラギン酸、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ケラタン硫酸、ヘパリン、デルタマン硫酸又はそれらの誘導体、及びそれらの塩から1つ以上選択される上記(5)~(8)いずれか記載の複合体。
(10)凍結乾燥処理を施した上記(1)~(9)いずれか記載の複合体。
(11)微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する医薬。
(12)微生物が結核菌であることを特徴とする上記(11)記載の医薬。
(13)結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする上記(12)記載の医薬。
(14)ベクターがプラスミドベクターであることを特徴とする上記(11)~(13)いずれか記載の医薬。
(15)遺伝子導入試薬が、カチオン性ポリマー、カチオン性脂質及びアニオン性ポリマーから選択される1以上の化合物からなることを特徴とする上記(11)~(14)いずれか記載の医薬。
(16)遺伝子導入試薬が、カチオン性ポリマー又はカチオン性脂質と、アニオン性ポリマーからなることを特徴とする上記(15)記載の医薬。
(17)カチオン性ポリマーが、ポリエチレンイミン(直鎖状ポリエチレンイミン又はポリ分枝型エチレンイミン)、2−ジメチルアミノエチルメタクリレートの重合体又は共重合体、2−トリメチルアミノエイルメタクリレートの重合体又は共重合体、ポリアミドアミンデンドリマー、ポリリジンデンドリマー、プロタミン、ヒストン、HelΔ1、ゼラチン、ポリ−L−リジン、ポリアルギニン、ポリオルニチン、ポリビニルイミダゾール、側鎖にエチレンジアミン構造を有する高分子及びそれらの共重合体、またはそれらの塩から1つ以上選択される上記(15)又は(16)記載の医薬。
(18)カチオン性脂質が、DC−Chol(3β−(N−(N‘,N’−ジメチルアミノエタン)カルバモイル)コレステロール、DDAB(N,N−ジステアリル−N,N−ジメチルアンモニウムブロミド)、DMRI(N−(1,2−ジミリスチルオキシプパ−3−イル)−N,N−ジメチル−N−ヒドロキシエチルアンモニウムブロミド)、DODAC(N,N−ジオレイル−N,N−ジメチルアンモニウムクロリド)、DOGS(ジヘプタデシルアミドグリシルスペルミジン)、DOSPA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N−(2−(スペルミンカルボキサミド)−N,N−ジメチルアンモニウムトリフルオロアセタート)、DOTAP(N−(1−(2,3−ジオレイルオキシ)プロピル)−N,N,N−トリメチルアンモニウムクロリド)及びDOTMA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N、N、N−トリメチルアンモニウムクロリド)およびそれらの異なる酸との塩から1つ以上選択される上記(15)又は(16)記載の医薬。
 (19)アニオン性ポリマーが、カルボキシル側鎖を持つPEG誘導体、アクリル酸又はメタクリル酸の重合体若しくは共重合体、ポリビニルアルコールの硫酸エステル体、サクシニミジル化ポリ−L−リジン、ポリグルタミン酸、ポリアスパラギン酸、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ケラタン硫酸、ヘパリン、デルタマン硫酸又はそれらの誘導体、及びそれらの塩から1つ以上選択される上記(15)~(18)いずれか記載の医薬。
(20)凍結乾燥処理を施した上記(11)~(19)いずれか記載の医薬。
 (21)微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体及び免疫賦活性サイトカイン遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体を組み合わせた医薬。
(22)微生物が結核菌であることを特徴とする上記(21)記載の医薬。
(23)結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする上記(22)記載の医薬。
(24)免疫賦活性サイトカインがインターロイキン−2(IL−2)、インターロイキン−12(IL−12)、GM−CSFから選ばれる1以上のサイトカインである上記(21)~(23)いずれか記載の医薬。
(25)微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体を有効量投与することを特徴とする癌の治療方法。
(26)微生物が結核菌であることを特徴とする上記(25)記載の治療方法。
(27)結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする上記(26)記載の治療方法。
(28)ベクターがプラスミドベクターであることを特徴とする上記(25)~(27)いずれか記載の治療方法。
(29)遺伝子導入試薬が、カチオン性ポリマー、カチオン性脂質及びアニオン性ポリマーから選択される1以上の化合物からなることを特徴とする上記(25)~28)いずれか記載の治療方法。
(30)遺伝子導入試薬が、カチオン性ポリマー又はカチオン性脂質と、アニオン性ポリマーからなることを特徴とする上記(29)記載の治療方法。
(31)カチオン性ポリマーが、ポリエチレンイミン(直鎖状ポリエチレンイミン又はポリ分枝型エチレンイミン)、2−ジメチルアミノエチルメタクリレートの重合体又は共重合体、2−トリメチルアミノエイルメタクリレートの重合体又は共重合体、ポリアミドアミンデンドリマー、ポリリジンデンドリマー、プロタミン、ヒストン、HelΔ1、ゼラチン、ポリ−L−リジン、ポリアルギニン、ポリオルニチン、ポリビニルイミダゾール、側鎖にエチレンジアミン構造を有する高分子及びそれらの共重合体、またはそれらの塩から1つ以上選択される上記(29)又は(30)記載の治療方法。
(32)カチオン性脂質が、DC−Chol(3β−(N−(N‘,N’−ジメチルアミノエタン)カルバモイル)コレステロール、DDAB(N,N−ジステアリル−N,N−ジメチルアンモニウムブロミド)、DMRI(N−(1,2−ジミリスチルオキシプパ−3−イル)−N,N−ジメチル−N−ヒドロキシエチルアンモニウムブロミド)、DODAC(N,N−ジオレイル−N,N−ジメチルアンモニウムクロリド)、DOGS(ジヘプタデシルアミドグリシルスペルミジン)、DOSPA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N−(2−(スペルミンカルボキサミド)−N,N−ジメチルアンモニウムトリフルオロアセタート)、DOTAP(N−(1−(2,3−ジオレイルオキシ)プロピル)−N,N,N−トリメチルアンモニウムクロリド)及びDOTMA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N、N、N−トリメチルアンモニウムクロリド)およびそれらの異なる酸との塩から1つ以上選択される上記(29)又は(30)記載の治療方法。
 (33)アニオン性ポリマーが、カルボキシル側鎖を持つPEG誘導体、アクリル酸又はメタクリル酸の重合体若しくは共重合体、ポリビニルアルコールの硫酸エステル体、サクシニミジル化ポリ−L−リジン、ポリグルタミン酸、ポリアスパラギン酸、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ケラタン硫酸、ヘパリン、デルタマン硫酸又はそれらの誘導体、及びそれらの塩から1つ以上選択される上記(29)~(32)いずれか記載の治療方法。
(34)凍結乾燥処理を施した上記(25)~(33)いずれか記載の治療方法。
(35)微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体及び免疫賦活性サイトカイン遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体を組み合わせて有効量投与することを特徴とする癌の治療方法。
(36)微生物が結核菌であることを特徴とする上記(35)記載の治療方法。
(37)結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする上記(36)記載の治療方法。
(38)免疫賦活性サイトカインがインターロイキン−2(IL−2)、インターロイキン−12(IL−12)、GM−CSFから選ばれる1以上のサイトカインである上記(35)~(37)いずれか記載の治療方法。
(39)カチオン性ポリマーがポリエチレンイミンである(1)~(7)、(9)~(17)、(19)~(31)、(33)~(37)いずれか記載の複合体、医薬又は癌の治療方法。
(40)アニオン性ポリマーがコンドロイチン硫酸である上記(1)~(39)いずれか記載の複合体、医薬又は癌の治療方法。
(41)アニオン性ポリマーがヒアルロン酸である上記(1)~(39)いずれか記載の複合体、医薬又は癌の治療方法。
The present invention
(1) A complex containing a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent.
(2) The complex according to (1) above, wherein the microorganism is Mycobacterium tuberculosis.
(3) The complex according to (2), wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M. tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
(4) The complex according to any one of (1) to (3) above, wherein the vector is a plasmid vector.
(5) The complex according to any one of (1) to (4) above, wherein the gene introduction reagent comprises one or more compounds selected from a cationic polymer, a cationic lipid, and an anionic polymer.
(6) The complex according to (5) above, wherein the gene introduction reagent comprises a cationic polymer or a cationic lipid and an anionic polymer.
(7) The cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer. Polymer, polyamidoamine dendrimer, polylysine dendrimer, protamine, histone, HelΔ1, gelatin, poly-L-lysine, polyarginine, polyornithine, polyvinylimidazole, a polymer having an ethylenediamine structure in the side chain and a copolymer thereof, or The complex according to (5) or (6) above, wherein at least one of these salts is selected.
(8) The cationic lipid is DC-Chol (3β- (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N- (1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS (diheptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate) ), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-to Limethylammonium chloride) and DOTMA (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-trimethylammonium chloride) and their salts with different acids The complex according to (5) or (6) above.
(9) PEG derivative having carboxyl side chain, polymer or copolymer of acrylic acid or methacrylic acid, sulfate ester of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid , One or more of hyaluronic acid, chondroitin, chondroitin sulfate, keratan sulfate, heparin, deltaman sulfate or a derivative thereof, and a salt thereof.
(10) The composite according to any one of (1) to (9), which has been subjected to a freeze-drying treatment.
(11) A medicament containing a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent.
(12) The medicament according to (11) above, wherein the microorganism is Mycobacterium tuberculosis.
(13) The medicament according to (12) above, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M. tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
(14) The medicament according to any one of (11) to (13) above, wherein the vector is a plasmid vector.
(15) The medicament according to any one of (11) to (14) above, wherein the gene introduction reagent comprises one or more compounds selected from a cationic polymer, a cationic lipid, and an anionic polymer.
(16) The medicament according to (15) above, wherein the gene introduction reagent comprises a cationic polymer or cationic lipid and an anionic polymer.
(17) The cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer. Polymer, polyamidoamine dendrimer, polylysine dendrimer, protamine, histone, HelΔ1, gelatin, poly-L-lysine, polyarginine, polyornithine, polyvinylimidazole, a polymer having an ethylenediamine structure in the side chain and a copolymer thereof, or The medicament according to (15) or (16) above, wherein one or more salts thereof are selected.
(18) The cationic lipid is DC-Chol (3β- (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N- (1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS (diheptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate) ), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N- The trimethylammonium chloride) and DOTMA (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-trimethylammonium chloride) and their salts with different acids. The medicine according to (15) or (16).
(19) PEG derivative having carboxyl side chain, polymer or copolymer of acrylic acid or methacrylic acid, sulfate of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid The pharmaceutical according to any one of (15) to (18) above, which is selected from one or more of hyaluronic acid, chondroitin, chondroitin sulfate, keratan sulfate, heparin, deltaman sulfate or a derivative thereof, and salts thereof.
(20) The medicament according to any one of (11) to (19), which has been freeze-dried.
(21) A pharmaceutical composition comprising a vector encoding a microorganism-derived antigen protein gene and a complex containing a gene introduction reagent, and a combination of a vector encoding an immunostimulatory cytokine gene and a complex containing a gene introduction reagent.
(22) The medicament according to (21) above, wherein the microorganism is Mycobacterium tuberculosis.
(23) The medicament according to (22) above, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (6 kDa early secreted antigenic target) and / or Ag85B.
(24) Any of the above (21) to (23), wherein the immunostimulatory cytokine is one or more cytokines selected from interleukin-2 (IL-2), interleukin-12 (IL-12), and GM-CSF The pharmaceutical described.
(25) A method for treating cancer, comprising administering an effective amount of a complex containing a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent.
(26) The method according to (25) above, wherein the microorganism is Mycobacterium tuberculosis.
(27) The method according to (26) above, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M. tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
(28) The method according to any one of (25) to (27) above, wherein the vector is a plasmid vector.
(29) The treatment method according to any one of (25) to (28) above, wherein the gene introduction reagent comprises one or more compounds selected from a cationic polymer, a cationic lipid, and an anionic polymer.
(30) The treatment method according to the above (29), wherein the gene introduction reagent comprises a cationic polymer or a cationic lipid and an anionic polymer.
(31) The cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer. Polymer, polyamidoamine dendrimer, polylysine dendrimer, protamine, histone, HelΔ1, gelatin, poly-L-lysine, polyarginine, polyornithine, polyvinylimidazole, a polymer having an ethylenediamine structure in the side chain and a copolymer thereof, or The treatment method according to the above (29) or (30), wherein one or more salts thereof are selected.
(32) The cationic lipid is DC-Chol (3β- (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N- (1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS (diheptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate) ), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N- The trimethylammonium chloride) and DOTMA (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-trimethylammonium chloride) and their salts with different acids. (29) or the treatment method of (30) description.
(33) An anionic polymer is a PEG derivative having a carboxyl side chain, a polymer or copolymer of acrylic acid or methacrylic acid, a sulfate ester of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid The method according to any one of (29) to (32) above, wherein at least one selected from hyaluronic acid, chondroitin, chondroitin sulfate, keratan sulfate, heparin, deltaman sulfate or a derivative thereof, and a salt thereof.
(34) The treatment method according to any one of (25) to (33) above, which has been lyophilized.
(35) An effective amount of a combination of a vector encoding a microorganism-derived antigen protein gene and a complex containing a gene introduction reagent and a vector encoding an immunostimulatory cytokine gene and a complex containing a gene introduction reagent are administered. A method for treating cancer.
(36) The method according to (35) above, wherein the microorganism is Mycobacterium tuberculosis.
(37) The method according to (36) above, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M. tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
(38) Any of the above (35) to (37), wherein the immunostimulatory cytokine is one or more cytokines selected from interleukin-2 (IL-2), interleukin-12 (IL-12), and GM-CSF The method of treatment described.
(39) The complex or pharmaceutical according to any one of (1) to (7), (9) to (17), (19) to (31), and (33) to (37), wherein the cationic polymer is polyethyleneimine Alternatively, a method for treating cancer.
(40) The complex, pharmaceutical or cancer treatment method according to any one of (1) to (39), wherein the anionic polymer is chondroitin sulfate.
(41) The complex, pharmaceutical or cancer treatment method according to any one of (1) to (39), wherein the anionic polymer is hyaluronic acid.
 本発明の微生物由来抗原タンパク質遺伝子をコードしたベクター及び遺伝子導入試薬との複合体は、結核菌由来抗原タンパク質遺伝子を効率よく細胞に導入可能で長期保存安定性にも優れ、医薬分野、特に、癌の治療に有効である。 The complex of the vector encoding the microorganism-derived antigen protein gene of the present invention and the gene introduction reagent is capable of efficiently introducing the M. tuberculosis-derived antigen protein gene into the cell and has excellent long-term storage stability. It is effective for the treatment.
 本発明において、微生物由来抗原タンパク質遺伝子とは、ESAT−6遺伝子、Ag85A遺伝子、Ag85B遺伝子、Ag85C遺伝子、CFP−10遺伝子、TB7.7遺伝子、MPT51遺伝子、HSP65遺伝子などの結核菌、緑膿菌、肺炎球菌、連鎖球菌などの細菌由来のものや、アデノウイルスのカプシド抗原であるヘキソン,ペントン,およびファイバーの遺伝子HIVのp24抗原遺伝子、狂犬病ウィルスGタンパク遺伝子、ウェストナイルウィルスのprMタンパクやEタンパク遺伝子、インフルエンザウィルスのM1タンパクやNPタンパク遺伝子などのウイルス由来のもの、更には、リケッチア、クラミジア、原虫などの微生物由来のものが挙げられ、その一部を欠失したものや、一部を置換したのもなど、当該タンパク質が有する抗原性機能を発揮するタンパク又はペプチドをコードする遺伝子を意味する。例えば、ESAT−6遺伝子とは、結核菌6kDa early secreted antigenic targetをコードする遺伝子を意味しAg85B遺伝子とは、30kDaのミコリルトランスフェラーゼ活性を持つ結核菌の分泌タンパク、抗原85Bの遺伝子を意味する。また、本発明においては、微生物由来抗原タンパク質遺伝子に、更に、例えば、GM−CSF、IL−2やIL−12などの免疫賦活性サイトカイン遺伝子を同時に用いてもよい。GM−CSF、IL−2やIL−12などのサイトカイン遺伝子とは、GM−CSF、IL−2やIL−12をコードする遺伝子のほか、その一部を欠失したものや、一部を置換したものなど、GM−CSF、IL−2やIL−12が有する機能を発揮するタンパク又はペプチドをコードする遺伝子を意味し、ヒトGM−CSF、IL−2、IL−12や犬猫等の動物用GM−CSF、IL−2、IL−12も、それぞれ意味する。
これら微生物由来抗原タンパク質遺伝子と免疫賦活性サイトカイン遺伝子の両者を使用する場合、たとえば微生物由来抗原タンパク質遺伝子発現カセットと免疫賦活性サイトカイン遺伝子発現カセットをベクターにタンデムに挿入したものなどを使用することができる。また、微生物由来抗原タンパク質遺伝子をコードしたプラスミドと免疫賦活性サイトカイン遺伝子をコードしたプラスミドの両者を含む複合体、またはそれぞれの複合体を混合して用いてもよい。
 また、本発明において、ベクターとは、遺伝子組み換え技術で用いられる、組み換えDNAを増幅、維持、導入させる核酸分子を意味し、通常使用される、p CMV、p cDNA、p ACT等のプラスミドベクター;コスミドベクター;PACベクター、YACベクター、BACベクター等の人工染色体ベクターなど、通常、当該分野で使用されるベクターを意味する。
 さらに、本発明において、遺伝子導入試薬とは、通常使用されている、遺伝子を導入する目的で使用される試薬、たとえば、カチオン性ポリマー、カチオン性脂質、アニオン性ポリマーなどを意味し、また、これらを組み合わせたものも意味する。
 本発明の複合体中で遺伝子をコードしたベクター(以後、「核酸等」と記載する)は、カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体とイオン結合による複合体を形成しており、アニオン性ポリマーを加えた場合は、アニオン性ポリマーはカチオン性ポリマー又はカチオン性脂質とイオン結合している。これらは、混合比、混合順序等によっては、主にアニオン性ポリマーで覆われた複合体を形成することができる。
 本発明の複合体に用いることができるカチオン性ポリマーとしては、正に荷電された分子量が1000~300万程度の天然由来又は合成高分子であって、水中でDNAと複合体を形成できる官能基を1分子中に複数、好ましくは5個以上有する高分子を使用することができ、このような官能基としては、例えば置換されていてもよいアミノ基若しくはアンモニウム基又はその塩(これらの基は、例えば炭素数1~6のアルキル基、フェニル基などで単又は多置換されていてもよい)、イミノ基、イミダゾリル基、グアニジノ基などの有機アミノ基を挙げることができる。このようなカチオン性ポリマーとしては、例えば、正に荷電されたタンパク質やポリペプチド;正に荷電されたデンドリマー;正に荷電された合成ポリマー;及び正に荷電された多糖類誘導体、又はそれらのグラフト、あるいはブロック共重合体およびそれらの塩、並びにそれらの組み合わせが挙げられる。
 本発明の複合体にカチオン性ポリマーとして用いることができる正に荷電されたタンパク質、正に荷電されたポリペプチドの分子量は、好ましくは1000~50万程度である。このようなタンパク質、ポリペプチドとしては、具体的にはプロタミン、ヒストン、HelΔ1、ゼラチンなどのタンパク質及びポリペプチドを例示することができ、また、正に荷電されたアミノ酸残基を含むポリアミノ酸もまた例示することができる。このような正に荷電されたアミノ酸残基を含むポリアミノ酸としては、具体的にはポリ−L−リジン、ポリアルギニン、ポリオルニチンなどを例示することができる。これらのタンパク質、及びポリペプチドの塩としては、塩酸塩、硫酸塩、リン酸塩、ホウ酸塩などを例示することができる。
 カチオン性ポリマーとして用いることができる上記のような官能基を有する正に荷電されたデンドリマーとは、分岐した分子鎖の末端または内部に、置換されていてもよいアミノ基若しくはアンモニウム基又はその塩(これらの基は、例えば炭素数1~6のアルキル基、フェニル基などで単又は多置換されていてもよい)を有するデンドリマーであり、その分子量は、好ましくは1000~50万程度である。デンドリマーとしては、具体的にはポリアミドアミンデンドリマー、ポリリジンデンドリマーなどを例示することができる。また、デンドリマーの塩としては、塩酸塩、硫酸塩、リン酸塩、ホウ酸塩などを例示することができる。
 カチオン性ポリマーとして用いることができる正に荷電された合成ポリマーは、上記のような、水中でDNAと複合体を形成できる官能基を1分子中に複数、好ましくは5個以上有する合成ポリマーであって、分子量が好ましくは1000~300万である合成ポリマーである。合成ポリマーとしては具体的には、ポリエチレンイミン(直鎖状ポリエチレンイミン、又はポリ分岐型エチレンイミンを含む)、2−ジメチルアミノエチルメタクリレートの重合体又は共重合体、2−トリメチルアミノエチルメタクリレートの重合体又は共重合体、ポリビニルイミダゾール、側鎖にエチレンジアミン構造を有する高分子及びそれらの共重合体、またはそれらの塩などを例示することができる。合成ポリマーの一例であるポリエチレンイミンの分子量は、好ましくは1000~50万程度であり、より好ましくは5000~20万程度であり、もっとも好ましくは1万~10万程度である。あるいは、より短いポリエチレンイミンを結合して得られるブロック共重合体である。また、ポリエチレンイミンの塩として、塩酸塩、硫酸塩、リン酸塩、ホウ酸塩などを例示することができる。
 カチオン性ポリマーとして用いることができる正に荷電された多糖類誘導体は、水中でDNAと複合体を形成できる官能基を1分子中に複数、好ましくは5個以上有する、分子量が、好ましくは1000~300万であり、より好ましくは5000~50万である多糖類誘導体である。このような多糖類としては、具体的にはキトサン、上記のような官能基を導入したデキストラン誘導体などを例示することができる。これらのうちキトサンの分子量は、好ましくは1000~50万程度であり、より好ましくは5000~20万程度であり、もっとも好ましくは1万~10万程度である。キトサンの塩としては、塩酸塩、酢酸塩などを例示することができる。また、デキストラン誘導体の分子量は、好ましくは3000~100万である。このようなデキストラン誘導体としては、具体的にはジエチルアミノエチル−デキストランなどを例示することができる。
 上記のカチオン性ポリマーは、従来正に荷電していないものにアミノ基などの官能基を導入し、正に荷電するようにしたものでも良い。また、通常は正に荷電されていないものであっても、複合体形成時に正に荷電されるものであれば使用可能であり、また、必要により糖鎖、オリゴペプチド、抗体などで更に修飾されていてもよい。
 本発明の複合体に用いることができるカチオン性脂質(カチオン性コレステロール誘導体を含む)としては、DC−Chol(3β−(N−(N′,N′−ジメチルアミノエタン)カルバモイル)コレステロール)、DDAB(N,N−ジステアリル−N,N−ジメチルアンモニウムブロミド)、DMRI(N−(1,2−ジミリスチルオキシプロパ−3−イル)−N,N−ジメチル−N−ヒドロキシエチルアンモニウムブロミド)、DODAC(N,N−ジオレイル−N,N−ジメチルアンモニウムクロリド)、DOGS(ジヘプタデシルアミドグリシルスペルミジン)、DOSPA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N−(2−(スペルミンカルボキサミド)エチル)−N,N−ジメチルアンモニウムトリフルオロアセタート)、DOTAP(N−(1−(2,3−ジオレオイルオキシ)プロピル)−N,N,N−トリメチルアンモニウムクロリド)、又はDOTMA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N,N,N−トリメチルアンモニウムクロリド)、およびそれらの異なる酸との塩、並びにそれらの組み合わせが挙げられる。
 また、カチオン性脂質を含む集合体としては、上記カチオン性脂質(たとえばDOSPA)と、例えばDOPE(ジオレオイルホスファチジルエタノールアミン)、コレステロールなどの中性物質を混合したものを使用することができる。例えばカチオン性脂質を含む集合体としては、リポフェクタミン(上記DOSPAとDOPEの3:1w/w混合体リポソーム)、リポフェクチン(上記DOTMAとDOPEの1:1w/w混合体リポソーム)、またはこれらの混合物などを好ましく挙げることができる。また、ポドプラニン、ポドカリキシン、キタラン硫酸、ガングリオシド、ポドプラニン−CLEC−2受容体(C型レクチン様受容体,C−type lectin−like receptor−2)、MUC、あるいは腫瘍細胞特異的な各種糖タンパクに対する抗体等、あるいは抗体医薬であるリツキシマブ(抗CD20抗体)、トラスツマブ(ハーセプチン)などの抗HER−2抗体、抗EGFR抗体、オムニターグなどを結合したカチオン性ポリマーを使用し、標的指向性を付与することができる。
 本発明の複合体においては、カチオン性ポリマーとしては、ポリエチレンイミン;プロタミン;HelΔ1;ポリアミドアミンデンドリマー、ポリリジンデンドリマーなどのデンドリマー;キトサン;2−ジメチルアミノエチルメタクリレートの重合体又は共重合体;2−トリメチルアミノエチルメタクリレートの重合体又は共重合体などを好ましく用いることができ、ポリエチレンイミン、ポリアミドアミンデンドリマー、ポリリジンデンドリマー、キトサンを特に好ましく用いることができる。また、カチオン性脂質若しくはそれを含む集合体としては、リポフェクタミン(上記DOSPAとDOPEの3:1w/w混合体リポソーム)を好ましくは用いることができる。
 本発明の複合体において使用するアニオン性ポリマーとしては、分子中にアニオン性基を含む、負に荷電された、分子量が500~400万程度の天然由来又は合成高分子であって、水中でポリカチオンと複合体を形成できる官能基を1分子中に複数、好ましくは5個以上有する高分子を使用することができ、このような官能基としては、例えばカルボキシル基、−OSOH基、−SOH基、リン酸基、及びこれらの塩を挙げることができる。このようなアニオン性ポリマーとしては、両イオン性ポリマーも含まれる。
 本発明の複合体においては、アニオン性ポリマーとしては、カルボキシル基、−OSOH基、−SOH基、リン酸基、及びこれらの塩から選択される官能基を有する多糖類又はその誘導体;負に荷電した側鎖を有するアミノ酸残基を含むポリアミノ酸;カルボキシル側鎖を持つPEG誘導体;カルボキシル基、−OSOH基、−SOH基、リン酸基、及びこれらの塩から選択される官能基を有する合成高分子;カルボキシル基、−OSOH基、−SOH基、リン酸基、及びこれらの塩から選択される官能基、並びに置換されていてもよいアミノ基若しくはアンモニウム基又はその塩(これらの基は、例えば炭素数1~6のアルキル基、フェニル基などで単又は多置換されていてもよい)を有する高分子;並びにそれらの組み合わせを用いることができる。
 本発明の複合体においてアニオン性ポリマーとして用いることができる上記のような官能基を有する多糖類又はその誘導体としては、好ましくはグリコサミノグリカンを用いることができる。このようなグリコサミノグリカンの分子量は、好ましくは1000~400万、より好ましくは4000~300万である。このようなグリコサミノグリカンとして、具体的には例えばヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ケラタン硫酸、ヘパリン、デルマタン硫酸などを例示することができる。なかでもコンドロイチン硫酸、ヒアルロン酸を好ましく用いることができる。コンドロイチン硫酸は、その塩又は負に荷電した誘導体としても用いることができる。その分子量は、1,000以上であればよいが、3,000以上が好ましく、7,000~5万がより好ましい。コンドロイチン硫酸の塩としては、ナトリウム塩、カリウム塩、アンモニウム塩などを例示することができる。また、コンドロイチン硫酸の誘導体としては、例えば、コンドロイチン硫酸にポリエチレングリコール、ペプチド、糖、タンパク質、ヨウ酸、抗体又はその一部などを導入することによって得られるものが挙げられ、スペルミン、スペルミジン等を導入し、プラスに荷電した部分を持つ両イオン性の誘導体も含まれる。ヒアルロン酸は、その塩又は負に荷電した誘導体としても用いることができる。その分子量は、5,000以上であればよいが、10,000以上が好ましく、10万~300万がより好ましい。ヒアルロン酸の塩としては、ナトリウム塩、カリウム塩、アンモニウム塩などを例示することができる。また、ヒアルロン酸の誘導体としては、例えば、ヒアルロン酸にポリエチレングリコール、ペプチド、糖、タンパク質、ヨウ酸、抗体又はその一部などを導入することによって得られるものが挙げられ、スペルミン、スペルミジン等を導入し、プラスに荷電した部分を持つ両イオン性の誘導体も含まれる。
 本発明の複合体においてアニオン性ポリマーとして用いることができる、負に荷電した側鎖を有するアミノ酸残基を含むポリアミノ酸とは、カルボキシル基、−O−SOH基、−SOH基、リン酸基、及びこれらの塩などの基を側鎖として有するアミノ酸残基を含む、好ましくは500~100万の分子量を有するポリアミノ酸である。このようなポリアミノ酸としては、具体的にはポリグルタミン酸、ポリアスパラギン酸などを例示することができる。
 本発明の複合体においてアニオン性ポリマーとして用いることができるカルボキシル側鎖を持つPEG誘導体とは、PEG1分子当たりカルボキシル側鎖を複数、好ましくは5個以上有する、500以上、好ましくは2000以上、より好ましくは4000~40000の分子量を有するPEG誘導体である。カルボキシル側鎖を持つPEG誘導体は、その塩又は負に荷電した誘導体としても用いることができる。これらの塩としては、ナトリウム塩、カリウム塩、アンモニウム塩などを例示することができる。このようなPEG誘導体としては、具体的にはJ.Biomater.Sci.Polymer Edn.Vol.14,pp 515−531(2003)などに記載されたPEG誘導体を例示することができる。
 本発明の複合体においてアニオン性ポリマーとして用いることができるカルボキシル基、−OSOH基、−SOH基、リン酸基、及びこれらの塩から選択される官能基を有する合成高分子とは、1分子当たり複数、好ましくは5個以上の、カルボキシル基、−O−SOH基、−SOH基、リン酸基、及びこれらの塩から選択される官能基を有する重合体又は共重合体であって、好ましくは500~400万の分子量を有する重合体又は共重合体である。このような重合体又は共重合体としては、具体的には分子量1000~300万のアクリル酸又はメタクリル酸の重合体又は共重合体、あるいはポリビニルアルコールの硫酸エステル体、サクシニミジル化ポリ−L−リジンなどを例示することができる。
 本発明の複合体においてアニオン性ポリマーとして用いることができるカルボキシル基、−OSOH基、−SOH基、リン酸基、及びこれらの塩から選択される官能基、並びに置換されていてもよいアミノ基若しくはアンモニウム基又はその塩(これらの基は、例えば炭素数1~6のアルキル基、フェニル基などで単又は多置換されていてもよい)を有する高分子とは、1分子当たりカルボキシル基、−OSOH基、−SOH基、リン酸基、及びこれらの塩から選択される官能基を複数、好ましくは5個以上、並びに上記のように置換されていてもよいアミノ基若しくはアンモニウム基又はその塩を有する、500以上、好ましくは2000以上、より好ましくは4000~40000の分子量を有する高分子である。このような高分子としては、好ましくは、カルボキシル側鎖とその当量以下の上記のアミノ基若しくはアンモニウム基又はその塩を持つPEG誘導体を挙げることができ、具体的にはMacromol.Biosci.Vol.2,pp 251−256(2002)などに記載されている方法で調製することができるPEG誘導体を例示することができる。
 本発明の複合体において用いることができるアニオン性ポリマーは、従来負に荷電していないものにカルボキシル基などの官能基を導入し、負に荷電するようにしたものでも良い。通常は負に荷電されていないものであっても、複合体形成時に負に荷電されるものであれば使用可能であり、また必要により糖鎖、オリゴペプチド、抗体などで更に修飾されていてもよい。
 本発明の複合体においては、アニオン性ポリマーとしては、ヒアルロン酸、コンドロイチン硫酸、カルボキシル側鎖を持つPEG誘導体、ポリアクリル酸などのアニオン性ポリマー又はそれらの塩を好ましく用いることができ、ヒアルロン酸、カルボキシル側鎖を持つPEG誘導体又はそれらの塩などを特に好ましく用いることができる。
 また、アニオン性ポリマーとして、遺伝子導入の標的細胞に対して特異的接着能を有するものを用いることにより、標的細胞に対して特異的に遺伝子導入をすることが可能である。例えばアニオン性ポリマーとしてコンドロイチン硫酸を用いる場合、コンドロイチン硫酸と特異的に結合するCD44バリアントなどの細胞表面分子を有する細胞を標的とすることができる。アニオン性ポリマーとしてヒアルロン酸を用いる場合、ヒアルロン酸と特異的に結合するCD44などの細胞表面分子を有する細胞を標的とすることができる。また、RGDペプチドを導入したアニオン性ポリマーを用いることにより、多くの種類の腫瘍細胞を標的とすることができ、またガラクトース側鎖を導入したアニオン性ポリマーを用いることにより肝細胞又は肝由来の細胞を標的とすることができる。また、ポドプラニン、ポドカリキシン、キタラン硫酸、ガングリオシド、ポドプラニン−CLEC−2受容体(C型レクチン様受容体,C−type lectin−like receptor−2)、MUC、あるいは腫瘍細胞特異的な各種糖タンパクに対する抗体等、あるいは抗体医薬であるリツキシマブ(抗CD20抗体)、トラスツマブ(ハーセプチン)などの抗HER−2抗体、抗EGFR抗体、オムニターグなどを結合したアニオン性ポリマーを使用し、標的指向性を付与することができる。
 本発明の複合体において、カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体と、アニオン性ポリマーの組み合わせとしては、ポリエチレンイミンとヒアルロン酸;ポリエチレンイミンとコンドロイチン硫酸;ポリエチレンイミンとカルボキシル側鎖を持つPEG誘導体;DOSPAを含む集合体(例えばリポフェクタミン(DOSPAとDOPEの3:1w/w混合体リポソーム))とヒアルロン酸;DOSPAを含む集合体(例えばリポフェクタミン)とカルボキシル側鎖を持つPEG誘導体を好ましく挙げることができる。
 本発明の複合体において使用する核酸等と、カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体の各荷電基のモル比(負電荷:正電荷比)は、標的細胞・核酸等・カチオン性ポリマー等の種類により異なるが、1:0.8~1:100であるとよく、好ましくは1:1~1:50であり、より好ましくは1:1.2~1:30である。ここでいう核酸等と、カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体の配合比とは、各荷電基のモル比であり、具体的には核酸、オリゴ核酸、又はその誘導体のリン酸アニオンによる負電荷:カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体の正電荷又は正に帯電できる官能基のモル比を指す。
 本発明の複合体において使用する核酸等と、アニオン性ポリマーの各荷電基のモル比(負電荷:負電荷比)は、標的細胞・核酸等・アニオン性ポリマーの種類により異なるが、1:0.2~1:1000であるとよく、好ましくは1:0.2~1:100であり、より好ましくは1:1~1:60である。ここでいう核酸等と、アニオン性ポリマーの配合比とは、各荷電基のモル比であり、具体的には核酸、オリゴ核酸、又はその誘導体のリン酸アニオンによる負電荷:アニオン性ポリマーの負電荷又は負に帯電できる官能基のモル比を指す。
 例えばアニオン性ポリマーとしてコンドロイチン硫酸やヒアルロン酸を用いる場合、核酸等とコンドロイチン硫酸やヒアルロン酸酸との配合比は、1:0.2~1:1000であるとよく、好ましくは1:0.2~1:100であり、より好ましくは1:1~1:60である。
 特に、カチオン性ポリマーとしてポリエチレンイミンを、アニオン性ポリマーとしてコンドロイチン硫酸やヒアルロン酸を用いる場合、核酸等:ポリエチレンイミン:コンドロイチン硫酸(又はヒアルロン酸)配合比は、1:2~60:1~240、好ましくは1:4~24:1~160であり、より好ましくは1:5~20:2~60、特に好ましくは1:6~14:2~32である。
 特に、カチオン性脂質を含む集合体としてリポフェクタミン(DOSPAとDOPEの3:1w/w混合体リポソーム)を、アニオン性ポリマーとしてコンドロイチン硫酸やヒアルロン酸を用いる場合、核酸等:リポフェクタミン:コンドロイチン硫酸(又はヒアルロン酸)配合比は、1:1~50:0.2~240、好ましくは1:1.2~48:0.2~160であり、より好ましくは1:1.5~30:0.5~60、特に好ましくは1:1.8~16:1~32である。
 本発明の複合体に含まれる核酸等;カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体;及びアニオン性ポリマーの好ましい配合比は、上述のとおりであるが、核酸などを導入する細胞の数や種類により最適な条件は変動するため、配合比は、当業者が、用いる細胞、核酸等の種類に応じて、適宜決定することができる。
 本発明の複合体は、上述した核酸等;カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体;及び必要であればアニオン性ポリマーを、上述した配合比で、混合することによって複合体を形成させる工程、必要ならばこれに次いでこれを凍結乾燥する工程によって調製することができる。混合する順序としては、[1]核酸等;[2]カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体、[3]アニオン性ポリマーの順、又は、[1]核酸等;[2]アニオン性ポリマー、[3]カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体の順が好ましい。核酸等は、カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体とイオン結合によって結合し、さらにカチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体が、アニオン性ポリマーともイオン結合した複合体が形成される。あるいは、各成分の配合組成によっては、このような複合体構造の外殻を主にアニオン性ポリマーが被覆し、負の表面電位を有する態様が形成される
 次いで、必要であれば得られた複合体を凍結乾燥する。凍結乾燥は、通常の凍結乾燥条件下で行うことができ、例えば減圧下(好ましくは、5~100mmHg、より好ましくは10mmHg)、外気温−78℃~60℃、好ましくは−30℃~40℃で乾燥することによって行うことができる。乾燥に要する時間は、減圧度、溶媒の量によって異なり、通常は1時間~2日間で完了する。
 このようにして調製した本発明の複合体は、ヒトや動物に対する各種の遺伝子治療、免疫治療、あるいは微生物由来抗原タンパク質遺伝子や免疫賦活性サイトカイン遺伝子を導入した実験動物や細胞の作成に利用することができる。凍結乾燥を施した場合には、使用前に本発明の複合体を水、生理食塩水、緩衝液、ブドウ糖溶液、培地液などの溶媒に懸濁又は溶解することにより再水和物としてから用いることができる。再水和に際しては、凍結乾燥体を、例えば核酸、又はその誘導体の100~10000倍(重量比)の溶媒を用いて懸濁又は稀釈する。凍結乾燥前と異なる量、異なる種類の溶媒を用いることができるため、従来困難であった比較的高濃度の懸濁液や溶液(たとえば1ml中にDNAを1mg含む液)も容易に調製することができる。
 このようにして再水和した本発明の複合体は、細胞への核酸等の導入に際しては、具体的には、例えば、ウェル中、体外に取り出した標的細胞を、水和した本発明の複合体で処理することにより遺伝子を導入した後、該細胞を生体内に戻して、目的とする遺伝子を発現させるex vivo法(ワクチン療法)、あるいは、in vivo、in situ法などの直接的な遺伝子導入法など、生体細胞への核酸、又はその誘導体の導入に通常用いられる任意の方法を用いることができる。
 また、本発明の複合体は、凍結乾燥後、再水和することなく、そのまま核酸等の導入を行う細胞と接触させたり、核酸等の導入を行う動物に皮下移殖する、核酸等の導入の標的である組織内、組織表面、または近傍に移殖するなどの手段によって投与することもできる。
 本発明の複合体の細胞への適用量は、上述した導入方法、疾患の種類などによって異なるが、例えば核酸、又はその誘導体の量にして、ex vivo法、in situ法では、直径1~2cmのウェル当たりで0.2~10μg/104~7個・細胞、in vivo法では、投与部位によって大きく異なるが、腫瘍内への局所投与では例えば5~1000μg/cm腫瘍、膀胱などの臓器への投与では例えば0.1μg~100mg/臓器、全身投与では例えば0.1ng~10mg/Kg体重とすることができる。
 生体に直接投与するin vivo法としては、本発明の複合体、または水和させた本発明の凍結乾燥体水和物を、静脈、皮下又は筋肉、腹腔、腫瘍内、腫瘍近傍などへ注射し;鼻腔、口腔、肺などから吸入させ;膀胱内、直腸内に直接注入し;病変部組織ないし近傍の血管内に直接投与し;あるいは、ゲル状物、スポンジなどの多孔体、不織布などに担持させて留置するなど、遺伝子治療技術の如何なる方法も用いることができる。
 また、本発明の凍結乾燥体水和物を再水和することなく用いる際においても、上記の量の凍結乾燥体を、上述したようなex vivo法、in situ法、またはin vivo法により、用いることができる。
 本発明の複合体においては、通常の核酸等と、カチオン性ポリマー又はカチオン性脂質若しくはそれを含む集合体との複合体が持つ正の荷電を、アニオン性ポリマーが中和すると共に、その中和作用が、生体、細胞への投与後においても保持されていることによって、複合体と、血清タンパク質、血球細胞、細胞外マトリックスなどとによる凝集等の相互作用が阻止され、また、核酸、オリゴ核酸、又はその誘導体等の酵素分解が阻止されるため、核酸が細胞に効率的に取り込まれ、その発現効率も高い。
 上記より、本発明の複合体は、核酸、又はその誘導体の導入用製剤又は試薬として、あるいは核酸、又はその誘導体の導入用キットとして使用することができる。
 本発明に使用するプラスミドまたはその誘導体の免疫賦活性サイトカイン遺伝子は、対象とする動物種によって、ヒトサイトカイン、ネコサイトカイン、イヌサイトカインなどから、効果のあるものを自由に選ぶことが出来る。
 本発明に使用するプラスミドまたはその誘導体のプロモーターは、対象とする動物種、細胞種によって、サイトメガウイルス由来プロモーター、RSV(Rous Sarcoma virus,ラウス肉腫ウイルス)由来プロモーター、SV40(simian virus 40(シミアンウイルス))由来プロモーター、Elongation Factor 1aプロモーター等の癌選択性プロモーターなどから、自由に選ぶことが出来る。
In the present invention, the microorganism-derived antigen protein gene includes ESAT-6 gene, Ag85A gene, Ag85B gene, Ag85C gene, CFP-10 gene, TB7.7 gene, MPT51 gene, HSP65 gene and other tuberculosis bacteria, Pseudomonas aeruginosa, P24 antigen gene of rabies virus G protein gene, prM protein and E protein gene of West Nile virus, those derived from bacteria such as pneumococci and streptococci, adenovirus capsid antigens hexon, penton, and fiber genes , Viruses derived from viruses such as the M1 protein and NP protein gene of influenza virus, and those derived from microorganisms such as rickettsia, chlamydia, protozoa, etc., which are partially deleted or partially replaced The tongue, etc. It refers to a gene that encodes a protein or peptide exhibiting an antigenic function of the click quality. For example, ESAT-6 gene means a gene encoding Mycobacterium tuberculosis 6 kDa early secreted antigenic target, and Ag85B gene means a secreted protein of Mycobacterium tuberculosis having 30 kDa mycolyl transferase activity, antigen 85B. In the present invention, immunostimulatory cytokine genes such as GM-CSF, IL-2, and IL-12 may be used at the same time as the microorganism-derived antigen protein gene. Cytokine genes such as GM-CSF, IL-2, and IL-12, in addition to genes encoding GM-CSF, IL-2, and IL-12, those that have been partially deleted or replaced Means a gene encoding a protein or peptide that exhibits the function of GM-CSF, IL-2 or IL-12, and animals such as human GM-CSF, IL-2, IL-12 and dogs and cats GM-CSF, IL-2, and IL-12 are also meant.
When both these microorganism-derived antigen protein gene and immunostimulatory cytokine gene are used, for example, a microorganism-derived antigen protein gene expression cassette and an immunostimulatory cytokine gene expression cassette inserted into a vector in tandem can be used. . Further, a complex containing both a plasmid encoding a microorganism-derived antigen protein gene and a plasmid encoding an immunostimulatory cytokine gene, or a mixture of these complexes may be used.
In the present invention, the vector means a nucleic acid molecule that is used in gene recombination techniques to amplify, maintain, and introduce recombinant DNA, and is generally used as a plasmid vector such as pCMV, pcDNA, pACT; A cosmid vector; means a vector usually used in the art, such as an artificial chromosome vector such as a PAC vector, a YAC vector, and a BAC vector.
Furthermore, in the present invention, the gene introduction reagent means a reagent used for the purpose of introducing a gene, for example, a cationic polymer, a cationic lipid, an anionic polymer, etc., which are usually used. It also means a combination of.
A vector encoding a gene in the complex of the present invention (hereinafter referred to as “nucleic acid etc.”) forms a complex by ionic bonding with a cationic polymer or a cationic lipid or an aggregate containing the same. When an anionic polymer is added, the anionic polymer is ionically bonded to the cationic polymer or the cationic lipid. Depending on the mixing ratio, mixing order, etc., these can form a complex mainly covered with an anionic polymer.
The cationic polymer that can be used in the complex of the present invention is a naturally-derived or synthetic polymer having a positively charged molecular weight of about 1,000 to 3,000,000, and a functional group that can form a complex with DNA in water. A polymer having a plurality of, preferably 5 or more in a molecule can be used. Examples of such functional groups include amino groups or ammonium groups which may be substituted, or salts thereof (these groups are And an organic amino group such as an imino group, an imidazolyl group, and a guanidino group, which may be mono- or polysubstituted by an alkyl group having 1 to 6 carbon atoms, a phenyl group, or the like. Examples of such cationic polymers include positively charged proteins and polypeptides; positively charged dendrimers; positively charged synthetic polymers; and positively charged polysaccharide derivatives, or grafts thereof. Or a block copolymer and a salt thereof, and a combination thereof.
The molecular weight of the positively charged protein or positively charged polypeptide that can be used as the cationic polymer in the complex of the present invention is preferably about 1,000 to 500,000. Specific examples of such proteins and polypeptides include proteins and polypeptides such as protamine, histone, HelΔ1, gelatin, and polyamino acids containing positively charged amino acid residues are also exemplified. It can be illustrated. Specific examples of such a polyamino acid containing a positively charged amino acid residue include poly-L-lysine, polyarginine, polyornithine and the like. Examples of salts of these proteins and polypeptides include hydrochlorides, sulfates, phosphates, borates and the like.
The positively charged dendrimer having a functional group as described above which can be used as a cationic polymer is an amino group or ammonium group which may be substituted at the terminal or inside of a branched molecular chain or a salt thereof ( These groups are dendrimers having, for example, a mono- or poly-substituted group having, for example, an alkyl group having 1 to 6 carbon atoms or a phenyl group, and the molecular weight thereof is preferably about 1,000 to 500,000. Specific examples of dendrimers include polyamidoamine dendrimers and polylysine dendrimers. Examples of the dendrimer salt include hydrochloride, sulfate, phosphate, borate and the like.
A positively charged synthetic polymer that can be used as a cationic polymer is a synthetic polymer having a plurality of, preferably five or more, functional groups that can form a complex with DNA in water as described above. The synthetic polymer preferably has a molecular weight of 1,000 to 3,000,000. Specific examples of the synthetic polymer include polyethyleneimine (including linear polyethyleneimine or polybranched ethyleneimine), a polymer or copolymer of 2-dimethylaminoethyl methacrylate, and a polymer of 2-trimethylaminoethyl methacrylate. Examples thereof include a polymer or a copolymer, polyvinyl imidazole, a polymer having an ethylenediamine structure in the side chain and a copolymer thereof, or a salt thereof. The molecular weight of polyethyleneimine, which is an example of a synthetic polymer, is preferably about 1,000 to 500,000, more preferably about 5,000 to 200,000, and most preferably about 10,000 to 100,000. Or it is a block copolymer obtained by combining shorter polyethyleneimine. Examples of the polyethyleneimine salt include hydrochloride, sulfate, phosphate, borate and the like.
The positively charged polysaccharide derivative that can be used as the cationic polymer has a plurality of, preferably 5 or more, functional groups capable of forming a complex with DNA in water, and has a molecular weight of preferably 1000 to The polysaccharide derivative is 3 million, more preferably 5000 to 500,000. Specific examples of such polysaccharides include chitosan and dextran derivatives introduced with the above functional groups. Of these, the molecular weight of chitosan is preferably about 1,000 to 500,000, more preferably about 5,000 to 200,000, and most preferably about 10,000 to 100,000. Examples of the salt of chitosan include hydrochloride and acetate. The molecular weight of the dextran derivative is preferably 3,000 to 1,000,000. Specific examples of such dextran derivatives include diethylaminoethyl-dextran.
The cationic polymer may be a polymer that is positively charged by introducing a functional group such as an amino group into a conventionally non-positively charged polymer. Moreover, even if it is not normally positively charged, it can be used as long as it is positively charged at the time of complex formation, and if necessary, it can be further modified with a sugar chain, oligopeptide, antibody or the like. It may be.
Cationic lipids (including cationic cholesterol derivatives) that can be used in the complex of the present invention include DC-Chol (3β- (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol), DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N- (1,2-dimyristyloxyprop-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS (diheptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- ( 2- (sperminecarboxamido) ethyl) -N, N-dimethylammonium trifluoro Cetate), DOTAP (N- (1- (2,3-dioleoyloxy) propyl) -N, N, N-trimethylammonium chloride), or DOTMA (N- (1- (2,3-dioleoyloxy) ) Propyl) -N, N, N-trimethylammonium chloride), and their salts with different acids, and combinations thereof.
Moreover, as an aggregate | assembly containing a cationic lipid, what mixed the said cationic lipid (for example, DOSPA), and neutral substances, such as DOPE (dioleoylphosphatidylethanolamine), cholesterol, etc. can be used. For example, as an aggregate containing a cationic lipid, lipofectamine (3: 1 w / w mixture liposome of DOSPA and DOPE), lipofectin (1: 1 w / w mixture liposome of DOTMA and DOPE), or a mixture thereof, etc. Can be preferably mentioned. Furthermore, antibodies against podoplanin, podocalyxin, kitalan sulfate, ganglioside, podoplanin-CLEC-2 receptor (C-type lectin-like receptor-2), MUC, or various glycoproteins specific to tumor cells Or a cationic polymer to which an anti-HER-2 antibody such as rituximab (anti-CD20 antibody) or trastuzumab (Herceptin), an anti-EGFR antibody, omnitag, or the like, which is an antibody drug, is used to impart targeting properties. it can.
In the composite of the present invention, the cationic polymer includes polyethyleneimine; protamine; HelΔ1; dendrimers such as polyamidoamine dendrimer and polylysine dendrimer; chitosan; polymer or copolymer of 2-dimethylaminoethyl methacrylate; 2-trimethyl A polymer or copolymer of aminoethyl methacrylate can be preferably used, and polyethyleneimine, polyamidoamine dendrimer, polylysine dendrimer, and chitosan can be particularly preferably used. Moreover, as a cationic lipid or an aggregate containing the same, lipofectamine (the above-mentioned 3: 1 w / w mixture liposome of DOSPA and DOPE) can be preferably used.
The anionic polymer used in the composite of the present invention is a negatively charged, naturally-occurring or synthetic polymer having a molecular weight of about 5 to 4 million, containing an anionic group in the molecule. A polymer having a plurality of, preferably 5 or more, functional groups capable of forming a complex with a cation can be used. Examples of such functional groups include a carboxyl group, -OSO, and the like. 3 H group, -SO 3 H groups, phosphate groups, and salts thereof can be mentioned. Such anionic polymers include amphoteric polymers.
In the composite of the present invention, the anionic polymer includes a carboxyl group, -OSO. 3 H group, -SO 3 Polysaccharides or derivatives thereof having functional groups selected from H groups, phosphate groups, and salts thereof; polyamino acids containing amino acid residues having negatively charged side chains; PEG derivatives having carboxyl side chains; carboxyl Group, -OSO 3 H group, -SO 3 Synthetic polymer having a functional group selected from H group, phosphoric acid group, and salts thereof; carboxyl group, -OSO 3 H group, -SO 3 H group, phosphate group, and functional group selected from salts thereof, and optionally substituted amino group or ammonium group or a salt thereof (for example, these groups are alkyl groups having 1 to 6 carbon atoms, phenyl Macromolecules which may be mono- or polysubstituted), as well as combinations thereof, can be used.
As the polysaccharide having a functional group as described above that can be used as an anionic polymer in the complex of the present invention or a derivative thereof, glycosaminoglycan can be preferably used. The molecular weight of such glycosaminoglycan is preferably 1,000 to 4,000,000, more preferably 4,000 to 3,000,000. Specific examples of such glycosaminoglycans include hyaluronic acid, chondroitin, chondroitin sulfate, keratan sulfate, heparin, dermatan sulfate and the like. Of these, chondroitin sulfate and hyaluronic acid can be preferably used. Chondroitin sulfate can also be used as a salt thereof or a negatively charged derivative. The molecular weight may be 1,000 or more, preferably 3,000 or more, and more preferably 7,000 to 50,000. Examples of the salt of chondroitin sulfate include sodium salt, potassium salt, ammonium salt and the like. Examples of chondroitin sulfate derivatives include those obtained by introducing polyethylene glycol, peptides, sugars, proteins, iodic acid, antibodies or parts thereof into chondroitin sulfate, and introduce spermine, spermidine, etc. And zwitterionic derivatives having a positively charged moiety. Hyaluronic acid can also be used as its salt or a negatively charged derivative. The molecular weight may be 5,000 or more, preferably 10,000 or more, and more preferably 100,000 to 3,000,000. Examples of the salt of hyaluronic acid include sodium salt, potassium salt, ammonium salt and the like. In addition, examples of the derivatives of hyaluronic acid include those obtained by introducing polyethylene glycol, peptides, sugars, proteins, iodic acid, antibodies or parts thereof into hyaluronic acid, and spermine, spermidine, etc. are introduced. And zwitterionic derivatives having a positively charged moiety.
The polyamino acid containing an amino acid residue having a negatively charged side chain that can be used as an anionic polymer in the complex of the present invention is a carboxyl group, -O-SO. 3 H group, -SO 3 A polyamino acid having an amino acid residue having a side chain of a group such as an H group, a phosphate group, and a salt thereof, preferably having a molecular weight of 500 to 1,000,000. Specific examples of such polyamino acids include polyglutamic acid and polyaspartic acid.
The PEG derivative having a carboxyl side chain that can be used as an anionic polymer in the complex of the present invention has a plurality of, preferably 5 or more, carboxyl side chains per PEG molecule, 500 or more, preferably 2000 or more, more preferably Is a PEG derivative having a molecular weight of 4000-40000. A PEG derivative having a carboxyl side chain can also be used as a salt thereof or a negatively charged derivative. Examples of these salts include sodium salts, potassium salts, ammonium salts and the like. Specific examples of such PEG derivatives include those described in J. Org. Biometer. Sci. Polymer Edn. Vol. 14, pp 515-531 (2003) and the like.
A carboxyl group that can be used as an anionic polymer in the complex of the present invention, -OSO 3 H group, -SO 3 The synthetic polymer having a functional group selected from H group, phosphoric acid group, and salts thereof includes a plurality of, preferably 5 or more, carboxyl groups, —O—SO per molecule. 3 H group, -SO 3 A polymer or copolymer having a functional group selected from an H group, a phosphate group, and a salt thereof, preferably a polymer or copolymer having a molecular weight of 5 to 4 million. Specific examples of such a polymer or copolymer include a polymer or copolymer of acrylic acid or methacrylic acid having a molecular weight of 1,000,000 to 3,000,000, a sulfate ester of polyvinyl alcohol, or succinimidylated poly-L-lysine. Etc. can be illustrated.
A carboxyl group that can be used as an anionic polymer in the complex of the present invention, -OSO 3 H group, -SO 3 H group, phosphate group, and functional group selected from salts thereof, and optionally substituted amino group or ammonium group or a salt thereof (for example, these groups are alkyl groups having 1 to 6 carbon atoms, phenyl And a polymer having a mono- or poly-substituted group such as a carboxyl group, -OSO per molecule 3 H group, -SO 3 A plurality of functional groups selected from H groups, phosphoric acid groups, and salts thereof, preferably 5 or more, and 500 or more having an amino group or ammonium group or a salt thereof optionally substituted as described above The polymer is preferably a polymer having a molecular weight of 2000 or more, more preferably 4000 to 40000. As such a polymer, preferably, a PEG derivative having a carboxyl side chain and the amino group or ammonium group or a salt thereof equal to or less than the carboxyl side chain can be mentioned, specifically, Macromol. Biosci. Vol. 2, pp 251-256 (2002), and the like.
The anionic polymer that can be used in the composite of the present invention may be one that has been negatively charged by introducing a functional group such as a carboxyl group into a conventionally non-negatively charged one. Even if it is not negatively charged normally, it can be used as long as it is negatively charged at the time of complex formation, and if necessary, it may be further modified with sugar chain, oligopeptide, antibody, etc. Good.
In the complex of the present invention, as the anionic polymer, hyaluronic acid, chondroitin sulfate, PEG derivatives having a carboxyl side chain, anionic polymers such as polyacrylic acid or salts thereof can be preferably used. A PEG derivative having a carboxyl side chain or a salt thereof can be particularly preferably used.
Moreover, it is possible to introduce a gene specifically to a target cell by using an anionic polymer having a specific adhesion ability to a target cell for gene introduction. For example, when chondroitin sulfate is used as the anionic polymer, cells having cell surface molecules such as CD44 variants that specifically bind to chondroitin sulfate can be targeted. When hyaluronic acid is used as the anionic polymer, cells having cell surface molecules such as CD44 that specifically bind to hyaluronic acid can be targeted. In addition, many types of tumor cells can be targeted by using an anionic polymer into which an RGD peptide has been introduced, and hepatocytes or liver-derived cells by using an anionic polymer into which a galactose side chain has been introduced. Can be targeted. Furthermore, antibodies against podoplanin, podocalyxin, kitalan sulfate, ganglioside, podoplanin-CLEC-2 receptor (C-type lectin-like receptor-2), MUC, or various glycoproteins specific to tumor cells Or an anionic polymer to which an anti-HER-2 antibody such as rituximab (anti-CD20 antibody) or trastuzumab (Herceptin), an anti-EGFR antibody, omnitag, or the like, which is an antibody drug, is used to impart targeting properties. it can.
In the complex of the present invention, the combination of the cationic polymer or the cationic lipid or the assembly containing the cationic polymer and the anionic polymer includes polyethyleneimine and hyaluronic acid; polyethyleneimine and chondroitin sulfate; polyethyleneimine and carboxyl side chain. PEG derivatives; aggregates containing DOSPA (eg, lipofectamine (3: 1 w / w mixture liposome of DOSPA and DOPE)) and hyaluronic acid; aggregates containing DOSPA (eg, lipofectamine) and PEG derivatives having carboxyl side chains are preferred. be able to.
The molar ratio (negative charge: positive charge ratio) of each charged group of the nucleic acid or the like used in the complex of the present invention and the cationic polymer or cationic lipid or the assembly containing the same is the target cell, nucleic acid, etc. Although it varies depending on the type of polymer or the like, it is preferably 1: 0.8 to 1: 100, preferably 1: 1 to 1:50, more preferably 1: 1.2 to 1:30. The compounding ratio of the nucleic acid and the like here and the cationic polymer or the cationic lipid or the assembly containing the same is a molar ratio of each charged group, specifically, phosphoric acid of nucleic acid, oligonucleic acid, or a derivative thereof. Negative charge by anion: Refers to the molar ratio of the positively charged or functional group capable of being positively charged of a cationic polymer or cationic lipid or an assembly containing the same.
The molar ratio (negative charge: negative charge ratio) between the nucleic acid used in the complex of the present invention and each charged group of the anionic polymer varies depending on the type of the target cell, nucleic acid, etc., anionic polymer, but 1: 0 2 to 1: 1000, preferably 1: 0.2 to 1: 100, and more preferably 1: 1 to 1:60. The compounding ratio of the nucleic acid and the anionic polymer here is a molar ratio of each charged group. Specifically, the negative charge by the phosphate anion of the nucleic acid, oligonucleic acid, or derivative thereof: negative of the anionic polymer It refers to the molar ratio of functional groups that can be charged or negatively charged.
For example, when chondroitin sulfate or hyaluronic acid is used as the anionic polymer, the mixing ratio of nucleic acid or the like to chondroitin sulfate or hyaluronic acid may be 1: 0.2 to 1: 1000, preferably 1: 0.2. ˜1: 100, more preferably 1: 1 to 1:60.
In particular, when polyethyleneimine is used as the cationic polymer and chondroitin sulfate or hyaluronic acid is used as the anionic polymer, the mixing ratio of nucleic acid and the like: polyethyleneimine: chondroitin sulfate (or hyaluronic acid) is 1: 2 to 60: 1 to 240, The ratio is preferably 1: 4 to 24: 1 to 160, more preferably 1: 5 to 20: 2 to 60, and particularly preferably 1: 6 to 14: 2 to 32.
In particular, when lipofectamine (3: 1 w / w mixture liposome of DOSPA and DOPE) is used as an assembly containing a cationic lipid, and chondroitin sulfate or hyaluronic acid is used as an anionic polymer, nucleic acid or the like: lipofectamine: chondroitin sulfate (or hyaluron) Acid) The mixing ratio is 1: 1 to 50: 0.2 to 240, preferably 1: 1.2 to 48: 0.2 to 160, more preferably 1: 1.5 to 30: 0.5. ~ 60, particularly preferably 1: 1.8 to 16: 1 to 32.
The preferred mixing ratio of the nucleic acid and the like contained in the complex of the present invention; the cationic polymer or the cationic lipid or the aggregate containing the same; and the anionic polymer is as described above, but the number of cells into which the nucleic acid or the like is introduced Since the optimum conditions vary depending on the type, the mixing ratio can be appropriately determined by those skilled in the art according to the type of cells, nucleic acids, and the like used.
The complex of the present invention is formed by mixing the above-described nucleic acid or the like; a cationic polymer or a cationic lipid or an aggregate containing the same; and if necessary, an anionic polymer in the above-described mixing ratio. Can be prepared by the step of allowing, if necessary, followed by lyophilization. The order of mixing is [1] nucleic acid or the like; [2] cationic polymer or cationic lipid or aggregate containing the same, [3] order of anionic polymer, or [1] nucleic acid or the like; [2] anion The order of the functional polymer, [3] cationic polymer or cationic lipid or an assembly containing the same is preferred. A nucleic acid or the like is a complex in which a cationic polymer or a cationic lipid or an assembly containing the same is bonded by an ionic bond, and the cationic polymer or the cationic lipid or an assembly including the ion is also ionically bonded to an anionic polymer. It is formed. Alternatively, depending on the blending composition of each component, an anionic polymer mainly coats the outer shell of such a complex structure, and an embodiment having a negative surface potential is formed.
The resulting complex is then lyophilized if necessary. Freeze-drying can be performed under normal freeze-drying conditions. For example, under reduced pressure (preferably 5 to 100 mmHg, more preferably 10 mmHg), outside air temperature -78 ° C to 60 ° C, preferably -30 ° C to 40 ° C. Can be done by drying with. The time required for drying varies depending on the degree of vacuum and the amount of solvent, and is usually completed in 1 hour to 2 days.
The complex of the present invention prepared as described above can be used for various gene therapy and immunotherapy for humans and animals, or creation of experimental animals and cells into which a microorganism-derived antigen protein gene or immunostimulatory cytokine gene is introduced. Can do. When freeze-dried, the complex of the present invention is used as a rehydrate by suspending or dissolving the complex of the present invention in a solvent such as water, physiological saline, buffer solution, glucose solution, medium solution or the like before use. be able to. Upon rehydration, the lyophilized product is suspended or diluted with a solvent, for example, 100 to 10,000 times (by weight) the nucleic acid or derivative thereof. Since different amounts of solvents and different types of solvents can be used before lyophilization, comparatively high concentration suspensions and solutions (for example, solutions containing 1 mg of DNA in 1 ml) can be easily prepared. Can do.
When the nucleic acid or the like is rehydrated in this way, the complex of the present invention specifically includes, for example, a complex of the present invention in which target cells taken out of the body in a well are hydrated. Direct gene such as ex vivo method (vaccine therapy) in which the gene is introduced by treatment with the body and then the cells are returned to the living body to express the target gene, or in vivo, in situ method, etc. Any method commonly used for introducing a nucleic acid or a derivative thereof into a living cell, such as an introduction method, can be used.
In addition, the complex of the present invention can be brought into contact with a cell to which nucleic acid or the like is introduced without being rehydrated after lyophilization, or transferred to an animal to which nucleic acid or the like is introduced, or introduced into nucleic acid or the like. It can also be administered by means such as transplanting within, on or near the target tissue.
The amount of the complex of the present invention applied to the cells varies depending on the introduction method, the type of disease, etc. described above. For example, the amount of nucleic acid or a derivative thereof is 1 to 2 cm in diameter in the ex vivo method or the in situ method. 0.2 to 10 μg / 104 to 7 cells / well per cell, and in vivo method varies greatly depending on the administration site, but for local administration into a tumor, for example, 5 to 1000 μg / cm 3 For administration to organs such as tumors and bladder, for example, 0.1 μg to 100 mg / organ, and for systemic administration, for example, 0.1 ng to 10 mg / Kg body weight.
As an in vivo method for direct administration to a living body, the complex of the present invention or a hydrated lyophilized hydrate of the present invention is injected into a vein, subcutaneous or muscle, abdominal cavity, intratumoral, in the vicinity of a tumor, or the like. Inhaled from the nasal cavity, oral cavity, lungs, etc .; injected directly into the bladder or rectum; administered directly into the affected tissue or nearby blood vessels; or carried on a porous material such as a gel or sponge or a nonwoven fabric Any method of gene therapy technique can be used, such as indwelling.
In addition, even when the lyophilized product hydrate of the present invention is used without rehydration, the above amount of the lyophilized product is obtained by the ex vivo method, the in situ method, or the in vivo method as described above. Can be used.
In the complex of the present invention, the anionic polymer neutralizes the positive charge of the complex of a normal nucleic acid or the like and a cationic polymer or a cationic lipid or an assembly containing the same, and the neutralization thereof. Since the action is retained even after administration to a living body or a cell, interaction such as aggregation between the complex and serum protein, blood cell, extracellular matrix, etc. is blocked. In addition, since enzymatic degradation of derivatives thereof or the like is prevented, nucleic acids are efficiently taken up by cells and their expression efficiency is high.
From the above, the complex of the present invention can be used as a preparation or reagent for introducing a nucleic acid or a derivative thereof, or as a kit for introducing a nucleic acid or a derivative thereof.
The immunostimulatory cytokine gene of the plasmid or derivative thereof used in the present invention can be freely selected from human cytokines, cat cytokines, canine cytokines and the like depending on the animal species of interest.
The promoter of the plasmid or derivative thereof used in the present invention may be a cytomegavirus-derived promoter, a RSV (Rous Sarcoma virus) -derived promoter, or SV40 (simian virus 40 (simian virus 40), depending on the animal species or cell type. )) Origin promoter, Cancer selective promoter such as Evolution Factor 1a promoter, etc.
ESAT−6の遺伝子をコードしたプラスミド/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体の腫瘍局所内注射による皮下移植B16細胞に対する治癒効果(縦軸:腫瘍体積mm、横軸:薬剤投与開始後の日数を示す。以下、図2~6も同様)Curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a plasmid / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex encoding the gene for ESAT-6 (vertical axis: tumor volume mm 3 , horizontal axis: drug administration) Indicates the number of days since the start (the same applies to FIGS. 2 to 6) ESAT−6の遺伝子をコードしたプラスミド複合体にマウスGM−CSFの遺伝子をコードしたプラスミド複合体を併用した腫瘍局所内注射による皮下移植B16細胞に対する治癒効果Curative effect on subcutaneously transplanted B16 cells by intratumoral injection of the plasmid complex encoding the gene of ESAT-6 and the plasmid complex encoding the gene of mouse GM-CSF ESAT−6の遺伝子をコードしたプラスミド複合体にマウスIL−2の遺伝子をコードしたプラスミド複合体を併用した腫瘍局所内注射による皮下移植B16細胞に対する治癒効果Curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a plasmid complex encoding the gene of ESAT-6 and a plasmid complex encoding the gene of mouse IL-2 ESAT−6の遺伝子をコードしたプラスミド複合体にマウスIL−12の遺伝子をコードしたプラスミド複合体を併用した腫瘍局所内注射による皮下移植B16細胞に対する治癒効果Curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a plasmid complex encoding the gene of ESAT-6 and a plasmid complex encoding the gene of mouse IL-12 Ag85Bの遺伝子をコードしたプラスミド複合体の腫瘍局所内注射による皮下移植B16細胞に対する治癒効果Curing effect on subcutaneously transplanted B16 cells by intratumoral injection of plasmid complex encoding Ag85B gene ESAT−6の遺伝子をコードしたプラスミド複合体にAg85Bの遺伝子をコードしたプラスミド複合体を併用した腫瘍局所内注射による皮下移植B16細胞に対する治癒効果Curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a combination of plasmid complex encoding ESAT-6 gene and plasmid complex encoding Ag85B gene
 本発明を、実施例により更に具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明を何ら限定するものではない。
 実施例1
 ESAT−6の遺伝子をコードしたプラスミド(pDNA−ESAT−6)/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体の腫瘍局所内注射による皮下移植B16細胞に対する治癒効果
 pDNA−ESAT−6、PEI、CSからなる三成分の複合体をマウスのメラノーマ細胞由来のB16を皮下に移植したマウスに腫瘍局所内投与し、腫瘍増大抑制効果を確認した。
[0065]
 CSは、生化学工業株式会社製のサメ由来のものを用いた。PBSはRoman Industries社製のPhosphate Buffered Salts(Tablet)を蒸留したイオン交換水に溶解したものを用いた。PEIは、Polyscience社製の直鎖状PEI、Polyethylenimine“Max”(Mw=40000)を用いた。これらは以降の実施例でも同様である。
[操作手順]
[1]pDNA−ESAT−6は、タカラバイオ株式会社に合成を依頼した。発現ベクターにはインビトロジェン株式会社のpcDNA3.1(+)を用いた。
[2]細胞培養ボトルにB16細胞をまき、10%FBSと25Uのペニシリンと25μgのストレプトマイシンを含むMEM培地を用いてインキュベートし、移植用細胞を準備した。
[3]移植する直前に培養した培地を取り除き、トリプシン溶液を加え、細胞を剥離した。
[4]5週令の雄のC57BL/6Jマウスの腹部の皮下に、20x10個のB16メラノーマ細胞を移植した。
[5] 導入する数日前に以下の方法でプラスミド複合体を調製した。
 pDNA−ESAT−6(100μg)を含む7.4mMリン酸緩衝液(pH7.4)4820μlに、594μgのCSを含む水溶液119μlを加え、続いてPEI 293.5μgを含む水溶液59μlを加えて攪拌後、20分室温で放置した。その後、10%デキストラン溶液を50μl加え、さらに10分放置後、マイナス80℃またはマイナス30℃で凍結した。その後、凍結乾燥して、本発明の複合体を調製した。
[6][4]で作成した担癌マウスモデルの腫瘍サイズが長径3mm以上になったところで、[5]で調製した凍結乾燥体に純水250μlを加え、十分に溶解、分散させたものを、腫瘍組織内に投与した。
[7]一日に一度腫瘍のサイズを測定した。
[結果]
結果を図1に示す。ここで、図中の腫瘍サイズは、(4/3)x短径x短径x長径x(1/8)x3.14として計算したものである。
 何も投与していないコントロール群では急激な腫瘍の増大が見られたのに対して、pDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体を腫瘍局所内投与したマウスでは明確な腫瘍増大抑制が見られた。
 実施例2
 pDNA−ESAT−6複合体にマウスGM−CSFの遺伝子をコードしたプラスミド(pDNA−GM−CSF)複合体を併用した腫瘍局所内注射による皮下移植B16細胞に対する治癒効果。
 pDNA−GM−CSF/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体を実施例1と同様に作成し、実施例1で作成したpDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体と混合して凍結乾燥した。再水和後、マウスのメラノーマ細胞由来のB16を皮下に移植したマウスに腫瘍局所内投与し、腫瘍増大抑制効果を確認した。
[操作手順]
[1]実施例1と同様に担癌モデルマウス、pDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体、およびそのpDNA−GM−CSF/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体との混合物の凍結乾燥体を用意した。
[2]担癌マウスモデルの腫瘍サイズが長径3mm以上になったところで、上記2種類の凍結乾燥体に純水250μlを加え、十分に溶解、分散させたものを混合し、腫瘍組織内に投与した。混合比は、pDNA−ESAT−6複合体:pDNA−GM−CSF複合体=4:1(重量比)とした。一回の投与量はプラスミドの合計が100μgとなるようにした。
[3]1日に1度腫瘍のサイズを測定した。
[結果]
結果を図2に示す。ここで、図中の腫瘍サイズは、(4/3)x短径x短径x長径x(1/8)x3.14として計算したものを示した。
 pDNA−ESAT−6複合体のみ、あるいは、pDNA−GM−CSF複合体のみを投与した群に比べ、両者を混合して腫瘍組織内投与したマウスの方が腫瘍の増大抑制効果が大きく、相乗効果が認められた。
 実施例3
 pDNA−ESAT−6複合体にマウスマウスIL−2の遺伝子をコードしたプラスミド(pDNA−IL−2)複合体を併用した腫瘍局所内注射による皮下移植B16細胞に対する治癒効果。
 pDNA−IL−2/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体を実施例1と同様に作成し、実施例1で作成したpDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体と混合して凍結乾燥した。再水和後、マウスのメラノーマ細胞由来のB16を皮下に移植したマウスに腫瘍局所内投与し、腫瘍増大抑制効果を確認した。
[操作手順]
[1]実施例1と同様に担癌モデルマウス、pDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体、およびそのpDNA−IL−2/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体との混合物の凍結乾燥体を用意した。
[2]担癌マウスモデルの腫瘍サイズが長径3mm以上になったところで、上記2種類の凍結乾燥体に純水250μlを加え、十分に溶解、分散させたものを混合し、腫瘍組織内に投与した。混合比は、pDNA−ESAT−6複合体:pDNA−IL−2複合体=2:3(重量比)とした。一回の投与量はプラスミドの合計が100μgとなるようにした。
[3]1日に1度腫瘍のサイズを測定した。
[結果]
結果を図3に示す。ここで、図中の腫瘍サイズは、(4/3)x短径x短径x長径x(1/8)x3.14として計算したものを示した。
 pDNA−ESAT−6複合体のみ、あるいは、pDNA−IL−2複合体のみを投与した群に比べ、両者を混合して腫瘍組織内投与したマウスの方が腫瘍の増大抑制効果が大きく、相乗効果が認められた。
 実施例4
 pDNA−ESAT−6複合体にマウスマウスIL−12の遺伝子をコードしたプラスミド(pDNA−IL−12)複合体を併用した腫瘍局所内注射による皮下移植B16細胞に対する治癒効果。
 pDNA−IL−12/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体を実施例1と同様に作成し、実施例1で作成したpDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体と混合して凍結乾燥した。再水和後、マウスのメラノーマ細胞由来のB16を皮下に移植したマウスに腫瘍局所内投与し、腫瘍増大抑制効果を確認した。
[操作手順]
[1]実施例1と同様に担癌モデルマウス、pDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体、およびそのpDNA−IL−12/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体との混合物の凍結乾燥体を用意した。
[2]担癌マウスモデルの腫瘍サイズが長径3mm以上になったところで、上記2種類の凍結乾燥体に純水250μlを加え、十分に溶解、分散させたものを混合し、腫瘍組織内に投与した。混合比は、pDNA−ESAT−6複合体:pDNA−IL−12複合体=3:2(重量比)とした。一回の投与量はプラスミドの合計が100μgとなるようにした。
[3]1日に1度腫瘍のサイズを測定した。
[結果]
結果を図4に示す。ここで、図中の腫瘍サイズは、(4/3)x短径x短径x長径x(1/8)x3.14として計算したものを示した。
 pDNA−ESAT−6複合体のみ、あるいは、pDNA−IL−12複合体のみを投与した群に比べ、両者を混合して腫瘍組織内投与したマウスの方が腫瘍の増大抑制効果が大きく、相乗効果が認められた。
 実施例5
 Ag85Bの遺伝子をコードしたプラスミド(pDNA−Ag85B)/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体の腫瘍局所内注射による皮下移植B16細胞に対する治癒効果
 pDNA−Ag85B、PEI、CSからなる三成分の複合体をマウスのメラノーマ細胞由来のB16を皮下に移植したマウスに腫瘍局所内投与し、腫瘍増大抑制効果を確認した。
[操作手順]
[1]pDNA−Ag85Bは、タカラバイオ株式会社に合成を依頼した。発現ベクターにはインビトロジェン株式会社のpcDNA3.1(+)を用いた。
[2]実施例1と同様に担癌モデルマウス、pDNA−Ag85B/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体の凍結乾燥体を用意した。
[2]担癌マウスモデルの腫瘍サイズが長径3mm以上になったところで、上記2種類の凍結乾燥体に純水250μlを加え、十分に溶解、分散させたものを混合し、腫瘍組織内に投与した。
[3]1日に1度腫瘍のサイズを測定した。
[結果]
結果を図5に示す。ここで、図中の腫瘍サイズは、(4/3)x短径x短径x長径x(1/8)x3.14として計算したものである。
 何も投与していないコントロール群では急激な腫瘍の増大が見られたのに対して、pDNA−Ag85B/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体を腫瘍局所内投与したマウスでは明確な腫瘍増大抑制が見られた。
 実施例6
 pDNA−Ag85B複合体とマウスマウスpDNA−ESAT−6複合体を併用した腫瘍局所内注射による皮下移植B16細胞に対する治癒効果。
 pDNA−Ag85B/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体を実施例5と同様に作成し、実施例1で作成したpDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体と混合して凍結乾燥した。再水和後、マウスのメラノーマ細胞由来のB16を皮下に移植したマウスに腫瘍局所内投与し、腫瘍増大抑制効果を確認した。
[操作手順]
[1]実施例1と同様に担癌モデルマウス、pDNA−ESAT−6/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体、pDNA−Ag85B/ポリエチレンイミン(PEI)/コンドロイチン硫酸(CS)複合体、およびそれらの混合物の凍結乾燥体を用意した。
[2]担癌マウスモデルの腫瘍サイズが長径3mm以上になったところで、上記2種類の凍結乾燥体に純水250μlを加え、十分に溶解、分散させたものを混合し、腫瘍組織内に投与した。混合比は、pDNA−ESAT−6複合体:pDNA−Ag85B複合体=1:1(重量比)とした。一回の投与量はプラスミドの合計が100μgとなるようにした。
[3]1日に1度腫瘍のサイズを測定した。
[結果]
結果を図6に示す。ここで、図中の腫瘍サイズは、(4/3)x短径x短径x長径x(1/8)x3.14として計算したものを示した。
 pDNA−ESAT−6複合体のみ、あるいは、pDNA−Ag85B複合体のみを投与した群に比べ、両者を混合して腫瘍組織内投与したマウスの方が腫瘍の増大抑制効果が大きく、相乗効果が認められた。
The present invention will be described more specifically with reference to examples. In addition, these Examples are for demonstrating this invention, Comprising: This invention is not limited at all.
Example 1
Curative effect on subcutaneously transplanted B16 cells by intratumoral injection of plasmid (pDNA-ESAT-6) / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex encoding ESAT-6 gene pDNA-ESAT-6, PEI The three-component complex consisting of CS was administered intratumorally to mice transplanted subcutaneously with B16 derived from mouse melanoma cells, and the tumor growth inhibitory effect was confirmed.
[0065]
As the CS, a shark-derived product manufactured by Seikagaku Corporation was used. The PBS used was a solution of Phosphate Buffered Salts (Tablet) manufactured by Roman Industries in distilled ion-exchanged water. As the PEI, a linear PEI manufactured by Polyscience, Polyethyleneimine “Max” (Mw = 40000) was used. The same applies to the following embodiments.
[Operating procedure]
[1] The synthesis of pDNA-ESAT-6 was requested from Takara Bio Inc. As an expression vector, pcDNA3.1 (+) of Invitrogen Corporation was used.
[2] B16 cells were seeded in a cell culture bottle and incubated using MEM medium containing 10% FBS, 25 U penicillin and 25 μg streptomycin to prepare cells for transplantation.
[3] The culture medium cultured immediately before transplantation was removed, a trypsin solution was added, and the cells were detached.
[4] 20 × 10 5 B16 melanoma cells were transplanted subcutaneously into the abdomen of 5-week-old male C57BL / 6J mice.
[5] Several days before the introduction, a plasmid complex was prepared by the following method.
119 μl of an aqueous solution containing 594 μg of CS is added to 4820 μl of 7.4 mM phosphate buffer (pH 7.4) containing pDNA-ESAT-6 (100 μg), and then 59 μl of an aqueous solution containing 293.5 μg of PEI is added and stirred. And left at room temperature for 20 minutes. Thereafter, 50 μl of 10% dextran solution was added, and the mixture was further left for 10 minutes and then frozen at −80 ° C. or −30 ° C. Then, it lyophilized | freeze-dried and the composite_body | complex of this invention was prepared.
[6] When the tumor size of the tumor-bearing mouse model prepared in [4] becomes 3 mm or more in the major axis, 250 μl of pure water is added to the freeze-dried product prepared in [5], and the resultant is sufficiently dissolved and dispersed. And administered into the tumor tissue.
[7] The tumor size was measured once a day.
[result]
The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
In the control group to which nothing was administered, there was a sudden increase in tumor, whereas in the mice to which the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was administered locally in the tumor, Clear suppression of tumor growth was observed.
Example 2
The curative effect with respect to the subcutaneous transplantation B16 cell by the local injection of the tumor which used the plasmid (pDNA-GM-CSF) composite_body | complex which coded the gene of mouse | mouth GM-CSF in the pDNA-ESAT-6 composite_body | complex.
A pDNA-GM-CSF / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared in the same manner as in Example 1, and the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (prepared in Example 1) CS) complex and lyophilized. After rehydration, B16 derived from mouse melanoma cells was subcutaneously administered to mice transplanted subcutaneously, and the tumor growth inhibitory effect was confirmed.
[Operating procedure]
[1] A tumor-bearing model mouse, pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex, and its pDNA-GM-CSF / polyethyleneimine (PEI) / chondroitin sulfate as in Example 1. A freeze-dried product of a mixture with the (CS) complex was prepared.
[2] When the tumor size of the tumor-bearing mouse model becomes 3 mm or more in the major axis, 250 μl of pure water is added to the above-mentioned two types of freeze-dried products, and the mixture is sufficiently dissolved and dispersed, and administered into the tumor tissue. did. The mixing ratio was pDNA-ESAT-6 complex: pDNA-GM-CSF complex = 4: 1 (weight ratio). One dose was such that the total amount of plasmid was 100 μg.
[3] Tumor size was measured once a day.
[result]
The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
Compared to the group to which only the pDNA-ESAT-6 complex or only the pDNA-GM-CSF complex was administered, the mice in which both were mixed and administered into the tumor tissue had a greater tumor growth inhibitory effect and a synergistic effect Was recognized.
Example 3
The curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a plasmid (pDNA-IL-2) complex that encodes the mouse mouse IL-2 gene in combination with the pDNA-ESAT-6 complex.
A pDNA-IL-2 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared in the same manner as in Example 1, and the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (prepared in Example 1) CS) complex and lyophilized. After rehydration, B16 derived from mouse melanoma cells was subcutaneously administered to mice transplanted subcutaneously, and the tumor growth inhibitory effect was confirmed.
[Operating procedure]
[1] Tumor-bearing model mouse, pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex, and pDNA-IL-2 / polyethyleneimine (PEI) / chondroitin sulfate as in Example 1 A freeze-dried product of a mixture with the (CS) complex was prepared.
[2] When the tumor size of the tumor-bearing mouse model becomes 3 mm or more in the major axis, 250 μl of pure water is added to the above-mentioned two types of freeze-dried products, and the mixture is sufficiently dissolved and dispersed, and administered into the tumor tissue. did. The mixing ratio was pDNA-ESAT-6 complex: pDNA-IL-2 complex = 2: 3 (weight ratio). One dose was such that the total amount of plasmid was 100 μg.
[3] Tumor size was measured once a day.
[result]
The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
Compared to the group to which only the pDNA-ESAT-6 complex or only the pDNA-IL-2 complex was administered, the mice in which both were mixed and administered into the tumor tissue had a greater tumor growth inhibitory effect and a synergistic effect Was recognized.
Example 4
The curative effect on subcutaneously transplanted B16 cells by intratumoral injection of a plasmid (pDNA-IL-12) complex encoding a mouse mouse IL-12 gene in combination with a pDNA-ESAT-6 complex.
A pDNA-IL-12 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared in the same manner as in Example 1, and the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (prepared in Example 1) CS) complex and lyophilized. After rehydration, B16 derived from mouse melanoma cells was subcutaneously administered to mice transplanted subcutaneously, and the tumor growth inhibitory effect was confirmed.
[Operating procedure]
[1] Tumor-bearing model mouse, pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex, and pDNA-IL-12 / polyethyleneimine (PEI) / chondroitin sulfate as in Example 1 A freeze-dried product of a mixture with the (CS) complex was prepared.
[2] When the tumor size of the tumor-bearing mouse model becomes 3 mm or more in the major axis, 250 μl of pure water is added to the above-mentioned two types of freeze-dried products, and the mixture is sufficiently dissolved and dispersed, and administered into the tumor tissue. did. The mixing ratio was pDNA-ESAT-6 complex: pDNA-IL-12 complex = 3: 2 (weight ratio). One dose was such that the total amount of plasmid was 100 μg.
[3] Tumor size was measured once a day.
[result]
The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
Compared to the group to which only the pDNA-ESAT-6 complex or only the pDNA-IL-12 complex was administered, the mice administered with both of them mixed and administered into the tumor tissue had a greater tumor growth inhibitory effect and a synergistic effect Was recognized.
Example 5
Healing effect on subcutaneously transplanted B16 cells by intratumoral injection of Ag85B gene-encoding plasmid (pDNA-Ag85B) / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex Three components consisting of pDNA-Ag85B, PEI and CS The above complex was administered intratumorally to mice transplanted subcutaneously with B16 derived from mouse melanoma cells, and the tumor growth inhibitory effect was confirmed.
[Operating procedure]
[1] The synthesis of pDNA-Ag85B was requested from Takara Bio Inc. As an expression vector, pcDNA3.1 (+) of Invitrogen Corporation was used.
[2] In the same manner as in Example 1, a tumor-bearing model mouse, a lyophilized product of pDNA-Ag85B / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared.
[2] When the tumor size of the tumor-bearing mouse model becomes 3 mm or more in the major axis, 250 μl of pure water is added to the above-mentioned two types of freeze-dried products, and the mixture is sufficiently dissolved and dispersed, and administered into the tumor tissue. did.
[3] Tumor size was measured once a day.
[result]
The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
In the control group to which nothing was administered, rapid tumor growth was observed, whereas in the mice to which the pDNA-Ag85B / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was administered locally, it was clear. Tumor growth suppression was observed.
Example 6
Curing effect on subcutaneously transplanted B16 cells by intratumoral injection of a tumor using a combination of pDNA-Ag85B complex and mouse mouse pDNA-ESAT-6 complex.
A pDNA-Ag85B / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex was prepared in the same manner as in Example 5, and the pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (CS) prepared in Example 1 was used. Mixed with the complex and lyophilized. After rehydration, B16 derived from mouse melanoma cells was subcutaneously administered to mice transplanted subcutaneously, and the tumor growth inhibitory effect was confirmed.
[Operating procedure]
[1] Tumor-bearing model mouse as in Example 1, pDNA-ESAT-6 / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex, pDNA-Ag85B / polyethyleneimine (PEI) / chondroitin sulfate (CS) complex The body, and the lyophilized body of those mixtures were prepared.
[2] When the tumor size of the tumor-bearing mouse model becomes 3 mm or more in the major axis, 250 μl of pure water is added to the above-mentioned two types of freeze-dried products, and the mixture is sufficiently dissolved and dispersed, and administered into the tumor tissue. did. The mixing ratio was pDNA-ESAT-6 complex: pDNA-Ag85B complex = 1: 1 (weight ratio). One dose was such that the total amount of plasmid was 100 μg.
[3] Tumor size was measured once a day.
[result]
The results are shown in FIG. Here, the tumor size in the figure is calculated as (4/3) x minor axis x minor axis x major axis x (1/8) x 3.14.
Compared to the group administered only with the pDNA-ESAT-6 complex or only the pDNA-Ag85B complex, the mice administered with both mixed and administered in the tumor tissue had a greater tumor growth inhibitory effect and a synergistic effect was observed. It was.

Claims (41)

  1. 微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体。 A complex comprising a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent.
  2. 微生物が結核菌であることを特徴とする請求項1記載の複合体。 The complex according to claim 1, wherein the microorganism is Mycobacterium tuberculosis.
  3. 結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする請求項2記載の複合体。 The complex according to claim 2, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (Mycobacterium tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
  4. ベクターがプラスミドベクターであることを特徴とする請求項1~3いずれかの項記載の複合体。 The complex according to any one of claims 1 to 3, wherein the vector is a plasmid vector.
  5. 遺伝子導入試薬が、カチオン性ポリマー、カチオン性脂質及びアニオン性ポリマーから選択される1以上の化合物からなることを特徴とする請求項1~4いずれかの項記載の複合体。 The complex according to any one of claims 1 to 4, wherein the gene introduction reagent comprises one or more compounds selected from a cationic polymer, a cationic lipid, and an anionic polymer.
  6. 遺伝子導入試薬が、カチオン性ポリマー又はカチオン性脂質と、アニオン性ポリマーからなることを特徴とする請求項5記載の複合体。 6. The complex according to claim 5, wherein the gene introduction reagent comprises a cationic polymer or a cationic lipid and an anionic polymer.
  7.  カチオン性ポリマーが、ポリエチレンイミン(直鎖状ポリエチレンイミン又はポリ分枝型エチレンイミン)、2−ジメチルアミノエチルメタクリレートの重合体又は共重合体、2−トリメチルアミノエイルメタクリレートの重合体又は共重合体、ポリアミドアミンデンドリマー、ポリリジンデンドリマー、プロタミン、ヒストン、HelΔ1、ゼラチン、ポリ−L−リジン、ポリアルギニン、ポリオルニチン、ポリビニルイミダゾール、側鎖にエチレンジアミン構造を有する高分子及びそれらの共重合体、またはそれらの塩から1つ以上選択される請求項5又は6記載の複合体。 The cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer, Polyamidoamine dendrimer, polylysine dendrimer, protamine, histone, HelΔ1, gelatin, poly-L-lysine, polyarginine, polyornithine, polyvinyl imidazole, polymers having an ethylenediamine structure in the side chain and copolymers thereof, or salts thereof The complex according to claim 5 or 6, wherein one or more are selected from.
  8.  カチオン性脂質が、DC−Chol(3β−(N−(N‘,N’−ジメチルアミノエタン)カルバモイル)コレステロール、DDAB(N,N−ジステアリル−N,N−ジメチルアンモニウムブロミド)、DMRI(N−(1,2−ジミリスチルオキシプパ−3−イル)−N,N−ジメチル−N−ヒドロキシエチルアンモニウムブロミド)、DODAC(N,N−ジオレイル−N,N−ジメチルアンモニウムクロリド)、DOGS(ジヘプタデシルアミドグリシルスペルミジン)、DOSPA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N−(2−(スペルミンカルボキサミド)−N,N−ジメチルアンモニウムトリフルオロアセタート)、DOTAP(N−(1−(2,3−ジオレイルオキシ)プロピル)−N,N,N−トリメチルアンモニウムクロリド)及びDOTMA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N、N、N−トリメチルアンモニウムクロリド)およびそれらの異なる酸との塩から1つ以上選択される請求項5又は6記載の複合体。 Cationic lipids include DC-Chol (3β- (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N -(1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS Heptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-to Methylammonium chloride) and DOTMA (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-trimethylammonium chloride) and their different salts with different acids Item 7. The complex according to Item 5 or 6.
  9.  アニオン性ポリマーが、カルボキシル側鎖を持つPEG誘導体、アクリル酸又はメタクリル酸の重合体若しくは共重合体、ポリビニルアルコールの硫酸エステル体、サクシニミジル化ポリ−L−リジン、ポリグルタミン酸、ポリアスパラギン酸、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ケラタン硫酸、ヘパリン、デルタマン硫酸又はそれらの誘導体、及びそれらの塩から1つ以上選択される請求項5~8いずれかの項記載の複合体。 Anionic polymer is a PEG derivative having a carboxyl side chain, a polymer or copolymer of acrylic acid or methacrylic acid, a sulfate ester of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid, hyaluronic acid 9. The complex according to any one of claims 5 to 8, which is selected from one or more of chondroitin, chondroitin sulfate, keratan sulfate, heparin, deltaman sulfate or a derivative thereof, and a salt thereof.
  10.  凍結乾燥処理を施した請求項1~9いずれかの項記載の複合体。 10. The composite according to any one of claims 1 to 9, which has been lyophilized.
  11. 微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する医薬。 A pharmaceutical comprising a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent.
  12. 微生物が結核菌であることを特徴とする請求項11記載の医薬。 The medicament according to claim 11, wherein the microorganism is Mycobacterium tuberculosis.
  13. 結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする請求項12記載の医薬。 13. The medicine according to claim 12, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M. tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
  14. ベクターがプラスミドベクターであることを特徴とする請求項11~13いずれかの項記載の医薬。 The medicine according to any one of claims 11 to 13, wherein the vector is a plasmid vector.
  15. 遺伝子導入試薬が、カチオン性ポリマー、カチオン性脂質及びアニオン性ポリマーから選択される1以上の化合物からなることを特徴とする請求項11~14いずれかの項記載の医薬。 15. The medicament according to claim 11, wherein the gene introduction reagent comprises one or more compounds selected from a cationic polymer, a cationic lipid, and an anionic polymer.
  16. 遺伝子導入試薬が、カチオン性ポリマー又はカチオン性脂質と、アニオン性ポリマーからなることを特徴とする請求項15記載の医薬。 The medicament according to claim 15, wherein the gene introduction reagent comprises a cationic polymer or a cationic lipid and an anionic polymer.
  17.  カチオン性ポリマーが、ポリエチレンイミン(直鎖状ポリエチレンイミン又はポリ分枝型エチレンイミン)、2−ジメチルアミノエチルメタクリレートの重合体又は共重合体、2−トリメチルアミノエイルメタクリレートの重合体又は共重合体、ポリアミドアミンデンドリマー、ポリリジンデンドリマー、プロタミン、ヒストン、HelΔ1、ゼラチン、ポリ−L−リジン、ポリアルギニン、ポリオルニチン、ポリビニルイミダゾール、側鎖にエチレンジアミン構造を有する高分子及びそれらの共重合体、またはそれらの塩から1つ以上選択される請求項15又は16記載の医薬。 The cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer, Polyamidoamine dendrimer, polylysine dendrimer, protamine, histone, HelΔ1, gelatin, poly-L-lysine, polyarginine, polyornithine, polyvinyl imidazole, polymers having an ethylenediamine structure in the side chain and copolymers thereof, or salts thereof The medicine according to claim 15 or 16, which is selected from one or more of the following.
  18.  カチオン性脂質が、DC−Chol(3β−(N−(N‘,N’−ジメチルアミノエタン)カルバモイル)コレステロール、DDAB(N,N−ジステアリル−N,N−ジメチルアンモニウムブロミド)、DMRI(N−(1,2−ジミリスチルオキシプパ−3−イル)−N,N−ジメチル−N−ヒドロキシエチルアンモニウムブロミド)、DODAC(N,N−ジオレイル−N,N−ジメチルアンモニウムクロリド)、DOGS(ジヘプタデシルアミドグリシルスペルミジン)、DOSPA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N−(2−(スペルミンカルボキサミド)−N,N−ジメチルアンモニウムトリフルオロアセタート)、DOTAP(N−(1−(2,3−ジオレイルオキシ)プロピル)−N,N,N−トリメチルアンモニウムクロリド)及びDOTMA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N、N、N−トリメチルアンモニウムクロリド)およびそれらの異なる酸との塩から1つ以上選択される請求項15又は16記載の医薬。 Cationic lipids include DC-Chol (3β- (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N -(1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS Heptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-to Methylammonium chloride) and DOTMA (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-trimethylammonium chloride) and their different salts with different acids Item 15. A medicine according to Item 15 or 16.
  19.  アニオン性ポリマーが、カルボキシル側鎖を持つPEG誘導体、アクリル酸又はメタクリル酸の重合体若しくは共重合体、ポリビニルアルコールの硫酸エステル体、サクシニミジル化ポリ−L−リジン、ポリグルタミン酸、ポリアスパラギン酸、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ケラタン硫酸、ヘパリン、デルタマン硫酸又はそれらの誘導体、及びそれらの塩から1つ以上選択される請求項15~18いずれかの項記載の医薬。 Anionic polymer is a PEG derivative having a carboxyl side chain, a polymer or copolymer of acrylic acid or methacrylic acid, a sulfate ester of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid, hyaluronic acid The medicament according to any one of claims 15 to 18, which is selected from one or more of chondroitin, chondroitin sulfate, keratan sulfate, heparin, deltaman sulfate or a derivative thereof, and a salt thereof.
  20.  凍結乾燥処理を施した請求項11~19いずれかの項記載の医薬。 20. The pharmaceutical according to any one of claims 11 to 19, which has been subjected to a freeze-drying treatment.
  21.  微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体及び免疫賦活性サイトカイン遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体を組み合わせた医薬。 Pharmaceuticals comprising a vector encoding a microorganism-derived antigen protein gene and a complex containing a gene transfer reagent, and a combination of a vector encoding an immunostimulatory cytokine gene and a complex containing a gene transfer reagent.
  22. 微生物が結核菌であることを特徴とする請求項21項記載の医薬。 The pharmaceutical according to claim 21, wherein the microorganism is Mycobacterium tuberculosis.
  23. 結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする請求項22記載の医薬。 23. The medicament according to claim 22, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (M. tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
  24. 免疫賦活性サイトカインがインターロイキン−2(IL−2)、インターロイキン−12(IL−12)、GM−CSFから選ばれる1以上のサイトカインである請求項21~23いずれかの項記載の医薬。 The medicament according to any one of claims 21 to 23, wherein the immunostimulatory cytokine is one or more cytokines selected from interleukin-2 (IL-2), interleukin-12 (IL-12), and GM-CSF.
  25. 微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体を有効量投与することを特徴とする癌の治療方法。 A method for treating cancer, comprising administering an effective amount of a complex comprising a vector encoding a microorganism-derived antigen protein gene and a gene introduction reagent.
  26. 微生物が結核菌であることを特徴とする請求項25記載の治療方法。 The method according to claim 25, wherein the microorganism is Mycobacterium tuberculosis.
  27. 結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする請求項26記載の治療方法。 27. The method according to claim 26, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (Mycobacterium tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
  28. ベクターがプラスミドベクターであることを特徴とする請求項25~27いずれかの項記載の治療方法。 28. The treatment method according to claim 25, wherein the vector is a plasmid vector.
  29. 遺伝子導入試薬が、カチオン性ポリマー、カチオン性脂質及びアニオン性ポリマーから選択される1以上の化合物からなることを特徴とする請求項25~28いずれかの項記載の治療方法。 29. The treatment method according to claim 25, wherein the gene introduction reagent comprises one or more compounds selected from a cationic polymer, a cationic lipid, and an anionic polymer.
  30. 遺伝子導入試薬が、カチオン性ポリマー又はカチオン性脂質と、アニオン性ポリマーからなることを特徴とする請求項29記載の治療方法。 30. The treatment method according to claim 29, wherein the gene introduction reagent comprises a cationic polymer or a cationic lipid and an anionic polymer.
  31.  カチオン性ポリマーが、ポリエチレンイミン(直鎖状ポリエチレンイミン又はポリ分枝型エチレンイミン)、2−ジメチルアミノエチルメタクリレートの重合体又は共重合体、2−トリメチルアミノエイルメタクリレートの重合体又は共重合体、ポリアミドアミンデンドリマー、ポリリジンデンドリマー、プロタミン、ヒストン、HelΔ1、ゼラチン、ポリ−L−リジン、ポリアルギニン、ポリオルニチン、ポリビニルイミダゾール、側鎖にエチレンジアミン構造を有する高分子及びそれらの共重合体、またはそれらの塩から1つ以上選択される請求項29又は30記載の治療方法。 The cationic polymer is polyethyleneimine (linear polyethyleneimine or polybranched ethyleneimine), 2-dimethylaminoethyl methacrylate polymer or copolymer, 2-trimethylaminoethyl methacrylate polymer or copolymer, Polyamidoamine dendrimer, polylysine dendrimer, protamine, histone, HelΔ1, gelatin, poly-L-lysine, polyarginine, polyornithine, polyvinyl imidazole, polymers having an ethylenediamine structure in the side chain and copolymers thereof, or salts thereof 31. The treatment method according to claim 29 or 30, wherein one or more are selected from.
  32.  カチオン性脂質が、DC−Chol(3β−(N−(N‘,N’−ジメチルアミノエタン)カルバモイル)コレステロール、DDAB(N,N−ジステアリル−N,N−ジメチルアンモニウムブロミド)、DMRI(N−(1,2−ジミリスチルオキシプパ−3−イル)−N,N−ジメチル−N−ヒドロキシエチルアンモニウムブロミド)、DODAC(N,N−ジオレイル−N,N−ジメチルアンモニウムクロリド)、DOGS(ジヘプタデシルアミドグリシルスペルミジン)、DOSPA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N−(2−(スペルミンカルボキサミド)−N,N−ジメチルアンモニウムトリフルオロアセタート)、DOTAP(N−(1−(2,3−ジオレイルオキシ)プロピル)−N,N,N−トリメチルアンモニウムクロリド)及びDOTMA(N−(1−(2,3−ジオレイルオキシ)プロピル)−N、N、N−トリメチルアンモニウムクロリド)およびそれらの異なる酸との塩から1つ以上選択される請求項29又は30記載の治療方法。 Cationic lipids include DC-Chol (3β- (N- (N ′, N′-dimethylaminoethane) carbamoyl) cholesterol, DDAB (N, N-distearyl-N, N-dimethylammonium bromide), DMRI (N -(1,2-Dimyristyloxyppa-3-yl) -N, N-dimethyl-N-hydroxyethylammonium bromide), DODAC (N, N-dioleyl-N, N-dimethylammonium chloride), DOGS Heptadecylamidoglycylspermidine), DOSPA (N- (1- (2,3-dioleyloxy) propyl) -N- (2- (sperminecarboxamide) -N, N-dimethylammonium trifluoroacetate), DOTAP (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-to Methylammonium chloride) and DOTMA (N- (1- (2,3-dioleyloxy) propyl) -N, N, N-trimethylammonium chloride) and their different salts with different acids Item 31. The treatment method according to Item 30 or 30.
  33.  アニオン性ポリマーが、カルボキシル側鎖を持つPEG誘導体、アクリル酸又はメタクリル酸の重合体若しくは共重合体、ポリビニルアルコールの硫酸エステル体、サクシニミジル化ポリ−L−リジン、ポリグルタミン酸、ポリアスパラギン酸、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ケラタン硫酸、ヘパリン、デルタマン硫酸又はそれらの誘導体、及びそれらの塩から1つ以上選択される請求項29~32いずれかの項記載の治療方法。 Anionic polymer is a PEG derivative having a carboxyl side chain, a polymer or copolymer of acrylic acid or methacrylic acid, a sulfate ester of polyvinyl alcohol, succinimidylated poly-L-lysine, polyglutamic acid, polyaspartic acid, hyaluronic acid The therapeutic method according to any one of claims 29 to 32, which is selected from one or more of chondroitin, chondroitin sulfate, keratan sulfate, heparin, deltaman sulfate or a derivative thereof, and a salt thereof.
  34.  凍結乾燥処理を施した請求項25~33いずれかの項記載の治療方法。 The treatment method according to any one of claims 25 to 33, which has been lyophilized.
  35. 微生物由来抗原タンパク質遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体及び免疫賦活性サイトカイン遺伝子をコードしたベクターと遺伝子導入試薬を含有する複合体を組み合わせて有効量投与することを特徴とする癌の治療方法。 A cancer characterized by administering an effective amount of a combination of a vector encoding a microorganism-derived antigen protein gene and a gene transfer reagent, and a vector encoding an immunostimulatory cytokine gene and a complex containing a gene transfer reagent Treatment methods.
  36. 微生物が結核菌であることを特徴とする請求項35記載の治療方法。 36. The treatment method according to claim 35, wherein the microorganism is Mycobacterium tuberculosis.
  37. 結核菌由来抗原タンパク質がESAT−6(結核菌6kDa early secreted antigenic target)及び/又はAg85Bであることを特徴とする請求項36記載の治療方法。 The method according to claim 36, wherein the Mycobacterium tuberculosis-derived antigenic protein is ESAT-6 (Mycobacterium tuberculosis 6 kDa early secreted antigenic target) and / or Ag85B.
  38. 免疫賦活性サイトカインがインターロイキン−2(IL−2)、インターロイキン−12(IL−12)、GM−CSFから選ばれる1以上のサイトカインである請求項35~37記載の治療方法。 The method according to claims 35 to 37, wherein the immunostimulatory cytokine is one or more cytokines selected from interleukin-2 (IL-2), interleukin-12 (IL-12), and GM-CSF.
  39. カチオン性ポリマーがポリエチレンイミンである請求項1~7、9~17、19~31、33~38いずれかの項記載の複合体、医薬又は癌の治療方法。 The complex, pharmaceutical, or cancer treatment method according to any one of claims 1 to 7, 9 to 17, 19 to 31, and 33 to 38, wherein the cationic polymer is polyethyleneimine.
  40. アニオン性ポリマーがコンドロイチン硫酸である請求項1~39いずれかの項記載の複合体、医薬又は癌の治療方法。 40. The complex, medicament or cancer treatment method according to any one of claims 1 to 39, wherein the anionic polymer is chondroitin sulfate.
  41. アニオン性ポリマーがヒアルロン酸である請求項1~39いずれかの項記載の複合体、医薬又は癌の治療方法。 40. The complex, medicament or cancer treatment method according to any one of claims 1 to 39, wherein the anionic polymer is hyaluronic acid.
PCT/JP2012/072659 2011-08-29 2012-08-24 New compound material, medicine containing same, and cancer treatment method using same WO2013032028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011201136A JP2013046596A (en) 2011-08-29 2011-08-29 New complex, medicine including the same and method of treatment for cancer
JP2011-201136 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013032028A1 true WO2013032028A1 (en) 2013-03-07

Family

ID=47756491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072659 WO2013032028A1 (en) 2011-08-29 2012-08-24 New compound material, medicine containing same, and cancer treatment method using same

Country Status (2)

Country Link
JP (1) JP2013046596A (en)
WO (1) WO2013032028A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516062A (en) * 2013-03-15 2016-06-02 リズム・ファーマシューティカルズ・インコーポレイテッド Pharmaceutical composition
JP2017101012A (en) * 2015-11-30 2017-06-08 義之 小山 Immunotherapeutic formulation
CN114848831A (en) * 2022-03-16 2022-08-05 成都威斯津生物医药科技有限公司 Coated nano preparation and preparation method and application of carrier thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508753A (en) * 1994-11-14 1998-09-02 メルク エンド カンパニー インコーポレーテッド Polynucleotide tubercosis vaccine
US20060189556A1 (en) * 2005-02-24 2006-08-24 National Defense Medical Center, National Defense University DNA cancer vaccines
WO2007132873A1 (en) * 2006-05-17 2007-11-22 Yoshiyuki Koyama Freeze-dried product for transferring nucleic acid, oligonucleic acid or derivative thereof
JP2010116383A (en) * 2008-11-14 2010-05-27 Alpha-Nano-Medica Co Ltd Gene-introduced therapeutic agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508753A (en) * 1994-11-14 1998-09-02 メルク エンド カンパニー インコーポレーテッド Polynucleotide tubercosis vaccine
US20060189556A1 (en) * 2005-02-24 2006-08-24 National Defense Medical Center, National Defense University DNA cancer vaccines
WO2007132873A1 (en) * 2006-05-17 2007-11-22 Yoshiyuki Koyama Freeze-dried product for transferring nucleic acid, oligonucleic acid or derivative thereof
JP2010116383A (en) * 2008-11-14 2010-05-27 Alpha-Nano-Medica Co Ltd Gene-introduced therapeutic agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D'SOUZA S. ET AL.: "Improved Tuberculosis DNA Vaccines by Formulation in Cationic Lipids", INFECT. IMMUN., vol. 70, no. 7, 2002, pages 3681 - 3688 *
FAN X. ET AL.: "DNA vaccine encoding ESAT-6 enhances the protective efficacy of BCG against Mycobacterium tuberculosis infection in mice", SCAND. J. IMMUNOL., vol. 66, no. 5, 3 October 2007 (2007-10-03), pages 523 - 528 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516062A (en) * 2013-03-15 2016-06-02 リズム・ファーマシューティカルズ・インコーポレイテッド Pharmaceutical composition
US11129869B2 (en) 2013-03-15 2021-09-28 Rhythm Pharmaceuticals, Inc. Pharmaceutical compositions
JP2017101012A (en) * 2015-11-30 2017-06-08 義之 小山 Immunotherapeutic formulation
CN114848831A (en) * 2022-03-16 2022-08-05 成都威斯津生物医药科技有限公司 Coated nano preparation and preparation method and application of carrier thereof

Also Published As

Publication number Publication date
JP2013046596A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
Lou et al. mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells
JP2021091689A (en) Nucleic acid vaccines
Wang et al. Detachable nanoparticle-enhanced chemoimmunotherapy based on precise killing of tumor seeds and normalizing the growing soil strategy
WO2019001339A1 (en) Novel tumor vaccine and use thereof
JP2018537521A (en) Wide-area influenza virus vaccine
Xie et al. Immunoengineering with biomaterials for enhanced cancer immunotherapy
CN101616687B (en) Non-specific immunostimulating agents
Xu et al. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity
US20160151482A1 (en) Mesoporous alum nanoparticles as a universal platform for antigen adsorption, presentation, and delivery
Karam et al. mRNA vaccines: Past, present, future
JPWO2007132873A1 (en) Lyophilized product for introduction of nucleic acid, oligonucleic acid, or derivative thereof
Li et al. STING-activating drug delivery systems: Design strategies and biomedical applications
Rana et al. Nanocarriers for cancer nano-immunotherapy
Teng et al. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity
Wang et al. Supramolecular filament hydrogel as a universal immunomodulator carrier for immunotherapy combinations
WO2013032028A1 (en) New compound material, medicine containing same, and cancer treatment method using same
Sharma et al. Chitosan-based systems for gene delivery
Shih et al. Ultrasound-triggered release reveals optimal timing of CpG-ODN delivery from a cryogel cancer vaccine
Dong et al. Hybrid M13 bacteriophage-based vaccine platform for personalized cancer immunotherapy
Meng et al. Nucleic acid and oligonucleotide delivery for activating innate immunity in cancer immunotherapy
CN111154806A (en) Oncolytic virus vector system embedded with exogenous super cell factor and application of oncolytic virus vector system in medicine
Lei et al. Efficient Tumor Immunotherapy through a single injection of injectable antigen/adjuvant-loaded macroporous silk fibroin microspheres
US20220370637A1 (en) Chitosan polyplex-based localized expression of il-12 alone or in combination with type-i ifn inducers for treatment of mucosal cancers
JP2010116383A (en) Gene-introduced therapeutic agent
Hong et al. Transdermal delivery of interleukin-12 gene targeting dendritic cells enhances the anti-tumour effect of programmed cell death protein 1 monoclonal antibody

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828214

Country of ref document: EP

Kind code of ref document: A1