WO2013031320A1 - Charging system for vehicle - Google Patents

Charging system for vehicle Download PDF

Info

Publication number
WO2013031320A1
WO2013031320A1 PCT/JP2012/063977 JP2012063977W WO2013031320A1 WO 2013031320 A1 WO2013031320 A1 WO 2013031320A1 JP 2012063977 W JP2012063977 W JP 2012063977W WO 2013031320 A1 WO2013031320 A1 WO 2013031320A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
vehicle
charger
plug
battery
Prior art date
Application number
PCT/JP2012/063977
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 堀場
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013031320A1 publication Critical patent/WO2013031320A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a technique for preventing a battery from rising in a vehicle charging system.
  • EV vehicles electric vehicles: electric vehicles
  • EV vehicles etc. simply “vehicles”
  • a vehicle charging system for controlling charging from a charging station a system in which a charger for controlling charging of a battery in the vehicle from the charging station is mounted on the vehicle as an in-vehicle charger is common. .
  • the vehicle-mounted charger supplied with electric power from the charging station needs to control charging to both the traveling battery and the auxiliary battery.
  • the on-vehicle charger functions while the vehicle is stopped, and can be activated when a charging plug is inserted from the outside. For this reason, the in-vehicle charger needs to be always in a standby state (sleeping state as a processor unit for controlling the in-vehicle charger) even when the vehicle is stopped, and it is an issue to suppress current consumption during the stop. Yes.
  • Patent Document 1 As a conventional technique for preventing the auxiliary battery from rising, a technique is known in which the auxiliary battery is charged from the traveling battery at regular intervals after the ignition switch is turned off (for example, Patent Document 1). . It is conceivable to apply this prior art in a state where the plug is inserted from the charging station. However, in this conventional technique, in a case where the plug is inserted after being fully charged from the charging station, charging is stopped even though the charging station is connected and the power is used effectively. However, the power of the battery for traveling is consumed.
  • the following techniques are known as other conventional techniques for preventing the auxiliary battery from rising.
  • the charging start timing set by the user is after a predetermined time has elapsed, the power supply from the internal power supply circuit to the CPU or the like is stopped until the power supply from the charging station to the electric vehicle is started, and the power supply is started. Then, it is the technique which restarts electric power supply (for example, patent document 2).
  • a control pilot signal is always sent from the charging station to the vehicle side to notify the connection of the charging station even after charging from the charging station to the running battery in the vehicle is completed and the charging is stopped. Continue to be. Therefore, since the on-vehicle charger or the control circuit for controlling the vehicle-mounted charger must continue to receive the control pilot signal, the on-board charger cannot enter a complete sleep state. However, there is a problem that the electric power is consumed.
  • the following techniques are known as other conventional techniques for preventing the auxiliary battery from rising. While the sub power storage device is being charged, the system main relay of the main power storage device is kept on and the voltage conversion operation by the AC / DC converter is continued. As a result, the operation of the auxiliary machine (including the ECU) is continued during the charging period of the sub power storage device, and the auxiliary battery is prevented from rising.
  • the circuit configuration for controlling the power supply connection between the main power storage device and the sub power storage device becomes complicated, resulting in an increase in cost. Also, in cases such as when the plug is inserted after full charging from the charging station, charging is stopped even though the charging station is connected, and the power cannot be used effectively. There has been a problem that the power of the power storage device (traveling battery) is consumed.
  • the present invention aims to prevent a situation in which the auxiliary battery rises when the plug is inserted after being fully charged from the charging station.
  • a power supply cable plug connected to a charging station is connected to a vehicle connector to supply power from a power supply cable to a charger for charging a running battery and an auxiliary battery in the vehicle, and a charging stand.
  • a plug connection state detection unit that detects a state in which the plug is connected to the connector after charging of the traveling battery, and a plug In the connected state, every time a predetermined monitoring time elapses, the charging station is instructed to charge the auxiliary battery for a predetermined charging time, whereby the charging station supplies power to the charger for the predetermined charging time.
  • an additional charging unit for charging the auxiliary battery for charging the auxiliary battery.
  • the charging of the auxiliary battery in the vehicle from the charging station to the auxiliary battery in the vehicle is performed every predetermined time while the plug of the power cable is inserted into the connector after the charging of the driving battery is completed.
  • This embodiment prevents consumption of an auxiliary battery in a vehicle charging system that charges an EV vehicle or the like from a charging station.
  • FIG. 1 is a system configuration diagram of this embodiment.
  • a vehicle 100 such as an EV vehicle includes an auxiliary battery 101, a traveling battery 102, a charger 103, a charge control circuit 104, a communication circuit 105, a connector 106, and another ECU (engine control unit) 107.
  • the auxiliary battery 101 is a small capacity battery for driving electronic / electrical circuits of various auxiliary machines such as a headlight and a clock in the vehicle 100.
  • the traveling battery 102 is a large capacity battery for driving a traveling motor of the vehicle 100.
  • the charger 103 charges the auxiliary battery 101 and the traveling battery 102 with electric power supplied from the charging station 200 via the external power cable 400, the plug 401, the connector 106, and the internal power cable 108.
  • the charging control circuit 104 monitors the charging state in the charger 103.
  • the communication circuit 105 is connected to the charge control circuit 104, and exchanges charge control information such as charge monitoring result information with the charging station 200 based on a power line communication method or the like via the internal power cable 108 and the external power cable 400. Send and receive with.
  • the other ECU 107 is a computer unit for controlling a traveling system such as an engine.
  • the charger 103, the charging control circuit 104, the communication circuit 105, and the other ECU 107 are connected to each other by a CAN (car area network) 109 that is a digital communication cable.
  • the charging station 200 includes a charging circuit 201 and a communication circuit 202.
  • the communication circuit 202 transmits and receives charging control information based on the communication circuit 105 in the vehicle 100 and a power line communication method via the internal power cable 108 and the external power cable 400.
  • Charging circuit 201 supplies electric power from commercial power source 300 such as a household power source to vehicle 100 when communication circuit 202 receives charging control information instructing the start of charging from communication circuit 105 in vehicle 100. That is, the charging circuit 201 supplies power to the charger 103 in the vehicle 100 via the external power cable 400, the plug 401, the connector 106 in the vehicle 100, and the internal power cable 108.
  • Charging circuit 201 stops the supply of power to vehicle 100 when communication circuit 202 receives charging control information instructing the end of charging due to full charging from communication circuit 105 in vehicle 100. However, the charging circuit 201 continues to supply the control pilot signal to the charger 103 in the vehicle 100 while the plug 401 is connected to the connector 106 of the vehicle.
  • FIG. 2 is an explanatory diagram of a control pilot signal (hereinafter referred to as “CPLT signal”) supplied from the charging circuit 201 in the charging station 200 to the charger 103 in the vehicle 100.
  • the CPLT signal continues to be supplied from the charging circuit 201 to the charger 103 until the plug 401 of the external power cable 400 is connected to the connector 106 and then the plug 401 is removed from the connector 106.
  • This CPLT signal is a pulse signal that changes between +6 V (volts) and ⁇ 12 V during the period during which the battery 102 for traveling and the auxiliary battery 101 are being charged (FIG. 2A).
  • the pulse width of the CPLT signal changes according to the power capacity that can be supplied by the charging circuit 201.
  • the CPLT signal is as shown in FIG.
  • the pulse signal changes between + 9V and ⁇ 12V.
  • the charger 103 In order to determine whether or not the plug 401 has been removed from the connector 106, the charger 103 must receive the CPLT signal in the state of FIG. For this reason, the charger 103 cannot enter a complete sleep state during the period in which the plug is inserted even after the full charge of FIG. It is necessary to supply power to the control circuit 104 and the communication circuit 105. If the plug 401 is removed from the connector 106 and the CPLT signal becomes 0V, the charger 103 can be in a complete sleep state. Only at this stage can the supply of power from the auxiliary battery 101 to each of the circuits be stopped.
  • the wake-up is performed by the interruption of the CPLT signal, and power is supplied from the auxiliary battery 101 to the charger 103, the charge control circuit 104, and the communication circuit 105.
  • the charger 103 receives the CPLT signal from the charging station 200, and the charging battery 201 and the auxiliary battery 101 can be charged from the charging circuit 201. Become.
  • FIG. 3 is a flowchart of the first embodiment showing a control operation for realizing this operation.
  • the control operation shown in this flowchart is realized as an operation in which a CPU (central processing unit) (not shown) constituting the charging control circuit 104 of FIG. 1 executes a control program stored in a memory (not shown).
  • a CPU central processing unit
  • the charging control circuit 104 is in a standby state until the charging state of the charger 103 is fully charged (NO determination in step S301 is repeated).
  • step S301 the charging control circuit 104 activates an intermittent operation function (timer) for monitoring a certain period after the charging ends (full charging). (Step S302).
  • the charging control circuit 104 determines whether or not the plug 401 has been removed from the connector 106 (step S303). This determination operation is an operation for determining whether or not the CPLT signal received by the charging circuit 201 has reached 0 V (whether or not the period of FIG. 2C has been entered).
  • the charge control circuit 104 that executes this process operates as a plug connection state detection unit.
  • step S303 the charging control circuit 104 monitors the intermittent operation function (timer) activated in step S302 to determine whether or not a certain period of time has elapsed after the end of charging. Is determined (step S304).
  • timer the intermittent operation function
  • step S304 If the predetermined period has not elapsed after the end of charging and the determination in step S304 is NO, the charging control circuit 104 returns to the operation for determining whether the plug 401 is inserted or removed in step S303.
  • the charging control circuit 104 instructs charging start with a low current. Information is notified to the communication circuit 202 in the charging station 200 via the communication circuit 105.
  • the charging control circuit 104 notifies the communication circuit 202 in the charging station 200 via the communication circuit 105 of charging control information for instructing the end of charging when a fixed predetermined time has elapsed after this notification. During this time, the charging control circuit 104 instructs the charger 103 to charge only the auxiliary battery 101.
  • the charge control circuit 104 that executes this process operates as a supplementary charging unit.
  • the charging control circuit 104 returns to the activation of the intermittent operation function in step S302 after the addition charging for the predetermined period is completed.
  • step S306 If the plug 401 is removed from the connector 106 during the fixed monitoring period and the determination in step S303 is YES, the charging control circuit 104 clears the intermittent operation function (timer) activated in step S302 (step S306).
  • the charging control circuit 104 shifts to a sleep state in which only the interruption of the CPLT signal is monitored while minimizing the power consumption, and the charging control operation is terminated (step S307).
  • the power consumption in the auxiliary battery 101 becomes almost zero, and the battery is prevented from rising.
  • the charging is performed each time a certain period elapses while the plug 401 is inserted into the connector 106 after the charging of the traveling battery 102 is completed. It becomes possible to add and charge the auxiliary battery 101 in the vehicle 100 from the station 200 every predetermined time.
  • the first embodiment by simply providing a simple relay switch for charging only the auxiliary battery 101 in the charger 103, it is possible to realize additional charging to the auxiliary battery 101 without increasing the cost. In addition, it is possible to prevent a situation in which the battery of the auxiliary battery 101 rises in the plug insertion state.
  • FIG. 4 is a flowchart of the second embodiment showing a control operation that enables charging of the auxiliary battery 101 while the plug 401 is inserted after the battery 102 is fully charged.
  • the control operation shown in this flowchart is also realized as an operation in which a CPU (not shown) constituting the charging control circuit 104 of FIG. 1 executes a control program stored in a memory (not shown).
  • a CPU not shown
  • FIG. 4 the same steps as those in FIG.
  • the control operation of FIG. 4 is different from that of FIG. 3 in that the monitoring time during addition charging to the auxiliary battery 101 can be changed according to the charging state of the auxiliary battery 101 at the time of previous addition charging. In other words, the charging of the auxiliary battery 101 is optimized.
  • step S401 the charging control circuit 104 monitors the time until the current additional charging based on the additional charging voltage recorded during the previous additional charging in the process of step S ⁇ b> 402 described later. (Standby time) is calculated. More specifically, the charging control circuit 104 controls the monitoring time so that it is long when the previous charging voltage is high and short when it is low.
  • This control may be determined based on a function table indicating a relationship between a charging voltage and a monitoring time prepared in advance, or may be determined by classifying the monitoring time based on a threshold value of the charging voltage.
  • the charging control circuit 104 sets the monitoring time to a predetermined time when charging is performed for the first time after the running battery 102 is fully charged.
  • the charging control circuit 104 activates the intermittent operation function (timer) with the monitoring time calculated in step S401.
  • the monitoring time until the next additional charging is extended, and when the charging capacity is low and the charging voltage is low, the next additional charging is performed. It is possible to control the monitoring time up to short. In this way, the charging of the auxiliary battery 101 is optimized.
  • the monitoring time during addition charging to the auxiliary battery 101 is changed and controlled according to the charging state of the auxiliary battery 101 at the time of the previous additional charging.
  • the monitoring time may be constant, and the charging time during addition charging may be changed and controlled.
  • both the monitoring time and the charging time may be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

A charging control circuit (104) detects when a plug (401) is connected to a connector (106) after charging of a travel battery (102) has been completed by a charger (103). Next, while the plug (401) is connected, the charging control circuit (104) issues an instruction for an auxiliary battery (101) to be charged for a predetermined charging time, said charging instruction being issued to a charging station (200) via communication circuits (105, 202) every time a predetermined monitoring time elapses. As a result, power is supplied for the predetermined charging time from the charging station (200) to the charger (103) for additional charging to be carried out for the auxiliary battery (101) by the charger (103).

Description

車両用充電システムVehicle charging system
 本発明は、車両用充電システムにおけるバッテリあがりの防止技術に関する。 [Technical Field] The present invention relates to a technique for preventing a battery from rising in a vehicle charging system.
 近年、プラグインハイブリット車、EV車(エレクトリックビークル:電気自動車)が急速に発展しており(以下「EV車等」または単に「車両」と呼ぶ)、車の充電を行う充電スタンドや家庭用充電器等の充電ステーションの普及が見込まれる。充電ステーションからの充電を制御するための車両用充電システムにおいては、充電ステーションから車両内のバッテリへの充電を制御するための充電器が車載充電器として車両に搭載されたシステムが一般的である。 In recent years, plug-in hybrid vehicles and EV vehicles (electric vehicles: electric vehicles) have been rapidly developed (hereinafter referred to as “EV vehicles etc.” or simply “vehicles”), charging stations for charging vehicles and home charging. Widespread use of chargers and other charging stations. In a vehicle charging system for controlling charging from a charging station, a system in which a charger for controlling charging of a battery in the vehicle from the charging station is mounted on the vehicle as an in-vehicle charger is common. .
 車両内のバッテリとしては、走行用モータを駆動するための走行用バッテリと、車両内の電子・電気回路を駆動するための補機バッテリがある。このため、充電ステーションから電力を供給された車載充電器は、走行用バッテリと補機バッテリの両方に対する充電を制御する必要がある。 As the battery in the vehicle, there are a traveling battery for driving a traveling motor and an auxiliary battery for driving an electronic / electrical circuit in the vehicle. For this reason, the vehicle-mounted charger supplied with electric power from the charging station needs to control charging to both the traveling battery and the auxiliary battery.
 車載充電器は車両が停車している間に機能するものであり、外部から充電用のプラグが挿入されると起動できるようになっている。このため、車載充電器は停車中も常にスタンバイ(車載充電器を制御するプロセッサユニットとしてはスリープしている状態)となっている必要があり、停車中の消費電流を抑えることが課題となっている。 The on-vehicle charger functions while the vehicle is stopped, and can be activated when a charging plug is inserted from the outside. For this reason, the in-vehicle charger needs to be always in a standby state (sleeping state as a processor unit for controlling the in-vehicle charger) even when the vehicle is stopped, and it is an issue to suppress current consumption during the stop. Yes.
 こうした問題は車載充電器に限らず、EV車等においては、消費電流を抑制するため数々の工夫がなされてきている。特に車載充電器においては、充電用のプラグが挿入されていない状態(通常の停車状態)に比べ充電終了後にプラグが抜き取られていない状態のときに消費電流が大きくなってしまうことが判明した。これは、プラグ挿入状態では充電系統側からコントロールパイロット信号(CPLT信号)と呼ばれる充電用の信号が常に送出されるため、車載充電器はプラグが抜かれるまでは完全なスリープ状態になれないのが理由である。車載充電器が完全なスリープ状態になれないと、補機バッテリから車載充電器に電力が供給されてしまう。 These problems are not limited to on-vehicle chargers, and EVs and the like have been devised in many ways to reduce current consumption. In particular, it has been found that in an in-vehicle charger, current consumption increases when the plug is not removed after the end of charging, compared to a state where a charging plug is not inserted (normal stopping state). This is because a charging signal called a control pilot signal (CPLT signal) is always sent from the charging system side in the plug insertion state, so that the on-vehicle charger cannot enter a complete sleep state until the plug is unplugged. That is why. If the in-vehicle charger cannot be put into a complete sleep state, power is supplied from the auxiliary battery to the in-vehicle charger.
 このため、EV車等においては、ユーザが充電ステーションから充電を実行したにも関わらず、車両をしばらくの時間プラグ挿入状態のままにしておくだけで、補機バッテリがあがってしまうという状況が発生し得る。なお、走行用バッテリは車両が走行しない限り使用されることはないため、プラグ挿入状態での車両放置により走行用バッテリがあがることはない。 For this reason, in EV cars, etc., there is a situation in which the auxiliary battery rises only by leaving the vehicle in the plug-insertion state for a while even though the user performs charging from the charging station. Can do. Since the traveling battery is not used unless the vehicle travels, the traveling battery does not rise when the vehicle is left with the plug inserted.
 補機バッテリがあがらないようにするための従来技術として、イグニッションスイッチがオフになってから、一定時間ごとに走行用バッテリから補機バッテリを充電する技術が知られている(例えば特許文献1)。充電ステーションからのプラグ挿入状態においてこの従来技術を適用することは考えられる。しかし、この従来技術では、充電ステーションからの満充電後のプラグの挿入状態というようなケースにおいて、充電ステーションが接続されているにもかかわらず充電がストップしていてその電力を有効に利用することができず、走行用バッテリの電力が消費されてしまうという問題点を有していた。 As a conventional technique for preventing the auxiliary battery from rising, a technique is known in which the auxiliary battery is charged from the traveling battery at regular intervals after the ignition switch is turned off (for example, Patent Document 1). . It is conceivable to apply this prior art in a state where the plug is inserted from the charging station. However, in this conventional technique, in a case where the plug is inserted after being fully charged from the charging station, charging is stopped even though the charging station is connected and the power is used effectively. However, the power of the battery for traveling is consumed.
 補機バッテリがあがらないようにするための他の従来技術として、次のような技術が知られている。ユーザにより設定される充電開始タイミングが所定時間経過後である場合、充電ステーションから電動車両への電力供給が開始されるまで内部電源回路からCPUなどへの電力供給を停止させ、電力供給が開始されると電力供給を再開させる技術である(例えば特許文献2)。ここで、充電ステーションから車両内の走行用バッテリへの充電が完了して充電がストップした後であっても充電ステーションから車両側には常に充電ステーションの接続を通知するためのコントロールパイロット信号が送出され続ける。従って、車載充電器またはそれを制御する制御回路は、そのコントロールパイロット信号を受信し続けなければならないため、完全なスリープ状態になることができず、この従来技術を適用しても、補機バッテリの電力は消費されてしまうという問題点を有していた。 The following techniques are known as other conventional techniques for preventing the auxiliary battery from rising. When the charging start timing set by the user is after a predetermined time has elapsed, the power supply from the internal power supply circuit to the CPU or the like is stopped until the power supply from the charging station to the electric vehicle is started, and the power supply is started. Then, it is the technique which restarts electric power supply (for example, patent document 2). Here, a control pilot signal is always sent from the charging station to the vehicle side to notify the connection of the charging station even after charging from the charging station to the running battery in the vehicle is completed and the charging is stopped. Continue to be. Therefore, since the on-vehicle charger or the control circuit for controlling the vehicle-mounted charger must continue to receive the control pilot signal, the on-board charger cannot enter a complete sleep state. However, there is a problem that the electric power is consumed.
 補機バッテリがあがらないようにするための他の従来技術として、次のような技術が知られている。副蓄電装置の充電中においても主蓄電装置のシステムメインリレーをオン状態に保つとともに、AC/DCコンバータによる電圧変換動作を継続させる。これによって、副蓄電装置の充電期間に補機(ECUも含む)の動作を継続するとともに、補機バッテリが上がることを回避する技術である。しかし、この技術では、主蓄電装置と副蓄電装置との電力供給接続を制御するための回路構成が複雑になりコストアップを招く可能性がある。また、充電ステーションからの満充電後のプラグの挿入状態というようなケースにおいて、充電ステーションが接続されているにもかかわらず充電がストップしていてその電力を有効に利用することができず、主蓄電装置(走行用バッテリ)の電力が消費されてしまうという問題点を有していた。 The following techniques are known as other conventional techniques for preventing the auxiliary battery from rising. While the sub power storage device is being charged, the system main relay of the main power storage device is kept on and the voltage conversion operation by the AC / DC converter is continued. As a result, the operation of the auxiliary machine (including the ECU) is continued during the charging period of the sub power storage device, and the auxiliary battery is prevented from rising. However, with this technology, there is a possibility that the circuit configuration for controlling the power supply connection between the main power storage device and the sub power storage device becomes complicated, resulting in an increase in cost. Also, in cases such as when the plug is inserted after full charging from the charging station, charging is stopped even though the charging station is connected, and the power cannot be used effectively. There has been a problem that the power of the power storage device (traveling battery) is consumed.
特開2006-174619号公報JP 2006-174619 A 特開2010-288317号公報JP 2010-288317 A 特開2010-124535号公報JP 2010-124535 A
 本発明は、充電ステーションからの満充電後のプラグの挿入状態において、補機バッテリがあがってしまう状況を防止することを目的とする。 The present invention aims to prevent a situation in which the auxiliary battery rises when the plug is inserted after being fully charged from the charging station.
 本発明は、充電ステーションに接続した電源ケーブルのプラグを車両のコネクタに接続することにより電源ケーブルから車両内の走行用バッテリおよび補機バッテリの充電を行う充電器に給電を行うと共に、充電スタンドと車両との間で充電動作に関する充電制御情報を通信する車両充電システムにおいて、走行用バッテリの充電終了後であってプラグがコネクタに接続されている状態を検出するプラグ接続状態検出部と、プラグの接続状態において、所定の監視時間が経過する毎に、充電ステーションに補機バッテリに対する所定の充電時間の充電指示を行うことにより、充電ステーションから充電器に所定の充電時間の給電を行って充電器に補機バッテリへの充電を行わせる継ぎ足し充電部とを備える。 According to the present invention, a power supply cable plug connected to a charging station is connected to a vehicle connector to supply power from a power supply cable to a charger for charging a running battery and an auxiliary battery in the vehicle, and a charging stand. In a vehicle charging system that communicates charging control information related to a charging operation with a vehicle, a plug connection state detection unit that detects a state in which the plug is connected to the connector after charging of the traveling battery, and a plug In the connected state, every time a predetermined monitoring time elapses, the charging station is instructed to charge the auxiliary battery for a predetermined charging time, whereby the charging station supplies power to the charger for the predetermined charging time. And an additional charging unit for charging the auxiliary battery.
 本発明によれば、走行用バッテリの充電終了後に電源ケーブルのプラグがコネクタに挿入されている間、一定期間が経過する毎に、充電ステーションから車両内の補機バッテリに所定時間ずつの継ぎ足し充電を行うことを、簡単な構成で実現することが可能となる。これにより、コストアップせずにプラグ挿入状態における補機バッテリのバッテリあがりという事態を防止することが可能となる。 According to the present invention, the charging of the auxiliary battery in the vehicle from the charging station to the auxiliary battery in the vehicle is performed every predetermined time while the plug of the power cable is inserted into the connector after the charging of the driving battery is completed. Can be realized with a simple configuration. As a result, it is possible to prevent a situation where the battery of the auxiliary battery in the plug insertion state is raised without increasing the cost.
 また、補機バッテリに継ぎ足し充電を行う間の監視時間を、前回の継ぎ足し充電時の補機バッテリの充電状態に応じて変更可能とすることにより、補機バッテリの充電の最適化を図ることが可能となる。 In addition, it is possible to optimize the charging of the auxiliary battery by making it possible to change the monitoring time during the additional charging to the auxiliary battery according to the charging state of the auxiliary battery at the time of the previous additional charging. It becomes possible.
実施形態のシステム構成図である。It is a system configuration figure of an embodiment. コントロールパイロット信号の説明図である。It is explanatory drawing of a control pilot signal. 第1の実施形態のフローチャートである。It is a flowchart of a 1st embodiment. 第2の実施形態のフローチャートである。It is a flowchart of a 2nd embodiment. 第2の実施形態の動作説明図である。It is operation | movement explanatory drawing of 2nd Embodiment.
 以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。
 本実施形態は、充電ステーションからEV車等への充電を行う車両充電システムにおいて、補機バッテリの消費を防止するものである。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
This embodiment prevents consumption of an auxiliary battery in a vehicle charging system that charges an EV vehicle or the like from a charging station.
 図1は、本実施形態のシステム構成図である。
 EV車等である車両100は、補機バッテリ101、走行用バッテリ102、充電器103、充電制御回路104、通信回路105、コネクタ106、他ECU(エンジンコントロールユニット)107を備える。補機バッテリ101は、車両100内のヘッドライトや時計等の各種補機の電子・電気回路を駆動するための小容量電池である。走行用バッテリ102は、車両100の走行用モータを駆動するための大容量電池である。充電器103は、充電ステーション200から外部電源ケーブル400、プラグ401、コネクタ106、および内部電源ケーブル108を介して供給される電力を、補機バッテリ101および走行用バッテリ102に充電する。充電制御回路104は、充電器103における充電状態を監視する。通信回路105は、充電制御回路104に接続され、充電監視結果情報等の充電制御情報を、内部電源ケーブル108および外部電源ケーブル400を介した電力線通信方式等に基づいて、充電ステーション200との間で送受信する。他ECU107は、エンジン等の走行系を制御するためのコンピュータユニットである。充電器103、充電制御回路104、通信回路105、および他ECU107は、デジタル通信ケーブルであるCAN(カーエリアネットワーク)109によって相互に接続されている。
FIG. 1 is a system configuration diagram of this embodiment.
A vehicle 100 such as an EV vehicle includes an auxiliary battery 101, a traveling battery 102, a charger 103, a charge control circuit 104, a communication circuit 105, a connector 106, and another ECU (engine control unit) 107. The auxiliary battery 101 is a small capacity battery for driving electronic / electrical circuits of various auxiliary machines such as a headlight and a clock in the vehicle 100. The traveling battery 102 is a large capacity battery for driving a traveling motor of the vehicle 100. The charger 103 charges the auxiliary battery 101 and the traveling battery 102 with electric power supplied from the charging station 200 via the external power cable 400, the plug 401, the connector 106, and the internal power cable 108. The charging control circuit 104 monitors the charging state in the charger 103. The communication circuit 105 is connected to the charge control circuit 104, and exchanges charge control information such as charge monitoring result information with the charging station 200 based on a power line communication method or the like via the internal power cable 108 and the external power cable 400. Send and receive with. The other ECU 107 is a computer unit for controlling a traveling system such as an engine. The charger 103, the charging control circuit 104, the communication circuit 105, and the other ECU 107 are connected to each other by a CAN (car area network) 109 that is a digital communication cable.
 充電ステーション200は、充電回路201と通信回路202を備える。充電ステーション200と車両100が、外部電源ケーブル400、プラグ401、およびコネクタ106により接続されたときに、次のように動作する。通信回路202は、車両100内の通信回路105と、内部電源ケーブル108および外部電源ケーブル400を介した電力線通信方式等に基づいて、充電制御情報を送受信する。充電回路201は、通信回路202が車両100内の通信回路105から充電開始を指示する充電制御情報を受信したときに、家庭用電源等の商用電源300からの電力を車両100に供給する。すなわち、充電回路201は、外部電源ケーブル400、プラグ401、車両100内のコネクタ106および内部電源ケーブル108を介して、電力を車両100内の充電器103に供給する。充電回路201は、通信回路202が車両100内の通信回路105から満充電による充電終了を指示する充電制御情報を受信したときに、車両100への電力の供給を停止する。ただし、プラグ401が車両のコネクタ106に接続されている間、充電回路201はコントロールパイロット信号を車両100内の充電器103に供給し続ける。 The charging station 200 includes a charging circuit 201 and a communication circuit 202. When charging station 200 and vehicle 100 are connected by external power cable 400, plug 401, and connector 106, the following operation is performed. The communication circuit 202 transmits and receives charging control information based on the communication circuit 105 in the vehicle 100 and a power line communication method via the internal power cable 108 and the external power cable 400. Charging circuit 201 supplies electric power from commercial power source 300 such as a household power source to vehicle 100 when communication circuit 202 receives charging control information instructing the start of charging from communication circuit 105 in vehicle 100. That is, the charging circuit 201 supplies power to the charger 103 in the vehicle 100 via the external power cable 400, the plug 401, the connector 106 in the vehicle 100, and the internal power cable 108. Charging circuit 201 stops the supply of power to vehicle 100 when communication circuit 202 receives charging control information instructing the end of charging due to full charging from communication circuit 105 in vehicle 100. However, the charging circuit 201 continues to supply the control pilot signal to the charger 103 in the vehicle 100 while the plug 401 is connected to the connector 106 of the vehicle.
 図2は、充電ステーション200内の充電回路201から車両100内の充電器103に供給されるコントロールパイロット信号(以下、「CPLT信号」と称する)の説明図である。CPLT信号は、外部電源ケーブル400のプラグ401がコネクタ106に接続された後そのプラグ401がコネクタ106から抜き取られるまで、充電回路201から充電器103に供給され続ける。 FIG. 2 is an explanatory diagram of a control pilot signal (hereinafter referred to as “CPLT signal”) supplied from the charging circuit 201 in the charging station 200 to the charger 103 in the vehicle 100. The CPLT signal continues to be supplied from the charging circuit 201 to the charger 103 until the plug 401 of the external power cable 400 is connected to the connector 106 and then the plug 401 is removed from the connector 106.
 このCPLT信号は、走行用バッテリ102および補機バッテリ101の充電中の期間(図2(a))では、+6V(ボルト)から-12Vの間で変化するパルス信号である。また、CPLT信号のパルス幅は、充電回路201が供給可能な電力容量に応じて変化する。 This CPLT signal is a pulse signal that changes between +6 V (volts) and −12 V during the period during which the battery 102 for traveling and the auxiliary battery 101 are being charged (FIG. 2A). The pulse width of the CPLT signal changes according to the power capacity that can be supplied by the charging circuit 201.
 車両100内の通信回路105から充電ステーション200内の通信回路202に走行用バッテリ102の満充電による充電終了の充電制御信号が通知されると、CPLT信号は、図2(b)に示されるように、+9Vから-12Vの間で変化するパルス信号に変化する。 When the communication control circuit 105 in the vehicle 100 notifies the communication circuit 202 in the charging station 200 of a charge control signal for completion of charging due to the full charge of the traveling battery 102, the CPLT signal is as shown in FIG. The pulse signal changes between + 9V and −12V.
 その後、プラグ401がコネクタ106から抜き取られると、図2(c)に示されるように、車両100内の充電器103が受信するCPLT信号は0Vとなる。 Then, when the plug 401 is removed from the connector 106, the CPLT signal received by the charger 103 in the vehicle 100 becomes 0V as shown in FIG. 2 (c).
 プラグ401がコネクタ106から抜き取られたか否かを判別するために、充電器103は図2(b)の状態のCPLT信号を受信しなければならない。このため、図2(b)の満充電後であってもプラグが挿入されている期間では、充電器103は完全なスリープ状態になることはできず、補機バッテリ101から充電器103、充電制御回路104、および通信回路105に対して電力を供給する必要がある。プラグ401がコネクタ106から抜き取られてCPLT信号が0Vになれば、充電器103は完全なスリープ状態になることができる。この段階で初めて、補機バッテリ101から上記各回路への電力の供給を停止することができる。 In order to determine whether or not the plug 401 has been removed from the connector 106, the charger 103 must receive the CPLT signal in the state of FIG. For this reason, the charger 103 cannot enter a complete sleep state during the period in which the plug is inserted even after the full charge of FIG. It is necessary to supply power to the control circuit 104 and the communication circuit 105. If the plug 401 is removed from the connector 106 and the CPLT signal becomes 0V, the charger 103 can be in a complete sleep state. Only at this stage can the supply of power from the auxiliary battery 101 to each of the circuits be stopped.
 スリープ状態になった後は、CPLT信号の割込みでウェイクアップし補機バッテリ101から充電器103、充電制御回路104、および通信回路105に対して電力を供給する。これにより、図2(d)に示されるように、充電器103が充電ステーション200からCPLT信号を受信するようになり、充電回路201から走行用バッテリ102および補機バッテリ101への充電が可能となる。 After entering the sleep state, the wake-up is performed by the interruption of the CPLT signal, and power is supplied from the auxiliary battery 101 to the charger 103, the charge control circuit 104, and the communication circuit 105. As a result, as shown in FIG. 2 (d), the charger 103 receives the CPLT signal from the charging station 200, and the charging battery 201 and the auxiliary battery 101 can be charged from the charging circuit 201. Become.
 本実施形態では、図2(b)の走行用バッテリ102の満充電後のプラグ401の挿入状態で、間歇的に充電ステーション200から補機バッテリ101への充電を可能とする技術である。図3は、この動作を実現するための制御動作を示す第1の実施形態のフローチャートである。このフローチャートが示す制御動作は、図1の充電制御回路104を構成する特には図示しないCPU(中央演算処理装置)が特には図示しないメモリに格納された制御プログラムを実行する動作として実現される。 This embodiment is a technique that enables charging from the charging station 200 to the auxiliary battery 101 intermittently in the inserted state of the plug 401 after the fully charged battery 102 of FIG. 2B. FIG. 3 is a flowchart of the first embodiment showing a control operation for realizing this operation. The control operation shown in this flowchart is realized as an operation in which a CPU (central processing unit) (not shown) constituting the charging control circuit 104 of FIG. 1 executes a control program stored in a memory (not shown).
 図3のフローチャートの制御動作は、充電器103がCPLT信号の受信を開始してウェイクアップして図2(a)の状態になることにより、充電制御回路104により実行開始される。 3 is started by the charging control circuit 104 when the charger 103 starts receiving the CPLT signal, wakes up, and enters the state of FIG. 2A.
 充電制御回路104は、充電器103の充電状態が満充電になるまで待機状態となる(ステップS301のNO判定の繰返し)。 The charging control circuit 104 is in a standby state until the charging state of the charger 103 is fully charged (NO determination in step S301 is repeated).
 充電状態が満充電になって充電が終了しステップS301の判定がYESになると、充電制御回路104は、充電終了(満充電)後の一定期間を監視するための間歇動作機能(タイマ)を起動する(ステップS302)。 When the charging state is fully charged and charging is completed and the determination in step S301 is YES, the charging control circuit 104 activates an intermittent operation function (timer) for monitoring a certain period after the charging ends (full charging). (Step S302).
 次に、充電制御回路104は、プラグ401がコネクタ106から抜かれたか否かを判定する(ステップS303)。この判定動作は、充電回路201が受信するCPLT信号が0Vになったか否か(図2(c)の期間に入ったか否か)を判定する動作である。この処理を実行する充電制御回路104は、プラグ接続状態検出部として動作する。 Next, the charging control circuit 104 determines whether or not the plug 401 has been removed from the connector 106 (step S303). This determination operation is an operation for determining whether or not the CPLT signal received by the charging circuit 201 has reached 0 V (whether or not the period of FIG. 2C has been entered). The charge control circuit 104 that executes this process operates as a plug connection state detection unit.
 プラグ401が抜かれておらずステップS303の判定がNOならば、充電制御回路104は、ステップS302で起動された間歇動作機能(タイマ)を監視することにより、充電終了後一定期間が経過したか否かを判定する(ステップS304)。 If the plug 401 has not been removed and the determination in step S303 is NO, the charging control circuit 104 monitors the intermittent operation function (timer) activated in step S302 to determine whether or not a certain period of time has elapsed after the end of charging. Is determined (step S304).
 充電終了後一定期間が経過しておらずステップS304の判定がNOならば、充電制御回路104は、ステップS303のプラグ401の抜き挿し判定の動作に戻る。 If the predetermined period has not elapsed after the end of charging and the determination in step S304 is NO, the charging control circuit 104 returns to the operation for determining whether the plug 401 is inserted or removed in step S303.
 プラグ401がコネクタ106から抜かれない状態で充電(継ぎ足し充電を含む)の終了後一定期間が経過しステップS304の判定がYESになると、充電制御回路104は、低電流による充電開始を指示する充電制御情報を、通信回路105を介して充電ステーション200内の通信回路202に通知する。そして、充電制御回路104は、この通知の後固定の所定時間が経過したら充電終了を指示する充電制御情報を、通信回路105を介して充電ステーション200内の通信回路202に通知する。またこの間、充電制御回路104は、充電器103に対して、補機バッテリ101のみへの充電を指示する。この結果、充電ステーション200内の充電回路201から車両100内の充電器103に対して、固定の所定期間だけ低電流による電力が供給される。そして、充電器103は、この低電流電力に基づいて、固定の所定期間だけ補機バッテリ101への継ぎ足し充電を行う。この固定の所定期間は、ステップS304で判定される一定期間内に補機バッテリ101が消費するのに見合う電力を、充電ステーション200から補機バッテリ101に充電するのに必要十分な期間とする。この処理を実行する充電制御回路104は、継ぎ足し充電部として動作する。 When a predetermined period has elapsed after the end of charging (including supplementary charging) in a state where the plug 401 is not removed from the connector 106, and the determination in step S304 is YES, the charging control circuit 104 instructs charging start with a low current. Information is notified to the communication circuit 202 in the charging station 200 via the communication circuit 105. The charging control circuit 104 notifies the communication circuit 202 in the charging station 200 via the communication circuit 105 of charging control information for instructing the end of charging when a fixed predetermined time has elapsed after this notification. During this time, the charging control circuit 104 instructs the charger 103 to charge only the auxiliary battery 101. As a result, electric power with a low current is supplied from the charging circuit 201 in the charging station 200 to the charger 103 in the vehicle 100 for a fixed predetermined period. Then, the charger 103 performs additional charging to the auxiliary battery 101 for a fixed predetermined period based on the low current power. The fixed predetermined period is a period necessary and sufficient to charge the auxiliary battery 101 from the charging station 200 with electric power suitable for consumption by the auxiliary battery 101 within the predetermined period determined in step S304. The charge control circuit 104 that executes this process operates as a supplementary charging unit.
 上記所定期間の継ぎ足し充電の終了後、充電制御回路104は、ステップS302の間歇動作機能の起動に戻る。 The charging control circuit 104 returns to the activation of the intermittent operation function in step S302 after the addition charging for the predetermined period is completed.
 一定期間の監視期間中にプラグ401がコネクタ106から抜かれてステップS303の判定がYESになると、充電制御回路104は、ステップS302で起動した間歇動作機能(タイマ)をクリアする(ステップS306)。 If the plug 401 is removed from the connector 106 during the fixed monitoring period and the determination in step S303 is YES, the charging control circuit 104 clears the intermittent operation function (timer) activated in step S302 (step S306).
 そして、充電制御回路104は、消費電力を最小限に抑えてCPLT信号の割込みのみを監視するスリープ状態に移行し、充電制御動作を終了する(ステップS307)。この結果、補機バッテリ101での電力消費がほぼゼロになり、バッテリあがりが防止される。 Then, the charging control circuit 104 shifts to a sleep state in which only the interruption of the CPLT signal is monitored while minimizing the power consumption, and the charging control operation is terminated (step S307). As a result, the power consumption in the auxiliary battery 101 becomes almost zero, and the battery is prevented from rising.
 以上のようにして、充電制御回路104による制御動作の第1の実施形態により、走行用バッテリ102の充電終了後にプラグ401がコネクタ106に挿入されている間、一定期間が経過する毎に、充電ステーション200から車両100内の補機バッテリ101に所定時間ずつの継ぎ足し充電を行うことが可能となる。第1の実施形態では、充電器103内に補機バッテリ101のみへの充電を行う簡単なリレースイッチを設けるだけで、補機バッテリ101への継ぎ足し充電を実現することができ、コストアップせずにプラグ挿入状態における補機バッテリ101のバッテリあがりという事態を防止することが可能となる。 As described above, according to the first embodiment of the control operation by the charging control circuit 104, the charging is performed each time a certain period elapses while the plug 401 is inserted into the connector 106 after the charging of the traveling battery 102 is completed. It becomes possible to add and charge the auxiliary battery 101 in the vehicle 100 from the station 200 every predetermined time. In the first embodiment, by simply providing a simple relay switch for charging only the auxiliary battery 101 in the charger 103, it is possible to realize additional charging to the auxiliary battery 101 without increasing the cost. In addition, it is possible to prevent a situation in which the battery of the auxiliary battery 101 rises in the plug insertion state.
 図4は、走行用バッテリ102の満充電後のプラグ401の挿入状態で補機バッテリ101への充電を可能とする制御動作を示す第2の実施形態のフローチャートである。このフローチャートが示す制御動作も、図1の充電制御回路104を構成する特には図示しないCPUが特には図示しないメモリに格納された制御プログラムを実行する動作として実現される。図4のフローチャートにおいて、図3の場合と同じ処理には同じステップ番号を付してある。 FIG. 4 is a flowchart of the second embodiment showing a control operation that enables charging of the auxiliary battery 101 while the plug 401 is inserted after the battery 102 is fully charged. The control operation shown in this flowchart is also realized as an operation in which a CPU (not shown) constituting the charging control circuit 104 of FIG. 1 executes a control program stored in a memory (not shown). In the flowchart of FIG. 4, the same steps as those in FIG.
 図4の制御動作が図3と異なる点は、補機バッテリ101に継ぎ足し充電を行う間の監視時間を、前回の継ぎ足し充電時の補機バッテリ101の充電状態に応じて変更可能とすることにより、補機バッテリ101の充電の最適化を図った点である。 The control operation of FIG. 4 is different from that of FIG. 3 in that the monitoring time during addition charging to the auxiliary battery 101 can be changed according to the charging state of the auxiliary battery 101 at the time of previous addition charging. In other words, the charging of the auxiliary battery 101 is optimized.
 具体的には、走行用バッテリ102の満充電終了後でステップS301の判定がYESとなった場合、またはステップS305での前回の継ぎ足し充電終了後の後述するステップS402の処理の後に、充電制御回路104は、次のようにして今回の継ぎ足し充電までの監視時間を算出する(ステップS401)。すなわち、充電制御回路104は、図5の説明図として示されるように、後述するステップS402の処理で前回の継ぎ足し充電時に記録されている継ぎ足し充電電圧に基づいて、今回の継ぎ足し充電までの監視時間(待機時間)を算出する。より具体的には、充電制御回路104は、監視時間を、前回の継ぎ足し充電電圧が高いときには長く、低いときには短くするように制御する。この制御は、予め用意した充電電圧と監視時間の関係を示す関数テーブルに基づいて決定してもよいし、充電電圧の閾値に基づいて監視時間を分類して決定してもよい。また、充電制御回路104は、走行用バッテリ102の満充電後最初に継ぎ足し充電を行うときには、監視時間を予め決められた所定の時間に設定する。 Specifically, when the determination in step S301 becomes YES after the fully charged battery 102 has been fully charged, or after the process in step S402 described later after the last supplementary charging in step S305, the charge control circuit. 104 calculates the monitoring time until the current addition charging as follows (step S401). That is, as shown in the explanatory diagram of FIG. 5, the charging control circuit 104 monitors the time until the current additional charging based on the additional charging voltage recorded during the previous additional charging in the process of step S <b> 402 described later. (Standby time) is calculated. More specifically, the charging control circuit 104 controls the monitoring time so that it is long when the previous charging voltage is high and short when it is low. This control may be determined based on a function table indicating a relationship between a charging voltage and a monitoring time prepared in advance, or may be determined by classifying the monitoring time based on a threshold value of the charging voltage. The charging control circuit 104 sets the monitoring time to a predetermined time when charging is performed for the first time after the running battery 102 is fully charged.
 そして、図3のステップS302に対応するS302′では、充電制御回路104は、ステップS401で算出した監視時間で間歇動作機能(タイマ)を起動する。 In S302 ′ corresponding to step S302 in FIG. 3, the charging control circuit 104 activates the intermittent operation function (timer) with the monitoring time calculated in step S401.
 第2の実施形態では、補機バッテリ101の充電容量が多く継ぎ足し充電時の充電電圧が高いときには次の継ぎ足し充電までの監視時間を長くし、充電容量が少なく充電電圧が低いときには次の継ぎ足し充電までの監視時間を短く制御することが可能となる。このようにして、補機バッテリ101の充電の最適化が実現される。 In the second embodiment, when the charging capacity of the auxiliary battery 101 is large and the charging voltage at the time of charging is high, the monitoring time until the next additional charging is extended, and when the charging capacity is low and the charging voltage is low, the next additional charging is performed. It is possible to control the monitoring time up to short. In this way, the charging of the auxiliary battery 101 is optimized.
 以上説明した第2の実施形態では、前回の継ぎ足し充電時の補機バッテリ101の充電状態に応じて、補機バッテリ101に継ぎ足し充電を行う間の監視時間を変更制御した。これに対して、監視時間は一定として、継ぎ足し充電時の充電時間を変更制御してもよい。或いは、監視時間と充電時間の両方を制御してもよい。 In the second embodiment described above, the monitoring time during addition charging to the auxiliary battery 101 is changed and controlled according to the charging state of the auxiliary battery 101 at the time of the previous additional charging. On the other hand, the monitoring time may be constant, and the charging time during addition charging may be changed and controlled. Alternatively, both the monitoring time and the charging time may be controlled.

Claims (5)

  1.  充電ステーションに接続した電源ケーブルのプラグを車両のコネクタに接続することにより前記電源ケーブルから前記車両内の走行用バッテリおよび補機バッテリの充電を行う充電器に給電を行うと共に、前記充電スタンドと前記車両との間で充電動作に関する充電制御情報を通信する車両充電システムにおいて、
     前記走行用バッテリの充電終了後であって前記プラグが前記コネクタに接続されている状態を検出するプラグ接続状態検出部と、
     前記プラグの接続状態において、所定の監視時間が経過する毎に、前記充電ステーションに前記補機バッテリに対する所定の充電時間の充電指示を行うことにより、前記充電ステーションから前記充電器に前記所定の充電時間の給電を行って前記充電器に前記補機バッテリへの充電を行わせる継ぎ足し充電部と、
     を備えることを特徴とする車両用充電システム。
    By connecting a plug of a power cable connected to a charging station to a connector of a vehicle, power is supplied from the power cable to a charger for charging a traveling battery and an auxiliary battery in the vehicle, and the charging stand and the charging station In a vehicle charging system that communicates charging control information related to a charging operation with a vehicle,
    A plug connection state detection unit for detecting a state in which the plug is connected to the connector after charging of the traveling battery;
    When the predetermined monitoring time elapses in the connected state of the plug, the charging station is instructed to charge the auxiliary battery for a predetermined charging time, whereby the predetermined charging is performed from the charging station to the charger. An additional charging unit that feeds time and causes the charger to charge the auxiliary battery; and
    A vehicle charging system comprising:
  2.  前記プラグ接続状態検出部は、前記充電器において前記走行用バッテリへの充電が終了した状態を検出した後、前記充電ステーションから前記充電器にコントロールパイロット信号が供給されている状態を検出することにより前記プラグが前記コネクタに接続されている状態を検出する、
     ことを特徴とする請求項1に記載の車両用充電システム。
    The plug connection state detection unit detects a state in which the charging to the battery for traveling is completed in the charger and then detects a state in which a control pilot signal is supplied from the charging station to the charger. Detecting a state in which the plug is connected to the connector;
    The vehicle charging system according to claim 1.
  3.  前記継ぎ足し充電部は、
     前記充電器における前記補機バッテリへの充電電圧を記録し、
     前回の前記充電電圧に基づいて今回の前記所定の監視時間を算出する、
     ことを特徴とする請求項1または2に記載の車両用充電システム。
    The additional charging unit is
    Record the charging voltage to the auxiliary battery in the charger,
    The current predetermined monitoring time is calculated based on the previous charging voltage.
    The charging system for vehicles according to claim 1 or 2 characterized by things.
  4.  前記充電スタンドと前記車両との間の前記充電制御情報の通信は、前記電源ケーブルを使って行うPLC通信である、
     ことを特徴とする請求項1ないし3のいずれかに記載の車両充電システム。
    Communication of the charging control information between the charging station and the vehicle is PLC communication performed using the power cable.
    The vehicle charging system according to any one of claims 1 to 3, wherein
  5.  充電ステーションに接続した電源ケーブルのプラグを車両のコネクタに接続することにより前記電源ケーブルから前記車両内の走行用バッテリおよび補機バッテリの充電を行う充電器に給電を行うと共に、前記充電スタンドと前記車両との間で充電動作に関する充電制御情報を通信する車両充電方法において、
     前記走行用バッテリの充電終了後であって前記プラグが前記コネクタに接続されている状態を検出し、
     前記プラグの接続状態において、所定の監視時間が経過する毎に、前記充電ステーションに前記補機バッテリに対する所定の充電時間の充電指示を行うことにより、前記充電ステーションから前記充電器に前記所定の充電時間の給電を行って前記充電器に前記補機バッテリへの充電を行わせる、
     ことを特徴とする車両用充電方法。
    By connecting a plug of a power cable connected to a charging station to a connector of a vehicle, power is supplied from the power cable to a charger for charging a traveling battery and an auxiliary battery in the vehicle, and the charging stand and the charging station In a vehicle charging method for communicating charging control information related to a charging operation with a vehicle,
    Detecting a state in which the plug is connected to the connector after charging of the traveling battery is completed,
    When the predetermined monitoring time elapses in the connected state of the plug, the charging station is instructed to charge the auxiliary battery for a predetermined charging time, whereby the predetermined charging is performed from the charging station to the charger. Power the time and let the charger charge the auxiliary battery,
    A vehicle charging method.
PCT/JP2012/063977 2011-08-29 2012-05-30 Charging system for vehicle WO2013031320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011186108A JP2013048523A (en) 2011-08-29 2011-08-29 Vehicle charging system
JP2011-186108 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013031320A1 true WO2013031320A1 (en) 2013-03-07

Family

ID=47755836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063977 WO2013031320A1 (en) 2011-08-29 2012-05-30 Charging system for vehicle

Country Status (2)

Country Link
JP (1) JP2013048523A (en)
WO (1) WO2013031320A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518142A (en) * 2015-09-02 2018-07-05 エルジー・ケム・リミテッド Battery pack charge control apparatus and method
JP2018538772A (en) * 2015-11-18 2018-12-27 アーベーベー・シュバイツ・アーゲー Common line communication in cascaded inverters
CN109927578A (en) * 2019-03-27 2019-06-25 吉林大学 A kind of new-energy automobile recharging device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526697B1 (en) * 2013-10-25 2015-06-05 현대자동차주식회사 On-Board Charger in Green Car
JP2019017214A (en) * 2017-07-10 2019-01-31 株式会社豊田自動織機 Charger
JP7187822B2 (en) 2018-05-30 2022-12-13 トヨタ自動車株式会社 electric vehicle
CN108790893B (en) * 2018-06-20 2020-06-05 广东电科院能源技术有限责任公司 Alternating current charging pile and charging control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071989A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Vehicle charging controller and vehicle
JP2009136109A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Charge control device and method
JP2010141950A (en) * 2008-12-09 2010-06-24 Toyota Motor Corp Vehicle
JP2010161856A (en) * 2009-01-07 2010-07-22 Mitsubishi Motors Corp Charge controller for on-board battery charger
JP2010239670A (en) * 2009-03-30 2010-10-21 Fujitsu Ten Ltd Device and method for control of vehicle
JP2011055684A (en) * 2009-09-04 2011-03-17 Nippon Soken Inc Vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071989A (en) * 2007-09-13 2009-04-02 Toyota Motor Corp Vehicle charging controller and vehicle
JP2009136109A (en) * 2007-11-30 2009-06-18 Toyota Motor Corp Charge control device and method
JP2010141950A (en) * 2008-12-09 2010-06-24 Toyota Motor Corp Vehicle
JP2010161856A (en) * 2009-01-07 2010-07-22 Mitsubishi Motors Corp Charge controller for on-board battery charger
JP2010239670A (en) * 2009-03-30 2010-10-21 Fujitsu Ten Ltd Device and method for control of vehicle
JP2011055684A (en) * 2009-09-04 2011-03-17 Nippon Soken Inc Vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518142A (en) * 2015-09-02 2018-07-05 エルジー・ケム・リミテッド Battery pack charge control apparatus and method
US10756533B2 (en) 2015-09-02 2020-08-25 Lg Chem, Ltd. Battery pack charge control device and method
JP2018538772A (en) * 2015-11-18 2018-12-27 アーベーベー・シュバイツ・アーゲー Common line communication in cascaded inverters
US10833602B2 (en) 2015-11-18 2020-11-10 Abb Schweiz Ag Common line communication in cascaded inverters
CN109927578A (en) * 2019-03-27 2019-06-25 吉林大学 A kind of new-energy automobile recharging device
CN109927578B (en) * 2019-03-27 2023-11-03 吉林大学 New energy automobile independently charging device

Also Published As

Publication number Publication date
JP2013048523A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
CN107571745B (en) Battery charging system and battery charging method for electric vehicle
WO2013031320A1 (en) Charging system for vehicle
US8179086B2 (en) Control apparatus and control method
US10046661B2 (en) Detection of on-board charger connection to electric vehicle supply equipment
CN103119823B (en) Battery charge controller and charging system
US9618954B2 (en) Vehicle charging system and vehicle charging method with first and second charging operations
JP5293841B2 (en) Electric vehicle power supply system and control method thereof
EP3107178B1 (en) Power-transfer control device
KR101798514B1 (en) Vehicle and method of recharging battery therein
EP2767430A1 (en) Charging control device for vehicle, and vehicle equippped with same
JP2011182518A (en) Onboard charging control apparatus
WO2013054435A1 (en) Electric vehicle charging device
US20150352967A1 (en) Method and aparatus for controller wakeup
JP2010288317A (en) Electric vehicle
US9108522B2 (en) Vehicle-mounted controller
KR101838506B1 (en) Vehicle and method of recharging battery therein
CN111071042A (en) Control system and vehicle
JP5397202B2 (en) Vehicle control device
JP7099275B2 (en) In-vehicle control device
JP2016220397A (en) Electric vehicle
JP2013090421A (en) Charging system and communication device
JP5742709B2 (en) Vehicle and vehicle control method
CN112977064A (en) Low-power charging control system and control method for low-voltage storage battery
CN218702730U (en) Battery charging system and vehicle
EP2910406A2 (en) Controlling device for electric vehicle charger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828762

Country of ref document: EP

Kind code of ref document: A1