WO2013031625A1 - Liquid-crystal display device - Google Patents

Liquid-crystal display device Download PDF

Info

Publication number
WO2013031625A1
WO2013031625A1 PCT/JP2012/071284 JP2012071284W WO2013031625A1 WO 2013031625 A1 WO2013031625 A1 WO 2013031625A1 JP 2012071284 W JP2012071284 W JP 2012071284W WO 2013031625 A1 WO2013031625 A1 WO 2013031625A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
layer
electrode
display device
Prior art date
Application number
PCT/JP2012/071284
Other languages
French (fr)
Japanese (ja)
Inventor
豪 鎌田
柴田 諭
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013031625A1 publication Critical patent/WO2013031625A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Definitions

  • the present invention relates to a liquid crystal display device.
  • This application claims priority based on Japanese Patent Application No. 2011-187636 filed in Japan on August 30, 2011, the contents of which are incorporated herein by reference.
  • a blue phase mode liquid crystal display device is known as a liquid crystal display device using a liquid crystal layer whose retardation changes due to the electro-optic Kerr effect.
  • the blue phase mode is a liquid crystal mode that is optically isotropic when no voltage is applied, and optically anisotropic in the electric field direction when a voltage is applied.
  • the refractive index anisotropy occurs in a direction parallel to the electric field. Can not be affected, it does not hold as a display.
  • a lateral electric field (electric field orthogonal to the liquid crystal layer thickness direction) is generated in the liquid crystal layer by the electrodes arranged in a comb shape, and an in-plane orthogonal to the liquid crystal layer thickness direction is generated. It must be driven so that refractive index anisotropy occurs.
  • An object of the present invention is to provide a liquid crystal display device having a high aperture ratio and low power consumption.
  • the liquid crystal display device includes a first electrode, a second electrode facing the first electrode, the first electrode, and the second electrode, and the first electrode and the second electrode. It is optically isotropic when no voltage is applied to the second electrode, and optically different when a voltage is applied between the first electrode and the second electrode.
  • a first liquid crystal layer having a directionality, a first end face and a first main face, disposed opposite to the liquid crystal layer, and transmitting light incident from the first end face in a first direction to face the liquid crystal layer;
  • a light guide plate that emits obliquely from one main surface toward the liquid crystal layer.
  • the liquid crystal display device is further provided corresponding to the first electrode, and the light emitted from the first main surface of the light guide plate and obliquely passing through the liquid crystal layer is another A color conversion layer that converts color light to the first electrode, the color conversion layer being provided in correspondence with the first electrode, the color conversion layer being in the first direction relative to the first electrode as viewed from the thickness direction of the liquid crystal layer; It may be formed by overhanging.
  • the liquid crystal display device further includes a liquid crystal panel, and a backlight that includes the light guide plate and allows the light to enter the liquid crystal panel obliquely.
  • the color conversion layer provided on the opposite side to the liquid crystal layer may be included.
  • the backlight may have a light distribution characteristic such that the intensity of light incident at an angle of 55 ° to 70 ° with respect to the liquid crystal panel is maximized.
  • the liquid crystal panel includes a first polarizing layer disposed between the liquid crystal layer and the backlight, and a second polarizing layer provided on the opposite side of the backlight across the liquid crystal layer.
  • the transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer are arranged to intersect each other, and the transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer are You may arrange
  • the angle between the transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer may be 74 ° or more and 82 ° or less.
  • a light distribution control layer that controls the light distribution of the light that has passed through the liquid crystal layer, so that the direction in which the intensity of the light that has passed through the liquid crystal layer is the strongest approaches the layer thickness direction of the liquid crystal layer; Good.
  • the product of the refractive index anisotropy ⁇ n and the layer thickness d of the liquid crystal layer may be not less than the wavelength ⁇ of the light.
  • the light may be colored light having an emission peak at a specific wavelength, and the wavelength ⁇ of the light may be a peak wavelength of the emission peak.
  • the light may be white light, and the wavelength ⁇ of the light may be 550 nm.
  • the backlight includes a first light source that causes the first light to enter the first end surface of the light guide plate, and a second light source that causes the second light to enter the second end surface of the light guide plate.
  • the optical plate propagates the first light incident from the first end face in the first direction, and obliquely emits the first light from the first main surface toward the liquid crystal panel, and the light incident from the second end face
  • the second light is propagated in a direction opposite to the first direction, is emitted obliquely from the first main surface toward the liquid crystal panel, and the color conversion layer is viewed from the layer thickness direction of the liquid crystal layer.
  • the first electrode may be formed so as to protrude in the direction opposite to the first direction and the first direction.
  • the light guide plate may be configured such that a scatterer that scatters the first light and the second light is dispersed in a transparent substrate that transmits the first light and the second light. Good.
  • a liquid crystal display device having a high aperture ratio and low power consumption can be provided.
  • FIG. 6 is a diagram showing voltage-transmittance characteristics when the thickness of a liquid crystal layer is 12.8 ⁇ m, light is incident perpendicularly to the liquid crystal layer, and light distribution of the liquid crystal layer is controlled by a lateral electric field. It is a figure which shows the incident angle dependence of the transmittance
  • FIG. 1 is an exploded perspective view of the liquid crystal display device according to the first embodiment.
  • the extending direction of the data line 21 is defined as the Y direction
  • the extending direction of the gate line 22 is defined as the X direction
  • the direction orthogonal to the X direction and the Y direction is defined as the Z direction. To do.
  • the liquid crystal display device 1 includes a liquid crystal panel 2 and a backlight 3 that causes the light L to enter the liquid crystal panel 2 obliquely.
  • the liquid crystal panel 2 includes a first substrate 10, a second substrate 11, a first polarizing layer 12, and a second polarizing layer 13.
  • the second substrate 11 is disposed to face the first substrate 10.
  • the first polarizing layer 12 is provided on the outer surface side of the first substrate 10.
  • the second polarizing layer 13 is provided on the outer surface side of the second substrate 11.
  • a rectangular frame-shaped sealing material 19 is provided on the peripheral edge of the facing region where the first substrate 10 and the second substrate 11 face each other. In a space surrounded by the first substrate 10, the second substrate 11, and the sealing material 19, a blue phase mode liquid crystal layer (not shown) is sealed.
  • the display area 2A is provided inside the sealing material 19.
  • a plurality of gate lines 21 extending in the X direction and a plurality of data lines 22 extending in the Y direction are provided on the first substrate 10 in a lattice shape in plan view.
  • a display element corresponding to any one of red, green, and blue is provided on the first substrate 10.
  • a backlight 3 is provided on the back side of the liquid crystal panel 2.
  • the backlight 3 includes a light guide plate 4 and a plurality of light sources 5 arranged on the first end face 4 a of the light guide plate 4.
  • the light guide plate 4 propagates the light L from the light source 5 incident from the first end surface 4a in the Y direction toward the second end surface 4c facing the first end surface 4a, and the first main surface 4b facing the liquid crystal panel 2.
  • the light L is emitted obliquely toward the liquid crystal panel 2.
  • the light source 5 is, for example, a light emitting diode (LED) that emits white light.
  • the plurality of light sources 5 are arranged in the X direction with the light emitting surface opposed to the first end surface 4 a of the light guide plate 4.
  • the light source 5 may be a point light source such as an LED or an organic EL (Electro Luminescence) element, or may be a linear light source such as a cold cathode fluorescent lamp (Cold Cathode Fluorescent Lamp; CCFL).
  • FIG. 2 is a cross-sectional view of the liquid crystal display device 1.
  • the first substrate 10 is formed by forming a circuit layer including various wirings such as data lines and gate lines and driving elements such as thin film transistors connected to these wirings on a transparent substrate such as glass.
  • a plurality of first electrodes 14 made of a transparent conductive film such as ITO (indium tin oxide) is formed on the first substrate 10.
  • the first electrode 14 is a rectangular electrode (pixel electrode) provided corresponding to each display element, and is arranged in the X direction and the Y direction according to the arrangement of each display element.
  • the second substrate 11 is made of a transparent substrate such as glass.
  • a light shielding layer (black matrix) 16b having openings 16H corresponding to the respective display elements and a color conversion layer 16a disposed in each opening 16H of the light shielding layer 16b are formed.
  • the color conversion layer 16a is an optical member that converts the light L transmitted through the liquid crystal layer 15 into light having a color different from that of the light L and emits the light to the outside.
  • the color conversion layer 16a is formed in substantially the same size and shape as the first electrode 14 of the display element corresponding to the color conversion layer 16a.
  • the color conversion layer 16a is a color filter layer in which a red, green, or blue pigment is dispersed inside the resin, but the color conversion layer 16a is excited by the light L to be red, green, or It may be a phosphor layer that emits blue light.
  • the second polarizing layer 13 is an in-cell polarizing layer disposed on the liquid crystal layer side of the color converting layer 16a, or the color converting layer 16a is more than the second polarizing layer 13. A structure disposed on the outside is desirable.
  • the color conversion layer 16a is disposed at a position shifted from the first electrode 14 when viewed from the Z direction (layer thickness direction of the liquid crystal layer).
  • the first direction in this embodiment, the Y direction.
  • the color conversion layer 16a is formed so as to protrude in the first direction from the first electrode 14 when viewed from the Z direction.
  • the light L travels in a direction inclined by an angle ⁇ 2 on the + Y side with respect to the Z direction. Therefore, the color conversion layer 16a so that all the light L transmitted through the first electrode 14 and traveling obliquely through the liquid crystal layer 15 is incident on the color conversion layer 16a of the display element corresponding to the first electrode 14.
  • the + Y side end of the first electrode 14 is arranged to be shifted to the + Y side by the length W1 as viewed from the Z direction with respect to the + Y side end of the first electrode 14, and the ⁇ Y side end of the color conversion layer 16a is The first electrode 14 is disposed so as to be shifted from the ⁇ Y side end of the first electrode 14 to the + Y side by a length W2 when viewed from the Z direction.
  • the color conversion layer 16a and the light shielding layer 16b are arranged so as not to overlap each other, but the color conversion layer 16a and the light shielding layer 16b may be arranged so as to partially overlap each other. In that case, the color conversion layer 16a that overlaps the light shielding layer 16b does not function as a color conversion layer because the light L that has passed through the liquid crystal layer 15 is color-converted and is not emitted to the outside.
  • the “color conversion layer” refers to a layer having a function of color-converting light that has passed through the liquid crystal layer and emitting the light to the outside. Not included in the “color conversion layer”.
  • the color conversion layer 16a when the color conversion layer 16a partially overlaps the light shielding layer 16b, “the color conversion layer 16a is formed so as to protrude in the first direction from the first electrode 14 when viewed from the Z direction”.
  • the portion of the color conversion layer 16a excluding the portion overlapping with the light shielding layer 16b is formed so as to protrude from the first electrode 14 in the first direction when viewed from the Z direction.
  • a second electrode 17 made of a transparent conductive film such as ITO (indium tin oxide) is formed on the color conversion layer 16a and the light shielding layer 16b.
  • the second electrode 17 is formed on the entire surface of the display area, and is a common electrode (common electrode) for the plurality of first electrodes 14.
  • a voltage corresponding to the image signal is applied between the second electrode 17 and the first electrode 14.
  • An electric field (vertical electric field) in a direction substantially parallel to the normal direction (Z direction) of the liquid crystal panel 2 is generated between the second electrode 17 and the first electrode 14 due to the voltage.
  • the alignment state of the liquid crystal layer 15 is controlled.
  • the liquid crystal layer 15 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase.
  • the blue phase is a liquid crystal phase in which a plurality of spiral structures having different spiral axes are in a three-dimensional periodic structure.
  • the blue phase itself is optically isotropic and rearranges into a nematic phase when a voltage is applied.
  • the alignment of the liquid crystal layer 15 is controlled by an electric field generated between the first electrode 14 and the second electrode 17.
  • the refractive index in the electric field direction changes in proportion to the square of the electric field strength due to the Kerr effect (Kerr effect).
  • the response time of the blue phase liquid crystal is about 10 microseconds, which is much shorter than the response time of normal nematic liquid crystal (10 milliseconds).
  • reference numeral 15a represents the optical characteristics of the liquid crystal layer 15 in a refractive index ellipsoid.
  • the display element corresponding to the first electrode 14 on the right side is a voltage application state in which a voltage is applied between the first electrode 14 and the second electrode 17, and the refractive index ellipsoid extends in the electric field direction. It is an elongated spheroid.
  • the display element corresponding to the first electrode 14 on the left side is a state in which no voltage is applied between the first electrode 14 and the second electrode 17, and the refractive index ellipsoid is completely It is a sphere.
  • the liquid crystal layer 15 When a voltage is applied between the first electrode 14 and the second electrode 17, the liquid crystal layer 15 generates anisotropy, that is, birefringence with the electric field direction (Z direction) as the optical axis.
  • the first polarizing layer 12 is bonded to the surface of the first substrate 10 opposite to the liquid crystal layer 15 side.
  • the second polarizing layer 13 is bonded to the surface of the second substrate 11 opposite to the liquid crystal layer 15 side.
  • the first polarizing layer 12 and the second polarizing layer 13 are arranged in a direction in which each transmission axis forms 45 ° with respect to the Y axis so that the transmission axes are orthogonal to each other.
  • the first polarizing layer 12 is bonded to the surface of the first substrate 10 on the backlight 3 side, but the first polarizing layer 12 is interposed between the backlight 3 and the liquid crystal layer 15. As long as it is arranged, it may be arranged at any position.
  • the second polarizing layer 13 is bonded to the surface of the second substrate 11 opposite to the backlight 3 side, but the second polarizing layer 13 is connected to the backlight 3 with the liquid crystal layer 15 in between. As long as they are arranged on the opposite side, they may be arranged at any position.
  • the light guide plate 4 of the backlight 3 is disposed on the opposite side of the first polarizing layer 12 from the liquid crystal layer 15.
  • the light guide plate 4 is made of a transparent plate material such as acrylic that transmits the light L.
  • a plurality of prism structures 6 extending in a direction orthogonal to the light propagation direction Y (X direction) are formed on the second main surface 4 d facing the first main surface 4 b of the light guide plate 4.
  • the cross-sectional shape of one prism structure 6 cut along the YZ plane is triangular.
  • the prism structure 6 has a first surface 6a that is orthogonal to the first main surface 4b of the light guide plate 4, and a second surface 6b that forms an acute angle with the first surface 6a.
  • the second surface 6 b of the prism structure 6 is a reflecting surface that reflects the light L propagating through the light guide plate 4.
  • the light L propagating in the Y direction from the first end surface 4a to the second end surface 4c inside the light guide plate 4 is repeatedly reflected between the first main surface 4b and the second surface 6b of the prism structure 6,
  • the incident angle of the light L on the first main surface 4 b becomes smaller than the critical angle
  • the light L is extracted to the external space and emitted toward the liquid crystal panel 2. Therefore, the light L emitted from the first main surface 4b of the light guide plate 4 is in the light propagation direction side (from the first end surface 4a to the second end surface) with respect to the normal direction (Z direction) of the first main surface 4b.
  • the angle ⁇ 1 is, for example, 60 °
  • the light L is emitted from the first main surface 4b at an angle of about 60 ° ⁇ 10 °.
  • the light L incident on the liquid crystal panel 2 at an angle ⁇ 1 is refracted inside the liquid crystal panel 2 and the traveling direction is bent in a direction close to the Z direction. Then, the liquid crystal layer 15 travels in the direction inclined by the angle ⁇ 2 toward the + Y side (the second end face 4c side of the light guide plate 4) with respect to the Z direction, and enters the color conversion layer 16a.
  • the color conversion layer 16a is arranged so as to be shifted in the Y direction from the first electrode 14, the light L that has passed through the first electrode 14 undergoes color conversion of the display element corresponding to the first electrode 14. All incident on the layer 16a. Therefore, the occurrence of color mixing or the like between display elements adjacent in the Y direction is suppressed.
  • the light L ′ that has passed through the color conversion layer 16a and is colored in a predetermined color is transmitted through the second polarizing layer 13 and emitted toward the external space at an angle ⁇ 3.
  • FIG. 3 is a schematic diagram for explaining the optical path length of the light L and the magnitude of birefringence when the light L passes through the liquid crystal layer 15 obliquely.
  • reference numeral 15 a represents the optical characteristic of the liquid crystal layer 15 when a voltage is applied between the first electrode 14 and the second electrode 17 by a refractive index ellipsoid.
  • the refractive index of ordinary light in the liquid crystal layer 15 is no, the refractive index of extraordinary light is ne, and the distance in the Z direction (layer thickness of the liquid crystal layer) between the first electrode 14 and the second electrode 17 is d, the liquid crystal layer
  • the refractive index ne ′, the refractive index anisotropy ⁇ n ′, and the optical path length d ′ of the extraordinary light with respect to the light L traveling in the direction inclined by the angle ⁇ 2 with respect to the Z direction are expressed by the equations (1) and ( 2) and formula (3), respectively.
  • the refractive index anisotropy ⁇ n ′ decreases and the optical path length d ′ increases.
  • a part of the light L is reflected on the surface of the first electrode 14, the surface of the second electrode 17, or the interface between the substrate and the electrode or the surface of the substrate, resulting in a loss (Fresnel loss).
  • the loss of light due to the interface reflection increases as the traveling direction of the light L is greatly inclined with respect to the Z direction.
  • FIG. 4 is a diagram showing the results of calculating various parameters based on Expression (1), Expression (2), and Expression (3).
  • ⁇ 1 is an incident angle of the light L that is obliquely incident on the liquid crystal panel from the light guide plate
  • d ratio is the ratio of light transmitted through the liquid crystal panel without interface reflection.
  • the incident angle ⁇ 1 increases, the angle ⁇ 2 of light traveling in the liquid crystal layer increases, and the ⁇ d ratio, ⁇ n ratio, and ⁇ nd ratio increase accordingly.
  • the medium transmittance decreases as the incident angle ⁇ 1 increases, but this is due to the influence of interface reflection.
  • the interface reflection increases rapidly when the incident angle ⁇ 1 exceeds 60 °. Therefore, in order to increase the ⁇ nd ratio and increase the medium transmittance, it is desirable to set the incident angle ⁇ 1 to 60 ° to 80 °.
  • the thickness of the liquid crystal layer needs to be twice that of the case where light is incident in the thickness direction of the liquid crystal layer in the transverse electric field mode. . That is, the refractive index anisotropy of the liquid crystal layer that is felt by light traveling in a direction orthogonal to the thickness direction of the liquid crystal layer when a vertical electric field is applied (voltage application state) is ⁇ n, and the thickness of the liquid crystal layer is d. Then, the retardation ⁇ n ⁇ d, which is the product of the refractive index anisotropy ⁇ n and the layer thickness d of the liquid crystal layer, is preferably equal to or greater than the light wavelength ⁇ .
  • the refractive index anisotropy of the liquid crystal layer that is felt by light traveling in a direction perpendicular to the thickness direction of the liquid crystal layer in a state where a vertical electric field is applied is, in other words, “the vertical electric field is “Refractive index anisotropy of the liquid crystal layer in a direction perpendicular to the thickness direction of the liquid crystal layer in the applied state (voltage applied state)”.
  • the wavelength ⁇ of light is 550 nm when the light is white light, and colored light having an emission peak at a specific wavelength (for example, blue light) is emitted from the backlight 3 and is formed by a phosphor.
  • a specific wavelength for example, blue light
  • the light wavelength ⁇ is the peak wavelength of the emission peak.
  • ⁇ n ′ when the layer thickness of the liquid crystal layer is 7.3 ⁇ m.
  • FIG. 5A, FIG. 5B and FIG. 5C are diagrams showing the incident angle dependence of the voltage-transmittance characteristics when the layer thickness d of the liquid crystal layer is 7.5 ⁇ m, 10 ⁇ m and 15 ⁇ m, respectively.
  • FIG. 5D is a diagram showing voltage-transmittance characteristics when the thickness d of the liquid crystal layer is 12.8 ⁇ m, light is incident perpendicularly to the liquid crystal layer, and the orientation of the liquid crystal layer is controlled by a lateral electric field. .
  • Simulation software LCD Master 2d (Shintech)
  • LC ZLI-4792 (common to FIGS. 5A to 5D)
  • Initial director Pretilt3.0 [deg], Pre-twist 0.0 [deg], Twist 0.0 [deg]
  • Boundary condition Periodic ⁇ Polarizer: 45 deg, Analyzer: 135 deg SEG-1224DU ⁇
  • Light source 550 nm
  • Electrode line width / space width 4 ⁇ m / 8 ⁇ m (only horizontal electric field model in Fig. 5D)
  • the refractive index anisotropy ⁇ n ′ increases as the voltage applied to the liquid crystal layer is increased.
  • the layer thickness d of the liquid crystal layer is 7.5 ⁇ m
  • the layer thickness is insufficient
  • ⁇ n′d ′ does not reach half of the wavelength ⁇ . Is saturated.
  • the layer thickness d of the liquid crystal layer is increased to 10 ⁇ m
  • the shortage of the layer thickness is alleviated and the transmittance is improved.
  • the incident angle ⁇ 1 is a wide angle such as 75 ° or 80 °, there is a characteristic that it decreases after passing through the peak of transmittance.
  • FIG. 5C when the layer thickness d of the liquid crystal layer is 15 ⁇ m, the layer thickness is sufficient, and a transmittance peak exists with respect to the voltage applied to the liquid crystal layer.
  • FIG. 5D shows a model of a horizontal electric field using the same liquid crystal material.
  • the reason why the saturation voltage is higher in the horizontal electric field model in FIG. 5D than in the vertical electric field model in FIG. 5B is that the aperture ratio is increased by widening the electrode spacing. Even if it is increased, the liquid crystal is not aligned immediately above the electrode and does not contribute to the transmittance. Therefore, the transmittance is smaller than the longitudinal electric field model. Therefore, the vertical electric field model enables display with low power consumption and high aperture ratio.
  • FIG. 6 is a diagram showing the incident angle dependence of the transmittance when the voltage applied to the liquid crystal layer is 30.8 V and the layer thickness d of the liquid crystal layer is 5 ⁇ m, 7.5 ⁇ m, 10 ⁇ m, 15 ⁇ m, and 20 ⁇ m.
  • 30.8 V is a voltage at which the transmittance is saturated in FIGS. 5A to 5C.
  • the layer thickness d of the liquid crystal layer is 5 ⁇ m, 7.5 ⁇ m, 10 ⁇ m, 15 ⁇ m, or 20 ⁇ m
  • a transmittance peak exists when the incident angle ⁇ 1 is in the range of 55 ° to 70 °. It is the influence of interface reflection that the transmittance decreases as the incident angle ⁇ 1 increases.
  • the layer thickness d of the liquid crystal layer increases, the transmittance increases.
  • the layer thickness d exceeds 10 ⁇ m the transmittance hardly changes.
  • the optimum value of the incident angle ⁇ 1 is in the range of 55 ° to 70 °, more preferably in the range of 60 ° to 65 °.
  • the backlight 3 is provided with a light distribution such that the intensity of light incident on the liquid crystal panel 2 at an angle of 55 ° to 70 °, more preferably an angle of 60 ° to 65 ° is the strongest. It is desirable to use Thereby, a bright display with high transmittance is possible.
  • the refractive index anisotropy felt by the light propagating in the Y direction through the light guide plate 4 and obliquely incident on the liquid crystal layer 15 from the light guide plate 4 is changed.
  • the amount of light that travels obliquely inside the liquid crystal layer 15 and is emitted to the outside is controlled.
  • the refractive index anisotropy with respect to light propagating through the light guide plate 4 in the Y direction and obliquely incident on the liquid crystal layer 15 from the light guide plate 4 is changed, whereby the inside of the liquid crystal layer 15 is inclined. Controls the amount of light that travels and is emitted to the outside.
  • the aperture is opened with low power consumption using a vertical electric field.
  • a thin liquid crystal display device with a high rate can be provided.
  • FIG. 7 is a cross-sectional view of the liquid crystal display device 30 of the second embodiment.
  • the same components as those in the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device 30 is different from the liquid crystal display device 1 of the first embodiment in that the liquid crystal panel 31 has a direction in which the intensity of the light L having passed through the liquid crystal layer 15 is the strongest on the outer surface side of the second polarizing layer 13.
  • the light distribution control layer 32 that controls the light distribution of the light L so as to approach the normal direction (Z direction) of the liquid crystal panel 31 is provided. The light distribution indicates in which direction and how much light is emitted.
  • the light distribution control layer 32 is a light diffusing plate in which a scatterer 34 made of fine particles having a refractive index different from the transparent resin 33, for example, a diameter of about 3 ⁇ m to 10 ⁇ m, is dispersed inside a transparent resin 33 such as acrylic. is there.
  • a transparent resin 33 such as acrylic.
  • white light is used as the light L
  • the scatterer 34 particles having less wavelength dependency of the scattering degree in the visible light region (a wavelength region of 380 nm to 750 nm) are used.
  • the light distribution control layer 32 is a light diffusing plate in which the scatterers 34 are dispersed, but the light distribution control layer 32 is not limited to this.
  • the light distribution control layer 32 may be formed by forming a groove on the surface of a transparent plate and controlling the light distribution by reflecting light on the surface of the groove.
  • FIG. 8 is a diagram showing the light distribution before and after passing through the light distribution control layer 32.
  • the horizontal axis indicates the light emission direction (angle formed with the Z axis) when the light emitted from the light distribution control layer 32 travels in the YZ plane, and the vertical axis indicates the emission direction. The intensity of the emitted light is shown.
  • the light L that has passed through the second polarizing layer 13 is refracted at the interface between the second polarizing layer 13 and the external air layer, as indicated by reference numeral D1. It is emitted in the direction of ⁇ 3 (see FIG. 2).
  • the light distribution control layer 32 is provided, the light L that has passed through the second polarizing layer 13 is scattered by the scatterer 34 and changes the optical path in the direction approaching the Z direction, as indicated by reference numeral D2. Is done.
  • the light distribution control layer 32 controls the light distribution of the light L so that the direction in which the intensity of the light L that has passed through the liquid crystal layer 15 is the strongest approaches the Z direction. Therefore, the quality of the image when viewed from the front can be improved.
  • FIG. 9 is a diagram showing the arrangement of the transmission axis 12a of the first polarizing layer 12 and the transmission axis 13a of the second polarizing layer 13 in the liquid crystal display device of the third embodiment.
  • components common to the liquid crystal display device 1 of the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the liquid crystal display device of this embodiment is different from the liquid crystal display device 1 of the first embodiment in the arrangement of the transmission axis 12 a of the first polarizing layer 12 and the transmission axis 13 a of the second polarizing layer 13.
  • the transmission axis of the first polarizing layer 12 and the transmission axis of the second polarizing layer 13 are directions of ⁇ 45 ° across the axis parallel to the Y axis when viewed from the Z direction. Was set to.
  • the transmission axis 12a of the first polarizing layer 12 and the transmission axis 13a of the second polarizing layer 13 are axes 12b and 13b parallel to the Y axis when viewed from the Z direction. Is set in the direction of ⁇ ⁇ 1 ( ⁇ 45 °).
  • the transmission axes 12a of the two polarizing layers 12, 13 when viewed along the traveling direction of the light L The angle formed by 13a is larger than the angle formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 when viewed from the Z direction.
  • an axis obtained by projecting the transmission axis 13a of the second polarizing layer 13 on the plane 18 orthogonal to the incident direction of the light L with respect to the second polarizing layer 13 is defined as an axis 18a, and an axis 13b parallel to the Y axis is defined on the plane 18.
  • the angle (2 ⁇ ⁇ 2) formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 when viewed from the traveling direction of the light L traveling obliquely is the two polarizations when viewed from the Z direction. It becomes larger than the angle (2 ⁇ ⁇ 1) formed by the transmission axes 12a, 13a of the layers 12, 13.
  • the two polarizing layers 12 and 13 that intersect at an angle larger than 90 °. In some cases, it may appear that the light is incident on the screen, and sufficient black cannot be displayed in a state where no voltage is applied. In other words, when the light L is incident obliquely with the transmission axes 12a and 13a of the two polarizing layers 12 and 13 being orthogonal to each other, when viewed from the traveling direction of the light L, it intersects at an angle greater than 90 °.
  • the angle (2 ⁇ ⁇ 1) formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 is made smaller than 90 °, and the two polarizing layers 12 and 12 that the light L traveling obliquely feels is obtained.
  • An angle (2 ⁇ ⁇ 2) formed by 13 transmission axes 12a and 13a is set to 90 °.
  • FIG. 10 is a diagram showing the relationship between the incident angle ⁇ 1 of the light L with respect to the first polarizing layer 12 and the angle ⁇ 1 when the angle ⁇ 1 is optimized so that the angle ⁇ 2 is 45 °.
  • the simulation conditions are the same as described above.
  • the incident angle ⁇ 1 of the light L has an optimum value in the range of 55 ° to 70 °. Within this angle range, the transmittance is high and bright display is possible.
  • the optimum value of the angle ⁇ 1 is in the range of 37 ° to 41 °. Therefore, the transmission axes 12a and 13a of the two polarizing layers 12 and 13 are arranged at an angle of 37 ° to 41 ° with respect to the axes 12b and 13b parallel to the Y axis, and the transmission axes of the two polarizing layers 12 and 13 are arranged. If the angle formed by 12a and 13a is not less than 74 ° and not more than 82 °, a bright and high-contrast display is possible.
  • FIG. 11A is a diagram showing voltage-transmittance characteristics when the angle ⁇ 1 is 38 °
  • FIG. 11B is a diagram showing voltage-transmittance characteristics when the angle ⁇ 1 is 45 °.
  • the simulation conditions are the same as described above.
  • the layer thickness of the liquid crystal layer is 10 ⁇ m.
  • the transmittance in the no-voltage applied state decreases as the incident angle ⁇ 1 increases, and the incident angle ⁇ 1 ranges from 55 ° to 70 °. Then, the transmittance when no voltage is applied is approximately 0%.
  • the angle ⁇ 1 is 45 °, as the incident angle ⁇ 1 increases, the transmittance in the voltage-free state increases, and the incident angle ⁇ 1 is in the range of 55 ° to 70 °.
  • the transmittance when no voltage is applied is 1.5% to 2%. Therefore, by setting the angle ⁇ 1 to an appropriate angle with respect to the obliquely incident light, it is possible to suppress light leakage during black display and realize a display with high contrast.
  • the angle formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 is set to an appropriate angle with respect to the obliquely incident light L. It becomes a liquid crystal display device capable of.
  • FIG. 12 is a cross-sectional view of the liquid crystal display device 40 of the fourth embodiment.
  • components that are the same as those in the liquid crystal display device of the third embodiment are given the same reference numerals, and detailed descriptions thereof are omitted.
  • the liquid crystal display device 40 is different from the liquid crystal display device of the third embodiment in that a light guide plate 46 in which a scatterer 44 is dispersed inside a transparent substrate 45 is used, and the light guide plates 46 are mutually connected.
  • the plurality of first light sources 5 and the plurality of second light sources 42 are disposed on both the first end surface 46a and the second end surface 46c facing each other, and the color conversion layer 43a is on the + Y side of the first electrode 14 and on the ⁇ Y side. It is a point formed so as to project to the side.
  • a substrate having a high transmittance that transmits the first light L1 and the second light L2 emitted from the first light source 5 and the second light source 42 such as acrylic resin or glass
  • the scatterer 44 the wavelengths of the first light L1 and the second light L2 (550 nm in the case of white light.
  • the peak wavelength of the light emission peak Larger particle size scatterers are used.
  • silicon-based resin powder having a diameter of 1 ⁇ m to 10 ⁇ m is suitable.
  • the first light L1 and the second light L2 incident on the light guide plate 46 propagate through the inside of the light guide plate 46 while changing the traveling direction little by little by the scatterer 44, and the first main surface 46b (
  • the angle of incidence on the first main surface of the transparent substrate 45 becomes smaller than the critical angle, the light is taken out to the external space and emitted toward the liquid crystal panel 41. Therefore, the first light L1 and the second light L2 emitted from the first main surface 46b of the light guide plate 46 are on the light propagation direction side with respect to the normal direction (Z direction) of the first main surface 46b.
  • the side going from the first end face 46a to the second end face 46c + Y side.
  • the side going from the second end face 46c to the first end face 46a -Y Light having directivity in a direction inclined by a predetermined angle ⁇ 1.
  • the angle ⁇ 1 is, for example, 60 °
  • the first light L1 and the second light L2 are emitted from the first main surface 46b at an angle of about 60 ° ⁇ 10 °.
  • the first light source 5 and the second light source 42 are the same as the light source 5 used in the liquid crystal display device 1 of the first embodiment.
  • the first light source 5 is arranged in the X direction with the light emitting surface facing the first end surface 46a of the light guide plate 46, and emits the first light L1 toward the first end surface 46a.
  • the second light sources 42 are arranged in the X direction with the light emitting surface facing the second end surface 46c of the light guide plate 46, and emit the second light L2 toward the second end surface 46c.
  • the first light source 5 and the second light source 42 may be a point light source such as an LED or an organic EL (Electro Luminescence) element, or may be a linear light source such as a cold cathode fluorescent lamp (Cold Cathode Fluorescent Lamp; CCFL).
  • a point light source such as an LED or an organic EL (Electro Luminescence) element
  • a linear light source such as a cold cathode fluorescent lamp (Cold Cathode Fluorescent Lamp; CCFL).
  • a light shielding layer (black matrix) 43b having an opening 43H corresponding to each display element and a color conversion layer 43a arranged in each opening 43H of the light shielding layer 43b are formed on the second substrate 11.
  • the color conversion layer 43a is an optical member that converts the first light L1 and the second light L2 that have passed through the liquid crystal layer 15 into light of a different color from the first light L1 and the second light L2, and emits the light. It is.
  • the color conversion layer 43a is formed longer on the + Y side and the ⁇ Y side than the first electrode 14 of the display element corresponding to the color conversion layer 43a.
  • the color conversion layer 43a is a color filter layer in which a red, green, or blue pigment is dispersed inside the resin, but the color conversion layer 43a includes the first light L1 and the second light. It may be a phosphor layer that emits red, green, or blue light when excited by L2.
  • the second polarizing layer 13 is an in-cell polarizing layer disposed on the liquid crystal layer side of the color converting layer 43a, or the color converting layer 43a is more than the second polarizing layer 13. A structure disposed on the outside is desirable.
  • the color conversion layer 43a is disposed so as to cover the entire first electrode 14 when viewed from the Z direction (the normal direction of the liquid crystal panel 41).
  • the first direction in this embodiment, the Y direction.
  • the color conversion layer 43a is formed so as to protrude from the first electrode 14 in a direction opposite to the first direction and the first direction when viewed from the Z direction.
  • the first light L1 travels in a direction inclined by an angle ⁇ 2 on the + Y side with respect to the Z direction. For this reason, the first light L1 transmitted through the first electrode 14 and traveling obliquely in the liquid crystal layer 15 is incident on the color conversion layer 43a of the display element corresponding to the first electrode 14 so that all the colors are incident.
  • the + Y side end of the conversion layer 43a is arranged to be shifted to the + Y side by a length W1 from the + Y side end of the first electrode 14 when viewed from the Z direction.
  • the second light L2 that passes through the first electrode 14 and travels obliquely in the liquid crystal layer 15 is incident on the color conversion layer 43a of the display element corresponding to the first electrode 14 so as to be incident on the color.
  • the end portion on the ⁇ Y side of the conversion layer 43a is shifted from the ⁇ Y side end portion of the first electrode 14 to the ⁇ Y side by a length W2 when viewed from the Z direction.
  • the color conversion layer 43a is formed to protrude on both the + Y side and the ⁇ Y side of the first electrode 14. Therefore, the center of the color conversion layer 43a and the center of the first electrode 14 do not deviate greatly. For example, when the center of the color conversion layer 16a is shifted from the center of the first electrode 14 as in the liquid crystal display device 1 of the first embodiment, the positioning of the color conversion layer 16a and the first electrode 14 is performed. Is performed based only on the alignment mark, and it is difficult to take a method such as fine adjustment while visually confirming.
  • the positioning of the color conversion layer 43a and the first electrode 14 is performed. This can be performed based on both alignment marks and visual observation, and positioning accuracy is improved.
  • the structure of a liquid crystal display device is not limited to this.
  • the first substrate 10 may be omitted, and the circuit layer, the first polarizing layer 12, the first electrode 14, and the like may be formed directly on the light guide plate 4.
  • the first polarizing layer 12 may be disposed between the light source 5 and the light guide plate 4, and the first polarizing layer 12 is omitted as long as the polarized light can be emitted from the light source 5. May be.
  • the aspect of the present invention can be used in the field of liquid crystal display devices.
  • SYMBOLS 1 ... Liquid crystal display device, 2 ... Liquid crystal panel, 3 ... Back light, 4 ... Light guide plate, 4a ... 1st end surface, 4b ... 1st main surface, 4c ... 2nd end surface, 5 ... 1st light source, 10 ... 1st Substrate, 11 ... second substrate, 12 ... first polarizing layer, 12a ... transmission axis of first polarizing layer, 13 ... second polarizing layer, 13a ... transmission axis of second polarizing layer, 14 ... first electrode, 15 ... Liquid crystal layer, 16a ... color conversion layer, 17 ... second electrode, 30 ... liquid crystal display device, 31 ... liquid crystal panel, 32 ...
  • light distribution control layer 40 ... liquid crystal display device, 41 ... liquid crystal panel, 42 ... second light source, 43a ... color conversion layer, 44 ... scatterer, 45 ... transparent substrate, 46 ... light guide plate, 46a ... first end surface, 46b ... first main surface, 46c ... second end surface, 49 ... backlight, L1, L2 ... light

Abstract

This liquid-crystal display device is provided with a first electrode, a second electrode, a liquid-crystal layer, and a light-guide plate. The second electrode is opposite the first electrode. The liquid-crystal layer is disposed between the first and second electrodes. In a no-voltage state wherein a voltage is not applied between the first and second electrodes, the liquid-crystal layer is optically isotropic, and in a voltage-applied state wherein a voltage is applied between the first and second electrodes, the liquid-crystal layer becomes optically anisotropic. The light-guide plate is disposed opposite the liquid-crystal layer and has a first end surface and a first principal surface. Light that enters the light-guide plate from the first end surface is propagated in a first direction and outputted diagonally towards the liquid-crystal layer from the first principal surface, which faces the liquid-crystal layer.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関する。
 本願は、2011年8月30日に、日本に出願された特願2011-187636号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a liquid crystal display device.
This application claims priority based on Japanese Patent Application No. 2011-187636 filed in Japan on August 30, 2011, the contents of which are incorporated herein by reference.
 電気光学カー効果によりリタデーションが変化する液晶層を用いた液晶表示装置として、ブルー相モードの液晶表示装置が知られている。ブルー相モードは、電圧無印加状態で光学的に等方性であり、電圧印加状態で電界方向に光学的に異方性を生じる液晶モードである。ブルー相モードでは、液晶層に縦電界(液晶層厚方向と平行な電界)を印加すると、屈折率異方性は電界と平行な方向に生じるため、液晶層に垂直に入射するバックライトの光に影響を与えることができず、表示として成立しない。そのため、ブルー相モードを表示に応用する場合には、櫛歯状に設置した電極で液晶層に横電界(液晶層厚方向と直交する電界)を発生させ、液晶層厚方向と直交する面内で屈折率異方性が生じるように駆動させなければならない。 A blue phase mode liquid crystal display device is known as a liquid crystal display device using a liquid crystal layer whose retardation changes due to the electro-optic Kerr effect. The blue phase mode is a liquid crystal mode that is optically isotropic when no voltage is applied, and optically anisotropic in the electric field direction when a voltage is applied. In the blue phase mode, when a vertical electric field (electric field parallel to the thickness direction of the liquid crystal layer) is applied to the liquid crystal layer, the refractive index anisotropy occurs in a direction parallel to the electric field. Can not be affected, it does not hold as a display. Therefore, when the blue phase mode is applied to display, a lateral electric field (electric field orthogonal to the liquid crystal layer thickness direction) is generated in the liquid crystal layer by the electrodes arranged in a comb shape, and an in-plane orthogonal to the liquid crystal layer thickness direction is generated. It must be driven so that refractive index anisotropy occurs.
 しかしながら、櫛歯状電極による駆動は、電極の真上や液晶層厚方向の一部に電界が加わらず、液晶分子が応答しない領域が生じるため、実効的な開口率が低下する。電極の間隔を広げて開口率を高める方法も考えられるが、この場合、駆動電圧が電極の間隔に応じて高くなってしまうため、静電破壊や信号遅延などの影響により、TFT駆動が困難になり、消費電力も大きくなる。 However, driving with a comb-like electrode causes an area where the liquid crystal molecules do not respond because an electric field is not applied directly above the electrode or in a part of the liquid crystal layer thickness direction, and the effective aperture ratio is reduced. A method of increasing the aperture ratio by widening the electrode interval is also conceivable, but in this case, the drive voltage becomes higher according to the electrode interval, so that it is difficult to drive the TFT due to the influence of electrostatic breakdown or signal delay. As a result, power consumption increases.
 そこで、特許文献1の画像表示装置では、縦電界で駆動するブルー相モードの液晶層に対して斜めに光を入射し、光の入射方向と屈折率異方性の生じる方向とが異なるようにしている。この方法によれば、液晶層に対して縦電界を加えても、液晶層を斜めに通過する光に対しては、複屈折を生じさせることができる。そのため、ブルー相モードを適用しながら、縦電界を用いて、開口率の高い、低消費電力な画像表示を実現することができる。 Therefore, in the image display device of Patent Document 1, light is obliquely incident on a blue phase mode liquid crystal layer driven by a vertical electric field so that the incident direction of light is different from the direction in which refractive index anisotropy occurs. ing. According to this method, even if a longitudinal electric field is applied to the liquid crystal layer, birefringence can be generated for light that passes through the liquid crystal layer obliquely. Therefore, an image display with a high aperture ratio and low power consumption can be realized using a vertical electric field while applying the blue phase mode.
特開2007-101922号公報JP 2007-101922 A
 しかしながら、特許文献1の画像表示装置では、液晶ライトバルブと光源との間にフライアイレンズやロッドレンズなどの光学部材を配置して、液晶ライトバルブに対して斜めに光を入射させている。そのため、光源と液晶パネルとが近接して配置される直視型の液晶表示装置において同様の構成を採用することはできない。 However, in the image display device of Patent Document 1, an optical member such as a fly-eye lens or a rod lens is disposed between the liquid crystal light valve and the light source, and light is incident on the liquid crystal light valve obliquely. Therefore, a similar configuration cannot be adopted in a direct-viewing type liquid crystal display device in which a light source and a liquid crystal panel are arranged close to each other.
 本発明の目的は、開口率が高く、低消費電力な液晶表示装置を提供することにある。 An object of the present invention is to provide a liquid crystal display device having a high aperture ratio and low power consumption.
 本発明の一態様における液晶表示装置は、第1電極と、前記第1電極と対向する第2電極と、前記第1電極と前記第2電極との間に配置され、前記第1電極と前記第2電極との間に電圧を印加しない電圧無印加状態において光学的に等方性であり、前記第1電極と前記第2電極との間に電圧を印加した電圧印加状態において光学的に異方性を生じる液晶層と、第1端面と第1主面を有し、前記液晶層と対向配置され、第1端面から入射した光を第1方向に伝播させ、前記液晶層と対向する第1主面から前記液晶層に向けて斜めに射出させる導光板と、を備えている。 The liquid crystal display device according to one embodiment of the present invention includes a first electrode, a second electrode facing the first electrode, the first electrode, and the second electrode, and the first electrode and the second electrode. It is optically isotropic when no voltage is applied to the second electrode, and optically different when a voltage is applied between the first electrode and the second electrode. A first liquid crystal layer having a directionality, a first end face and a first main face, disposed opposite to the liquid crystal layer, and transmitting light incident from the first end face in a first direction to face the liquid crystal layer; A light guide plate that emits obliquely from one main surface toward the liquid crystal layer.
 本発明の一態様における液晶表示装置は、さらに、前記第1電極に対応して設けられ、前記導光板の第1主面から射出されて前記液晶層の内部を斜めに通過した光を他の色の光に変換する色変換層を含み、前記第1電極に対応して設けられ、前記色変換層が、前記液晶層の層厚方向から見て、前記第1電極よりも前記第1方向に張り出して形成されていてもよい。 The liquid crystal display device according to an aspect of the present invention is further provided corresponding to the first electrode, and the light emitted from the first main surface of the light guide plate and obliquely passing through the liquid crystal layer is another A color conversion layer that converts color light to the first electrode, the color conversion layer being provided in correspondence with the first electrode, the color conversion layer being in the first direction relative to the first electrode as viewed from the thickness direction of the liquid crystal layer; It may be formed by overhanging.
 本発明の一態様における液晶表示装置は、さらに、液晶パネルと、前記導光板を備え、前記液晶パネルに対して斜めに前記光を入射させるバックライトと、を備え、前記液晶パネルは、前記第1電極が形成された第1基板と、前記第2電極が形成された第2基板と、前記第1基板と前記第2基板との間に配置された前記液晶層と、前記第2電極を挟んで前記液晶層と反対側に設けられた前記色変換層とを含んでいてもよい。 The liquid crystal display device according to an aspect of the present invention further includes a liquid crystal panel, and a backlight that includes the light guide plate and allows the light to enter the liquid crystal panel obliquely. A first substrate on which one electrode is formed; a second substrate on which the second electrode is formed; the liquid crystal layer disposed between the first substrate and the second substrate; and the second electrode. The color conversion layer provided on the opposite side to the liquid crystal layer may be included.
 前記バックライトは、前記液晶パネルに対して55°以上70°以下の角度で入射する光の強度が最も大きくなるような配光特性を備えていてもよい。 The backlight may have a light distribution characteristic such that the intensity of light incident at an angle of 55 ° to 70 ° with respect to the liquid crystal panel is maximized.
 前記液晶パネルは、前記液晶層と前記バックライトとの間に配置された第1偏光層と、前記液晶層を挟んで前記バックライトとは反対側に設けられた第2偏光層と、を備え、前記第1偏光層の透過軸と前記第2偏光層の透過軸とは互いに交差するように配置され、前記第1偏光層の透過軸と前記第2偏光層の透過軸は、前記第1方向に対して、それぞれ45°未満の角度をなす方向に配置されていてもよい。 The liquid crystal panel includes a first polarizing layer disposed between the liquid crystal layer and the backlight, and a second polarizing layer provided on the opposite side of the backlight across the liquid crystal layer. The transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer are arranged to intersect each other, and the transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer are You may arrange | position in the direction which makes an angle of less than 45 degrees with respect to a direction, respectively.
 前記第1偏光層の透過軸と前記第2偏光層の透過軸とのなす角度は、74°以上82°以下であってもよい。 The angle between the transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer may be 74 ° or more and 82 ° or less.
 前記液晶層を通過した光の強度が最も強くなる方向が前記液晶層の層厚方向に近付くように、前記液晶層を通過した前記光の配光を制御する配光制御層を備えていてもよい。 A light distribution control layer that controls the light distribution of the light that has passed through the liquid crystal layer, so that the direction in which the intensity of the light that has passed through the liquid crystal layer is the strongest approaches the layer thickness direction of the liquid crystal layer; Good.
 電圧印加状態における前記液晶層の屈折率異方性をΔnとし、前記液晶層の層厚をdとしたときに、前記屈折率異方性Δnと前記液晶層の層厚dとの積であるリタデーションΔn・dが、前記光の波長λ以上であってもよい。
 前記光は、特定波長に発光ピークを有する着色光であり、前記光の波長λが発光ピークのピーク波長であってもよい。
 前記光は、白色光であり、前記光の波長λが550nmであってもよい。
When the refractive index anisotropy of the liquid crystal layer in a voltage application state is Δn and the layer thickness of the liquid crystal layer is d, the product of the refractive index anisotropy Δn and the layer thickness d of the liquid crystal layer. The retardation Δn · d may be not less than the wavelength λ of the light.
The light may be colored light having an emission peak at a specific wavelength, and the wavelength λ of the light may be a peak wavelength of the emission peak.
The light may be white light, and the wavelength λ of the light may be 550 nm.
 前記バックライトは、前記導光板の第1端面に第1の光を入射させる第1光源と、前記導光板の第2端面に第2の光を入射させる第2光源と、を備え、前記導光板は、前記第1端面から入射した前記第1の光を前記第1方向に伝播させ、前記第1主面から前記液晶パネルに向けて斜めに射出するとともに、前記第2端面から入射した前記第2の光を前記第1方向とは反対の方向に伝播させ、前記第1主面から前記液晶パネルに向けて斜めに射出し、前記色変換層は、前記液晶層の層厚方向から見て、前記第1電極よりも前記第1方向および前記第1方向とは反対の方向に張り出して形成されていてもよい。 The backlight includes a first light source that causes the first light to enter the first end surface of the light guide plate, and a second light source that causes the second light to enter the second end surface of the light guide plate. The optical plate propagates the first light incident from the first end face in the first direction, and obliquely emits the first light from the first main surface toward the liquid crystal panel, and the light incident from the second end face The second light is propagated in a direction opposite to the first direction, is emitted obliquely from the first main surface toward the liquid crystal panel, and the color conversion layer is viewed from the layer thickness direction of the liquid crystal layer. The first electrode may be formed so as to protrude in the direction opposite to the first direction and the first direction.
 前記導光板は、前記第1の光および前記第2の光を透過する透明基板の内部に、前記第1の光および前記第2の光を散乱する散乱体が分散されて構成されていてもよい。 The light guide plate may be configured such that a scatterer that scatters the first light and the second light is dispersed in a transparent substrate that transmits the first light and the second light. Good.
 本発明の態様によれば、開口率が高く、低消費電力な液晶表示装置を提供することができる。 According to the aspect of the present invention, a liquid crystal display device having a high aperture ratio and low power consumption can be provided.
第1実施形態の液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device of 1st Embodiment. 液晶表示装置の断面図である。It is sectional drawing of a liquid crystal display device. 光が液晶層を斜めに通過する際の光の光路長や複屈折の大きさを説明するための模式図である。It is a schematic diagram for demonstrating the optical path length of light and the magnitude | size of birefringence when light passes through a liquid-crystal layer diagonally. 各種パラメーターを演算した結果を示す図である。It is a figure which shows the result of having calculated various parameters. 液晶層の層厚を7.5μmとしたときの電圧-透過率特性の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the voltage-transmittance characteristic when the layer thickness of a liquid crystal layer is 7.5 micrometers. 液晶層の層厚を10μmとしたときの電圧-透過率特性の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the voltage-transmittance characteristic when the layer thickness of a liquid-crystal layer is 10 micrometers. 液晶層の層厚を15μmとしたときの電圧-透過率特性の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the voltage-transmittance characteristic when the layer thickness of a liquid-crystal layer is 15 micrometers. 液晶層の層厚を12.8μmとし、液晶層に対して垂直に光を入射し、横電界によって液晶層の配光を制御したときの電圧-透過率特性を示す図である。FIG. 6 is a diagram showing voltage-transmittance characteristics when the thickness of a liquid crystal layer is 12.8 μm, light is incident perpendicularly to the liquid crystal layer, and light distribution of the liquid crystal layer is controlled by a lateral electric field. 液晶層に印加する電圧を30.8Vとし、液晶層の層厚を5μm、7.5μm、10μm、15μm、20μmとしたときの透過率の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the transmittance | permeability when the voltage applied to a liquid-crystal layer is 30.8V and the layer thickness of a liquid-crystal layer is 5 micrometers, 7.5 micrometers, 10 micrometers, 15 micrometers, and 20 micrometers. 第2実施形態の液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device of 2nd Embodiment. 配光制御層を通過する前後の光の配光を示す図である。It is a figure which shows the light distribution of the light before and behind passing a light distribution control layer. 第3実施形態の液晶表示装置における2つの偏光層の透過軸の配置を示す図である。It is a figure which shows arrangement | positioning of the transmission axis of two polarizing layers in the liquid crystal display device of 3rd Embodiment. 角度φ2が45°となるように角度φ1を最適化したときの、第1偏光層に対する光の入射角θ1と角度φ1との関係を示す図である。It is a figure which shows the relationship between incident angle (theta) 1 of light with respect to a 1st polarizing layer, and angle (phi) 1 when angle (phi) 1 is optimized so that angle (phi) 2 may be 45 degrees. 角度φ1を38°とした場合の電圧-透過率特性を示す図である。It is a figure which shows the voltage-transmittance characteristic when angle φ1 is 38 °. 角度φ1を45°とした場合の電圧-透過率特性を示す図である。It is a figure which shows the voltage-transmittance characteristic when angle φ1 is 45 °. 第4実施形態の液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device of 4th Embodiment.
[第1実施形態]
 図1は、第1実施形態の液晶表示装置の分解斜視図である。以下の説明では、データ線21の延在方向をY方向、ゲート線22の延在方向をX方向、X方向及びY方向と直交する方向をZ方向として、各構成要素の形状や配置を説明する。
[First Embodiment]
FIG. 1 is an exploded perspective view of the liquid crystal display device according to the first embodiment. In the following description, the extending direction of the data line 21 is defined as the Y direction, the extending direction of the gate line 22 is defined as the X direction, and the direction orthogonal to the X direction and the Y direction is defined as the Z direction. To do.
 液晶表示装置1は、液晶パネル2と、液晶パネル2に斜めに光Lを入射させるバックライト3と、を備えている。 The liquid crystal display device 1 includes a liquid crystal panel 2 and a backlight 3 that causes the light L to enter the liquid crystal panel 2 obliquely.
 液晶パネル2は、第1基板10と、第2基板11と、第1偏光層12と、第2偏光層13と、を備えている。第2基板11は、第1基板10と対向配置される。第1偏光層12は、第1基板10の外面側に設けられる。第2偏光層13は、第2基板11の外面側に設けられる。第1基板10と第2基板11とが対向する対向領域の周縁部には、矩形枠状のシール材19が設けられている。第1基板10、第2基板11及びシール材19によって囲まれた空間には、図示略のブルー相モードの液晶層が封入されている。 The liquid crystal panel 2 includes a first substrate 10, a second substrate 11, a first polarizing layer 12, and a second polarizing layer 13. The second substrate 11 is disposed to face the first substrate 10. The first polarizing layer 12 is provided on the outer surface side of the first substrate 10. The second polarizing layer 13 is provided on the outer surface side of the second substrate 11. A rectangular frame-shaped sealing material 19 is provided on the peripheral edge of the facing region where the first substrate 10 and the second substrate 11 face each other. In a space surrounded by the first substrate 10, the second substrate 11, and the sealing material 19, a blue phase mode liquid crystal layer (not shown) is sealed.
 シール材19の内側には、表示領域2Aが設けられている。表示領域2Aには、X方向に延びる複数のゲート線21とY方向に延びる複数のデータ線22とが第1基板10上において平面視格子状に設けられている。ゲート線21とデータ線22との交差部近傍には、赤色、緑色又は青色のいずれかの色に対応した表示要素が設けられている。第1基板10上には、複数の表示要素がX方向及びY方向にマトリクス状に配置されており、前記複数の表示要素によって表示領域2Aが形成されている。 The display area 2A is provided inside the sealing material 19. In the display area 2A, a plurality of gate lines 21 extending in the X direction and a plurality of data lines 22 extending in the Y direction are provided on the first substrate 10 in a lattice shape in plan view. In the vicinity of the intersection between the gate line 21 and the data line 22, a display element corresponding to any one of red, green, and blue is provided. On the first substrate 10, a plurality of display elements are arranged in a matrix in the X direction and the Y direction, and a display region 2A is formed by the plurality of display elements.
 液晶パネル2の背面側には、バックライト3が設けられている。 A backlight 3 is provided on the back side of the liquid crystal panel 2.
 バックライト3は、導光板4と、導光板4の第1端面4aに配置された複数の光源5と、を備えている。導光板4は、第1端面4aから入射した光源5からの光Lを第1端面4aと対向する第2端面4cに向けてY方向に伝播させ、液晶パネル2と対向する第1主面4bから光Lを液晶パネル2に向けて斜めに射出する。 The backlight 3 includes a light guide plate 4 and a plurality of light sources 5 arranged on the first end face 4 a of the light guide plate 4. The light guide plate 4 propagates the light L from the light source 5 incident from the first end surface 4a in the Y direction toward the second end surface 4c facing the first end surface 4a, and the first main surface 4b facing the liquid crystal panel 2. The light L is emitted obliquely toward the liquid crystal panel 2.
 光源5は、例えば、白色光を発光する発光ダイオード(Light Emitting Diode;LED)である。複数の光源5は、発光面を導光板4の第1端面4aと対向させた状態でX方向に配列されている。光源5は、LEDや有機EL(Electro Luminescence)素子のような点状光源でもよく、冷陰極蛍光ランプ(Cold Cathode Fluorescent Lamp;CCFL)のような線状光源でもよい。 The light source 5 is, for example, a light emitting diode (LED) that emits white light. The plurality of light sources 5 are arranged in the X direction with the light emitting surface opposed to the first end surface 4 a of the light guide plate 4. The light source 5 may be a point light source such as an LED or an organic EL (Electro Luminescence) element, or may be a linear light source such as a cold cathode fluorescent lamp (Cold Cathode Fluorescent Lamp; CCFL).
 図2は、液晶表示装置1の断面図である。 FIG. 2 is a cross-sectional view of the liquid crystal display device 1.
 第1基板10は、ガラスなどの透明な基板に、データ線やゲート線などの各種配線や、これらの配線に接続された薄膜トランジスタなどの駆動素子を含む回路層が形成されたものである。第1基板10上には、ITO(インジウム錫酸化物)などの透明な導電膜からなる複数の第1電極14が形成されている。第1電極14は、各表示要素に対応して設けられた矩形の電極(画素電極)であり、各表示要素の配列に従って、X方向およびY方向に配列して設けられている。 The first substrate 10 is formed by forming a circuit layer including various wirings such as data lines and gate lines and driving elements such as thin film transistors connected to these wirings on a transparent substrate such as glass. A plurality of first electrodes 14 made of a transparent conductive film such as ITO (indium tin oxide) is formed on the first substrate 10. The first electrode 14 is a rectangular electrode (pixel electrode) provided corresponding to each display element, and is arranged in the X direction and the Y direction according to the arrangement of each display element.
 第2基板11は、ガラスなどの透明な基板からなる。第2基板11上には、各表示要素に対応する開口部16Hを備えた遮光層(ブラックマトリクス)16bと、遮光層16bの各開口部16Hに配置された色変換層16aと、が形成されている。色変換層16aは、液晶層15を透過した光Lを前記光Lとは異なる色の光に変換して外部に射出する光学部材である。色変換層16aは、前記色変換層16aに対応する表示要素の第1電極14と略同じ大きさおよび形状で形成されている。本実施形態の場合、色変換層16aは、赤、緑又は青の顔料を樹脂の内部に分散させたカラーフィルタ層であるが、色変換層16aは、光Lにより励起されて赤、緑又は青の光を発光する蛍光体層であってもよい。色変換層16aとして蛍光体層を用いる場合には、第2偏光層13が色変換層16aよりも液晶層側に配置されるインセル偏光層か、色変換層16aが第2偏光層13よりも外側に配置される構造が望ましい。 The second substrate 11 is made of a transparent substrate such as glass. On the second substrate 11, a light shielding layer (black matrix) 16b having openings 16H corresponding to the respective display elements and a color conversion layer 16a disposed in each opening 16H of the light shielding layer 16b are formed. ing. The color conversion layer 16a is an optical member that converts the light L transmitted through the liquid crystal layer 15 into light having a color different from that of the light L and emits the light to the outside. The color conversion layer 16a is formed in substantially the same size and shape as the first electrode 14 of the display element corresponding to the color conversion layer 16a. In the case of the present embodiment, the color conversion layer 16a is a color filter layer in which a red, green, or blue pigment is dispersed inside the resin, but the color conversion layer 16a is excited by the light L to be red, green, or It may be a phosphor layer that emits blue light. When a phosphor layer is used as the color conversion layer 16a, the second polarizing layer 13 is an in-cell polarizing layer disposed on the liquid crystal layer side of the color converting layer 16a, or the color converting layer 16a is more than the second polarizing layer 13. A structure disposed on the outside is desirable.
 色変換層16aは、Z方向(液晶層の層厚方向)から見て、第1電極14とずれた位置に配置されている。バックライト3から液晶パネル2に向けて斜めに射出される第1の光L1の射出方向をZ方向と直交する平面に投影した方向を第1方向(本実施形態の場合、Y方向)とすると、色変換層16aは、Z方向から見て、第1電極14よりも第1方向に張り出して形成されている。 The color conversion layer 16a is disposed at a position shifted from the first electrode 14 when viewed from the Z direction (layer thickness direction of the liquid crystal layer). When the direction in which the emission direction of the first light L1 emitted obliquely from the backlight 3 toward the liquid crystal panel 2 is projected onto a plane orthogonal to the Z direction is defined as the first direction (in this embodiment, the Y direction). The color conversion layer 16a is formed so as to protrude in the first direction from the first electrode 14 when viewed from the Z direction.
 本実施形態の場合、光Lは、Z方向に対して+Y側に角度θ2だけ傾いた方向に進行する。そのため、第1電極14を透過して液晶層15の内部を斜めに進行する光Lが、前記第1電極14に対応する表示要素の色変換層16aに全て入射するように、色変換層16aの+Y側の端部は、第1電極14の+Y側の端部よりもZ方向から見て長さW1だけ+Y側にずれて配置され、色変換層16aの-Y側の端部は、第1電極14の-Y側の端部よりもZ方向から見て長さW2だけ+Y側にずれて配置されている。 In the case of the present embodiment, the light L travels in a direction inclined by an angle θ2 on the + Y side with respect to the Z direction. Therefore, the color conversion layer 16a so that all the light L transmitted through the first electrode 14 and traveling obliquely through the liquid crystal layer 15 is incident on the color conversion layer 16a of the display element corresponding to the first electrode 14. The + Y side end of the first electrode 14 is arranged to be shifted to the + Y side by the length W1 as viewed from the Z direction with respect to the + Y side end of the first electrode 14, and the −Y side end of the color conversion layer 16a is The first electrode 14 is disposed so as to be shifted from the −Y side end of the first electrode 14 to the + Y side by a length W2 when viewed from the Z direction.
 W1およびW2は、例えば、第1電極14と色変換層16aとの間のZ方向の間隔をd′とし、液晶層15の内部を進行する光Lの進行方向とZ方向とのなす角度をθ2とすると、W1=W2=d′・tanθ2の関係を満たすように設計されている。 W1 and W2 are, for example, the distance in the Z direction between the first electrode 14 and the color conversion layer 16a as d ', and the angle formed between the traveling direction of the light L traveling inside the liquid crystal layer 15 and the Z direction. Assuming that θ2, it is designed to satisfy the relationship of W1 = W2 = d ′ · tan θ2.
 なお、図2では、色変換層16aと遮光層16bとは互いに重ならないように配置されているが、色変換層16aと遮光層16bとは部分的に重なるように配置されていてもよい。その場合、遮光層16bと重なる部分の色変換層16aは、液晶層15を通過した光Lを色変換して外部に射出しないので、色変換層として機能しない。本明細書において、「色変換層」とは、液晶層を通過した光を色変換して外部に射出する機能を有する層をいい、遮光層などによってこのような機能が阻害される部分は「色変換層」に含めない。よって、色変換層16aが遮光層16bと部分的に重なる場合には、「色変換層16aが、Z方向から見て、第1電極14よりも第1方向に張り出して形成されている」とは、「遮光層16bと重なる部分を除いた部分の色変換層16aが、Z方向から見て、第1電極14よりも第1方向に張り出して形成されている」ことを意味する。 In FIG. 2, the color conversion layer 16a and the light shielding layer 16b are arranged so as not to overlap each other, but the color conversion layer 16a and the light shielding layer 16b may be arranged so as to partially overlap each other. In that case, the color conversion layer 16a that overlaps the light shielding layer 16b does not function as a color conversion layer because the light L that has passed through the liquid crystal layer 15 is color-converted and is not emitted to the outside. In this specification, the “color conversion layer” refers to a layer having a function of color-converting light that has passed through the liquid crystal layer and emitting the light to the outside. Not included in the “color conversion layer”. Therefore, when the color conversion layer 16a partially overlaps the light shielding layer 16b, “the color conversion layer 16a is formed so as to protrude in the first direction from the first electrode 14 when viewed from the Z direction”. Means that the portion of the color conversion layer 16a excluding the portion overlapping with the light shielding layer 16b is formed so as to protrude from the first electrode 14 in the first direction when viewed from the Z direction.
 色変換層16aおよび遮光層16b上には、ITO(インジウム錫酸化物)などの透明な導電膜からなる第2電極17が形成されている。第2電極17は、表示領域の全面に形成されており、複数の第1電極14に対して共通の電極(共通電極)となっている。第2電極17と第1電極14との間には、画像信号に応じた電圧が印加される。第2電極17と第1電極14との間には、前記電圧に起因して、液晶パネル2の法線方向(Z方向)と概ね平行な方向の電界(縦電界)が発生し、この電界によって液晶層15の配向状態が制御されるようになっている。 A second electrode 17 made of a transparent conductive film such as ITO (indium tin oxide) is formed on the color conversion layer 16a and the light shielding layer 16b. The second electrode 17 is formed on the entire surface of the display area, and is a common electrode (common electrode) for the plurality of first electrodes 14. A voltage corresponding to the image signal is applied between the second electrode 17 and the first electrode 14. An electric field (vertical electric field) in a direction substantially parallel to the normal direction (Z direction) of the liquid crystal panel 2 is generated between the second electrode 17 and the first electrode 14 due to the voltage. Thus, the alignment state of the liquid crystal layer 15 is controlled.
 液晶層15は、ブルー相を示す誘電異方性が正の液晶を含む。ブルー相は、らせん軸が異なる方向を向いた複数のらせん状の構造体が、立体的に周期構造をとっている液晶相である。ブルー相自体は光学的に等方的で、電圧を印加することでネマチック相に転位する。液晶層15の配向は、第1電極14と第2電極17との間に発生する電界によって制御される。ブルー相の液晶層15は、カー効果(Kerr効果)によって、電界方向の屈折率が電界強度の2乗に比例して変化する。ブルー相の液晶の応答時間は10マイクロ秒前後であり、通常のネマチック液晶の応答時間(10ミリ秒)よりも格段に短い。 The liquid crystal layer 15 includes a liquid crystal having a positive dielectric anisotropy indicating a blue phase. The blue phase is a liquid crystal phase in which a plurality of spiral structures having different spiral axes are in a three-dimensional periodic structure. The blue phase itself is optically isotropic and rearranges into a nematic phase when a voltage is applied. The alignment of the liquid crystal layer 15 is controlled by an electric field generated between the first electrode 14 and the second electrode 17. In the blue phase liquid crystal layer 15, the refractive index in the electric field direction changes in proportion to the square of the electric field strength due to the Kerr effect (Kerr effect). The response time of the blue phase liquid crystal is about 10 microseconds, which is much shorter than the response time of normal nematic liquid crystal (10 milliseconds).
 図2において、符号15aは、液晶層15の光学特性を屈折率楕円体で表したものである。図2において右側の第1電極14に対応した表示要素は、第1電極14と第2電極17との間に電圧が印加された電圧印加状態であり、屈折率楕円体は、電界方向に伸張した細長い回転楕円体となっている。図2において左側の第1電極14に対応した表示要素は、第1電極14と第2電極17との間に電圧が印加されていない電圧無印加状態であり、屈折率楕円体は、完全な球となっている。液晶層15は、第1電極14と第2電極17との間に電圧を印加すると、電界の方向(Z方向)を光軸として異方性、すなわち複屈折を生じる。 In FIG. 2, reference numeral 15a represents the optical characteristics of the liquid crystal layer 15 in a refractive index ellipsoid. In FIG. 2, the display element corresponding to the first electrode 14 on the right side is a voltage application state in which a voltage is applied between the first electrode 14 and the second electrode 17, and the refractive index ellipsoid extends in the electric field direction. It is an elongated spheroid. In FIG. 2, the display element corresponding to the first electrode 14 on the left side is a state in which no voltage is applied between the first electrode 14 and the second electrode 17, and the refractive index ellipsoid is completely It is a sphere. When a voltage is applied between the first electrode 14 and the second electrode 17, the liquid crystal layer 15 generates anisotropy, that is, birefringence with the electric field direction (Z direction) as the optical axis.
 第1基板10の液晶層15側とは反対側の面には、第1偏光層12が貼合されている。
第2基板11の液晶層15側とは反対側の面には、第2偏光層13が貼合されている。第1偏光層12と第2偏光層13は、互いの透過軸が直交するように、それぞれの透過軸がY軸に対して45°をなす方向に配置されている。本実施形態の場合、第1偏光層12は、第1基板10のバックライト3側の面に貼合されているが、第1偏光層12は、バックライト3と液晶層15との間に配置されていれば、どの位置に配置されていてもよい。同様に、第2偏光層13は、第2基板11のバックライト3側とは反対側の面に貼合されているが、第2偏光層13は、液晶層15を挟んでバックライト3とは反対側に配置されていれば、どの位置に配置されていてもよい。
The first polarizing layer 12 is bonded to the surface of the first substrate 10 opposite to the liquid crystal layer 15 side.
The second polarizing layer 13 is bonded to the surface of the second substrate 11 opposite to the liquid crystal layer 15 side. The first polarizing layer 12 and the second polarizing layer 13 are arranged in a direction in which each transmission axis forms 45 ° with respect to the Y axis so that the transmission axes are orthogonal to each other. In the case of this embodiment, the first polarizing layer 12 is bonded to the surface of the first substrate 10 on the backlight 3 side, but the first polarizing layer 12 is interposed between the backlight 3 and the liquid crystal layer 15. As long as it is arranged, it may be arranged at any position. Similarly, the second polarizing layer 13 is bonded to the surface of the second substrate 11 opposite to the backlight 3 side, but the second polarizing layer 13 is connected to the backlight 3 with the liquid crystal layer 15 in between. As long as they are arranged on the opposite side, they may be arranged at any position.
 第1偏光層12を挟んで液晶層15とは反対側には、バックライト3の導光板4が配置されている。導光板4は、光Lを透過するアクリルなどの透明な板材からなる。導光板4の第1主面4bと対向する第2主面4dには、光の伝播方向Yと直交する方向(X方向)に延在する複数のプリズム構造体6が形成されている。 The light guide plate 4 of the backlight 3 is disposed on the opposite side of the first polarizing layer 12 from the liquid crystal layer 15. The light guide plate 4 is made of a transparent plate material such as acrylic that transmits the light L. A plurality of prism structures 6 extending in a direction orthogonal to the light propagation direction Y (X direction) are formed on the second main surface 4 d facing the first main surface 4 b of the light guide plate 4.
 YZ平面で切断した一つのプリズム構造体6の断面形状は三角形状である。プリズム構造体6は、導光板4の第1主面4bに対して直交する第1面6aと、第1面6aに対して鋭角をなす第2面6bと、を有している。プリズム構造体6の第2面6bは、導光板4の内部を伝播する光Lを反射させる反射面である。 The cross-sectional shape of one prism structure 6 cut along the YZ plane is triangular. The prism structure 6 has a first surface 6a that is orthogonal to the first main surface 4b of the light guide plate 4, and a second surface 6b that forms an acute angle with the first surface 6a. The second surface 6 b of the prism structure 6 is a reflecting surface that reflects the light L propagating through the light guide plate 4.
 導光板4の内部を第1端面4aから第2端面4cに向けてY方向に伝播する光Lは、第1主面4bとプリズム構造体6の第2面6bとの間で反射を繰り返し、第1主面4bへの光Lの入射角が臨界角よりも小さくなった時点で外部空間に取り出され、液晶パネル2に向けて射出される。よって、導光板4の第1主面4bから射出される光Lは、第1主面4bの法線方向(Z方向)に対して、光の伝播方向側(第1端面4aから第2端面4cへ向かう側:+Y側)に所定の角度θ1だけ傾いた方向に指向性を持った光となる。角度θ1は、例えば60°であり、60°±10°くらいの角度で光Lが第1主面4bから射出される。 The light L propagating in the Y direction from the first end surface 4a to the second end surface 4c inside the light guide plate 4 is repeatedly reflected between the first main surface 4b and the second surface 6b of the prism structure 6, When the incident angle of the light L on the first main surface 4 b becomes smaller than the critical angle, the light L is extracted to the external space and emitted toward the liquid crystal panel 2. Therefore, the light L emitted from the first main surface 4b of the light guide plate 4 is in the light propagation direction side (from the first end surface 4a to the second end surface) with respect to the normal direction (Z direction) of the first main surface 4b. Light having directivity in a direction inclined by a predetermined angle θ1 toward the side 4c: + Y side). The angle θ1 is, for example, 60 °, and the light L is emitted from the first main surface 4b at an angle of about 60 ° ± 10 °.
 液晶パネル2に対して角度θ1で入射した光Lは、液晶パネル2の内部で屈折して進行方向をZ方向に近い方向に曲げられる。そして、液晶層15の内部をZ方向に対して+Y側(導光板4の第2端面4c側)に角度θ2だけ傾いた方向に進行し、色変換層16aに入射する。このとき、色変換層16aは、第1電極14よりもY方向にずれて配置されているため、第1電極14を通過した光Lは、前記第1電極14と対応する表示要素の色変換層16aに全て入射する。よって、Y方向に隣り合う表示要素同士の間で混色等の発生が抑制される。色変換層16aを通過して所定の色に着色された光L′は、第2偏光層13を透過して外部空間に向けて角度θ3で射出される。 The light L incident on the liquid crystal panel 2 at an angle θ1 is refracted inside the liquid crystal panel 2 and the traveling direction is bent in a direction close to the Z direction. Then, the liquid crystal layer 15 travels in the direction inclined by the angle θ2 toward the + Y side (the second end face 4c side of the light guide plate 4) with respect to the Z direction, and enters the color conversion layer 16a. At this time, since the color conversion layer 16a is arranged so as to be shifted in the Y direction from the first electrode 14, the light L that has passed through the first electrode 14 undergoes color conversion of the display element corresponding to the first electrode 14. All incident on the layer 16a. Therefore, the occurrence of color mixing or the like between display elements adjacent in the Y direction is suppressed. The light L ′ that has passed through the color conversion layer 16a and is colored in a predetermined color is transmitted through the second polarizing layer 13 and emitted toward the external space at an angle θ3.
 図3は、光Lが液晶層15を斜めに通過する際の光Lの光路長や複屈折の大きさを説明するための模式図である。図3中、符号15aは、第1電極14と第2電極17との間に電圧を印加したときの液晶層15の光学特性を屈折率楕円体で表したものである。 FIG. 3 is a schematic diagram for explaining the optical path length of the light L and the magnitude of birefringence when the light L passes through the liquid crystal layer 15 obliquely. In FIG. 3, reference numeral 15 a represents the optical characteristic of the liquid crystal layer 15 when a voltage is applied between the first electrode 14 and the second electrode 17 by a refractive index ellipsoid.
 液晶層15における常光の屈折率をno、異常光の屈折率をne、第1電極14と第2電極17との間のZ方向の間隔(液晶層の層厚)をdとすると、液晶層15の内部をZ方向に対して角度θ2だけ傾いた方向に進行する光Lに対する異常光の屈折率ne′、屈折率異方性Δn′および光路長d′は、式(1)、式(2)および式(3)でそれぞれ表される。 When the refractive index of ordinary light in the liquid crystal layer 15 is no, the refractive index of extraordinary light is ne, and the distance in the Z direction (layer thickness of the liquid crystal layer) between the first electrode 14 and the second electrode 17 is d, the liquid crystal layer The refractive index ne ′, the refractive index anisotropy Δn ′, and the optical path length d ′ of the extraordinary light with respect to the light L traveling in the direction inclined by the angle θ2 with respect to the Z direction are expressed by the equations (1) and ( 2) and formula (3), respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001


Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002


Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003

 光Lが液晶層15を斜めに通過する場合、屈折率異方性Δn′は小さくなり、光路長d′は大きくなる。光Lの一部は、第1電極14の表面や第2電極17の表面、或いは、基板と電極等との界面や基板の表面において反射し、ロスとなる(フレネル損失)。界面反射による光のロスは、光Lの進行方向がZ方向に対して大きく傾いているほど大きい。 When the light L passes through the liquid crystal layer 15 at an angle, the refractive index anisotropy Δn ′ decreases and the optical path length d ′ increases. A part of the light L is reflected on the surface of the first electrode 14, the surface of the second electrode 17, or the interface between the substrate and the electrode or the surface of the substrate, resulting in a loss (Fresnel loss). The loss of light due to the interface reflection increases as the traveling direction of the light L is greatly inclined with respect to the Z direction.
 図4は、式(1)、式(2)および式(3)に基づいて、各種パラメーターを演算した結果を示す図である。図4中、θ1は、導光板から液晶パネルに対して斜めに入射する光Lの入射角度であり、「Δn比」は、Δn′/Δn(=ne-no)であり、「d比」は、d′/dであり、「Δnd比」は、Δn′d′/Δndであり、「媒質透過率」は、界面反射せずに液晶パネルを透過した光の割合である。なお、液晶層の材料としては、屈折率がne=1.580477、no=1.481637、Δn=0.09884の材料を用いた(メルク社製の「ZLI-4792」(商品名)に相当)。 FIG. 4 is a diagram showing the results of calculating various parameters based on Expression (1), Expression (2), and Expression (3). In FIG. 4, θ1 is an incident angle of the light L that is obliquely incident on the liquid crystal panel from the light guide plate, “Δn ratio” is Δn ′ / Δn (= ne−no), and “d ratio”. Is d ′ / d, “Δnd ratio” is Δn′d ′ / Δnd, and “medium transmittance” is the ratio of light transmitted through the liquid crystal panel without interface reflection. As the material of the liquid crystal layer, a material having a refractive index of ne = 1.580477, no = 1.481637, and Δn = 0.09884 (corresponding to “ZLI-4792” (trade name) manufactured by Merck) ).
 図4に示すように、入射角θ1が大きくなると、液晶層中を進行する光の角度θ2が大きくなり、それに伴って、Δd比、Δn比およびΔnd比が大きくなる。媒質透過率は、入射角θ1が大きくなるほど小さくなるが、これは界面反射の影響である。界面反射は入射角θ1が60°を超えたあたりで急激に大きくなる。よって、Δnd比を大きくし、媒質透過率を大きくするためには、入射角θ1は60°ないし80°に設定されることが望ましい。 As shown in FIG. 4, as the incident angle θ1 increases, the angle θ2 of light traveling in the liquid crystal layer increases, and the Δd ratio, Δn ratio, and Δnd ratio increase accordingly. The medium transmittance decreases as the incident angle θ1 increases, but this is due to the influence of interface reflection. The interface reflection increases rapidly when the incident angle θ1 exceeds 60 °. Therefore, in order to increase the Δnd ratio and increase the medium transmittance, it is desirable to set the incident angle θ1 to 60 ° to 80 °.
 この場合、Δnd比は0.5前後の値となるため、液晶層の層厚は、横電界モードで液晶層の層厚方向に光を入射させる場合に比べて2倍の厚みが必要となる。すなわち、縦電界をかけた状態(電圧印加状態)で液晶層の層厚方向と直交する方向に進行する光が感じる液晶層の屈折率異方性をΔnとし、液晶層の層厚をdとしたときに、屈折率異方性Δnと液晶層の層厚dとの積であるリタデーションΔn・dは、光の波長λ以上であることが望ましい。なお、「縦電界をかけた状態(電圧印加状態)で液晶層の層厚方向と直交する方向に進行する光が感じる液晶層の屈折率異方性」とは、言い換えると、「縦電界をかけた状態(電圧印加状態)で液晶層の層厚方向と直交する方向における液晶層の屈折率異方性」である。 In this case, since the Δnd ratio is a value around 0.5, the thickness of the liquid crystal layer needs to be twice that of the case where light is incident in the thickness direction of the liquid crystal layer in the transverse electric field mode. . That is, the refractive index anisotropy of the liquid crystal layer that is felt by light traveling in a direction orthogonal to the thickness direction of the liquid crystal layer when a vertical electric field is applied (voltage application state) is Δn, and the thickness of the liquid crystal layer is d. Then, the retardation Δn · d, which is the product of the refractive index anisotropy Δn and the layer thickness d of the liquid crystal layer, is preferably equal to or greater than the light wavelength λ. In addition, “the refractive index anisotropy of the liquid crystal layer that is felt by light traveling in a direction perpendicular to the thickness direction of the liquid crystal layer in a state where a vertical electric field is applied (voltage applied state)” is, in other words, “the vertical electric field is “Refractive index anisotropy of the liquid crystal layer in a direction perpendicular to the thickness direction of the liquid crystal layer in the applied state (voltage applied state)”.
 ここで、光の波長λは、光が白色光である場合には550nmとし、バックライト3から特定波長に発光ピークを有する着色光(例えば青色の光)を射出し、蛍光体によって形成された色変換層を励起して赤色、緑色、青色を表示する場合には、光の波長λは発光ピークのピーク波長とする。 Here, the wavelength λ of light is 550 nm when the light is white light, and colored light having an emission peak at a specific wavelength (for example, blue light) is emitted from the backlight 3 and is formed by a phosphor. When the color conversion layer is excited to display red, green, and blue, the light wavelength λ is the peak wavelength of the emission peak.
 例えば、液晶層の材料として、屈折率ne=1.580477、屈折率no=1.481637、Δn=0.09884の材料を用いた場合、液晶層の層厚が7.3μmのときにΔn′d′が275nm(=λ/2、λ=550nm)となる。 For example, when a material having a refractive index ne = 1.580477, a refractive index no = 1.481637, and Δn = 0.09884 is used as the material of the liquid crystal layer, Δn ′ when the layer thickness of the liquid crystal layer is 7.3 μm. d ′ is 275 nm (= λ / 2, λ = 550 nm).
 図5A、図5Bおよび図5Cは、液晶層の層厚dをそれぞれ7.5μm、10μmおよび15μmとしたときの電圧-透過率特性の入射角依存性を示す図である。
 図5Dは、液晶層の層厚dを12.8μmとし、液晶層に対して垂直に光を入射し、横電界によって液晶層の配向を制御する場合の電圧-透過率特性を示す図である。
FIG. 5A, FIG. 5B and FIG. 5C are diagrams showing the incident angle dependence of the voltage-transmittance characteristics when the layer thickness d of the liquid crystal layer is 7.5 μm, 10 μm and 15 μm, respectively.
FIG. 5D is a diagram showing voltage-transmittance characteristics when the thickness d of the liquid crystal layer is 12.8 μm, light is incident perpendicularly to the liquid crystal layer, and the orientation of the liquid crystal layer is controlled by a lateral electric field. .
 シミュレーションの条件は以下のとおりである。
・シミュレーションソフト:LCD Master 2d(Shintech社)
・LC: ZLI-4792(図5Aないし図5Dにおいて共通)
・Initial director: Pretilt3.0 [deg], Pre-twist 0.0 [deg], Twist 0.0 [deg]・Electrode Voltage 070 [V]/ 0 [V]
・Boundary condition: Periodic
・Polarizer: 45 deg, Analyzer: 135 deg SEG-1224DU・Light source: 550 nm
・Electrode line width / space width :4μm/ 8μm(図5Dの横電界モデルのみ)
The simulation conditions are as follows.
・ Simulation software: LCD Master 2d (Shintech)
・ LC: ZLI-4792 (common to FIGS. 5A to 5D)
・ Initial director: Pretilt3.0 [deg], Pre-twist 0.0 [deg], Twist 0.0 [deg] ・ Electrode Voltage 070 [V] / 0 [V]
・ Boundary condition: Periodic
・ Polarizer: 45 deg, Analyzer: 135 deg SEG-1224DU ・ Light source: 550 nm
・ Electrode line width / space width: 4μm / 8μm (only horizontal electric field model in Fig. 5D)
 図5Aないし図5Cに示すように、液晶層に印加する電圧を大きくしていくと、屈折率異方性Δn′は増加する。図5Aに示すように、液晶層の層厚dが7.5μmでは層厚が不足しており、Δn′d′が波長λの1/2に達しないため、電圧を増加しても透過率は飽和する。図5Bに示すように、液晶層の層厚dを10μmに増やすと層厚の不足が緩和され、透過率が改善する。入射角θ1が75°や80°のような広角では、透過率のピークを通り過ぎて減少する特性も見られる。図5Cに示すように、液晶層の層厚dが15μmでは層厚が十分であり、液晶層に印加する電圧に対して透過率のピークが存在する。 As shown in FIGS. 5A to 5C, the refractive index anisotropy Δn ′ increases as the voltage applied to the liquid crystal layer is increased. As shown in FIG. 5A, when the layer thickness d of the liquid crystal layer is 7.5 μm, the layer thickness is insufficient, and Δn′d ′ does not reach half of the wavelength λ. Is saturated. As shown in FIG. 5B, when the layer thickness d of the liquid crystal layer is increased to 10 μm, the shortage of the layer thickness is alleviated and the transmittance is improved. When the incident angle θ1 is a wide angle such as 75 ° or 80 °, there is a characteristic that it decreases after passing through the peak of transmittance. As shown in FIG. 5C, when the layer thickness d of the liquid crystal layer is 15 μm, the layer thickness is sufficient, and a transmittance peak exists with respect to the voltage applied to the liquid crystal layer.
 図5Dは同じ液晶材料を用いた横電界のモデルであるが、横電界のモデルでは、電圧が40Vのときに透過率のピークが存在し、ピークの透過率は25%である。これはL/S=4μm/8μmにより実質的に開口率がおよそ2/3になったためである。図5Bの縦電界のモデルでは、電圧が30V付近で透過率が飽和し、最大の透過率(入射角θ1=60°)は37%である。2つの偏光層をクロスニコル配置したときの透過率は約40%であるので、37%は光のロスが少ない理想的な状態であることを意味する。 FIG. 5D shows a model of a horizontal electric field using the same liquid crystal material. In the model of the horizontal electric field, a transmittance peak exists when the voltage is 40 V, and the peak transmittance is 25%. This is because the aperture ratio is substantially 2/3 due to L / S = 4 μm / 8 μm. In the model of the vertical electric field in FIG. 5B, the transmittance is saturated near a voltage of 30 V, and the maximum transmittance (incident angle θ1 = 60 °) is 37%. Since the transmittance when the two polarizing layers are arranged in crossed Nicols is about 40%, 37% means an ideal state with little light loss.
 図5Dの横電界のモデルが図5Bの縦電界のモデルに比べて飽和電圧が高くなるのは、電極の間隔を広げて開口率を高めたためであるが、電極の間隔を広げて開口率を高めても、電極の直上は液晶が配向せず透過率に寄与しないので、透過率は縦電界のモデルに比べて小さい。よって、縦電界のモデルのほうが低消費電力で開口率の高い表示が可能となる。 The reason why the saturation voltage is higher in the horizontal electric field model in FIG. 5D than in the vertical electric field model in FIG. 5B is that the aperture ratio is increased by widening the electrode spacing. Even if it is increased, the liquid crystal is not aligned immediately above the electrode and does not contribute to the transmittance. Therefore, the transmittance is smaller than the longitudinal electric field model. Therefore, the vertical electric field model enables display with low power consumption and high aperture ratio.
 図6は、液晶層に印加する電圧を30.8Vとし、液晶層の層厚dを5μm、7.5μm、10μm、15μm、20μmとしたときの透過率の入射角依存性を示す図である。
30.8Vは、図5Aないし図5Cにおいて、透過率が飽和する電圧である。
FIG. 6 is a diagram showing the incident angle dependence of the transmittance when the voltage applied to the liquid crystal layer is 30.8 V and the layer thickness d of the liquid crystal layer is 5 μm, 7.5 μm, 10 μm, 15 μm, and 20 μm. .
30.8 V is a voltage at which the transmittance is saturated in FIGS. 5A to 5C.
 液晶層の層厚dが5μm、7.5μm、10μm、15μm、20μmのいずれの場合も、入射角θ1が55°ないし70°の範囲で透過率のピークが存在する。入射角θ1が大きくなると透過率が小さくなるのは、界面反射の影響である。液晶層の層厚dが大きくなると透過率が大きくなり、層厚dが10μm以上になると透過率は殆ど変化しない。図6によれば、入射角θ1は55°ないし70°の範囲、より好ましくは60°ないし65°の範囲に最適値が存在する。よって、バックライト3としては、液晶パネル2に対して55°以上70°以下の角度、より好ましくは60°以上65°以下の角度で入射する光の強度が最も強くなるような配光を備えたものを用いることが望ましい。これにより、透過率が高く明るい表示が可能となる。 When the layer thickness d of the liquid crystal layer is 5 μm, 7.5 μm, 10 μm, 15 μm, or 20 μm, a transmittance peak exists when the incident angle θ1 is in the range of 55 ° to 70 °. It is the influence of interface reflection that the transmittance decreases as the incident angle θ1 increases. When the layer thickness d of the liquid crystal layer increases, the transmittance increases. When the layer thickness d exceeds 10 μm, the transmittance hardly changes. According to FIG. 6, the optimum value of the incident angle θ1 is in the range of 55 ° to 70 °, more preferably in the range of 60 ° to 65 °. Therefore, the backlight 3 is provided with a light distribution such that the intensity of light incident on the liquid crystal panel 2 at an angle of 55 ° to 70 °, more preferably an angle of 60 ° to 65 ° is the strongest. It is desirable to use Thereby, a bright display with high transmittance is possible.
 本実施形態の液晶表示装置1においては、導光板4の内部をY方向に伝播し導光板4から液晶層15に対して斜めに入射した光の感じる屈折率異方性を変化させ、これにより、液晶層15の内部を斜めに進行し外部に射出される光の光量を制御する。言い換えれば、導光板4の内部をY方向に伝播し導光板4から液晶層15に対して斜めに入射した光に対する屈折率異方性を変化させ、これにより、液晶層15の内部を斜めに進行し外部に射出される光の光量を制御する。そのため、ブルー相モードのように電圧無印加状態において光学的に等方性であり電圧印加状態において光学的に異方性を生じる液晶層を用いながら、縦電界を利用して低消費電力で開口率が高くかつ薄型の液晶表示装置を提供することができる。 In the liquid crystal display device 1 of the present embodiment, the refractive index anisotropy felt by the light propagating in the Y direction through the light guide plate 4 and obliquely incident on the liquid crystal layer 15 from the light guide plate 4 is changed. The amount of light that travels obliquely inside the liquid crystal layer 15 and is emitted to the outside is controlled. In other words, the refractive index anisotropy with respect to light propagating through the light guide plate 4 in the Y direction and obliquely incident on the liquid crystal layer 15 from the light guide plate 4 is changed, whereby the inside of the liquid crystal layer 15 is inclined. Controls the amount of light that travels and is emitted to the outside. Therefore, while using a liquid crystal layer that is optically isotropic when no voltage is applied and has optical anisotropy when a voltage is applied as in the blue phase mode, the aperture is opened with low power consumption using a vertical electric field. A thin liquid crystal display device with a high rate can be provided.
[第2実施形態]
 図7は、第2実施形態の液晶表示装置30の断面図である。液晶表示装置30において第1実施形態の液晶表示装置1と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Second Embodiment]
FIG. 7 is a cross-sectional view of the liquid crystal display device 30 of the second embodiment. In the liquid crystal display device 30, the same components as those in the liquid crystal display device 1 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 液晶表示装置30において第1実施形態の液晶表示装置1と異なる点は、液晶パネル31が、第2偏光層13の外面側に、液晶層15を通過した光Lの強度が最も強くなる方向が液晶パネル31の法線方向(Z方向)に近付くように光Lの配光を制御する配光制御層32を備えている点である。なお、配光とは、どの方向にどれくらいの強度で光が射出されているかを示すものである。 The liquid crystal display device 30 is different from the liquid crystal display device 1 of the first embodiment in that the liquid crystal panel 31 has a direction in which the intensity of the light L having passed through the liquid crystal layer 15 is the strongest on the outer surface side of the second polarizing layer 13. The light distribution control layer 32 that controls the light distribution of the light L so as to approach the normal direction (Z direction) of the liquid crystal panel 31 is provided. The light distribution indicates in which direction and how much light is emitted.
 配光制御層32は、アクリル等の透明樹脂33の内部に、透明樹脂33とは屈折率の異なる例えば直径3μmないし10μm程度の大きさの微粒子からなる散乱体34が分散された光拡散板である。本実施形態の場合、光Lとして白色光が用いられているたえ、散乱体34としては、可視光領域(380nmないし750nmの波長領域)において散乱度の波長依存性が少ない粒子が用いられている。本実施形態では、配光制御層32は、内部に散乱体34が分散された光拡散板であるが、配光制御層32は、これに限定されない。
 例えば、透明な板材の表面に溝を形成し、溝の表面で光を反射させることにより、光の配光を制御するものなどを配光制御層32として用いてもよい。
The light distribution control layer 32 is a light diffusing plate in which a scatterer 34 made of fine particles having a refractive index different from the transparent resin 33, for example, a diameter of about 3 μm to 10 μm, is dispersed inside a transparent resin 33 such as acrylic. is there. In the case of the present embodiment, white light is used as the light L, and as the scatterer 34, particles having less wavelength dependency of the scattering degree in the visible light region (a wavelength region of 380 nm to 750 nm) are used. Yes. In the present embodiment, the light distribution control layer 32 is a light diffusing plate in which the scatterers 34 are dispersed, but the light distribution control layer 32 is not limited to this.
For example, the light distribution control layer 32 may be formed by forming a groove on the surface of a transparent plate and controlling the light distribution by reflecting light on the surface of the groove.
 図8は、配光制御層32を通過する前後の光の配光を示す図である。図8において横軸は、配光制御層32から射出された光がYZ平面内を進行するときの光の射出方向(Z軸とのなす角度)を示しており、縦軸は、その射出方向に射出される光の強度を示している。 FIG. 8 is a diagram showing the light distribution before and after passing through the light distribution control layer 32. In FIG. 8, the horizontal axis indicates the light emission direction (angle formed with the Z axis) when the light emitted from the light distribution control layer 32 travels in the YZ plane, and the vertical axis indicates the emission direction. The intensity of the emitted light is shown.
 配光制御層32を設けない場合には、符号D1で示したように、第2偏光層13を通過した光Lは、第2偏光層13と外部の空気層との界面で屈折して角度θ3の方向に射出される(図2参照)。一方、配光制御層32を設けた場合には、符号D2で示したように、第2偏光層13を通過した光Lは、散乱体34で散乱され、Z方向に近付く方向に光路を変更される。 In the case where the light distribution control layer 32 is not provided, the light L that has passed through the second polarizing layer 13 is refracted at the interface between the second polarizing layer 13 and the external air layer, as indicated by reference numeral D1. It is emitted in the direction of θ3 (see FIG. 2). On the other hand, when the light distribution control layer 32 is provided, the light L that has passed through the second polarizing layer 13 is scattered by the scatterer 34 and changes the optical path in the direction approaching the Z direction, as indicated by reference numeral D2. Is done.
 本実施形態の液晶表示装置30によれば、配光制御層32により、液晶層15を通過した光Lの強度が最も強くなる方向がZ方向に近付くように光Lの配光が制御されるため、正面から見たときの画像の品質を向上することができる。 According to the liquid crystal display device 30 of this embodiment, the light distribution control layer 32 controls the light distribution of the light L so that the direction in which the intensity of the light L that has passed through the liquid crystal layer 15 is the strongest approaches the Z direction. Therefore, the quality of the image when viewed from the front can be improved.
[第3実施形態]
 図9は、第3実施形態の液晶表示装置における第1偏光層12の透過軸12aおよび第2偏光層13の透過軸13aの配置を示す図である。図9において第2実施形態の液晶表示装置1と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Third Embodiment]
FIG. 9 is a diagram showing the arrangement of the transmission axis 12a of the first polarizing layer 12 and the transmission axis 13a of the second polarizing layer 13 in the liquid crystal display device of the third embodiment. In FIG. 9, components common to the liquid crystal display device 1 of the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態の液晶表示装置において第1実施形態の液晶表示装置1と異なる点は、第1偏光層12の透過軸12aと第2偏光層13の透過軸13aの配置である。第1実施形態の液晶表示装置1では、第1偏光層12の透過軸と第2偏光層13の透過軸は、Z方向から見て、Y軸と平行な軸を挟んで±45°の方向に設定されていた。これに対して、本実施形態の液晶表示装置では、第1偏光層12の透過軸12aと第2偏光層13の透過軸13aは、Z方向から見て、Y軸と平行な軸12b,13bを挟んで±φ1(<45°)の方向に設定されている。 The liquid crystal display device of this embodiment is different from the liquid crystal display device 1 of the first embodiment in the arrangement of the transmission axis 12 a of the first polarizing layer 12 and the transmission axis 13 a of the second polarizing layer 13. In the liquid crystal display device 1 of the first embodiment, the transmission axis of the first polarizing layer 12 and the transmission axis of the second polarizing layer 13 are directions of ± 45 ° across the axis parallel to the Y axis when viewed from the Z direction. Was set to. On the other hand, in the liquid crystal display device of this embodiment, the transmission axis 12a of the first polarizing layer 12 and the transmission axis 13a of the second polarizing layer 13 are axes 12b and 13b parallel to the Y axis when viewed from the Z direction. Is set in the direction of ± φ1 (<45 °).
 図9のように光Lが第1偏光層12および第2偏光層13を斜めに通過する場合、光Lの進行方向に沿って見たときの2つの偏光層12,13の透過軸12a,13aのなす角度は、Z方向から見たときの2つの偏光層12,13の透過軸12a,13aのなす角度よりも大きくなる。例えば、第2偏光層13に対する光Lの入射方向と直交する平面18上に第2偏光層13の透過軸13aを投影した軸を軸18aとし、平面18上にY軸と平行な軸13bを投影した軸を軸18bとし、軸18aと軸18bとのなす角度をφ2とすると、光Lの進行方向に沿って見たときの2つの偏光層12,13の透過軸12a,13aのなす角度は2×φ2となる。φ2はφ1よりも大きいので、斜めに進行する光Lが感じる2つの偏光層12,13の透過軸12a,13aのなす角度(2×φ2)は、Z方向から見たときの2つの偏光層12,13の透過軸12a,13aのなす角度(2×φ1)よりも大きくなる。言い換えれば、斜めに進行する光Lの進行方向から見たときの2つの偏光層12,13の透過軸12a,13aのなす角度(2×φ2)は、Z方向から見たときの2つの偏光層12,13の透過軸12a,13aのなす角度(2×φ1)よりも大きくなる。 When the light L passes through the first polarizing layer 12 and the second polarizing layer 13 obliquely as shown in FIG. 9, the transmission axes 12a of the two polarizing layers 12, 13 when viewed along the traveling direction of the light L, The angle formed by 13a is larger than the angle formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 when viewed from the Z direction. For example, an axis obtained by projecting the transmission axis 13a of the second polarizing layer 13 on the plane 18 orthogonal to the incident direction of the light L with respect to the second polarizing layer 13 is defined as an axis 18a, and an axis 13b parallel to the Y axis is defined on the plane 18. Assuming that the projected axis is the axis 18b and the angle between the axis 18a and the axis 18b is φ2, the angle formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 when viewed along the traveling direction of the light L Is 2 × φ2. Since φ2 is larger than φ1, the angle (2 × φ2) formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 sensed by the light L traveling obliquely is two polarizing layers when viewed from the Z direction. It becomes larger than the angle (2 × φ1) formed by the transmission axes 12a and 13a of the 12 and 13. In other words, the angle (2 × φ2) formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 when viewed from the traveling direction of the light L traveling obliquely is the two polarizations when viewed from the Z direction. It becomes larger than the angle (2 × φ1) formed by the transmission axes 12a, 13a of the layers 12, 13.
 そのため、2つの偏光層12,13の透過軸12a,13aを互いに直交させた状態で光Lを斜めに入射させると、光Lは90°よりも大きい角度で交差する2つの偏光層12,13に入射したように感じ、電圧無印加状態において十分な黒が表示できなくなる場合がある。言い換えれば、2つの偏光層12,13の透過軸12a,13aを互いに直交させた状態で光Lを斜めに入射させると、光Lの進行方向から見た時には、90°よりも大きい角度で交差する2つの偏光層12,13に光Lが入射することとなり、電圧無印加状態において十分な黒が表示できなくなる場合がある。そこで、本実施形態では、2つの偏光層12,13の透過軸12a,13aのなす角度(2×φ1)を90°よりも小さくし、斜めに進行する光Lが感じる2つの偏光層12,13の透過軸12a,13aのなす角度(2×φ2)が90°となるようにしている。 Therefore, when the light L is incident obliquely with the transmission axes 12a and 13a of the two polarizing layers 12 and 13 orthogonal to each other, the two polarizing layers 12 and 13 that intersect at an angle larger than 90 °. In some cases, it may appear that the light is incident on the screen, and sufficient black cannot be displayed in a state where no voltage is applied. In other words, when the light L is incident obliquely with the transmission axes 12a and 13a of the two polarizing layers 12 and 13 being orthogonal to each other, when viewed from the traveling direction of the light L, it intersects at an angle greater than 90 °. In this case, the light L is incident on the two polarizing layers 12 and 13, and sufficient black may not be displayed when no voltage is applied. Therefore, in the present embodiment, the angle (2 × φ1) formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 is made smaller than 90 °, and the two polarizing layers 12 and 12 that the light L traveling obliquely feels is obtained. An angle (2 × φ2) formed by 13 transmission axes 12a and 13a is set to 90 °.
 図10は、角度φ2が45°となるように角度φ1を最適化したときの、第1偏光層12に対する光Lの入射角θ1と角度φ1との関係を示す図である。シミュレーションの条件は、前述したものと同じである。 FIG. 10 is a diagram showing the relationship between the incident angle θ1 of the light L with respect to the first polarizing layer 12 and the angle φ1 when the angle φ1 is optimized so that the angle φ2 is 45 °. The simulation conditions are the same as described above.
 図6で説明したように、光Lの入射角θ1は、55°ないし70°の範囲に最適値が存在する。この角度範囲であれば、透過率が高く、明るい表示が可能となる。図10によれば、入射角θ1が55°ないし70°の範囲では、角度φ1の最適値は、37°ないし41°の範囲となる。よって、2つの偏光層12,13の透過軸12a,13aをY軸と平行な軸12b、13bに対して37°以上41°以下の角度で配置し、2つの偏光層12,13の透過軸12a,13aのなす角度を74°以上82°以下とすれば、明るくコントラストの高い表示が可能となる。 As described with reference to FIG. 6, the incident angle θ1 of the light L has an optimum value in the range of 55 ° to 70 °. Within this angle range, the transmittance is high and bright display is possible. According to FIG. 10, when the incident angle θ1 is in the range of 55 ° to 70 °, the optimum value of the angle φ1 is in the range of 37 ° to 41 °. Therefore, the transmission axes 12a and 13a of the two polarizing layers 12 and 13 are arranged at an angle of 37 ° to 41 ° with respect to the axes 12b and 13b parallel to the Y axis, and the transmission axes of the two polarizing layers 12 and 13 are arranged. If the angle formed by 12a and 13a is not less than 74 ° and not more than 82 °, a bright and high-contrast display is possible.
 図11Aは、角度φ1を38°とした場合の電圧-透過率特性を示す図であり、図11Bは、角度φ1を45°とした場合の電圧-透過率特性を示す図である。シミュレーションの条件は前述したものと同じである。液晶層の層厚は10μmとしている。 FIG. 11A is a diagram showing voltage-transmittance characteristics when the angle φ1 is 38 °, and FIG. 11B is a diagram showing voltage-transmittance characteristics when the angle φ1 is 45 °. The simulation conditions are the same as described above. The layer thickness of the liquid crystal layer is 10 μm.
 図11Aに示すように、角度φ1を38°とした場合には、入射角θ1が大きくなるほど電圧無印加状態(黒表示)の透過率は小さくなり、入射角θ1が55°ないし70°の範囲では、電圧無印加状態の透過率は概ね0%となる。一方、図11Bに示すように、角度φ1を45°とした場合には、入射角θ1が大きくなると、電圧無印加状態の透過率は大きくなり、入射角θ1が55°ないし70°の範囲では、電圧無印加状態の透過率は1.5%ないし2%となる。よって、角度φ1を斜め入射される光に対して適切な角度に設定することで、黒表示時の光抜けを抑制し、コントラストの高い表示を実現することができる。 As shown in FIG. 11A, when the angle φ1 is 38 °, the transmittance in the no-voltage applied state (black display) decreases as the incident angle θ1 increases, and the incident angle θ1 ranges from 55 ° to 70 °. Then, the transmittance when no voltage is applied is approximately 0%. On the other hand, as shown in FIG. 11B, when the angle φ1 is 45 °, as the incident angle θ1 increases, the transmittance in the voltage-free state increases, and the incident angle θ1 is in the range of 55 ° to 70 °. The transmittance when no voltage is applied is 1.5% to 2%. Therefore, by setting the angle φ1 to an appropriate angle with respect to the obliquely incident light, it is possible to suppress light leakage during black display and realize a display with high contrast.
 本実施形態の液晶表示装置では、2つの偏光層12,13の透過軸12a,13aのなす角度を斜め入射される光Lに対して適切な角度に設定しているため、コントラストの高い画像表示が可能な液晶表示装置となる。 In the liquid crystal display device according to the present embodiment, the angle formed by the transmission axes 12a and 13a of the two polarizing layers 12 and 13 is set to an appropriate angle with respect to the obliquely incident light L. It becomes a liquid crystal display device capable of.
[第4実施形態]
 図12は、第4実施形態の液晶表示装置40の断面図である。液晶表示装置40において第3実施形態の液晶表示装置と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Fourth Embodiment]
FIG. 12 is a cross-sectional view of the liquid crystal display device 40 of the fourth embodiment. In the liquid crystal display device 40, components that are the same as those in the liquid crystal display device of the third embodiment are given the same reference numerals, and detailed descriptions thereof are omitted.
 液晶表示装置40において第3実施形態の液晶表示装置と異なる点は、導光板46として、透明基板45の内部に散乱体44を分散させたものが用いられている点と、導光板46の互いに対向する第1端面46aおよび第2端面46cの双方に複数の第1光源5および複数の第2光源42が配置されている点と、色変換層43aが第1電極14の+Y側および-Y側に張り出すように形成されている点である。 The liquid crystal display device 40 is different from the liquid crystal display device of the third embodiment in that a light guide plate 46 in which a scatterer 44 is dispersed inside a transparent substrate 45 is used, and the light guide plates 46 are mutually connected. The plurality of first light sources 5 and the plurality of second light sources 42 are disposed on both the first end surface 46a and the second end surface 46c facing each other, and the color conversion layer 43a is on the + Y side of the first electrode 14 and on the −Y side. It is a point formed so as to project to the side.
 透明基板45としては、アクリル樹脂やガラスなどの、第1光源5および第2光源42から射出された第1の光L1および第2の光L2を透過する高透過率の基板が用いられる。散乱体44としては、第1の光L1および第2の光L2の波長(白色光の場合は550nm。光が特定波長に発光ピークを有する着色光である場合には、発光ピークのピーク波長)よりも大きい粒径の散乱体が用いられる。例えば、直径が1μmないし10μmのシリコン系樹脂粉体(東芝シリコン製、トスパール120)が好適である。 As the transparent substrate 45, a substrate having a high transmittance that transmits the first light L1 and the second light L2 emitted from the first light source 5 and the second light source 42, such as acrylic resin or glass, is used. As the scatterer 44, the wavelengths of the first light L1 and the second light L2 (550 nm in the case of white light. When the light is colored light having a light emission peak at a specific wavelength, the peak wavelength of the light emission peak) Larger particle size scatterers are used. For example, silicon-based resin powder having a diameter of 1 μm to 10 μm (Toshiba Silicon, Tospearl 120) is suitable.
 導光板46に入射した第1の光L1および第2の光L2は、散乱体44によって進行方向を少しずつ変化させながら導光板46の内部を伝播し、導光板46の第1主面46b(透明基板45の第1主面)への入射角が臨界角よりも小さくなった時点で外部空間に取り出され、液晶パネル41に向けて射出される。よって、導光板46の第1主面46bから射出される第1の光L1および第2の光L2は、第1主面46bの法線方向(Z方向)に対して、光の伝播方向側(第1の光L1の場合は、第1端面46aから第2端面46cへ向かう側:+Y側。第2の光L2の場合は、第2端面46cから第1端面46aへ向かう側:-Y側)に所定の角度θ1だけ傾いた方向に指向性を持った光となる。角度θ1は、例えば60°であり、60°±10°くらいの角度で第1の光L1および第2の光L2が第1主面46bから射出される。 The first light L1 and the second light L2 incident on the light guide plate 46 propagate through the inside of the light guide plate 46 while changing the traveling direction little by little by the scatterer 44, and the first main surface 46b ( When the angle of incidence on the first main surface of the transparent substrate 45 becomes smaller than the critical angle, the light is taken out to the external space and emitted toward the liquid crystal panel 41. Therefore, the first light L1 and the second light L2 emitted from the first main surface 46b of the light guide plate 46 are on the light propagation direction side with respect to the normal direction (Z direction) of the first main surface 46b. (In the case of the first light L1, the side going from the first end face 46a to the second end face 46c: + Y side. In the case of the second light L2, the side going from the second end face 46c to the first end face 46a: -Y Light having directivity in a direction inclined by a predetermined angle θ1. The angle θ1 is, for example, 60 °, and the first light L1 and the second light L2 are emitted from the first main surface 46b at an angle of about 60 ° ± 10 °.
 第1光源5および第2光源42は、第1実施形態の液晶表示装置1で用いられた光源5と同じである。第1光源5は、発光面を導光板46の第1端面46aと対向させた状態でX方向に配列され、第1端面46aに向けて第1の光L1を射出する。第2光源42は、発光面を導光板46の第2端面46cと対向させた状態でX方向に配列され、第2端面46cに向けて第2の光L2を射出する。第1光源5および第2光源42は、LEDや有機EL(Electro Luminescence)素子のような点状光源でもよく、冷陰極蛍光ランプ(Cold Cathode Fluorescent Lamp;CCFL)のような線状光源でもよい。 The first light source 5 and the second light source 42 are the same as the light source 5 used in the liquid crystal display device 1 of the first embodiment. The first light source 5 is arranged in the X direction with the light emitting surface facing the first end surface 46a of the light guide plate 46, and emits the first light L1 toward the first end surface 46a. The second light sources 42 are arranged in the X direction with the light emitting surface facing the second end surface 46c of the light guide plate 46, and emit the second light L2 toward the second end surface 46c. The first light source 5 and the second light source 42 may be a point light source such as an LED or an organic EL (Electro Luminescence) element, or may be a linear light source such as a cold cathode fluorescent lamp (Cold Cathode Fluorescent Lamp; CCFL).
 第2基板11上には、各表示要素に対応する開口部43Hを備えた遮光層(ブラックマトリクス)43bと、遮光層43bの各開口部43Hに配置された色変換層43aと、が形成されている。色変換層43aは、液晶層15を透過した第1の光L1および第2の光L2を前記第1の光L1および第2の光L2とは異なる色の光に変換して射出する光学部材である。色変換層43aは、前記色変換層43aに対応する表示要素の第1電極14よりも+Y側および-Y側に長く形成されている。本実施形態の場合、色変換層43aは、赤、緑又は青の顔料を樹脂の内部に分散させたカラーフィルタ層であるが、色変換層43aは、第1の光L1および第2の光L2により励起されて赤、緑又は青の光を発光する蛍光体層であってもよい。色変換層43aとして蛍光体層を用いる場合には、第2偏光層13が色変換層43aよりも液晶層側に配置されるインセル偏光層か、色変換層43aが第2偏光層13よりも外側に配置される構造が望ましい。 On the second substrate 11, a light shielding layer (black matrix) 43b having an opening 43H corresponding to each display element and a color conversion layer 43a arranged in each opening 43H of the light shielding layer 43b are formed. ing. The color conversion layer 43a is an optical member that converts the first light L1 and the second light L2 that have passed through the liquid crystal layer 15 into light of a different color from the first light L1 and the second light L2, and emits the light. It is. The color conversion layer 43a is formed longer on the + Y side and the −Y side than the first electrode 14 of the display element corresponding to the color conversion layer 43a. In the case of the present embodiment, the color conversion layer 43a is a color filter layer in which a red, green, or blue pigment is dispersed inside the resin, but the color conversion layer 43a includes the first light L1 and the second light. It may be a phosphor layer that emits red, green, or blue light when excited by L2. When a phosphor layer is used as the color conversion layer 43a, the second polarizing layer 13 is an in-cell polarizing layer disposed on the liquid crystal layer side of the color converting layer 43a, or the color converting layer 43a is more than the second polarizing layer 13. A structure disposed on the outside is desirable.
 色変換層43aは、Z方向(液晶パネル41の法線方向)から見て、第1電極14全体を覆うように配置されている。バックライト49から液晶パネル41に向けて斜めに射出される第1の光L1の射出方向をZ方向と直交する平面に投影した方向を第1方向(本実施形態の場合、Y方向)とすると、色変換層43aは、Z方向から見て、第1電極14よりも第1方向および第1方向とは反対の方向に張り出して形成されている。 The color conversion layer 43a is disposed so as to cover the entire first electrode 14 when viewed from the Z direction (the normal direction of the liquid crystal panel 41). When the direction in which the emission direction of the first light L1 emitted obliquely from the backlight 49 toward the liquid crystal panel 41 is projected onto a plane orthogonal to the Z direction is defined as the first direction (in this embodiment, the Y direction). The color conversion layer 43a is formed so as to protrude from the first electrode 14 in a direction opposite to the first direction and the first direction when viewed from the Z direction.
 本実施形態の場合、第1の光L1は、Z方向に対して+Y側に角度θ2だけ傾いた方向に進行する。そのため、第1電極14を透過して液晶層15の内部を斜めに進行する第1の光L1が、前記第1電極14に対応する表示要素の色変換層43aに全て入射するように、色変換層43aの+Y側の端部は、第1電極14の+Y側の端部よりもZ方向から見て長さW1だけ+Y側にずれて配置されている。また、第1電極14を透過して液晶層15の内部を斜めに進行する第2の光L2が、前記第1電極14に対応する表示要素の色変換層43aに全て入射するように、色変換層43aの-Y側の端部は、第1電極14の-Y側の端部よりもZ方向から見て長さW2だけ-Y側にずれて配置されている。 In the case of this embodiment, the first light L1 travels in a direction inclined by an angle θ2 on the + Y side with respect to the Z direction. For this reason, the first light L1 transmitted through the first electrode 14 and traveling obliquely in the liquid crystal layer 15 is incident on the color conversion layer 43a of the display element corresponding to the first electrode 14 so that all the colors are incident. The + Y side end of the conversion layer 43a is arranged to be shifted to the + Y side by a length W1 from the + Y side end of the first electrode 14 when viewed from the Z direction. Further, the second light L2 that passes through the first electrode 14 and travels obliquely in the liquid crystal layer 15 is incident on the color conversion layer 43a of the display element corresponding to the first electrode 14 so as to be incident on the color. The end portion on the −Y side of the conversion layer 43a is shifted from the −Y side end portion of the first electrode 14 to the −Y side by a length W2 when viewed from the Z direction.
 W1は、例えば、第1電極14と色変換層43aとの間のZ方向の間隔をdとし、液晶層15の内部を進行する第1の光L1の進行方向とZ方向とのなす角度をθ2とすると、W1=d・tanθ2の関係を満たすように設計されている。また、W2は、例えば、第1電極14と色変換層43aとの間のZ方向の間隔をdとし、液晶層15の内部を進行する第2の光L2の進行方向とZ方向とのなす角度をθ4とすると、W2=d・tanθ4の関係を満たすように設計されている。 W1 is, for example, the distance in the Z direction between the first electrode 14 and the color conversion layer 43a being d, and the angle formed by the traveling direction of the first light L1 traveling inside the liquid crystal layer 15 and the Z direction. Assuming that θ2, it is designed to satisfy the relationship of W1 = d · tan θ2. Further, W2 is, for example, the distance in the Z direction between the first electrode 14 and the color conversion layer 43a being d, and the traveling direction of the second light L2 traveling inside the liquid crystal layer 15 and the Z direction. When the angle is θ4, it is designed to satisfy the relationship of W2 = d · tan θ4.
 本実施形態の液晶表示装置40では、色変換層43aが第1電極14の+Y側および-Y側の双方に張り出して形成されている。そのため、色変換層43aの中心と第1電極14の中心とが大きくずれることはない。例えば、第1実施形態の液晶表示装置1のように、色変換層16aの中心と第1電極14の中心がずれて配置される場合には、色変換層16aと第1電極14との位置決めをアライメントマークのみに基づいて行うことになり、目視で確認しながら微調整するなどの方法がとりにくい。それに対して、本実施形態のように色変換層43aの中心と第1電極14の中心とが概ね一致するように配置される場合には、色変換層43aと第1電極14との位置決めをアライメントマークと目視の双方に基づいて行うことができ、位置決めの精度が向上する。 In the liquid crystal display device 40 of the present embodiment, the color conversion layer 43a is formed to protrude on both the + Y side and the −Y side of the first electrode 14. Therefore, the center of the color conversion layer 43a and the center of the first electrode 14 do not deviate greatly. For example, when the center of the color conversion layer 16a is shifted from the center of the first electrode 14 as in the liquid crystal display device 1 of the first embodiment, the positioning of the color conversion layer 16a and the first electrode 14 is performed. Is performed based only on the alignment mark, and it is difficult to take a method such as fine adjustment while visually confirming. On the other hand, when the color conversion layer 43a and the first electrode 14 are arranged so that the center of the color conversion layer 43a substantially coincides with the center of the first electrode 14 as in the present embodiment, the positioning of the color conversion layer 43a and the first electrode 14 is performed. This can be performed based on both alignment marks and visual observation, and positioning accuracy is improved.
[変形形態]
 上記実施形態では、第1基板10と導光板4を別々の基板として用意したが、液晶表示装置の構成はこれに限定されない。例えば、第1基板10を省略し、導光板4上に直接回路層、第1偏光層12および第1電極14などを形成してもよい。この場合、第1偏光層12は、光源5と導光板4との間に配置してもよく、光源5から偏光光を射出することができるものであれば、第1偏光層12は省略してもよい。
[Deformation]
In the said embodiment, although the 1st board | substrate 10 and the light-guide plate 4 were prepared as a separate board | substrate, the structure of a liquid crystal display device is not limited to this. For example, the first substrate 10 may be omitted, and the circuit layer, the first polarizing layer 12, the first electrode 14, and the like may be formed directly on the light guide plate 4. In this case, the first polarizing layer 12 may be disposed between the light source 5 and the light guide plate 4, and the first polarizing layer 12 is omitted as long as the polarized light can be emitted from the light source 5. May be.
 本発明の態様は、液晶表示装置の分野に利用することができる。 The aspect of the present invention can be used in the field of liquid crystal display devices.
1…液晶表示装置、2…液晶パネル、3…バックライト、4…導光板、4a…第1端面、4b…第1主面、4c…第2端面、5…第1光源、10…第1基板、11…第2基板、12…第1偏光層、12a…第1偏光層の透過軸、13…第2偏光層、13a…第2偏光層の透過軸、14…第1電極、15…液晶層、16a…色変換層、17…第2電極、30…液晶表示装置、31…液晶パネル、32…配光制御層、40…液晶表示装置、41…液晶パネル、42…第2光源、43a…色変換層、44…散乱体、45…透明基板、46…導光板、46a…第1端面、46b…第1主面、46c…第2端面、49…バックライト、L1,L2…光 DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display device, 2 ... Liquid crystal panel, 3 ... Back light, 4 ... Light guide plate, 4a ... 1st end surface, 4b ... 1st main surface, 4c ... 2nd end surface, 5 ... 1st light source, 10 ... 1st Substrate, 11 ... second substrate, 12 ... first polarizing layer, 12a ... transmission axis of first polarizing layer, 13 ... second polarizing layer, 13a ... transmission axis of second polarizing layer, 14 ... first electrode, 15 ... Liquid crystal layer, 16a ... color conversion layer, 17 ... second electrode, 30 ... liquid crystal display device, 31 ... liquid crystal panel, 32 ... light distribution control layer, 40 ... liquid crystal display device, 41 ... liquid crystal panel, 42 ... second light source, 43a ... color conversion layer, 44 ... scatterer, 45 ... transparent substrate, 46 ... light guide plate, 46a ... first end surface, 46b ... first main surface, 46c ... second end surface, 49 ... backlight, L1, L2 ... light

Claims (12)

  1.  第1電極と、
     前記第1電極と対向する第2電極と、
     前記第1電極と前記第2電極との間に配置され、前記第1電極と前記第2電極との間に電圧を印加しない電圧無印加状態において光学的に等方性であり、前記第1電極と前記第2電極との間に電圧を印加した電圧印加状態において光学的に異方性を生じる液晶層と、
     第1端面と第1主面を有し、前記液晶層と対向配置され、前記第1端面から入射した光を第1方向に伝播させ、前記液晶層と対向する前記第1主面から前記液晶層に向けて斜めに射出させる導光板と、を備えている液晶表示装置。
    A first electrode;
    A second electrode facing the first electrode;
    The first electrode is disposed between the first electrode and the second electrode, and is optically isotropic when no voltage is applied between the first electrode and the second electrode. A liquid crystal layer that is optically anisotropic in a voltage application state in which a voltage is applied between the electrode and the second electrode;
    The first end surface and the first main surface are disposed opposite to the liquid crystal layer, and light incident from the first end surface is propagated in a first direction, and the liquid crystal is transmitted from the first main surface facing the liquid crystal layer. A liquid crystal display device comprising: a light guide plate that emits obliquely toward the layer.
  2.  さらに、前記第1電極に対応して設けられ、前記導光板の前記第1主面から射出されて前記液晶層の内部を斜めに通過した前記光を他の色の光に変換する色変換層を含み、
     前記色変換層は、前記液晶層の層厚方向から見て、前記第1電極よりも前記第1方向に張り出して形成されている請求項1に記載の液晶表示装置。
    Furthermore, a color conversion layer provided corresponding to the first electrode and converting the light emitted from the first main surface of the light guide plate and passing through the liquid crystal layer obliquely into light of another color Including
    2. The liquid crystal display device according to claim 1, wherein the color conversion layer is formed so as to protrude in the first direction from the first electrode when viewed from the thickness direction of the liquid crystal layer.
  3.  さらに、液晶パネルと、
     前記導光板を備え、前記液晶パネルに対して斜めに前記光を入射させるバックライトと、を備え、
     前記液晶パネルは、前記第1電極が形成された第1基板と、前記第2電極が形成された第2基板と、前記第1基板と前記第2基板との間に配置された前記液晶層と、前記第2電極を挟んで前記液晶層と反対側に設けられた前記色変換層とを含む請求項2に記載の液晶表示装置。
    Furthermore, with a liquid crystal panel,
    A backlight that includes the light guide plate and makes the light incident obliquely with respect to the liquid crystal panel;
    The liquid crystal panel includes a first substrate on which the first electrode is formed, a second substrate on which the second electrode is formed, and the liquid crystal layer disposed between the first substrate and the second substrate. The liquid crystal display device according to claim 2, further comprising: a color conversion layer provided on the opposite side of the liquid crystal layer with the second electrode interposed therebetween.
  4.  前記バックライトは、前記液晶パネルに対して55°以上70°以下の角度で入射する光の強度が最も大きくなるような配光特性を備えている請求項3に記載の液晶表示装置。 4. The liquid crystal display device according to claim 3, wherein the backlight has a light distribution characteristic such that the intensity of light incident at an angle of 55 ° to 70 ° with respect to the liquid crystal panel is maximized.
  5.  前記液晶パネルは、前記液晶層と前記バックライトとの間に配置された第1偏光層と、前記液晶層を挟んで前記バックライトとは反対側に設けられた第2偏光層と、を備え、
     前記第1偏光層の透過軸と前記第2偏光層の透過軸とは互いに交差するように配置され、
     前記第1偏光層の透過軸と前記第2偏光層の透過軸は、前記第1方向に対して、それぞれ45°未満の角度をなす方向に配置されている請求項4に記載の液晶表示装置。
    The liquid crystal panel includes a first polarizing layer disposed between the liquid crystal layer and the backlight, and a second polarizing layer provided on the opposite side of the backlight across the liquid crystal layer. ,
    The transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer are arranged to cross each other,
    5. The liquid crystal display device according to claim 4, wherein the transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer are arranged in directions that form an angle of less than 45 ° with respect to the first direction, respectively. .
  6.  前記第1偏光層の透過軸と前記第2偏光層の透過軸とのなす角度は、74°以上82°以下である請求項5に記載の液晶表示装置。 6. The liquid crystal display device according to claim 5, wherein an angle formed by the transmission axis of the first polarizing layer and the transmission axis of the second polarizing layer is not less than 74 ° and not more than 82 °.
  7.  前記液晶層を通過した光の強度が最も強くなる方向が前記液晶層の層厚方向に近付くように、前記液晶層を通過した前記光の配光を制御する配光制御層を備えている請求項3ないし6のいずれか1項に記載の液晶表示装置。 A light distribution control layer that controls light distribution of the light that has passed through the liquid crystal layer is provided so that a direction in which the intensity of light that has passed through the liquid crystal layer is the strongest approaches a layer thickness direction of the liquid crystal layer. Item 7. The liquid crystal display device according to any one of Items 3 to 6.
  8.  電圧印加状態における前記液晶層の屈折率異方性をΔnとし、前記液晶層の層厚をdとしたときに、前記屈折率異方性Δnと前記液晶層の層厚dとの積であるリタデーションΔn・dが、前記光の波長λ以上である請求項3ないし7のいずれか1項に記載の液晶表示装置。 When the refractive index anisotropy of the liquid crystal layer in a voltage application state is Δn and the layer thickness of the liquid crystal layer is d, the product of the refractive index anisotropy Δn and the layer thickness d of the liquid crystal layer. The liquid crystal display device according to claim 3, wherein retardation Δn · d is not less than a wavelength λ of the light.
  9.  前記光が特定波長に発光ピークを有する着色光であり、前記光の波長λが発光ピークのピーク波長である請求項8に記載の液晶表示装置。 The liquid crystal display device according to claim 8, wherein the light is colored light having an emission peak at a specific wavelength, and the wavelength λ of the light is a peak wavelength of the emission peak.
  10.  前記光が白色光であり、前記光の波長λが550nmである請求項8に記載の液晶表示装置。 The liquid crystal display device according to claim 8, wherein the light is white light, and the wavelength λ of the light is 550 nm.
  11.  前記バックライトは、前記導光板の前記第1端面に第1の光を入射させる第1光源と、前記導光板の第2端面に第2の光を入射させる第2光源と、を備え、
     前記導光板は、前記第1端面から入射した前記第1の光を前記第1方向に伝播させ、前記第1主面から前記液晶パネルに向けて斜めに射出するとともに、前記第2端面から入射した前記第2の光を前記第1方向とは反対の方向に伝播させ、前記第1主面から前記液晶パネルに向けて斜めに射出し、
     前記色変換層は、前記液晶層の層厚方向から見て、前記第1電極よりも前記第1方向および前記第1方向とは反対の方向に張り出して形成されている請求項3ないし10のいずれか1項に記載の液晶表示装置。
    The backlight includes a first light source that makes the first light incident on the first end face of the light guide plate, and a second light source that makes the second light incident on the second end face of the light guide plate,
    The light guide plate propagates the first light incident from the first end surface in the first direction, and emits the first light obliquely from the first main surface toward the liquid crystal panel, and is incident from the second end surface. Propagating the second light in a direction opposite to the first direction, and emitting obliquely from the first main surface toward the liquid crystal panel,
    11. The color conversion layer according to claim 3, wherein the color conversion layer is formed so as to protrude in a direction opposite to the first direction and the first direction with respect to the first electrode when viewed from the thickness direction of the liquid crystal layer. The liquid crystal display device according to any one of the above.
  12.  前記導光板は、前記第1の光および前記第2の光を透過する透明基板の内部に、前記第1の光および前記第2の光を散乱する散乱体が分散されて構成されている請求項1ないし11のいずれか1項に記載の液晶表示装置。 The light guide plate is configured such that a scatterer that scatters the first light and the second light is dispersed inside a transparent substrate that transmits the first light and the second light. Item 12. The liquid crystal display device according to any one of items 1 to 11.
PCT/JP2012/071284 2011-08-30 2012-08-23 Liquid-crystal display device WO2013031625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-187636 2011-08-30
JP2011187636A JP2014211457A (en) 2011-08-30 2011-08-30 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2013031625A1 true WO2013031625A1 (en) 2013-03-07

Family

ID=47756117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071284 WO2013031625A1 (en) 2011-08-30 2012-08-23 Liquid-crystal display device

Country Status (2)

Country Link
JP (1) JP2014211457A (en)
WO (1) WO2013031625A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186086A (en) * 2010-03-05 2011-09-22 Hitachi Displays Ltd Display panel or display device using display panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869836B (en) 2017-06-27 2022-04-12 国立研究开发法人产业技术综合研究所 High-speed optical switch engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273438A (en) * 1998-03-25 1999-10-08 Enplas Corp Sidelight surface light source device and liquid crystal display device
WO2000033130A1 (en) * 1998-11-30 2000-06-08 Seiko Epson Corporation Liquid crystal device and projection type display device using the liquid crystal device
JP2000314877A (en) * 1999-04-30 2000-11-14 Seiko Epson Corp Liquid crystal device and projection type display device
JP2006202639A (en) * 2005-01-21 2006-08-03 Sony Corp Backlight device
JP2011186086A (en) * 2010-03-05 2011-09-22 Hitachi Displays Ltd Display panel or display device using display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273438A (en) * 1998-03-25 1999-10-08 Enplas Corp Sidelight surface light source device and liquid crystal display device
WO2000033130A1 (en) * 1998-11-30 2000-06-08 Seiko Epson Corporation Liquid crystal device and projection type display device using the liquid crystal device
JP2000314877A (en) * 1999-04-30 2000-11-14 Seiko Epson Corp Liquid crystal device and projection type display device
JP2006202639A (en) * 2005-01-21 2006-08-03 Sony Corp Backlight device
JP2011186086A (en) * 2010-03-05 2011-09-22 Hitachi Displays Ltd Display panel or display device using display panel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUI-CHUAN CHENG ET AL.: "Vertical field switching for blue-phase liquid crystal devices", APPLIED PHYSICS LETTERS, vol. 98, no. 261102, 27 June 2011 (2011-06-27) *
HUI-CHUAN CHENG: "Blue-Phase Liquid Crystal Display With Vertical Field Switching", JOURNAL OF DISPLAY TECHNOLOGY, vol. 8, no. 2, February 2012 (2012-02-01), pages 98 - 103 *
YOUG-HUN KIM ET AL.: "23.3: A Vertical-Field- Driven Polymer-Stabilized Blue Phase Liquid Crystal Displays", SID 11 DIGEST, May 2011 (2011-05-01), pages 298 - 301 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186086A (en) * 2010-03-05 2011-09-22 Hitachi Displays Ltd Display panel or display device using display panel

Also Published As

Publication number Publication date
JP2014211457A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
US11126054B2 (en) Display panel and display device
US10620469B2 (en) Display panel and display device
US20190025644A1 (en) Display panel and display device
CN107918233B (en) Display device
JP5093710B2 (en) Display device, terminal device, light source device, and optical member
JP4442492B2 (en) Planar light source device, display device, terminal device, and planar light source device driving method
WO2019218984A1 (en) Transparent display panel and transparent display device
KR20150073695A (en) Display device
US20180031878A1 (en) Display device
WO2018076859A1 (en) Display panel and display device
KR101255292B1 (en) Liquid Crystal Display Device
US20120113362A1 (en) Liquid crystal display
JP4471014B2 (en) Liquid crystal display device, backlight light source and optical film
TWI494663B (en) Display device
WO2010137377A1 (en) Liquid crystal display device
US20110304797A1 (en) Liquid crystal display device
WO2021068661A1 (en) Liquid crystal display panel and driving method therefor, and display apparatus
TW201643505A (en) Head-up display module
JP2010266610A (en) Liquid crystal display
JP5911176B2 (en) Display device
CN108919584B (en) Display device
KR100812043B1 (en) Display apparatus and mobile device using display apparatus
WO2013031625A1 (en) Liquid-crystal display device
JP5114853B2 (en) Display device
JP2014081398A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP