WO2013031619A1 - Image-based tumor diagnosis agent containing anti-human transferrin receptor antibody - Google Patents

Image-based tumor diagnosis agent containing anti-human transferrin receptor antibody Download PDF

Info

Publication number
WO2013031619A1
WO2013031619A1 PCT/JP2012/071260 JP2012071260W WO2013031619A1 WO 2013031619 A1 WO2013031619 A1 WO 2013031619A1 JP 2012071260 W JP2012071260 W JP 2012071260W WO 2013031619 A1 WO2013031619 A1 WO 2013031619A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
seq
diagnostic agent
cdr2
cdr1
Prior art date
Application number
PCT/JP2012/071260
Other languages
French (fr)
Japanese (ja)
Inventor
良和 黒澤
恒夫 佐賀
厚至 辻
須藤 幸夫
Original Assignee
学校法人藤田学園
独立行政法人放射線医学総合研究所
株式会社ペルセウスプロテオミクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人藤田学園, 独立行政法人放射線医学総合研究所, 株式会社ペルセウスプロテオミクス filed Critical 学校法人藤田学園
Priority to JP2013531245A priority Critical patent/JP5990523B2/en
Publication of WO2013031619A1 publication Critical patent/WO2013031619A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2881Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD71
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1027Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against receptors, cell-surface antigens or cell-surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)

Definitions

  • the present invention relates to a diagnostic agent for tumors for imaging, comprising an antibody that recognizes human transferrin receptor (TfR).
  • TfR human transferrin receptor
  • Cancer is an important disease that accounts for the top causes of death. Surgical excision is the most effective treatment for cancer, and in particular, if the primary lesion is excised before infiltrating surrounding organs and tissues, the possibility of healing is high. It is important to detect it early, but most cancers are difficult to treat because early symptoms are extremely difficult because they do not show symptoms early, and they have already infiltrated surrounding organs and tissues at the time of diagnosis. There are not many cases. For example, pancreatic cancer, which is known to have a poor prognosis, has one of the most probable causes of early prognosis, and in many cases, it has already infiltrated outside the pancreas and metastasized to the liver when diagnosed. That is.
  • CT is the most common method of finding pancreatic cancer at 44%, and ultrasound is 41%. Therefore, these two examination methods are currently important for the diagnosis of pancreatic cancer.
  • Tumor markers for pancreatic cancer include CA19-9, DUPAN-2, Span-1, and CEA. Although these markers are all positive in advanced cancer, the early diagnosis rate is low, and there is no marker that can be said to be useful for early diagnosis.
  • CA19-9 increases in blood concentration even in non-malignant tumors such as hepatitis, cirrhosis, and pancreatitis, it is known that CA19-9 is not suitable for use in the diagnosis of pancreatic cancer. Although early diagnosis of pancreatic cancer is very important, there is currently no method for diagnosing pancreatic cancer before it invades surrounding organs.
  • CT and MRI are mainly used in tumor image diagnosis.
  • benign / malignant differentiation, diagnosis of recurrence after surgery, differentiation from other lesions, etc. may be difficult even with a contrast agent using CT or MRI.
  • PET Positron Emission Tomography
  • 18F-FDG 18F-2-fluoro-2-deoxyglucose
  • 18F-FDG often accumulates in normal tissues (such as the brain) with active glucose metabolism, active inflammatory tissues, and granulation tissues because of its diagnostic mechanism, and therefore often suffers from diagnosis. Therefore, development of a highly specific and highly accurate diagnostic method that specifically recognizes only cancer tissue and does not recognize normal tissue is desired.
  • Patent Document 1 cancer diagnosis methods and treatment methods targeting proteins specifically expressed in cancer cells have been actively developed. That is, by using a cell surface protein that is highly expressed in cancer cells but less or not expressed in normal tissues, and using an antibody that specifically recognizes this cell surface protein, This is a method of performing treatment (Patent Document 1).
  • Transferrin receptor was first identified on reticulocytes as a cell membrane structure for taking up iron bound to transferrin (Tf) into cells (Non-patent Document 1). Since then, it has been expressed in various tumor cells (Non-Patent Documents 2 to 5), placental trophoblast cells (Non-Patent Document 6 and Non-Patent Document 7), activated lymphocytes (Non-Patent Document 8), and the like. It has been reported that
  • An object of the present invention is to provide a high-accuracy tumor diagnostic agent for imaging, which includes an antibody capable of specifically recognizing transferrin receptor (TfR) expressed on a cell membrane.
  • TfR transferrin receptor
  • the present inventors obtained scFv that reacts with TfR using phage® Display, and analyzed the amino acid sequence. These CDRs were found to have a novel amino acid sequence and converted to IgG. Furthermore, IgG antibody was labeled with a radionuclide, and specific accumulation in TfR-positive tumors was confirmed in tumor-bearing mice. As described above, the usefulness of the imaging tumor diagnostic agent using the antibody in use in a human living body is shown, and the present invention has been completed.
  • an imaging tumor diagnostic agent comprising an antibody obtained by labeling an antibody recognizing human transferrin receptor with a radionuclide.
  • a diagnostic imaging agent kit for imaging comprising an antibody that recognizes a human transferrin receptor and a radionuclide.
  • CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences represented by SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR1, CDR2 of the light chain variable region (VL) of the antibody, CDR3 includes the amino acid sequences shown in SEQ ID NOs: 4, 5, and 6, respectively.
  • CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences represented by SEQ ID NOs: 7, 8, and 9, respectively, and CDR1, CDR2, and CDR2 of the antibody light chain variable region (VL), CDR3 comprises the amino acid sequences shown in SEQ ID NOs: 10, 11, and 12, respectively.
  • CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences represented by SEQ ID NOs: 13, 14, and 15, respectively, and CDR1, CDR2, and CDR2 of the light chain variable region (VL) of the antibody, CDR3 comprises the amino acid sequences shown in SEQ ID NOs: 16, 17, and 18, respectively.
  • the antibody is an antibody comprising the constant region of a human antibody.
  • the constant region of the human antibody consists of a constant region of the human antibody IgG1 class.
  • the antibody is from a peptide comprising Fab, Fab ′, F (ab ′) 2 , single chain antibody (scFv), dimerized V region (Diabody), disulfide stabilized V region (dsFv) and CDR.
  • an antibody fragment selected from the group consisting of Preferably, the radionuclide is 89 Zr, 99m Tc, 111 In, 113 m In, 67 Ga, 68 Ga, 201 Tl, 51 Cr, 57 Co, 58 Co, 60 Co, 85 Sr, 197 Hg, 64 Cu, 123 Selected from the group consisting of I, 125 I, and 131 I.
  • an imaging tumor diagnostic agent using an antibody that recognizes human TfR is provided.
  • the diagnostic agent for imaging tumors of the present invention specifically binds to human TfR and accumulates well in tumors where TfR is highly expressed.
  • a tumor can be imaged from outside the body by using the imaging diagnostic agent for images of the present invention, and a lesion, infiltration and metastasis can be examined. That is, the tumor diagnostic agent for images of the present invention is useful for early detection and diagnosis of diseases.
  • FIG. 1 shows that 89 Zr-DF anti-TfR antibody was administered to nude mice transplanted subcutaneously with tumors that highly expressed human TfR and tumors that did not express human TfR. The results of PET imaging after 6 days are shown.
  • the antibody used in the present invention is an antibody that specifically recognizes a transferrin receptor (TfR) on the cell surface.
  • TfR transferrin receptor
  • Human transferrin receptor (TfR) is a single transmembrane protein encoded by human chromosome 3 and composed of 760 amino acids. This protein, also known as the CD71 antigen, is involved in cellular iron uptake and is thought to be involved in cell proliferation.
  • CD71 antigen also known as the CD71 antigen
  • human antibodies human chimeric antibodies, human CDR-grafted antibodies, non-human animal antibodies, and the like can be used.
  • it is a human antibody.
  • Human chimeric antibodies are composed of non-human animal antibody H chain V regions (hereinafter also referred to as VH) and antibody L chain V regions (hereinafter also referred to as VL) and human antibody H chain C regions (hereinafter referred to as CH). And an L chain C region of a human antibody (hereinafter also referred to as CL). Any animal other than humans can be used as long as it can produce hybridomas such as mice, rats, hamsters, rabbits and the like.
  • a human CDR-grafted antibody is a cDNA encoding a V region in which the VH and VL CDR amino acid sequences of non-human animal antibodies that specifically react with human TfR are grafted onto the VH and VL FRs of any human antibody.
  • Human antibody means an antibody acquired by various acquisition methods. For example, human lymphocytes are sensitized in vitro with a desired antigen or cells expressing the desired antigen, and the sensitized lymphocytes are fused with human myeloma cells, such as U266, to form a desired human antibody having binding activity to the antigen. (See Japanese Patent Publication No. 1-59878). Further, a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen (WO93 / 12227, WO92 / 03918, WO94 / 02602, WO94 / 25585). WO96 / 34096, WO96 / 33735). Preferably, it is a human antibody obtained by the phage display method.
  • phage display library Human B cell cDNA can be obtained from patients or healthy individuals using bone marrow, lymph nodes or peripheral blood.
  • Antibody gene fragments are amplified by PCR (Polymerase Chain Reaction) using primers of the variable regions of the antibody heavy chain and light chain antibody genes, respectively. These gene fragments are artificially linked and expressed as a fusion protein with the outer shell protein g3p of filamentous bacterial phage M13.
  • a human single chain antibody gene library is prepared by integrating a heavy chain fragment-linker sequence-light chain fragment or light chain fragment-linker sequence-heavy chain fragment, which is a human scFv fragment, into a phagemid vector or a phage vector. can do.
  • Biopanning is an operation for selecting a phage for a target protein of interest from an antibody phage library.
  • Various panning methods are known.
  • the target protein is immobilized, reacted with an antibody phage library, and unbound phages are removed by washing. Thereafter, the phage specific to the target protein may be concentrated by performing several operations of eluting the bound phage, infecting E. coli and allowing it to proliferate.
  • the target protein can be immobilized by directly adsorbing the target protein on a plastic surface such as an immunotube, or by biotinylating the target protein and immobilizing it via immobilized streptavidin.
  • the target protein can be immobilized on beads coated with streptavidin.
  • the target protein when panning a molecule on the cell surface, there is a cell panning in which the antibody phage library is directly reacted with the cell. Biopanning is performed in this way, and phages that react with the target protein are selected.
  • the antibody used in the present invention can be obtained by introducing an antibody gene into an appropriate host cell system and expressing the protein.
  • Many host cell systems used for protein expression are of mammalian origin in antibody production systems.
  • the producer can preferentially determine the particular host cell system that is most suitable for the gene product he wishes to express.
  • Common host cell lines include CHO-derived cell lines (Chinese hamster ovary cell line), CV1 (monkey kidney line), COS (derivative of CV1 that carries SV40T antigen), SP2 / 0 (mouse myeloma), P3x63-Ag3 .653 (mouse myeloma), and 293 (human kidney), 293T (a derivative of 293 that carries the SV40T antigen), but is not limited thereto.
  • Host cell lines can be obtained from commercial facilities, the American Tissue Culture Collection (ATCC), or from published publication agencies.
  • ATCC American Tissue Culture Collection
  • the host cell line is either a CHO-derived cell line that is dgfr gene expression deficient or SP2 / 0. Orlando, G.M. , Et al., Effect of gamma rays at the dihydroformat reduce locus: deletions and inversions, Soma. Cell. Mol. Genet. Vol. 12, 1986, p5555-566, and Schulman, M .; Et al., A letter cell line for making hybridomas secreting specific antigens, Nature Vol. 276, 1978, p269-270. Most preferably, the host cell line is DHFR deficient CHO. Transfection of the plasmid into the host cell can be accomplished using any technique.
  • transfection including calcium phosphate method, DEAE method, lipofection, and electroporation
  • a method of introducing DNA using an envelope such as Sendai virus, microinjection, retrovirus virus, adeno
  • virus vectors such as viruses.
  • Current Protocols in Molecular Biology Chapter 9 Introduction of DNA into Mammalian Cells, John Wiley and Sons, Inc. checking ...
  • Most preferred is the introduction of the plasmid into the host by electroporation.
  • the antibody used in the present invention may be an antibody fragment.
  • antibody fragments include Fab, Fab ′, F (ab ′) 2 , scFv, dsFv, and peptides containing CDRs.
  • Fab is a fragment obtained by treating IgG with the proteolytic enzyme papain (cleaved at the 224th amino acid residue of the H chain), and about half of the N chain side of the H chain and the entire L chain are disulfide bonds. It is an antibody fragment having an antigen binding activity with a molecular weight of about 50,000.
  • the Fab of the present invention can be obtained by treating an antibody that specifically reacts with TfR with the proteolytic enzyme papain.
  • the Fab can be produced by inserting a DNA encoding the Fab of the antibody into a prokaryotic expression vector or a eukaryotic expression vector and introducing the vector into a prokaryotic or eukaryotic organism to express the antibody. it can.
  • F (ab ′) 2 is a fragment obtained by treating IgG with proteolytic enzyme pepsin (cleaved at the 234th amino acid residue of the H chain), and Fab is bound via a disulfide bond in the hinge region. It is an antibody fragment having an antigen-binding activity having a molecular weight of about 100,000, which is slightly larger than those obtained.
  • Fab ′ is an antibody fragment having an antigen-binding activity having a molecular weight of about 50,000, which is obtained by cleaving the disulfide bond in the hinge region of F (ab ′) 2 .
  • the Fab ′ of the present invention can be obtained by treating F (ab ′) 2 that specifically reacts with TfR with a reducing agent dithiothreitol.
  • the DNA encoding the Fab ′ fragment of the antibody is inserted into a prokaryotic expression vector or a eukaryotic expression vector, and Fab ′ is expressed by introducing the vector into a prokaryotic or eukaryotic organism. can do.
  • ScFv represents a VH-P-VL or VL-P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (hereinafter referred to as P).
  • P an appropriate peptide linker
  • an antibody that specifically reacts with the TfR of the present invention for example, a humanized antibody or a human antibody can be used.
  • the scFv of the present invention obtains cDNAs encoding VH and VL of an antibody that specifically reacts with TfR, constructs DNA encoding scFv, and uses the DNA as a prokaryotic expression vector or eukaryotic expression vector.
  • ScFv can be produced by inserting the expression vector into a prokaryotic organism or a eukaryotic organism and expressing the vector.
  • dsFv refers to a polypeptide in which one amino acid residue in each of VH and VL is substituted with a cysteine residue, which are bonded via a disulfide bond between the cysteine residues.
  • the amino acid residue substituted for the cysteine residue can be selected based on the three-dimensional structure prediction of the antibody according to the method shown by Reiter et al. (Protein Engineering, 7 , 697 (1994)).
  • VH and VL contained in the dsFv of the present invention antibodies that specifically react with the TfR of the present invention, for example, humanized antibodies or human antibodies can be used.
  • the dsFv of the present invention obtains cDNAs encoding VH and VL of an antibody that specifically reacts with TfR, constructs a DNA encoding dsFv, and uses the DNA as a prokaryotic expression vector or eukaryotic expression vector.
  • DsFv can be produced by inserting the expression vector into a prokaryote or a eukaryote and expressing the vector.
  • the peptide containing CDR is configured to include at least one region of H chain or L chain CDR. Multiple CDRs can be linked directly or via a suitable peptide linker.
  • the CDR-containing peptide of the present invention is obtained by obtaining cDNAs encoding VH and VL of an antibody that specifically reacts with CDH3, and then constructing a DNA encoding CDR, and using the DNA as a prokaryotic expression vector or eukaryotic
  • a peptide containing CDR can be produced by inserting the expression vector into a biological expression vector and introducing the expression vector into a prokaryotic or eukaryotic organism.
  • a peptide containing CDR can also be produced by a chemical synthesis method such as Fmoc method (fluorenylmethyloxycarbonyl method), tBoc method (t-butyloxycarbonyl method), or the like.
  • TfR expressed on the cell surface can be assayed using a flow cytometer.
  • the antibody used in the flow cytometer may be a fluorescent substance such as FITC, an antibody labeled with biotin, or an unlabeled antibody.
  • a fluorescently labeled avidin, a fluorescently labeled anti-human immunoglobulin antibody, or the like is used depending on whether or not the antibody used is labeled.
  • Reactivity is evaluated by adding a sufficient amount of anti-TfR antibody (usually a final concentration of 0.1 to 10 ⁇ g / ml) to the sample and comparing the reactivity with the negative control antibody and the positive control antibody. Can do.
  • the tumor diagnostic agent for imaging of the present invention is composed of an antibody that specifically recognizes TfR on the cell surface and a radionuclide.
  • Radionuclides include zirconium 89 ( 89 Zr), technetium 99m ( 99m Tc), indium 111 ( 111 In), indium 113m ( 113m In), gallium 67 ( 67 Ga), gallium 68 ( 68 Ga), thallium 201 ( 201 Tl), chromium 51 ( 51 Cr), cobalt 57 ( 57 Co), cobalt 58 ( 58 Co), cobalt 60 ( 60 Co), strontium 85 ( 85 Sr), mercury 197 ( 197 Hg), copper 64 ( 64 Cu), iodine 123 ( 123 I), iodine 125 ( 125 I), and iodine 131 ( 131 I) are preferably used, but are not limited thereto. Among these, 89 Zr and 111 In are preferable.
  • the diagnostic agent for imaging tumor of the present invention comprises an antibody that specifically recognizes TfR, a radionuclide, and a linker (metal chelating reagent).
  • a linker metal chelating reagent
  • 123 I, 125 I, 131 I and the like may be bound to an antibody that specifically recognizes TfR without using a metal chelating reagent.
  • the metal chelate reagent In order to bind the radionuclide described above to the anti-TfR antibody, it is preferable to react the metal chelate reagent with the antibody and react with the radiometal element to form a complex. In the modified antibody thus obtained, the radionuclide is bound to the anti-TfR antibody via a metal chelating reagent.
  • metal chelating reagents used for such complex formation include (1) 8-hydroxyquinoline, 8-acetoxyquinoline, 8-hydroxyquinaldine, oxyquinoline sulfate, O-acetyloxin, O-benzoyloxin, Op-nitrobenzoyloxins, quinoline derivatives having a quinoline skeleton such as norfloxacin, ofloxacin, enoxacin, ciprofloxacin, lomefloxacin, tosufloxacin, fleroxacin, sparfloxacin and the like; (2) chloranilic acid, aluminone , Thiourea, pyrogallol, cuperone, bismuthiol (II), galloyl gallic acid, thiolide, 2-mercaptobenzothiazole, tetraphenylarsonium chloride, etc .; (3) ethylenediamine Tetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) and
  • isothiocyanobenzyl DOTA isothiocyanobenzyl DOTA, methylisothiocyanobenzyl DTPA, cyclohexylisothiocyanobenzyl DTPA, and isothiocyanobenzyl deferoxamine
  • isothiocyanobenzyl DOTA isothiocyanobenzyl DOTA, methylisothiocyanobenzyl DTPA, cyclohexylisothiocyanobenzyl DTPA, and isothiocyanobenzyl deferoxamine.
  • the appropriate chelate varies depending on the nuclide to be labeled
  • the binding of the radiometal nuclide to the anti-TfR antibody can be performed according to a conventional method. For example, it can be carried out by reacting an anti-TfR antibody with a metal chelate reagent, preparing a labeling precursor in advance, and then reacting with a radioactive metal nuclide.
  • the molar ratio of the anti-TfR antibody to the metal chelating reagent is important for cancer cell accumulation, and the molar ratio (antibody: chelating reagent) is 1: 0.1 to 1: 4.5 is preferable, and 1: 0.5 to 1: 3 is more preferable. In order to achieve such a molar ratio, it is preferable to react the antibody and the chelating reagent in a molar ratio of 1: 0.1 to less than 1: 5, particularly 1: 1 to 1: 3.
  • the number of chelate modifications of an antibody can be calculated by measuring the molecular weight using MALDI-TOF mass spectrometry or the like, and comparing the molecular weight of an unmodified antibody with a modified antibody (US Pat. No. 7514078, Lu et al. J Pharm Sci. 94 (4), 2005, p788-797, Tedesco et al., J Clin Onco. 23 (16S), 2005, 4765).
  • the number of chelate modifications of the antibody can also be measured by chelate titration method.
  • a method using an alkaline earth metal colorimetric reagent (Arsenazo III) is known (Bradyr et al., Nucl Med Biol. 31, 795-802, 2004, Dadachova et al., Nucl Med Biol. 26, 977-982, 1999. ).
  • the imaging diagnostic agent for an image of the present invention includes a method of providing as a pre-labeled preparation and a method of providing as a kit preparation containing a labeling precursor, and any method may be used in the present invention.
  • a pre-labeled preparation an imaging tumor diagnostic agent containing a labeled anti-TfR antibody can be used for administration as it is.
  • a kit preparation it can be used for administration after labeling with a desired radionuclide.
  • the antibody of the present invention labeled with a radionuclide may be used as a tumor diagnostic agent by mixing, dissolving, emulsifying or the like together with a pharmaceutically acceptable carrier.
  • an antibody labeled with a radionuclide is formulated into a dosage form such as an injectable solution, suspension, emulsion, etc. together with a pharmaceutically acceptable solvent, excipient, binder, stabilizer, dispersant and the like.
  • the monoclonal antibody of the invention labeled with a radionuclide is in an aqueous solution, preferably a physiologically compatible buffer such as Hanks's solution, Ringer's solution, or physiological saline buffer.
  • the composition can take the form of a suspension, solution, emulsion or the like in an oily or aqueous vehicle.
  • the route of administration of the imaging diagnostic agent for imaging is not particularly limited, but is usually parenteral, for example, administered by injection (subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, etc.), transdermal, transmucosal, etc. be able to.
  • the dose and frequency of administration vary depending on the patient's age, weight, purpose of diagnosis, etc., but in general, the monoclonal antibody of the present invention is in the range of about 0.1 mg to 1000 mg, preferably about 0, per kg of body weight per dose. It can be administered in the range of 1 mg to 100 mg.
  • the tumor is a malignant tumor with high TfR expression.
  • Examples include colon cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, ovarian cancer, cervical cancer, bladder cancer, prostate cancer, and adult leukemia.
  • Example 1 Phage antibody screening using cancer cell lines (1) Screening of phage antibodies that bind to cancer cells (hepatoma cell line HepG2) First, HepG2 cells were cultured in a 15 cm dish, and then dissociated from the dish with 2 mg / ml collagenase I (Gibco BRL) / cell dissociation buffer (Gibco BRL). The dissociated cells were washed with chilled PBS and collected by centrifugation. Harvested cells 4 ⁇ 10 7 were used. This was mixed with a human antibody phage library of 1 ⁇ 10 13 cfu (see Japanese Patent Application Laid-Open No.
  • reaction solution was 1% BSA-0.1% NaN3. / MEM, with a volume of 1.6 ml, and reacted by slowly rotating at 4 ° C. for 4 hours. After completion of the reaction, the reaction solution is divided into two parts, each layer is layered on 0.6 ml organic solution (dibutyl phtalate cycloheximide 9: 1), and the cells are allowed to act on the microcentrifuge at 3000 rpm for 2 minutes. Sedimented to the bottom of the tube.
  • the solution was discarded and the cells were suspended in 0.7 ml of 1% BSA / MEM, layered on 0.7 ml of organic solvent and centrifuged. After repeating this operation once more, the solution was discarded, and the cells were suspended in 0.3 ml of PBS, frozen in liquid nitrogen, and thawed at 37 ° C.
  • the phage-infected Escherichia coli was cultured overnight at 30 ° C. in 600 ml of 2 ⁇ YTGA medium (2 ⁇ YT, 200 ⁇ g / ml ampicillin sulfate, 1% glucose). 10 ml of this overnight culture was mixed with 200 ml of 2 ⁇ YTA medium (2 ⁇ YT, 200 ⁇ g / ml ampicillin sulfate), cultured at 37 ° C.
  • reaction solution was 1% BSA-0.1% NaN3 / MEM, and the whole scale was half of the 1st screening.
  • the 3rd screening was performed under the same conditions as the 2nd screening except that the 2nd phage 1 ⁇ 10 9 was used.
  • the antibody Since the antibody is expressed as a cp3 fusion protein, expression studies were performed using it. That is, first, the obtained supernatant was reacted with Maxisorp (NUNC) at 37 ° C. for 2 hours, and then the solution was discarded, and blocking was performed by reacting 5% BSA at 37 ° C. for 2 hours. The solution was discarded, and a rabbit anti-cp3 antibody (Medical and Biological Laboratories Inc.) diluted 2000 times with 0.05% Tween / PBS was reacted at room temperature for 1 hour, washed with PBS, and 2000 times with 0.05% Tween / PBS.
  • NUNC Maxisorp
  • the diluted HRP-labeled goat anti-rabbit IgG antibody (Medical and Biological Laboratories Inc.) was reacted at room temperature for 1 hour, washed with PBS, and reacted with 100 ⁇ l of OPD solution at room temperature for 15 minutes, with 2M ammonium sulfate. The reaction was stopped, and the absorbance at 492 nm was measured with SPECTRAmax 340PC (Molecular Devices). As a result of positive absorbance of 0.5 or more, 1012 clones were positive.
  • Example 2 Antibody binding evaluation test by ELISA using secreted antigen of TfR (1) Preparation of TfR-secreting cells From the cancer cells # MIAPaCa2, SKOv3 (TfR high-expressing strain), TfR extracellular domain by a conventional method After the cDNA was prepared, it was inserted into pCMV-Script (Clontech) to create a TfR expression vector. This expression vector was introduced into cell line # 293T to prepare expression cells that secrete TfR.
  • sample antibody expression culture supernatant as a primary antibody was reacted at 100 ⁇ l / well at 37 ° C. for 1 hour. Thereafter, the supernatant was removed and washed 5 times with a phosphate buffer.
  • Rabbit anti-cp3 polyclonal as a secondary antibody diluted 5000 times with PBS / 0.05% Tween20 was reacted at 100 ⁇ l / well at 37 ° C. for 1 hour, the supernatant was removed, and washed 5 times with phosphate buffer.
  • anti-rabbit IgG (H + L) -HRP as a secondary antibody diluted 2000 times with PBS / 0.05% Tween20 was reacted at 100 ⁇ l / well at 37 ° C. for 1 hour. Thereafter, the supernatant was removed and washed 5 times with a phosphate buffer. Thereafter, OPD in 0.1 M citrate phosphate buffer pH 5.1 0.01% H 2 O 2 100 ⁇ l / well was added as a color developing reagent and allowed to react at room temperature for 5 minutes. Thereafter, 2N H 2 SO 4 was added at 100 ⁇ l / well to stop the color reaction. Thereafter, the absorbance at 492 nm was measured with SPECTRAmax 340PC (Molecular Devices).
  • Antibody PPAT-061-01 VH: CDR1: SYGMH (SEQ ID NO: 1) CDR2: VISFDGSSKYYADSVKG (SEQ ID NO: 2) CDR3: DSNFWSGYYSPVDV (SEQ ID NO: 3) VL: CDR1: TRSSGSIASNSVQ (SEQ ID NO: 4) CDR2: YEDTQRPS (SEQ ID NO: 5) CDR3: QSYDSAYHWV (SEQ ID NO: 6)
  • VH CDR1: TSGVGVG (SEQ ID NO: 7)
  • VL CDR1: GGNNIGSKSVH (SEQ ID NO: 10)
  • CDR3: QVWDSSSDHVV SEQ ID NO: 12
  • Antibody PPAT-061-03 VH: CDR1: NYGMS (SEQ ID NO: 13) CDR2: WISAYNGNTNYGEKLQG (SEQ ID NO: 14) CDR3: DDYYGSGVDAFDI (SEQ ID NO: 15) VL: CDR1: GGNKIGSKSVH (SEQ ID NO: 16) CDR2: YDRDRPS (SEQ ID NO: 17) CDR3: QVWDSSSDVV (SEQ ID NO: 18)
  • Example 3 Evaluation of TfR high expression cell line binding (FACS) The reactivity of each isolated antibody clone against various cell lines was confirmed by FCM as follows.
  • the experimental procedure was as follows. First, for adherent cell lines, in 6-well plates (Falcon 3516), for floating cell lines such as ATL-derived cell lines, in suspension culture flasks (70 ml (slant neck)), in medium (RPMI-1640: Sigma-Aldrich) , 10% fetal bovine serum, 1% penicillin-streptomycin solution) and cultured at 37 ° C. in a CO 2 incubator.
  • FACS high expression cell line binding
  • the adherent cell line was dissociated from the culture dish with 2 mg / ml collagenase I (Gibco BRL) / cell dissociation buffer (Gibco BRL), and then recovered with 10% FBS / D MEM.
  • the medium was once centrifuged to remove the medium (400 ⁇ g, 4 ° C., 2 minutes). After such operations, each cell was washed with 2.5% BSA, 0.05% NaN 3 / PBS (BSA solution), suspended in 100 ⁇ l of 2.5% normal goat serum / BSA solution and allowed to stand on ice for 30 minutes. The solution was dispensed at 10 6 cells / well and centrifuged (400 ⁇ g, 4 ° C., 2 minutes) to remove the supernatant.
  • Antibody was added to 5 ⁇ g / ml and left on ice for 1 hour. This was washed once with BSA solution, then suspended in 100 ⁇ l of 5 ⁇ g / ml BSA solution of anti-cp3 mouse monoclonal antibody (Medical and Biological Laboratories) and left on ice for 1 hour. This was washed once with BSA solution, then suspended in 100 ⁇ l of 5 ⁇ g / ml BSA solution of Alexa488-conjugated anti-mouse IgG goat antibody (Molecularprobe) and allowed to stand on ice for 1 hour.
  • Example 4 Conversion to IgG type antibody (construction of IgG type antibody gene)
  • IgG type antibody construction of IgG type antibody gene
  • VH and VL genes of scFVcp3-type antibody it was confirmed that there were no restriction enzyme sites necessary for cloning into the Fc region of IgG1 and the nucleotide sequence of the gene.
  • PCR was performed using the antibody gene as a template and primers for amplifying H and L chains.
  • the amplified product was ligated downstream of the CM1 promoter of the IgG1 construction vector to obtain a plasmid DNA containing an IgG type antibody gene.
  • GenePORTER Reagent (Gene Therapy Systems: T201007) was used for transfection of plasmid DNA into CHO-K1 cells.
  • the medium is ⁇ -MEM (Invitrogen: 12561-056) in 10% FCS). (Exitec Inc .: 268-1) used).
  • SFM- Human Free Medium
  • GenePORTER Reagent 40 ⁇ L was applied to 250 ⁇ L of SFM. added.
  • Plasmid DNA dissolved in SFM and GenePORTER Reagent were quickly mixed and allowed to stand at room temperature for 30 min.
  • the cells were washed twice with 2 ml of SFM, and plasmid DNA-GenePORTER mixture (Transfection Medium) was slowly added to the plate containing the cells, and cultured in an incubator at 37 ° C. for 5 hours.
  • the transfection medium was aspirated, washed twice with ⁇ MEM 10% FCS, 5 ml of ⁇ MEM 10% FCS was added, and the cells were cultured in an incubator at 37 ° C. for 48 hours.
  • the medium was replaced with 10 mL of ⁇ MEM 10% FCS + 700 ⁇ g / ml G418 (Sigma: G7034), and selection was started (hereinafter, ⁇ MEM 10% FCS + 700 ⁇ g / mL G418 was used).
  • ⁇ MEM 10% FCS + 700 ⁇ g / mL G418 was used.
  • the cells were washed with 10 mL of PBS and treated with 750 ⁇ L of 0.25% Trypsin-EDTA (Sigma T4049), then 5 mL of ⁇ MEM was added, detached and collected from the plate, and the number of cells was measured. Based on the results, limiting dilution was performed under the conditions of 10 cells / 200 ⁇ L / well 96 well 2 plates. After culturing for 14 days, ELISA was performed using the culture supernatant of each well to confirm the expression of IgG type antibody.
  • Example 5 Preparation of labeled antibody (1) Binding of Desferrioxamine (DF) to antibody The antibody was dissolved in a buffer solution (0.1 M Na2CO3) to adjust the antibody concentration to 5 mg / mL. On the other hand, p-scn-DF (B-705 manufactured by Macrocyclics) was dissolved in DMSO to a concentration of 0.753 mg / mL. The mixture was stirred and mixed so that the molar ratio of antibody to DF was 1: 3, and allowed to stand at 37 ° C. for 30 minutes. After completion of the reaction, purification was performed using PBS on a Sephadex G50 (GE Healthcare 17-0041-01) column. The antibody used is antibody PPAT-061-01.
  • Example 6 Tumor Imaging
  • the 89 Zr-DF anti-TfR antibody prepared in Example 5 is a tumor that highly expresses human TfR (MIA Paca-2, yellow arrowhead) and does not express human TfR
  • the tumor (A4, light blue arrowhead) was administered to nude mice transplanted subcutaneously, and PET imaging was performed 1 day, 2 days, 4 days, and 6 days after administration. From 1 day after administration, 89 Zr-DF anti-TfR antibody (antibody PPAT-061-01) was clearly accumulated in the MIA Paca-2 transplanted tumor, and the accumulation increased until 6 days after administration. On the other hand, accumulation in A4 transplanted tumors was low and gradually decreased with time. 89 Zr-DF anti-TfR antibody (antibody PPAT-061-01) was shown to be suitable for imaging of tumors expressing TfR.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention relates to a high-precision image-based tumor diagnosis agent which contains an antibody capable of specifically recognizing a transferrin receptor (TfR) on a cell membrane. Provided is the image-based tumor diagnosis agent which contains the antibody in which an antibody that recognizes a human transferring receptor is marked by a radionuclide.

Description

抗ヒトトランスフェリン受容体抗体を含む画像用腫瘍診断剤Imaging diagnostic agent containing anti-human transferrin receptor antibody
 本発明は、ヒトトランスフェリン受容体(TfR)を認識する抗体を含む画像用腫瘍診断剤に関する。 The present invention relates to a diagnostic agent for tumors for imaging, comprising an antibody that recognizes human transferrin receptor (TfR).
 癌は、死亡原因の上位を占める重要な疾患である。癌に一番有効な治療法として手術切除があり、特に、原発巣が周囲の臓器や組織に浸潤する前に切除すれば治癒する可能性が高い。早期に発見することが大切であるが、殆どの癌は、早期に症状があまり出ないため、早期診断は極めて困難であり、診断された時点で既に周囲の臓器や組織に浸潤し、治療困難なケースが少なく無い。たとえば、予後が悪いとして知られている膵臓癌は、予後が悪い原因の一つとしては、早期に殆ど症状が無く、診断されたとき既に膵臓の外に浸潤し、肝臓に転移するケースが多いことである。日本国内の全国調査では、最初に膵臓癌を発見した方法として、CTが44%と最も多く、超音波が41%である。従って、現在この2つの検査方法が膵臓癌の診断に重要である。しかし、現在一般的に使用されているCTの場合、癌組織と非癌組織の区別がつきにくく、熟練した画像診断医による診断を要する。膵臓癌の腫瘍マーカーには、CA19-9、DUPAN-2、Span-1、CEAなどがある。これらのマーカーは、いずれも進行癌で陽性となるが、早期の診断率は低く、早期診断に有用と言えるマーカーはない。さらに、CA19-9は肝炎、肝硬変、膵炎のような非悪性腫瘍でも血中濃度が上昇するため、膵臓癌の診断への使用は、適切ではないことが知られている。膵臓癌は早期診断が非常に重要であるが、現在のところ膵臓癌が周囲臓器に浸潤する前に診断する方法は、存在していない。 Cancer is an important disease that accounts for the top causes of death. Surgical excision is the most effective treatment for cancer, and in particular, if the primary lesion is excised before infiltrating surrounding organs and tissues, the possibility of healing is high. It is important to detect it early, but most cancers are difficult to treat because early symptoms are extremely difficult because they do not show symptoms early, and they have already infiltrated surrounding organs and tissues at the time of diagnosis. There are not many cases. For example, pancreatic cancer, which is known to have a poor prognosis, has one of the most probable causes of early prognosis, and in many cases, it has already infiltrated outside the pancreas and metastasized to the liver when diagnosed. That is. In a nationwide survey in Japan, CT is the most common method of finding pancreatic cancer at 44%, and ultrasound is 41%. Therefore, these two examination methods are currently important for the diagnosis of pancreatic cancer. However, in the case of CT generally used at present, it is difficult to distinguish between cancerous tissue and non-cancerous tissue, and diagnosis by a skilled image diagnostician is required. Tumor markers for pancreatic cancer include CA19-9, DUPAN-2, Span-1, and CEA. Although these markers are all positive in advanced cancer, the early diagnosis rate is low, and there is no marker that can be said to be useful for early diagnosis. Further, since CA19-9 increases in blood concentration even in non-malignant tumors such as hepatitis, cirrhosis, and pancreatitis, it is known that CA19-9 is not suitable for use in the diagnosis of pancreatic cancer. Although early diagnosis of pancreatic cancer is very important, there is currently no method for diagnosing pancreatic cancer before it invades surrounding organs.
 現在、腫瘍の画像診断において、主にCTやMRIを用いて行われている。しかしながら、良性/悪性の鑑別・手術後再発の診断・他病変との鑑別などは、たとえ造影剤を用いてもCTやMRIでは難しい場合がある。最近では、CTやMRIを補助する画像診断として、18F-2-fluoro-2-deoxyglucose (18F-FDG)を用いたPositron Emission Tomography (PET)診断が利用されている。しかし、18F-FDGは、診断メカニズム上ブドウ糖代謝の盛んな正常組織(例えば脳など)や活動性の炎症組織・肉芽組織にも集積するため、しばしば診断に窮する場合がある。従って、癌組織のみを特異的に認識し、正常組織を認識しない、特異性の高い高精度診断法の開発が望まれている。 Currently, CT and MRI are mainly used in tumor image diagnosis. However, benign / malignant differentiation, diagnosis of recurrence after surgery, differentiation from other lesions, etc. may be difficult even with a contrast agent using CT or MRI. Recently, as diagnostic imaging for assisting CT and MRI, Positron Emission Tomography (PET) diagnosis using 18F-2-fluoro-2-deoxyglucose (18F-FDG) has been used. However, 18F-FDG often accumulates in normal tissues (such as the brain) with active glucose metabolism, active inflammatory tissues, and granulation tissues because of its diagnostic mechanism, and therefore often suffers from diagnosis. Therefore, development of a highly specific and highly accurate diagnostic method that specifically recognizes only cancer tissue and does not recognize normal tissue is desired.
 近年、癌細胞に特異的に発現されているタンパク質を標的にした癌の診断方法や治療法などの開発が盛んである。すなわち、癌細胞に高発現するが、正常組織には発現が少ない、あるいは発現していない細胞表面タンパク質を標的として、この細胞表面タンパク質を特異的に認識する抗体を利用し、がんの診断や治療を行う方法である(特許文献1)。 In recent years, cancer diagnosis methods and treatment methods targeting proteins specifically expressed in cancer cells have been actively developed. That is, by using a cell surface protein that is highly expressed in cancer cells but less or not expressed in normal tissues, and using an antibody that specifically recognizes this cell surface protein, This is a method of performing treatment (Patent Document 1).
 トランスフェリン受容体(TfR)は,トランスフェリン(Tf)と結合した鉄を細胞内に取り込むための細胞膜構造として、最初網状赤血球上にあると同定された(非特許文献1)。それ以後、各種腫瘍細胞(非特許文献2から5)をはじめ胎盤の栄養膜細胞(非特許文献6及び非特許文献7)や、活性化されたリンパ球(非特許文献8)などに発現していることが報告されている。 Transferrin receptor (TfR) was first identified on reticulocytes as a cell membrane structure for taking up iron bound to transferrin (Tf) into cells (Non-patent Document 1). Since then, it has been expressed in various tumor cells (Non-Patent Documents 2 to 5), placental trophoblast cells (Non-Patent Document 6 and Non-Patent Document 7), activated lymphocytes (Non-Patent Document 8), and the like. It has been reported that
特開2008-290996号公報JP 2008-290996 A
 本発明は、細胞膜に発現したトランスフェリン受容体(TfR)を特異的に認識することができる抗体を含む、高精度な画像用腫瘍診断剤を提供することを解決すべき課題とした。 An object of the present invention is to provide a high-accuracy tumor diagnostic agent for imaging, which includes an antibody capable of specifically recognizing transferrin receptor (TfR) expressed on a cell membrane.
 本発明者らは、phage DisplayによりTfRと反応するscFvを取得し、アミノ酸配列を解析した。それらのCDRが新規なアミノ酸配列を有することを見出し、IgG化をした。更にIgG抗体を放射性金属核種で標識し、担癌マウスにおいてTfR陽性発現腫瘍への特異的な集積を確認した。以上のことにより、当該抗体を利用した画像腫瘍診断剤をヒト生体内での使用における有用性を示し、本発明を完成させた。 The present inventors obtained scFv that reacts with TfR using phage® Display, and analyzed the amino acid sequence. These CDRs were found to have a novel amino acid sequence and converted to IgG. Furthermore, IgG antibody was labeled with a radionuclide, and specific accumulation in TfR-positive tumors was confirmed in tumor-bearing mice. As described above, the usefulness of the imaging tumor diagnostic agent using the antibody in use in a human living body is shown, and the present invention has been completed.
 即ち、本発明によれば、ヒトトランスフェリン受容体を認識する抗体を放射性核種で標識した抗体を含む、画像用腫瘍診断剤が提供される。
 さらに本発明によれば、ヒトトランスフェリン受容体を認識する抗体、及び放射性核種を含む、画像用腫瘍診断剤キットが提供される。
That is, according to the present invention, there is provided an imaging tumor diagnostic agent comprising an antibody obtained by labeling an antibody recognizing human transferrin receptor with a radionuclide.
Furthermore, according to the present invention, there is provided a diagnostic imaging agent kit for imaging, comprising an antibody that recognizes a human transferrin receptor and a radionuclide.
 好ましくは、抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号1、2、3で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号4、5、6で示されるアミノ酸配列を含む。
 好ましくは、抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号7、8、9で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号10、11、12で示されるアミノ酸配列を含む。
 好ましくは、抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号13、14、15で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号16、17、18で示されるアミノ酸配列を含む。
Preferably, CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences represented by SEQ ID NOs: 1, 2, and 3, respectively, and CDR1, CDR2, and CDR1, CDR2 of the light chain variable region (VL) of the antibody, CDR3 includes the amino acid sequences shown in SEQ ID NOs: 4, 5, and 6, respectively.
Preferably, CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences represented by SEQ ID NOs: 7, 8, and 9, respectively, and CDR1, CDR2, and CDR2 of the antibody light chain variable region (VL), CDR3 comprises the amino acid sequences shown in SEQ ID NOs: 10, 11, and 12, respectively.
Preferably, CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences represented by SEQ ID NOs: 13, 14, and 15, respectively, and CDR1, CDR2, and CDR2 of the light chain variable region (VL) of the antibody, CDR3 comprises the amino acid sequences shown in SEQ ID NOs: 16, 17, and 18, respectively.
 好ましくは、抗体は、ヒト抗体の定常領域を含む抗体である。
 好ましくは、ヒト抗体の定常領域は、ヒト抗体IgG1クラスの定常領域からなる。
 好ましくは、抗体は、Fab、Fab'、F(ab')2、一本鎖抗体(scFv)、二量体化V領域(Diabody)、ジスルフィド安定化V領域(dsFv)およびCDRを含むペプチドからなる群から選ばれる抗体断片である。
 好ましくは、放射性核種は、89Zr、99mTc、111In、113mIn、67Ga、68Ga、201Tl、51Cr、57Co、58Co、60Co、85Sr、197Hg、64Cu、123I、125I、及び131Iからなる群から選択される。
Preferably, the antibody is an antibody comprising the constant region of a human antibody.
Preferably, the constant region of the human antibody consists of a constant region of the human antibody IgG1 class.
Preferably, the antibody is from a peptide comprising Fab, Fab ′, F (ab ′) 2 , single chain antibody (scFv), dimerized V region (Diabody), disulfide stabilized V region (dsFv) and CDR. An antibody fragment selected from the group consisting of
Preferably, the radionuclide is 89 Zr, 99m Tc, 111 In, 113 m In, 67 Ga, 68 Ga, 201 Tl, 51 Cr, 57 Co, 58 Co, 60 Co, 85 Sr, 197 Hg, 64 Cu, 123 Selected from the group consisting of I, 125 I, and 131 I.
 本発明によれば、ヒトTfRを認識する抗体を用いた画像用腫瘍診断剤が提供される。本発明の画像用腫瘍診断剤は、ヒトTfRと特異的に結合し、TfRが高発現している腫瘍へよく集積する。本発明の画像用腫瘍診断剤を用いて、腫瘍を体外よりイメージングし、病変部及び浸潤や転移を調べることができる。即ち、本発明の画像用腫瘍診断剤は、疾患の早期発見や診断に有用である。 According to the present invention, an imaging tumor diagnostic agent using an antibody that recognizes human TfR is provided. The diagnostic agent for imaging tumors of the present invention specifically binds to human TfR and accumulates well in tumors where TfR is highly expressed. A tumor can be imaged from outside the body by using the imaging diagnostic agent for images of the present invention, and a lesion, infiltration and metastasis can be examined. That is, the tumor diagnostic agent for images of the present invention is useful for early detection and diagnosis of diseases.
図1は、89Zr-DF抗TfR抗体を、ヒトTfRを高発現している腫瘍とヒトTfRを発現していない腫瘍を皮下移植したヌードマウスに投与し、投与1日、2日、4日、6日後にPET撮像を行った結果を示す。FIG. 1 shows that 89 Zr-DF anti-TfR antibody was administered to nude mice transplanted subcutaneously with tumors that highly expressed human TfR and tumors that did not express human TfR. The results of PET imaging after 6 days are shown.
 以下、本発明について更に詳細に説明する。
 本発明で用いる抗体は、細胞表面上のトランスフェリン受容体(TfR)を特異的に認識する抗体である。ヒトトランスフェリン受容体(TfR)は人三番染色体にコードされ760アミノ酸から構成される一回膜貫通型タンパクである。このタンパクはCD71抗原としても知られ、細胞の鉄の取り込みに関与し、細胞の増殖に関与すると考えられている。また血液細胞における活性化B細胞並びにT細胞が活性化に伴い表面にTfRを提示していると考えられている。
Hereinafter, the present invention will be described in more detail.
The antibody used in the present invention is an antibody that specifically recognizes a transferrin receptor (TfR) on the cell surface. Human transferrin receptor (TfR) is a single transmembrane protein encoded by human chromosome 3 and composed of 760 amino acids. This protein, also known as the CD71 antigen, is involved in cellular iron uptake and is thought to be involved in cell proliferation. In addition, it is considered that activated B cells and T cells in blood cells present TfR on the surface upon activation.
 本発明で用いる抗体としては、ヒト抗体、ヒト型キメラ抗体、ヒト型CDR移植抗体、ヒト以外の動物抗体などを使用できる。好ましくは、ヒト抗体である。 As the antibody used in the present invention, human antibodies, human chimeric antibodies, human CDR-grafted antibodies, non-human animal antibodies, and the like can be used. Preferably, it is a human antibody.
 ヒト型キメラ抗体は、ヒト以外の動物の抗体H鎖V領域(以下、VHとも表記する)および抗体L鎖V領域(以下、VLとも表記する)とヒト抗体のH鎖C領域(以下、CHとも表記する)およびヒト抗体のL鎖C領域(以下、CLとも表記する)とからなる抗体を意味する。ヒト以外の動物としては、マウス、ラット、ハムスター、ラビット等、ハイブリドーマを作製することが可能であれば、いかなるものも用いることができる。 Human chimeric antibodies are composed of non-human animal antibody H chain V regions (hereinafter also referred to as VH) and antibody L chain V regions (hereinafter also referred to as VL) and human antibody H chain C regions (hereinafter referred to as CH). And an L chain C region of a human antibody (hereinafter also referred to as CL). Any animal other than humans can be used as long as it can produce hybridomas such as mice, rats, hamsters, rabbits and the like.
 ヒト型CDR移植抗体は、ヒトTfRに特異的に反応するヒト以外の動物の抗体のVHおよびVLのCDRのアミノ酸配列を任意のヒト抗体のVHおよびVLのFRに移植したV領域をコードするcDNAを構築し、ヒト抗体のCHおよびCLをコードするDNAを有する動物細胞用発現ベクターにそれぞれ挿入してヒト型CDR移植抗体発現ベクターを構築し、動物細胞へ導入することにより発現させ、製造することができる。 A human CDR-grafted antibody is a cDNA encoding a V region in which the VH and VL CDR amino acid sequences of non-human animal antibodies that specifically react with human TfR are grafted onto the VH and VL FRs of any human antibody. Are constructed, inserted into animal cell expression vectors having DNA encoding human antibody CH and CL, respectively, to construct human CDR-grafted antibody expression vectors, which are introduced into animal cells to be expressed and produced. Can do.
 ヒト抗体は、いろいろな取得方法で取得する抗体を意味する。例えば、ヒトリンパ球をin vitroで所望の抗原または所望の抗原を発現する細胞で感作し、感作リンパ球をヒトミエローマ細胞、例えばU266と融合させ、抗原への結合活性を有する所望のヒト抗体を得ることもできる(特公平1-59878参照)。また、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物を所望の抗原で免疫することで所望のヒト抗体を取得することができる(WO93/12227,WO92/03918,WO94/02602,WO94/25585,WO96/34096,WO96/33735参照)。好ましく、ファージディスプレイ法による取得したヒト抗体である。 Human antibody means an antibody acquired by various acquisition methods. For example, human lymphocytes are sensitized in vitro with a desired antigen or cells expressing the desired antigen, and the sensitized lymphocytes are fused with human myeloma cells, such as U266, to form a desired human antibody having binding activity to the antigen. (See Japanese Patent Publication No. 1-59878). Further, a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen (WO93 / 12227, WO92 / 03918, WO94 / 02602, WO94 / 25585). WO96 / 34096, WO96 / 33735). Preferably, it is a human antibody obtained by the phage display method.
 ファージディスプレイによる抗体の取得について詳細に説明する。
1.ファージディスプレイライブラリの構築
 患者あるいは健常人から骨髄、リンパ節あるいは末梢血を用いてヒトB細胞のcDNAを得られる。それぞれ抗体重鎖及び軽鎖抗体遺伝子の可変領域のプライマーを用いてPCR(Polymerase Chain Reaction)により抗体遺伝子断片を増幅する。これらの遺伝子断片を人為的に結合させ、線維状バクテリアファージM13の外殻蛋白g3pとの融合蛋白として発現させる。
Acquisition of antibodies by phage display will be described in detail.
1. Construction of phage display library Human B cell cDNA can be obtained from patients or healthy individuals using bone marrow, lymph nodes or peripheral blood. Antibody gene fragments are amplified by PCR (Polymerase Chain Reaction) using primers of the variable regions of the antibody heavy chain and light chain antibody genes, respectively. These gene fragments are artificially linked and expressed as a fusion protein with the outer shell protein g3p of filamentous bacterial phage M13.
 ヒトscFv断片である重鎖断片-リンカー配列-軽鎖断片又は軽鎖断片-リンカー配列-重鎖断片を、ファージミドベクターまたはファージベクターにインテグレイトすることにより、ヒト一本鎖抗体遺伝子ライブラリーを作製することができる。 A human single chain antibody gene library is prepared by integrating a heavy chain fragment-linker sequence-light chain fragment or light chain fragment-linker sequence-heavy chain fragment, which is a human scFv fragment, into a phagemid vector or a phage vector. can do.
 このヒト一本鎖抗体断片が組み込まれたファージミドベクターの大腸菌への導入は、Davisら(BASIC METHODS IN MOLECULAR BIOLOGY, 1986)及びSambrookら(MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989)などの多くの標準的な実験室マニュアルに記載される方法、例えば、エレクトロポレーション、リン酸カルシウムトランスフェクション、DEAE-デキストラン媒介トランスフェクション、トランスベクション(transvection)、マイクロインジェクション、カチオン性脂質媒介トランスフェクション、形質導入、スクレープローディング (scrape loading)、弾丸導入(ballistic introduction)、感染等により行うことができる。 Introduction of this phagemid vector incorporating the human single-chain antibody fragment into E. coli was performed by Davis et al. (BASIC METHODS IN MOLECULAR BIOLOGY, 1986) and Sambrook et al. (MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed. Press, Cold Spring Harbor, NY, 1989) and other methods described in many standard laboratory manuals such as electroporation, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, micro It can be performed by injection, cationic lipid-mediated transfection, transduction, scrape loading, ballistic introduction, infection, and the like.
2.バイオパニング
 バイオパニングとは、抗体ファージライブラリから目的の標的タンパクに対するファージを選別する操作である。様々なパニング法が知られている。標的タンパクを固定化し、抗体ファージライブラリと反応させ、結合しなかったファージを洗浄により除去する。その後、結合したファージを溶出し大腸菌に感染させて増殖させるという操作を数回行うことで標的タンパクに特異的なファージを濃縮することがある。標的タンパク質の固定化法はイムノチューブなどのプラスチック表面に標的タンパクを直接吸着させる方法や、標的タンパクをビオチン化し、固定化されたストレプトアビジンを介して固定化することなどができる。また、ストレプトアビジンがコートされたビーズに標的タンパクを固定化することもできる。その以外、細胞表面上の分子に対するパニングを行う場合には細胞に抗体ファージライブラリを直接反応させる細胞パニングがある。このようにバイオパニングを行い、標的タンパクと反応するファージを選ぶ。
2. Biopanning Biopanning is an operation for selecting a phage for a target protein of interest from an antibody phage library. Various panning methods are known. The target protein is immobilized, reacted with an antibody phage library, and unbound phages are removed by washing. Thereafter, the phage specific to the target protein may be concentrated by performing several operations of eluting the bound phage, infecting E. coli and allowing it to proliferate. The target protein can be immobilized by directly adsorbing the target protein on a plastic surface such as an immunotube, or by biotinylating the target protein and immobilizing it via immobilized streptavidin. Alternatively, the target protein can be immobilized on beads coated with streptavidin. Other than that, when panning a molecule on the cell surface, there is a cell panning in which the antibody phage library is directly reacted with the cell. Biopanning is performed in this way, and phages that react with the target protein are selected.
3.ファージ抗体の解析
 選択された標的タンパクと反応するファージの遺伝子を解析すれば、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。抗原に結合するscFvのDNA配列が明らかになれば、当該配列から適当な発現ベクターを作製し、ヒト抗体を取得することができる。これらの方法は既に周知であり、WO92/01047,WO92/20791, WO93/06213,WO93/11236,WO93/19172,WO95/01438,WO95/15388を参考にすることができる。
3. Analysis of phage antibodies By analyzing the genes of the phages that react with the selected target protein, the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be determined. If the DNA sequence of scFv that binds to the antigen is clarified, an appropriate expression vector can be prepared from the sequence to obtain a human antibody. These methods are already well known, and WO92 / 01047, WO92 / 20791, WO93 / 06213, WO93 / 11236, WO93 / 19172, WO95 / 01438, and WO95 / 15388 can be referred to.
 本発明で用いる抗体は、抗体遺伝子を適当な宿主細胞系に導入して、タンパク質を発現させることにより取得することができる。タンパク質発現に使用する宿主細胞系は、抗体生産系では哺乳動物起源のものが多い。該生産者は発現したい遺伝子産物に最も適する特定の宿主細胞系を優先的に決定できる。一般的な宿主細胞系としては、CHO由来細胞株(チャイニーズハムスター卵巣細胞系)、CV1(サル腎臓系)、COS(SV40T抗原をするCV1の誘導体)、SP2/0(マウスミエローマ)、P3x63-Ag3.653(マウスミエローマ)、および293(ヒト腎臓)、293T(SV40T抗原をする293の誘導体)が挙げられるがそれらに限定されない。宿主細胞系は商業施設やthe American Tissue Culture Collection(ATCC)から、または発表された文献の発表機関から入手することができる。 The antibody used in the present invention can be obtained by introducing an antibody gene into an appropriate host cell system and expressing the protein. Many host cell systems used for protein expression are of mammalian origin in antibody production systems. The producer can preferentially determine the particular host cell system that is most suitable for the gene product he wishes to express. Common host cell lines include CHO-derived cell lines (Chinese hamster ovary cell line), CV1 (monkey kidney line), COS (derivative of CV1 that carries SV40T antigen), SP2 / 0 (mouse myeloma), P3x63-Ag3 .653 (mouse myeloma), and 293 (human kidney), 293T (a derivative of 293 that carries the SV40T antigen), but is not limited thereto. Host cell lines can be obtained from commercial facilities, the American Tissue Culture Collection (ATCC), or from published publication agencies.
 好ましくは、宿主細胞系はdgfr遺伝子の発現欠損であるCHO由来細胞株かSP2/0のいずれかである。Urland, G. ら、Effect of gamma rays at the dihydrofolate reductase locus: deletions and inversions, Somat. Cell. Mol. Genet. Vol. 12, 1986, p5555-566、および、Schulman, M. ら、A better cell line for making hybridomas secreting specific antibodies, Nature Vol. 276, 1978, p269-270 をそれぞれ参照のこと。最も好ましくは、宿主細胞系はDHFR欠失CHOである。宿主細胞中へのプラスミドのトランスフェクションは、任意の技術を使って達成できる。具体的な方法としては、トランスフェクション(リン酸カルシウム法、DEAE法、リポフェクション、およびエレクトロポレーションを含む)、センダイウイルス等のエンベロープを利用してDNAを導入する方法、マイクロインジェクション、およびレトロウイルスウイルスやアデノウイルス等のウイルスベクターを用いた感染が挙げられるがそれらに限定されない。Current Protocols in Molecular Biology, Chapter 9 Introduction of DNA into Mammalian Cells, John Wiley and Sons, Inc.を参照のこと。最も好ましいのは、エレクトロポレーションによる宿主中へのプラスミド導入である。 Preferably, the host cell line is either a CHO-derived cell line that is dgfr gene expression deficient or SP2 / 0. Orlando, G.M. , Et al., Effect of gamma rays at the dihydroformat reduce locus: deletions and inversions, Soma. Cell. Mol. Genet. Vol. 12, 1986, p5555-566, and Schulman, M .; Et al., A letter cell line for making hybridomas secreting specific antigens, Nature Vol. 276, 1978, p269-270. Most preferably, the host cell line is DHFR deficient CHO. Transfection of the plasmid into the host cell can be accomplished using any technique. Specific methods include transfection (including calcium phosphate method, DEAE method, lipofection, and electroporation), a method of introducing DNA using an envelope such as Sendai virus, microinjection, retrovirus virus, adeno Examples include, but are not limited to, infection using virus vectors such as viruses. Current Protocols in Molecular Biology, Chapter 9 Introduction of DNA into Mammalian Cells, John Wiley and Sons, Inc. checking ... Most preferred is the introduction of the plasmid into the host by electroporation.
(抗体の断片)
 本発明で用いる抗体は、抗体断片でもよい。抗体断片としては、Fab、Fab'、F(ab')2、scFv、dsFv、およびCDRを含むペプチドなどがあげられる。
 Fabは、IgGを蛋白質分解酵素パパインで処理して得られる断片のうち(H鎖の224番目のアミノ酸残基で切断される)、H鎖のN末端側約半分とL鎖全体がジスルフィド結合で結合した分子量約5万の抗原結合活性を有する抗体断片である。
(Antibody fragment)
The antibody used in the present invention may be an antibody fragment. Examples of antibody fragments include Fab, Fab ′, F (ab ′) 2 , scFv, dsFv, and peptides containing CDRs.
Fab is a fragment obtained by treating IgG with the proteolytic enzyme papain (cleaved at the 224th amino acid residue of the H chain), and about half of the N chain side of the H chain and the entire L chain are disulfide bonds. It is an antibody fragment having an antigen binding activity with a molecular weight of about 50,000.
 本発明のFabは、TfRに特異的に反応する抗体を蛋白質分解酵素パパインで処理して得ることができる。または、該抗体のFabをコードするDNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該ベクターを原核生物あるいは真核生物へ導入することにより発現させ、Fabを製造することができる。 The Fab of the present invention can be obtained by treating an antibody that specifically reacts with TfR with the proteolytic enzyme papain. Alternatively, the Fab can be produced by inserting a DNA encoding the Fab of the antibody into a prokaryotic expression vector or a eukaryotic expression vector and introducing the vector into a prokaryotic or eukaryotic organism to express the antibody. it can.
 F(ab')2は、IgGを蛋白質分解酵素ペプシンで処理して得られる断片のうち(H鎖の234番目のアミノ酸残基で切断される)、Fabがヒンジ領域のジスルフィド結合を介して結合されたものよりやや大きい、分子量約10万の抗原結合活性を有する抗体断片である。 F (ab ′) 2 is a fragment obtained by treating IgG with proteolytic enzyme pepsin (cleaved at the 234th amino acid residue of the H chain), and Fab is bound via a disulfide bond in the hinge region. It is an antibody fragment having an antigen-binding activity having a molecular weight of about 100,000, which is slightly larger than those obtained.
 Fab'は、上記F(ab')2のヒンジ領域のジスルフィド結合を切断した分子量約5万の抗原結合活性を有する抗体断片である。
 本発明のFab'は、TfRに特異的に反応するF(ab')2を還元剤ジチオスレイトール処理して得ることができる。または、該抗体のFab'断片をコードするDNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該ベクターを原核生物あるいは真核生物へ導入することによりFab'を発現させ、製造することができる。
Fab ′ is an antibody fragment having an antigen-binding activity having a molecular weight of about 50,000, which is obtained by cleaving the disulfide bond in the hinge region of F (ab ′) 2 .
The Fab ′ of the present invention can be obtained by treating F (ab ′) 2 that specifically reacts with TfR with a reducing agent dithiothreitol. Alternatively, the DNA encoding the Fab ′ fragment of the antibody is inserted into a prokaryotic expression vector or a eukaryotic expression vector, and Fab ′ is expressed by introducing the vector into a prokaryotic or eukaryotic organism. can do.
 scFvは、一本のVHと一本のVLとを適当なペプチドリンカー(以下、Pと表記する)を用いて連結した、VH-P-VLないしはVL-P-VHポリペプチドを示す。本発明のscFvに含まれるVHおよびVLは、本発明のTfRに特異的に反応する抗体、例えば、ヒト化抗体、ヒト抗体のいずれをも用いることができる。 ScFv represents a VH-P-VL or VL-P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (hereinafter referred to as P). As VH and VL contained in the scFv of the present invention, an antibody that specifically reacts with the TfR of the present invention, for example, a humanized antibody or a human antibody can be used.
 本発明のscFvは、TfRに特異的に反応する抗体のVHおよびVLをコードするcDNAを取得し、scFvをコードするDNAを構築し、該DNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物あるいは真核生物へ導入することにより発現させ、scFvを製造することができる。 The scFv of the present invention obtains cDNAs encoding VH and VL of an antibody that specifically reacts with TfR, constructs DNA encoding scFv, and uses the DNA as a prokaryotic expression vector or eukaryotic expression vector. ScFv can be produced by inserting the expression vector into a prokaryotic organism or a eukaryotic organism and expressing the vector.
 dsFvは、VHおよびVL中のそれぞれ1アミノ酸残基をシステイン残基に置換したポリペプチドを該システイン残基間のジスルフィド結合を介して結合させたものをいう。システイン残基に置換するアミノ酸残基はReiterらにより示された方法(Protein Engineering,,697(1994))に従って、抗体の立体構造予測に基づいて選択することができる。本発明のdsFvに含まれるVHおよびVLは本発明のTfRに特異的に反応する抗体、例えば、ヒト化抗体、ヒト抗体のいずれをも用いることができる。 dsFv refers to a polypeptide in which one amino acid residue in each of VH and VL is substituted with a cysteine residue, which are bonded via a disulfide bond between the cysteine residues. The amino acid residue substituted for the cysteine residue can be selected based on the three-dimensional structure prediction of the antibody according to the method shown by Reiter et al. (Protein Engineering, 7 , 697 (1994)). As VH and VL contained in the dsFv of the present invention, antibodies that specifically react with the TfR of the present invention, for example, humanized antibodies or human antibodies can be used.
 本発明のdsFvは、TfRに特異的に反応する抗体のVHおよびVLをコードするcDNAを取得し、dsFvをコードするDNAを構築し、該DNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物あるいは真核生物へ導入することにより発現させ、dsFvを製造することができる。 The dsFv of the present invention obtains cDNAs encoding VH and VL of an antibody that specifically reacts with TfR, constructs a DNA encoding dsFv, and uses the DNA as a prokaryotic expression vector or eukaryotic expression vector. DsFv can be produced by inserting the expression vector into a prokaryote or a eukaryote and expressing the vector.
 CDRを含むペプチドは、H鎖またはL鎖CDRの少なくとも1領域以上を含んで構成される。複数のCDRは、直接または適当なペプチドリンカーを介して結合させることができる。 The peptide containing CDR is configured to include at least one region of H chain or L chain CDR. Multiple CDRs can be linked directly or via a suitable peptide linker.
 本発明のCDRを含むペプチドは、CDH3に特異的に反応する抗体のVHおよびVLをコードするcDNAを取得した後、CDRをコードするDNAを構築し、該DNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、該発現ベクターを原核生物あるいは真核生物へ導入することにより発現させ、CDRを含むペプチドを製造することができる。 The CDR-containing peptide of the present invention is obtained by obtaining cDNAs encoding VH and VL of an antibody that specifically reacts with CDH3, and then constructing a DNA encoding CDR, and using the DNA as a prokaryotic expression vector or eukaryotic A peptide containing CDR can be produced by inserting the expression vector into a biological expression vector and introducing the expression vector into a prokaryotic or eukaryotic organism.
 また、CDRを含むペプチドは、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等の化学合成法によって製造することもできる。 Further, a peptide containing CDR can also be produced by a chemical synthesis method such as Fmoc method (fluorenylmethyloxycarbonyl method), tBoc method (t-butyloxycarbonyl method), or the like.
(TfR発現細胞に対する反応性)
 TfR発現細胞に対する反応性を検討するためには、細胞表面に発現されているTfRをフローサイトメーターよる検定などがあげられる。
 フローサイトメーターに用いる抗体としては、FITCなどの蛍光物質、ビオチンなどにより標識された抗体であっても、標識をされていない抗体であってもよい。用いた抗体の標識の有無、その種類により、蛍光標識アビジン、蛍光標識抗ヒト免疫グロブリン抗体などを使用する。反応性は、十分量の抗TfR抗体(通常最終濃度が0.1~10μg/ml)を検体に加えて行い、陰性対照抗体、陽性対照抗体の反応性との比較を行うことにより評価することができる。
(Reactivity to TfR expressing cells)
In order to examine the reactivity to TfR-expressing cells, TfR expressed on the cell surface can be assayed using a flow cytometer.
The antibody used in the flow cytometer may be a fluorescent substance such as FITC, an antibody labeled with biotin, or an unlabeled antibody. A fluorescently labeled avidin, a fluorescently labeled anti-human immunoglobulin antibody, or the like is used depending on whether or not the antibody used is labeled. Reactivity is evaluated by adding a sufficient amount of anti-TfR antibody (usually a final concentration of 0.1 to 10 μg / ml) to the sample and comparing the reactivity with the negative control antibody and the positive control antibody. Can do.
 本発明の画像用腫瘍診断剤は、細胞表面上のTfRに特異的に認識する抗体と放射性核種から構成される。 The tumor diagnostic agent for imaging of the present invention is composed of an antibody that specifically recognizes TfR on the cell surface and a radionuclide.
 放射性核種としては、ジルコニウム89(89Zr)、テクネシウム99m(99mTc)、インジウム111(111In)、インジウム113m(113mIn)、ガリウム67(67Ga)、ガリウム68(68Ga)、タリウム201(201Tl)、クロム51(51Cr)、コバルト57(57Co)、コバルト58(58Co)、コバルト60(60Co)、ストロンチウム85(85Sr)、水銀197(197Hg)、銅64(64Cu)、ヨウ素123(123I)、ヨウ素125(125I)、ヨウ素131(131I)が好適に用いられるが、これに限定されるものではない。上記の中でも好ましくは、89Zr、111Inである。 Radionuclides include zirconium 89 ( 89 Zr), technetium 99m ( 99m Tc), indium 111 ( 111 In), indium 113m ( 113m In), gallium 67 ( 67 Ga), gallium 68 ( 68 Ga), thallium 201 ( 201 Tl), chromium 51 ( 51 Cr), cobalt 57 ( 57 Co), cobalt 58 ( 58 Co), cobalt 60 ( 60 Co), strontium 85 ( 85 Sr), mercury 197 ( 197 Hg), copper 64 ( 64 Cu), iodine 123 ( 123 I), iodine 125 ( 125 I), and iodine 131 ( 131 I) are preferably used, but are not limited thereto. Among these, 89 Zr and 111 In are preferable.
 本発明の一つの形態としては、本発明の画像用腫瘍診断剤は、TfRに特異的に認識する抗体、放射性核種、及びリンカー(金属キレート試薬)から構成される。また、本発明の別の形態としては、金属キレート試薬を介さずに、123I、125I、131I等が、TfRに特異的に認識する抗体に結合していてもよい。 In one form of the present invention, the diagnostic agent for imaging tumor of the present invention comprises an antibody that specifically recognizes TfR, a radionuclide, and a linker (metal chelating reagent). As another form of the present invention, 123 I, 125 I, 131 I and the like may be bound to an antibody that specifically recognizes TfR without using a metal chelating reagent.
 上記した放射性金属核種を抗TfR抗体に結合させるには、該抗体に金属キレート試薬を反応させ、これに放射性金属元素を反応させて錯体とするのが好ましい。このようにして得られた修飾抗体は、放射性金属核種が金属キレート試薬を介して抗TfR抗体に結合している。 In order to bind the radionuclide described above to the anti-TfR antibody, it is preferable to react the metal chelate reagent with the antibody and react with the radiometal element to form a complex. In the modified antibody thus obtained, the radionuclide is bound to the anti-TfR antibody via a metal chelating reagent.
 このような錯体形成に用いられる金属キレート試薬の例としては、例えば(1)8-ヒドロキシキノリン、8-アセトキシキノリン、8-ヒドロキシキナルジン、硫酸オキシキノリン、O-アセチルオキシン、O-ベンゾイルオキシン、O-p-ニトロベンゾイルオキシン、キノリン骨格を有するキノロン系化合物であるノルフロキサシン、オフロキサシン、エノキサシン、シプロフロキサシン、ロメフロキサシン、トスフロキサシン、フレロキサシン、スパルフロキサシン等のキノリン誘導体;(2)クロラニル酸、アルミノン、チオ尿素、ピロガロール、クペロン、ビスムチオール(II)、ガロイル没食子酸、チオリド、2-メルカプトベンゾチアゾール、テトラフェニルアルソニウムクロライド等の化合物;(3)エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)およびこれらに類似した骨格を有するジヒドロキシエチルグリシン、ジアミノプロパノール四酢酸、エチレンジアミン二酢酸、エチレンジアミン二プロピオン酸塩酸塩、ヒドロキシエチルエチレンジアミン三酢酸、エチレンジアミンテトラキス(メチレンホスホン酸)、グリコールエーテルジアミン四酢酸、ヘキサメチレンジアミン四酢酸、ヒドロキシエチルイミノ二酢酸、イミノ二酢酸、ジアミノプロパン四酢酸、ニトリロ三酢酸、ニトリロ三プロピオン酸、ニトリロトリス(メチレンスルホン酸)三ナトリウム塩、トリエチレンテトラミン六酢酸、メチルDTPA、シクロヘキシルDTPA、アミノベンジルEDTA、イソチオシアノベンジルEDTA、イソチオシアノベンジルDTPA、メチルイソチオシアノベンジルDTPA、シクロヘキシルイソチオシアノベンジルDTPA、マレイミドプロピルアミドベンジルEDTA、マレイミドペンチルアミドベンジルEDTA、マレイミドデシルアミドベンジルEDTA、マレイミドペンチルアミドベンジルDTPA、マレイミドデシルアミドベンジルEDTA、マレイミドデシルアミドベンジルDTPA;(4)1,4,7,10-テトラアザシクロドデカン-1,4,7,10-四酢酸(DOTA)、1,4,7-トリアザシクロノナン-1,4,7-三酢酸(NOTA)、1,4,8,11-テトラアザシクロテトラデカン-1,4,8,11-四酢酸(TETA)、1,4,7,10-テトラアザシクロドデカン(Cyclen)、1,4,8,11-テトラアザシクロテトラデカン(Cyclam)、イソチオシアノベンジルDOTA、イソチオシアノベンジルNOTA、及び デフェロキサミン系化合物である イソチオシアノベンジルデフェロキサミン等が挙げられる。 Examples of metal chelating reagents used for such complex formation include (1) 8-hydroxyquinoline, 8-acetoxyquinoline, 8-hydroxyquinaldine, oxyquinoline sulfate, O-acetyloxin, O-benzoyloxin, Op-nitrobenzoyloxins, quinoline derivatives having a quinoline skeleton such as norfloxacin, ofloxacin, enoxacin, ciprofloxacin, lomefloxacin, tosufloxacin, fleroxacin, sparfloxacin and the like; (2) chloranilic acid, aluminone , Thiourea, pyrogallol, cuperone, bismuthiol (II), galloyl gallic acid, thiolide, 2-mercaptobenzothiazole, tetraphenylarsonium chloride, etc .; (3) ethylenediamine Tetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA) and dihydroxyethylglycine, diaminopropanoltetraacetic acid, ethylenediaminediacetic acid, ethylenediaminedipropionate hydrochloride, hydroxyethylethylenediaminetriacetic acid, ethylenediaminetetrakis (methylene) Phosphonic acid), glycol etherdiaminetetraacetic acid, hexamethylenediaminetetraacetic acid, hydroxyethyliminodiacetic acid, iminodiacetic acid, diaminopropanetetraacetic acid, nitrilotriacetic acid, nitrilotripropionic acid, nitrilotris (methylenesulfonic acid) trisodium salt , Triethylenetetramine hexaacetic acid, methyl DTPA, cyclohexyl DTPA, aminobenzyl EDTA, isothiocyanobenzyl EDTA, isothiocyano NDPA, methylisothiocyanobenzyl DTPA, cyclohexylisothiocyanobenzyl DTPA, maleimide propylamide benzyl EDTA, maleimide pentylamide benzyl EDTA, maleimide decylamide benzyl EDTA, maleimide pentylamide benzyl DTPA, maleimide decylamide benzyl EDTA, maleimide decylamide (4) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7- Triacetic acid (NOTA), 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), 1,4,7,10-tetraazacyclododecane (Cycle), 1 , 4,8,11-te Examples include traazacyclotetradecane (Cyclam), isothiocyanobenzyl DOTA, isothiocyanobenzyl NOTA, and dethioxamine-based compounds such as isothiocyanobenzyl deferoxamine.
 これらの金属キレート試薬のうち、イソチオシアノベンジルDOTA、メチルイソチオシアノベンジルDTPA、シクロヘキシルイソチオシアノベンジルDTPA、イソチオシアノベンジルデフェロキサミンが金属キレートの容易な抗体への導入反応、標識率、錯体の安定性等の点で好ましい。(標識する核種により適正なキレートは異なります) Among these metal chelating reagents, isothiocyanobenzyl DOTA, methylisothiocyanobenzyl DTPA, cyclohexylisothiocyanobenzyl DTPA, and isothiocyanobenzyl deferoxamine are metal chelate-introducing reactions, labeling rates, It is preferable in terms of stability and the like. (The appropriate chelate varies depending on the nuclide to be labeled)
 抗TfR抗体への放射性金属核種の結合は、常法に従って行うことができる。例えば抗TfR抗体に金属キレート試薬を反応させ、予め標識前駆体を調製しておき、次いで放射性金属核種を反応させることにより行うことができる。 The binding of the radiometal nuclide to the anti-TfR antibody can be performed according to a conventional method. For example, it can be carried out by reacting an anti-TfR antibody with a metal chelate reagent, preparing a labeling precursor in advance, and then reacting with a radioactive metal nuclide.
 本発明の画像用腫瘍診断剤においては、抗TfR抗体と金属キレート試薬とのモル比が癌細胞集積性に重要であり、そのモル比(抗体:キレート試薬)は1:0.1~1:4.5が好ましく、1:0.5~1:3がさらに好ましい。このようなモル比にするには、抗体とキレート試薬を1:0.1~1:5未満、特に1:1~1:3のモル比で仕込んで反応させるのが好ましい。抗体のキレート修飾数は、MALDI-TOF質量分析法等を用いて分子量を測定し、未修飾抗体と修飾抗体の分子量を比較することにより算出することができる(米国特許公報第7514078号、Luら、J Pharm Sci.94(4),2005,p788-797、Tedescoら、J Clin Onco.23(16S),2005,4765)。また、抗体のキレート修飾数はキレート滴定法により測定することもできる。アルカリ土類金属比色試薬(アルセナゾIII)を用いた方法が知られている(Bradyrら、Nucl Med Biol.31,795-802,2004、Dadachovaら、Nucl Med Biol.26,977-982,1999)。 In the tumor diagnostic agent for imaging of the present invention, the molar ratio of the anti-TfR antibody to the metal chelating reagent is important for cancer cell accumulation, and the molar ratio (antibody: chelating reagent) is 1: 0.1 to 1: 4.5 is preferable, and 1: 0.5 to 1: 3 is more preferable. In order to achieve such a molar ratio, it is preferable to react the antibody and the chelating reagent in a molar ratio of 1: 0.1 to less than 1: 5, particularly 1: 1 to 1: 3. The number of chelate modifications of an antibody can be calculated by measuring the molecular weight using MALDI-TOF mass spectrometry or the like, and comparing the molecular weight of an unmodified antibody with a modified antibody (US Pat. No. 7514078, Lu et al. J Pharm Sci. 94 (4), 2005, p788-797, Tedesco et al., J Clin Onco. 23 (16S), 2005, 4765). The number of chelate modifications of the antibody can also be measured by chelate titration method. A method using an alkaline earth metal colorimetric reagent (Arsenazo III) is known (Bradyr et al., Nucl Med Biol. 31, 795-802, 2004, Dadachova et al., Nucl Med Biol. 26, 977-982, 1999. ).
 本発明の画像用腫瘍診断剤は、既標識製剤として提供する方法と、標識前駆体を含有するキット製剤として提供する方法があるが、本発明ではいずれの方法でもよい。既標識製剤として提供する場合には、標識済みの抗TfR抗体を含有する画像用腫瘍診断剤をそのまま投与に用いることができる。キット製剤として提供する場合には、所望の放射性核種で標識を行ってから投与に用いることができる。 The imaging diagnostic agent for an image of the present invention includes a method of providing as a pre-labeled preparation and a method of providing as a kit preparation containing a labeling precursor, and any method may be used in the present invention. When provided as a pre-labeled preparation, an imaging tumor diagnostic agent containing a labeled anti-TfR antibody can be used for administration as it is. When provided as a kit preparation, it can be used for administration after labeling with a desired radionuclide.
 放射性核種で標識された本発明の抗体は、薬学的に許容しうる担体とともに、混合、溶解、乳化などすることによって腫瘍診断剤として用いてもよい。例えば、放射性核種で標識された抗体は、薬学的に許容しうる溶媒、賦形剤、結合剤、安定化剤、分散剤等とともに、注射用溶液、懸濁液、乳剤等の剤形に製剤化することができる。注射用の処方においては、放射性金属核種で標識された本発明のモノクローナル抗体は、水性溶液、好ましくはハンクス溶液、リンゲル溶液、または生理的食塩緩衝液等の生理学的に適合性の緩衝液中に溶解することができる。さらに、組成物は、油性または水性のベヒクル中で、懸濁液、溶液、または乳濁液等の形状をとることができる。 The antibody of the present invention labeled with a radionuclide may be used as a tumor diagnostic agent by mixing, dissolving, emulsifying or the like together with a pharmaceutically acceptable carrier. For example, an antibody labeled with a radionuclide is formulated into a dosage form such as an injectable solution, suspension, emulsion, etc. together with a pharmaceutically acceptable solvent, excipient, binder, stabilizer, dispersant and the like. Can be In an injectable formulation, the monoclonal antibody of the invention labeled with a radionuclide is in an aqueous solution, preferably a physiologically compatible buffer such as Hanks's solution, Ringer's solution, or physiological saline buffer. Can be dissolved. In addition, the composition can take the form of a suspension, solution, emulsion or the like in an oily or aqueous vehicle.
 画像用腫瘍診断剤の投与経路は特に限定されないが、通常は非経口投与であり、例えば注射剤(皮下注、静注、筋注、腹腔内注など)、経皮、経粘膜などで投与することができる。 The route of administration of the imaging diagnostic agent for imaging is not particularly limited, but is usually parenteral, for example, administered by injection (subcutaneous injection, intravenous injection, intramuscular injection, intraperitoneal injection, etc.), transdermal, transmucosal, etc. be able to.
 投与量および投与回数は、患者の年齢、体重、診断の目的などによって異なるが、一般に、本発明のモノクローナル抗体は、1回あたり体重1kgあたり、約0.1mgから1000mgの範囲、好ましくは約0.1mgから100mgの範囲となるように投与することができる。 The dose and frequency of administration vary depending on the patient's age, weight, purpose of diagnosis, etc., but in general, the monoclonal antibody of the present invention is in the range of about 0.1 mg to 1000 mg, preferably about 0, per kg of body weight per dose. It can be administered in the range of 1 mg to 100 mg.
 腫瘍はTfR高発現している悪性腫瘍である。大腸がん、乳がん、肺がん、肝癌、膵臓がん、卵巣がん、子宮頚がん、膀胱がん、前立腺がん、成人性白血病などがあげられる。 The tumor is a malignant tumor with high TfR expression. Examples include colon cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, ovarian cancer, cervical cancer, bladder cancer, prostate cancer, and adult leukemia.
 以下に実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
実施例1:癌細胞株を使用したファージ抗体スクリーニング
(1)癌細胞に結合するファージ抗体のスクリーニング(肝癌細胞株HepG2)
 まずHepG2細胞を15cm デイッシュで培養し、それを2mg/ml collagenase I(Gibco BRL)/cell dissociation buffer(Gibco BRL)でデイッシュから解離させた。解離させた細胞を冷却したPBSで洗い、遠心により回収した。回収された細胞4x107を使用した。これに1x1013cfuのヒト抗体ファージライブラリー(特開2005-185281号公報、WO2008/007648号公報、WO2006/090750号公報を参照)を混ぜ、反応液の終濃度を1%BSA-0.1%NaN3/MEM、容積1.6mlとし、4℃にて4時間ゆっくり回転させて反応させた。反応終了後、反応液を二つに分け、それぞれを0.6mlの有機溶液(dibutyl phtalate cycloheximide 9:1)の上に重層し、マイクロ遠心機にて3000rpmの遠心力を2分間作用させ、細胞をチューブの底に沈降させた。それぞれのチューブについて、溶液を捨て、細胞を0.7mlの1%BSA/MEMで懸濁、0.7mlの有機溶媒の上に重層して遠心した。この操作をもう一度繰り返したのち、溶液を捨て、細胞を0.3mlのPBSで懸濁、液体窒素で凍結し、37℃で融解した。
Example 1: Phage antibody screening using cancer cell lines (1) Screening of phage antibodies that bind to cancer cells (hepatoma cell line HepG2)
First, HepG2 cells were cultured in a 15 cm dish, and then dissociated from the dish with 2 mg / ml collagenase I (Gibco BRL) / cell dissociation buffer (Gibco BRL). The dissociated cells were washed with chilled PBS and collected by centrifugation. Harvested cells 4 × 10 7 were used. This was mixed with a human antibody phage library of 1 × 10 13 cfu (see Japanese Patent Application Laid-Open No. 2005-185281, WO2008 / 007648, and WO2006 / 090750), and the final concentration of the reaction solution was 1% BSA-0.1% NaN3. / MEM, with a volume of 1.6 ml, and reacted by slowly rotating at 4 ° C. for 4 hours. After completion of the reaction, the reaction solution is divided into two parts, each layer is layered on 0.6 ml organic solution (dibutyl phtalate cycloheximide 9: 1), and the cells are allowed to act on the microcentrifuge at 3000 rpm for 2 minutes. Sedimented to the bottom of the tube. For each tube, the solution was discarded and the cells were suspended in 0.7 ml of 1% BSA / MEM, layered on 0.7 ml of organic solvent and centrifuged. After repeating this operation once more, the solution was discarded, and the cells were suspended in 0.3 ml of PBS, frozen in liquid nitrogen, and thawed at 37 ° C.
 これをOD0.5の大腸菌DH12S 20mlに1時間感染させ、その一部をアンピシリンプレートに蒔いて回収されたファージのtiterを算出した。ファージ感染大腸菌は600mlの2xYTGA培地(2xYT, 200μg/ml ampicillin sulfate, 1% glucose)にて30℃で通夜培養した。この通夜培養10mlを2xYTA培地(2xYT, 200μg/ml ampicillin sulfate)200mlと混ぜ、37℃にて1.5時間培養後ヘルパーファージKO7を1x1011入れ、37℃にて1時間培養したのち、800mlの2xYTGAK(2xYT, 200μg/ml ampicillin sulfate, 0.05% glucose, 50μg/ml kanamycin)を入れて30℃にて通夜培養した。これを8000rpmにて10分間遠心して上清1lを調製、それに200mlのPEG液(20% polyetyleneglycol 6000, 2.5M NaCl)を混ぜてよくかきまぜたのち、8000rpm 10分間の遠心を行いファージを沈殿させた。これを10mlのPBSに懸濁し、その一部を使用して大腸菌感染数を調べた。これが1stスクリーニングのファージである。 This was infected with 20 ml of OD0.5 Escherichia coli DH12S for 1 hour, and a portion thereof was placed on an ampicillin plate to calculate the titer of the recovered phage. The phage-infected Escherichia coli was cultured overnight at 30 ° C. in 600 ml of 2 × YTGA medium (2 × YT, 200 μg / ml ampicillin sulfate, 1% glucose). 10 ml of this overnight culture was mixed with 200 ml of 2 × YTA medium (2 × YT, 200 μg / ml ampicillin sulfate), cultured at 37 ° C. for 1.5 hours, then added with 1 × 10 11 helper phage KO7, cultured at 37 ° C. for 1 hour, and then 800 ml of 2 × YTGAK ( 2xYT, 200 μg / ml ampicillin sulfate, 0.05% glucose, 50 μg / ml kanamycin) was added and cultured overnight at 30 ° C. This was centrifuged at 8000 rpm for 10 minutes to prepare 1 l of supernatant, and 200 ml of PEG solution (20% polyetyleneglycol 6000, 2.5M NaCl) was mixed with it and stirred well, followed by centrifugation at 8000 rpm for 10 minutes to precipitate phages. . This was suspended in 10 ml of PBS, and a part thereof was used to examine the number of E. coli infections. This is the 1st screening phage.
 2edスクリーニングには培養細胞2x107と1stファージ1x1010を使用し、反応液の容積を0.8mlとした。反応液は1%BSA-0.1%NaN3/MEMで、全体のスケールを1stスクリーニングの半分で行った。 For 2ed screening, cultured cells 2 × 10 7 and 1st phage 1 × 10 10 were used, and the volume of the reaction solution was 0.8 ml. The reaction solution was 1% BSA-0.1% NaN3 / MEM, and the whole scale was half of the 1st screening.
 3rdスクリーニングは2ndファージ1x109を使用する以外は2ndスクリーニングと同じ条件で行った。 The 3rd screening was performed under the same conditions as the 2nd screening except that the 2nd phage 1 × 10 9 was used.
(2)ファージ抗体の抗体発現能力の解析
 スクリーニングによって得られた大腸菌を希釈して、100μg/mlのampicillinの入った普通寒天培地に蒔き、得られるコロニーをピックアップして2xYTGA培地にて30℃通夜培養、クラボウのPI-50にてDNAを抽出、dideoxy法で塩基配列を決定した。また、この通夜培養0.05mlを1.2mlの2xYTAI(2xYT,  200μg/ml ampicillin sulfate,0.5mM IPTG)に植えて30℃にて通夜培養、マイクロ遠心機にて15000rpm 5分間遠心して上清をとった。
(2) Analysis of antibody expression ability of phage antibody Dilute Escherichia coli obtained by screening, spread it on a normal agar medium containing 100 μg / ml ampicillin, pick up the obtained colonies, and overnight at 30 ° C. in 2 × YTGA medium Culture, extraction of DNA with Kurabo Industries PI-50, and determination of nucleotide sequence by dideoxy method. In addition, 0.05 ml of this overnight culture was planted in 1.2 ml of 2xYTAI (2xYT, 200 μg / ml ampicillin sulfate, 0.5 mM IPTG), cultured overnight at 30 ° C, and centrifuged at 15000 rpm for 5 minutes in a microcentrifuge to obtain the supernatant. .
 抗体はcp3融合タンパクとして発現されるので、それを用いた発現検討を行った。即ち、まず得られた上清をMaxisorp(NUNC)に37℃にて2時間反応させたのち、液を捨て、5%BSAを37℃にて2時間反応させてブロッキングを行った。液を捨て、0.05%Tween/PBSで2000倍希釈したウサギ抗cp3抗体(株式会社医学生物学研究所)を室温にて1時間反応させたのちPBSで洗浄し、0.05%Tween/PBSで2000倍希釈したHRP標識ヤギ抗ウサギIgG抗体(株式会社医学生物学研究所)を室温にて1時間反応させたのちPBSで洗浄し、100μlのOPD液を室温にて15分反応させ、2M硫酸アンモニウムにて反応を停止し、SPECTRAmax 340PC(Molecular Devices)にて492nmの吸光度を測定した。吸光度 0.5以上を陽性とした結果、1012種のクローンが陽性となった。 Since the antibody is expressed as a cp3 fusion protein, expression studies were performed using it. That is, first, the obtained supernatant was reacted with Maxisorp (NUNC) at 37 ° C. for 2 hours, and then the solution was discarded, and blocking was performed by reacting 5% BSA at 37 ° C. for 2 hours. The solution was discarded, and a rabbit anti-cp3 antibody (Medical and Biological Laboratories Inc.) diluted 2000 times with 0.05% Tween / PBS was reacted at room temperature for 1 hour, washed with PBS, and 2000 times with 0.05% Tween / PBS. The diluted HRP-labeled goat anti-rabbit IgG antibody (Medical and Biological Laboratories Inc.) was reacted at room temperature for 1 hour, washed with PBS, and reacted with 100 μl of OPD solution at room temperature for 15 minutes, with 2M ammonium sulfate. The reaction was stopped, and the absorbance at 492 nm was measured with SPECTRAmax 340PC (Molecular Devices). As a result of positive absorbance of 0.5 or more, 1012 clones were positive.
(3)DNA配列の解析
 上記(2)により抗体の発現の確認されたファージ1012種類に関して、既存法によりDNA配列を解析し、欠損領域を保持する不完全な抗体や配列が重複する抗体を排除し、独立した抗体配列を持つファージ抗体が410個を選別した。
(3) DNA sequence analysis With respect to 1012 types of phages whose antibody expression was confirmed by (2) above, DNA sequences were analyzed by existing methods, and incomplete antibodies retaining defective regions and antibodies with overlapping sequences were eliminated. Then, 410 phage antibodies having independent antibody sequences were selected.
 同様の手法により、下記の表1に示す21種類の癌細胞に関して、上記(1)~(3)のスクリーニングにより、独立配列を有するファージ抗体として以下の合計1863個を確立した。 By the same method, the following 1863 phage antibodies having independent sequences were established by screening (1) to (3) above for the 21 types of cancer cells shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例2:TfRの分泌型抗原を用いたELISA法による抗体の結合性評価試験
(1)TfR分泌細胞の調整
 癌細胞#MIAPaCa2, SKOv3(TfR高発現株)より、常法によりTfR 細胞外ドメインのcDNAを調整したのち、 pCMV-Script(クロンテク社製)に挿入、TfR発現ベクターを作成した。この発現ベクターを細胞株#293T  へ導入しTfRを分泌する発現細胞を作成した。
Example 2: Antibody binding evaluation test by ELISA using secreted antigen of TfR (1) Preparation of TfR-secreting cells From the cancer cells # MIAPaCa2, SKOv3 (TfR high-expressing strain), TfR extracellular domain by a conventional method After the cDNA was prepared, it was inserted into pCMV-Script (Clontech) to create a TfR expression vector. This expression vector was introduced into cell line # 293T to prepare expression cells that secrete TfR.
(2)ELISA系の作成
 TfR分泌細胞より得られたTfR抗原を用いて下記の要領でELISAによる結合活性評価を行った。Maxisorp immuno moduleに抗原を感作させた。具体的には10μg/mlの濃度で 50μl/well  37℃で2時間反応させた。その後、上清を捨て、ブロッキング操作に入った。具体的にはBlocking液(5% スキムミルク / 0.05% NaN3 / PBS)  200μl/well 37℃で2時間反応させた。その後ブロッキング溶液を除き、リン酸バッファーで1回洗った。その後、一次抗体として上記にあるサンプル抗体の発現培養上清100μl/well  37℃で1時間反応させた。その後上清を除き、リン酸バッファーで5回洗った。次に二次抗体としてRabbit anti-cp3ポリクローナルをPBS/0.05%Tween20で5000倍希釈したものを100μl/well  37℃で1時間反応さえて上清を除き、リン酸バッファーで5回洗った。次に二次抗体として anti-rabbit IgG(H+L)-HRPをPBS/0.05%Tween20で2000倍希釈したものを 100μl/well  37℃で1時間反応させた。その後上清を除き、リン酸バッファーで5回洗った。その後、発色試薬として OPD in 0.1Mクエン酸リン酸Buffer pH5.1  0.01%H2O2 100μl/wellで加え室温で5分反応させた。その後 2N H2SO4 100μl/well で加えて発色反応を停止した。その後、SPECTRAmax 340PC(Molecular Devices)にて492nmの吸光度を測定した。
(2) Preparation of ELISA system Using the TfR antigen obtained from TfR-secreting cells, the binding activity was evaluated by ELISA in the following manner. The antigen was sensitized to the Maxisorp immuno module. Specifically, the reaction was performed at 50 μl / well at 37 ° C. for 2 hours at a concentration of 10 μg / ml. Thereafter, the supernatant was discarded and the blocking operation was started. Specifically, Blocking solution (5% skim milk / 0.05% NaN 3 / PBS) was reacted at 200 μl / well at 37 ° C. for 2 hours. Thereafter, the blocking solution was removed and washed once with a phosphate buffer. Thereafter, the sample antibody expression culture supernatant as a primary antibody was reacted at 100 μl / well at 37 ° C. for 1 hour. Thereafter, the supernatant was removed and washed 5 times with a phosphate buffer. Next, Rabbit anti-cp3 polyclonal as a secondary antibody diluted 5000 times with PBS / 0.05% Tween20 was reacted at 100 μl / well at 37 ° C. for 1 hour, the supernatant was removed, and washed 5 times with phosphate buffer. Next, anti-rabbit IgG (H + L) -HRP as a secondary antibody diluted 2000 times with PBS / 0.05% Tween20 was reacted at 100 μl / well at 37 ° C. for 1 hour. Thereafter, the supernatant was removed and washed 5 times with a phosphate buffer. Thereafter, OPD in 0.1 M citrate phosphate buffer pH 5.1 0.01% H 2 O 2 100 μl / well was added as a color developing reagent and allowed to react at room temperature for 5 minutes. Thereafter, 2N H 2 SO 4 was added at 100 μl / well to stop the color reaction. Thereafter, the absorbance at 492 nm was measured with SPECTRAmax 340PC (Molecular Devices).
(3)TfR固相ELISAによる、抗TfR抗体の選択
 実施例1で得られたファージ抗体1863種類を、ELISA系で評価した結果、下記3種類の独立した配列を保持する抗体がヒトTfRに特異的反応性を示すことが確認された。ファージ抗体の遺伝子配列を読み、遺伝子配列から抗体PPAT-061-01, 抗体PPAT-061-02、抗体PPAT-061-03のCDRアミノ酸配列を得られた。
(3) Selection of anti-TfR antibody by TfR solid-phase ELISA As a result of evaluating 1863 phage antibodies obtained in Example 1 by ELISA, antibodies having the following three independent sequences are specific for human TfR. It was confirmed that it showed mechanical reactivity. The gene sequence of the phage antibody was read, and the CDR amino acid sequences of antibody PPAT-061-01, antibody PPAT-061-02, and antibody PPAT-061-03 were obtained from the gene sequence.
抗体PPAT-061-01:
VH:
CDR1: SYGMH(配列番号1)
CDR2: VISFDGSSKYYADSVKG(配列番号2)
CDR3: DSNFWSGYYSPVDV(配列番号3)
VL:
CDR1:TRSSGSIASNSVQ(配列番号4)
CDR2:YEDTQRPS(配列番号5)
CDR3:QSYDSAYHWV(配列番号6)
Antibody PPAT-061-01:
VH:
CDR1: SYGMH (SEQ ID NO: 1)
CDR2: VISFDGSSKYYADSVKG (SEQ ID NO: 2)
CDR3: DSNFWSGYYSPVDV (SEQ ID NO: 3)
VL:
CDR1: TRSSGSIASNSVQ (SEQ ID NO: 4)
CDR2: YEDTQRPS (SEQ ID NO: 5)
CDR3: QSYDSAYHWV (SEQ ID NO: 6)
抗体PPAT-061-02
VH:
CDR1: TSGVGVG(配列番号7)
CDR2: LIYWDDDKHYSPSLKS(配列番号8)
CDR3: NGDYGIEFDY(配列番号9)
VL:
CDR1:GGNNIGSKSVH(配列番号10)
CDR2:YDSDRPS(配列番号11)
CDR3:QVWDSSSDHVV(配列番号12)
Antibody PPAT-061-02
VH:
CDR1: TSGVGVG (SEQ ID NO: 7)
CDR2: LIYWDDDKHYSPSLKS (SEQ ID NO: 8)
CDR3: NGDYGIEFDY (SEQ ID NO: 9)
VL:
CDR1: GGNNIGSKSVH (SEQ ID NO: 10)
CDR2: YDSDRPS (SEQ ID NO: 11)
CDR3: QVWDSSSDHVV (SEQ ID NO: 12)
抗体PPAT-061-03
VH:
CDR1: NYGMS(配列番号13)
CDR2: WISAYNGNTNYGEKLQG(配列番号14)
CDR3: DDYYGSGVDAFDI(配列番号15)
VL:
CDR1:GGNKIGSKSVH(配列番号16)
CDR2:YDRDRPS(配列番号17)
CDR3:QVWDSSSDVV(配列番号18)
Antibody PPAT-061-03
VH:
CDR1: NYGMS (SEQ ID NO: 13)
CDR2: WISAYNGNTNYGEKLQG (SEQ ID NO: 14)
CDR3: DDYYGSGVDAFDI (SEQ ID NO: 15)
VL:
CDR1: GGNKIGSKSVH (SEQ ID NO: 16)
CDR2: YDRDRPS (SEQ ID NO: 17)
CDR3: QVWDSSSDVV (SEQ ID NO: 18)
実施例3:TfR高発現細胞株結合性の評価(FACS)
 単離した各種抗体クローンの各種細胞株に対する反応性を以下の通りFCMで確認した。実験操作は次の通りとした。まず、付着性細胞株については6穴プレート(Falcon 3516)において、ATL由来細胞株などの浮遊細胞株は浮遊培養フラスコ(70ml(スラントネック))において、培地(RPMI-1640:Sigma-Aldrich 社製、10%ウシ胎児血清、1%ペニシリンーストレプトマイシン溶液)を用い、CO2インキュベーター内、37℃で培養したものを使用した。
Example 3: Evaluation of TfR high expression cell line binding (FACS)
The reactivity of each isolated antibody clone against various cell lines was confirmed by FCM as follows. The experimental procedure was as follows. First, for adherent cell lines, in 6-well plates (Falcon 3516), for floating cell lines such as ATL-derived cell lines, in suspension culture flasks (70 ml (slant neck)), in medium (RPMI-1640: Sigma-Aldrich) , 10% fetal bovine serum, 1% penicillin-streptomycin solution) and cultured at 37 ° C. in a CO 2 incubator.
 付着性細胞株は2mg/ml collagenase I(Gibco BRL)/cell dissociation buffer(Gibco BRL)で培養皿から解離させたのち、10%FBS/D MEMにて回収した。一方、浮遊系細胞の場合は一度培地を除くためにそのままの状態で遠心分離(400xg, 4℃, 2分)した。このような操作の後、各細胞を2.5%BSA, 0.05%NaN3/PBS(BSA液)にて洗浄し、2.5% normal goat serum/BSA液100μlに懸濁して氷上に30分静置した後、106個/wellになるように分注し、遠心分離(400xg, 4℃, 2分)し上清を除いた。 The adherent cell line was dissociated from the culture dish with 2 mg / ml collagenase I (Gibco BRL) / cell dissociation buffer (Gibco BRL), and then recovered with 10% FBS / D MEM. On the other hand, in the case of suspension cells, the medium was once centrifuged to remove the medium (400 × g, 4 ° C., 2 minutes). After such operations, each cell was washed with 2.5% BSA, 0.05% NaN 3 / PBS (BSA solution), suspended in 100 μl of 2.5% normal goat serum / BSA solution and allowed to stand on ice for 30 minutes. The solution was dispensed at 10 6 cells / well and centrifuged (400 × g, 4 ° C., 2 minutes) to remove the supernatant.
 抗体を、5μg/mlになるように加えて、氷上に1時間静置した。これをBSA液にて一度洗浄したのち、抗cp3マウスモノクローナル抗体(株式会社医学生物学研究所)5μg/ml BSA液100μlにて懸濁し、氷上に1時間静置した。これをBSA液にて一度洗浄したのち、Alexa488結合抗マウスIgGヤギ抗体(Molecularprobe社製)5μg/ml BSA液100μlにて懸濁し、氷上に1時間静置した。これをBSA液にて二度洗浄したのち、BSA液500μlにて懸濁し、固定液(ホルムアル デヒド)50μlを添加し、10分静置した。その後PBS 150μl添加し、セルストレイナー(Becton Dickinson社製)にて処理したのち、Becton Dickinson社製FACScaliver(FCM)にて 細胞集団の蛍光強度を解析した。その結果、3種類の抗体は結合性評価を行ったTfR高発現をしている癌細胞株(A431、PANC1、KATOIII、MIAPaCa2)全てにおいて有意なピークシフトを示した。 Antibody was added to 5 μg / ml and left on ice for 1 hour. This was washed once with BSA solution, then suspended in 100 μl of 5 μg / ml BSA solution of anti-cp3 mouse monoclonal antibody (Medical and Biological Laboratories) and left on ice for 1 hour. This was washed once with BSA solution, then suspended in 100 μl of 5 μg / ml BSA solution of Alexa488-conjugated anti-mouse IgG goat antibody (Molecularprobe) and allowed to stand on ice for 1 hour. This was washed twice with BSA solution, suspended in 500 μl of BSA solution, 50 μl of fixative (formaldehyde) was added, and the mixture was allowed to stand for 10 minutes. Thereafter, 150 μl of PBS was added, treated with a cell strainer (Becton® Dickinson), and then the fluorescence intensity of the cell population was analyzed with a Becton® Dickinson FACScaliver (FCM). As a result, the three types of antibodies showed significant peak shifts in all the cancer cell lines (A431, PANC1, KATOIII, MIAPaCa2) expressing TfR that were evaluated for binding.
実施例4:IgG型抗体への変換
(IgG型抗体遺伝子の構築)
 抗体医薬としての有効性を探るため、一部の抗体をIgG型へ変換した。
 まず、scFVcp3型抗体のVH、VL遺伝子を用い、それをIgG1のFc領域と遺伝子の塩基配列内にクローニングする際必要な制限酵素サイトが無いことを確認した。抗体遺伝子を鋳型とし、H鎖とL鎖増幅用プライマーを用い、PCRを行った。増幅産物をIgG1 construction vectorのCMVプロモーター下流へライゲーションし、IgG型抗体遺伝子を含むプラスミドDNAを得た。
Example 4: Conversion to IgG type antibody (construction of IgG type antibody gene)
In order to investigate the effectiveness as an antibody drug, some antibodies were converted to IgG type.
First, using the VH and VL genes of scFVcp3-type antibody, it was confirmed that there were no restriction enzyme sites necessary for cloning into the Fc region of IgG1 and the nucleotide sequence of the gene. PCR was performed using the antibody gene as a template and primers for amplifying H and L chains. The amplified product was ligated downstream of the CM1 promoter of the IgG1 construction vector to obtain a plasmid DNA containing an IgG type antibody gene.
(IgG型抗体の発現)
 プラスミドDNAのCHO-K1細胞へのトランスフェクションにはGenePORTER Reagent( Gene Therapy Systems社:T201007)を使用した。まず、60mm培養皿にCHO-K1細胞が2×104cells/mlになるように、トランスフェクションの前日から準備しておいた(培地はα-MEM(Invitrogen:12561-056)に10%FCS(エキテック社:268-1)添加したものを使用)。
 プラスミドDNA 8μgを250μLの血清非含有培地(Serum Free Medium、以下SFMと略す-(Invtrogen:12052-098 CHO-S-SFMII)に溶かし、0.22μmのフィルターにかけた。GenePORTER Reagent 40μLを250μLのSFMに加えた。
(Expression of IgG type antibody)
GenePORTER Reagent (Gene Therapy Systems: T201007) was used for transfection of plasmid DNA into CHO-K1 cells. First, prepare CHO-K1 cells at 2 × 10 4 cells / ml in a 60 mm culture dish from the day before transfection (the medium is α-MEM (Invitrogen: 12561-056) in 10% FCS). (Exitec Inc .: 268-1) used).
8 μg of plasmid DNA was dissolved in 250 μL of serum-free medium (Serum Free Medium, hereinafter abbreviated as SFM- (Invtrogen: 12052-098 CHO-S-SFMII)) and applied to a 0.22 μm filter. GenePORTER Reagent 40 μL was applied to 250 μL of SFM. added.
 SFMに溶かしたプラスミドDNAとGenePORTER Reagentをすばやく混ぜ、室温30min静置した。
 細胞をSFM 2mlで2回洗い、プラスミドDNA-GenePORTER mixture (Transfection Medium)を細胞の入ったプレートにゆっくり加え、インキュベーター内、37℃、5時間培養した。
 トランスフェクション用培地を吸引し、αMEM 10%FCSで2回洗った後、αMEM 10%FCSを5ml加え、インキュベーター内、37℃、48時間培養した。
Plasmid DNA dissolved in SFM and GenePORTER Reagent were quickly mixed and allowed to stand at room temperature for 30 min.
The cells were washed twice with 2 ml of SFM, and plasmid DNA-GenePORTER mixture (Transfection Medium) was slowly added to the plate containing the cells, and cultured in an incubator at 37 ° C. for 5 hours.
The transfection medium was aspirated, washed twice with αMEM 10% FCS, 5 ml of αMEM 10% FCS was added, and the cells were cultured in an incubator at 37 ° C. for 48 hours.
 αMEM 10%FCS+700μg/ml G418(Sigma:G7034)の培地10mLに置き換え、セレクションを開始した(以後のmediumはαMEM 10%FCS+700μg/mL G418を使用)。37℃、48時間培養後、細胞をPBS 10mLにて洗浄し、0.25%Trypsin-EDTA(Sigma T4049)750μLにて処理後、αMEM 5mL加えプレートより剥離、回収し細胞数を測定した。その結果を元に限界希釈を10cells/200μL/well 96well 2platesの条件で行った。14日間培養後、各wellの培養上清を用いてELISAを行い、IgG型抗体の発現を確認した。 The medium was replaced with 10 mL of αMEM 10% FCS + 700 μg / ml G418 (Sigma: G7034), and selection was started (hereinafter, αMEM 10% FCS + 700 μg / mL G418 was used). After culturing at 37 ° C. for 48 hours, the cells were washed with 10 mL of PBS and treated with 750 μL of 0.25% Trypsin-EDTA (Sigma T4049), then 5 mL of αMEM was added, detached and collected from the plate, and the number of cells was measured. Based on the results, limiting dilution was performed under the conditions of 10 cells / 200 μL / well 96 well 2 plates. After culturing for 14 days, ELISA was performed using the culture supernatant of each well to confirm the expression of IgG type antibody.
(培養上清からの発現タンパク(IgG)の精製)
 Protein G Sepharose 4 Fast Flow(amersham pharmacia biotech:17-0618-01) 1mLをカラムにつめ、5mLのPBSで平衡化した。培養上清をアプライ、流速1滴/2秒で送液し、発現タンパク(IgG)をカラムに結合させた。10mLのPBSを流速1滴/2秒で送液し、非吸着成分を洗浄後、6mLの溶出バッファー(0.2M グリシン-HCl,pH3)を流速1滴/秒で送液、溶出液を1mLずつ1.5mlチューブに回収した。回収チューブにはあらかじめ中和バッファー(3M Tris-HCl)400μLを添加、回収と同時に中和した。溶出液をまとめ750μLまで濃縮、溶液置換(PBS、complete、0.01%NaN3)を行い、SDS-PAGEによって抗体タンパクの濃度を算出した。
(Purification of expressed protein (IgG) from culture supernatant)
1 mL of Protein G Sepharose 4 Fast Flow (amersham pharmacia biotech: 17-0618-01) was packed in a column and equilibrated with 5 mL of PBS. The culture supernatant was applied and fed at a flow rate of 1 drop / 2 seconds to bind the expressed protein (IgG) to the column. Deliver 10 mL of PBS at a flow rate of 1 drop / 2 seconds, wash away non-adsorbed components, and then feed 6 mL of elution buffer (0.2 M glycine-HCl, pH 3) at a flow rate of 1 drop / second, and 1 mL of the eluate. Collected in 1.5 ml tubes. 400 μL of neutralization buffer (3M Tris-HCl) was added to the collection tube in advance, and neutralization was performed simultaneously with the collection. The eluates were combined and concentrated to 750 μL, solution replacement (PBS, complete, 0.01% NaN 3 ) was performed, and the antibody protein concentration was calculated by SDS-PAGE.
実施例5:標識抗体の作製
(1)抗体へのDesferrioxamine(DF)の結合
 抗体を緩衝液(0.1M Na2CO3)に溶解し、抗体濃度を5mg/mLに調整した。一方で、p-scn-DF(Macrocyclics社製 B-705)を、DMSOに0.753mg/mLの濃度になるように溶解した。抗体とDFのモル比が1:3となるように混合、撹拌し、37℃で30分静置した。反応終了後、Sephadex G50(GEヘルスケア社製 17-0041-01)カラムでPBSを用いて精製した。使用抗体は、抗体PPAT-061-01である。
Example 5: Preparation of labeled antibody (1) Binding of Desferrioxamine (DF) to antibody The antibody was dissolved in a buffer solution (0.1 M Na2CO3) to adjust the antibody concentration to 5 mg / mL. On the other hand, p-scn-DF (B-705 manufactured by Macrocyclics) was dissolved in DMSO to a concentration of 0.753 mg / mL. The mixture was stirred and mixed so that the molar ratio of antibody to DF was 1: 3, and allowed to stand at 37 ° C. for 30 minutes. After completion of the reaction, purification was performed using PBS on a Sephadex G50 (GE Healthcare 17-0041-01) column. The antibody used is antibody PPAT-061-01.
(2)キレート導入率の確認
 (1)で精製する前のキレート-抗体反応液(5μL)に1μL Ferric chloride(Fe-59、パーキンエルマーNEZ037)を加え、室温で30分静置した。脱塩カラム(PD-10、GEヘルスケア社製 17-0435-01)に1μLをアプライし、0.5mLのPBSで30画分取得した。ガンマカウンター(アロカ)で30画分を測定した。抗体画分とキレート画分の比より、キレート導入率を算出した。
(2) Confirmation of chelate introduction rate 1 μL Ferric chloride (Fe-59, Perkin Elmer NEZ037) was added to the chelate-antibody reaction solution (5 μL) before purification in (1) and allowed to stand at room temperature for 30 minutes. 1 μL was applied to a desalting column (PD-10, GE Healthcare 17-0435-01), and 30 fractions were obtained with 0.5 mL of PBS. 30 fractions were measured with a gamma counter (Aroka). The chelate introduction rate was calculated from the ratio of the antibody fraction and the chelate fraction.
(3)89Zr標識抗体の調製
(i)89Zr標識
 精製した抗体PPAT-061-01を4mg/mL PBSに調整し、89Zr-oxalateを加えて室温で1時間静置した。
(ii)標識率の確認
 標識反応液(0.5μL)を薄層クロマトグラフィー(メルク)を用いて標識率を確認した。展開溶媒をDTPA水(pH7)とし、イメージングプレート(富士フィルム)に5秒間露光し、イメージスキャナー(富士フィルム)で画像を取得した。付属ソフトウエアで抗体とDPTAのintensityを測定し、標識率を算出した。
(3) Preparation of 89 Zr-labeled antibody (i) 89 Zr-labeled Purified antibody PPAT-061-01 was adjusted to 4 mg / mL PBS, 89 Zr-oxalate was added, and the mixture was allowed to stand at room temperature for 1 hour.
(Ii) Confirmation of the labeling rate The labeling rate of the labeling reaction solution (0.5 μL) was confirmed using thin layer chromatography (Merck). The developing solvent was DTPA water (pH 7), the plate was exposed to an imaging plate (Fuji Film) for 5 seconds, and an image was acquired with an image scanner (Fuji Film). The labeling rate was calculated by measuring the intensity of the antibody and DPTA with the attached software.
実施例6:腫瘍のイメージング
 実施例5で作成した、89Zr-DF抗TfR抗体を、ヒトTfRを高発現している腫瘍(MIA Paca-2、黄色矢頭)と、ヒトTfRを発現していない腫瘍(A4、水色矢頭)を皮下移植したヌードマウスに投与し、投与1日、2日、4日、6日後にPET撮像を行った。投与1日後から89Zr-DF抗TfR抗体(抗体PPAT-061-01)のMIA Paca-2移植腫瘍への明瞭な集積を認め、その集積は投与6日後まで上昇した。一方、A4移植腫瘍への集積は低く、時間とともに徐々に減少していった。89Zr-DF抗TfR抗体(抗体PPAT-061-01)は、TfRを発現している腫瘍の画像診断に適していることが示された。
Example 6: Tumor Imaging The 89 Zr-DF anti-TfR antibody prepared in Example 5 is a tumor that highly expresses human TfR (MIA Paca-2, yellow arrowhead) and does not express human TfR The tumor (A4, light blue arrowhead) was administered to nude mice transplanted subcutaneously, and PET imaging was performed 1 day, 2 days, 4 days, and 6 days after administration. From 1 day after administration, 89 Zr-DF anti-TfR antibody (antibody PPAT-061-01) was clearly accumulated in the MIA Paca-2 transplanted tumor, and the accumulation increased until 6 days after administration. On the other hand, accumulation in A4 transplanted tumors was low and gradually decreased with time. 89 Zr-DF anti-TfR antibody (antibody PPAT-061-01) was shown to be suitable for imaging of tumors expressing TfR.

Claims (16)

  1. ヒトトランスフェリン受容体を認識する抗体を放射性核種で標識した抗体を含む、画像用腫瘍診断剤。 A diagnostic agent for tumors for imaging, comprising an antibody obtained by labeling an antibody recognizing human transferrin receptor with a radionuclide.
  2. 抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号1、2、3で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号4、5、6で示されるアミノ酸配列を含む、請求項1に記載の画像用腫瘍診断剤。 CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody each include the amino acid sequences represented by SEQ ID NOs: 1, 2, and 3, and CDR1, CDR2, and CDR3 of the light chain variable region (VL) of the antibody are: The diagnostic agent for tumors for imaging according to claim 1, comprising the amino acid sequences represented by SEQ ID NOs: 4, 5, and 6, respectively.
  3. 抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号7、8、9で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号10、11、12で示されるアミノ酸配列を含む、請求項1に記載の画像用腫瘍診断剤。 CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences represented by SEQ ID NOs: 7, 8, and 9, respectively, and CDR1, CDR2, and CDR3 of the light chain variable region (VL) of the antibody are: The diagnostic agent for tumors for imaging according to claim 1, comprising the amino acid sequences represented by SEQ ID NOs: 10, 11, and 12, respectively.
  4. 抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号13、14、15で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号16、17、18で示されるアミノ酸配列を含む、請求項1に記載の画像用腫瘍診断剤。 CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences shown by SEQ ID NOs: 13, 14, and 15, respectively, and CDR1, CDR2, and CDR3 of the light chain variable region (VL) of the antibody are: The tumor diagnostic agent for imaging according to claim 1, comprising the amino acid sequences represented by SEQ ID NOs: 16, 17, and 18, respectively.
  5. 抗体が、ヒト抗体の定常領域を含む抗体である、請求項1から4のいずれか1項に記載の画像用腫瘍診断剤。 The diagnostic agent for tumor according to any one of claims 1 to 4, wherein the antibody is an antibody containing a constant region of a human antibody.
  6. ヒト抗体の定常領域が、ヒト抗体IgG1クラスの定常領域からなる、請求項5に記載の画像用腫瘍診断剤。 The diagnostic agent for tumor according to claim 5, wherein the constant region of the human antibody is composed of a constant region of the human antibody IgG1 class.
  7. 抗体が、Fab、Fab'、F(ab')2、一本鎖抗体(scFv)、二量体化V領域(Diabody)、ジスルフィド安定化V領域(dsFv)およびCDRを含むペプチドからなる群から選ばれる抗体断片である、請求項1から4のいずれか1項に記載の画像用腫瘍診断剤。 The antibody consists of a peptide comprising Fab, Fab ′, F (ab ′) 2 , single chain antibody (scFv), dimerized V region (Diabody), disulfide stabilized V region (dsFv) and CDR. The diagnostic agent for imaging tumors according to any one of claims 1 to 4, which is an antibody fragment selected.
  8. 放射性核種が、89Zr、99mTc、111In、113mIn、67Ga、68Ga、201Tl、51Cr、57Co、58Co、60Co、85Sr、197Hg、64Cu、123I、125I、及び131Iからなる群から選択される、請求項1から7のいずれか1項に記載の画像用腫瘍診断剤。 The radionuclide is 89 Zr, 99m Tc, 111 In, 113 m In, 67 Ga, 68 Ga, 201 Tl, 51 Cr, 57 Co, 58 Co, 60 Co, 85 Sr, 197 Hg, 64 Cu, 123 I, 125 The diagnostic agent for tumors for imaging according to any one of claims 1 to 7, which is selected from the group consisting of I and 131I .
  9. ヒトトランスフェリン受容体を認識する抗体、及び放射性核種を含む、画像用腫瘍診断剤キット。 A tumor diagnostic agent kit for imaging, comprising an antibody recognizing a human transferrin receptor and a radionuclide.
  10. 抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号1、2、3で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号4、5、6で示されるアミノ酸配列を含む、請求項9に記載の画像用腫瘍診断剤キット。 CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody each include the amino acid sequences represented by SEQ ID NOs: 1, 2, and 3, and CDR1, CDR2, and CDR3 of the light chain variable region (VL) of the antibody are: The tumor diagnostic agent kit for images according to claim 9, comprising the amino acid sequences represented by SEQ ID NOs: 4, 5, and 6, respectively.
  11. 抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号7、8、9で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号10、11、12で示されるアミノ酸配列を含む、請求項9に記載の画像用腫瘍診断剤キット。 CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences represented by SEQ ID NOs: 7, 8, and 9, respectively, and CDR1, CDR2, and CDR3 of the light chain variable region (VL) of the antibody are: The tumor diagnostic agent kit for imaging according to claim 9, comprising the amino acid sequences represented by SEQ ID NOs: 10, 11, and 12, respectively.
  12. 抗体の重鎖可変領域(VH)のCDR1、CDR2、CDR3が、それぞれ配列番号13、14、15で示されるアミノ酸配列を含み、抗体の軽鎖可変領域(VL)のCDR1、CDR2、CDR3が、それぞれ配列番号16、17、18で示されるアミノ酸配列を含む、請求項9に記載の画像用腫瘍診断剤キット。 CDR1, CDR2, and CDR3 of the heavy chain variable region (VH) of the antibody include the amino acid sequences shown by SEQ ID NOs: 13, 14, and 15, respectively, and CDR1, CDR2, and CDR3 of the light chain variable region (VL) of the antibody are: The tumor diagnostic agent kit for imaging according to claim 9, comprising the amino acid sequences represented by SEQ ID NOs: 16, 17, and 18, respectively.
  13. 抗体が、ヒト抗体の定常領域を含む抗体である、請求項9から12のいずれか1項に記載の画像用腫瘍診断剤。 The diagnostic imaging agent for an image according to any one of claims 9 to 12, wherein the antibody is an antibody containing a constant region of a human antibody.
  14. ヒト抗体の定常領域が、ヒト抗体IgG1クラスの定常領域からなる、請求項13に記載の画像用腫瘍診断剤キット。 The diagnostic agent kit for imaging according to claim 13, wherein the constant region of the human antibody is composed of a constant region of the human antibody IgG1 class.
  15. 抗体が、Fab、Fab'、F(ab')2、一本鎖抗体(scFv)、二量体化V領域(Diabody)、ジスルフィド安定化V領域(dsFv)およびCDRを含むペプチドからなる群から選ばれる抗体断片である、請求項9から12のいずれか1項に記載の画像用腫瘍診断剤キット。 The antibody consists of a peptide comprising Fab, Fab ′, F (ab ′) 2 , single chain antibody (scFv), dimerized V region (Diabody), disulfide stabilized V region (dsFv) and CDR. The tumor diagnostic agent kit for imaging according to any one of claims 9 to 12, which is a selected antibody fragment.
  16. 放射性核種が、89Zr、99mTc、111In、113mIn、67Ga、68Ga、201Tl、51Cr、57Co、58Co、60Co、85Sr、197Hg、64Cu、123I、125I、及び131Iからなる群から選択される、請求項9から15のいずれか1項に記載の画像用腫瘍診断剤キット。 The radionuclide is 89 Zr, 99m Tc, 111 In, 113 m In, 67 Ga, 68 Ga, 201 Tl, 51 Cr, 57 Co, 58 Co, 60 Co, 85 Sr, 197 Hg, 64 Cu, 123 I, 125 The tumor diagnostic agent kit for imaging according to any one of claims 9 to 15, which is selected from the group consisting of I and 131I .
PCT/JP2012/071260 2011-08-26 2012-08-23 Image-based tumor diagnosis agent containing anti-human transferrin receptor antibody WO2013031619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531245A JP5990523B2 (en) 2011-08-26 2012-08-23 Imaging diagnostic agent containing anti-human transferrin receptor antibody

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011184351 2011-08-26
JP2011-184351 2011-08-26

Publications (1)

Publication Number Publication Date
WO2013031619A1 true WO2013031619A1 (en) 2013-03-07

Family

ID=47756111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071260 WO2013031619A1 (en) 2011-08-26 2012-08-23 Image-based tumor diagnosis agent containing anti-human transferrin receptor antibody

Country Status (2)

Country Link
JP (1) JP5990523B2 (en)
WO (1) WO2013031619A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073641A1 (en) * 2012-11-08 2014-05-15 国立大学法人 宮崎大学 Antibody capable of specifically recognizing transferrin receptor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121179A2 (en) * 2004-06-07 2005-12-22 Raven Biotechnologies, Inc. Transferrin receptor antibodies

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478886B2 (en) * 2005-10-20 2014-04-23 ジョージタウン・ユニバーシティ Tumor-targeted nanodelivery system for improving early MRI detection of cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121179A2 (en) * 2004-06-07 2005-12-22 Raven Biotechnologies, Inc. Transferrin receptor antibodies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073641A1 (en) * 2012-11-08 2014-05-15 国立大学法人 宮崎大学 Antibody capable of specifically recognizing transferrin receptor
JPWO2014073641A1 (en) * 2012-11-08 2016-09-08 国立大学法人 宮崎大学 Antibodies that can specifically recognize transferrin receptor
US9593165B2 (en) 2012-11-08 2017-03-14 University Of Miyazaki Antibody capable of specifically recognizing transferrin receptor

Also Published As

Publication number Publication date
JP5990523B2 (en) 2016-09-14
JPWO2013031619A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5797687B2 (en) Monoclonal human tumor-specific antibody
JP7027530B2 (en) Antibodies to human DLK1 and their uses
JP2020531045A (en) Anti-CD166 antibody and its use
ES2664989T3 (en) ANTI-CEACAM6 antibodies and their uses
AU2017335991B2 (en) Neutralizing antibodies to the αVβ8 integrin complex for immunotherapy
TWI795415B (en) A novel anti-human CEACAM5 antibody Fab fragment
JP2021514649A (en) Human PD-L1 binding immunoglobulin
JP2020530285A (en) Therapeutic PSMA binding molecule
KR20120115995A (en) Radioactive metal-labeled anti-cadherin antibody
CN115803340A (en) anti-CD 3 antibodies and uses thereof
CN108025093B (en) Radiolabeled antibody fragments for use in the treatment of cancer
EP4368639A1 (en) Cd8alpha binding polypeptide and use thereof
EP3310816B1 (en) Cys80 conjugated immunoglobulins
WO2022017370A1 (en) Cd8 binding polypeptide and use thereof
JP2024516581A (en) Anti-human CD73 antibodies and their applications
CN116444666A (en) Preparation method and application of CDH17 specific diagnosis and treatment integrated molecular imaging probe
JP5990523B2 (en) Imaging diagnostic agent containing anti-human transferrin receptor antibody
JP2024514855A (en) Binding molecules for DLL3 and their uses
EP4298126A1 (en) Antibodies to igf2r and methods
JP2015062367A (en) Diabody type bispecific antibody to robo1 protein
JP2017024991A (en) Anti-cadherin-17 antibody and extra-corporeal imaging agent for gastric cancer
JP2016056165A (en) ANTIBODY FORMULATIONS AND ANTIBODY KITS FOR DIAGNOSIS OR TREATMENT OF CANCER OR TUMOR UTILIZING ANTI-α6β4-INTEGRIN ANTIBODIES
RU2807081C2 (en) Conjugate including ligand, spacer, peptide linker and biomolecule
EP2953975B1 (en) Immuno imaging agent for use with antibody-drug conjugate therapy
JP6241912B2 (en) Nuclear medicine diagnostic device control method, nuclear medicine diagnostic device, and diagnostic agent kit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829040

Country of ref document: EP

Kind code of ref document: A1