WO2013029519A1 - 资源分配的方法及设备 - Google Patents

资源分配的方法及设备 Download PDF

Info

Publication number
WO2013029519A1
WO2013029519A1 PCT/CN2012/080630 CN2012080630W WO2013029519A1 WO 2013029519 A1 WO2013029519 A1 WO 2013029519A1 CN 2012080630 W CN2012080630 W CN 2012080630W WO 2013029519 A1 WO2013029519 A1 WO 2013029519A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
data
terminal
time slot
downlink
Prior art date
Application number
PCT/CN2012/080630
Other languages
English (en)
French (fr)
Inventor
宋毅
孟庆锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013029519A1 publication Critical patent/WO2013029519A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and device for resource allocation.
  • Background Art In a wireless communication system, there are two communication modes: FDD (Frequency Dividing Duplex) and TDD (Time Div i s i on Dup lex).
  • FDD Frequency Division Duplex
  • FDD Frequency Division Duplex
  • Two separate channels are required for operation.
  • One channel is used for terminal to transmit information to base station, and the other channel is used for base station to transmit information to terminal.
  • a guard band to prevent mutual interference between adjacent transmitters and receivers.
  • TDD is the air interface.
  • the uplink channel and the downlink channel use the same frequency band and are divided by time slots. That is, the uplink and downlink communication between the base station and the terminal use different time slots of the same frequency channel, and time is used to separate the receiving and transmitting channels.
  • the time period is sent by the base station to the terminal, and the terminal transmits a signal to the base station at another time.
  • Embodiments of the present invention provide a method and an apparatus for resource allocation, which can fully utilize bandwidth resources.
  • a method of resource allocation including:
  • the optimized configuration information is sent to the terminal, and the optimized configuration information includes parameters required to process part of the data traffic of the second channel in the first time slot.
  • a resource allocation device including:
  • a detecting unit configured to detect and determine a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of the frequency division duplex FDD;
  • An allocating unit configured to divide a frequency band in the first channel into different time slots by using a time division duplex TDD, and allocate a first time slot in the different time slots to the second channel;
  • a sending unit configured to send, to the terminal, optimized configuration information, where the optimized configuration information includes parameters required to process the partial number of the second channel in the first time slot.
  • a method and device for resource allocation by detecting and determining a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of a frequency division duplex FDD,
  • the frequency band in the channel uses TDD to divide different time slots, and allocates the first time slot in the different time slots to the second channel, and then sends optimized configuration information to the terminal.
  • TDD time division duplex
  • both the uplink channel and the downlink channel use the same bandwidth, resulting in a lower total bandwidth utilization of the system and a waste of bandwidth of a channel with less traffic.
  • the solution provided by the embodiment of the present invention allocates a part of a time slot to a channel with a large traffic flow by performing time slot division on a channel with a small traffic flow, so that bandwidth resources can be fully utilized.
  • FIG. 1 is a flowchart of a method for resource allocation according to Embodiment 1 of the present invention
  • FIG. 1 is a block diagram of a device for resource allocation according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a method for resource allocation according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of frequency band division of an FDD communication system according to Embodiment 2 of the present invention; Schematic diagram of TDD allocation on the uplink channel of FDD;
  • FIG. 6 is a schematic diagram of a ratio configuration table of a downlink channel and an uplink channel according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart of a method for performing data processing between a base station and a terminal when the first channel is an uplink channel according to Embodiment 2 of the present invention
  • FIG. 8 is a flowchart of a method for performing data processing between a base station and a terminal when the first channel is a downlink channel according to Embodiment 2 of the present invention
  • FIG. 9 is a block diagram of a device for resource allocation according to Embodiment 2 of the present invention.
  • FIG. 10 is a block diagram of a data sending unit according to Embodiment 2 of the present invention.
  • FIG 11 is a block diagram of a data receiving unit according to Embodiment 2 of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • An embodiment of the present invention provides a method for resource allocation. As shown in FIG. 1, the method includes: Step 101: Detect and determine a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of the frequency division duplex FDD;
  • FDD Frequency Divi s ion Dup lex
  • Step 102 Divide a frequency division time division TDD in the first channel into different time slots, and allocate a first time slot in the different time slots to the second channel.
  • TDD Time Divi s ion Duplex
  • all of the frequency bands in the first channel may be divided by TDD for time slot division.
  • Step 103 Send optimization configuration information to the terminal, where the optimized configuration information includes parameters required to process part of the data service of the second channel in the first time slot.
  • a method for resource allocation according to an embodiment of the present invention by detecting and determining a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of a frequency division duplex FDD, in the first channel
  • the frequency band uses TDD to divide different time slots, and allocates the first time slot in the different time slots to the second channel, and then sends optimized configuration information to the terminal.
  • the service traffic of the downlink channel and the uplink channel is not uniform, resulting in a low total bandwidth utilization of the system and a waste of bandwidth of a channel with a small traffic flow.
  • the solution provided by the embodiment of the present invention allocates a part of a time slot to a channel with a large traffic flow by dividing a channel with a small traffic flow into a time slot, so that the bandwidth resource can be fully utilized.
  • An embodiment of the present invention provides a device for resource allocation.
  • the device may be a base station.
  • the device includes: a detecting unit 201, an allocating unit 202, and a sending unit 203.
  • the detecting unit 201 is configured to detect and determine a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of the frequency division duplex FDD;
  • the allocating unit 202 is configured to divide the frequency band in the first channel into different time slots by using time division duplex TDD, and allocate the first time slot in the different time slots to the second channel;
  • the unit 203 is configured to send, to the terminal, optimized configuration information, where the optimized configuration information includes parameters required to process part of the data service of the second channel in the first time slot.
  • An apparatus for resource allocation detects, by a detecting unit, a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of a frequency division duplex FDD, and an allocation unit
  • the frequency band in the first channel is divided into different time slots by TDD, and the first time slot in the different time slots is allocated to the second channel, and the sending unit sends the optimized configuration information to the terminal.
  • the traffic of the downlink channel and the uplink channel is not uniform, the same bandwidth is used for both the uplink channel and the downlink channel, resulting in a lower total bandwidth utilization of the system and a waste of bandwidth of a channel having a smaller traffic volume.
  • the solution provided by the embodiment of the present invention allocates a part of a time slot to a channel with a large traffic flow by dividing a channel with a small traffic flow into a time slot, so that the bandwidth resource can be fully utilized.
  • a method for resource allocation according to an embodiment of the present invention includes: Step 301: A base station detects and determines a first channel and a channel with a small channel traffic in an uplink channel and a downlink channel of a frequency division duplex FDD a second channel having a large channel traffic;
  • FDD Frequency Divi s ion Dup lex
  • the uplink channel transmits data to the base station by using one frequency band
  • the downlink channel transmits the data to the terminal by using one frequency band. data.
  • the frequency band division of the FDD communication system is as shown in Fig. 4, in which the frequency band of the uplink channel ranges from F0 to Fl, and the frequency band of the downlink channel ranges from F2 to F3.
  • step 301 the channel traffic of the uplink channel of the FDD and the channel traffic of the downlink channel are compared, and it is determined that the channel traffic is small for the first channel, and the channel traffic is large for the second channel.
  • the solution provided by the embodiment of the present invention may be optimally configured, thereby reducing the second channel.
  • Step 302 The base station divides a frequency band in the first channel into different time slots by using time division duplex TDD, and allocates a first time slot in the different time slots to the second channel.
  • the base station performs TDD division on the frequency band of the first channel with a small channel traffic, so that the first channel can allocate some time slots for carrying some services in the second channel, so that the channel with lower utilization rate is fully utilized, and The traffic of the channel with higher utilization ratio is shared, and the throughput of the channel with higher utilization is improved.
  • TDD Time Divi s ion Duplex
  • the uplink channel transmits data to the base station by one terminal
  • the downlink channel uses one time slot.
  • the base station transmits data to the terminal.
  • the first channel is an uplink channel, as shown in FIG. 5, the frequency band of the uplink channel (the frequency band range of F0 to F1) is allocated to the downlink channel by the TDD, and the frequency band of the uplink channel is divided into the downlink time slot T1.
  • the frequency band of the downlink channel (the frequency band range of F2 to F3) is not divided into slots.
  • the different time slots include three types of time slots: an uplink time slot T1, a downlink time slot TO, and an uplink and downlink switching time slot, where the uplink time slot T1 is used to carry services on the uplink channel, that is, on the uplink.
  • the time slot transmits the uplink subframe from the terminal to the base station; the downlink time slot TO is used to carry the service on the downlink channel, that is, the downlink subframe is sent from the base station to the terminal in the downlink time slot; the uplink and downlink switching time slot is used to switch the downlink subframe The time required to go to the uplink subframe.
  • the uplink and downlink handover time slots are not needed, because in the TDD mode, the frequency used by the uplink channel and the downlink channel for transmitting data is the same, and different uses are used. The time period is differentiated.
  • the terminal When the downlink subframe is switched to the uplink subframe, when the downlink subframe is transmitted, the terminal continues to receive downlink data and cannot send uplink data at the frequency. Therefore, there must be an uplink and downlink handover slot.
  • the terminal Since the terminal sends a signal in advance when the uplink channel transmits data, when the uplink subframe is switched to the downlink subframe, the base station can immediately switch, and the terminal only needs to delay the transmission of data for a period of time, so the uplink subframe at this time Switching to the downlink subframe does not require uplink and downlink switching slots.
  • the length of each type of time slot in different time slots can be determined by the base station and the terminal.
  • the length of the uplink time slot is 1 ms
  • the length of the downlink time slot is 1 ms
  • the uplink and downlink switching time slots are 1 ms
  • the length of the slot is 2ms
  • the length of the downlink slot is 1ms
  • the uplink and downlink switching slots are Oms.
  • Step 303 The base station sends optimized configuration information to the terminal, where the optimized configuration information includes parameters required for processing part of the data service of the second channel in the first time slot; After allocating a partial time slot to the second channel, each terminal may be notified in the form of a broadcast message, and the data service carried by the second channel may be processed by the first channel in the first time slot.
  • the parameter included in the optimized configuration information includes at least the following two parameters: 1. a ratio of an uplink subframe to a downlink subframe; 2. an indication of whether the first channel is an uplink channel or a downlink channel.
  • the configuration of the ratio of the uplink subframe to the downlink subframe defined in the LTE protocol is as shown in FIG. 6.
  • U indicates an uplink subframe
  • D indicates a downlink subframe
  • S indicates a special subframe (a subframe including a guard interval).
  • the conversion period of the downlink subframe to the uplink subframe is 5 ms
  • the radio frame includes two periods, and the five subframes are one.
  • Period the conversion of the subframe in one cycle is D, S, U, U, U; wherein the fourth configuration is labeled 3
  • the conversion period of the downlink subframe into the uplink subframe is 10 ms
  • one radio frame is one.
  • the period, that is, 10 subframes is one cycle
  • the conversion of the subframes in one cycle is D, S, U, U, U, D, D, D, D.
  • Step 304 The terminal receives the optimized configuration information sent by the base station.
  • data processing can be performed between the base station and the terminal through the first channel and the second channel.
  • the base station may send data to the terminal by using the first channel; when the first channel is a downlink channel, the base station may The first channel receives data sent by the terminal.
  • the first channel may be part of the uplink channel and part of the time is the downlink channel; or, for a period of time, the first channel is the uplink channel or the first channel is the downlink channel.
  • the uplink channel may use the downlink channel to carry the service, or the downlink channel may use the uplink channel to carry the service, because the FDD uses the frequency band to divide, the uplink channel and The downlink channel adopts different frequency-bearing services, and the interval between frequency points is wide, and the services are not disturbed when carrying services between each other.
  • the TDD division of the frequency band of the uplink channel or the downlink channel is performed by switching the data transmitting unit or the data receiving unit on the base station or the terminal, so that switching between the uplink channel and the downlink channel can be realized.
  • the method for performing data processing between the base station and the terminal includes the following steps described in this embodiment.
  • the base station when the first channel base station sends data to the terminal, the base station also sends data to the terminal through the second channel, except that the content sent by the second channel is different from the content sent by the first channel, where
  • the process of transmitting data to the terminal by the two channels is the same as that of the prior art; similarly, the terminal receives the data transmitted through the first channel, and also receives the data transmitted through the second channel, where the receiving data is sent through the second channel.
  • the process is the same as the process of the prior art.
  • the solution provided by the embodiment of the present invention when the first channel is an uplink channel, sends data to the terminal through the first channel base station, and the terminal receives the data as a main description:
  • Step 701 When the first channel is an uplink channel, in the first time slot, the base station performs channel coding on the data to be sent, to obtain channel-coded first data.
  • channel coding is to perform error correction. Specifically, in the first time slot, the data to be transmitted is subjected to an encoding algorithm to obtain first data including a redundant error correction code.
  • Step 702 The base station modulates the channel-coded first data to obtain a first low-pass baseband signal.
  • the first low-pass baseband signal is a low-pass baseband signal centered on the 0-frequency point. If the frequency bandwidth of the first data in the uplink channel is 2 ⁇ , the uplink channel frequency band ranges from -10 MHz to 10 MHz, and the center frequency point is 0. Hz, this makes it easy for the RF to convert.
  • Step 703 The base station up-converts the first low-pass baseband signal to obtain a first radio frequency signal, and sends the first radio frequency signal to the terminal by using the first channel.
  • the center frequency of the first radio frequency signal may be 2. 6 GHz. It should be noted that the radio frequency signals allocated to different operators are different, for example, the center frequency of the radio frequency signal allocated to the mobile operator. 2GHz. Specifically, the base station moves the baseband signal centered at the 0 frequency point to the radio frequency signal centered at the frequency of 2.6 GHz.
  • the base station sends data to the terminal through the first channel (uplink channel), and the base station also sends data to the terminal through the second channel (downlink channel), specifically, one downlink time.
  • the data of the slot is channel-coded at the base station, and the data containing the redundant error correction code is output, and the output data is modulated to obtain a low-pass baseband signal centered on the 0-frequency point, and the low-pass baseband signal is up-converted, which is low.
  • the baseband signal is moved to a radio frequency signal centered at a frequency of 2.5 GHz and transmitted.
  • Step 704 The terminal receives the first radio frequency signal sent by the base station by using the first channel, and down-converts the first radio frequency signal to obtain the first low-pass baseband signal. Specifically, The terminal down-converts the received first RF signal centered on the 2. 6 GHz frequency to a signal centered at the 0-frequency point, that is, the first low-pass baseband signal.
  • Step 705 The terminal demodulates the first low-pass baseband signal to obtain the demodulated first data.
  • the first data obtained is data containing redundant error correction codes.
  • Step 706 The terminal decodes the demodulated first data to obtain data that is sent by using the first channel.
  • steps 704 to 706 are processes for the terminal to receive data transmitted through the first channel (uplink channel), and at the same time, the terminal also receives data transmitted through the second channel (downlink channel), specifically, on the terminal side.
  • the downlink radio frequency signal centered on the frequency of 2.5 GHz is down-converted to a low-pass baseband signal centered on the 0-frequency point by the radio frequency unit, and the baseband signal is demodulated to obtain a downlink-containing redundant error correction code.
  • the data is decoded by the data of the redundant error correcting code to obtain the final downlink data.
  • the base station can transmit data to the terminal in the frequency band of the range of F0 and F1 in the first time slot, and in the frequency band of the F2 and F3 ranges. Unchanged, the base station can always send data to the terminal, and the terminal can receive data transmitted in the frequency band of F0 and F1, the frequency band of F2 and F3, that is, the terminal can receive the first time. Data sent by one channel and two channels.
  • the method for performing digital signal processing between the base station and the terminal includes the following steps described in this embodiment.
  • the terminal when the first channel terminal sends data to the base station, the terminal also sends data to the base station through the second channel, where the process of the terminal transmitting data to the base station through the second channel is the same as the prior art, except that The content sent by the first channel is different from the content sent by the second channel.
  • the base station receives data sent by the terminal through the first channel and the second channel, where the process of receiving data through the second channel and the prior art.
  • Step 801 When the first channel is a downlink channel, in the first time slot, the terminal performs channel coding on the data to be sent, and obtains channel-coded second data.
  • channel coding is to perform error correction. Specifically, the data to be transmitted in the first time slot is subjected to an encoding algorithm to obtain second data including a redundant error correction code.
  • Step 802 The terminal modulates the channel-coded second data to obtain a second low-pass baseband signal.
  • the process of processing the second data by the terminal in step 802 is the same as the process of processing the first data by the base station in step 602.
  • the second low pass baseband signal is a low pass baseband signal centered at the 0 frequency point.
  • Step 803 the terminal upconverts the second low-pass baseband signal to obtain a second radio frequency signal, and sends the second radio frequency signal to the base station by using the first channel.
  • the terminal moves the signal centered at the 0 frequency to the RF signal centered at the frequency of 2. 6 GHz.
  • step 801 to step 803 data is transmitted from the terminal to the base station in the form of a radio frequency signal through the first channel, and the terminal also transmits data to the base station in the form of a radio frequency signal through the second channel, specifically, uplink.
  • the data of the time slot is channel-coded at the terminal, and the data containing the redundant error correction code is output, and then the data is modulated to obtain a low-pass baseband signal centered on the 0-frequency point, and the obtained low-pass baseband signal is up-converted.
  • 5GHz Move the signal to 2.
  • the frequency center is the center of the RF signal and is transmitted.
  • the radio frequency signal transmitted through the second channel is different from the radio frequency signal sent through the first channel, so that the uplink traffic can be doubled, and the utilization of the total bandwidth resource of the system is improved.
  • Step 804 in the first time slot, the base station receives the second radio frequency signal by using the first channel, and downconverts the second radio frequency signal to obtain a second low-pass baseband signal;
  • the received first RF signal centered on the frequency of 1.6 GHz is down-converted to a signal centered at the 0-frequency point, that is, the second low-pass baseband signal.
  • Step 805 The base station demodulates the second low-pass baseband signal to obtain demodulated second data.
  • the obtained demodulated second data is data including a redundant error correction code.
  • Step 806 The base station decodes the demodulated second data to obtain data sent by the terminal.
  • the base station while receiving data through the first channel, the base station also receives the data sent by the terminal through the second channel, specifically, on the base station side, the received uplink is centered on the 2. 5 GHz frequency point by the radio frequency unit.
  • the RF signal is down-converted to a low-pass baseband signal centered at the 0-frequency point, and the baseband signal is demodulated to obtain downlink data containing the redundant error correction code, and the data of the redundant error correction code is decoded.
  • the final uplink data while receiving data through the first channel, the base station also receives the data sent by the terminal through the second channel, specifically, on the base station side, the received uplink is centered on the 2. 5 GHz frequency point by the radio frequency unit.
  • the RF signal is down-converted to a low-pass baseband signal centered at the 0-frequency point, and the baseband signal is demodulated to obtain downlink data containing the redundant error correction code, and the data of the redundant error correction code is decoded.
  • step 801 to step 806 is similar to the processing procedure of step 701 to step 706, except that the execution subject of step 701 to step 703 is a base station, and the execution subject of steps 704 to 705 is a terminal, and step 801 The execution body to step 803 is a terminal, and the execution subject of steps 804 to 805 is a base station.
  • a method for resource allocation by detecting and determining a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of an FDD, using a frequency band in the first channel
  • the TDD divides different time slots, allocates the first time slot of the different time slots to the second channel, and then sends optimized configuration information to the terminal.
  • the service traffic of the downlink channel and the uplink channel is not uniform, resulting in a system with low total bandwidth utilization and small traffic flow.
  • the solution provided by the embodiment of the present invention allocates a time slot to a channel with a large traffic flow by dividing a channel with a small traffic flow in a frequency division duplex channel, thereby fully Utilize bandwidth resources and reduce interference.
  • An embodiment of the present invention provides a device for resource allocation.
  • the device may be a base station.
  • the device includes: a detecting unit 901, an allocating unit 902, a sending unit 903, a data sending unit 904, and a data receiving unit 905.
  • the detecting unit 901 is configured to detect and determine a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of the frequency division duplex FDD;
  • FDD Frequency Divi s ion Dup lex
  • the uplink channel transmits data to the base station by using one frequency band
  • the downlink channel transmits the data to the terminal by using one frequency band. data.
  • the frequency range of the uplink channel may be from F0 to Fl
  • the frequency range of the downlink channel may be from F2 to F3.
  • the allocating unit 902 is configured to divide the frequency band in the first channel into different time slots by using time division duplex TDD, and allocate the first time slot in the different time slots to the second channel;
  • the different time slots include three types of time slots: an uplink time slot, a downlink time slot, and an uplink and downlink switch time slot, where the uplink time slot is used to carry services on the uplink channel, that is, in the uplink time slot.
  • the terminal sends an uplink subframe to the base station; the downlink time slot is used to carry the service on the downlink channel, that is, the downlink subframe is sent from the base station to the terminal in the downlink time slot; and the uplink and downlink handover time slot is used to switch the downlink subframe to the uplink subframe.
  • the time required. The length of each type of time slot in different time slots can be determined by the base station and the terminal.
  • the length of the uplink time slot is 1 ms
  • the length of the downlink time slot is 1 ms
  • the uplink and downlink time slot is lms
  • the length of the slot is 2 ms
  • the length of the downlink slot is lms
  • the time slot of the uplink and downlink is 0 ms.
  • the base station performs TDD division on the frequency band of the first channel with a small channel traffic, so that the first channel can allocate some time slots to the second channel with large channel traffic, so that the channel with lower utilization rate is fully utilized, and the utilization is shared.
  • the traffic of the channel with a higher rate improves the throughput of the channel with higher utilization.
  • TDD Time Divi s ion Duplex
  • the channel uses different time slots of the same frequency band for division, that is, the uplink channel transmits data to the base station by one terminal in one time slot, and the downlink channel transmits data to the terminal by the base station in one time slot.
  • the sending unit 903 is configured to send, to the terminal, optimized configuration information, where the optimized configuration information includes parameters required to process part of the data service of the second channel in the first time slot.
  • the parameter included in the optimized configuration information includes at least the following two parameters: 1. a ratio of an uplink subframe to a downlink subframe; 2. an indication of whether the first channel is an uplink channel or a downlink channel.
  • the data sending unit 904 is configured to send data to the terminal by using the first channel in the first time slot;
  • the first time slot transmits data to the terminal through the first channel
  • the data is also sent to the terminal through the second channel, where the data is sent to the terminal through the second channel, and the second channel is used in the prior art.
  • the process of sending data to the terminal is the same.
  • the data receiving unit 905 is configured to receive data sent by the terminal by using the first channel in the first time slot.
  • the receiving terminal sends the data through the second channel, where the receiving data is sent by the second channel receiving terminal and the second through the prior art.
  • the flow of the channel to the terminal is the same.
  • the data transmitting unit 904 and the data receiving unit 905 may be used in combination for a period of time, or only the data transmitting unit 904 or only the data receiving unit 905 may be used for the same period of time.
  • the solution provided by the embodiment of the present invention allocates a part of a time slot to a channel with a large service traffic by performing time slot division on a channel with a small traffic flow, so that bandwidth resources can be fully utilized.
  • the data sending unit 904 includes: an encoding module 1001, a modulation module. 1002, RF module 1003.
  • the encoding module 1001 When the first channel is an uplink channel, in the first time slot, the encoding module 1001 performs channel coding on the data to be transmitted to obtain channel-coded first data.
  • the purpose of performing channel coding is to perform error correction.
  • the data to be transmitted in the first time slot is subjected to a convolutional coding algorithm to obtain first data including a redundant error correction code.
  • the modulation module 1002 uses And modulating the channel-coded first data to obtain a first low-pass baseband signal;
  • the first low-pass baseband signal is a low-pass baseband signal centered on the 0-frequency point. If the frequency bandwidth of the first data in the uplink channel is 2 ⁇ , the uplink channel frequency band ranges from -10 MHz to 10 MHz, and the center frequency point is 0 Hz. In this way, it is convenient for the RF to perform frequency conversion;
  • the radio frequency module 1003 is configured to upconvert the first low pass baseband signal to obtain a first radio frequency signal, and send the first radio frequency signal to the terminal by using the first channel.
  • the center frequency of the first RF signal can be 2. 6 GHz, and the RF signals allocated to different operators are different.
  • the center frequency of the RF signal allocated to the mobile operator is 2. 6 GHz.
  • the base station moves the baseband signal centered at the 0-frequency point to the radio frequency signal centered at the frequency of 2. 6 GHz.
  • the terminal sends data by using the first channel, as shown in FIG. 11, the data receiving unit 905 includes: a radio frequency module 1 101, a demodulation module 1102, and a decoding module. 1103.
  • the radio frequency module 1 101 is configured to: when the first channel is a downlink channel, receive the second radio frequency signal by using the first channel in the first time slot, and downconvert the second radio frequency signal, Obtaining a second low pass baseband signal;
  • the base station downconverts the received second radio frequency signal centered at the frequency of 2.6 GHz to a signal centered at the 0 frequency point, that is, the second low pass baseband signal.
  • a demodulation module 1102 configured to demodulate the second low-pass baseband signal to obtain demodulated second data
  • the obtained demodulated second data is data including a redundant error correction code.
  • the decoding module 1103 is configured to decode the demodulated second data to obtain data sent by the terminal.
  • An apparatus for resource allocation detects, by a detecting unit, a first channel with a small channel traffic and a second channel with a large channel traffic in an uplink channel and a downlink channel of a frequency division duplex FDD, and the allocation unit
  • the frequency band in the first channel divides different time slots by TDD, and allocates the first time slot of the different time slots to the second channel
  • the sending unit sends the optimized configuration information to the terminal.
  • the traffic of the downlink channel and the uplink channel is not uniform, the same bandwidth is used for both the uplink channel and the downlink channel, resulting in a lower total bandwidth utilization of the system and a waste of bandwidth of a channel having a smaller traffic volume.
  • the solution provided by the embodiment of the present invention allocates a part of a time slot to a channel with a large traffic flow by dividing a channel with a small traffic flow into a time slot, so that the bandwidth resource can be fully utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种资源分配的方法及设备,涉及通信技术领域,可以充分利用带宽资源。本发明实施例提供的方案通过检测并确定频分双工 FDD 的上行信道和下行信道中信道流量小的第一信道和信道流量大的第二信道,将所述第一信道中的频带采用时分双工 TDD 划分出不同的时隙,并将所述不同的时隙中的第一时隙分配给所述第二信道,并向终端发送优化配置信息。本发明实施例提供的方案适合进行资源分配时采用。

Description

资源分配的方法及设备
本申请要求于 2011 年 8 月 26 日提交中国专利局、 申请号为 201110249121.6、发明名称为"资源分配的方法及设备"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种资源分配的方法及设备。 背景技术 在无线通信系统中有 FDD ( Frequency Div i s ion Duplex, 频分双工) 和 TDD ( Time Div i s i on Dup lex, 时分双工) 两种通信模式。
FDD为空口上行信道和下行信道利用频段进行划分,操作时需要两个独 立的信道, 其中一个信道用于终端向基站传送信息, 另一个信道用于基站 向终端传送信息, 两个信道之间存在一个保护频段, 以防止邻近的发射机 和接收机之间产生相互干扰。 TDD为空口上行信道和下行信道使用相同的频 段, 利用时隙进行划分, 即基站和终端之间的上行和下行通讯使用同一频 率信道的不同时隙, 用时间来分离接收和传送信道, 某个时间段由基站发 送信号给终端, 另外的时间由终端发送信号给基站。
然而, 采用现有技术应用无线通信系统时, 由于上行信道和下行信道 使用了相同的带宽, 下行信道的业务流量远远大于上行信道的业务流量, 导致系统的总带宽利用率较低并且上行信道的带宽浪费较多。 发明内容 本发明的实施例提供一种资源分配的方法及设备, 可以充分利用带宽 资源。
为达到上述目的, 本发明的实施例采用如下技术方案: 一种资源分配的方法, 包括:
检测并确定频分双工 FDD的上行信道和下行信道中信道流量小的第一 信道和信道流量大的第二信道;
将所述第一信道中的频带釆用时分双工 TDD划分出不同的时隙, 并将 所述不同的时隙中的第一时隙分配给所述第二信道;
向终端发送优化配置信息, 所述优化配置信息包括将所述第二信道的 部分数据业务在所述第一时隙进行处理所需的参数。
一种资源分配的设备, 包括:
检测单元, 用于检测并确定频分双工 FDD 的上行信道和下行信道中信 道流量小的第一信道和信道流量大的第二信道;
分配单元, 用于将所述第一信道中的频带釆用时分双工 TDD 划分出不 同的时隙, 并将所述不同的时隙中的第一时隙分配给所述第二信道;
发送单元, 用于向终端发送优化配置信息, 所述优化配置信息包括将 所述第二信道的部分数椐业务在所述第一时隙进行处理所需的参数。
本发明实施例提供的一种资源分配的方法及设备, 通过检测并确定频 分双工 FDD 的上行信道和下行信道中信道流量小的第一信道和信道流量大 的第二信道, 将第一信道中的频带采用 TDD划分出不同的时隙, 并将所述 不同的时隙中的第一时隙分配给所述第二信道, 然后向终端发送优化配置 信息。 与现有技术中由于下行信道和上行信道的业务流量不均勾, 上行信 道和下行信道都使用了相同的带宽, 导致系统的总带宽利用率较低并且业 务流量小的信道的带宽浪费较多相比, 本发明实施例提供的方案通过将业 务流量小的信道进行时隙划分, 将部分时隙分配给业务流量大的信道, 从 而可以充分利用带宽资源。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明实施例 1提供的一种资源分配的方法的流程图; 图 1为本发明实施例 1提供的一种资源分配的设备的框图;
图 3为本发明实施例 1提供的一种资源分配的方法的流程图; 图 4为本发明实施例 2提供的 FDD通信系统的频带划分的示意图; 图 5为本发明实施例 1提供的在 FDD的上行信道上进行 TDD分配的示 意图;
图 6为本发明实施例 1提供的下行信道和上行信道的比率配置表的示 意图;
图 7为本发明实施例 2提供的第一信道为上行信道时, 基站和终端之 间进行数据处理的方法的流程图;
图 8为本发明实施例 2提供的第一信道为下行信道时, 基站和终端之 间进行数据处理的方法的流程图;
图 9为本发明实施例 2提供的一种资源分配的设备的框图;
图 10为本发明实施例 2提供的数据发送单元的框图;
图 11为本发明实施例 2提供的数据接收单元的框图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
实施例 1
本发明实施例提供一种资源分配的方法, 如图 1所示, 该方法包括: 步骤 101 ,检测并确定频分双工 FDD的上行信道和下行信道中信道流量 小的第一信道和信道流量大的第二信道;
FDD ( Frequency Divi s ion Dup lex, 频分双工), 为空口上行信道和下 行信道利用频段进行划分, 即上行信道用一个频段由终端向基站发送数据, 下行信道用一个频段由基站向终端发送数据。
步骤 102 ,将所述第一信道中的频带釆用时分 工 TDD划分出不同的时 隙, 并将所述不同的时隙中的第一时隙分配给所述第二信道;
TDD ( Time Divi s ion Duplex , 时分复用), 为空口上行信道和下行信 道使用相同频段的不同时隙进行划分 , 即上行信道用一个时隙由终端向基 站发送数据, 下行信道用一个时隙由基站向终端发送数据。
该步骤中, 可以是将第一信道中的频带的全部都釆用 TDD进行时隙划 分。
步骤 103 , 向终端发送优化配置信息, 所述优化配置信息包括将所述第 二信道的部分数据业务在所述第一时隙进行处理所需的参数。
本发明实施例提供的一种资源分配的方法, 通过检测并确定频分双工 FDD 的上行信道和下行信道中信道流量小的第一信道和信道流量大的第二 信道, 将第一信道中的频带釆用 TDD 划分出不同的时隙, 并将所述不同的 时隙中的第一时隙分配给所述第二信道, 然后向终端发送优化配置信息。 与现有技术中由于上行信道和下行信道都使用了相同的带宽, 下行信道和 上行信道的业务流量不均匀 , 导致系统的总带宽利用率较低并且业务流量 小的信道的带宽浪费较多相比, 本发明实施例提供的方案通过将业务流量 小的信道进行时隙划分, 将部分时隙分配给业务流量大的信道, 从而可以 充分利用带宽资源。
本发明实施例提供一种资源分配的设备, 该设备可以为基站, 如图 2 所示, 该设备包括: 检测单元 201, 分配单元 202, 发送单元 203。
检测单元 201 ,用于检测并确定频分双工 FDD的上行信道和下行信道中 信道流量小的第一信道和信道流量大的第二信道; 分配单元 202 ,用于将所述第一信道中的频带采用时分双工 TDD划分出 不同的时隙, 并将所述不同的时隙中的第一时隙分配给所述第二信道; 发送单元 203 , 用于向终端发送优化配置信息, 所述优化配置信息包括 将所述第二信道的部分数据业务在所述第一时隙进行处理所需的参数。
本发明实施例提供的一种资源分配的设备, 通过检测单元检测并确定 频分双工 FDD 的上行信道和下行信道中的信道流量小的第一信道和信道流 量大的第二信道, 分配单元将第一信道中的频带采用 TDD划分出不同的时 隙, 并将所述不同的时隙中的第一时隙分配给第二信道, 发送单元向终端 发送优化配置信息。 与现有技术中由于下行信道和上行信道的业务流量不 均匀, 上行信道和下行信道都使用了相同的带宽, 导致系统的总带宽利用 率较低并且业务流量小的信道的带宽浪费较多相比, 本发明实施例提供的 方案通过将业务流量小的信道进行时隙划分, 将部分时隙分配给业务流量 大的信道, 从而可以充分利用带宽资源。
实施例 2
本发明实施例提供的一种资源分配的方法, 如图 3所示, 该方法包括: 步骤 301 ,基站检测并确定频分双工 FDD的上行信道和下行信道中信道 流量小的第一信道和信道流量大的第二信道;
FDD ( Frequency Divi s ion Dup lex, 频分双工), 为空口上行信道和下 行信道利用频段进行划分, 即上行信道用一个频段由终端向基站发送数据, 下行信道用一个频段由基站向终端发送数据。 FDD通信系统的频带划分如图 4所示, 其中, 上行信道的频带范围从 F0到 Fl, 下行信道的频带范围从 F2 到 F3。
需要说明的是, 步骤 301 中将 FDD的上行信道的信道流量和下行信道 的信道流量进行比较, 确定其中信道流量小的为第一信道, 信道流量大的 为第二信道。 当信道流量大的所述第二信道的业务量比较大, 即使所述第 二信道还有承载业务的能力时, 也可以采用本发明实施例提供的方案进行 优化配置, 这样可以减少第二信道进行承载业务时产生的千扰。 步骤 302 ,所述基站将所述第一信道中的频带采用时分双工 TDD划分出 不同的时隙, 并将所述不同的时隙中的第一时隙分配给所述第二信道; 具体地, 基站将信道流量小的第一信道的频带进行 TDD划分, 使得第 一信道可以分配出一些时隙用于承载第二信道中的部分业务, 使利用率比 较低的信道得到充分利用, 并分担了利用率比较高的信道的流量, 提高了 利用率较高信道的吞吐量。
TDD ( Time Divi s ion Duplex , 时分复用), 为空口上行信道和下行信 道使用相同频段的不同时隙进行划分, 即上行信道用一个时隙由终端向基 站发送数据, 下行信道用一个时隙由基站向终端发送数据。 假如第一信道 为上行信道, 如图 5所示, 将上行信道的频带(F0到 F1的频带范围 )进行 TDD分配部分时隙给下行信道, 其中, 上行信道的频带划分出下行时隙 Tl, 供下行信道使用,下行信道的频带(F2到 F3的频带范围)不进行时隙划分。
具体地, 所述不同的时隙中包括三类时隙: 上行时隙 Tl、 下行时隙 TO 和上下行切换时隙, 其中, 上行时隙 T1用于承载上行信道上的业务, 即在 上行时隙从终端向基站发送上行子帧; 下行时隙 TO用于承载下行信道上的 业务, 即在下行时隙从基站向终端发送下行子帧; 上下行切换时隙用于将 下行子帧切换到上行子帧时所需的时间。 需要说明的是, 在将上行子帧切 换到下行子帧时, 并不需要上下行切换时隙, 原因是在 TDD模式下, 上行 信道和下行信道发送数据时使用的频点相同, 使用不同的时间段进行区分。 将下行子帧切换到上行子帧时, 下行子帧发送结束时, 终端还在继续接收 下行数据, 无法在该频点发送上行数据, 所以必须有上下行切换时隙。 而 由于终端在上行信道发送数据时提前发送信号, 当将上行子帧切换到下行 子帧的瞬间, 基站可以立即切换, 终端只需要延迟一段时间进行接收数据 就可以了, 所以此时上行子帧切换到下行子帧不需要上下行切换时隙。
不同的时隙中每类时隙的长度可以由基站和终端进行商议确定, 例如, 上行时隙的长度为 1ms , 下行时隙的长度为 1ms , 上下行切换时隙为 1ms , 或者, 上行时隙的长度为 2ms , 下行时隙的长度为 1ms , 上下行切换时隙为 Oms。
步骤 303 , 所述基站向终端发送优化配置信息, 所述优化配置信息包括 将所述第二信道的部分数据业务在所述第一时隙进行处理所需的参数; 基站在第一信道的频带给第二信道分配部分时隙后, 可以以广播消息 的形式通知各个终端, 可以在第一时隙采用第一信道处理部分第二信道承 载的数据业务。
这里, 所述优化配置信息中包括的参数至少包括以下两个参数: 1.上行子帧和下行子帧的比率; 2.第一信道为上行信道还是下行信道 的指示。
LTE协议中定义的上行子帧和下行子帧的比率的配置如图 6所示, U表 示上行子帧, D表示下行子帧, S表示特殊子帧 (包含保护间隔的子帧)。 如图 6中表为 7种配置情况, 其中标号为 0的第一种配置情况, 下行子帧 转换为上行子帧的转换周期为 5ms,—个无线帧包括两个周期, 5 个子帧为 一个周期, 一个周期中子帧的转换为 D、 S、 U、 U、 U; 其中标号为 3的第四 种配置情况,下行子帧转换为上行子帧的转换周期为 10ms,一个无线帧为一 个周期, 即 10个子帧为一个周期, 一个周期中子帧的转换为 D、 S、 U、 U、 U、 D、 D、 D、 D。
步骤 304, 所述终端接收所迷基站发送的优化配置信息;
当终端接收到基站发送的优化配置信息后, 在所述第一时隙, 通过所 述第一信道和所述第二信道, 基站和终端之间可以进行数据的处理。
当所述第一信道为上行信道时, 在所述第一时隙, 基站可以通过所述 第一信道向所述终端发送数据; 当所述第一信道为下行信道时, 基站可以 通过所述第一信道接收所述终端发送的数据。 一段时间内, 第一信道可以 部分时间为上行信道, 部分时间为下行信道; 或者, 一段时间内, 第一信 道为上行信道或者第一信道为下行信道。
需要说明的是, 上行信道可以采用下行信道承载业务, 或者下行信道 可以采用上行信道承载业务, 是由于 FDD利用频段进行划分, 上行信道和 下行信道采用不同的频点承载业务, 频点间的间隔较宽, 相互之间承载业 务时不千扰。 将上行信道或者下行信道的频带进行 TDD 划分, 是将基站或 者终端上的数据发送单元或者数据接收单元进行切换, 这样, 即可实现上 行信道和下行信道之间的切换。
具体地, 如图 7 所示, 第一信道为上行信道时, 基站和终端之间进行 数据处理的方法包括本实施例所描述的如下步骤。
需要说明的是, 通过第一信道基站向终端发送数据的同时, 基站也通 过第二信道向终端发送数据, 不同的是通过第二信道发送的内容与第一信 道发送的内容不同, 其中, 第二信道向终端发送数据的过程与现有技术的 处理流程相同; 同理, 终端接收通过第一信道发送的数据的同时, 也接收 通过第二信道发送数据, 其中, 接收通过第二信道发送数据的过程与现有 技术的处理流程相同; 本发明实施例提供的方案, 当第一信道为上行信道 时, 以通过第一信道基站向终端发送数据, 终端接收数据为主进行详细描 述:
步骤 701, 当所述第一信道为上行信道时, 在所述第一时隙, 基站将待 发送的数据进行信道编码, 获得信道编码后的第一数据;
需要说明的是, 进行信道编码的目的是进行纠错, 具体地, 在第一时 隙, 待发送的数据经过编码算法, 获得包含冗余纠错码的第一数据。
步骤 702, 所述基站对所述信道编码后的第一数据进行调制, 获得第一 低通基带信号;
第一低通基带信号为以 0频点为中心的低通基带信号, 如果在上行信 道中第一数据的频率带宽为 2 ΟΜΗζ ,则上行信道频带范围从 -10MHz到 10MHz, 中心频点为 0 Hz, 这样, 方便射频器进行变频。
步骤 703,所述基站对所述第一低通基带信号进行上变频获得第一射频 信号, 并将所述第一射频信号通过所述第一信道向所述终端发送;
第一射频信号的中心频点可以为 2. 6GHz , 需要说明的是, 分配给不同 运营商的射频信号不同, 例如, 分配给移动运营商的射频信号的中心频点 为 2. 6GHz。具体地,基站将以 0频点为中心的基带信号搬移到以 2. 6GHz频 点为中心的射频信号。
需要说明的是, 步骤 701至步骤 703为基站通过第一信道(上行信道) 向终端发送数据的流程, 同时, 基站也通过第二信道(下行信道) 向终端 发送数据, 具体地, 下行一个时隙的数据在基站经过信道编码, 输出包含 冗余纠错码的数据, 对输出的数据进行调制, 得到以 0频点为中心的低通 基带信号, 并对低通基带信号上变频, 把低通基带信号搬移到以 2. 5GHz频 点为中心的射频信号, 并发射出去。
步骤 704,所述终端接收到所述基站通过所述第一信道发送的所述第一 射频信号, 对所述第一射频信号进行下变频, 获得所述第一低通基带信号; 具体地, 终端将接收到的以 2. 6GHz频点为中心的第一射频信号下变频 为以 0频点为中心的信号, 即第一低通基带信号。
步骤 705 , 所述终端对所述第一低通基带信号进行解调, 获得解调后的 所述第一数据;
获得的第一数据为包含冗余纠错码的数据。
步骤 706 , 所述终端对解调后的所述第一数据进行译码, 得到通过所述 第一信道发送的数据。
需要说明的是, 步骤 704至步骤 706为终端接收通过第一信道(上行 信道)发送的数据的流程, 同时, 终端也接收通过第二信道(下行信道) 发送的数据, 具体地, 在终端侧, 通过射频单元把接收到的以 2. 5GHz频点 为中心的下行射频信号下变频到以 0频点为中心的低通基带信号, 对基带 信号进行解调, 得到下行包含冗余糾错码的数据, 对冗余纠错码的数据进 行译码, 得到最终的下行数据。
需要说明的是, 由于将第一时隙分配给了第二信道, 此时, 基站可以 在第一时隙在 F0和 F1范围的频带上向终端发送数据, 而在 F2和 F3范围 的频带上不变, 基站可以一直向终端发送数据, 终端可以接收在 F0和 F1 范围的频带、 F2和 F3范围的频带发送的数据, 即此时终端可以接收通过第 一通道和第二通道发送的数据。
具体地, 如图 8 所示, 第一信道为下行信道时, 基站和终端之间进行 数字信号处理的方法包括本实施例所描述的如下步骤。
需要说明的是, 通过第一信道终端向基站发送数据的同时, 终端也通 过第二信道向基站发送数据, 其中, 终端通过第二信道向基站发送数据的 流程与现有技术相同, 不同的是, 通过第一信道发送的内容与通过第二信 道发送的内容不同; 同理, 基站通过第一信道和第二信道接收终端发送的 数据, 其中, 通过第二信道接收数据的流程与现有技术相同; 本发明实施 例提供的方案, 当第一信道为下行信道时, 以通过第一信道终端向基站发 送数据, 基站接收数据为主进行详细描述:
步骤 801 , 当所述第一信道为下行信道时, 在所述第一时隙, 所述终端 将待发送的数据进行信道编码, 获得信道编码后的第二数据;
需要说明的是, 进行信道编码的目的是进行纠错, 具体地, 在第一时 隙待发送的数据经过编码算法, 获得包含冗余纠错码的第二数据。
步骤 802, 所述终端对所述信道编码后的第二数据进行调制, 获得第二 低通基带信号;
步骤 802中终端对第二数据的处理过程与步骤 602 中基站对第一数据 的处理过程相同。 第二低通基带信号为以 0频点为中心的低通基带信号。
步骤 803,所述终端对所述第二低通基带信号进行上变频获得第二射频 信号, 并将所述第二射频信号通过所述第一信道向所述基站发送;
终端将以 0 频点为中心的信号搬移到以 2. 6GHz 频点为中心的射频信 号。
需要说明的是, 步骤 801至步驟 803为通过第一信道以射频信号的形 式从终端向基站发送数据, 同时, 通过第二信道以射频信号的形式终端向 基站也发送数据, 具体地, 上行一个时隙的数据在终端经过信道编码, 输 出包含冗余糾错码的数据, 然后对数据进行调制, 得到以 0频点为中心的 低通基带信号, 并对获得的低通基带信号上变频, 把信号搬移到以 2. 5GHz 频点为中心的射频信号, 并发射出去。 这里, 通过第二信道发送的射频信 号和通过第一信道发送的射频信号不同, 这样, 上行业务流量就可以增加 1 倍, 提高了系统的总带宽资源的利用率。
步骤 804, 在所述第一时隙, 所述基站通过所述第一信道接收所述第二 射频信号, 并将所述第二射频信号进行下变频, 获得第二低通基带信号; 基站将接收到的以 1. 6GHz频点为中心的第一射频信号下变频为以 0频 点为中心的信号, 即第二低通基带信号。
步骤 805 , 所述基站对所述第二低通基带信号进行解调, 获得解调后的 第二数据;
获得的解调后的第二数据为包含冗余纠错码的数据。
步骤 806 , 所述基站对所述解调后的第二数据进行译码, 获得所述终端 发送的数据。
需要说明的是, 在通过第一信道接收数据的同时, 基站也通过第二信 道接收终端发送的数据, 具体地, 在基站侧, 通过射频单元把接收到的上 行以 2. 5GHz频点为中心的射频信号下变频到以 0频点为中心的低通基带信 号, 对基带信号进行解调, 得到下行包含冗余纠错码的数据, 并对冗余纠 错码的数据进行译码, 得到最终的上行数据。
需要说明的是,步骤 801至步骤 806的处理过程与步骤 701至步骤 706 的处理过程相似, 只是步骤 701至步骤 703的执行主体为基站, 步骤 704 至步骤 705的执行主体为终端, 而步骤 801至步骤 803的执行主体为终端, 步骤 804至步骤 805的执行主体为基站。
本发明实施例提供的一种资源分配的方法, 通过检测并确定 FDD 的上 行信道和下行信道中信道流量小的第一信道和信道流量大的第二信道, 将 第一信道中的频带釆用 TDD划分出不同的时隙, 并将所述不同的时隙中的 第一时隙分配给所述第二信道, 然后向终端发送优化配置信息。 与现有技 术中由于上行信道和下行信道都使用了相同的带宽, 下行信道和上行信道 的业务流量不均勾, 导致系统的总带宽利用率较低并且业务流量小的信道 的带宽浪费较多相比, 本发明实施例提供的方案通过将进行频分双工的信 道中业务流量小的信道进行时隙划分, 将部分时隙分配给业务流量大的信 道, 从而可以充分利用带宽资源, 并且可以减少干扰。
本发明实施例提供一种资源分配的设备, 该设备可以为基站, 如图 9 所示, 该设备包括: 检测单元 901, 分配单元 902, 发送单元 903, 数据发 送单元 904 , 数据接收单元 905。
检测单元 901 ,用于检测并确定频分双工 FDD的上行信道和下行信道中 信道流量小的第一信道和信道流量大的第二信道;
FDD ( Frequency Divi s ion Dup lex, 频分双工), 为空口上行信道和下 行信道利用频段进行划分, 即上行信道用一个频段由终端向基站发送数据, 下行信道用一个频段由基站向终端发送数据。 例如, 上行信道的频带范围 可以为从 F0到 Fl, 下行信道的频带范围可以为从 F2到 F3。
分配单元 902 ,用于将所述第一信道中的频带釆用时分双工 TDD划分出 不同的时隙, 并将所述不同的时隙中的第一时隙分配给所述第二信道; 具体地, 所述不同的时隙中包括三类时隙: 上行时隙、 下行时隙和上 下行切换时隙, 其中, 上行时隙用于承载上行信道上的业务, 即在上行时 隙从终端向基站发送上行子帧; 下行时隙用于承载下行信道上的业务, 即 在下行时隙从基站向终端发送下行子帧; 上下行切换时隙为将下行子帧切 换到上行子帧时所需的时间。 不同的时隙中每类时隙的长度可以由基站和 终端进行商议确定,例如,上行时隙的长度为 1ms, 下行时隙的长度为 1ms, 上下行切换时隙为 lms, 或者, 上行时隙的长度为 2ms, 下行时隙的长度为 lms, 上下行切换时隙为 0ms。
基站将信道流量小的第一信道的频带进行 TDD划分, 使得第一信道可 以分配出一些时隙给信道流量大的第二信道使用, 使利用率比较低的信道 得到充分利用, 并分担了利用率比较高的信道的流量, 提高了利用率较高 信道的吞吐量。
TDD ( Time Divi s ion Duplex , 时分复用), 为空口上行信道和下行信 道使用相同频段的不同时隙进行划分, 即上行信道用一个时隙由终端向基 站发送数据, 下行信道用一个时隙由基站向终端发送数据。
发送单元 903 , 用于向终端发送优化配置信息, 所述优化配置信息包括 将所述第二信道的部分数据业务在所述第一时隙进行处理所需的参数。
在基站向终端发送优化配置信息后, 在所述第一时隙, 通过所述第一 信道和所述第二信道, 基站和终端之间可以进行数字信号处理。 这里, 所 述优化配置信息中包括的参数至少包括以下两个参数: 1.上行子帧和下行 子帧的比率; 2.第一信道为上行信道还是下行信道的指示。
其中, 当所述第一信道为上行信道时, 数据发送单元 904 , 用于在所述 第一时隙, 通过所述第一信道向所述终端发送数据;
需要说明的是, 在第一时隙通过第一信道向终端发送数据的同时, 通 过第二信道也向终端发送数据, 其中, 通过第二信道向终端发送数据与现 有技术中通过第二信道向终端发送数据的流程相同。
当所述第一信道为下行信道时, 数据接收单元 905 , 用于在所述第一时 隙, 通过所述第一信道接收所述终端发送的数据。
需要说明的是, 在第一时隙通过第一信道接收终端发送的数据的同时, 通过第二信道也接收终端发送数据, 其中, 通过第二信道接收终端发送数 据与现有技术中通过第二信道向终端发送数据的流程相同。
另外, 在一段时间内, 数据发送单元 904和数据接收单元 905可以结 合使用, 或者在相同的一段时间内, 只使用数据发送单元 904 或者只使用 数据接收单元 905。
本发明实施例提供的方案通过将业务流量小的信道进行时隙划分, 将 部分时隙分配给业务流量大的信道, 从而可以充分利用带宽资源。
具体地, 在所述第一时隙, 通过所述第一信道和所述第二信道向所述 终端发送数据, 其中, 通过第二信道向所述终端发送数据与现有技术相同, 在这里不一一赘述, 在所述第一时隙, 通过所述第一信道向所述终端发送 数据, 如图 10所示, 数据发送单元 904 包括: 编码模块 1001 , 调制模块 1002 , 射频模块 1003。
当所述第一信道为上行信道时, 在所述第一时隙, 编码模块 1001 , 将 待发送的数据进行信道编码, 获得信道编码后的第一数据;
需要说明的是, 进行信道编码的目的是进行纠错, 具体地, 在第一时 隙待发送的数据经过卷积编码算法, 获得包含冗余纠错码的第一数据; 调制模块 1002 , 用于对所述信道编码后的第一数据进行调制, 获得第 一低通基带信号;
第一低通基带信号为以 0频点为中心的低通基带信号, 如果在上行信 道中第一数据的频率带宽为 2 ΟΜΗζ ,则上行信道频带范围从 -10MHz到 10MHz, 中心频点为 0Hz , 这样, 方便射频器进行变频;
射频模块 1003 , 用于对所述第一低通基带信号进行上变频获得第一射 频信号, 并将所述第一射频信号通过所述第一信道向所述终端发送。
第一射频信号的中心频点可以为 2. 6GHz , 分配给不同运营商的射频信 号不同, 例如, 分配给移动运营商的射频信号的中心频点为 2. 6GHz。 具体 地, 基站将以 0频点为中心的基带信号搬移到以 2. 6GHz频点为中心的射频 信号。
具体地, 在所述第一时隙, 通过所述第一信道接收所述终端发送数据, 如图 1 1所示, 数据接收单元 905 包括: 射频模块 1 101, 解调模块 1102, 译码模块 1103。
射频模块 1 101, 用于当所述第一信道为下行信道时,在所述第一时隙, 通过所述第一信道接收笫二射频信号, 并将所述第二射频信号进行下变频, 获得第二低通基带信号;
具体地, 基站将接收到的以 2. 6GHz频点为中心的第二射频信号下变频 为以 0频点为中心的信号, 即第二低通基带信号。
解调模块 1102, 用于对所述第二低通基带信号进行解调, 获得解调后 的第二数据;
获得的解调后的第二数据为包含冗余纠错码的数据。 译码模块 1103 , 用于对所述解调后的第二数据进行译码, 获得所述终 端发送的数据。
本发明实施例提供的一种资源分配的设备, 通过检测单元检测并确定 频分双工 FDD 的上行信道和下行信道中信道流量小的第一信道和信道流量 大的第二信道, 分配单元将第一信道中的频带釆用 TDD划分出不同的时隙, 并将所述不同的时隙中的第一时隙分配给第二信道, 发送单元向终端发送 优化配置信息。 与现有技术中由于下行信道和上行信道的业务流量不均匀, 上行信道和下行信道都使用了相同的带宽, 导致系统的总带宽利用率较低 并且业务流量小的信道的带宽浪费较多相比, 本发明实施例提供的方案通 过将业务流量小的信道进行时隙划分, 将部分时隙分配给业务流量大的信 道, 从而可以充分利用带宽资源。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局 限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明 的保护范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种资源分配的方法, 其特征在于, 包括:
检测并确定频分双工 FDD的上行信道和下行信道中信道流量小的第一 信道和信道流量大的第二信道;
将所述第一信道中的频带釆用时分双工 TDD划分出不同的时隙, 并将 所述不同的时隙中的第一时隙分配给所述第二信道;
向终端发送优化配置信息, 所述优化配置信息包括将所述第二信道的 部分数据业务在所述第一时隙进行处理所需的参数。
2、 根据权利要求 1所述的资源分配的方法, 其特征在于, 在所述向终 端发送优化配置信息之后, 还包括:
当所述第一信道为上行信道时, 在所述第一时隙, 通过所述第一信道 向所述终端发送数据; 和 /或,
当所述第一信道为下行信道时, 在所述第一时隙, 通过所述第一信道 接收所述终端发送的数据。
3、 根据权利要求 2所述的资源分配的方法, 其特征在于, 所述当所述 第一信道为上行信道时, 在所述第一时隙, 通过所述第一信道向所述终端 发送数据包括:
当所述第一信道为上行信道时, 在所述第一时隙, 基站将待发送的数 据进行信道编码, 获得信道编码后的第一数据;
所述基站对所述信道编码后的第一数据进行调制, 获得第一低通基带 信号;
所述基站对所述第一低通基带信号进行上变频获得第一射频信号, 并 将所述第一射频信号通过所述第一信道向所述终端发送。
4、 根据权利要求 2所述的资源分配的方法, 其特征在于, 所述当所述 第一信道为下行信道时, 在所述第一时隙, 通过所述第一信道接收所述终 端发送的数据包括:
当所述第一信道为下行信道时, 在所述第一时隙, 所述基站通过所述 第一信道接收第二射频信号, 并将所述第二射频信号进行下变频, 获得第 二低通基带信号;
所述基站对所述第二低通基带信号进行解调, 获得解调后的笫二数据; 所述基站对所述解调后的第二数据进行译码, 获得所述终端发送的数 据。
5、 根据权利要求卜 4中任一项所述的资源分配的方法, 其特征在于, 所述第一信道中的频带采用所述 TDD 划分出的所述不同时隙中还包括上下 行切换时隙。
6、 一种资源分配的设备, 其特征在于, 包括:
检测单元, 用于检测并确定频分双工 FDD 的上行信道和下行信道中信 道流量小的第一信道和信道流量大的第二信道;
分配单元, 用于将所述第一信道中的频带采用时分双工 TDD 划分出不 同的时隙, 并将所述不同的时隙中的第一时隙分配给所述第二信道;
发送单元, 用于向终端发送优化配置信息, 所述优化配置信息包括将 所述第二信道的部分数据业务在所述第一时隙进行处理所需的参数。
7、 根据权利要求 6所述的资源分配的设备, 其特征在于, 还包括: 数据发送单元, 用于当所述第一信道为上行信道时, 在所述第一时隙, 通过所述第一信道向所述终端发送数据; 和 /或,
数据接收单元, 用于当所述第一信道为下行信道时, 在所述第一时隙, 通过所述第一信道接收所述终端发送的数据。
8、 根据权利要求 7所述的资源分配的设备, 其特征在于, 所述数据发 送单元包括:
编码模块, 用于当所述第一信道为上行信道时, 在所述第一时隙, 待 发送的数据进行信道编码, 获得信道编码后的第一数据;
调制模块, 用于对所述信道编码后的第一数据进行调制, 获得第一低 通基带信号;
射频模块, 用于对所述第一低通基带信号进行上变频获得第一射频信 号, 并将所述第一射频信号通过所述第一信道向所述终端发送。
9、 根据权利要求 7所述的资源分配的设备, 其特征在于, 数据接收单 元包括:
射频模块, 用于当所述第一信道为下行信道时, 在所述第一时隙, 通 过所述第一信道接收第二射频信号, 并将所述第二射频信号进行下变频, 获得第二低通基带信号;
解调模块, 用于对所述第二低通基带信号进行解调, 获得解调后的第 二数据;
译码模块, 用于对所述解调后的第二数据进行译码, 获得所述终端发 送的数据。
10、 根据权利要求 6-9中任一项所述的资源分配的设备, 其特征在于, 所述第一信道中的频带采用所述 TDD 划分出的不同时隙中还包括上下行切 换时隙。
PCT/CN2012/080630 2011-08-26 2012-08-27 资源分配的方法及设备 WO2013029519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110249121.6 2011-08-26
CN201110249121.6A CN102958173B (zh) 2011-08-26 2011-08-26 资源分配的方法及设备

Publications (1)

Publication Number Publication Date
WO2013029519A1 true WO2013029519A1 (zh) 2013-03-07

Family

ID=47755326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080630 WO2013029519A1 (zh) 2011-08-26 2012-08-27 资源分配的方法及设备

Country Status (2)

Country Link
CN (1) CN102958173B (zh)
WO (1) WO2013029519A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507651A (ja) * 2015-03-05 2018-03-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated ワイヤレス通信におけるフレキシブル複信のための制御シグナリング

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009620B (zh) * 2013-11-25 2018-12-25 华为技术有限公司 下行信号传输方法和装置
CN105323858B (zh) * 2014-07-17 2018-09-04 普天信息技术有限公司 一种分时长期演进系统中的频点切换方法、基站及系统
CN105356980A (zh) 2014-08-20 2016-02-24 中兴通讯股份有限公司 一种应答信息的发送方法及装置
CN104391812B (zh) * 2014-12-02 2018-12-14 联想(北京)有限公司 一种通信方法及第一电子设备
WO2017005295A1 (en) 2015-07-06 2017-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for data transmission in wireless systems
WO2019127220A1 (zh) 2017-12-28 2019-07-04 北京小米移动软件有限公司 数据传输方法、装置及系统
CN110806994B (zh) * 2019-09-29 2021-09-07 华为终端有限公司 一种信号传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960209A (zh) * 2005-10-31 2007-05-09 上海原动力通信科技有限公司 频分双工模式下的通信方法及设备
CN101588201A (zh) * 2008-05-22 2009-11-25 展讯通信(上海)有限公司 频分双工系统、设备及方法
CN102013919A (zh) * 2003-02-11 2011-04-13 索尼公司 用于通信系统中的时分双工操作的方法、基站和移动台

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026206B (zh) * 2009-09-21 2013-06-05 上海贝尔股份有限公司 为tdd系统分配低频段频谱资源的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013919A (zh) * 2003-02-11 2011-04-13 索尼公司 用于通信系统中的时分双工操作的方法、基站和移动台
CN1960209A (zh) * 2005-10-31 2007-05-09 上海原动力通信科技有限公司 频分双工模式下的通信方法及设备
CN101588201A (zh) * 2008-05-22 2009-11-25 展讯通信(上海)有限公司 频分双工系统、设备及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018507651A (ja) * 2015-03-05 2018-03-15 クゥアルコム・インコーポレイテッドQualcomm Incorporated ワイヤレス通信におけるフレキシブル複信のための制御シグナリング

Also Published As

Publication number Publication date
CN102958173A (zh) 2013-03-06
CN102958173B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN110383745B (zh) 一种无线通信的方法和装置
WO2013029519A1 (zh) 资源分配的方法及设备
CN110214429B (zh) 控制资源区域中数据传输的速率匹配
RU2513705C2 (ru) Способ и устройство для беспроводной связи с несколькими несущими
CN114208348A (zh) 侧链路辅助式多链路通信
CN112204896B (zh) 经由多个经波束成形信道的经聚集时隙的传输
CN115918014A (zh) Coreset和搜索空间与资源带宽的关联
EP3965488A1 (en) Uplink data transmission method and apparatus, and storage medium
CN112602286B (zh) Dci触发的srs增强
CN112640496A (zh) 链路身份确定和信令通知
CN114175818A (zh) 在复用的上行链路信道上的上行链路抢占指示
CN114467265A (zh) 默认pdsch波束选择
CN112740607B (zh) 用于物理侧行链路控制信道和聚合的方法和装置
CN113508545A (zh) 用于具有频域压缩的信道状态信息的频域限制的技术
AU2018417481A1 (en) Data transmission method, terminal device and network device
CN114342458B (zh) 用于cdrx的多任务化和智能位置选择的方法和装置
CN109547171B (zh) 用于针对LTE中的eIMTA有效使用DAI比特的方法和装置
CN115735379A (zh) 用于开放式无线电接入网去程的增强型块浮点压缩
CN115462017A (zh) 物理下行链路共享信道中的下行链路控制信息背负、下行链路控制信息编码
CN114303400A (zh) 无线通信系统中的不连续接收通知
CN115699933A (zh) 用于通过侧链路服务非周期性业务的周期性资源预留
CN115668826A (zh) 侧链路中的cqi表选择
CN115152161A (zh) 用于在iab网络中提供保护信号的增强
CN114651514A (zh) 用于配置对于补充上行链路载波的上行链路取消指示的方法
CN115336344A (zh) 在资源分配中实现资源冲突避免的侧行链路过程

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827566

Country of ref document: EP

Kind code of ref document: A1