WO2013029562A1 - 用于多风电场并网的信息采集方法、调度方法和系统 - Google Patents

用于多风电场并网的信息采集方法、调度方法和系统 Download PDF

Info

Publication number
WO2013029562A1
WO2013029562A1 PCT/CN2012/080871 CN2012080871W WO2013029562A1 WO 2013029562 A1 WO2013029562 A1 WO 2013029562A1 CN 2012080871 W CN2012080871 W CN 2012080871W WO 2013029562 A1 WO2013029562 A1 WO 2013029562A1
Authority
WO
WIPO (PCT)
Prior art keywords
substation
information
wind farm
active power
wind
Prior art date
Application number
PCT/CN2012/080871
Other languages
English (en)
French (fr)
Inventor
王金行
赵生传
李文升
于大洋
王泽众
刘远龙
龚文杰
Original Assignee
山东电力集团公司青岛供电公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东电力集团公司青岛供电公司 filed Critical 山东电力集团公司青岛供电公司
Publication of WO2013029562A1 publication Critical patent/WO2013029562A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the invention relates to an information collection method, a scheduling method and a system for grid connection of multiple wind farms. Background technique
  • the actual wind power connected to the grid is affected by the wind speed, and the equipment is repaired and faulted. It is equal to the cause. Therefore, the simple wind power grid-connected active power fluctuation can not provide the forecasting information and wind speed fluctuation law required by the dispatching center. It needs comprehensive, detailed and real-time wind farm information to provide reliable operation and decision-making for the power grid dispatching center. Basis.
  • the current wind turbine information is directly transmitted to the dispatching center. Since each wind farm is composed of multiple wind turbines, as the number of grid-connected wind farms increases, the information of the wind turbines received by the dispatching center will be too large. The transmitted wind turbine information does not meet the needs of the dispatch center for active and reactive control decisions.
  • CN201369575Y is a Chinese patent "a wind power dispatch decision support device", which discloses a wind power dispatch decision support device, which uses the network to collect relevant data of the wind farm in real time, and deposits it into the EMS data server and wind power monitoring data. The server, the weather data server, the dispatch decision server, and then calculate the peak shaving scheme of the power grid to determine the operating state and the power of the wind turbine of each wind farm.
  • the above patent documents can guarantee the information integrity of all wind farm systems transmitted, they do not consider that when a large number of wind farms are connected to the dispatching center, a large amount of data transmission will result in low data transmission efficiency during communication.
  • the processing capacity of the dispatch center is too large, which increases the computational complexity and computational complexity of the dispatch center.
  • the traditional way of using optical fiber technology to establish a communication channel between the wind farm and the dispatch center for each wind farm needs to establish a fiber-optic communication channel with the dispatch center, so that the construction cost of the communication channel is higher.
  • the technical problem to be solved by the present invention is that the prior art is in order to ensure the transmission of information integrity of all wind farm systems, and the data transmission amount of the wind farm side and the dispatch center is too large, resulting in low data transmission efficiency, and the scheduling center is
  • the computational complexity is large and the computational complexity is high, and the system construction cost is high. Therefore, it is proposed to ensure the information integrity of all wind farm systems transmitted, and the data transmission volume of the wind farm and the dispatching center after grid connection can be reduced, and the scheduling is reduced.
  • the information gathering method for grid-connecting multiple wind farms of the present invention includes: Step 1: receiving wind turbine information transmitted by a plurality of information gathering terminal devices through a wind farm monitoring system, and integrating The wind farm information is sent to the substation;
  • Step 2 The received wind farm information is summarized and processed by the substation to obtain substation data information, and the substation data information is sent to the dispatch center.
  • the wind farm information includes: wind farm active power information, wind farm active power upper limit information and wind farm active power lower limit information, wind farm predicted active power information, and wind farm reactive power compensation capacity information;
  • the substation data information includes: substation active power information, substation active power upper limit information, substation active power lower limit information, substation predicted active power information, and substation reactive power compensation capacity information;
  • the substation active power is the sum of the active powers of the wind farms of the wind farm associated with the substation;
  • the upper limit of the active power of the substation is the upper limit of the active power of the wind farms associated with the substation And a lower limit of the active power of the substation is the sum of the lower limit of the active power of the wind farm associated with the substation;
  • the predicted active power of the substation is the predicted active power of the wind farm associated with the substation And
  • the substation reactive power compensation capacity is the sum of the wind farm reactive power compensation capacities of the wind farm associated with the substation.
  • the present invention further provides a scheduling method for grid-connecting multiple wind farms, including: Step 1: Receiving wind turbine information transmitted by a plurality of information gathering terminal devices through a wind farm monitoring system, and integrating the wind power into wind power Field information is sent to the substation;
  • Step 2 The received wind farm information is summarized and processed by the substation to obtain substation data information, and the substation data information is sent to the dispatch center;
  • Step 3 Send, by the dispatching center, the first scheduling instruction to the substation according to the received substation data information
  • Step 4 processing, by the substation, the received first scheduling instruction, and sending a second scheduling instruction to the corresponding wind farm monitoring system, thereby controlling control of operation of the wind farm.
  • the wind farm information includes: wind power active power information, and the wind farm has The upper limit of the work power and the active power lower limit information of the wind farm, the wind power predictive active power information, and the wind farm reactive power compensation capacity information;
  • the substation data information includes: substation active power information, substation active power upper limit information, substation active power lower limit Information, substation predicted active power information, and substation reactive power compensation capacity information; wherein, the substation active power is a sum of active powers of each of the wind farms associated with the substation; the substation active power upper limit is And the substation predicts that the power plant work compensation capacity is the sum of the wind farm work compensation capacities of the wind farm associated with the substation;
  • the dispatching center generates a first dispatching instruction according to the total amount of active power adjustment of the entire network, thereby allocating active power of each substation; and generating, by the substation, the active power of the substation allocated by the dispatching center Second scheduling instruction, thus Active with various wind farms for distribution.
  • the invention also proposes a scheduling system for grid-connecting multiple wind farms, comprising at least one dispatching center, a plurality of said substations; a plurality of said wind farm monitoring systems; and a plurality of wind farm information gathering terminals Equipment
  • Each of the wind farm monitoring systems communicates with a plurality of the information gathering terminal devices of the same wind farm; each of the substations communicates with a plurality of the wind farm monitoring systems, and each of the wind powers
  • the field monitoring system is in communication with one of the substations; each of the dispatching centers is in communication with a plurality of said substations, and each of said substations is in communication with one of said dispatching centers; wherein said wind farm monitoring system receives
  • the wind turbine information sent by the plurality of information collecting terminal devices is integrated into the wind farm information and sent to the substation; the substation summarizes and processes the wind farm information to obtain substation data information, and the The substation data information is sent to the dispatching center; the dispatching center sends a first scheduling instruction to the substation according to the received substation data information, the substation processes the first scheduling instruction, and sends a second scheduling instruction Go to the corresponding wind farm monitoring system to control the operation of the wind farm Line control.
  • the wind farm information includes: wind farm active power information, wind farm active power upper limit information and wind farm active power lower limit information, wind farm predicted active power information, and wind farm reactive power compensation capacity information;
  • the substation data information includes: substation active power information, substation active power upper limit information, substation active power lower limit information, substation predicted active power information, and substation reactive power compensation capacity information; wherein the substation active power is related to the substation The sum of the active powers of the wind farms of the associated wind farm; the upper limit of the active power of the substation is the sum of the lower limit of the active power of the wind farm associated with the lower limit of the wind farm associated with the substation;
  • the compensation capacity is the wind farm compensation capacity of the wind farm associated with the substation
  • the dispatching center generates a first scheduling command according to the total active power adjustment of the entire network, and allocates active power of each substation; the substation is based on the active power of the substation allocated by the dispatching center, The active power of the associated wind farms is assigned.
  • the above scheduling system wherein the substation communicates with the wind farm monitoring system through a 3G communication channel.
  • the dispatching center communicates with the substation through an optical fiber.
  • the wind farm monitoring system communicates with the information gathering device through an internal communication channel, collects various data information through remote signaling and telemetry commands, and stores the data information in the system server for query and use.
  • the above scheduling system further includes: a substation server configured to store the substation data information obtained by the substation processing; and a dispatch center server configured to store the substation data information received by the dispatch center.
  • the information collection terminal device comprises: a meteorological information collection terminal for collecting meteorological information; an electrical quantity collection terminal for collecting electrical quantity information of the wind farm electric power network; a collection terminal for collecting switch information; a device status information collection terminal for collecting device status information; an alarm information collection terminal for collecting alarm information; and an image information collection terminal for collecting Image information; and the main control system parameter monitoring terminal, used to collect the parameters of the main control system.
  • the information collection method, scheduling method and system of the present invention have the following technical effects with respect to the prior art:
  • the dispatching center needs to process more information and more decision variables, so that the algorithm and computing pressure of the dispatching center master station are constantly Increase.
  • the information collecting method of the present invention wherein the wind farm monitoring system receives wind farm information transmitted by a plurality of information collecting terminal devices, and transmits the wind farm information to a substation; receiving the substation through the substation
  • the obtained wind farm information is summarized and processed to obtain substation data information, and the substation data information is sent to the dispatch center; the above steps increase preprocessing of a large amount of wind farm information through the substation, and obtain data information about the substation.
  • the wind farm monitoring system and substation are both on the wind farm side and far from the dispatch center.
  • a dispatch center is used to manage and dispatch a large number of wind farm monitoring systems and substations, Communication between the substation and the dispatching center using fiber optics can greatly improve communication efficiency and improve the real-time performance of information collection and scheduling.
  • the traditional method uses fiber optic technology to establish a communication channel between the wind farm and the dispatch center.
  • a fiber-optic communication channel needs to be established with the dispatch center, and the construction of the communication channel will result in waste of resources.
  • the invention only uses one fiber communication channel, which can greatly save communication cost.
  • Figure 1 is a structural diagram of a scheduling system for a multi-wind farm connected to the grid;
  • Figure 2 is a structural diagram of the wind farm dispatching system.
  • 1 is the wind farm monitoring system
  • 2 is the 3G communication channel
  • 3 is the substation
  • 4 is the fiber communication channel
  • 5 is the dispatching center
  • 6 is the wind farm internal communication channel
  • 7 is the meteorological information gathering terminal
  • 8 is the electric quantity
  • the terminal is set
  • 9 is a switch quantity collection terminal
  • 10 is a device status information collection terminal
  • 11 is an alarm information collection terminal
  • 12 is an image information collection terminal
  • 13 is a main control system parameter monitoring terminal.
  • the dispatching system for grid connection of a plurality of wind farms as shown in Fig. 1 includes a dispatching center 5, a substation 3, a wind farm monitoring system 1 and various information gathering terminal devices of the wind farm.
  • the dispatch center 5 communicates with a plurality of substations 3 via a fiber optic communication channel 4.
  • a single substation 3 communicates with a plurality of wind farm monitoring systems 1 through a 3G communication channel 2. For a wind farm monitoring system 1, it belongs to only one substation 3 .
  • the dispatching center 5 communicates with the substation 3 through the optical fiber communication channel 4, and is configured to receive the processed plurality of wind farm information uploaded by the substation and send the dispatch command to the substation 3.
  • the substation 3 communicates with the plurality of wind farm monitoring systems 1 in the area through the 3G communication channel 2, and is configured to receive data information sent by the wind farm, summarize and process a plurality of wind farm data information, and preferably pass the optical fiber.
  • the communication mode of the communication channel 3 transmits the processed data information to the dispatch center 5; the substation 3 receives the dispatch command of the dispatch center 5, and sends the dispatch command to each wind farm monitoring system 1.
  • the wind farm monitoring system 1 communicates with the corresponding substation 3 through a communication mode preferably via the 3G communication channel 2, for transmitting data information of the wind farm to the substation 3, and receiving the scheduling instruction sent from the substation 3, and according to the scheduling The instruction adjusts the operation mode of the wind farm; the wind farm monitoring system 1 communicates with various information gathering terminal devices through the internal communication channel 6 of the wind farm, and collects various data information of the terminal device through the remote signal and the telemetry command.
  • the various information gathering terminal devices of the wind farm mainly include meteorological information collection.
  • the various information gathering devices of the field transmit the data information to the wind farm monitoring system 1 through the wind farm internal communication channel 6.
  • Multiple wind farm monitoring systems in the same area 1 upload the collected data information to the substation 3 in the area through the 3G communication channel 2 and perform preliminary processing and analysis.
  • the processed data information is uploaded to the dispatch center 5 through the fiber communication channel 4.
  • the dispatching instruction issued by the dispatching center 5 is first sent to the substation 3 through the optical fiber communication channel 4.
  • the substation 3 processes the scheduling instructions and distributes them to the corresponding wind farm monitoring system 1 through the 3G communication channel 2 to complete the corresponding scheduling operation.
  • the meteorological information collection terminal 7 uploads the collected meteorological data information to the wind farm monitoring system 1 through the wind farm internal communication channel 6; the wind farm monitoring system 1 stores the meteorological data information into its system server. Then, the monitoring system of the plurality of wind farms in the same area uploads the meteorological data information to the substation 3 in the area where the wind farm group is located through the communication mode preferably using the 3G communication channel; the substation 3 summarizes the meteorological data information uploaded by all the wind farms. And processing, and the processed data information is stored in its system server.
  • the substation 3 uploads the processed meteorological data information to the dispatch center 5 through a communication mode preferably selected by the optical fiber communication channel 4; the dispatch center 5 analyzes the meteorological data information, provides reference data for scheduling and operation, and receives the meteorological data.
  • the data information is stored in its system server, and the uploading of weather data of multiple wind farms has been completed.
  • the dispatching center staff issues scheduling commands according to various data information provided by the dispatching center 5 to adjust the operation mode of a certain wind farm; the dispatching instructions are sent to the corresponding substation 3 through a communication mode preferably a fiber-optic communication channel.
  • the substation is processed according to the object and the preferred level of the scheduling instruction, and is transmitted to the corresponding wind farm monitoring system by the communication mode preferably selected as the 3G communication channel 2.
  • the wind farm related equipment responds to the dispatching command and changes the operating mode under the control of the monitoring system, and the scheduling operation is completed.
  • the information collecting terminal device preferably includes: a meteorological information collecting terminal for collecting meteorological information; an electric quantity collecting terminal for collecting electric quantity information of the wind farm electric power network; and a switch quantity collecting terminal,
  • the device information collection device the device status information collection terminal is used to collect device status information; the alarm information collection terminal is used to collect alarm information; the image information collection terminal is used to collect image information;
  • the control system parameter monitoring terminal is used to collect the parameters of the main control system.
  • the above meteorological information may include wind speed, wind direction, temperature, humidity, rainfall and air pressure.
  • electrical quantity information, switch quantity information, equipment status information, alarm information, image information and master control including the wind farm power network may be uploaded.
  • the scheduling method and system of the present embodiment increase the pre-processing of a large amount of wind farm information through a substation, obtain data information about the substation, and then send the data information to the dispatching center, thereby reducing the dispatching center.
  • the amount of information received thereby reduces the amount of data transmission and improves the efficiency of data transmission.
  • a dispatching system for multi-wind farm grid connection as shown in FIG. 1 includes a dispatch center 5, a plurality of said substations 3; a plurality of said wind farm monitoring systems 1; and a plurality of wind farm information gathering terminal devices
  • Each of the wind farm monitoring systems 1 communicates with a plurality of the information gathering terminal devices of the same wind farm; each of the substations 3 communicates with a plurality of the wind farm monitoring systems 1
  • the wind farm monitoring system 1 communicates with one of the substations 3; the dispatch center 5 communicates with a number of the substations 3.
  • the wind farm monitoring system 1 receives wind turbine information transmitted by a plurality of the information collection terminal devices, and integrates the wind farm information into the substation 3;
  • the wind farm information preferably includes: wind farm active power Information, wind power active power upper limit information and wind farm active power lower limit information, wind farm predicted active power information, and wind farm reactive power compensation capacity information;
  • the substation 3 aggregates and processes the wind farm information to obtain corresponding substation data information, wherein the substation data information includes: substation active power information, substation active power upper limit information, substation active power lower limit information, substation predicted active power Power information, and substation reactive power compensation capacity information; the substation active power is the sum of the active powers of each of the wind farms associated with the substation; the substation active power upper limit is the wind power associated with the substation a sum of the upper limit of the active power of the wind farm; the lower limit of the active power of the substation is the sum of the lower limit of the active power of the wind farm associated with the substation; the substation predicting the active power and the substation The sum of the reactive power compensation capacities of the wind farms of the wind farm associated with the substation.
  • the substation data information includes: substation active power information, substation active power upper limit information, substation active power lower limit information, substation predicted active power Power Information, and substation reactive power compensation capacity information;
  • the substation active power is the sum of the active powers of
  • Wind farm active power P 2 , where is the active power of the wind farm, Pi is the active power of the first unit, which is the number of wind farm units.
  • the upper limit of the active power of the wind farm and the lower limit of the active power of the wind farm are: / . affectionate, max and; mecanicophil, min ;
  • the wind farm predicts the active power as: Pf amJor ',
  • the reactive power compensation capacity of the wind farm is: q .
  • the substation active power is: Psub ⁇ Pf ⁇ , j , where; is the active power of the J'th wind farm.
  • the upper limit of the active power of the substation and the lower limit of the active power of the substation are:
  • the substation reactive power compensation capacity is:
  • the dispatching center 5 sends a first scheduling instruction to the substation 3 according to the received substation data information, and the substation 3 performs the first scheduling instruction Processing, and sending a second scheduling instruction to the corresponding wind farm monitoring system 1, thereby controlling the operation of the wind farm, that is, performing active and reactive power control through the dispatch center 5.
  • the scheduling center generates the first scheduling instruction according to the total active power adjustment amount of the entire network, so that the active power active power allocation algorithm for each substation is specifically as follows:
  • is the active power adjustment amount of the whole network
  • ' is the active power value of the substation.
  • the substation generates the second scheduling command based on the active power of the substation allocated by the dispatch center, and allocates the active power of each wind farm associated with it.
  • the active power allocation algorithm is as follows:
  • the dispatch center 5 only obtains the information required for the scheduling work of the subordinate substations 3 themselves, and does not receive information related to the wind farm dispatching from the wind farm monitoring system of the lower substation 3, nor does it receive the wind farm. Subordinate wind turbine information.
  • the distributed tuning system not only ensures the information integrity of all wind farm systems, but also takes into account the information processing complexity of the dispatch center.
  • the dispatching center needs to process more information and more decision variables, so that the algorithm and computing pressure of the dispatching center master station is increasing.
  • the dispatching and collecting system utilizes the substation to preprocess a large amount of wind farm information, and then provides the preprocessed information to the scheduling center main station, which significantly reduces the computational complexity and computational complexity of the dispatching center main station.
  • the substation as a transformable embodiment preferably communicates with the wind farm monitoring system 1 via a 3G communication channel 2; the dispatch center 5 preferably communicates with the substation 3 via a fiber optic communication channel 4.
  • the wind farm monitoring system 1 communicates with the information gathering device through an internal communication channel, collects various data information through remote signaling and telemetry commands, and stores the data information in the system. In the server for easy query and use.
  • system may further include a substation server for storing the substation data information obtained by the substation processing; and a dispatch center server, configured to store the substation received by the dispatch center Data information.
  • the information collection terminal device preferably includes: a meteorological information collection terminal 7 for collecting weather information; and an electrical quantity collection terminal 8 for collecting electrical quantity information of the wind farm electric power network.
  • the switch quantity collection terminal 9 is configured to collect the switch quantity information;
  • the device status information collection terminal 10 is configured to collect the device status information;
  • the alarm information collection terminal 11 is configured to collect the alarm information;
  • the terminal 12 is configured to collect image information, and the main control system parameter monitoring terminal 13 is configured to collect the main control system parameters.
  • only one level substation is provided between the dispatch center and the wind farm monitoring system, and the invention can also be based on the number of wind farm monitoring systems, the upper and lower limits of active and reactive power, and the active and reactive power of the substation.
  • the upper and lower limits are used to determine the number of substations.
  • the present invention It can also be extended to set up a multi-stage substation architecture between the dispatch center and the wind farm monitoring system, and based on the above information gathering method of the present invention, and the same principle of the scheduling method, the corresponding information gathering work and scheduling work are performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Wind Motors (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种用于多风电场并网的信息采集方法、调度方法和系统。该调度方法包括:步骤1,通过风电场监控系统(1)接收由若干个信息采集终端设备(7、8、9、10、11、12、13)发送来的风电场信息,并将风电场信息发送至变电站(3);步骤2,通过变电站对接收到的风电场信息进行汇总和处理,得到变电站数据信息,并将变电站数据信息发送至调度中心(5);步骤3,通过调度中心根据接收到的变电站数据信息发送第一调度指令到变电站;步骤4,通过变电站对接收到的第一调度指令进行处理,并发送第二调度指令到相应的风电场监控系统,从而对风电场的运行进行控制。

Description

用于多风电场并网的信息采集方法、 调度方法和系统 技术领域
本发明涉及一种用于多风电场并网的信息釆集方法、 调度方法和系统。 背景技术
近年来, 美国、 欧洲、 日本以及中国等各国竟相加大对可再生能源的利用, 尤其是风能资源, 这引起风电场的数量急剧增长, 使风电场的有功出力在电力 系统的电源中占有越来越重的比例。 风电有功功率的波动对电网调度的运行与 决策具有重要意义, 其中全面的、 实时的风电场信息与可靠的通信通道是保证 电网调度指令可靠、 安全与准确的重要基础和前提。 然而目前电网调度中心仅 能获取风电场的有功、 无功、 电压和电流等电气量和开关状态等状态量信息, 实际风电并网有功功率的变动除了受到风速的影响, 还与设备检修与故障等于 原因相关, 因此, 单纯的风电并网有功功率波动不能提供调度中心所需的预测 信息与风速波动规律, 需要全面的、 详细的、 实时的风电场信息为电网调度中 心的运行与决策提供可靠的依据。
目前的风机信息釆集后直接传输至调度中心, 由于各风电场由多台风电机 组成, 所以随着并网风电场的数量逐渐增多, 会造成调度中心接收的风电机组 信息数据过于庞大, 并且所传输的风电机组信息并不能满足调度中心有功和无 功控制决策的需求。
目前风电场信息与调度信息通过光纤通信通道进行交互。 由于风电场的数 量日益增多且在地理分布上具有分散性特点, 因此, 所有风电场都铺设光纤到 调度中心的通信通道建设方案具有难度大、 投资高和扩展性差等缺点, 同时, 风电场数据直接上传至调度中心的方案会导致通信通道需要传输海量的信息到 调度中心, 将无法满足分布式风电接入系统产生的大数据量传输需求。 专利文 献号为 CN101498927A的中国专利"风电场群中央综合监控系统", 公开了一种 基于地理信息系统系统和数据釆集与监视控制系统所构建的风电场群中央监控 系统, 是通过将各主要功能模块集成在中央监控平台上实现各项监控功能。 专 利文献号为 CN201369575Y的中国专利"一种风电调度决策支持装置", 公开了 一种风电调度决策支持装置, 是利用网络实时釆集风电场的相关数据, 并存入 EMS数据服务器、 风电监测数据服务器、 气象数据服务器、 调度决策服务器, 进而计算电网的调峰方案, 以此确定各个风电场的风电机组的运行状态和上网 功率。 以上专利文献虽然可以保证所传输的所有风电场系统的信息完整性, 但 均未考虑当大量风电场并网与调度中心进行通信时, 大量的数据传输会造成通 信过程中数据传输效率较低, 另外, 还会导致调度中心信息处理量过大, 提高 了调度中心的运算量和运算复杂度。 另外, 传统方式釆用光纤技术建立风电场与调度中心的通信通道, 对于每 个风电场均需要与调度中心建立一条光纤通信通道, 从而使得通信通道的建设 成本较高。
发明内容
本发明要解决的技术问题在于, 现有技术在为了保证传输所有风电场系统 的信息完整性, 而风电场侧与调度中心数据传输量过大, 导致数据传输效率较 低, 且使得调度中心的运算量较大和运算复杂性较高, 系统建设成本较高, 从 而提出一种保证传输所有风电场系统的信息完整性的同时, 能够降低并网后的 风电场与调度中心数据传输量, 减少调度中心的运算量和降低调度中心运算复 杂度的, 建设成本较低的用于多风电场并网的调度方法和系统。
为了实现上述目的, 本发明的用于多风电场并网的信息釆集方法, 包括: 步骤 1 : 通过风电场监控系统接收由若干个信息釆集终端设备发送来的 风电机组信息, 并整合为风电场信息后发送至变电站;
步骤 2: 通过所述变电站对接收到的所述风电场信息进行汇总和处理,得到 变电站数据信息, 并将所述变电站数据信息发送至调度中心。
上述的信息釆集方法, 所述风电场信息包括: 风电场有功功率信息, 风电 场有功功率上限信息和风电场有功功率下限信息, 风电场预测有功功率信息, 和风电场无功补偿容量信息; 所述变电站数据信息包括: 变电站有功功率信息、 变电站有功功率上限信息、 变电站有功功率下限信息、 变电站预测有功功率信 息、 和变电站无功补偿容量信息;
其中, 所述变电站有功功率为与该变电站相关联的风电场的各所述风电场 有功功率之和; 所述变电站有功功率上限为与该变电站相关联的风电场的所述 风电场有功功率上限之和; 所述变电站有功功率下限为与该变电站相关联的风 电场的风电场有功功率下限之和; 所述变电站预测有功功率为与该变电站相关 联的风电场的所述风电场预测有功功率之和; 所述变电站无功补偿容量为与该 变电站相关联的风电场的所述风电场无功补偿容量之和。
本发明又提出了一种用于多风电场并网的调度方法, 其中, 包括: 步骤 1 : 通过风电场监控系统接收由若干个信息釆集终端设备发送来的 风电机组信息, 并整合为风电场信息后发送至变电站;
步骤 2: 通过所述变电站对接收到的所述风电场信息进行汇总和处理,得到 变电站数据信息, 并将所述变电站数据信息发送至调度中心;
步骤 3:通过所述调度中心根据接收到的所述变电站数据信息发送第一调度 指令到变电站;
步骤 4: 通过所述变电站对接收到的所述第一调度指令进行处理, 并发送第 二调度指令到相应的所述风电场监控系统, 从而控制对风电场的运行进行控制。
上述的调度方法, 所述风电场信息包括: 风电场有功功率信息, 风电场有 功功率上限信息和风电场有功功率下限信息, 风电场预测有功功率信息, 和风 电场无功补偿容量信息; 所述变电站数据信息包括: 变电站有功功率信息、 变 电站有功功率上限信息、 变电站有功功率下限信息、 变电站预测有功功率信息、 和变电站无功补偿容量信息; 其中, 所述变电站有功功率为与该变电站相关联 的风电场的各所述风电场有功功率之和; 所述变电站有功功率上限为与该变电 为与该变电站相关联的风电场的风电场有功功率下限之和; 所述变电站预测有 电站 功补偿容量为与该变电站相关联的风电场的所述风电场 功补偿容量之 和; 所述调度中心根据全网有功功率调节总量, 生成第一调度指令,从而对各变 电站的有功功率进行分配; 所述变电站基于所述调度中心所分配的变电站的有 功功率, 生成所述第二调度指令, 从而对与其相关联各个风电场的有功功率进 行分配。
本发明还提出了一种用于多风电场并网的调度系统, 其中, 包括至少一个 调度中心, 若干个所述变电站; 若干个所述风电场监控系统; 若干个风电场的 信息釆集终端设备;
其中, 每个所述风电场监控系统与同一风电场的若干个所述信息釆集终端 设备进行通信; 每个所述变电站与若干个所述风电场监控系统进行通信, 而每 个所述风电场监控系统与一个所述变电站进行通信; 每个所述调度中心与若干 个所述变电站进行通信, 而每个所述变电站与一个所述调度中心进行通信; 其中, 所述风电场监控系统接收由若干个信息釆集终端设备发送来的风电 机组信息, 并整合为风电场信息后发送至所述变电站; 所述变电站对所述风电 场信息进行汇总和处理得到变电站数据信息, 并将所述变电站数据信息发送至 所述调度中心; 所述调度中心根据接收到的所述变电站数据信息发送第一调度 指令到变电站, 所述变电站对所述第一调度指令进行处理, 并发送第二调度指 令到相应的所述风电场监控系统, 从而控制对风电场的运行进行控制。
上述的调度系统, 其中, 所述风电场信息包括: 风电场有功功率信息, 风 电场有功功率上限信息和风电场有功功率下限信息, 风电场预测有功功率信息, 和风电场无功补偿容量信息; 所述变电站数据信息包括: 变电站有功功率信息、 变电站有功功率上限信息、 变电站有功功率下限信息、 变电站预测有功功率信 息、 和变电站无功补偿容量信息; 其中, 所述变电站有功功率为与该变电站相 关联的风电场的各所述风电场有功功率之和; 所述变电站有功功率上限为与该 下限为与该变电站相关联的风电场的风电场有功功率下限之和; 所述变电站预 述变电站 功补偿容量为与该变电站相关联的风电场的所述风电场 功补偿容 量之和; 所述调度中心根据全网有功功率调节总量, 生成第一调度指令,对各变 电站的有功功率进行分配; 所述变电站基于所述调度中心所分配的变电站的有 功功率, 对与其相关联各个风电场的有功功率进行分配。
上述的调度系统, 其中, 所述变电站通过 3G通信通道与所述风电场监控系 统进行通信。
上述的调度系统, 所述调度中心通过光纤与所述变电站进行通信。
上述的调度系统, 所述风电场监控系统通过内部通信通道与所述信息釆集 设备进行通信, 通过遥信、 遥测命令收集各种数据信息, 并将数据信息储存在 系统服务器中以便于查询和使用。
上述的调度系统, 还包括: 变电站服务器, 用于存储所述变电站处理得到 的所述变电站数据信息; 以及调度中心服务器, 用于存储所述调度中心接收到 的所述变电站数据信息。
上述的调度系统, 其中, 所述信息釆集终端设备包括: 气象信息釆集终端, 用于釆集气象信息; 电气量釆集终端, 用于釆集风电场电力网络的电气量信息; 开关量釆集终端, 用于釆集开关量信息; 设备状态信息釆集终端, 用于釆集设 备状态信息; 报警信息釆集终端, 用于釆集报警信息; 图像信息釆集终端, 用 于釆集图像信息; 和主控系统参数监控终端, 用于釆集主控系统参数。
本发明的信息釆集方法、 调度方法和系统相对于现有技术具有以下技术效 果:
1.对于传统的信息釆集方法,在大量风电场釆用分布式形式接入电网之后, 调度中心需要处理更多的信息以及更多的决策变量, 使得调度中心主站的算法 与运算压力不断增大。 本发明的所述信息釆集方法, 其中, 通过风电场监控系 统接收由若干个信息釆集终端设备发送来的风电场信息, 并将所述风电场信息 发送至变电站; 通过所述变电站对接收到的所述风电场信息进行汇总和处理, 得到变电站数据信息, 并将所述变电站数据信息发送至调度中心; 以上步骤增 加了通过变电站对大量风电场信息进行预处理, 得到关于变电站的数据信息, 然后再将该数据信息发送给调度中心, 保证了传输所有风电场系统的信息完整 性的同时, 一方面可以减少调度中心的信息接收量从而减少降低数据传输量提 高数据传输效率, 另一方面又显著降低了调度中心的运算量与运算复杂度。
2. 本发明的调度方法和系统, 其中, 通过所述变电站对接收到的所述第一 调度指令进行处理, 并发送第二调度指令到相应的所述风电场监控系统, 从而 控制对风电场的运行进行控制。 在这种设计调度中心只发送指针其下级的变电 站进行指令, 相对于现有技术中调度中心需要下发针对大量风电场监控系统的 调度指令而言, 调度中心的信息处理压力得到了大大的减轻。
3. 通常情况下风电场监控系统和变电站均处于风电场侧, 距离调度中心较 远, 当釆用一个调度中心对大量的风电场监控系统和变电站进行管理和调度时, 变电站与调度中心间釆用光纤的方式进行通信, 可以大大提高通信效率, 提高 信息釆集和调度的实时性。
另外, 传统的方式釆用光纤技术建立风电场与调度中心的通信通道, 对于 每个风电场均需要与调度中心建立一条光纤通信通道, 而通信通道的建设将会 造成资源浪费。 本发明只釆用一条光纤通信通道, 可以大大地节省通信成本。
4.通常情况下风电场监控系统和变电站均处于风电场侧,而两者相距不远, 因而, 通过 3G通信通道实现两者间的数据传输, 相对于釆用光纤通信而言可以 大大减低了通信成本。
下面结合说明书附图对本发明的技术方案再进一步地阐述, 使本领域的技 术人员更好地理解本发明。
图 1为多风电场并网的调度系统框架结构图;
图 2为风电场调度系统框架结构图。
其中, 1为风电场监控系统, 2为 3G通信通道, 3为变电站, 4为光纤通信 通道, 5为调度中心, 6为风电场内部通信通道, 7为气象信息釆集终端, 8为 电气量釆集终端, 9为开关量釆集终端, 10为设备状态信息釆集终端, 11为报 警信息釆集终端, 12为图像信息釆集终端, 13为主控系统参数监控终端。
具体实施方式
实施例 1
如图 1所示的用于多个风电场并网的调度系统包括调度中心 5、 变电站 3、 风电场监控系统 1以及风电场的各种信息釆集终端设备。
所述调度中心 5通过光纤通信通道 4与多个变电站 3相互通信。 单个变电 站 3通过 3G通信通道 2与多个风电场监控系统 1相互通信。对于某一个风电场 监控系统 1来说, 它仅属于唯一的一个变电站 3。
所述调度中心 5通过光纤通信通道 4与变电站 3进行通信, 用于接收变电 站上传的、 处理后的多个风电场信息, 并下送调度命令到变电站 3。
所述变电站 3通过 3G通信通道 2与该区域的多个风电场监控系统 1进行通 信, 用于接收风电场发送来的数据信息, 对大量风电场数据信息进行汇总和处 理, 并通过优选为光纤通信通道 3 的通信方式将处理后的数据信息发送至调度 中心 5; 所述变电站 3接收调度中心 5的调度指令, 将调度指令下发给各个风电 场监控系统 1。
所述风电场监控系统 1通过优选为 3G通信通道 2的通信方式与相应的变电 站 3互相通信, 用于发送风电场的数据信息到变电站 3 , 并接收从变电站 3发送 的调度指令, 且根据调度指令调整风电场的运行方式; 所述风电场监控系统 1 通过风电场内部通信通道 6 与各种信息釆集终端设备通信, 通过遥信、 遥测命 令收集信息釆集终端设备的各种数据信息。
如图 2 所示, 所述风电场的各种信息釆集终端设备主要包括气象信息釆集 终端 7、 电气量釆集终端 8、 开关量釆集终端 9、 设备状态信息釆集终端 10、 报 警信息釆集终端 11、 图像信息釆集终端 12和主控系统参数监控终端 13 ; 所述 风电场的各种信息釆集终端设备通过风电场内部通信通道 6将数据信息发送至 风电场监控系统 1。
同一区域的多个风电场监控系统 1将其收集到的数据信息通过 3G通信通道 2上传至该地区的变电站 3并进行初步地处理和分析。处理后的数据信息通过光 纤通信通道 4上传至调度中心 5。
调度中心 5下发的调度指令首先通过光纤通信通道 4发送至变电站 3。变电 站 3对调度指令进行处理,并通过 3G通信通道 2分发给相应的风电场监控系统 1 , 完成相应的调度操作。
本实施例的工作过程如下所述:
下面以上传多个风电场的气象数据信息到调度中心的过程为例, 对本发明 做进一步说明。 首先, 气象信息釆集终端 7将釆集到的气象数据信息通过风电 场内部通信通道 6上传至风电场监控系统 1 ;风电场监控系统 1将气象数据信息 存入其系统服务器。 然后, 同一地区多个风电场的监控系统通过优选为 3G通信 通道的通信方式将气象数据信息上传到该风电场群所在地区的变电站 3;变电站 3对所有风电场上传来的气象数据信息进行汇总和处理,并将处理后的数据信息 存入其系统服务器。 最后, 变电站 3 将处理后的气象数据信息通过优选为光纤 通信通道 4的通信方式上传至调度中心 5;调度中心 5对气象数据信息进行分析, 为调度与运行提供参考资料, 并将接收的气象数据信息存入其系统服务器, 至 此完成了多个风电场气象数据信息的上传。
下面以调度中心下发调度指令的过程为例, 对本发明做进一步说明。 首先, 调度中心的工作人员根据调度中心 5提供的各种数据信息发出调度指令, 调整 某一风电场的运行方式; 调度指令通过优选为光纤通信通道的通信方式下发到 相应的变电站 3。 然后, 变电站根据调度指令的对象和优选级进行处理, 通过优 选为 3G通信通道 2的通信方式发送到相应的风电场监控系统。 最后, 风电场相 关设备在监控系统的控制作用下响应调度指令并改变运行方式, 至此调度操作 完成。
所述信息釆集终端设备优选为包括: 气象信息釆集终端, 用于釆集气象信 息; 电气量釆集终端, 用于釆集风电场电力网络的电气量信息; 开关量釆集终 端, 用于釆集开关量信息; 设备状态信息釆集终端, 用于釆集设备状态信息; 报警信息釆集终端, 用于釆集报警信息; 图像信息釆集终端, 用于釆集图 像信息; 和主控系统参数监控终端, 用于釆集主控系统参数。
上述气象信息可以包括风速、 风向、 温度、 湿度、 雨量和气压, 除了上述 气象信息还可以上传包括风电场电力网络的电气量信息、 开关量信息、 设备状 态信息、 报警信息、 图像信息和主控系统参数信息的一种或几种。 本实施例的调度方法和系统相对于现有技术增加了通过变电站对大量风电 场信息进行预处理, 得到关于变电站的数据信息, 然后再将该数据信息发送给 调度中心, 一方面可以减少调度中心的信息接收量从而减少降低数据传输量提 高数据传输效率, 另一方面又显著降低了调度中心的运算量与运算复杂度。 实施例 2
如图 1所示的用于多风电场并网的调度系统, 包括一个调度中心 5 , 若干个 所述变电站 3; 若干个所述风电场监控系统 1 ; 若干个风电场的信息釆集终端设 备; 其中, 每个所述风电场监控系统 1 与同一风电场的若干个所述信息釆集终 端设备进行通信; 每个所述变电站 3与若干个所述风电场监控系统 1进行通信, 而每个所述风电场监控系统 1与一个所述变电站 3进行通信; 所述调度中心 5 与若干个所述变电站 3进行通信。
所述风电场监控系统 1 接收由若干个所述信息釆集终端设备发送来的风电 机组信息,并整合为风电场信息后发送至变电站 3;所述风电场信息优选为包括: 风电场有功功率信息, 风电场有功功率上限信息和风电场有功功率下限信息, 风电场预测有功功率信息, 和风电场无功补偿容量信息;
所述变电站 3 对所述风电场信息进行汇总和处理得到相应的变电站数据信 息, 其中, 所述变电站数据信息包括: 变电站有功功率信息、 变电站有功功率 上限信息、 变电站有功功率下限信息、 变电站预测有功功率信息、 和变电站无 功补偿容量信息; 所述变电站有功功率为与该变电站相关联的风电场的各所述 风电场有功功率之和; 所述变电站有功功率上限为与该变电站相关联的风电场 的所述风电场有功功率上限之和; 所述变电站有功功率下限为与该变电站相关 联的风电场的风电场有功功率下限之和; 所述变电站预测有功功率为与该变电 为与该变电站相关联的风电场的所述风电场无功补偿容量之和。
即: 风电场有功功率: P 二 , 其中, 为风电场有功功率, Pi 为第 台机组有功功率, 为风电场机组台数。
风电场有功功率上限和风电场有功功率下限分别为: / 。„„,max和; 。„„,min; 风电场预测有功功率为: PfamJor ',
风电场无功补偿容量为: q 。
变电站有功功率为: Psub ^ Pf匪, j , 其中; 为第 J'个风电场有功功 率。 变电站有功功率上限和变电站有功功率下限分别为:
Figure imgf000010_0001
变电站预测有功功率为: PsubJor = , P farm or ;
变电站无功补偿容量为:
Figure imgf000010_0002
并将所述变电站数据信息发送至所述调度中心 5;所述调度中心 5根据接收 到的所述变电站数据信息发送第一调度指令到变电站 3 ,所述变电站 3对所述第 一调度指令进行处理, 并发送第二调度指令到相应的所述风电场监控系统 1 , 从 而控制对风电场的运行进行控制, 即通过调度中心 5进行有功和无功的控制。
其中, 调度中心根据全网有功功率调节总量, 生成所述第一调度指令, 从 而对各变电站的有功功率 有功功率分配算法具体为如下所述:
Figure imgf000010_0003
其中, Δ 为全网有功功率调节量, ,'为变电站 有功功率值。
变电站基于调度中心所分配的变电站的有功功率, 生成所述第二调度指令, 对与其相关联的各个风电场的有功功率进行分配。 有功功率分配算法具体为如 下所述:
Figure imgf000010_0004
其中, s 为变电站有功功率调节量, /« 为第 个风电场实际有功功率 值。
在本实施例中, 调度中心 5只会得到下属各变电站 3 自身的调度工作所需 信息, 并不接收变电站 3 下级的来自于风电场监控系统的与风电场调度相关信 息, 也不接收风电场下级的风电机组信息。
所述分布式调釆集系统既保证了所有风电场系统的信息完整性, 同时兼顾 了调度中心的信息处理复杂度问题。 按照传统的集中调度模式, 在大量风电场 釆用分布式形式接入电网之后, 调度中心需要处理更多的信息以及更多的决策 变量, 使得调度中心主站的算法与运算压力不断增大。 所述调度釆集系统利用 所述变电站对大量的风电场信息进行预处理, 再将预处理过后的信息提供至调 度中心主站, 显著降低了调度中心主站的运算量与运算复杂度。
作为可变换的一种实施方式所述变电站优选为通过 3G通信通道 2与所述风 电场监控系统 1进行通信; 所述调度中心 5优选通过光纤通信通道 4与所述变 电站 3进行通信。 所述风电场监控系统 1通过内部通信通道与所述信息釆集设 备进行通信, 通过遥信、 遥测命令收集各种数据信息, 并将数据信息储存在系 统服务器中以便于查询和使用。
作为另一种可变实施方式, 本系统还可以包括变电站服务器, 用于存储所 述变电站处理得到的所述变电站数据信息; 以及调度中心服务器, 用于存储所 述调度中心接收到的所述变电站数据信息。
如图 2所示, 所述信息釆集终端设备优选为包括: 气象信息釆集终端 7 , 用于釆集气象信息;电气量釆集终端 8,用于釆集风电场电力网络的电气量信息; 开关量釆集终端 9 , 用于釆集开关量信息; 设备状态信息釆集终端 10, 用于釆 集设备状态信息; 报警信息釆集终端 11 , 用于釆集报警信息; 图像信息釆集终 端 12, 用于釆集图像信息; 和主控系统参数监控终端 13 , 用于釆集主控系统参 数。
上述实施例中, 在调度中心与风电场监控系统间仅仅设有一级变电站, 而 本发明还可以根据风电场监控系统的数量、 有功和无功功率上限和下限、 以及 变电站的有功和无功功率上限和下限来确定变电站的数量, 然而随着同一级变 电站数量的增加, 其与调度中心进行直接通信的数据量将随之增大, 为了提高 传输效率, 以及减少调度中心信息处理量, 本发明还可以扩展为在调度中心和 风电场监控系统间设置多级变电站的架构, 并基于本发明上述的信息釆集方法, 和调度方法相同原则前提下, 进行相应信息釆集工作和调度工作。
上述虽然结合附图对本发明的具体实施方式进行了描述, 但并非对本发明 保护范围的限制, 所属领域技术人员应该明白, 在本发明技术方案的基础上, 本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明 的保护范围以内。

Claims

权利 要求 书 WO 2013/029562 PCT/CN2012/080871
1. 一种用于多风电场并网的信息釆集方法, 其特征在于包括:
步骤 1 : 通过风电场监控系统接收由若干个信息釆集终端设备发送来的 风电机组信息, 并整合为风电场信息后发送至变电站;
步骤 2: 通过所述变电站对接收到的所述风电场信息进行汇总和处理,得到 变电站数据信息, 并将所述变电站数据信息发送至调度中心。
2. 根据权利要求 1所述的信息釆集方法, 其特征在于:
所述风电场信息包括: 风电场有功功率信息, 风电场有功功率上限信息和 风电场有功功率下限信息, 风电场预测有功功率信息, 和风电场无功补偿容量 信息;
所述变电站数据信息包括: 变电站有功功率信息、 变电站有功功率上限信 息、 变电站有功功率下限信息、 变电站预测有功功率信息、 和变电站无功补偿 容量信息;
其中, 所述变电站有功功率为与该变电站相关联的风电场的各所述风电场 有功功率之和; 所述变电站有功功率上限为与该变电站相关联的风电场的所述 风电场有功功率上限之和; 所述变电站有功功率下限为与该变电站相关联的风 电场的风电场有功功率下限之和; 所述变电站预测有功功率为与该变电站相关 联的风电场的所述风电场预测有功功率之和; 所述变电站无功补偿容量为与该 变电站相关联的风电场的所述风电场无功补偿容量之和。
3. 一种用于多风电场并网的调度方法, 其特征在于包括:
步骤 1 : 通过风电场监控系统接收由若干个信息釆集终端设备发送来的 风电机组信息, 并整合为风电场信息后发送至变电站;
步骤 2: 通过所述变电站对接收到的所述风电场信息进行汇总和处理,得到 变电站数据信息, 并将所述变电站数据信息发送至调度中心;
步骤 3:通过所述调度中心根据接收到的所述变电站数据信息发送第一调度 指令到变电站;
步骤 4: 通过所述变电站对接收到的所述第一调度指令进行处理, 并发送第 二调度指令到相应的所述风电场监控系统, 从而控制对风电场的运行进行控制。
4. 根据权利要求 3所述的调度方法, 其特征在于:
所述风电场信息包括: 风电场有功功率信息, 风电场有功功率上限信息和 风电场有功功率下限信息, 风电场预测有功功率信息, 和风电场无功补偿容量 信息;
所述变电站数据信息包括: 变电站有功功率信息、 变电站有功功率上限信 息、 变电站有功功率下限信息、 变电站预测有功功率信息、 和变电站无功补偿 容量信息;
其中, 所述变电站有功功率为与该变电站相关联的风电场的各所述风电场 有功功率之和; 所述变电站有功功率上限为与该变电站相关联的风电场的所述 权利 要求 书
WO 2013/029562 PCT/CN2012/080871 风电场有功功率上限之和; 所述变电站有功功率下限为与该变电站相关联的风 电场的风电场有功功率下限之和; 所述变电站预测有功功率为与该变电站相关 联的风电场的所述风电场预测有功功率之和; 所述变电站无功补偿容量为与该 变电站相关联的风电场的所述风电场无功补偿容量之和;
所述调度中心根据全网有功功率调节总量, 生成所述第一调度指令, 从而 对各变电站的有功功率进行分配;
所述变电站基于所述调度中心所分配的变电站的有功功率, 生成所述第二
" ' 5. 一种用于多一风电场并网的调度系统、, 其特征在于: 包括
至少一个调度中心,
若干个所述变电站;
若干个所述风电场监控系统;
若干个风电场的信息釆集终端设备;
其中, 每个所述风电场监控系统与同一风电场的若干个所述信息釆集终端 设备进行通信;
每个所述变电站与若干个所述风电场监控系统进行通信, 而每个所述风电 场监控系统与一个所述变电站进行通信;
每个所述调度中心与若干个所述变电站进行通信, 而每个所述变电站与一 个所述调度中心进行通信;
其中, 所述风电场监控系统接收由若干个信息釆集终端设备发送来的风电 机组信息, 并整合为风电场信息后发送至所述变电站; 所述变电站对所述风电 场信息进行汇总和处理得到变电站数据信息, 并将所述变电站数据信息发送至 所述调度中心; 所述调度中心根据接收到的所述变电站数据信息发送第一调度 指令到变电站, 所述变电站对所述第一调度指令进行处理, 并发送第二调度指 令到相应的所述风电场监控系统, 从而控制对风电场的运行进行控制。
6. 根据权利要求 5所述的调度系统, 其特征在于:
所述风电场信息包括: 风电场有功功率信息, 风电场有功功率上限信息和 风电场有功功率下限信息, 风电场预测有功功率信息, 和风电场无功补偿容量 信息;
所述变电站数据信息包括: 变电站有功功率信息、 变电站有功功率上限信 息、 变电站有功功率下限信息、 变电站预测有功功率信息、 和变电站无功补偿 容量信息;
其中, 所述变电站有功功率为与该变电站相关联的风电场的各所述风电场 有功功率之和; 所述变电站有功功率上限为与该变电站相关联的风电场的所述 风电场有功功率上限之和; 所述变电站有功功率下限为与该变电站相关联的风 电场的风电场有功功率下限之和; 所述变电站预测有功功率为与该变电站相关 权利 要求 书
WO 2013/029562 PCT/CN2012/080871 联的风电场的所述风电场预测有功功率之和; 所述变电站无功补偿容量为与该 变电站相关联的风电场的所述风电场无功补偿容量之和;
所述调度中心根据全网有功功率调节总量, 生成第一调度指令, 对各变电 站的有功功率进行分配;
所述变电站基于所述调度中心所分配的变电站的有功功率, 对与其相关联 各个风电场的有功功率进行分配。
7. 根据权利要求 5或 6所述的调度系统, 其特征在于:
所述变电站通过 3G通信通道与所述风电场监控系统进行通信; 以及 所述调度中心通过光纤与所述变电站进行通信。
8. 根据权利要求 7所述的调度系统, 其特征在于:
所述风电场监控系统通过内部通信通道与所述信息釆集设备进行通信, 通 过遥信、 遥测命令收集各种数据信息, 并将数据信息储存在系统服务器中以便 于查询和使用。
9. 根据权利要求 8所述的调度系统, 其特征在于: 还包括
变电站服务器, 用于存储所述变电站处理得到的所述变电站数据信息; 以 及
调度中心服务器, 用于存储所述调度中心接收到的所述变电站数据信息。
10. 根据权利要求 9所述的调度系统, 其特征在于:
所述信息釆集终端设备包括:
气象信息釆集终端, 用于釆集气象信息;
电气量釆集终端, 用于釆集风电场电力网络的电气量信息;
开关量釆集终端, 用于釆集开关量信息;
设备状态信息釆集终端, 用于釆集设备状态信息;
报警信息釆集终端, 用于釆集报警信息;
图像信息釆集终端, 用于釆集图像信息; 和
主控系统参数监控终端, 用于釆集主控系统参数。
PCT/CN2012/080871 2011-08-31 2012-08-31 用于多风电场并网的信息采集方法、调度方法和系统 WO2013029562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110253838.8 2011-08-31
CN201110253838 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013029562A1 true WO2013029562A1 (zh) 2013-03-07

Family

ID=47370051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080871 WO2013029562A1 (zh) 2011-08-31 2012-08-31 用于多风电场并网的信息采集方法、调度方法和系统

Country Status (2)

Country Link
CN (5) CN102842916B (zh)
WO (1) WO2013029562A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375513A (zh) * 2015-11-06 2016-03-02 国家电网公司 一种基于实时在线等值的110千伏风电场自动电压控制方法
CN105429869A (zh) * 2015-11-11 2016-03-23 国网天津市电力公司 一种主子站一体化信息交互智能网关机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391491B (zh) * 2014-11-20 2017-02-01 国电南瑞南京控制系统有限公司 一种基于监控系统的海上风电场发电设备控制方法
CN104578412B (zh) * 2014-12-19 2017-06-23 上海电机学院 一种基于大数据技术的状态检测系统的检测方法
CN105449871A (zh) * 2015-12-29 2016-03-30 国网河北省电力公司衡水供电分公司 大规模风电场实时在线监控系统
CN112727677A (zh) * 2021-01-11 2021-04-30 宁夏汇力能源科技有限公司 一种智能偏航系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469669A (zh) * 2007-12-27 2009-07-01 株式会社日立制作所 风电场群、风电场及其控制方法
CN201576182U (zh) * 2009-10-30 2010-09-08 南京盛唐电力控制系统有限公司 一种风电场综合监控系统
CN101931241A (zh) * 2010-09-21 2010-12-29 许继集团有限公司 风电场并网协调控制方法
CN102003349A (zh) * 2010-11-05 2011-04-06 甘肃省电力公司 风电受限状态下的大规模风电有功优化方法
CN102102629A (zh) * 2011-01-17 2011-06-22 东南大学 一种风电机组在线数据采集与分析装置
US20110166717A1 (en) * 2010-05-28 2011-07-07 Mitsubishi Heavy Industries, Ltd. Real power control in wind farm

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020029097A1 (en) * 2000-04-07 2002-03-07 Pionzio Dino J. Wind farm control system
CN101378206B (zh) * 2007-08-29 2010-11-17 深圳市科陆电子科技股份有限公司 一种配变终端配变数据的获取方法、系统及配变终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469669A (zh) * 2007-12-27 2009-07-01 株式会社日立制作所 风电场群、风电场及其控制方法
CN201576182U (zh) * 2009-10-30 2010-09-08 南京盛唐电力控制系统有限公司 一种风电场综合监控系统
US20110166717A1 (en) * 2010-05-28 2011-07-07 Mitsubishi Heavy Industries, Ltd. Real power control in wind farm
CN101931241A (zh) * 2010-09-21 2010-12-29 许继集团有限公司 风电场并网协调控制方法
CN102003349A (zh) * 2010-11-05 2011-04-06 甘肃省电力公司 风电受限状态下的大规模风电有功优化方法
CN102102629A (zh) * 2011-01-17 2011-06-22 东南大学 一种风电机组在线数据采集与分析装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375513A (zh) * 2015-11-06 2016-03-02 国家电网公司 一种基于实时在线等值的110千伏风电场自动电压控制方法
CN105375513B (zh) * 2015-11-06 2017-08-25 国家电网公司 一种基于实时在线等值的110千伏风电场自动电压控制方法
CN105429869A (zh) * 2015-11-11 2016-03-23 国网天津市电力公司 一种主子站一体化信息交互智能网关机
CN105429869B (zh) * 2015-11-11 2018-07-06 国网天津市电力公司 一种主子站一体化信息交互智能网关机

Also Published As

Publication number Publication date
CN105162170A (zh) 2015-12-16
CN105048498B (zh) 2016-09-14
CN105048515B (zh) 2017-12-15
CN105162170B (zh) 2016-08-17
CN105162171A (zh) 2015-12-16
CN105048498A (zh) 2015-11-11
CN105048515A (zh) 2015-11-11
CN102842916B (zh) 2015-08-19
CN105162171B (zh) 2016-09-14
CN102842916A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
CN109256792B (zh) 一种面向分布式储能需求的储能集聚系统及其优化方法
WO2013029562A1 (zh) 用于多风电场并网的信息采集方法、调度方法和系统
CN109638964B (zh) 一种基于边缘计算架构的多元电网信息交互系统及方法
CN102064562B (zh) 风火“打捆”外送的有功优化方法
CN107612017B (zh) 基于需求响应和分布式储能的风电并网智能调控系统
CN106096772A (zh) 基于智能用电的能量与负荷联合管理系统及实现方法
CN100403619C (zh) 分布式实时电压无功优化控制方法
CN110855006B (zh) 一种基于边缘物联代理的分布式光储充调控系统
CN103872775B (zh) 一种智能微网监控系统及监控方法
CN207218253U (zh) 配变台区无功电压智能化控制系统
CN105184414A (zh) 一种电动汽车充电与间歇性电源协同调度系统
CN112653154A (zh) 基于边缘计算的分布式光伏配电网无功优化控制方法
CN103633738A (zh) 一种储能系统的电池监控信息传输方法
CN111342485A (zh) 一种基于边缘计算的分布式电源电力分配方法
CN116316860B (zh) 一种基于hplc通信的分布式光伏采集控制交互系统
CN105406523A (zh) 一种光伏并网运行的电动汽车充电站用监控方法
CN110061565A (zh) 一种基于风力发电机的储能充放电容量控制系统及方法
CN103138293A (zh) 火电厂厂级负荷优化分配方法及系统
CN106231678A (zh) 一种地下室环境中智能电网的数据传输方法和系统
CN116706968A (zh) 光储充负载一体化控制设备
CN111198548B (zh) 基于智能节点重叠网的电力系统和信息系统联合调度系统
CN107516943A (zh) 一种新能源站进行快速功率控制的通讯方法
CN203233184U (zh) 一种风电场调度系统
CN206162121U (zh) 一种微电网负荷控制器
CN113837509A (zh) 多能源充电系统及其管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827160

Country of ref document: EP

Kind code of ref document: A1