WO2013031755A1 - Polylactic acid film - Google Patents

Polylactic acid film Download PDF

Info

Publication number
WO2013031755A1
WO2013031755A1 PCT/JP2012/071653 JP2012071653W WO2013031755A1 WO 2013031755 A1 WO2013031755 A1 WO 2013031755A1 JP 2012071653 W JP2012071653 W JP 2012071653W WO 2013031755 A1 WO2013031755 A1 WO 2013031755A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
film
resin
segment
mass
Prior art date
Application number
PCT/JP2012/071653
Other languages
French (fr)
Japanese (ja)
Inventor
山村剛平
廣田真之
▲浜▼▲崎▼莉沙
山内英幸
末岡雅則
坂本純
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020137034703A priority Critical patent/KR20140053031A/en
Priority to JP2012554150A priority patent/JP5979007B2/en
Priority to CN201280028855.4A priority patent/CN103597014B/en
Publication of WO2013031755A1 publication Critical patent/WO2013031755A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a polylactic acid-based film that is excellent in moisture permeability, waterproofness, flexibility and processability and has a high degree of biomass.
  • Patent Document 1 discloses a porous sheet formed by stretching at least uniaxially a sheet containing a polylactic acid resin, a filler, and a general polyester plasticizer.
  • Patent Document 2 discloses that a mixture containing a polylactic acid-based polymer, an aliphatic-aromatic copolymer polyester, a plasticizer, and a fine powder filler is melted to form a film, and longitudinally stretched and laterally stretched.
  • a porous film having pores is disclosed.
  • the present invention is intended to provide a polylactic acid film that is excellent in moisture permeability, waterproofness, flexibility, processability and has a high degree of biomass.
  • the polylactic acid film of the present invention has the following configuration in order to solve the above problems. That is, A film containing a polylactic acid-based resin (A), which has a concave or convex discontinuous portion on at least one side of the film, and has a moisture permeability of 500 to 3,000 g / (m 2 ⁇ day). A polylactic acid film.
  • the method for producing a polylactic acid film of the present invention has the following constitution (1) or (2) in order to solve the above problems. That is, (1) A method for producing a polylactic acid film having an embossing step of passing a film between a roll having a convex portion and an elastic roll, or (2) A method for producing a film having an embossing process in which a roll having a convex part and a roll having a concave part form a male and female, and the film is passed between them, the depth of the concave part being the height of the convex part 5 to 80% of the polylactic acid film production method.
  • the height of the discontinuous portion is preferably 20 to 150 ⁇ m.
  • the polylactic acid-based film of the present invention contains a thermoplastic resin (B) other than the polylactic acid-based resin (A), and the total amount of the polylactic acid-based resin (A) and the thermoplastic resin (B) is 100% by mass.
  • the lactic acid resin (A) is preferably 10 to 95% by mass, and the thermoplastic resin (B) is preferably 5 to 90% by mass.
  • the polylactic acid film of the present invention preferably contains 1 to 200 parts by mass of the filler (C) with respect to 100 parts by mass in total of the polylactic acid resin (A) and the thermoplastic resin (B).
  • the polylactic acid film of the present invention is a block copolymer in which the thermoplastic resin (B) has a polyether segment and a polylactic acid segment, a block copolymer having a polyester segment and a polylactic acid segment, and an aliphatic polyester system. It is preferably at least one resin selected from the group consisting of a resin and an aliphatic aromatic polyester resin.
  • the polylactic acid-based film of the present invention is selected from the group consisting of a block copolymer in which the thermoplastic resin (B) has a polyether segment and a polylactic acid segment, and a block copolymer having a polyester segment and a polylactic acid segment. It is preferable to comprise a combination of at least one resin selected from the group consisting of an aliphatic polyester resin and an aliphatic aromatic polyester resin.
  • the polylactic acid film contains a thermoplastic resin (B) other than the polylactic acid resin (A), and the polylactic acid resin (A) and the thermoplastic resin are used.
  • the polylactic acid resin (A) is 10 to 95% by mass
  • the thermoplastic resin (B) is 5 to 90% by mass
  • the thermoplastic resin (B) is a polyether segment.
  • At least one resin selected from the group consisting of a block copolymer having a polylactic acid segment and a block copolymer having a polyester segment and a polylactic acid segment, and an aliphatic polyester resin and an aliphatic aromatic polyester resin It is preferably composed of a combination with at least one resin selected.
  • the depth of the concave portion is preferably 45 to 80% of the height of the convex portion.
  • the material of the roll having the convex portion is a metal roll and the material of the roll having the concave portion is a paper roll.
  • a polylactic acid-based film that is excellent in moisture permeability, waterproofness, flexibility, processability, and has a high degree of biomass.
  • the polylactic acid film of the present invention can be preferably used for applications requiring moisture permeability, waterproofness, flexibility and processability.
  • medical and hygiene materials such as bed sheets, pillow covers, back sheets for absorbent articles such as sanitary napkins and paper diapers; clothing materials such as rainy clothing and gloves; garbage bags and compost bags, or vegetables and fruits It can preferably be used for packaging materials such as food bags such as bags for various industrial products.
  • the present invention is a film containing a polylactic acid-based resin (A), having a discontinuous portion of a concave portion or a convex portion on at least one side of the film, and having a moisture permeability of 500 to 3,000 g / (m 2 -A polylactic acid film that is day).
  • A polylactic acid-based resin
  • polylactic acid film of the present invention contains a polylactic acid resin (A).
  • the polylactic acid resin (A) is a polymer mainly composed of monomer units selected from L-lactic acid units and D-lactic acid units.
  • the main constituent component means that the mass ratio of the lactic acid unit is the maximum in the constituent unit of the polymer.
  • the mass ratio of the lactic acid unit in the polylactic acid resin (A) is preferably 70% by mass to 100% by mass in 100% by mass of the polymer.
  • polylactic acid resin poly L-lactic acid, poly D-lactic acid and the like are preferably used.
  • poly L-lactic acid as used in the present invention means that the content of L-lactic acid units is more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the polymer.
  • poly-D-lactic acid as used in the present invention refers to those having a D-lactic acid unit content of more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the polymer.
  • Poly L-lactic acid changes in the crystallinity of the resin itself depending on the content ratio of the D-lactic acid unit. That is, when the content ratio of the D-lactic acid unit in the poly L-lactic acid is increased, the crystallinity of the poly L-lactic acid is lowered and approaches an amorphous state. Conversely, if the content ratio of D-lactic acid units in poly-L-lactic acid decreases, the crystallinity of poly-L-lactic acid increases. Similarly, the crystallinity of the resin itself of poly D-lactic acid varies depending on the content ratio of L-lactic acid units.
  • the content ratio of the L-lactic acid unit in the poly L-lactic acid or the content ratio of the D-lactic acid unit in the poly D-lactic acid is 80 to 100 mol% is preferable, and more preferably 85 to 100 mol%.
  • the polylactic acid resin (A) used in the present invention may be copolymerized with a monomer unit other than the lactic acid unit.
  • monomers include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, pentane Glycol compounds such as erythritol, bisphenol A, polyethylene glycol, polypropylene glycol and polytetramethylene glycol; oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid , Terephthalic acid, isophthalic acid,
  • the amount of copolymerization of other monomer units other than the lactic acid unit is preferably 30 mol% or less, more preferably 10 mol% or less, in 100 mol% of all monomer units in the polymer. .
  • the polylactic acid resin (A) may be mixed with a small amount of poly D-lactic acid when the main component is poly L-lactic acid, or a small amount of poly L-lactic acid when the main component is poly D-lactic acid. preferable. This is because the stereocomplex crystal formed thereby has a higher melting point than a normal polylactic acid crystal ( ⁇ crystal), so that the heat resistance of the film is improved.
  • the mass average molecular weight of the polylactic acid resin (A) is preferably 50,000 to 500,000, more preferably 80,000 to 400,000, in order to satisfy practical mechanical properties. More preferably, it is 10,000.
  • polylactic acid resin (A) As a method for producing the polylactic acid resin (A), details will be described later, but a known polymerization method can be used. Specific examples include a direct polymerization method from lactic acid and a ring-opening polymerization method via lactide.
  • the content of the polylactic acid resin (A) contained in the polylactic acid film of the present invention is not particularly limited as long as the polylactic acid resin (A) is contained in the film.
  • the polylactic acid film of the present invention preferably contains not only the polylactic acid resin (A) but also a thermoplastic resin (B) other than the polylactic acid resin (A) described later.
  • the polylactic acid resin (A) is 10 to 95% by mass in the total 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B).
  • the plastic resin (B) is preferably 5 to 90% by mass.
  • the film of the present invention contains a thermoplastic resin (B) other than the polylactic acid resin (A), and in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B), By setting A) to 10% by mass or more, a film having excellent heat resistance and biomass properties is obtained, and by setting the polylactic acid resin (A) to 95% by mass or less, a film having excellent flexibility is obtained.
  • the content of the polylactic acid resin (A) in the film is more preferably 20 to 90% by mass in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B). It is more preferably from ⁇ 85% by mass, particularly preferably from 40 to 80% by mass.
  • the content of the polylactic acid resin (A) with respect to the entire polylactic acid film of the present invention is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, and 15 to 80% by mass. % Is more preferable, and 20 to 75% by mass is particularly preferable.
  • embossing the method of providing the concave or convex discontinuous portions on at least one surface of the film is not particularly limited, but a method by embossing is preferable. In embossing, stretching at the time of film production is achieved by forming a large number of fine local pores in the film and / or forming a large number of thinned portions by local stretching of the embossed portion. Without depending on the process, moisture permeability, waterproofness, flexibility and workability can be imparted.
  • the polylactic acid film of the present invention is preferably a film in which a large number of fine pores are formed, that is, a porous film.
  • the unevenness of the embossing roll surface used in the present invention is preferably 50 to 700 ⁇ m.
  • the unevenness difference here is a length (corresponding to “a” in FIG. 1) corresponding to a difference between the lowest height portion and the highest height portion of the embossing roll surface.
  • the unevenness difference is 50 ⁇ m or more, the embossed film has a concave portion or a discontinuous portion due to the embossing, and is excellent in moisture permeability and flexibility.
  • corrugated difference is 700 ⁇ m or less, the embossed film can appropriately control the height of the concave or convex discontinuous portions by embossing, and is excellent in waterproofness and workability. It will be.
  • the unevenness difference on the surface of the embossing roll is more preferably from 100 to 500 ⁇ m, and further preferably from 200 to 400 ⁇ m.
  • the pitch of the concave or convex portions on the surface of the embossing roll used in the present invention is preferably 0.5 to 2.0 mm.
  • the pitch of the concave portion or the convex portion here is the shortest length (corresponding to b in FIG. 1) of the repeating length of the concave portion or the convex portion on the surface of the embossing roll.
  • the pitch of the concave portions or the convex portions is 0.5 mm or more, the embossed film has excellent waterproofness and workability.
  • the pitch of the said recessed part or a convex part is 2.0 mm or less, the film after embossing becomes the thing excellent in moisture permeability and a softness
  • the pitch of the concave or convex portions on the surface of the embossing roll is more preferably 0.5 to 1.5 mm, and further preferably 0.5 to 1.0 mm.
  • the embossing roll pattern used in the present invention is not particularly limited, and includes a square convex pattern, a lattice convex pattern, a turtle shell pattern, a diamond pattern, a quadrangular pyramid pattern, a truncated cone pattern, a vertical line pattern, a horizontal line pattern, and the like.
  • the crimping area is preferably 0.02 to 0.80 mm 2 .
  • the crimping area referred to here is the area of the embossing roll surface having a high height (the area of the plane corresponding to c ⁇ d in FIG. 2) per embossing roll pattern.
  • the area of the embossing roll surface when a convex part exists in the embossing roll surface, it is the area of the surface of a convex part.
  • the area other than the recess is the area of the embossing roll because the height of the embossing roll surface is high.
  • the crimping area is more preferably 0.04 to 0.60 mm 2 , further preferably 0.06 to 0.40 mm 2 .
  • the crimping area ratio is preferably 8 to 40%.
  • the crimping area ratio here is the ratio of the area of the embossing roll surface having a high height (the area of the plane corresponding to c ⁇ d in FIG.
  • the embossing roll per unit area of the embossing roll. That is, when a convex part exists in the embossing roll surface, it is the area ratio of the surface of a convex part. On the other hand, when there is a recess on the surface of the embossing roll, the area ratio is the portion of the embossing roll whose surface is high except for the recess.
  • the crimping area ratio is more preferably 12 to 30%, still more preferably 16 to 20%.
  • the arrangement of the irregularities may be a regular arrangement in which the irregularities are arranged vertically and horizontally, or a staggered arrangement.
  • the embossing method in the present invention may be a combination of an embossing roll and an elastic roll such as a rubber roll, a paper roll, and a woolen paper roll, or a combination of an embossing roll and a female embossing roll corresponding to the uneven shape.
  • the material of the embossing roll is not particularly limited, but is generally a metal roll.
  • Specific examples of the material of the female embossing roll include an elastic roll such as a rubber roll, a paper roll, and a woolen paper roll in addition to the same metal roll as the embossing roll.
  • the film manufacturing method of the present invention is a film manufacturing method including an embossing process in which a roll having a convex portion and a roll having a concave portion form a male and female and the film is passed between them.
  • the material of the roll which has a convex part is a metal roll
  • the material of the roll which has a recessed part is a paper roll.
  • the depth of the concave portion is more preferably 25 to 80% of the height of the convex portion, and further preferably 45 to 80%.
  • the polylactic acid-based film of the present invention has a concave or convex discontinuous portion on at least one surface of the film.
  • the discontinuous part of a recessed part or a convex part is formed by embossing.
  • having a discontinuous part of a concave part or a convex part means that at least one side of the film is not a continuous form in which the entire surface of at least one side of the film is on the same plane (the same height when viewed from the cross-sectional direction). This means that the entire surface is not on the same plane due to the presence of a concave or convex portion.
  • the height of the discontinuous portion of the polylactic acid film of the present invention is preferably 20 to 150 ⁇ m.
  • the height of the discontinuous portion here is a length corresponding to the difference between the lowest and highest portions of the film surface when a cross section including the discontinuous portion is observed (corresponding to e in FIG. 3). ).
  • the film has excellent moisture permeability and flexibility. Moreover, it becomes a film excellent in waterproofness and workability because the height of the said discontinuous part is 150 micrometers or less.
  • the height of the discontinuous portion is more preferably 50 to 145 ⁇ m, and further preferably 100 to 140 ⁇ m.
  • the method for setting the height of the discontinuous portion in the range of 20 to 150 ⁇ m is, for example, by using an embossing roll having the above-mentioned preferable shape and embossing at a preferable roll temperature, linear pressure, and roll speed described later. is there.
  • the pitch of the discontinuous portions of the polylactic acid film of the present invention is preferably 0.5 to 2.0 mm.
  • the pitch of a discontinuous part here is the shortest length (equivalent to f of FIG. 3) of the repetition length of the recessed part or convex part of a film.
  • the pitch of the discontinuous portions is 0.5 ⁇ m or more, the film is excellent in waterproofness and workability. Moreover, it becomes a film excellent in moisture permeability and a softness
  • the pitch of the discontinuous portions is more preferably 0.7 to 1.5 mm, and further preferably 0.9 to 1.2 mm.
  • a method for setting the pitch of the discontinuous portion within the above range is, for example, embossing with an embossing roll having the above-described preferable concave or convex pitch.
  • the thickness of the discontinuous portion of the polylactic acid film of the present invention is preferably 5 to 50 ⁇ m.
  • the thickness of the discontinuous portion of the film as used in the present invention refers to the thickness of the thinnest portion among the discontinuous portions (recesses and protrusions) (for example, portions corresponding to g and h in FIG. 3). .
  • the thickness of the discontinuous portion is 5 ⁇ m or more, the film is excellent in waterproofness and workability. Moreover, it becomes a film excellent in moisture permeability and a softness
  • the thickness of the discontinuous portion is more preferably 8 to 30 ⁇ m, and further preferably 10 to 20 ⁇ m.
  • the method for setting the thickness of the discontinuous portion within the above range is, for example, using an embossing roll having the above-described preferable shape, using a roll of a preferable material and combination, and preferable roll temperature, linear pressure, and roll described later. Embossing at speed. (Moisture permeability) It is important that the polylactic acid film of the present invention has a moisture permeability of 500 to 3,000 g / (m 2 ⁇ day). The method for measuring moisture permeability in the present invention is as described in the section of “Moisture permeability” in the Examples.
  • the film containing the polylactic acid-based resin (A) for example, an embossing roll having a preferable shape described above is used, and a preferable material and a combination of rolls are used.
  • the water vapor transmission rate can be within the above range by embossing at a roll speed.
  • the moisture permeability is in this range, it can be preferably used for applications requiring moisture permeability.
  • Moisture permeability 000 preferably ⁇ is 3,000g / (m 2 ⁇ day) , more preferably 1,500 ⁇ 3,000g / (m 2 ⁇ day), 2,000 ⁇ 3 000 g / (m 2 ⁇ day) is particularly preferable.
  • Thermoplastic resin other than polylactic acid resin (B) In order to improve the flexibility, moisture permeability, waterproofness, and processability, the polylactic acid film of the present invention is a thermoplastic resin other than the polylactic acid resin (A) (in the present invention, the thermoplastic resin (B) and Preferably).
  • thermoplastic resin (B) examples include polyacetal, polyethylene, polypropylene, polyamide, poly (meth) acrylate, polyphenylene sulfide, polyether ether ketone, polyester, polyurethane, polyisoprene, polysulfone, polyphenylene oxide, polyimide, polyetherimide, An ethylene / glycidyl methacrylate copolymer, a polyester elastomer, a polyamide elastomer, an ethylene / propylene terpolymer, an ethylene / butene-1 copolymer, a polymer containing starch, a resin plasticizer, and the like can be used.
  • polyesters include aromatic polyester resins such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate; poly (ethylene succinate terephthalate), poly (butylene succinate terephthalate), poly (butylene adipate terephthalate), etc.
  • Aliphatic aromatic polyester resins polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-3hydroxyvalerate), polycaprolactone, polybutylene succinate, poly (butylene succinate)
  • Aliphatic polyester resins such as adipate
  • aliphatic aromatic polyester resins or aliphatic polyester resins are preferable.
  • thermoplastic resin (B) poly (butylene adipate) having relatively high flexibility from the viewpoint of improving flexibility, moisture permeability, and waterproofness.
  • Tephthalate polybutylene succinate, poly (butylene succinate adipate), poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-3hydroxyvalerate), and polycaprolactone are preferred.
  • the thermoplastic resin (B) contains these relatively flexible polyesters, the polylactic acid-based resin (A) and the thermoplastic resin (B) are reduced in the thickness direction of the film by forming an inflation film. A layered alloy structure is formed which also overlaps the layers. It has been found in the present invention that this layered alloy structure greatly contributes to the development of the waterproof property of the embossed film.
  • thermoplastic resin (B) As a specific example of the polymer containing starch suitable as the thermoplastic resin (B), Novamont's biodegradable resin “Matterby” (registered trademark) can be used.
  • resin plasticizers suitable as the thermoplastic resin (B) include polyester plasticizers such as polypropylene glycol sebacate, polyalkylene ether plasticizers, ether ester plasticizers, acrylate plasticizers, and the like. Can be used.
  • the resin-based plasticizer preferably has biodegradability.
  • the resin-based plasticizer is, for example, a normal temperature (20 ° C. ⁇ 15 ° C.) such as polyethylene glycol having a number average molecular weight of 1,000 or more.
  • fusing point is 150 degrees C or less at the point which matches melt processing temperature with a polylactic acid-type resin (A).
  • a resin-based plasticizer suitable as the thermoplastic resin (B) is a block copolymer having a polyether segment and a polylactic acid segment, or a block copolymer having a polyester segment and a polylactic acid segment. More preferably, it is a coalescence.
  • the plasticizing component is a polyether segment and a polyester segment.
  • the polyester segment means a segment made of polyester other than polylactic acid.
  • a block copolymer having a polyether segment and a polylactic acid segment and a block copolymer having a polyester segment and a polylactic acid segment are collectively referred to as a “block copolymer plasticizer”.
  • the mass ratio of the polylactic acid segment contained in the block copolymer plasticizer is preferably 50% by mass or less of the entire block copolymer plasticizer, because a desired flexibility can be imparted with a smaller amount of addition, preferably 5 It is preferable from the point of bleed-out suppression that it is more than mass%.
  • the mass ratio of the lactic acid unit is 5% by mass to 45% by mass, and the mass ratio of the polyether segment or the polyester segment is 55% by mass to 95% by mass. .
  • the number average molecular weight of the polylactic acid segment in one molecule of the block copolymer plasticizer is preferably 1,200 to 10,000.
  • the block copolymer plasticizer that is the thermoplastic resin (B) and the polylactic acid resin that is the resin (A) A sufficient affinity arises between
  • a part of the polylactic acid segment is taken into the crystal formed from the resin (A) to form a so-called eutectic so that the block copolymer plasticizer, which is the thermoplastic resin (B), is added to the resin.
  • this block copolymer plasticizer is greatly superior in moisture permeability as compared with a plasticizer that is liquid at normal temperature and a plasticizer that does not form a eutectic even when it is solid at normal temperature. This is because the eutectic formed improves the hole formation efficiency by embossing described later.
  • the number average molecular weight of the polylactic acid segment in the block copolymer plasticizer is more preferably 1,500 to 6,000, and further preferably 2,000 to 5,000. In the polylactic acid segment of the block copolymer plasticizer, the L-lactic acid unit is 95 to 100% by mass, or the D-lactic acid unit is 95 to 100% by mass. Therefore, it is preferable.
  • the block copolymer plasticizer has a polyether segment
  • the polyether segment include segments made of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol / polypropylene glycol copolymer, and the like.
  • a segment made of polyethylene glycol is preferable because it has high affinity with the polylactic acid-based resin (A) and is excellent in modification efficiency, and can impart desired flexibility with a small amount of addition.
  • the block copolymer plasticizer has a segment made of polyalkylene ether
  • the polyalkylene ether segment tends to be oxidized or thermally decomposed when heated at the time of molding or the like.
  • an antioxidant such as a hindered amine antioxidant
  • a heat stabilizer such as a phosphorus heat stabilizer
  • the block copolymer plasticizer has a polyester segment, polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate, 3-hydroxyvalerate), polycaprolactone, ethylene glycol, propane Polyesters composed of aliphatic diols such as diol and butanediol and aliphatic dicarboxylic acids such as succinic acid, sebacic acid and adipic acid are preferably used as the polyester segment.
  • the block copolymer plasticizer may contain both components of the polyether segment and the polyester segment in one molecule, or may contain only one of the components. For reasons of plasticizer productivity, cost, etc., when either component is used, it is preferable to use a polyether segment from the viewpoint that desired flexibility can be imparted by adding a smaller amount of the plasticizer. That is, a preferred embodiment as a block copolymer plasticizer is a block copolymer of a polyether segment and a polylactic acid segment.
  • the number average molecular weight of the polyether segment or the polyester segment in one molecule of the block copolymer plasticizer is preferably 7,000 to 20,000.
  • each segment block of the polyether segment and / or the polyester segment and the polylactic acid segment is a block common from the viewpoint of more effectively suppressing bleed out. It is preferably at the end of the polymer plasticizer molecule. Most preferably, the block of polylactic acid segment is at both ends of the block copolymer plasticizer molecule.
  • This block copolymer plasticizer contributes to the development of the flexibility of the whole film and the moisture permeability and waterproofness of the film by softening the polylactic acid resin (A).
  • PEG polyethylene glycol having a hydroxyl terminal at both ends as a polyether segment
  • the number average molecular weight of PEG having hydroxyl ends at both ends (hereinafter, the number average molecular weight of PEG is referred to as MPEG ) is usually calculated from the hydroxyl value determined by a neutralization method or the like in the case of a commercially available product.
  • MPEG number average molecular weight of PEG having hydroxyl ends at both ends
  • lactide w L parts by mass are added to w E parts by mass of PEG having hydroxyl groups at both ends
  • lactide is subjected to ring-opening addition polymerization at both hydroxyl groups of PEG and sufficiently reacted, so that PLA is substantially obtained.
  • a block copolymer of the -PEG-PLA type can be obtained (where PLA stands for polylactic acid).
  • the number average molecular weight of one polylactic acid segment of this block copolymer plasticizer can be determined as (1/2) ⁇ (w L / w E ) ⁇ M PEG .
  • the mass percentage of the total block copolymer plasticizer of the polylactic acid segment component can be substantially determined as 100 ⁇ w L / (w L + w E)%.
  • the mass ratio of the plasticizer component excluding the polylactic acid segment component to the entire block copolymer plasticizer can be determined to be substantially 100 ⁇ w E / (w L + w E )%.
  • separating a block copolymer plasticizer from a film and evaluating the number average molecular weight of each segment in a block copolymer plasticizer it can carry out as follows.
  • the film is uniformly dissolved in an appropriate good solvent such as chloroform and then dropped into an appropriate poor solvent such as water or a water / methanol mixed solution.
  • the block copolymer plasticizer is obtained by removing the precipitate by filtration and evaporating the solvent of the filtrate.
  • the block copolymer plasticizer thus separated is measured for number average molecular weight (hereinafter referred to as M) using gel permeation chromatography (GPC).
  • M number average molecular weight
  • a polylactic acid segment, a polyether-based segment and / or a polyester-based segment are identified by 1 H-NMR measurement.
  • the molecular weight of one polylactic acid segment contained in the block copolymer is M ⁇ ⁇ 1 / (number of polylactic acid segments in one molecule) ⁇ ⁇ (I PLA ⁇ 72) / [(I PE ⁇ UM PE / N PE ) + (I PLA ⁇ 72)].
  • I PLA is the signal integrated intensity in 1 H-NMR measurement derived from hydrogen of the methine group of the PLA main chain
  • I PE is 1 H-NMR derived from the polyether segment and / or the polyester segment. Indicates the signal integration intensity in the measurement.
  • UM PE is the molecular weight of the monomer unit of the polyether segment and / or polyester segment
  • N PE is the 1 H-NMR measurement corresponding to I PE of the polyether segment and / or polyester segment.
  • the number average molecular weight of the polyether segment and / or the polyester segment can be calculated by M ⁇ (number average molecular weight of polylactic acid segment) ⁇ (number of polylactic acid segments in one molecule).
  • the film to be embossed usually does not contain a plasticizer. This is because the plasticizer tends to bleed out by pressure bonding during embossing, and the physical properties of the film change, and the bleed out plasticizer stains the embossing roll.
  • a resin plasticizer as the plasticizer.
  • thermoplastic resin (B) Effects other than flexibility and moisture permeability due to the inclusion of the thermoplastic resin (B) depend on the type of resin, for example, bubble formation in the inflation film-forming method by improving melt viscosity and melt tension. Stabilization can be mentioned.
  • poly (meth) acrylate is contained as the thermoplastic resin (B)
  • the high-temperature rigidity of the polylactic acid-based film is improved.
  • the polyester is contained, the impact resistance and toughness of the polylactic acid-based film are improved.
  • the containing polymer is contained, the biodegradability promotion of the polylactic acid-based film can be mentioned.
  • the content of the thermoplastic resin (B) contained in the polylactic acid film of the present invention is 5 to 90% by mass in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B). It is preferable. By setting it as 5 mass% or more, it becomes a film excellent in flexibility. By setting it to 90 mass% or less, it becomes a film excellent in heat resistance.
  • the content of the thermoplastic resin (B) is preferably 10 to 80% by mass, more preferably 15 to 70% by mass, in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B). More preferably, it is particularly preferably 20 to 60% by mass.
  • the polylactic acid film of the present invention may contain only one kind of the above-mentioned thermoplastic resin (B), or may contain two or more kinds in combination.
  • Resin chosen from thermoplastic resin groups other than the polylactic acid-type resin mentioned above as a thermoplastic resin (B) can be combined, respectively.
  • a combination of a resin-based plasticizer and a thermoplastic resin other than the resin-based plasticizer is preferable from the viewpoint of achieving both flexibility and moisture permeability.
  • the resin-based plasticizer and a thermoplastic resin other than the resin-based plasticizer are combined as the thermoplastic resin (B), the moisture permeability and the waterproof property are dramatically improved.
  • the block copolymer plasticizer described above that is, a block copolymer having a polyether segment and a polylactic acid segment.
  • a polymer or a block copolymer having a polyester segment and a polylactic acid segment is preferred. More preferably, it is a block copolymer having a polyether segment and a polylactic acid segment.
  • thermoplastic resins other than the resin-based plasticizer the above-described aliphatic polyester resins and aliphatic aromatic polyester resins are preferable from the viewpoint of biodegradability.
  • poly (butylene adipate terephthalate), polybutylene succinate, poly (butylene succinate adipate), poly (3-hydroxybutyrate), poly (3-hydroxy More preferred are resins selected from butyrate-3-hydroxyvalerate) and polycaprolactone.
  • thermoplastic resin (B) includes a block copolymer having a polyether segment and a polylactic acid segment, a block copolymer having a polyester segment and a polylactic acid segment, an aliphatic polyester resin, and an aliphatic aromatic. At least one resin selected from the group consisting of polyester resins is preferred.
  • At least one resin selected from the group consisting of a block copolymer having a polyether segment and a polylactic acid segment and a block copolymer having a polyester segment and a polylactic acid segment; It is more preferable from a viewpoint of moisture permeability improvement to consist of a combination with at least 1 resin (thermoplastic resin other than resin-based plasticizer) selected from aliphatic polyester-based resins and aliphatic aromatic polyester-based resins.
  • thermoplastic resin (B) is a combination of a resin-based plasticizer and a thermoplastic resin other than the resin-based plasticizer
  • the polylactic acid resin (A) contained in the polylactic acid film of the present invention is preferably a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin. This is because, by using a mixture, the advantages of both crystalline and amorphous polylactic acid resins can be achieved.
  • the crystalline polylactic acid-based resin is polylactic acid when the polylactic acid-based resin is sufficiently crystallized under heating and then measured with a differential scanning calorimeter (DSC) in an appropriate temperature range.
  • DSC differential scanning calorimeter
  • This refers to a polylactic acid resin in which a melting point derived from a component is observed.
  • an amorphous polylactic acid-based resin refers to a polylactic acid-based resin that does not exhibit a clear melting point when the same measurement is performed.
  • the inclusion of the crystalline polylactic acid resin is suitable for improving the heat resistance and blocking resistance of the film.
  • the crystalline polylactic acid-based resin forms a eutectic with the polylactic acid segment of the block copolymer plasticizer, thereby preventing bleeding out. It has a great effect.
  • an amorphous polylactic acid resin is suitable for improving the flexibility and bleed-out resistance of the film. This is because the amorphous portion is provided by containing the amorphous polylactic acid resin in the film, and the plasticizer is easily dispersed therein.
  • the crystalline polylactic acid-based resin has a total content of L-lactic acid units in poly-L-lactic acid or a content of D-lactic acid units in poly-D-lactic acid.
  • a content of D-lactic acid units in poly-D-lactic acid In 100 mol% of lactic acid units, 96 to 100 mol% is preferable, and 98 to 100 mol% is more preferable.
  • the polylactic acid film of the present invention preferably contains a filler (C) in order to improve moisture permeability.
  • the filler (C) an inorganic filler and / or an organic filler can be used.
  • Filler refers to a substance added as a base material for improving various properties, or an inert substance added for the purpose of increasing the volume, increasing the volume, or reducing the cost of the product.
  • inorganic fillers include carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate; sulfates such as magnesium sulfate, barium sulfate, and calcium sulfate; zinc oxide, silicon oxide (silica), zirconium oxide, magnesium oxide, and oxide.
  • Metal oxides such as calcium, titanium oxide, magnesium oxide, iron oxide, and alumina; hydroxides such as aluminum hydroxide; complex oxides such as silicate minerals, hydroxyapatite, mica, talc, kaolin, clay, montmorillonite, and zeolite
  • a phosphate such as lithium phosphate, calcium phosphate or magnesium phosphate
  • a metal salt such as lithium chloride or lithium fluoride can be used.
  • calcium carbonate, barium carbonate, barium sulfate, calcium sulfate, silicon oxide (silica), titanium oxide, Mica, talc, kaolin, clay and montmorillonite are preferred.
  • the average particle diameter of the filler (C) is not particularly limited, but is preferably 0.01 to 10 ⁇ m.
  • the average particle diameter is 0.01 ⁇ m or more, high filling in the film is possible, and as a result, the film has a high potential for making the film porous and improving moisture permeability.
  • the average particle size is 10 ⁇ m or less, the embossability of the film, that is, local stretchability is improved, and as a result, the film has a high potential for increasing the porosity and moisture permeability of the film.
  • the average particle size is more preferably 0.1 to 8 ⁇ m, further preferably 0.5 to 5 ⁇ m, and most preferably 1 to 3 ⁇ m.
  • the average particle diameter is a 50% cumulative distribution average particle diameter measured by a laser diffraction scattering method.
  • the filler (C) can be surface-treated as necessary.
  • Surface treatment agents for surface treatment include phosphate ester compounds, fatty acids, surfactants, fats and oils, waxes, carboxylic acid coupling agents, silane coupling agents, titanate coupling agents, and polymer surface treatments.
  • An agent or the like can be used.
  • at least one compound selected from a phosphate ester compound, a fatty acid, a polymer surface treatment agent, a surfactant, a silane coupling agent, and a titanate coupling agent is preferable.
  • a compound selected from phosphoric ester compounds and fatty acids is more preferred.
  • the affinity with the matrix resin is improved, which is effective in suppressing the aggregation of the filler and improving the dispersibility, and can be uniformly dispersed in the resin composition. As a result, it becomes possible to obtain a film excellent in processability such as stretching for expressing good moisture permeability.
  • a dispersant in order to improve the dispersibility of the filler (C) in the resin composition, it is preferable to further add a dispersant.
  • the content of the filler (C) in the film is preferably 1 to 200 parts by mass with respect to 100 parts by mass in total of the polylactic acid resin (A) and the thermoplastic resin (B).
  • a film excellent in moisture permeability by adjusting the content of the filler (C) in the film to 1 part by mass or more with respect to 100 parts by mass in total of the polylactic acid resin (A) and the thermoplastic resin (B). It becomes.
  • the tensile strength of a film is made by making content of the filler (C) in a film into 200 mass parts or less with respect to a total of 100 mass parts of a polylactic acid-type resin (A) and a thermoplastic resin (B).
  • the film has excellent workability while maintaining the tensile elongation, and has good melt processability, embossability, that is, local stretchability when the film is produced.
  • the blending amount of the filler (C) is more preferably 3 to 150 parts by mass and further preferably 5 to 100 parts by mass with respect to 100 parts by mass in total of the resin (A) and the resin (B). The amount is preferably 25 to 70 parts by mass.
  • the filler (C) when the filler (C) is included in the composition capable of forming the layered alloy structure described above, the filler (C) becomes a starting point during embossing to induce interfacial peeling of the layered alloy, It has been found that the wettability can be greatly improved.
  • the polylactic acid-based film of the present invention preferably has a tensile elongation in the length direction and width direction (direction perpendicular to the length direction) of 50 to 300%.
  • the tensile elongation is an index relating to workability when the polylactic acid film of the present invention is applied to various uses. The higher the tensile elongation, the better the workability.
  • the tensile elongation in the length direction and the width direction is more preferably from 100 to 290%, further preferably from 150 to 280%.
  • Examples of a method for adjusting the tensile elongation in the length direction and the width direction to 50 to 300% include, for example, a film made of a resin composition in which each of the above-mentioned preferred types and contents are blended.
  • embossing roll having a preferred shape embossing at the above-described preferred roll temperature and linear pressure can be mentioned.
  • the polylactic acid film of the present invention preferably has a tensile modulus in the length direction and the width direction of 200 to 1,500 MPa in order to impart sufficient flexibility.
  • the tensile modulus is an index relating to flexibility, and the smaller the tensile modulus, the better the flexibility.
  • the tensile elastic modulus is more preferably 250 to 1,200 MPa, further preferably 280 to 1,000 MPa, and particularly preferably 300 to 900 MPa.
  • the polylactic acid film of the present invention preferably has a film thickness of 5 to 200 ⁇ m. By setting the film thickness to 5 ⁇ m or more, the firmness of the film becomes strong, the handling property is excellent, and the roll winding shape and unwinding property are good.
  • the film thickness is 200 ⁇ m or less, the film is excellent in flexibility and moisture permeability. In particular, in the inflation film forming method, bubbles do not become unstable due to their own weight.
  • the film thickness is more preferably 7 to 150 ⁇ m, further preferably 10 to 100 ⁇ m, and still more preferably 12 to 50 ⁇ m. (Additive) In the composition which comprises the polylactic acid-type film of this invention, you may contain additives other than having mentioned above in the range which does not impair the effect of this invention.
  • plasticizers for example, known plasticizers, antioxidants, crystal nucleating agents, organic lubricants, UV stabilizers, endblockers, anti-coloring agents, matting agents, antibacterial agents, deodorants, flame retardants, weathering agents, antistatic Agents, antioxidants, ion exchange agents, tackifiers, antifoaming agents, color pigments, dyes and the like can be used.
  • fatty acid amide compounds can be preferably used.
  • antioxidant a hindered phenol-based antioxidant, a hindered amine-based antioxidant, and the like can be preferably used.
  • the terminal blocking agent addition reaction type compounds such as carbodiimide compounds, epoxy compounds, isocyanate compounds, oxazoline compounds can be preferably used.
  • the amount of lactic acid oligomer component contained in the film is preferably 0.3% by mass or less. More preferably, it is 0.2 mass% or less, More preferably, it is 0.1 mass% or less.
  • lactic acid oligomer component refers to a cyclic dimer (lactide) of lactic acid that is most representative in quantity among lactic acid and linear oligomers and cyclic oligomers of lactic acid present in the film, that is, LL-lactide.
  • the polylactic acid resin (A) in the present invention can be obtained, for example, by the following method.
  • L-lactic acid or D-lactic acid is used as a raw material.
  • Hydroxycarboxylic acids other than the lactic acid described above can also be used in combination.
  • a cyclic ester intermediate of hydroxycarboxylic acid for example, lactide, glycolide, etc. can be used as a raw material.
  • dicarboxylic acids and glycols can also be used.
  • the polylactic acid resin can be obtained by a method of directly dehydrating and condensing the raw materials or a method of ring-opening polymerization of the cyclic ester intermediate.
  • lactic acid or lactic acid and hydroxycarboxylic acid are subjected to azeotropic dehydration condensation in the presence of an organic solvent, particularly preferably a phenyl ether solvent, and water is removed from the solvent distilled by azeotropic distillation.
  • a high molecular weight polymer can be obtained by polymerizing by a method in which the solvent which has been removed in a substantially anhydrous state is returned to the reaction system.
  • a high molecular weight polymer can be obtained by subjecting a cyclic ester intermediate such as lactide to ring-opening polymerization under reduced pressure using a catalyst such as tin octylate.
  • a catalyst such as tin octylate.
  • a method of adjusting the conditions for removing moisture and low molecular weight compounds during heating and reflux in an organic solvent, a method of suppressing the depolymerization reaction by adding a phosphorus compound after the polymerization reaction and deactivating the catalyst By using a method of heat-treating the produced polymer, a polymer having a small amount of lactide can be obtained.
  • a composition constituting the polylactic acid film of the present invention that is, a composition containing a polylactic acid resin (A) and, if necessary, a thermoplastic resin (B), a filler (C) and other components.
  • a composition containing a polylactic acid resin (A) and, if necessary, a thermoplastic resin (B), a filler (C) and other components.
  • the method is preferable because steps such as dissolution of the raw material in the solvent and removal of the solvent are unnecessary.
  • the melt kneading method is not particularly limited, and a known mixer such as a kneader, roll mill, Banbury mixer, single-screw or twin-screw extruder can be used. Among these, from the viewpoint of productivity, it is preferable to use a single screw or twin screw extruder.
  • the temperature at the time of melt kneading is preferably in the range of 150 ° C. to 240 ° C., and more preferably in the range of 190 ° C. to 210 ° C. from the viewpoint of preventing the deterioration of the polylactic acid resin.
  • the polylactic acid-based film of the present invention uses, for example, a composition obtained by the above-described method, and combines an existing film forming method such as a known inflation method, a tubular method, or a T-die casting method with embossing. Can be obtained.
  • the composition containing the polylactic acid-based resin obtained by the above-described method is once pelletized, melt-kneaded again, and extruded / film-formed. It is preferable to use a composition having a moisture content of 500 ppm (mass basis) or less by drying the pellets at 60 to 100 ° C. for 6 hours or more. Furthermore, it is preferable to reduce the lactide content in the composition by vacuum drying under a high vacuum with a degree of vacuum of 10 torr or less.
  • the melt viscosity of the product can be set to an appropriate level and the film forming process can be stabilized.
  • a biaxial extruder with a vent hole is used to remove volatiles such as moisture and low molecular weight substances. Melt extrusion is preferred.
  • the method for forming the polylactic acid film of the present invention by the inflation method is exemplified below.
  • the composition produced by the method as described above is melt-extruded with a twin screw extruder with a vacuum vent hole, led to an annular die, extruded from the annular die, and supplied with dry air to form a balloon. To do. Furthermore, it is air-cooled and solidified uniformly with an air ring, and after it is folded flat with a nip roll and taken at a predetermined take-up speed, both ends or one end is cut open as necessary to obtain a film before embossing. be able to.
  • the temperature of the annular die is important, and the temperature of the annular die is preferably in the range of 150 to 190 ° C, more preferably in the range of 155 to 185 ° C.
  • annular die it is preferable to use a rotary type and a spiral type from the viewpoint of thickness accuracy and uniformity of the obtained film.
  • surface treatment such as corona discharge treatment, plasma treatment, flame treatment, and acid treatment may be performed for the purpose of improving printability, laminate suitability, coating suitability, etc. The method is illustrated below.
  • the film formed by the method as described above is embossed between an embossing roll and a rubber roll or a paper roll to obtain a target polylactic acid film.
  • the roll temperature is preferably 20 to 80 ° C.
  • the nip pressure (linear pressure) is preferably 20 to 100 kg / cm
  • the roll rotation speed is preferably 0.5 to 30 m / min. Embossing is normally performed only once, but may be performed twice or more as necessary.
  • a sample was cut into a strip shape having a length of 150 mm and a width of 10 mm in the measurement direction, and the distance between the initial tensile chucks was 50 mm and the tensile speed was 200 mm / min, according to the method defined in JIS K 7127 (1999).
  • Ten measurements were made for each of the length and width directions, and the average value was taken as the tensile modulus.
  • (2) Tensile elongation (%) Tensile elongation was measured in an atmosphere of room temperature 23 ° C. and relative humidity 65% using “TENSILON” (registered trademark) UCT-100 manufactured by Orientec Co., Ltd.
  • a sample was cut into a strip shape having a length of 150 mm and a width of 10 mm in the measurement direction, and the distance between the initial tensile chucks was 50 mm and the tensile speed was 200 mm / min, according to the method defined in JIS K 7127 (1999). Ten measurements were made for each of the length direction and width direction, and the average value was taken as the tensile elongation.
  • AA 2,000g / (m 2 ⁇ day) or more A: 1,500g / (m 2 ⁇ day) or more 2,000g / (m 2 ⁇ day) under B: 1,000g / (m 2 ⁇ day) or more Less than 1,500 g / (m 2 ⁇ day) C: 500 g / (m 2 ⁇ day) or more and less than 1,000 g / (m 2 ⁇ day) D: Less than 500 g / (m 2 ⁇ day).
  • (4) Water resistance A water resistance test (hydrostatic pressure method; method A (low water pressure method)) was performed according to the method specified in JIS L 1092 (2009). At this time, the water level rising speed of the level device was 600 mm / min ⁇ 30 mm / min. This water resistance (mm) was measured three times, and the average value was used for evaluation according to the following criteria.
  • GPC measurement uses a WATERS differential refractometer WATERS410 as a detector, WATERS MODEL510 high performance liquid chromatography as a pump, and Shodex GPC HFIP-806M and Shodex GPC HFIP-LG connected in series as a column. I went.
  • Measurement conditions were such that the flow rate was 0.5 mL / min, hexafluoroisopropanol was used as the solvent, and 0.1 mL of a solution having a sample concentration of 1 mg / mL was injected.
  • (6) Height of discontinuous portion Using an ultramicrotome, the film sample is ⁇ 100 ° C. so that the cross section passing through the center of gravity of the concave or convex shape becomes the observation surface when the film surface is viewed from directly above.
  • Ultrathin sections were collected at Using a scanning electron microscope, take a cross-sectional photograph of the thin film section of this film cross section at a magnification (for example, 200 times) that can confirm the length corresponding to the difference between the lowest part of the film surface and the highest part. Then, the height of the discontinuous portion was measured. This was performed at five locations by changing the observed concave or convex portions, and the average value obtained was defined as the height ( ⁇ m) of the discontinuous portions in the present invention.
  • Thermoplastic resin (B) other than polylactic acid resin (A)] (B1) Polybutylene adipate terephthalate resin (trade name “Ecoflex” (registered trademark) FBX7011 manufactured by BASF) (B2) Polybutylene succinate resin (Mitsubishi Chemical Corporation, trade name “GSPla” (registered trademark) AZ91T) (B3) Polybutylene succinate / adipate resin (manufactured by Showa Polymer Co., Ltd., trade name “Bionore” (registered trademark) # 3001) (B4) 62 parts by mass of polyethylene glycol having a number average molecular weight of 8,000, 38 parts by mass of L-lactide and 0.05 parts by mass of tin octylate are mixed and polymerized in a reaction vessel equipped with a stirrer at 160 ° C.
  • [Filler (C)] (C1) Calcium carbonate (manufactured by Sankyo Seimitsu Co., Ltd., trade name “Top Flow” (registered trademark) H200, average particle size: 1.7 ⁇ m)
  • [Metal embossing roll] (I) Pattern: regular square pyramid trapezoidal pattern, regular arrangement, unevenness difference: 0.1 mm, pitch: 1.0 mm, crimping area: 0.16 mm 2 , crimping area ratio: 16%, unevenness section angle ⁇ : 18 ° (II) Pattern: regular square pyramid trapezoidal pattern, regular arrangement, unevenness difference: 0.3 mm, pitch: 1.0 mm, crimping area: 0.09 mm 2 , crimping area ratio: 9%, irregularity section angle ⁇ : 18 ° (III) Pattern: regular quadrangular pyramid trapezoidal pattern, regular arrangement, unevenness difference: 0.5 mm, pitch: 1.0 mm, crimping area: 0.04 mm 2 , crimping
  • the pellets of this composition were vacuum-dried at a temperature of 60 ° C. for 12 hours using a rotary drum type vacuum dryer.
  • the dried composition pellets were supplied to a single screw extruder with a cylinder temperature of 180 ° C., and a blow spiral ratio of 2.4 mm from a rotary spiral annular die with a diameter of 250 mm, a lip clearance of 1.3 mm, and a temperature of 160 ° C. Extruded upward in the form of bubbles, air-cooled with a cooling ring, folded while being folded with a nip roll above the die, cut at both ends with an edge cutter, cut into two pieces, each wound with a winder, and a film with a final thickness of 20 ⁇ m Got. At this time, the draw ratio was 27. Table 1 shows the physical properties of the obtained film. (Example 1) A film having a thickness of 20 ⁇ m was obtained in the same manner as in Comparative Example 1 except that the composition of the film was changed as shown in Table 1.
  • Example 2 to 24, Comparative Examples 2 to 3 A film was obtained in the same manner as in Example 1 except that the composition of the film and the embossing conditions were changed as shown in Tables 1 to 4. The physical properties of the obtained film are shown in Tables 1 to 4.
  • Comparative Example 4 A film was obtained in the same manner as in Comparative Example 1 except that the composition of the film was changed as shown in Table 3.
  • Table 3 shows the physical properties of the obtained film.
  • Example 25 A film having a thickness of 20 ⁇ m was obtained in the same manner as in Comparative Example 1 except that the composition of the film was changed as shown in Table 4.
  • the film was set in an electric heating type embossing machine HTEM-300 manufactured by Yuri Roll Co., Ltd., having an embossing roll (V) (upper stage), an embossing roll (V), and a recess for forming a male and female, Between the paper rolls (lower stage) where the depth of the concave part is 25% of the height of the convex part of the embossing roll (V), the roll temperature is 50 ° C (both upper and lower stages), and the nip pressure (linear pressure) is 50kg. It was embossed by passing under the conditions of / cm and roll rotation speed of 1.0 m / min. The physical properties of the film are shown in Table 4.
  • Example 26 A film was obtained in the same manner as in Example 25 except that the depth of the concave portion of the paper roll (lower stage) was changed to 45% of the height of the convex portion of the embossing roll (V). Table 4 shows the physical properties of the obtained film.
  • Example 27 A film was obtained in the same manner as in Example 25 except that the depth of the concave portion of the paper roll (lower stage) was changed to 80% of the height of the convex portion of the embossing roll (V). Table 4 shows the physical properties of the obtained film.
  • Example 5 A film was obtained in the same manner as in Example 25 except that the depth of the concave portion of the paper roll (lower stage) was changed to 100% of the height of the convex portion of the embossing roll (V). Table 4 shows the physical properties of the obtained film. (Examples 28 to 30, Comparative Example 6) A film was obtained in the same manner as in Example 27 except that the composition of the film and the embossing conditions were changed as shown in Table 4. Table 4 shows the physical properties of the obtained film.
  • the polylactic acid-based film of the present invention is a polylactic acid-based film that is excellent in moisture permeability, waterproofness, flexibility, processability, and has a high degree of biomass.
  • the polylactic acid-based film of the present invention comprises medical and hygiene materials such as bed sheets, pillow covers, and back sheets of absorbent articles such as sanitary napkins and paper diapers; clothing materials such as rainy clothes and gloves; garbage bags and compost bags, Or it can use for packaging materials, such as a bag for foodstuffs, such as vegetables and fruits, and a bag of various industrial products.

Abstract

A polylactic acid film comprising a composition containing a polylactic acid resin (A), having a non-continuous concave or convex section on at least one surface of the film, and having a moisture permeability of 500-3,000 g/(m2/day). Provided is a polylactic acid film having excellent moisture permeability, water resistance, flexibility, and workability, and also having a high degree of biomass.

Description

ポリ乳酸系フィルムPolylactic acid film
 本発明は、透湿性、防水性、柔軟性、加工性に優れ、かつ、高バイオマス度であるポリ乳酸系フィルムに関する。 The present invention relates to a polylactic acid-based film that is excellent in moisture permeability, waterproofness, flexibility and processability and has a high degree of biomass.
 近年、環境意識の高まりのもと、プラスチック製品の廃棄による土壌汚染問題、および、焼却による二酸化炭素増大に起因する地球温暖化問題が注目されている。前者への対策として、種々の生分解樹脂、後者への対策として、焼却しても大気中に新たな二酸化炭素の負荷を与えないバイオマス(植物由来原料)からなる樹脂がさかんに研究、開発されている。その両方の目的を満足し、かつ、コスト面でも比較的有利なポリ乳酸が注目されている。しかし、ポリ乳酸を、ポリエチレンなどのポリオレフィンが代表的な素材として用いられる軟質フィルム用途に適用しようとすると柔軟性や耐衝撃性に欠けるため、これらの特性を改善し実用化するために各種の試みがなされている。 In recent years, with increasing environmental awareness, attention has been focused on soil pollution problems caused by the disposal of plastic products and global warming problems caused by increased carbon dioxide caused by incineration. As a measure against the former, various biodegradable resins, and as a measure against the latter, a resin made of biomass (plant-derived raw material) that does not give a new carbon dioxide load to the atmosphere even if it is incinerated has been extensively researched and developed. ing. Attention has been focused on polylactic acid which satisfies both purposes and is relatively advantageous in terms of cost. However, when trying to apply polylactic acid to flexible film applications in which polyolefins such as polyethylene are used as typical materials, they lack flexibility and impact resistance, so various attempts have been made to improve these properties and put them to practical use. Has been made.
 透湿フィルムの分野では、例えば、特許文献1には、ポリ乳酸樹脂、充填剤及び一般的なポリエステル系可塑剤を含むシートを少なくとも1軸延伸してなる多孔性シートが開示されている。また、特許文献2には、ポリ乳酸系重合体、脂肪族-芳香族共重合ポリエステル、可塑剤、微粉状充填剤が配合された混合物を溶融製膜し、縦延伸、横延伸すること、空孔を形成した多孔性フィルムが開示されている。 In the field of moisture permeable films, for example, Patent Document 1 discloses a porous sheet formed by stretching at least uniaxially a sheet containing a polylactic acid resin, a filler, and a general polyester plasticizer. Patent Document 2 discloses that a mixture containing a polylactic acid-based polymer, an aliphatic-aromatic copolymer polyester, a plasticizer, and a fine powder filler is melted to form a film, and longitudinally stretched and laterally stretched. A porous film having pores is disclosed.
特開2007-112867号公報JP 2007-112867 A 特開2004-149679号公報JP 2004-149679 A
 前述の特許文献1および特許文献2に記載の技術では、フィルム製造時の延伸工程が必須である。延伸工程が必要である場合、工程数が増えたり、装置が大型化したりするため、製造の簡便さや製造コスト面で不利となる。また、充填剤配合と延伸による方法では、透湿性は発現するが、延伸後にフィルムの伸度が大きく低下し、各用途で使用する際のフィルムの加工性に劣るものであった。 In the techniques described in Patent Document 1 and Patent Document 2 described above, a stretching process at the time of film production is essential. When the stretching process is necessary, the number of processes increases and the apparatus becomes large, which is disadvantageous in terms of manufacturing simplicity and manufacturing cost. Further, in the method using filler blending and stretching, moisture permeability is exhibited, but the elongation of the film is greatly lowered after stretching, and the processability of the film when used in each application is inferior.
 つまり、これまでに透湿性、柔軟性に優れ、かつ、高バイオマス度であるポリ乳酸フィルムの検討がなされてきたが、製造の簡便さや製造コスト面で不利であり、また、その加工性能は不十分であった。 In other words, a polylactic acid film having excellent moisture permeability and flexibility and high biomass has been studied so far, but it is disadvantageous in terms of manufacturing simplicity and manufacturing cost, and its processing performance is poor. It was enough.
 本発明は、かかる従来技術の背景に鑑み、透湿性、防水性、柔軟性、加工性に優れ、かつ、高バイオマス度である、ポリ乳酸系フィルムを提供せんとするものである。 In view of the background of such conventional technology, the present invention is intended to provide a polylactic acid film that is excellent in moisture permeability, waterproofness, flexibility, processability and has a high degree of biomass.
 本発明のポリ乳酸系フィルムは、上記課題を解決するため次の構成を有する。すなわち、
 ポリ乳酸系樹脂(A)を含有するフィルムであって、フィルムの少なくとも片面に、凹部または凸部の不連続部分を有し、透湿度が500~3,000g/(m・day)であるポリ乳酸系フィルム、である。
The polylactic acid film of the present invention has the following configuration in order to solve the above problems. That is,
A film containing a polylactic acid-based resin (A), which has a concave or convex discontinuous portion on at least one side of the film, and has a moisture permeability of 500 to 3,000 g / (m 2 · day). A polylactic acid film.
 本発明のポリ乳酸系フィルムの製造方法は、上記課題を解決するため次の(1)または(2)のいずれかの構成を有する。すなわち、
 (1)凸部を有するロールと弾性ロールの間に、フィルムを通すエンボス工程を有するポリ乳酸系フィルムの製造方法、または、
 (2)凸部を有するロールと凹部を有するロールが雄雌を形成し、その間にフィルムを通すエンボス工程を有するフィルムの製造方法であって、前記凹部の深さが、前記凸部の高さの5~80%であるポリ乳酸系フィルムの製造方法、である。
The method for producing a polylactic acid film of the present invention has the following constitution (1) or (2) in order to solve the above problems. That is,
(1) A method for producing a polylactic acid film having an embossing step of passing a film between a roll having a convex portion and an elastic roll, or
(2) A method for producing a film having an embossing process in which a roll having a convex part and a roll having a concave part form a male and female, and the film is passed between them, the depth of the concave part being the height of the convex part 5 to 80% of the polylactic acid film production method.
 本発明のポリ乳酸系フィルムは、不連続部分の高さが20~150μmであることが好ましい。 In the polylactic acid film of the present invention, the height of the discontinuous portion is preferably 20 to 150 μm.
 本発明のポリ乳酸系フィルムは、ポリ乳酸系樹脂(A)以外の熱可塑性樹脂(B)を含有し、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%において、ポリ乳酸系樹脂(A)が10~95質量%、熱可塑性樹脂(B)が5~90質量%であることが好ましい。 The polylactic acid-based film of the present invention contains a thermoplastic resin (B) other than the polylactic acid-based resin (A), and the total amount of the polylactic acid-based resin (A) and the thermoplastic resin (B) is 100% by mass. The lactic acid resin (A) is preferably 10 to 95% by mass, and the thermoplastic resin (B) is preferably 5 to 90% by mass.
 本発明のポリ乳酸系フィルムは、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量部に対して、充填剤(C)を1~200質量部含有することが好ましい。 The polylactic acid film of the present invention preferably contains 1 to 200 parts by mass of the filler (C) with respect to 100 parts by mass in total of the polylactic acid resin (A) and the thermoplastic resin (B).
 本発明のポリ乳酸系フィルムは、熱可塑性樹脂(B)が、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体、ポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体、脂肪族ポリエステル系樹脂、および脂肪族芳香族ポリエステル系樹脂からなる群より選ばれる少なくとも1つの樹脂であることが好ましい。 The polylactic acid film of the present invention is a block copolymer in which the thermoplastic resin (B) has a polyether segment and a polylactic acid segment, a block copolymer having a polyester segment and a polylactic acid segment, and an aliphatic polyester system. It is preferably at least one resin selected from the group consisting of a resin and an aliphatic aromatic polyester resin.
 本発明のポリ乳酸系フィルムは、熱可塑性樹脂(B)が、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体及びポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体からなる群より選ばれる少なくとも1つの樹脂と、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂より選ばれる少なくとも1つの樹脂との組み合わせからなることが好ましい。 The polylactic acid-based film of the present invention is selected from the group consisting of a block copolymer in which the thermoplastic resin (B) has a polyether segment and a polylactic acid segment, and a block copolymer having a polyester segment and a polylactic acid segment. It is preferable to comprise a combination of at least one resin selected from the group consisting of an aliphatic polyester resin and an aliphatic aromatic polyester resin.
 本発明のポリ乳酸系フィルムの製造方法(1)は、ポリ乳酸系フィルムがポリ乳酸系樹脂(A)以外の熱可塑性樹脂(B)を含有し、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%において、ポリ乳酸系樹脂(A)が10~95質量%、熱可塑性樹脂(B)が5~90質量%であり、熱可塑性樹脂(B)が、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体及びポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体からなる群より選ばれる少なくとも1つの樹脂と、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂より選ばれる少なくとも1つの樹脂との組み合わせからなることが好ましい。 In the method (1) for producing a polylactic acid film of the present invention, the polylactic acid film contains a thermoplastic resin (B) other than the polylactic acid resin (A), and the polylactic acid resin (A) and the thermoplastic resin are used. In the total 100% by mass of (B), the polylactic acid resin (A) is 10 to 95% by mass, the thermoplastic resin (B) is 5 to 90% by mass, and the thermoplastic resin (B) is a polyether segment. At least one resin selected from the group consisting of a block copolymer having a polylactic acid segment and a block copolymer having a polyester segment and a polylactic acid segment, and an aliphatic polyester resin and an aliphatic aromatic polyester resin It is preferably composed of a combination with at least one resin selected.
 本発明のポリ乳酸系フィルムの製造方法(2)は、前記凹部の深さが、前記凸部の高さの45~80%であることが好ましい。 In the method (2) for producing a polylactic acid film of the present invention, the depth of the concave portion is preferably 45 to 80% of the height of the convex portion.
 本発明のポリ乳酸系フィルムの製造方法(2)は、前記凸部を有するロールの材質が金属ロール、前記凹部を有するロールの材質がペーパーロールであることが好ましい。 In the method (2) for producing a polylactic acid film of the present invention, it is preferable that the material of the roll having the convex portion is a metal roll and the material of the roll having the concave portion is a paper roll.
 本発明によれば、透湿性、防水性、柔軟性、加工性に優れ、かつ、高バイオマス度である、ポリ乳酸系フィルムが提供される。本発明のポリ乳酸系フィルムは、透湿性、防水性、柔軟性および加工性を必要とする用途に好ましく用いることができる。具体的には、ベッド用シーツ、枕カバー、衛生ナプキンや紙おむつ等の吸収性物品のバックシートといった医療・衛生材料;雨天用衣類、手袋等の衣料材料;ゴミ袋や堆肥袋、あるいは野菜や果物等の食品用袋、各種工業製品の袋などの包装材料、などに好ましく用いることができる。 According to the present invention, there is provided a polylactic acid-based film that is excellent in moisture permeability, waterproofness, flexibility, processability, and has a high degree of biomass. The polylactic acid film of the present invention can be preferably used for applications requiring moisture permeability, waterproofness, flexibility and processability. Specifically, medical and hygiene materials such as bed sheets, pillow covers, back sheets for absorbent articles such as sanitary napkins and paper diapers; clothing materials such as rainy clothing and gloves; garbage bags and compost bags, or vegetables and fruits It can preferably be used for packaging materials such as food bags such as bags for various industrial products.
エンボスロール表面の凹凸部の断面図である。It is sectional drawing of the uneven | corrugated | grooved part of the embossing roll surface. エンボスロール表面の凹凸部を上から見た図である。It is the figure which looked at the uneven | corrugated | grooved part of the embossing roll surface from the top. フィルムの凹凸部の断面図である。It is sectional drawing of the uneven | corrugated | grooved part of a film.
 発明者らは、前記課題、つまり、透湿性、防水性、柔軟性、加工性に優れ、かつ、高バイオマス度である、ポリ乳酸系フィルムについて鋭意検討した結果、フィルムの少なくとも片面に、凹部または凸部の不連続部分を有し、透湿度を一定の条件内に納めることにより、かかる課題の解決に初めて成功したものである。 As a result of earnestly examining the above-mentioned problem, that is, a polylactic acid-based film that is excellent in moisture permeability, waterproofness, flexibility, processability, and high biomass, a recess or This is the first successful solution to this problem by having discontinuous portions of protrusions and keeping moisture permeability within a certain condition.
 すなわち本発明は、ポリ乳酸系樹脂(A)を含有するフィルムであって、フィルムの少なくとも片面に、凹部または凸部の不連続部分を有し、透湿度が500~3,000g/(m・day)であるポリ乳酸系フィルムである。 That is, the present invention is a film containing a polylactic acid-based resin (A), having a discontinuous portion of a concave portion or a convex portion on at least one side of the film, and having a moisture permeability of 500 to 3,000 g / (m 2 -A polylactic acid film that is day).
 以下、本発明のポリ乳酸系フィルムについて説明する。
(ポリ乳酸系樹脂(A))
 本発明のポリ乳酸系フィルムは、ポリ乳酸系樹脂(A)を含むことが重要である。
Hereinafter, the polylactic acid film of the present invention will be described.
(Polylactic acid resin (A))
It is important that the polylactic acid film of the present invention contains a polylactic acid resin (A).
 ポリ乳酸系樹脂(A)とは、L-乳酸ユニットおよびD-乳酸ユニットから選ばれる単量体ユニットを主たる構成成分とする重合体である。ここで主たる構成成分とは、重合体の構成単位中において、乳酸ユニットの質量割合が最大であることを意味する。ポリ乳酸系樹脂(A)における乳酸ユニットの質量割合は、好ましくは重合体100質量%中において70質量%~100質量%である。 The polylactic acid resin (A) is a polymer mainly composed of monomer units selected from L-lactic acid units and D-lactic acid units. Here, the main constituent component means that the mass ratio of the lactic acid unit is the maximum in the constituent unit of the polymer. The mass ratio of the lactic acid unit in the polylactic acid resin (A) is preferably 70% by mass to 100% by mass in 100% by mass of the polymer.
 ポリ乳酸系樹脂としては、ポリL-乳酸、ポリD-乳酸などが好ましく用いられる。本発明でいうポリL-乳酸とは、重合体中の全乳酸ユニット100mol%中において、L-乳酸ユニットの含有割合が50mol%を超え100mol%以下のものをいう。一方、本発明でいうポリD-乳酸とは、重合体中の全乳酸ユニット100mol%中において、D-乳酸ユニットの含有割合が50mol%を超え100mol%以下のものをいう。 As the polylactic acid resin, poly L-lactic acid, poly D-lactic acid and the like are preferably used. The term “poly L-lactic acid” as used in the present invention means that the content of L-lactic acid units is more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the polymer. On the other hand, poly-D-lactic acid as used in the present invention refers to those having a D-lactic acid unit content of more than 50 mol% and not more than 100 mol% in 100 mol% of all lactic acid units in the polymer.
 ポリL-乳酸は、D-乳酸ユニットの含有割合によって、樹脂自体の結晶性が変化する。つまり、ポリL-乳酸中のD-乳酸ユニットの含有割合が多くなれば、ポリL-乳酸の結晶性は低くなり非晶に近づく。逆にポリL-乳酸中のD-乳酸ユニットの含有割合が少なくなれば、ポリL-乳酸の結晶性は高くなっていく。同様に、ポリD-乳酸は、L-乳酸ユニットの含有割合によって、樹脂自体の結晶性が変化する。つまり、ポリD-乳酸中のL-乳酸ユニットの含有割合が多くなれば、ポリD-乳酸の結晶性は低くなり非晶に近づく。逆にポリD-乳酸中のL-乳酸ユニットの含有割合が少なくなれば、ポリD-乳酸の結晶性は高くなっていく。 Poly L-lactic acid changes in the crystallinity of the resin itself depending on the content ratio of the D-lactic acid unit. That is, when the content ratio of the D-lactic acid unit in the poly L-lactic acid is increased, the crystallinity of the poly L-lactic acid is lowered and approaches an amorphous state. Conversely, if the content ratio of D-lactic acid units in poly-L-lactic acid decreases, the crystallinity of poly-L-lactic acid increases. Similarly, the crystallinity of the resin itself of poly D-lactic acid varies depending on the content ratio of L-lactic acid units. That is, when the content ratio of the L-lactic acid unit in the poly-D-lactic acid is increased, the crystallinity of the poly-D-lactic acid is lowered and approaches an amorphous state. Conversely, if the content of L-lactic acid units in poly-D-lactic acid decreases, the crystallinity of poly-D-lactic acid increases.
 ポリL-乳酸中のL-乳酸ユニットの含有割合、あるいは、ポリD-乳酸中のD-乳酸ユニットの含有割合は、フィルムの機械強度を維持する観点から、全乳酸ユニット100mol%中において80~100mol%が好ましく、より好ましくは85~100mol%である。 From the viewpoint of maintaining the mechanical strength of the film, the content ratio of the L-lactic acid unit in the poly L-lactic acid or the content ratio of the D-lactic acid unit in the poly D-lactic acid is 80 to 100 mol% is preferable, and more preferably 85 to 100 mol%.
 本発明で用いられるポリ乳酸系樹脂(A)は、乳酸ユニット以外の他の単量体ユニットを共重合してもよい。他の単量体としては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオ-ル、デカンジオール、1,4-シクロヘキサンジメタノ-ル、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ビスフェノ-ルA、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコールなどのグリコール化合物;シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4´-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸などのジカルボン酸;グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オンなどのラクトン類を挙げることができる。上記の乳酸ユニット以外の他の単量体ユニットの共重合量は、重合体中の単量体ユニット全体100mol%中において、30mol%以下であることが好ましく、10mol%以下であることがより好ましい。なお、上記した単量体ユニットの中でも、用途に応じて生分解性を有する成分を選択することが好ましい。 The polylactic acid resin (A) used in the present invention may be copolymerized with a monomer unit other than the lactic acid unit. Other monomers include ethylene glycol, propylene glycol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, glycerin, pentane Glycol compounds such as erythritol, bisphenol A, polyethylene glycol, polypropylene glycol and polytetramethylene glycol; oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid , Terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, bis (p-carboxyphenyl) methane, anthracene dicarboxylic acid, 4,4'-diphenyl ether dica Dicarboxylic acids such as boronic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium isophthalic acid; hydroxycarboxylic acids such as glycolic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxybenzoic acid; caprolactone And lactones such as valerolactone, propiolactone, undecalactone, and 1,5-oxepan-2-one. The amount of copolymerization of other monomer units other than the lactic acid unit is preferably 30 mol% or less, more preferably 10 mol% or less, in 100 mol% of all monomer units in the polymer. . In addition, it is preferable to select the component which has biodegradability among the above-mentioned monomer units according to a use.
 また、ポリ乳酸系樹脂(A)について、主成分がポリL-乳酸の場合はポリD-乳酸を、また、主成分がポリD-乳酸の場合はポリL-乳酸を、少量混合することも好ましい。これにより形成されるステレオコンプレックス結晶は、通常のポリ乳酸の結晶(α結晶)よりも融点が高いため、フィルムの耐熱性が向上するためである。 The polylactic acid resin (A) may be mixed with a small amount of poly D-lactic acid when the main component is poly L-lactic acid, or a small amount of poly L-lactic acid when the main component is poly D-lactic acid. preferable. This is because the stereocomplex crystal formed thereby has a higher melting point than a normal polylactic acid crystal (α crystal), so that the heat resistance of the film is improved.
 ポリ乳酸系樹脂(A)の質量平均分子量は、実用的な機械特性を満足させるため、5万~50万であることが好ましく、8万~40万であることがより好ましく、10万~30万であることがさらに好ましい。 The mass average molecular weight of the polylactic acid resin (A) is preferably 50,000 to 500,000, more preferably 80,000 to 400,000, in order to satisfy practical mechanical properties. More preferably, it is 10,000.
 ポリ乳酸系樹脂(A)の製造方法としては、詳細は後述するが、既知の重合方法を用いることができる。具体的には、乳酸からの直接重合法、ラクチドを介する開環重合法などを挙げることができる。 As a method for producing the polylactic acid resin (A), details will be described later, but a known polymerization method can be used. Specific examples include a direct polymerization method from lactic acid and a ring-opening polymerization method via lactide.
 本発明のポリ乳酸系フィルムに含まれるポリ乳酸系樹脂(A)の含有量は、特に限定されず、該フィルム中にポリ乳酸系樹脂(A)が含有されさえすれば構わない。 The content of the polylactic acid resin (A) contained in the polylactic acid film of the present invention is not particularly limited as long as the polylactic acid resin (A) is contained in the film.
 本発明のポリ乳酸系フィルムは、ポリ乳酸系樹脂(A)だけでなく、後述するポリ乳酸系樹脂(A)以外の熱可塑性樹脂(B)を含有することが好ましい。そして、本発明のポリ乳酸系フィルムは、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%中において、ポリ乳酸系樹脂(A)が10~95質量%であり、熱可塑性樹脂(B)が5~90質量%であることが好ましい。 The polylactic acid film of the present invention preferably contains not only the polylactic acid resin (A) but also a thermoplastic resin (B) other than the polylactic acid resin (A) described later. In the polylactic acid film of the present invention, the polylactic acid resin (A) is 10 to 95% by mass in the total 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B). The plastic resin (B) is preferably 5 to 90% by mass.
 本発明のフィルムがポリ乳酸系樹脂(A)以外の熱可塑性樹脂(B)を含有し、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%において、ポリ乳酸系樹脂(A)を10質量%以上とすることで、耐熱性、バイオマス性に優れたフィルムとなり、またポリ乳酸系樹脂(A)を95質量%以下とすることで、柔軟性に優れたフィルムとなる。フィルム中のポリ乳酸系樹脂(A)の含有量は、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%中において、20~90質量%であることがより好ましく、30~85質量%であることがさらに好ましく、40~80質量%であることが特に好ましい。 The film of the present invention contains a thermoplastic resin (B) other than the polylactic acid resin (A), and in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B), By setting A) to 10% by mass or more, a film having excellent heat resistance and biomass properties is obtained, and by setting the polylactic acid resin (A) to 95% by mass or less, a film having excellent flexibility is obtained. The content of the polylactic acid resin (A) in the film is more preferably 20 to 90% by mass in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B). It is more preferably from ˜85% by mass, particularly preferably from 40 to 80% by mass.
 また、本発明のポリ乳酸系フィルム全体に対するポリ乳酸系樹脂(A)の含有量は、5~90質量%であることが好ましく、10~85質量%であることがより好ましく、15~80質量%であることがさらに好ましく、20~75質量%であることが特に好ましい。
(エンボス加工)
 本発明において、フィルムの少なくとも片面に、凹部または凸部の不連続部分を設ける方法は特に限定されないが、エンボス加工による方法であることが好ましい。エンボス加工では、エンボス部の局所延伸により、フィルム中に、多数の局所的な微細空孔が形成されること、及び/または、多数の薄膜化部分が形成されることにより、フィルム製造時の延伸工程に拠ることなく、透湿性、防水性、柔軟性、加工性を付与せしめることができる。
The content of the polylactic acid resin (A) with respect to the entire polylactic acid film of the present invention is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, and 15 to 80% by mass. % Is more preferable, and 20 to 75% by mass is particularly preferable.
(Embossing)
In the present invention, the method of providing the concave or convex discontinuous portions on at least one surface of the film is not particularly limited, but a method by embossing is preferable. In embossing, stretching at the time of film production is achieved by forming a large number of fine local pores in the film and / or forming a large number of thinned portions by local stretching of the embossed portion. Without depending on the process, moisture permeability, waterproofness, flexibility and workability can be imparted.
 上記の点で、本発明のポリ乳酸系フィルムは、多数の微細空孔が形成されているフィルム、すなわち、多孔性フィルムであることが好ましい。 In view of the above, the polylactic acid film of the present invention is preferably a film in which a large number of fine pores are formed, that is, a porous film.
 以下に、エンボス加工で使用するエンボスロールの一例について、図1、図2を参照しながら説明する。 Hereinafter, an example of an embossing roll used in embossing will be described with reference to FIGS. 1 and 2.
 本発明で使用するエンボスロール表面の凹凸差は、50~700μmであることが好ましい。ここでいう凹凸差とは、エンボスロール表面の高さが最も低い部分と、最も高い部分との差にあたる長さ(図1のaに相当)である。上記凹凸差が50μm以上であることで、エンボス加工後のフィルムは、エンボス加工による凹部または凸部の不連続部分を有すこととなり、透湿性、柔軟性に優れたものとなる。また、上記凹凸差が700μm以下であることで、エンボス加工後のフィルムは、エンボス加工による凹部または凸部の不連続部分の高さを適切に制御することができ、防水性、加工性に優れたものとなる。エンボスロール表面の凹凸差は、100~500μmであることがより好ましく、200~400μmであることがさらに好ましい。 The unevenness of the embossing roll surface used in the present invention is preferably 50 to 700 μm. The unevenness difference here is a length (corresponding to “a” in FIG. 1) corresponding to a difference between the lowest height portion and the highest height portion of the embossing roll surface. When the unevenness difference is 50 μm or more, the embossed film has a concave portion or a discontinuous portion due to the embossing, and is excellent in moisture permeability and flexibility. Moreover, since the uneven | corrugated difference is 700 μm or less, the embossed film can appropriately control the height of the concave or convex discontinuous portions by embossing, and is excellent in waterproofness and workability. It will be. The unevenness difference on the surface of the embossing roll is more preferably from 100 to 500 μm, and further preferably from 200 to 400 μm.
 本発明で使用するエンボスロール表面の凹部または凸部のピッチは、0.5~2.0mmであることが好ましい。ここでいう凹部または凸部のピッチとは、エンボスロール表面の凹部または凸部の繰り返し長さの最も短い長さ(図1のbに相当)である。上記凹部または凸部のピッチが0.5mm以上であることで、エンボス加工後のフィルムは、防水性、加工性に優れたものとなる。また、上記凹部または凸部のピッチが2.0mm以下であることで、エンボス加工後のフィルムは、透湿性、柔軟性に優れたものとなる。エンボスロール表面の凹部または凸部のピッチは、0.5~1.5mmであることがより好ましく、0.5~1.0mmであることがさらに好ましい。 The pitch of the concave or convex portions on the surface of the embossing roll used in the present invention is preferably 0.5 to 2.0 mm. The pitch of the concave portion or the convex portion here is the shortest length (corresponding to b in FIG. 1) of the repeating length of the concave portion or the convex portion on the surface of the embossing roll. When the pitch of the concave portions or the convex portions is 0.5 mm or more, the embossed film has excellent waterproofness and workability. Moreover, since the pitch of the said recessed part or a convex part is 2.0 mm or less, the film after embossing becomes the thing excellent in moisture permeability and a softness | flexibility. The pitch of the concave or convex portions on the surface of the embossing roll is more preferably 0.5 to 1.5 mm, and further preferably 0.5 to 1.0 mm.
 本発明で使用するエンボスロールの模様(パターン)は、特に制限は無く、四角凸柄、格子凸柄、亀甲柄、ダイヤ柄、四角錐台柄、円錐台柄、縦線柄、横線柄などが使用できるが、その圧着面積は、0.02~0.80mmであることが好ましい。ここでいう圧着面積とは、エンボスロールの模様(パターン)ひとつあたりの、エンボスロール表面の高さが高い部分の面積(図2のc×dに相当する平面の面積)である。つまり、エンボスロール表面に凸部が存在する場合には、凸部の表面の面積である。一方で、エンボスロール表面に凹部が存在する場合には、凹部以外がエンボスロール表面の高さが高い部分なので、該部分の面積である。圧着面積はより好ましくは0.04~0.60mm、さらに好ましくは0.06~0.40mmである。また、圧着面積率は、8~40%であることが好ましい。ここでいう圧着面積率とは、エンボスロールの単位面積あたりの、エンボスロール表面の高さが高い部分の面積(図2のc×dに相当する平面の面積)の割合である。つまり、エンボスロール表面に凸部が存在する場合には、凸部の表面の面積割合である。一方で、エンボスロール表面に凹部が存在する場合には、凹部以外がエンボスロール表面の高さが高い部分なので、該部分の面積割合である。圧着面積率はより好ましくは12~30%、さらに好ましくは16~20%である。凹凸の配置は、凹凸が縦横に並ぶ正配列でもよいし、千鳥配列でもよい。 The embossing roll pattern used in the present invention is not particularly limited, and includes a square convex pattern, a lattice convex pattern, a turtle shell pattern, a diamond pattern, a quadrangular pyramid pattern, a truncated cone pattern, a vertical line pattern, a horizontal line pattern, and the like. Although it can be used, the crimping area is preferably 0.02 to 0.80 mm 2 . The crimping area referred to here is the area of the embossing roll surface having a high height (the area of the plane corresponding to c × d in FIG. 2) per embossing roll pattern. That is, when a convex part exists in the embossing roll surface, it is the area of the surface of a convex part. On the other hand, when there is a recess on the surface of the embossing roll, the area other than the recess is the area of the embossing roll because the height of the embossing roll surface is high. The crimping area is more preferably 0.04 to 0.60 mm 2 , further preferably 0.06 to 0.40 mm 2 . The crimping area ratio is preferably 8 to 40%. The crimping area ratio here is the ratio of the area of the embossing roll surface having a high height (the area of the plane corresponding to c × d in FIG. 2) per unit area of the embossing roll. That is, when a convex part exists in the embossing roll surface, it is the area ratio of the surface of a convex part. On the other hand, when there is a recess on the surface of the embossing roll, the area ratio is the portion of the embossing roll whose surface is high except for the recess. The crimping area ratio is more preferably 12 to 30%, still more preferably 16 to 20%. The arrangement of the irregularities may be a regular arrangement in which the irregularities are arranged vertically and horizontally, or a staggered arrangement.
 本発明におけるエンボス加工方法としては、エンボスロールと、ゴムロール、ペーパーロール、ウールンペーパーロールなどの弾性ロールの組み合わせのほか、エンボスロールと、その凹凸形状に対応する雌エンボスロールとの組み合わせでもよい。エンボスロールの材質は特に限定されないが、金属ロールであることが一般的である。雌エンボスロールの材質の具体例としては、エンボスロールと同様の金属ロールに加え、ゴムロールなどの弾性ロール、ペーパーロール、ウールンペーパーロールなどの弾性ロールが挙げられる。 The embossing method in the present invention may be a combination of an embossing roll and an elastic roll such as a rubber roll, a paper roll, and a woolen paper roll, or a combination of an embossing roll and a female embossing roll corresponding to the uneven shape. The material of the embossing roll is not particularly limited, but is generally a metal roll. Specific examples of the material of the female embossing roll include an elastic roll such as a rubber roll, a paper roll, and a woolen paper roll in addition to the same metal roll as the embossing roll.
 ここで、本発明のフィルムの製造方法は、凸部を有するロールと凹部を有するロールが雄雌を形成し、その間にフィルムを通すエンボス工程を有するフィルムの製造方法であって、前記凹部の深さが、前記凸部の高さの5~80%であることが好ましい。その際、凸部を有するロールの材質は金属ロール、凹部を有するロールの材質はペーパーロールであることが好ましい。また、凹部の深さは、凸部の高さの25~80%であることがより好ましく、45~80%であることがさらに好ましい。前記凹部の深さが、前記凸部の高さの5%以上とすることで、透湿性が優れたフィルムが得られる。前記凹部の深さが、前記凸部の高さの80%以下とすることで、防水性、加工性が優れたフィルムが得られる。
(フィルム形状)
 本発明のポリ乳酸系フィルムは、フィルムの少なくとも片面に、凹部または凸部の不連続部分を有していることが重要である。なお、凹部または凸部の不連続部分は、エンボス加工により形成されることが好ましい態様である。ここで、凹部または凸部の不連続部分を有している、とは、フィルムの少なくとも片面の表面全体が同一面(断面方向からみて同じ高さ)にある連続状ではなく、フィルムの少なくとも片面の表面全体が凹部または凸部の存在のために同一面にないことをいう。
Here, the film manufacturing method of the present invention is a film manufacturing method including an embossing process in which a roll having a convex portion and a roll having a concave portion form a male and female and the film is passed between them. Is preferably 5 to 80% of the height of the convex portion. In that case, it is preferable that the material of the roll which has a convex part is a metal roll, and the material of the roll which has a recessed part is a paper roll. Further, the depth of the concave portion is more preferably 25 to 80% of the height of the convex portion, and further preferably 45 to 80%. When the depth of the concave portion is 5% or more of the height of the convex portion, a film having excellent moisture permeability can be obtained. When the depth of the concave portion is 80% or less of the height of the convex portion, a film having excellent waterproofness and workability can be obtained.
(Film shape)
It is important that the polylactic acid-based film of the present invention has a concave or convex discontinuous portion on at least one surface of the film. In addition, it is a preferable aspect that the discontinuous part of a recessed part or a convex part is formed by embossing. Here, having a discontinuous part of a concave part or a convex part means that at least one side of the film is not a continuous form in which the entire surface of at least one side of the film is on the same plane (the same height when viewed from the cross-sectional direction). This means that the entire surface is not on the same plane due to the presence of a concave or convex portion.
 以下に、本発明のポリ乳酸系フィルムの形状について、図3を参照しながら説明する。 Hereinafter, the shape of the polylactic acid film of the present invention will be described with reference to FIG.
 本発明のポリ乳酸系フィルムの不連続部分の高さは、20~150μmであることが好ましい。ここでいう不連続部分の高さとは、不連続部分を含む断面を観察したときの、フィルム表面の高さが最も低い部分と、最も高い部分との差にあたる長さ(図3のeに相当)である。上記不連続部分の高さが20μm以上であることで、透湿性、柔軟性に優れたフィルムとなる。また、上記不連続部分の高さが150μm以下であることで、防水性、加工性に優れたフィルムとなる。不連続部分の高さは、50~145μmであることがより好ましく、100~140μmであることがさらに好ましい。不連続部分の高さを上記20~150μmの範囲とするための方法は、例えば、前述した好ましい形状を有するエンボスロールを用い、後述する好ましいロール温度、線圧、ロール速度でエンボス加工することである。 The height of the discontinuous portion of the polylactic acid film of the present invention is preferably 20 to 150 μm. The height of the discontinuous portion here is a length corresponding to the difference between the lowest and highest portions of the film surface when a cross section including the discontinuous portion is observed (corresponding to e in FIG. 3). ). When the height of the discontinuous portion is 20 μm or more, the film has excellent moisture permeability and flexibility. Moreover, it becomes a film excellent in waterproofness and workability because the height of the said discontinuous part is 150 micrometers or less. The height of the discontinuous portion is more preferably 50 to 145 μm, and further preferably 100 to 140 μm. The method for setting the height of the discontinuous portion in the range of 20 to 150 μm is, for example, by using an embossing roll having the above-mentioned preferable shape and embossing at a preferable roll temperature, linear pressure, and roll speed described later. is there.
 本発明のポリ乳酸系フィルムの不連続部分のピッチは0.5~2.0mmであることが好ましい。ここでいう不連続部分のピッチとは、フィルムの凹部または凸部の繰り返し長さの最も短い長さ(図3のfに相当)である。上記不連続部分のピッチが0.5μm以上であることで、防水性、加工性に優れたフィルムとなる。また、上記不連続部分の高さが2.0mm以下であることで、透湿性、柔軟性に優れたフィルムとなる。不連続部分のピッチは、0.7~1.5mmであることがより好ましく、0.9~1.2mmであることがさらに好ましい。不連続部分のピッチを上記範囲とするための方法は、例えば、前記した好ましい凹部または凸部のピッチを有するエンボスロールでエンボス加工することである。 The pitch of the discontinuous portions of the polylactic acid film of the present invention is preferably 0.5 to 2.0 mm. The pitch of a discontinuous part here is the shortest length (equivalent to f of FIG. 3) of the repetition length of the recessed part or convex part of a film. When the pitch of the discontinuous portions is 0.5 μm or more, the film is excellent in waterproofness and workability. Moreover, it becomes a film excellent in moisture permeability and a softness | flexibility because the height of the said discontinuous part is 2.0 mm or less. The pitch of the discontinuous portions is more preferably 0.7 to 1.5 mm, and further preferably 0.9 to 1.2 mm. A method for setting the pitch of the discontinuous portion within the above range is, for example, embossing with an embossing roll having the above-described preferable concave or convex pitch.
 本発明のポリ乳酸系フィルムの不連続部分の厚さは、5~50μmであることが好ましい。本発明でいうフィルムの不連続部分の厚さとは、不連続部分(凹部及び凸部)のなかで最も薄い部分の厚さのことをいう(例えば、図3のgやhに相当する部分)。上記不連続部分の厚さが5μm以上であることで、防水性、加工性に優れたフィルムとなる。また、上記不連続部分の厚さが50μm以下であることで、透湿性、柔軟性に優れたフィルムとなる。不連続部分の厚さは、8~30μmであることがより好ましく、10~20μmであることがさらに好ましい。不連続部分の厚さを上記範囲とするための方法は、例えば、前述した好ましい形状を有するエンボスロールを用い、また、好ましい材質、組み合わせのロールを用い、後述する好ましいロール温度、線圧、ロール速度でエンボス加工することである。
(透湿度)
本発明のポリ乳酸系フィルムは、透湿度が500~3,000g/(m・day)であることが重要である。本発明でいう透湿度の測定方法は、実施例の「透湿性」の項に記載した通りである。本発明においては、ポリ乳酸系樹脂(A)を含有するフィルムに、例えば、前述した好ましい形状を有するエンボスロールを用い、また、好ましい材質、組み合わせのロールを用い、後述する好ましいロール温度、線圧、ロール速度でエンボス加工することにより、透湿度を上記範囲とすることができる。透湿度がこの範囲にあることで、透湿性を必要とする用途に好ましく用いることが可能となる。
The thickness of the discontinuous portion of the polylactic acid film of the present invention is preferably 5 to 50 μm. The thickness of the discontinuous portion of the film as used in the present invention refers to the thickness of the thinnest portion among the discontinuous portions (recesses and protrusions) (for example, portions corresponding to g and h in FIG. 3). . When the thickness of the discontinuous portion is 5 μm or more, the film is excellent in waterproofness and workability. Moreover, it becomes a film excellent in moisture permeability and a softness | flexibility because the thickness of the said discontinuous part is 50 micrometers or less. The thickness of the discontinuous portion is more preferably 8 to 30 μm, and further preferably 10 to 20 μm. The method for setting the thickness of the discontinuous portion within the above range is, for example, using an embossing roll having the above-described preferable shape, using a roll of a preferable material and combination, and preferable roll temperature, linear pressure, and roll described later. Embossing at speed.
(Moisture permeability)
It is important that the polylactic acid film of the present invention has a moisture permeability of 500 to 3,000 g / (m 2 · day). The method for measuring moisture permeability in the present invention is as described in the section of “Moisture permeability” in the Examples. In the present invention, for the film containing the polylactic acid-based resin (A), for example, an embossing roll having a preferable shape described above is used, and a preferable material and a combination of rolls are used. The water vapor transmission rate can be within the above range by embossing at a roll speed. When the moisture permeability is in this range, it can be preferably used for applications requiring moisture permeability.
 透湿度は、1,000~3,000g/(m・day)であることが好ましく、1,500~3,000g/(m・day)であることがより好ましく、2,000~3,000g/(m・day)であることが特に好ましい。
(ポリ乳酸系樹脂以外の熱可塑性樹脂(B))
 本発明のポリ乳酸系フィルムは、柔軟性、透湿性、防水性、加工性を向上させるために、ポリ乳酸系樹脂(A)以外の熱可塑性樹脂(本発明において、熱可塑性樹脂(B)と呼ぶ)を含むことが好ましい。該熱可塑性樹脂(B)としては、ポリアセタール、ポリエチレン、ポリプロピレン、ポリアミド、ポリ(メタ)アクリレート、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエステル、ポリウレタン、ポリイソプレン、ポリスルホン、ポリフェニレンオキサイド、ポリイミド、ポリエーテルイミド、エチレン/グリシジルメタクリレート共重合体、ポリエステルエラストマー、ポリアミドエラストマー、エチレン/プロピレンターポリマー、エチレン/ブテン-1共重合体、デンプンを含むポリマー、樹脂系の可塑剤などが使用できる。
Moisture permeability, 000 preferably ~ is 3,000g / (m 2 · day) , more preferably 1,500 ~ 3,000g / (m 2 · day), 2,000 ~ 3 000 g / (m 2 · day) is particularly preferable.
(Thermoplastic resin other than polylactic acid resin (B))
In order to improve the flexibility, moisture permeability, waterproofness, and processability, the polylactic acid film of the present invention is a thermoplastic resin other than the polylactic acid resin (A) (in the present invention, the thermoplastic resin (B) and Preferably). Examples of the thermoplastic resin (B) include polyacetal, polyethylene, polypropylene, polyamide, poly (meth) acrylate, polyphenylene sulfide, polyether ether ketone, polyester, polyurethane, polyisoprene, polysulfone, polyphenylene oxide, polyimide, polyetherimide, An ethylene / glycidyl methacrylate copolymer, a polyester elastomer, a polyamide elastomer, an ethylene / propylene terpolymer, an ethylene / butene-1 copolymer, a polymer containing starch, a resin plasticizer, and the like can be used.
 ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレートなどの芳香族ポリエステル系樹脂;ポリ(エチレンサクシネート・テレフタレート)、ポリ(ブチレンサクシネート・テレフタレート)、ポリ(ブチレンアジペート・テレフタレート)などの脂肪族芳香族ポリエステル系樹脂;ポリグリコール酸、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート・3-ヒドロキシバリレート)、ポリカプロラクトン、ポリブチレンサクシネート、ポリ(ブチレンサクシネート・アジペート)、などの脂肪族ポリエステル系樹脂が使用できる。これらの中でも、生分解性を維持する観点から、脂肪族芳香族ポリエステル系樹脂または脂肪族ポリエステル系樹脂が好ましい。 Specific examples of polyesters include aromatic polyester resins such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate; poly (ethylene succinate terephthalate), poly (butylene succinate terephthalate), poly (butylene adipate terephthalate), etc. Aliphatic aromatic polyester resins: polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-3hydroxyvalerate), polycaprolactone, polybutylene succinate, poly (butylene succinate) Aliphatic polyester resins such as adipate) can be used. Among these, from the viewpoint of maintaining biodegradability, aliphatic aromatic polyester resins or aliphatic polyester resins are preferable.
 さらに熱可塑性樹脂(B)として用いる脂肪族芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂としては、柔軟性、透湿性、防水性を向上する観点から、比較的柔軟性の高い、ポリ(ブチレンアジペート・テレフタレート)、ポリブチレンサクシネート、ポリ(ブチレンサクシネート・アジペート)、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート・3-ヒドロキシバリレート)、ポリカプロラクトンが好ましい。熱可塑性樹脂(B)として、これらの比較的柔軟性の高いポリエステルを含む場合、インフレーション製膜することで、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)が、フィルムの厚み方向に幾層にも重なった、層状アロイ構造を形成する。この層状アロイ構造がエンボス加工したフィルムの、特に防水性の発現に大きく貢献することを本発明で見出した。 Furthermore, as the aliphatic aromatic polyester resin and aliphatic polyester resin used as the thermoplastic resin (B), poly (butylene adipate) having relatively high flexibility from the viewpoint of improving flexibility, moisture permeability, and waterproofness. (Terephthalate), polybutylene succinate, poly (butylene succinate adipate), poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-3hydroxyvalerate), and polycaprolactone are preferred. When the thermoplastic resin (B) contains these relatively flexible polyesters, the polylactic acid-based resin (A) and the thermoplastic resin (B) are reduced in the thickness direction of the film by forming an inflation film. A layered alloy structure is formed which also overlaps the layers. It has been found in the present invention that this layered alloy structure greatly contributes to the development of the waterproof property of the embossed film.
 熱可塑性樹脂(B)として好適なデンプンを含むポリマーの具体例としては、ノバモント社の生分解性樹脂“マタービー”(登録商標)などが使用できる。 As a specific example of the polymer containing starch suitable as the thermoplastic resin (B), Novamont's biodegradable resin “Matterby” (registered trademark) can be used.
 熱可塑性樹脂(B)として好適な樹脂系の可塑剤の具体例としては、ポリプロピレングリコールセバシン酸エステルなどのポリエステル系可塑剤、ポリアルキレンエーテル系可塑剤、エーテルエステル系可塑剤、アクリレート系可塑剤などが使用できる。かかる可塑剤の中でも、フィルム全体の生分解性を維持する観点から、樹脂系の可塑剤としては、生分解性を有することが好ましい。さらに、可塑剤の耐ブリードアウト性や、フィルムの耐熱性および耐ブロッキング性の観点から、樹脂系の可塑剤は、例えば数平均分子量1,000以上のポリエチレングリコールなど、常温(20℃±15℃)で固体状、つまり、融点が35℃を超えるものが好ましい。また、ポリ乳酸系樹脂(A)との溶融加工温度を合わせる点で、融点が150℃以下であることが好ましい。 Specific examples of resin plasticizers suitable as the thermoplastic resin (B) include polyester plasticizers such as polypropylene glycol sebacate, polyalkylene ether plasticizers, ether ester plasticizers, acrylate plasticizers, and the like. Can be used. Among such plasticizers, from the viewpoint of maintaining the biodegradability of the entire film, the resin-based plasticizer preferably has biodegradability. Further, from the viewpoint of the bleed-out resistance of the plasticizer and the heat resistance and blocking resistance of the film, the resin-based plasticizer is, for example, a normal temperature (20 ° C. ± 15 ° C.) such as polyethylene glycol having a number average molecular weight of 1,000 or more. ) In a solid state, that is, a melting point exceeding 35 ° C. Moreover, it is preferable that melting | fusing point is 150 degrees C or less at the point which matches melt processing temperature with a polylactic acid-type resin (A).
 同様の観点から、熱可塑性樹脂(B)として好適な樹脂系の可塑剤は、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体、または、ポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体であることがさらに好ましい。ここで、可塑化成分は、ポリエーテルセグメントおよびポリエステルセグメントとなる。ここで、ポリエステルセグメントとは、ポリ乳酸以外のポリエステルからなるセグメントを意味する。以下、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体、および、ポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体を、総称して「ブロック共重合体可塑剤」と記す。これらブロック共重合体可塑剤について以下に説明する。 From the same viewpoint, a resin-based plasticizer suitable as the thermoplastic resin (B) is a block copolymer having a polyether segment and a polylactic acid segment, or a block copolymer having a polyester segment and a polylactic acid segment. More preferably, it is a coalescence. Here, the plasticizing component is a polyether segment and a polyester segment. Here, the polyester segment means a segment made of polyester other than polylactic acid. Hereinafter, a block copolymer having a polyether segment and a polylactic acid segment and a block copolymer having a polyester segment and a polylactic acid segment are collectively referred to as a “block copolymer plasticizer”. These block copolymer plasticizers will be described below.
 ブロック共重合体可塑剤に含まれるポリ乳酸セグメントの質量割合は、ブロック共重合体可塑剤全体の50質量%以下であることが、より少量の添加で所望の柔軟性を付与できるため好ましく、5質量%以上であることが、ブリードアウト抑制の点から好ましい。好ましくは、ブロック共重合体可塑剤100質量%中において、乳酸ユニットの質量割合が5質量%~45質量%であり、ポリエーテルセグメントやポリエステルセグメントの質量割合が55質量%~95質量%である。 The mass ratio of the polylactic acid segment contained in the block copolymer plasticizer is preferably 50% by mass or less of the entire block copolymer plasticizer, because a desired flexibility can be imparted with a smaller amount of addition, preferably 5 It is preferable from the point of bleed-out suppression that it is more than mass%. Preferably, in 100% by mass of the block copolymer plasticizer, the mass ratio of the lactic acid unit is 5% by mass to 45% by mass, and the mass ratio of the polyether segment or the polyester segment is 55% by mass to 95% by mass. .
 また、ブロック共重合体可塑剤1分子中のポリ乳酸セグメントの数平均分子量は1,200~10,000であることが好ましい。ブロック共重合体可塑剤の有するポリ乳酸セグメントの数平均分子量が、1,200以上であると、熱可塑性樹脂(B)であるブロック共重合体可塑剤と樹脂(A)であるポリ乳酸系樹脂との間に十分な親和性が生じる。また、該ポリ乳酸セグメントの一部は、樹脂(A)から形成される結晶中に取り込まれ、いわゆる共晶を形成することで、熱可塑性樹脂(B)であるブロック共重合体可塑剤を樹脂(A)につなぎ止める作用を生じ、ブロック共重合体可塑剤のブリードアウト抑制に大きな効果を発揮する。その結果、フィルムの耐ブロッキング性も優れることになる。また、このブロック共重合体可塑剤は、常温で液状の可塑剤や常温で個体状であっても共晶を形成しない可塑剤と比較して透湿性に大きく優れる。これは、形成される共晶が後述するエンボス加工による空孔形成効率を向上させているためである。ブロック共重合体可塑剤中のポリ乳酸セグメントの数平均分子量は、1,500~6,000であることがより好ましく、2,000~5,000であることがさらに好ましい。なお、ブロック共重合体可塑剤の有するポリ乳酸セグメントにおいて、L-乳酸ユニットが95~100質量%であるか、あるいはD-乳酸ユニットが95~100質量%であることが、特にブリードアウトが抑制されるため好ましい。 In addition, the number average molecular weight of the polylactic acid segment in one molecule of the block copolymer plasticizer is preferably 1,200 to 10,000. When the number average molecular weight of the polylactic acid segment of the block copolymer plasticizer is 1,200 or more, the block copolymer plasticizer that is the thermoplastic resin (B) and the polylactic acid resin that is the resin (A) A sufficient affinity arises between In addition, a part of the polylactic acid segment is taken into the crystal formed from the resin (A) to form a so-called eutectic so that the block copolymer plasticizer, which is the thermoplastic resin (B), is added to the resin. It produces an effect of stopping in (A) and exerts a great effect on the bleed-out suppression of the block copolymer plasticizer. As a result, the blocking resistance of the film is also excellent. In addition, this block copolymer plasticizer is greatly superior in moisture permeability as compared with a plasticizer that is liquid at normal temperature and a plasticizer that does not form a eutectic even when it is solid at normal temperature. This is because the eutectic formed improves the hole formation efficiency by embossing described later. The number average molecular weight of the polylactic acid segment in the block copolymer plasticizer is more preferably 1,500 to 6,000, and further preferably 2,000 to 5,000. In the polylactic acid segment of the block copolymer plasticizer, the L-lactic acid unit is 95 to 100% by mass, or the D-lactic acid unit is 95 to 100% by mass. Therefore, it is preferable.
 ブロック共重合体可塑剤がポリエーテルセグメントを有する場合は、ポリエーテルセグメントとしてポリアルキレンエーテルからなるセグメントを有することがより好ましい。具体的には、ポリエーテルセグメントとして、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール・ポリプロピレングリコール共重合体などからなるセグメントが挙げられる。特にポリエチレングリコールからなるセグメントは、ポリ乳酸系樹脂(A)との親和性が高いために改質効率に優れ、特に少量の添加で所望の柔軟性を付与できるため好ましい。 When the block copolymer plasticizer has a polyether segment, it is more preferable to have a segment made of polyalkylene ether as the polyether segment. Specific examples of the polyether segment include segments made of polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol / polypropylene glycol copolymer, and the like. In particular, a segment made of polyethylene glycol is preferable because it has high affinity with the polylactic acid-based resin (A) and is excellent in modification efficiency, and can impart desired flexibility with a small amount of addition.
 また、ブロック共重合体可塑剤がポリアルキレンエーテルからなるセグメントを有する場合、成形時などで加熱する際にポリアルキレンエーテルセグメントが酸化や熱分解され易い傾向があるため、後述するヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤などの酸化防止剤やリン系熱安定剤などの熱安定剤を併用することが好ましい。 In addition, when the block copolymer plasticizer has a segment made of polyalkylene ether, the polyalkylene ether segment tends to be oxidized or thermally decomposed when heated at the time of molding or the like. It is preferable to use an antioxidant, an antioxidant such as a hindered amine antioxidant, and a heat stabilizer such as a phosphorus heat stabilizer.
 ブロック共重合体可塑剤がポリエステルセグメントを有する場合は、ポリグリコール酸、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート・3-ヒドロキシバリレート)、ポリカプロラクトン、あるいはエチレングリコール、プロパンジオール、ブタンジオールなどの脂肪族ジオールと、コハク酸、セバシン酸、アジピン酸などの脂肪族ジカルボン酸よりなるポリエステルなどが、ポリエステルセグメントとして好適に用いられる。 When the block copolymer plasticizer has a polyester segment, polyglycolic acid, poly (3-hydroxybutyrate), poly (3-hydroxybutyrate, 3-hydroxyvalerate), polycaprolactone, ethylene glycol, propane Polyesters composed of aliphatic diols such as diol and butanediol and aliphatic dicarboxylic acids such as succinic acid, sebacic acid and adipic acid are preferably used as the polyester segment.
 なお、ブロック共重合体可塑剤は、その1分子中に、ポリエーテルセグメントとポリエステルセグメントの両方の成分を含有してもよいし、いずれか一方の成分のみを含有してもよい。可塑剤の生産性やコスト等の理由から、いずれか一方の成分とする場合は、より少量の可塑剤の添加で所望の柔軟性を付与できる観点から、ポリエーテルセグメントを用いる方が好ましい。つまりブロック共重合体可塑剤として好ましい態様は、ポリエーテルセグメントとポリ乳酸セグメントとのブロック共重合体である。 The block copolymer plasticizer may contain both components of the polyether segment and the polyester segment in one molecule, or may contain only one of the components. For reasons of plasticizer productivity, cost, etc., when either component is used, it is preferable to use a polyether segment from the viewpoint that desired flexibility can be imparted by adding a smaller amount of the plasticizer. That is, a preferred embodiment as a block copolymer plasticizer is a block copolymer of a polyether segment and a polylactic acid segment.
 さらにまた、ブロック共重合体可塑剤の1分子中のポリエーテルセグメントやポリエステルセグメントの数平均分子量は、7,000~20,000であることが好ましい。上記範囲とすることで、ポリ乳酸系フィルムを構成する組成物に十分な柔軟性を持たせ、なおかつ、ポリ乳酸系樹脂(A)を含む組成物とした際に溶融粘度を適度なレベルとし、インフレーション製膜法などの製膜加工性を安定させることができる。 Furthermore, the number average molecular weight of the polyether segment or the polyester segment in one molecule of the block copolymer plasticizer is preferably 7,000 to 20,000. By setting the above range, the composition constituting the polylactic acid film has sufficient flexibility, and when the composition containing the polylactic acid resin (A) is used, the melt viscosity is set to an appropriate level, Film forming processability such as the inflation film forming method can be stabilized.
 前記ポリエーテルセグメントおよび/またはポリエステルセグメントと、ポリ乳酸セグメントの各セグメントブロックの順序構成に特に制限は無いが、より効果的にブリードアウトを抑制する観点から、少なくとも1ブロックのポリ乳酸セグメントがブロック共重合体可塑剤分子の端にあることが好ましい。ポリ乳酸セグメントのブロックがブロック共重合体可塑剤分子の両端にあることが最も好ましい。 There is no particular limitation on the order configuration of each segment block of the polyether segment and / or the polyester segment and the polylactic acid segment, but at least one block of polylactic acid segment is a block common from the viewpoint of more effectively suppressing bleed out. It is preferably at the end of the polymer plasticizer molecule. Most preferably, the block of polylactic acid segment is at both ends of the block copolymer plasticizer molecule.
 このブロック共重合体可塑剤は、ポリ乳酸系樹脂(A)を柔軟化することでフィルム全体の柔軟性の発現、また、フィルムの透湿性、防水性の発現に寄与する。 This block copolymer plasticizer contributes to the development of the flexibility of the whole film and the moisture permeability and waterproofness of the film by softening the polylactic acid resin (A).
 次に、ポリエーテルセグメントとして、両末端に水酸基末端を有するポリエチレングリコール(以下ポリエチレングリコールをPEGとする)を採用したブロック共重合体可塑剤について具体的に説明する。 Next, a block copolymer plasticizer that employs polyethylene glycol having a hydroxyl terminal at both ends as a polyether segment (hereinafter, polyethylene glycol is referred to as PEG) will be described in detail.
 両末端に水酸基末端を有するPEGの数平均分子量(以下、PEGの数平均分子量をMPEGとする)は、通常、市販品などの場合、中和法などにより求めた水酸基価から計算される。両末端に水酸基末端を有するPEGのw質量部に対し、ラクチドw質量部を添加した系において、PEGの両水酸基末端にラクチドを開環付加重合させ十分に反応させると、実質的にPLA-PEG-PLA型のブロック共重合体を得ることができる(ここでPLAはポリ乳酸を示す)。この反応は、必要に応じてオクチル酸錫などの触媒併存下でおこなわれる。このブロック共重合体可塑剤の一つのポリ乳酸セグメントの数平均分子量は、(1/2)×(w/w)×MPEGと求めることができる。また、ポリ乳酸セグメント成分のブロック共重合体可塑剤全体に対する質量割合は、実質的に100×w/(w+w)%と求めることができる。さらに、ポリ乳酸セグメント成分を除いた可塑剤成分のブロック共重合体可塑剤全体に対する質量割合は、実質的に100×w/(w+w)%と求めることができる。 The number average molecular weight of PEG having hydroxyl ends at both ends (hereinafter, the number average molecular weight of PEG is referred to as MPEG ) is usually calculated from the hydroxyl value determined by a neutralization method or the like in the case of a commercially available product. In a system in which lactide w L parts by mass are added to w E parts by mass of PEG having hydroxyl groups at both ends, lactide is subjected to ring-opening addition polymerization at both hydroxyl groups of PEG and sufficiently reacted, so that PLA is substantially obtained. A block copolymer of the -PEG-PLA type can be obtained (where PLA stands for polylactic acid). This reaction is performed in the presence of a catalyst such as tin octylate as necessary. The number average molecular weight of one polylactic acid segment of this block copolymer plasticizer can be determined as (1/2) × (w L / w E ) × M PEG . The mass percentage of the total block copolymer plasticizer of the polylactic acid segment component can be substantially determined as 100 × w L / (w L + w E)%. Furthermore, the mass ratio of the plasticizer component excluding the polylactic acid segment component to the entire block copolymer plasticizer can be determined to be substantially 100 × w E / (w L + w E )%.
 なお、フィルムからブロック共重合体可塑剤を分離して、ブロック共重合体可塑剤中の各セグメントの数平均分子量の評価をする場合は、以下のようにして行うことができる。フィルムから、ブロック共重合体可塑剤を分離する方法としては、例えばクロロホルムなどの適当な良溶媒にフィルムを均一溶解した後、水や水/メタノール混合溶液など適当な貧溶媒に滴下する。ろ過などにより沈殿物を除去し、ろ液の溶媒を揮発させることによりブロック共重合体可塑剤を得る。こうして分離されたブロック共重合体可塑剤について、ゲルパーミエーションクロマトグラフィー(GPC)を用いて数平均分子量(以後Mとする)を測定する。また、H-NMR測定により、ポリ乳酸セグメント、ポリエーテル系セグメントおよび/またはポリエステル系セグメントを特定する。そして、ブロック共重合体が有する一つのポリ乳酸セグメントの分子量は、M×{1/(1分子中のポリ乳酸セグメントの数)}×(IPLA×72)/[(IPE×UMPE/NPE)+(IPLA×72)]により算出される。ここで、IPLAは、PLA主鎖部のメチン基の水素に由来するH-NMR測定でのシグナル積分強度、IPEはポリエーテル系セグメントおよび/またはポリエステル系セグメントに由来するH-NMR測定でのシグナル積分強度をしめす。また、UMPEは、ポリエーテル系セグメントおよび/またはポリエステル系セグメントのモノマー単位の分子量、NPEはポリエーテル系セグメントおよび/またはポリエステル系セグメントのうち、IPEに相当するH-NMR測定でのシグナルを与える化学的に等価なプロトンの数である。また、ポリエーテル系セグメントおよび/またはポリエステル系セグメントの数平均分子量は、M-(ポリ乳酸セグメントの数平均分子量)×(1分子中のポリ乳酸セグメントの数)で計算できる。 In addition, when isolate | separating a block copolymer plasticizer from a film and evaluating the number average molecular weight of each segment in a block copolymer plasticizer, it can carry out as follows. As a method for separating the block copolymer plasticizer from the film, for example, the film is uniformly dissolved in an appropriate good solvent such as chloroform and then dropped into an appropriate poor solvent such as water or a water / methanol mixed solution. The block copolymer plasticizer is obtained by removing the precipitate by filtration and evaporating the solvent of the filtrate. The block copolymer plasticizer thus separated is measured for number average molecular weight (hereinafter referred to as M) using gel permeation chromatography (GPC). In addition, a polylactic acid segment, a polyether-based segment and / or a polyester-based segment are identified by 1 H-NMR measurement. The molecular weight of one polylactic acid segment contained in the block copolymer is M × {1 / (number of polylactic acid segments in one molecule)} × (I PLA × 72) / [(I PE × UM PE / N PE ) + (I PLA × 72)]. Here, I PLA is the signal integrated intensity in 1 H-NMR measurement derived from hydrogen of the methine group of the PLA main chain, and I PE is 1 H-NMR derived from the polyether segment and / or the polyester segment. Indicates the signal integration intensity in the measurement. UM PE is the molecular weight of the monomer unit of the polyether segment and / or polyester segment, and N PE is the 1 H-NMR measurement corresponding to I PE of the polyether segment and / or polyester segment. The number of chemically equivalent protons that give a signal. The number average molecular weight of the polyether segment and / or the polyester segment can be calculated by M− (number average molecular weight of polylactic acid segment) × (number of polylactic acid segments in one molecule).
 なお、エンボス加工を施すフィルムには、通常は可塑剤を含有しない。それは、エンボス加工時の圧着により、可塑剤がブリードアウトしやすく、フィルムの物性が変化してしまうことに加え、ブリードアウトした可塑剤がエンボスロールを汚してしまうからである。本発明では、可塑剤として、樹脂系の可塑剤を用いることで上記の問題点の解決を図ることができたものである。また、樹脂系の可塑剤のなかでも、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体、または、ポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体を用いることが好ましいことを見出した。 Note that the film to be embossed usually does not contain a plasticizer. This is because the plasticizer tends to bleed out by pressure bonding during embossing, and the physical properties of the film change, and the bleed out plasticizer stains the embossing roll. In the present invention, the above-mentioned problems can be solved by using a resin plasticizer as the plasticizer. Further, among resin plasticizers, it has been found that it is preferable to use a block copolymer having a polyether segment and a polylactic acid segment, or a block copolymer having a polyester segment and a polylactic acid segment. .
 熱可塑性樹脂(B)を含有することによる、柔軟性と透湿性以外の効果としては、樹脂の種類によるが、例えば、溶融粘度および溶融張力が向上することによる、インフレーション製膜法におけるバブル形成の安定化が挙げられる。また、熱可塑性樹脂(B)としてポリ(メタ)アクリレートを含有する場合は、ポリ乳酸系フィルムの高温剛性向上、ポリエステルを含有する場合は、ポリ乳酸系フィルムの耐衝撃性および靭性向上、デンプンを含むポリマーを含有する場合は、ポリ乳酸系フィルムの生分解性促進などが挙げられる。 Effects other than flexibility and moisture permeability due to the inclusion of the thermoplastic resin (B) depend on the type of resin, for example, bubble formation in the inflation film-forming method by improving melt viscosity and melt tension. Stabilization can be mentioned. Moreover, when poly (meth) acrylate is contained as the thermoplastic resin (B), the high-temperature rigidity of the polylactic acid-based film is improved. When the polyester is contained, the impact resistance and toughness of the polylactic acid-based film are improved. When the containing polymer is contained, the biodegradability promotion of the polylactic acid-based film can be mentioned.
 本発明のポリ乳酸系フィルムに含まれる熱可塑性樹脂(B)の含有量は、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%中において、5~90質量%であることが好ましい。5質量%以上とすることで、柔軟性に優れたフィルムとなる。90質量%以下とすることで、耐熱性に優れたフィルムとなる。熱可塑性樹脂(B)の含有量は、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%中において、10~80質量%であることがより好ましく、15~70質量%であることがさらに好ましく、20~60質量%であることが特に好ましい。
(熱可塑性樹脂(B)の組み合わせ)
 本発明のポリ乳酸系フィルムには、前述の熱可塑性樹脂(B)の1種のみを含んでもよいし、2種以上を組み合わせて含んでもよい。組み合わせる樹脂には特に制限はなく、熱可塑性樹脂(B)として前述したポリ乳酸系樹脂以外の熱可塑性樹脂群から選ばれた樹脂をそれぞれ組み合わせることができる。その中でも、柔軟性と透湿性を両立させる点から、樹脂系の可塑剤と、樹脂系の可塑剤以外の熱可塑性樹脂との組み合わせが好ましい。特に、熱可塑性樹脂(B)として、樹脂系の可塑剤と、樹脂系の可塑剤以外の熱可塑性樹脂とを組み合わせた際に、透湿性と防水性が飛躍的に向上することを見出した。
The content of the thermoplastic resin (B) contained in the polylactic acid film of the present invention is 5 to 90% by mass in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B). It is preferable. By setting it as 5 mass% or more, it becomes a film excellent in flexibility. By setting it to 90 mass% or less, it becomes a film excellent in heat resistance. The content of the thermoplastic resin (B) is preferably 10 to 80% by mass, more preferably 15 to 70% by mass, in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B). More preferably, it is particularly preferably 20 to 60% by mass.
(Combination of thermoplastic resin (B))
The polylactic acid film of the present invention may contain only one kind of the above-mentioned thermoplastic resin (B), or may contain two or more kinds in combination. There is no restriction | limiting in particular in resin to combine, Resin chosen from thermoplastic resin groups other than the polylactic acid-type resin mentioned above as a thermoplastic resin (B) can be combined, respectively. Among them, a combination of a resin-based plasticizer and a thermoplastic resin other than the resin-based plasticizer is preferable from the viewpoint of achieving both flexibility and moisture permeability. In particular, it has been found that when the resin-based plasticizer and a thermoplastic resin other than the resin-based plasticizer are combined as the thermoplastic resin (B), the moisture permeability and the waterproof property are dramatically improved.
 樹脂系の可塑剤の中では、耐熱性、透湿性、耐ブロッキング性および耐ブリードアウト性の観点から、前述したブロック共重合体可塑剤、つまり、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体、または、ポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体が好ましい。より好ましくは、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体である。 Among resin-based plasticizers, from the viewpoint of heat resistance, moisture permeability, blocking resistance, and bleed-out resistance, the block copolymer plasticizer described above, that is, a block copolymer having a polyether segment and a polylactic acid segment. A polymer or a block copolymer having a polyester segment and a polylactic acid segment is preferred. More preferably, it is a block copolymer having a polyether segment and a polylactic acid segment.
 樹脂系の可塑剤以外の熱可塑性樹脂の中では、生分解性の観点から、前述した脂肪族ポリエステル系樹脂や脂肪族芳香族ポリエステル系樹脂が好ましい。それらの中でも、柔軟性、防水性の観点からは、ポリ(ブチレンアジペート・テレフタレート)、ポリブチレンサクシネート、ポリ(ブチレンサクシネート・アジペート)、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート・3-ヒドロキシバリレート)、ポリカプロラクトンから選ばれた樹脂がより好ましい。 Among the thermoplastic resins other than the resin-based plasticizer, the above-described aliphatic polyester resins and aliphatic aromatic polyester resins are preferable from the viewpoint of biodegradability. Among them, from the viewpoints of flexibility and waterproofness, poly (butylene adipate terephthalate), polybutylene succinate, poly (butylene succinate adipate), poly (3-hydroxybutyrate), poly (3-hydroxy More preferred are resins selected from butyrate-3-hydroxyvalerate) and polycaprolactone.
 つまり熱可塑性樹脂(B)としては、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体、ポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体、脂肪族ポリエステル系樹脂、および脂肪族芳香族ポリエステル系樹脂からなる群より選ばれる少なくとも1つの樹脂が好ましい。さらに、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体およびポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体からなる群より選ばれる少なくとも1つの樹脂(樹脂系の可塑剤)と、脂肪族ポリエステル系樹脂および脂肪族芳香族ポリエステル系樹脂より選ばれる少なくとも1つの樹脂(樹脂系の可塑剤以外の熱可塑性樹脂)との組み合わせからなることが、透湿性向上の観点からより好ましい。 That is, the thermoplastic resin (B) includes a block copolymer having a polyether segment and a polylactic acid segment, a block copolymer having a polyester segment and a polylactic acid segment, an aliphatic polyester resin, and an aliphatic aromatic. At least one resin selected from the group consisting of polyester resins is preferred. And at least one resin (resin-based plasticizer) selected from the group consisting of a block copolymer having a polyether segment and a polylactic acid segment and a block copolymer having a polyester segment and a polylactic acid segment; It is more preferable from a viewpoint of moisture permeability improvement to consist of a combination with at least 1 resin (thermoplastic resin other than resin-based plasticizer) selected from aliphatic polyester-based resins and aliphatic aromatic polyester-based resins.
 本発明では、前記組み合わせの組成のフィルムに、エンボス加工などによりフィルムの少なくとも片面に、凹部または凸部の不連続部分を設けた場合、ブロック共重合体により柔軟化したポリ乳酸系樹脂(A)の透湿性、防水性の発現効果と、層状アロイ構造による防水性の発現効果との相乗効果により、透湿性と防水性の両立が非常に高いレベルで達成することができることを見出した。 In the present invention, a polylactic acid resin (A) softened with a block copolymer when a film having the above composition is provided with a discontinuous portion of a concave or convex portion on at least one side of the film by embossing or the like. It has been found that both the moisture permeability and the waterproof property can be achieved at a very high level by the synergistic effect of the moisture permeability and waterproof property development effect and the waterproof effect of the layered alloy structure.
 熱可塑性樹脂(B)が、樹脂系の可塑剤と、樹脂系の可塑剤以外の熱可塑性樹脂との組み合わせである場合、その配合質量比は、(樹脂系の可塑剤/樹脂系の可塑剤以外の熱可塑性樹脂)=(5/95)~(95/5)であることが好ましく、(10/90)~(80/20)であることがより好ましく、(20/80)~(60/40)であることがさらに好ましい。
(結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の混合)
 本発明のポリ乳酸系フィルムに含有されるポリ乳酸系樹脂(A)は、結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の混合物であることが好ましい。混合物とすることにより、結晶性および、非晶性、それぞれのポリ乳酸系樹脂の利点を両立できるからである。
When the thermoplastic resin (B) is a combination of a resin-based plasticizer and a thermoplastic resin other than the resin-based plasticizer, the blending mass ratio is (resin-based plasticizer / resin-based plasticizer Other than thermoplastic resin) = (5/95) to (95/5), more preferably (10/90) to (80/20), and (20/80) to (60 / 40) is more preferable.
(Mixing of crystalline polylactic acid resin and amorphous polylactic acid resin)
The polylactic acid resin (A) contained in the polylactic acid film of the present invention is preferably a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin. This is because, by using a mixture, the advantages of both crystalline and amorphous polylactic acid resins can be achieved.
 なお、結晶性ポリ乳酸系樹脂とは、該ポリ乳酸系樹脂を加熱下で十分に結晶化させた後に、適当な温度範囲で示差走査熱量計(DSC)にて測定を行った場合、ポリ乳酸成分に由来する融点が観測されるポリ乳酸系樹脂のことをいう。一方で非晶性ポリ乳酸系樹脂とは、同様の測定を行った際に、明確な融点を示さないポリ乳酸系樹脂のことをいう。 The crystalline polylactic acid-based resin is polylactic acid when the polylactic acid-based resin is sufficiently crystallized under heating and then measured with a differential scanning calorimeter (DSC) in an appropriate temperature range. This refers to a polylactic acid resin in which a melting point derived from a component is observed. On the other hand, an amorphous polylactic acid-based resin refers to a polylactic acid-based resin that does not exhibit a clear melting point when the same measurement is performed.
 結晶性ポリ乳酸系樹脂の含有は、フィルムの耐熱性および耐ブロッキング性向上に好適である。また、樹脂(B)として前述のブロック共重合体可塑剤を用いる場合、結晶性ポリ乳酸系樹脂はブロック共重合体可塑剤が有するポリ乳酸セグメントと共晶を形成することで、耐ブリードアウト性に大きな効果を発揮する。 The inclusion of the crystalline polylactic acid resin is suitable for improving the heat resistance and blocking resistance of the film. In addition, when the above-mentioned block copolymer plasticizer is used as the resin (B), the crystalline polylactic acid-based resin forms a eutectic with the polylactic acid segment of the block copolymer plasticizer, thereby preventing bleeding out. It has a great effect.
 一方、非晶性ポリ乳酸系樹脂の含有は、フィルムの柔軟性および耐ブリードアウト性の向上に好適である。これは、フィルムに非晶性ポリ乳酸系樹脂が含有されることにより非晶部分が提供され、そこに可塑剤が分散しやすくなることが影響している。 On the other hand, the inclusion of an amorphous polylactic acid resin is suitable for improving the flexibility and bleed-out resistance of the film. This is because the amorphous portion is provided by containing the amorphous polylactic acid resin in the film, and the plasticizer is easily dispersed therein.
 結晶性ポリ乳酸系樹脂は、耐熱性および耐ブロッキング性向上の観点から、ポリL-乳酸中のL-乳酸ユニットの含有割合、あるいは、ポリD-乳酸中のD-乳酸ユニットの含有割合が全乳酸ユニット100mol%中において96~100mol%が好ましく、より好ましくは98~100mol%である。 From the viewpoint of improving heat resistance and blocking resistance, the crystalline polylactic acid-based resin has a total content of L-lactic acid units in poly-L-lactic acid or a content of D-lactic acid units in poly-D-lactic acid. In 100 mol% of lactic acid units, 96 to 100 mol% is preferable, and 98 to 100 mol% is more preferable.
 結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の混合物を用いる場合、結晶性ポリ乳酸系樹脂と非晶性ポリ乳酸系樹脂の合計を100質量%としたとき、結晶性ポリ乳酸系樹脂の含有量は5~60質量%であることが好ましく、10~50質量%であることがより好ましく、20~40質量%であることがさらに好ましい。
(充填剤(C))
 本発明のポリ乳酸系フィルムは、透湿性を向上させるために、充填剤(C)を含むことが好ましい。充填剤(C)としては、無機充填剤および/または有機充填剤が使用できる。
When a mixture of a crystalline polylactic acid resin and an amorphous polylactic acid resin is used, when the total of the crystalline polylactic acid resin and the amorphous polylactic acid resin is 100% by mass, the crystalline polylactic acid resin The content of is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and still more preferably 20 to 40% by mass.
(Filler (C))
The polylactic acid film of the present invention preferably contains a filler (C) in order to improve moisture permeability. As the filler (C), an inorganic filler and / or an organic filler can be used.
 充填剤とは、諸性質を改善するために基材として加えられる物質、あるいは増量、増容、製品のコスト低減などを目的として添加する不活性物質をいう。 Filler refers to a substance added as a base material for improving various properties, or an inert substance added for the purpose of increasing the volume, increasing the volume, or reducing the cost of the product.
 無機充填剤の例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等の炭酸塩;硫酸マグネシウム、硫酸バリウム、硫酸カルシウム等の硫酸塩;酸化亜鉛、酸化ケイ素(シリカ)、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化チタン、酸化マグネシウム、酸化鉄、アルミナなどの金属酸化物;水酸化アルミニウム等の水酸化物;珪酸塩鉱物、ヒドロキシアパタイト、マイカ、タルク、カオリン、クレー、モンモリロナイト、ゼオライト等の複合酸化物;リン酸リチウム、リン酸カルシウム、リン酸マグネシウム等のリン酸塩;塩化リチウム、フッ化リチウム等の金属塩などを使用することができる。 Examples of inorganic fillers include carbonates such as calcium carbonate, magnesium carbonate, and barium carbonate; sulfates such as magnesium sulfate, barium sulfate, and calcium sulfate; zinc oxide, silicon oxide (silica), zirconium oxide, magnesium oxide, and oxide. Metal oxides such as calcium, titanium oxide, magnesium oxide, iron oxide, and alumina; hydroxides such as aluminum hydroxide; complex oxides such as silicate minerals, hydroxyapatite, mica, talc, kaolin, clay, montmorillonite, and zeolite A phosphate such as lithium phosphate, calcium phosphate or magnesium phosphate; a metal salt such as lithium chloride or lithium fluoride can be used.
 これらのなかでも、フィルムの透湿性向上や強度、伸度といった機械特性の維持、および低コスト化の観点から、炭酸カルシウム、炭酸バリウム、硫酸バリウム、硫酸カルシウム、酸化ケイ素(シリカ)、酸化チタン、マイカ、タルク、カオリン、クレー、モンモリロナイトが好ましい。 Among these, from the viewpoints of improving the moisture permeability of the film, maintaining mechanical properties such as strength and elongation, and reducing costs, calcium carbonate, barium carbonate, barium sulfate, calcium sulfate, silicon oxide (silica), titanium oxide, Mica, talc, kaolin, clay and montmorillonite are preferred.
 充填剤(C)の平均粒径は、特に限定されないが、0.01~10μmが好ましい。平均粒径が0.01μm以上であることで、フィルム中に高充填することが可能となり、その結果、フィルムの多孔化および透湿性向上のポテンシャルが高いフィルムとなる。平均粒径が10μm以下であることで、フィルムのエンボス加工性、つまり、局所延伸性が良好となり、その結果、フィルムの多孔化および透湿性向上のポテンシャルが高いフィルムとなる。平均粒径は、より好ましくは0.1~8μm、さらに好ましくは0.5~5μm、最も好ましくは1~3μmである。なお、ここでいう平均粒径とは、レーザー回折散乱式の方法で測定される累積分布50%平均粒子径とする。 The average particle diameter of the filler (C) is not particularly limited, but is preferably 0.01 to 10 μm. When the average particle diameter is 0.01 μm or more, high filling in the film is possible, and as a result, the film has a high potential for making the film porous and improving moisture permeability. When the average particle size is 10 μm or less, the embossability of the film, that is, local stretchability is improved, and as a result, the film has a high potential for increasing the porosity and moisture permeability of the film. The average particle size is more preferably 0.1 to 8 μm, further preferably 0.5 to 5 μm, and most preferably 1 to 3 μm. Here, the average particle diameter is a 50% cumulative distribution average particle diameter measured by a laser diffraction scattering method.
 充填剤(C)は、必要に応じて、表面処理することができる。表面処理を行うための表面処理剤としては、リン酸エステル系化合物、脂肪酸、界面活性剤、油脂、ワックス、カルボン酸系カップリング剤、シランカップリング剤、チタネートカップリング剤、高分子系表面処理剤などを使用することができる。これらの中でも、リン酸エステル系化合物、脂肪酸、高分子系表面処理剤、界面活性剤、シランカップリング剤、およびチタネートカップリング剤から選ばれる少なくとも1つの化合物が好ましい。リン酸エステル系化合物および脂肪酸から選ばれる化合物がより好ましい。表面処理することにより、マトリックス樹脂との親和性が向上し、充填剤の凝集抑制および分散性向上に効果があり、樹脂組成物中に均一に分散させることができるようになる。その結果、良好な透湿度を発現するための延伸などの加工性に優れたフィルムを得ることが可能となる。 The filler (C) can be surface-treated as necessary. Surface treatment agents for surface treatment include phosphate ester compounds, fatty acids, surfactants, fats and oils, waxes, carboxylic acid coupling agents, silane coupling agents, titanate coupling agents, and polymer surface treatments. An agent or the like can be used. Among these, at least one compound selected from a phosphate ester compound, a fatty acid, a polymer surface treatment agent, a surfactant, a silane coupling agent, and a titanate coupling agent is preferable. A compound selected from phosphoric ester compounds and fatty acids is more preferred. By performing the surface treatment, the affinity with the matrix resin is improved, which is effective in suppressing the aggregation of the filler and improving the dispersibility, and can be uniformly dispersed in the resin composition. As a result, it becomes possible to obtain a film excellent in processability such as stretching for expressing good moisture permeability.
 また、充填剤(C)の樹脂組成物中での分散性を向上させるため、さらに分散剤を添加することが好ましい。 Further, in order to improve the dispersibility of the filler (C) in the resin composition, it is preferable to further add a dispersant.
 フィルム中の充填剤(C)の含有量は、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量部に対して、1~200質量部であることが好ましい。フィルム中の充填剤(C)の含有量を、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量部に対して1質量部以上とすることで、透湿性に優れたフィルムとなる。また、フィルム中の充填剤(C)の含有量を、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量部に対して200質量部以下とすることで、フィルムの引張強度および引張伸度を維持して加工性に優れたフィルムとなり、フィルムを製造する際の溶融加工性、エンボス加工性、つまり、局所延伸性などが良好なものとなる。充填剤(C)の配合量は、樹脂(A)と樹脂(B)の合計100質量部に対して、3~150質量部であることがより好ましく、5~100質量部であることがさらに好ましく、25~70質量部であることが特に好ましい。 The content of the filler (C) in the film is preferably 1 to 200 parts by mass with respect to 100 parts by mass in total of the polylactic acid resin (A) and the thermoplastic resin (B). A film excellent in moisture permeability by adjusting the content of the filler (C) in the film to 1 part by mass or more with respect to 100 parts by mass in total of the polylactic acid resin (A) and the thermoplastic resin (B). It becomes. Moreover, the tensile strength of a film is made by making content of the filler (C) in a film into 200 mass parts or less with respect to a total of 100 mass parts of a polylactic acid-type resin (A) and a thermoplastic resin (B). In addition, the film has excellent workability while maintaining the tensile elongation, and has good melt processability, embossability, that is, local stretchability when the film is produced. The blending amount of the filler (C) is more preferably 3 to 150 parts by mass and further preferably 5 to 100 parts by mass with respect to 100 parts by mass in total of the resin (A) and the resin (B). The amount is preferably 25 to 70 parts by mass.
 特に本発明では、前記した層状アロイ構造を形成しうる組成中に充填剤(C)を含む場合、エンボス加工時に、この充填剤(C)が起点となり、層状アロイの界面剥離を誘発し、透湿性を大きく向上できることを見出した。
(引張伸度)
 本発明のポリ乳酸系フィルムは、長さ方向および幅方向(長さ方向と垂直な方向)の引張伸度が、いずれも50~300%であることが好ましい。引張伸度は本発明のポリ乳酸系フィルムを様々な用途に適用する際の加工性に関する指標となり、引張伸度が大きいほど加工性が良好となる。引張伸度が300%以下であると製造時にロール間走行時や巻き取り時のタルミやシワが生じにくく、ロール巻姿や巻出し性が良好となる。長さ方向および幅方向の引張伸度は、100~290%がより好ましく、150~280%がさらに好ましい。長さ方向および幅方向の引張伸度をいずれも50~300%とするための方法としては、例えば、前記した好ましい種類、含有量の各原料を配合した樹脂組成物からなるフィルムを、前記した好ましい形状を有するエンボスロールを用い、前記した好ましいロール温度、線圧でエンボス加工することが挙げられる。
(引張弾性率)
 本発明のポリ乳酸系フィルムは、十分な柔軟性を付与するために、長さ方向および幅方向それぞれの引張弾性率が200~1,500MPaであることが好ましい。引張弾性率は柔軟性に関する指標となり、引張弾性率が小さいほど柔軟性が良好となる。引張弾性率が200MPa以上であると製造時にロール間走行時や巻き取り時のタルミやシワが生じにくく、ロール巻姿や巻出し性が良好となる。引張弾性率は、250~1,200MPaであることがより好ましく、280~1,000MPaであることがさらに好ましく、300~900MPaであることが特に好ましい。長さ方向および幅方向それぞれの引張弾性率を200~1,500MPaとするための方法としては、例えば、前記した好ましい種類、含有量の各原料を配合した樹脂組成物からなるフィルムを、前記した好ましい形状を有するエンボスロールを用い、前記した好ましいロール温度、線圧でエンボス加工することが挙げられる。
(厚み)
 本発明のポリ乳酸系フィルムは、フィルム厚みが5~200μmであることが好ましい。フィルム厚みを5μm以上とすることで、フィルムとした際のコシが強くなり、取り扱い性に優れ、また、ロール巻姿や巻出し性が良好となる。フィルム厚みを200μm以下とすることで柔軟性および透湿性に優れるものとなり、また、特にインフレーション製膜法においては、自重によりバブルが不安定化しない。フィルム厚みは、7~150μmがより好ましく、10~100μmがさらに好ましく、12~50μmがさらにより好ましい。
(添加剤)
 本発明のポリ乳酸系フィルムを構成する組成物には、本発明の効果を損なわない範囲で前述した以外の添加剤を含有してもよい。例えば、公知の可塑剤、酸化防止剤、結晶核剤、有機滑剤、紫外線安定化剤、末端封鎖剤、着色防止剤、艶消し剤、抗菌剤、消臭剤、難燃剤、耐候剤、帯電防止剤、抗酸化剤、イオン交換剤、粘着性付与剤、消泡剤、着色顔料、染料などが使用できる。
In particular, in the present invention, when the filler (C) is included in the composition capable of forming the layered alloy structure described above, the filler (C) becomes a starting point during embossing to induce interfacial peeling of the layered alloy, It has been found that the wettability can be greatly improved.
(Tensile elongation)
The polylactic acid-based film of the present invention preferably has a tensile elongation in the length direction and width direction (direction perpendicular to the length direction) of 50 to 300%. The tensile elongation is an index relating to workability when the polylactic acid film of the present invention is applied to various uses. The higher the tensile elongation, the better the workability. When the tensile elongation is 300% or less, tarmi and wrinkles are less likely to occur during production between rolls and during winding, and roll roll form and unwinding properties are improved. The tensile elongation in the length direction and the width direction is more preferably from 100 to 290%, further preferably from 150 to 280%. Examples of a method for adjusting the tensile elongation in the length direction and the width direction to 50 to 300% include, for example, a film made of a resin composition in which each of the above-mentioned preferred types and contents are blended. Using an embossing roll having a preferred shape, embossing at the above-described preferred roll temperature and linear pressure can be mentioned.
(Tensile modulus)
The polylactic acid film of the present invention preferably has a tensile modulus in the length direction and the width direction of 200 to 1,500 MPa in order to impart sufficient flexibility. The tensile modulus is an index relating to flexibility, and the smaller the tensile modulus, the better the flexibility. When the tensile elastic modulus is 200 MPa or more, tarmi and wrinkles are less likely to occur during production between rolls and during winding, and the roll winding shape and unwinding property are improved. The tensile elastic modulus is more preferably 250 to 1,200 MPa, further preferably 280 to 1,000 MPa, and particularly preferably 300 to 900 MPa. As a method for setting the tensile modulus in the length direction and the width direction to 200 to 1,500 MPa, for example, a film made of a resin composition in which each of the above-mentioned preferred types and contents are blended is described above. Using an embossing roll having a preferred shape, embossing at the above-described preferred roll temperature and linear pressure can be mentioned.
(Thickness)
The polylactic acid film of the present invention preferably has a film thickness of 5 to 200 μm. By setting the film thickness to 5 μm or more, the firmness of the film becomes strong, the handling property is excellent, and the roll winding shape and unwinding property are good. When the film thickness is 200 μm or less, the film is excellent in flexibility and moisture permeability. In particular, in the inflation film forming method, bubbles do not become unstable due to their own weight. The film thickness is more preferably 7 to 150 μm, further preferably 10 to 100 μm, and still more preferably 12 to 50 μm.
(Additive)
In the composition which comprises the polylactic acid-type film of this invention, you may contain additives other than having mentioned above in the range which does not impair the effect of this invention. For example, known plasticizers, antioxidants, crystal nucleating agents, organic lubricants, UV stabilizers, endblockers, anti-coloring agents, matting agents, antibacterial agents, deodorants, flame retardants, weathering agents, antistatic Agents, antioxidants, ion exchange agents, tackifiers, antifoaming agents, color pigments, dyes and the like can be used.
 有機滑剤としては、脂肪酸アミド系の化合物が好ましく使用できる。 As the organic lubricant, fatty acid amide compounds can be preferably used.
 酸化防止剤としてはヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤など好ましく使用できる。 As the antioxidant, a hindered phenol-based antioxidant, a hindered amine-based antioxidant, and the like can be preferably used.
 末端封鎖剤としては、カルボジイミド化合物、エポキシ化合物、イソシアネート化合物、オキサゾリン化合物等の付加反応型化合物が好ましく使用できる。
(乳酸オリゴマー成分量)
 本発明のポリ乳酸系フィルムは、フィルム中に含まれる乳酸オリゴマー成分量が0.3質量%以下であることが好ましい。より好ましくは0.2質量%以下、さらに好ましくは0.1質量%以下である。フィルム中に含まれる乳酸オリゴマー成分量を0.3質量%以下とすることで、フィルム中に残留している乳酸オリゴマー成分が粉末状あるいは液状として析出することによるハンドリング性の悪化を抑制したり、ポリ乳酸系樹脂の加水分解進行を抑制してフィルムの耐経時性劣化を防止したり、さらには、ポリ乳酸特有の臭気を抑制することができる。ここでいう乳酸オリゴマー成分とは、フィルム中に存在する乳酸や乳酸の線状オリゴマーや環状オリゴマーなどの中で量的に最も代表的である乳酸の環状二量体(ラクチド)、すなわちLL-ラクチド、DD-ラクチド、およびDL(メソ)-ラクチドである。乳酸オリゴマー成分量を0.3質量%以下とする方法は後述する。
(製造方法)
 次に、本発明のポリ乳酸系フィルムを製造する方法について具体的に説明するがこれに限定されるものではない。
As the terminal blocking agent, addition reaction type compounds such as carbodiimide compounds, epoxy compounds, isocyanate compounds, oxazoline compounds can be preferably used.
(Lactic acid oligomer component amount)
In the polylactic acid film of the present invention, the amount of lactic acid oligomer component contained in the film is preferably 0.3% by mass or less. More preferably, it is 0.2 mass% or less, More preferably, it is 0.1 mass% or less. By controlling the amount of the lactic acid oligomer component contained in the film to 0.3% by mass or less, the deterioration of the handling property due to precipitation of the lactic acid oligomer component remaining in the film as a powder or liquid is suppressed, The progress of hydrolysis of the polylactic acid resin can be suppressed to prevent deterioration of the film over time, and furthermore, the odor peculiar to polylactic acid can be suppressed. The term “lactic acid oligomer component” as used herein refers to a cyclic dimer (lactide) of lactic acid that is most representative in quantity among lactic acid and linear oligomers and cyclic oligomers of lactic acid present in the film, that is, LL-lactide. , DD-lactide, and DL (meso) -lactide. A method for setting the amount of the lactic acid oligomer component to 0.3% by mass or less will be described later.
(Production method)
Next, the method for producing the polylactic acid film of the present invention will be specifically described, but the present invention is not limited thereto.
 本発明におけるポリ乳酸系樹脂(A)は、例えば、次のような方法で得ることができる。原料としては、L-乳酸またはD-乳酸を用いる。前述した乳酸以外のヒドロキシカルボン酸を併用することもできる。またヒドロキシカルボン酸の環状エステル中間体、例えば、ラクチド、グリコリド等を原料として使用することもできる。さらにジカルボン酸類やグリコール類等も使用することができる。 The polylactic acid resin (A) in the present invention can be obtained, for example, by the following method. As a raw material, L-lactic acid or D-lactic acid is used. Hydroxycarboxylic acids other than the lactic acid described above can also be used in combination. Further, a cyclic ester intermediate of hydroxycarboxylic acid, for example, lactide, glycolide, etc. can be used as a raw material. Furthermore, dicarboxylic acids and glycols can also be used.
 ポリ乳酸系樹脂は、上記原料を直接脱水縮合する方法、または上記環状エステル中間体を開環重合する方法によって得ることができる。例えば直接脱水縮合して製造する場合、乳酸類または乳酸類とヒドロキシカルボン酸類を有機溶媒、特に好ましくはフェニルエーテル系溶媒の存在下で共沸脱水縮合し、共沸により留出した溶媒から水を除き実質的に無水の状態にした溶媒を反応系に戻す方法によって重合することにより高分子量のポリマーが得られる。 The polylactic acid resin can be obtained by a method of directly dehydrating and condensing the raw materials or a method of ring-opening polymerization of the cyclic ester intermediate. For example, in the case of producing by direct dehydration condensation, lactic acid or lactic acid and hydroxycarboxylic acid are subjected to azeotropic dehydration condensation in the presence of an organic solvent, particularly preferably a phenyl ether solvent, and water is removed from the solvent distilled by azeotropic distillation. A high molecular weight polymer can be obtained by polymerizing by a method in which the solvent which has been removed in a substantially anhydrous state is returned to the reaction system.
 また、ラクチド等の環状エステル中間体をオクチル酸錫等の触媒を用い減圧下開環重合することによって高分子量のポリマーが得られることも知られている。このとき、有機溶媒中での加熱還流時の水分および低分子化合物の除去の条件を調整する方法や、重合反応終了後にリン系化合物を添加して触媒を失活させ解重合反応を抑える方法、製造したポリマーを熱処理する方法などを用いることにより、ラクチド量の少ないポリマーを得ることができる。 It is also known that a high molecular weight polymer can be obtained by subjecting a cyclic ester intermediate such as lactide to ring-opening polymerization under reduced pressure using a catalyst such as tin octylate. At this time, a method of adjusting the conditions for removing moisture and low molecular weight compounds during heating and reflux in an organic solvent, a method of suppressing the depolymerization reaction by adding a phosphorus compound after the polymerization reaction and deactivating the catalyst, By using a method of heat-treating the produced polymer, a polymer having a small amount of lactide can be obtained.
 本発明のポリ乳酸系フィルムを構成する組成物、つまり、ポリ乳酸系樹脂(A)や、必要に応じ、熱可塑性樹脂(B)、充填剤(C)およびその他の成分を含有する組成物を得るにあたっては、各成分を溶媒に溶かした溶液を均一混合した後、溶媒を除去して組成物を製造することも可能であるが、各成分を溶融混練することにより組成物を製造する溶融混練法が、溶媒への原料の溶解、溶媒除去等の工程が不要であるので好ましい。溶融混練方法については、特に制限はなく、ニーダー、ロールミル、バンバリーミキサー、単軸または二軸押出機等の公知の混合機を用いることができる。中でも生産性の観点から、単軸または二軸押出機の使用が好ましい。 A composition constituting the polylactic acid film of the present invention, that is, a composition containing a polylactic acid resin (A) and, if necessary, a thermoplastic resin (B), a filler (C) and other components. In obtaining the composition, it is possible to produce a composition by uniformly mixing a solution in which each component is dissolved in a solvent, and then removing the solvent. The method is preferable because steps such as dissolution of the raw material in the solvent and removal of the solvent are unnecessary. The melt kneading method is not particularly limited, and a known mixer such as a kneader, roll mill, Banbury mixer, single-screw or twin-screw extruder can be used. Among these, from the viewpoint of productivity, it is preferable to use a single screw or twin screw extruder.
 溶融混練時の温度は150℃~240℃の範囲が好ましく、ポリ乳酸系樹脂の劣化を防ぐ意味から、190℃~210℃の範囲がより好ましい。 The temperature at the time of melt kneading is preferably in the range of 150 ° C. to 240 ° C., and more preferably in the range of 190 ° C. to 210 ° C. from the viewpoint of preventing the deterioration of the polylactic acid resin.
 本発明のポリ乳酸系フィルムは、例えば上記した方法により得られた組成物を用いて、公知のインフレーション法、チューブラー法、Tダイキャスト法などの既存の製膜方法と、エンボス加工を組み合わせることにより得ることができる。 The polylactic acid-based film of the present invention uses, for example, a composition obtained by the above-described method, and combines an existing film forming method such as a known inflation method, a tubular method, or a T-die casting method with embossing. Can be obtained.
 本発明のポリ乳酸系フィルムを製膜するにあたっては、例えば前述した方法により得られたポリ乳酸系樹脂を含有する組成物を一旦ペレット化し、再度溶融混練して押出・製膜する際には、ペレットを60~100℃にて6時間以上乾燥するなどして、水分量を500ppm(質量基準)以下とした組成物を用いることが好ましい。さらに、真空度10torr以下の高真空下で真空乾燥をすることで、該組成物中のラクチド含有量を低減させることが好ましい。該組成物の水分量を500ppm(質量基準)以下、ラクチド含有量を低減することで、溶融混練中のポリ乳酸系樹脂の加水分解を防ぎ、それにより分子量低下を防ぐことができ、得られる組成物の溶融粘度を適度なレベルとし、製膜工程を安定させることができるため好ましい。また、同様の観点から、組成物を一旦ペレット化、あるいは溶融押出・製膜する際には、ベント孔付きの2軸押出機を使用し、水分や低分子量物などの揮発物を除去しながら溶融押出することが好ましい。 In forming the polylactic acid-based film of the present invention, for example, when the composition containing the polylactic acid-based resin obtained by the above-described method is once pelletized, melt-kneaded again, and extruded / film-formed, It is preferable to use a composition having a moisture content of 500 ppm (mass basis) or less by drying the pellets at 60 to 100 ° C. for 6 hours or more. Furthermore, it is preferable to reduce the lactide content in the composition by vacuum drying under a high vacuum with a degree of vacuum of 10 torr or less. By reducing the water content of the composition to 500 ppm (mass basis) or less and reducing the lactide content, hydrolysis of the polylactic acid-based resin during melt-kneading can be prevented, thereby preventing a decrease in molecular weight. This is preferable because the melt viscosity of the product can be set to an appropriate level and the film forming process can be stabilized. From the same point of view, when the composition is once pelletized or melt-extruded / formed into a film, a biaxial extruder with a vent hole is used to remove volatiles such as moisture and low molecular weight substances. Melt extrusion is preferred.
 本発明のポリ乳酸系フィルムをインフレーション法により製膜する方法を以下に例示する。 The method for forming the polylactic acid film of the present invention by the inflation method is exemplified below.
 前述のような方法により製造した組成物を真空ベント孔付き2軸押出機にて溶融押出して環状ダイスに導き、環状ダイスから押出して内部には乾燥エアーを供給して風船状(バブル)に形成する。さらにエアーリングにより均一に空冷固化させ、ニップロールでフラットに折りたたみながら所定の引き取り速度で引き取った後、必要に応じて両端、または片方の端を切り開いて巻き取ることで、エンボス加工前のフィルムを得ることができる。良好な透湿性を発現させるためには環状ダイスの温度が重要であり、環状ダイスの温度は好ましくは150~190℃、より好ましくは155~185℃の範囲である。環状ダイスは、得られるフィルムの厚み精度および均一性の点から、回転式、かつ、スパイラル型を用いるのが良い。また、フィルムに成形した後に、印刷性、ラミネート適性、コーティング適性などを向上させる目的で、コロナ放電処理、プラズマ処理、火炎処理、酸処理などの表面処理を施しても良い
 続いて、エンボス加工する方法を以下に例示する。
The composition produced by the method as described above is melt-extruded with a twin screw extruder with a vacuum vent hole, led to an annular die, extruded from the annular die, and supplied with dry air to form a balloon. To do. Furthermore, it is air-cooled and solidified uniformly with an air ring, and after it is folded flat with a nip roll and taken at a predetermined take-up speed, both ends or one end is cut open as necessary to obtain a film before embossing. be able to. In order to develop good moisture permeability, the temperature of the annular die is important, and the temperature of the annular die is preferably in the range of 150 to 190 ° C, more preferably in the range of 155 to 185 ° C. As the annular die, it is preferable to use a rotary type and a spiral type from the viewpoint of thickness accuracy and uniformity of the obtained film. In addition, after forming into a film, surface treatment such as corona discharge treatment, plasma treatment, flame treatment, and acid treatment may be performed for the purpose of improving printability, laminate suitability, coating suitability, etc. The method is illustrated below.
 前述のような方法により製膜したフィルムを、エンボスロールとゴムロールもしくはペーパーロールなどの間を通してエンボス加工を施し、目的とするポリ乳酸系フィルムを得る。このとき、ロール温度は20~80℃が好ましく、ニップ圧力(線圧)は20~100kg/cmが好ましく、ロール回転速度は0.5~30m/minが好ましい。エンボス加工は通常1度だけ行うが、必要に応じ2度以上行ってもよい。 The film formed by the method as described above is embossed between an embossing roll and a rubber roll or a paper roll to obtain a target polylactic acid film. At this time, the roll temperature is preferably 20 to 80 ° C., the nip pressure (linear pressure) is preferably 20 to 100 kg / cm, and the roll rotation speed is preferably 0.5 to 30 m / min. Embossing is normally performed only once, but may be performed twice or more as necessary.
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれにより何ら制限を受けるものではない。
[測定および評価方法]
 実施例中に示す測定や評価は次に示すような条件で行った。
(1)引張弾性率(MPa)
 (株)オリエンテック製“TENSILON”(登録商標)UCT-100を用いて、室温23℃、相対湿度65%の雰囲気にて、引張弾性率を測定した。具体的には、測定方向に長さ150mm、幅10mmの短冊状にサンプルを切り出し、初期引張チャック間距離50mm、引張速度200mm/minで、JIS K 7127 (1999)に規定された方法にしたがって、長さ方向、幅方向それぞれについて10回の測定を行い、その平均値を引張弾性率とした。
(2)引張伸度(%)
 (株)オリエンテック製“TENSILON”(登録商標)UCT-100を用いて、室温23℃、相対湿度65%の雰囲気にて、引張伸度を測定した。具体的には、測定方向に長さ150mm、幅10mmの短冊状にサンプルを切り出し、初期引張チャック間距離50mm、引張速度200mm/minで、JIS K 7127 (1999)に規定された方法にしたがって、長さ方向、幅方向それぞれについて10回の測定を行い、その平均値を引張伸度とした。
(3)透湿性
 25℃、90%RHに設定した恒温恒湿装置にて、JIS Z 0208 (1976)に規定された方法に従って透湿度(g/(m・day))の測定を3回行い、その平均値を用いて、以下の基準にて評価した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto.
[Measurement and evaluation method]
Measurements and evaluations shown in the examples were performed under the following conditions.
(1) Tensile modulus (MPa)
Tensile modulus was measured in an atmosphere of room temperature 23 ° C. and relative humidity 65% using “TENSILON” (registered trademark) UCT-100 manufactured by Orientec Co., Ltd. Specifically, a sample was cut into a strip shape having a length of 150 mm and a width of 10 mm in the measurement direction, and the distance between the initial tensile chucks was 50 mm and the tensile speed was 200 mm / min, according to the method defined in JIS K 7127 (1999). Ten measurements were made for each of the length and width directions, and the average value was taken as the tensile modulus.
(2) Tensile elongation (%)
Tensile elongation was measured in an atmosphere of room temperature 23 ° C. and relative humidity 65% using “TENSILON” (registered trademark) UCT-100 manufactured by Orientec Co., Ltd. Specifically, a sample was cut into a strip shape having a length of 150 mm and a width of 10 mm in the measurement direction, and the distance between the initial tensile chucks was 50 mm and the tensile speed was 200 mm / min, according to the method defined in JIS K 7127 (1999). Ten measurements were made for each of the length direction and width direction, and the average value was taken as the tensile elongation.
(3) Moisture permeability Measurement of moisture permeability (g / (m 2 · day)) three times according to the method specified in JIS Z 0208 (1976) using a constant temperature and humidity device set at 25 ° C and 90% RH. The average value was used and evaluated according to the following criteria.
 AA:2,000g/(m・day)以上
 A:1,500g/(m・day)以上2,000g/(m・day)未満
 B:1,000g/(m・day)以上1,500g/(m・day)未満
 C:500g/(m・day)以上1,000g/(m・day)未満
 D:500g/(m・day)未満。
(4)耐水性
 JIS L 1092 (2009)に規定された方法に従って、耐水度試験(静水圧法;A法(低水圧法))を行った。このとき、水準装置の水位上昇速度は600mm/min±30mm/minとした。この耐水度(mm)の測定を3回行い、その平均値を用いて、以下の基準にて評価した。
AA: 2,000g / (m 2 · day) or more A: 1,500g / (m 2 · day) or more 2,000g / (m 2 · day) under B: 1,000g / (m 2 · day) or more Less than 1,500 g / (m 2 · day) C: 500 g / (m 2 · day) or more and less than 1,000 g / (m 2 · day) D: Less than 500 g / (m 2 · day).
(4) Water resistance A water resistance test (hydrostatic pressure method; method A (low water pressure method)) was performed according to the method specified in JIS L 1092 (2009). At this time, the water level rising speed of the level device was 600 mm / min ± 30 mm / min. This water resistance (mm) was measured three times, and the average value was used for evaluation according to the following criteria.
 AA:400mm以上
 A:300mm以上400mm未満
 B:200mm以上300mm未満
 C:100mm以上200mm未満
 D:100mm未満
(5)質量平均分子量、数平均分子量
 ゲルパーミエーションクロマトグラフィー(GPC)により測定した標準ポリメチルメタクリレート換算の値である。GPCの測定は、検出器にWATERS社示差屈折計WATERS410を用い、ポンプにWATERS社MODEL510高速液体クロマトグラフィーを用い、カラムにShodex GPC HFIP-806MとShodex GPC HFIP-LGを直列に接続したものを用いて行った。測定条件は、流速0.5mL/minとし、溶媒にヘキサフルオロイソプロパノールを用い、試料濃度1mg/mLの溶液を0.1mL注入した。
(6)不連続部分の高さ
 フィルムサンプルを、ウルトラミクロトームを用い、フィルム面を真上から見た際に凹部または凸部の形状の重心を通る断面が観察面となるように、-100℃で超薄切片を採取した。このフィルム断面の薄膜切片を、走査型電子顕微鏡を用いて、フィルム表面の高さが最も低い部分と、最も高い部分との差にあたる長さが確認できる倍率(例えば200倍)で断面写真を撮影し、不連続部分の高さを測定した。これを、観察する凹部または凸部を変えて5箇所で行い、得られた値の平均値を、本発明における、不連続部分の高さ(μm)とした。
A: 400 mm or more A: 300 mm or more and less than 400 mm B: 200 mm or more and less than 300 mm C: 100 mm or more and less than 200 mm D: less than 100 mm (5) Mass average molecular weight, number average molecular weight Standard polymethyl measured by gel permeation chromatography (GPC) It is a value in terms of methacrylate. GPC measurement uses a WATERS differential refractometer WATERS410 as a detector, WATERS MODEL510 high performance liquid chromatography as a pump, and Shodex GPC HFIP-806M and Shodex GPC HFIP-LG connected in series as a column. I went. Measurement conditions were such that the flow rate was 0.5 mL / min, hexafluoroisopropanol was used as the solvent, and 0.1 mL of a solution having a sample concentration of 1 mg / mL was injected.
(6) Height of discontinuous portion Using an ultramicrotome, the film sample is −100 ° C. so that the cross section passing through the center of gravity of the concave or convex shape becomes the observation surface when the film surface is viewed from directly above. Ultrathin sections were collected at Using a scanning electron microscope, take a cross-sectional photograph of the thin film section of this film cross section at a magnification (for example, 200 times) that can confirm the length corresponding to the difference between the lowest part of the film surface and the highest part. Then, the height of the discontinuous portion was measured. This was performed at five locations by changing the observed concave or convex portions, and the average value obtained was defined as the height (μm) of the discontinuous portions in the present invention.
 以下に、実施例で使用した材料について説明する。
[ポリ乳酸系樹脂(A)]
(A1)
 結晶性ポリL-乳酸樹脂、質量平均分子量=200,000、D体含有量=1.4%、融点=166℃
(A2)
 結晶性ポリL-乳酸樹脂、質量平均分子量=200,000、D体含有量=5.0%、融点=150℃、
(A3)
 非晶性ポリL-乳酸樹脂、質量平均分子量=200,000、D体含有量=12.0%、融点=無し
 上記の融点は、ポリ乳酸樹脂を100℃の熱風オーブン中で24時間加熱させた後に、セイコーインスツル社製示差走査熱量計RDC220を用い、試料5mgをアルミニウム製受皿にセットし、25℃から昇温速度20℃/minで250℃まで昇温した際の結晶融解ピークのピーク温度として求めた。
[ポリ乳酸系樹脂(A)以外の熱可塑性樹脂(B)]
(B1)
 ポリブチレンアジペート・テレフタレート樹脂(BASF社製、商品名“エコフレックス”(登録商標)FBX7011)
(B2)
 ポリブチレンサクシネート系樹脂(三菱化学(株)製、商品名“GSPla”(登録商標)AZ91T)
(B3)
 ポリブチレンサクシネート・アジペート系樹脂(昭和高分子(株)製、商品名“ビオノーレ”(登録商標)#3001)
(B4)
 数平均分子量8,000のポリエチレングリコール62質量部とL-ラクチド38質量部とオクチル酸スズ0.05質量部を混合し、撹拌装置付きの反応容器中で、窒素雰囲気下160℃で3時間重合することで、数平均分子量8,000のポリエチレングリコールの両末端に数平均分子量2,500のポリL-乳酸セグメントを有するブロック共重合体可塑剤B4を得た。
[可塑剤(P)]
(P1)
 アセチルクエン酸トリブチル、ファイザー(株)製、商品名“シトロフレックス”(登録商標)A-4)。
[充填剤(C)]
(C1)
 炭酸カルシウム(三共精粉(株)製、商品名“トップフロー”(登録商標)H200、平均粒子径:1.7μm)
[金属製エンボスロール]
 (I) 模様:正四角錐台柄、正配列、凹凸差:0.1mm、ピッチ:1.0mm、圧着面積:0.16mm、圧着面積率:16%、凹凸断面の角度θ:18°
 (II) 模様:正四角錐台柄、正配列、凹凸差:0.3mm、ピッチ:1.0mm、圧着面積:0.09mm、圧着面積率:9%、凹凸断面の角度θ:18°
 (III) 模様:正四角錐台柄、正配列、凹凸差:0.5mm、ピッチ:1.0mm、圧着面積:0.04mm、圧着面積率:4%、凹凸断面の角度θ:18°
 (IV) 模様:正四角錐台柄、正配列、凹凸差:0.3mm、ピッチ:1.0mm、圧着面積:0.16mm、圧着面積率:16%、凹凸断面の角度θ:18°
 (V) 模様:正四角錐台柄、正配列、凹凸差:0.3mm、ピッチ:0.5mm、圧着面積:0.04mm、圧着面積率:16%、凹凸断面の角度θ:18°
[ポリ乳酸系フィルムの作製]
(比較例1)
 ポリ乳酸樹脂(A1)20質量部、ポリ乳酸樹脂(A3)50質量部、可塑剤(P1)30質量部の混合物をシリンダー温度190℃のスクリュー径44mmの真空ベント付き2軸押出機に供し、真空ベント部を脱気しながら溶融混練し、均質化した後にペレット化して組成物を得た。
Below, the material used in the Example is demonstrated.
[Polylactic acid resin (A)]
(A1)
Crystalline poly L-lactic acid resin, mass average molecular weight = 200,000, D-form content = 1.4%, melting point = 166 ° C.
(A2)
Crystalline poly L-lactic acid resin, mass average molecular weight = 200,000, D-form content = 5.0%, melting point = 150 ° C.
(A3)
Amorphous poly L-lactic acid resin, mass average molecular weight = 200,000, D-form content = 12.0%, melting point = none The above melting point was obtained by heating the polylactic acid resin in a hot air oven at 100 ° C. for 24 hours. After that, using a differential scanning calorimeter RDC220 manufactured by Seiko Instruments Inc., a sample 5 mg was set on an aluminum pan, and the peak of the crystal melting peak when the temperature was raised from 25 ° C. to 250 ° C. at a heating rate of 20 ° C./min. Calculated as temperature.
[Thermoplastic resin (B) other than polylactic acid resin (A)]
(B1)
Polybutylene adipate terephthalate resin (trade name “Ecoflex” (registered trademark) FBX7011 manufactured by BASF)
(B2)
Polybutylene succinate resin (Mitsubishi Chemical Corporation, trade name “GSPla” (registered trademark) AZ91T)
(B3)
Polybutylene succinate / adipate resin (manufactured by Showa Polymer Co., Ltd., trade name “Bionore” (registered trademark) # 3001)
(B4)
62 parts by mass of polyethylene glycol having a number average molecular weight of 8,000, 38 parts by mass of L-lactide and 0.05 parts by mass of tin octylate are mixed and polymerized in a reaction vessel equipped with a stirrer at 160 ° C. for 3 hours in a nitrogen atmosphere. As a result, a block copolymer plasticizer B4 having a poly L-lactic acid segment having a number average molecular weight of 2,500 at both ends of polyethylene glycol having a number average molecular weight of 8,000 was obtained.
[Plasticizer (P)]
(P1)
Tributyl acetyl citrate, manufactured by Pfizer Inc., trade name “Citroflex” (registered trademark) A-4).
[Filler (C)]
(C1)
Calcium carbonate (manufactured by Sankyo Seimitsu Co., Ltd., trade name “Top Flow” (registered trademark) H200, average particle size: 1.7 μm)
[Metal embossing roll]
(I) Pattern: regular square pyramid trapezoidal pattern, regular arrangement, unevenness difference: 0.1 mm, pitch: 1.0 mm, crimping area: 0.16 mm 2 , crimping area ratio: 16%, unevenness section angle θ: 18 °
(II) Pattern: regular square pyramid trapezoidal pattern, regular arrangement, unevenness difference: 0.3 mm, pitch: 1.0 mm, crimping area: 0.09 mm 2 , crimping area ratio: 9%, irregularity section angle θ: 18 °
(III) Pattern: regular quadrangular pyramid trapezoidal pattern, regular arrangement, unevenness difference: 0.5 mm, pitch: 1.0 mm, crimping area: 0.04 mm 2 , crimping area ratio: 4%, uneven section angle θ: 18 °
(IV) Pattern: regular square pyramid trapezoidal pattern, regular arrangement, unevenness difference: 0.3 mm, pitch: 1.0 mm, crimping area: 0.16 mm 2 , crimping area ratio: 16%, uneven section angle θ: 18 °
(V) Pattern: regular square pyramid trapezoidal pattern, regular arrangement, unevenness difference: 0.3 mm, pitch: 0.5 mm, pressure bonding area: 0.04 mm 2 , pressure bonding area ratio: 16%, unevenness cross section angle θ: 18 °
[Production of polylactic acid film]
(Comparative Example 1)
A mixture of 20 parts by mass of the polylactic acid resin (A1), 50 parts by mass of the polylactic acid resin (A3), and 30 parts by mass of the plasticizer (P1) was subjected to a twin screw extruder with a vacuum vent with a cylinder diameter of 190 ° C. and a screw diameter of 44 mm, The composition was obtained by melt-kneading while degassing the vacuum vent, homogenizing and then pelletizing.
 この組成物のペレットを、回転式ドラム型真空乾燥機を用いて、温度60℃で12時間真空乾燥した。 The pellets of this composition were vacuum-dried at a temperature of 60 ° C. for 12 hours using a rotary drum type vacuum dryer.
 この乾燥した組成物のペレットを、シリンダー温度180℃の単軸押出機に供給し、直径250mm、リップクリアランス1.3mm、温度160℃の回転式スパイラル型環状ダイスより、ブロー比2.4にてバブル状に上向きに押出し、冷却リングにより空冷し、ダイス上方のニップロールで折りたたみながら引き取り、両端部をエッジカッターにて切断して2枚に切り開き、それぞれワインダーにて巻き取り、最終厚みが20μmのフィルムを得た。このとき、ドロー比は27であった。得られたフィルムの物性を表1に示した。
(実施例1)
 フィルムの組成を表1のように変更した以外は、比較例1と同様にして厚さ20μmのフィルムを得た。
The dried composition pellets were supplied to a single screw extruder with a cylinder temperature of 180 ° C., and a blow spiral ratio of 2.4 mm from a rotary spiral annular die with a diameter of 250 mm, a lip clearance of 1.3 mm, and a temperature of 160 ° C. Extruded upward in the form of bubbles, air-cooled with a cooling ring, folded while being folded with a nip roll above the die, cut at both ends with an edge cutter, cut into two pieces, each wound with a winder, and a film with a final thickness of 20 μm Got. At this time, the draw ratio was 27. Table 1 shows the physical properties of the obtained film.
(Example 1)
A film having a thickness of 20 μm was obtained in the same manner as in Comparative Example 1 except that the composition of the film was changed as shown in Table 1.
 次いで、上記フィルムを、由利ロール(株)製電気加熱式エンボス機HTEM-300型にセットした、エンボスロール(II)(上段)と、硬度D-90の超硬質ゴムロール(下段)の間を、ロール温度50℃(上段、下段両方)、ニップ圧力(線圧)50kg/cm、ロール回転速度1.0m/minの条件で通すことで、エンボス加工した。フィルムの物性を表1に示した。
(実施例2~24、比較例2~3)
 フィルムの組成と、エンボス加工条件を表1~4のように変更した以外は、実施例1と同様にしてフィルムを得た。得られたフィルムの物性を表1~4に示した。
(比較例4)
 フィルムの組成を表3のように変更した以外は、比較例1と同様にしてフィルムを得た。得られたフィルムの物性を表3に示した。
(実施例25)
 フィルムの組成を表4のように変更した以外は、比較例1と同様にして厚さ20μmのフィルムを得た。
Next, between the embossing roll (II) (upper stage) and the super-hard rubber roll (lower stage) having a hardness of D-90, in which the above film was set in an electric heating type embossing machine HTEM-300 manufactured by Yuri Roll Co., Ltd. Embossing was performed by passing under conditions of a roll temperature of 50 ° C. (both upper and lower stages), a nip pressure (linear pressure) of 50 kg / cm, and a roll rotation speed of 1.0 m / min. The physical properties of the film are shown in Table 1.
(Examples 2 to 24, Comparative Examples 2 to 3)
A film was obtained in the same manner as in Example 1 except that the composition of the film and the embossing conditions were changed as shown in Tables 1 to 4. The physical properties of the obtained film are shown in Tables 1 to 4.
(Comparative Example 4)
A film was obtained in the same manner as in Comparative Example 1 except that the composition of the film was changed as shown in Table 3. Table 3 shows the physical properties of the obtained film.
(Example 25)
A film having a thickness of 20 μm was obtained in the same manner as in Comparative Example 1 except that the composition of the film was changed as shown in Table 4.
 次いで、上記フィルムを、由利ロール社製電気加熱式エンボス機HTEM-300型にセットした、エンボスロール(V)(上段)と、エンボスロール(V)と雄雌を形成する凹み部を有し、その凹み部の深さがエンボスロール(V)の凸部の高さの25%であるペーパーロール(下段)の間を、ロール温度50℃(上段、下段両方)、ニップ圧力(線圧)50kg/cm、ロール回転速度1.0m/minの条件で通すことで、エンボス加工した。フィルムの物性を表4に示した。
(実施例26)
 ペーパーロール(下段)の凹み部の深さがエンボスロール(V)の凸部の高さの45%であるものに変更した以外は、実施例25と同様にしてフィルムを得た。得られたフィルムの物性を表4に示した。
(実施例27)
 ペーパーロール(下段)の凹み部の深さがエンボスロール(V)の凸部の高さの80%であるものに変更した以外は、実施例25と同様にしてフィルムを得た。得られたフィルムの物性を表4に示した。
(比較例5)
 ペーパーロール(下段)の凹み部の深さがエンボスロール(V)の凸部の高さの100%であるものに変更した以外は、実施例25と同様にしてフィルムを得た。得られたフィルムの物性を表4に示した。
(実施例28~30、比較例6)
 フィルムの組成と、エンボス加工条件を表4のように変更した以外は、実施例27と同様にしてフィルムを得た。得られたフィルムの物性を表4に示した。
Next, the film was set in an electric heating type embossing machine HTEM-300 manufactured by Yuri Roll Co., Ltd., having an embossing roll (V) (upper stage), an embossing roll (V), and a recess for forming a male and female, Between the paper rolls (lower stage) where the depth of the concave part is 25% of the height of the convex part of the embossing roll (V), the roll temperature is 50 ° C (both upper and lower stages), and the nip pressure (linear pressure) is 50kg. It was embossed by passing under the conditions of / cm and roll rotation speed of 1.0 m / min. The physical properties of the film are shown in Table 4.
(Example 26)
A film was obtained in the same manner as in Example 25 except that the depth of the concave portion of the paper roll (lower stage) was changed to 45% of the height of the convex portion of the embossing roll (V). Table 4 shows the physical properties of the obtained film.
(Example 27)
A film was obtained in the same manner as in Example 25 except that the depth of the concave portion of the paper roll (lower stage) was changed to 80% of the height of the convex portion of the embossing roll (V). Table 4 shows the physical properties of the obtained film.
(Comparative Example 5)
A film was obtained in the same manner as in Example 25 except that the depth of the concave portion of the paper roll (lower stage) was changed to 100% of the height of the convex portion of the embossing roll (V). Table 4 shows the physical properties of the obtained film.
(Examples 28 to 30, Comparative Example 6)
A film was obtained in the same manner as in Example 27 except that the composition of the film and the embossing conditions were changed as shown in Table 4. Table 4 shows the physical properties of the obtained film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、実施例1、2では、得られたフィルムから可塑剤のブリードアウトが観測され、また、加工後のエンボスロールにはブリードアウトした可塑剤が付着していた。 In Examples 1 and 2, bleed out of the plasticizer was observed from the obtained film, and the bleed out plasticizer was adhered to the embossed roll after processing.
 その他の実施例では上記のような問題は起こらなかった。 In the other examples, the above problems did not occur.
 また、実施例1、実施例12、比較例1、比較例4以外の実施例、比較例について、前記(6)項に記載の方法で断面観察を行ったところ、多数の微細空孔が形成されているフィルム、すなわち、多孔性フィルムであった。 Moreover, when cross-sectional observation was performed by the method as described in said (6) item about Examples other than Example 1, Example 12, Comparative Example 1, and Comparative Example 4, and a comparative example, many fine voids were formed. Film, that is, a porous film.
 本発明のポリ乳酸系フィルムは、透湿性、防水性、柔軟性、加工性に優れ、かつ、高バイオマス度である、ポリ乳酸系フィルムである。本発明のポリ乳酸系フィルムは、ベッド用シーツ、枕カバー、衛生ナプキンや紙おむつ等の吸収性物品のバックシートといった医療・衛生材料;雨天用衣類、手袋等の衣料材料;ゴミ袋や堆肥袋、あるいは野菜や果物等の食品用袋、各種工業製品の袋などの包装材料、などに使用できる。 The polylactic acid-based film of the present invention is a polylactic acid-based film that is excellent in moisture permeability, waterproofness, flexibility, processability, and has a high degree of biomass. The polylactic acid-based film of the present invention comprises medical and hygiene materials such as bed sheets, pillow covers, and back sheets of absorbent articles such as sanitary napkins and paper diapers; clothing materials such as rainy clothes and gloves; garbage bags and compost bags, Or it can use for packaging materials, such as a bag for foodstuffs, such as vegetables and fruits, and a bag of various industrial products.
 a…エンボスロール表面の凹凸差
 b…エンボスロール表面の凹部または凸部のピッチ
 c…圧着面積を計算する1辺
 d…圧着面積を計算する1辺
 e…フィルムの不連続部分の高さ
 f…フィルムの不連続部分のピッチ
 g…凸部の厚さ候補
 h…凸部の厚さ候補
 θ…凹凸断面の角度
a ... unevenness on the surface of the embossing roll b ... pitch of the concave or convex surface on the surface of the embossing roll c ... one side for calculating the crimping area d ... one side for calculating the crimping area e ... height of the discontinuous part of the film f ... Pitch of discontinuous part of film g ... Thickness candidate of convex part h ... Thickness candidate of convex part θ ... Angle of uneven section

Claims (11)

  1.  ポリ乳酸系樹脂(A)を含有するフィルムであって、フィルムの少なくとも片面に、凹部または凸部の不連続部分を有し、透湿度が500~3,000g/(m・day)であるポリ乳酸系フィルム。 A film containing a polylactic acid-based resin (A), which has a concave or convex discontinuous portion on at least one side of the film, and has a moisture permeability of 500 to 3,000 g / (m 2 · day). Polylactic acid film.
  2.  不連続部分の高さが20~150μmである請求項1に記載のポリ乳酸系フィルム。 The polylactic acid film according to claim 1, wherein the height of the discontinuous portion is 20 to 150 µm.
  3.  ポリ乳酸系樹脂(A)以外の熱可塑性樹脂(B)を含有し、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%において、ポリ乳酸系樹脂(A)が10~95質量%、熱可塑性樹脂(B)が5~90質量%である請求項1または2に記載のポリ乳酸系フィルム。 A thermoplastic resin (B) other than the polylactic acid resin (A) is contained, and the polylactic acid resin (A) is 10 to 10% in a total of 100% by mass of the polylactic acid resin (A) and the thermoplastic resin (B). The polylactic acid-based film according to claim 1 or 2, comprising 95% by mass and 5 to 90% by mass of the thermoplastic resin (B).
  4.  ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量部に対して、充填剤(C)を1~200質量部含有する請求項1~3のいずれかに記載のポリ乳酸系フィルム。 The polylactic acid type according to any one of claims 1 to 3, which contains 1 to 200 parts by mass of a filler (C) with respect to a total of 100 parts by mass of the polylactic acid type resin (A) and the thermoplastic resin (B). the film.
  5.  熱可塑性樹脂(B)が、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体、ポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体、脂肪族ポリエステル系樹脂、および脂肪族芳香族ポリエステル系樹脂からなる群より選ばれる少なくとも1つの樹脂である請求項3または4に記載のポリ乳酸系フィルム。 A block copolymer in which the thermoplastic resin (B) has a polyether segment and a polylactic acid segment, a block copolymer having a polyester segment and a polylactic acid segment, an aliphatic polyester resin, and an aliphatic aromatic polyester system The polylactic acid film according to claim 3 or 4, which is at least one resin selected from the group consisting of resins.
  6.  熱可塑性樹脂(B)が、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体及びポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体からなる群より選ばれる少なくとも1つの樹脂と、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂より選ばれる少なくとも1つの樹脂との組み合わせからなる請求項3~5のいずれかに記載のポリ乳酸系フィルム。 The thermoplastic resin (B) is at least one resin selected from the group consisting of a block copolymer having a polyether segment and a polylactic acid segment, and a block copolymer having a polyester segment and a polylactic acid segment, and an aliphatic group 6. The polylactic acid film according to claim 3, comprising a combination with at least one resin selected from a polyester resin and an aliphatic aromatic polyester resin.
  7. 凸部を有するロールと弾性ロールの間に、フィルムを通すエンボス工程を有するポリ乳酸系フィルムの製造方法。 The manufacturing method of the polylactic acid-type film which has the embossing process which lets a film pass between the roll which has a convex part, and an elastic roll.
  8. ポリ乳酸系フィルムがポリ乳酸系樹脂(A)以外の熱可塑性樹脂(B)を含有し、ポリ乳酸系樹脂(A)と熱可塑性樹脂(B)の合計100質量%において、ポリ乳酸系樹脂(A)が10~95質量%、熱可塑性樹脂(B)が5~90質量%であり、熱可塑性樹脂(B)が、ポリエーテルセグメントとポリ乳酸セグメントとを有するブロック共重合体及びポリエステルセグメントとポリ乳酸セグメントとを有するブロック共重合体からなる群より選ばれる少なくとも1つの樹脂と、脂肪族ポリエステル系樹脂及び脂肪族芳香族ポリエステル系樹脂より選ばれる少なくとも1つの樹脂との組み合わせからなる請求項7に記載のポリ乳酸系フィルムの製造方法。 The polylactic acid-based film contains a thermoplastic resin (B) other than the polylactic acid-based resin (A), and in a total of 100% by mass of the polylactic acid-based resin (A) and the thermoplastic resin (B), the polylactic acid-based resin ( A) is 10 to 95% by mass, the thermoplastic resin (B) is 5 to 90% by mass, and the thermoplastic resin (B) is a block copolymer having a polyether segment and a polylactic acid segment, and a polyester segment. 8. A combination of at least one resin selected from the group consisting of a block copolymer having a polylactic acid segment and at least one resin selected from an aliphatic polyester-based resin and an aliphatic aromatic polyester-based resin. The manufacturing method of the polylactic acid-type film of description.
  9.  凸部を有するロールと凹部を有するロールが雄雌を形成し、その間にフィルムを通すエンボス工程を有するフィルムの製造方法であって、前記凹部の深さが、前記凸部の高さの5~80%であるポリ乳酸系フィルムの製造方法。 A roll manufacturing method in which a roll having a convex part and a roll having a concave part form a male and female and having an embossing process in which the film is passed between them, the depth of the concave part being 5 to 5 times the height of the convex part. A method for producing a polylactic acid film which is 80%.
  10. 前記凹部の深さが、前記凸部の高さの45~80%である、請求項9に記載のポリ乳酸系フィルムの製造方法。 The method for producing a polylactic acid film according to claim 9, wherein the depth of the concave portion is 45 to 80% of the height of the convex portion.
  11. 前記凸部を有するロールの材質が金属ロール、前記凹部を有するロールの材質がペーパーロールである、請求項9または10に記載のポリ乳酸系フィルムの製造方法。 The manufacturing method of the polylactic acid-type film of Claim 9 or 10 whose material of the roll which has the said convex part is a metal roll, and the material of the roll which has the said recessed part is a paper roll.
PCT/JP2012/071653 2011-08-31 2012-08-28 Polylactic acid film WO2013031755A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137034703A KR20140053031A (en) 2011-08-31 2012-08-28 Polylactic acid film
JP2012554150A JP5979007B2 (en) 2011-08-31 2012-08-28 Polylactic acid film
CN201280028855.4A CN103597014B (en) 2011-08-31 2012-08-28 Polylactic acid film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011188357 2011-08-31
JP2011-188357 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031755A1 true WO2013031755A1 (en) 2013-03-07

Family

ID=47756240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071653 WO2013031755A1 (en) 2011-08-31 2012-08-28 Polylactic acid film

Country Status (4)

Country Link
JP (1) JP5979007B2 (en)
KR (1) KR20140053031A (en)
CN (1) CN103597014B (en)
WO (1) WO2013031755A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019513092A (en) * 2016-02-15 2019-05-23 スリーエム イノベイティブ プロパティズ カンパニー Polylactic acid polymer based films and articles with structured surfaces
US11066551B2 (en) 2016-05-20 2021-07-20 3M Innovative Properties Company Oriented polylactic acid polymer based film
US11254812B2 (en) 2014-12-22 2022-02-22 3M Innovative Properties Company Compositions and films comprising polylactic acid polymer, polyvinyl acetate polymer and plasticizer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102137535B1 (en) * 2019-10-31 2020-08-21 남양에코텍 주식회사 Food packaging comprising biodegradable barrier film
KR102393643B1 (en) * 2020-09-15 2022-05-03 경상국립대학교산학협력단 Biodegradable Film Composition Comprising Surface-Treated Gypsum and Manufacturing Method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899356A (en) * 1994-09-30 1996-04-16 Kobayashi Pharmaceut Co Ltd Manufacture of plane material having irregular pattern wherein crest of projected part is open
JP2007267634A (en) * 2006-03-30 2007-10-18 Nippon Paper Industries Co Ltd Root wrapping sheet
JP2010229393A (en) * 2009-03-03 2010-10-14 Toray Ind Inc Polylactic acid-based film
JP2010260236A (en) * 2009-05-01 2010-11-18 Dainippon Printing Co Ltd Embossing apparatus, backup roll, method for manufacturing workpiece and method for manufacturing backup roll
JP2010280120A (en) * 2009-06-04 2010-12-16 Dainippon Printing Co Ltd Mold release sheet, original sheet, method of manufacturing mold release sheet and embossing system
JP2011012351A (en) * 2009-06-30 2011-01-20 Santen Tori Kk Wallpaper made of paper
JP2011038099A (en) * 2010-08-03 2011-02-24 Mitsubishi Plastics Inc Polylactic acid-based composition and polylactic acid-based film
JP2011042802A (en) * 2010-10-25 2011-03-03 Toray Ind Inc Polylactic acid stretched film
WO2011122183A1 (en) * 2010-03-30 2011-10-06 ユニ・チャーム株式会社 Film having moisture permeability and water-proof properties, and process for production thereof
WO2012114810A1 (en) * 2011-02-24 2012-08-30 東レ株式会社 Polylactic acid-based film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188185B2 (en) * 2008-06-30 2012-05-29 Kimberly-Clark Worldwide, Inc. Biodegradable packaging film
BRPI0921412A2 (en) * 2008-11-07 2016-01-05 Colgate Palmolive Co composition, packaging material, method of making a consumer packaging product, and consumer product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899356A (en) * 1994-09-30 1996-04-16 Kobayashi Pharmaceut Co Ltd Manufacture of plane material having irregular pattern wherein crest of projected part is open
JP2007267634A (en) * 2006-03-30 2007-10-18 Nippon Paper Industries Co Ltd Root wrapping sheet
JP2010229393A (en) * 2009-03-03 2010-10-14 Toray Ind Inc Polylactic acid-based film
JP2010260236A (en) * 2009-05-01 2010-11-18 Dainippon Printing Co Ltd Embossing apparatus, backup roll, method for manufacturing workpiece and method for manufacturing backup roll
JP2010280120A (en) * 2009-06-04 2010-12-16 Dainippon Printing Co Ltd Mold release sheet, original sheet, method of manufacturing mold release sheet and embossing system
JP2011012351A (en) * 2009-06-30 2011-01-20 Santen Tori Kk Wallpaper made of paper
WO2011122183A1 (en) * 2010-03-30 2011-10-06 ユニ・チャーム株式会社 Film having moisture permeability and water-proof properties, and process for production thereof
JP2011038099A (en) * 2010-08-03 2011-02-24 Mitsubishi Plastics Inc Polylactic acid-based composition and polylactic acid-based film
JP2011042802A (en) * 2010-10-25 2011-03-03 Toray Ind Inc Polylactic acid stretched film
WO2012114810A1 (en) * 2011-02-24 2012-08-30 東レ株式会社 Polylactic acid-based film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11254812B2 (en) 2014-12-22 2022-02-22 3M Innovative Properties Company Compositions and films comprising polylactic acid polymer, polyvinyl acetate polymer and plasticizer
US11787929B2 (en) 2014-12-22 2023-10-17 3M Innovative Properties Company Compositions and films comprising polylactic acid polymer, polyvinyl acetate polymer and plasticizer
JP2019513092A (en) * 2016-02-15 2019-05-23 スリーエム イノベイティブ プロパティズ カンパニー Polylactic acid polymer based films and articles with structured surfaces
US11066551B2 (en) 2016-05-20 2021-07-20 3M Innovative Properties Company Oriented polylactic acid polymer based film

Also Published As

Publication number Publication date
KR20140053031A (en) 2014-05-07
CN103597014B (en) 2016-09-21
CN103597014A (en) 2014-02-19
JPWO2013031755A1 (en) 2015-03-23
JP5979007B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5799809B2 (en) Porous film
TWI510546B (en) Polylactic acid based film
JP5867084B2 (en) Polylactic acid film
KR101970847B1 (en) Biodegradable film
JP5979007B2 (en) Polylactic acid film
WO2013038770A1 (en) Film
JP2014162799A (en) Polylactic acid-based mulching film
KR20030077392A (en) Polyester Multilayer Film
JP2013155223A (en) Polylactic acid-based film
JP2012057004A (en) Porous film
JPWO2016158736A1 (en) Biodegradable white film and method for producing the same
JP2014162884A (en) Biodegradable film
JP2015083661A (en) Porous film and manufacturing method therefor
JP5957908B2 (en) Biodegradable film
JP6492720B2 (en) Method for producing stretched film
JP2013159747A (en) Polylactic acid-based film
JP2016097576A (en) Laminate film
JP2014173074A (en) Biodegradable film
JP2016008269A (en) Polylactic acid-based resin film
JP2015536255A (en) Multilayer film
JP2015038193A (en) Porous film
JP2008273004A (en) Laminated film
JP2016056304A (en) Film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012554150

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137034703

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828561

Country of ref document: EP

Kind code of ref document: A1