WO2013029433A1 - 一种检测干扰信号码功率的方法、用户接入方法和接入设备 - Google Patents

一种检测干扰信号码功率的方法、用户接入方法和接入设备 Download PDF

Info

Publication number
WO2013029433A1
WO2013029433A1 PCT/CN2012/078661 CN2012078661W WO2013029433A1 WO 2013029433 A1 WO2013029433 A1 WO 2013029433A1 CN 2012078661 W CN2012078661 W CN 2012078661W WO 2013029433 A1 WO2013029433 A1 WO 2013029433A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
power
iscp
interference signal
base station
Prior art date
Application number
PCT/CN2012/078661
Other languages
English (en)
French (fr)
Inventor
董伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013029433A1 publication Critical patent/WO2013029433A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for detecting interference signal code power, a user access method and device. Background technique
  • the sources of time-selective interference experienced by TD-SCDMA systems are diverse. From the perspective of interference sources, they can be classified into intra-system interference and out-of-system interference. Most of the system external interference comes from various other communication devices with certain signal periods, and accidentally leaks some power to the TD-SCDMA system frequency band, such as microwave transmission, mobile TV, civil and police antennas, etc. -
  • the influence of SCDMA system is small, which only affects the coverage of individual equipment; while the interference within the system is mainly the GPS timing deviation and the remote interference of the base station. The former is caused by equipment failure, and the latter is inevitable for all time division mobile communication systems.
  • 1 is a frame structure of a conventional TO-SCDMA system.
  • GP is used for propagation delay protection during uplink synchronization establishment, TS0-TS6 To carry user data or control information.
  • each frame length of the D-SCDMA system is 10ms, and a 10ms frame is divided into two identical subframes, each subframe time.
  • the length is 5ms
  • each subframe is divided into 7 regular time slots and 3 special time slots of length 675us.
  • the guard interval GP (Guard Period) of the downlink to uplink is 75us
  • the spatial propagation distance of the converted signal is 22.5km. This distance corresponds to the cell radius determined by the uplink and downlink working mechanism in the cell is 11.25km.
  • the interference distance of the corresponding synchronous base station is 2Z5km.
  • the uplink pilot time slot UpPTS of the interfered base station may even be uplinked.
  • the service time slot generates interference, and the number of remote base stations increases with the square of the distance. In some cases, the interference cannot be ignored.
  • FIG. 2 is a schematic diagram of remote interference of a D-SCDMA base station in the prior art. As shown in FIG. 2, three base stations having different distances generate interference to the interfered base station, and the delay is different due to different distances, and finally the interference generated. The area of influence is different.
  • the signal propagation between base stations is attenuated more than the free space propagation loss.
  • the signal has been attenuated below the noise floor, but under the macro cell condition, the wireless signal in the vicinity of the 2GHz frequency band is transmitted in space.
  • the electromagnetic wave propagating in the near-surface layer is affected by the atmospheric refraction, and its propagation trajectory is bent to the ground. When the curvature exceeds the curvature of the earth's surface, the electromagnetic wave will partially propagate in a thin layer of the atmosphere of a certain thickness.
  • the atmospheric waveguide propagation of electromagnetic waves Just as electromagnetic waves propagate in metal waveguides, this phenomenon is called the atmospheric waveguide propagation of electromagnetic waves.
  • the wireless signal passing through the waveguide will interfere with the uplink pilot time slot UpPTS after the GP and even the TS1 and TS2 time slots of the uplink signal.
  • the interference superposition of a large number of remote base stations is a random strong interference, and the intensity may be much higher than The noise floor is tens of dB.
  • the interference intensity can reach -100dBm ⁇ -80dBm.
  • UpPCH Uplink Pilot Channel, uplink pilot
  • the Up Shifting process is as follows:
  • the NodeB will perform each measurement time slot configured by the RNC, as shown in Figure 5, at each location.
  • ISCP Interference Signal Code Powet
  • the ISCP measurement values on other time slots that are not greater than the threshold are arranged from low to high, and then the UpPCH is shifted to The ISCP minimum corresponding time slot goes up;
  • the client device performs uplink synchronization according to the time slot of the new UpPCH broadcasted in the system message.
  • Up Shifting mainly moves the UpPCH location to other time slots to avoid strong interference, thus satisfying the user's uplink synchronization requirements. From the current statistics of the current network DwPTS tailing interference, more and more DwPTS smearing not only interferes with UpPTS, but also interferes with the first part of Data1 of Data1, which affects the demodulation performance of the service time slot. Up Shifting can only avoid interference on the uplink UpPCH, but it cannot solve the interference problem of the Datal part of TS1. Summary of the invention
  • Embodiments of the present invention provide a method for detecting interference signal code power, a user access method, and a device, which are configured to detect total data bandwidth RTWP1 of each time slot in uplink data in mobile communication, and receive total time slots.
  • the bandwidth power R WP and the time slot interference signal code power ISCP are calculated
  • the interference signal code power ISCP_new after each time slot is corrected.
  • it is ensured that the time slot with less tailing interference is preferentially accessed when the user equipment UE base station.
  • an embodiment of the present invention provides a method for detecting an interference signal code power in a communication system, including:
  • the base station detects the first partial data Data1 of each time slot in the uplink data, and receives the total bandwidth power RTWP1, the total bandwidth power RTWP of each time slot, and the ISSS of each time slot interference signal code.
  • the base station receives the total bandwidth power R according to the time slots Data1.
  • WP1, the total bandwidth power RTWP received by each time slot, and the interference signal code power ISCP of each time slot calculate the interference signal code power ISCP_new corrected for each time slot.
  • an embodiment of the present invention provides a method for user access in a communication system, including:
  • the base station detects the Datal reception total bandwidth power of each time slot in the uplink data R WP1, the total bandwidth power of each time slot receiving RTWP and the interference signal code power of each time slot I S C P;
  • the base station calculates, according to the time slot Data1, the total bandwidth power R WP1, the total time slot received total bandwidth power RTWP, and the time slot interference signal code power ISCP, the interference signal code power after the time slot correction is calculated.
  • ISCP_n ew the time slot interference signal code power
  • the base station determines an access slot of the UE device UE according to the interference signal code power ISCP_new corrected by each time slot.
  • an access device of an embodiment of the present invention includes:
  • the first processor is configured to detect a total bandwidth power of the datal received by each time slot in the uplink data, and the total bandwidth power of each time slot, the RTWP, and the interference signal code power of each time slot ISCP;
  • a second processor configured to receive total bandwidth power R WP1 according to each time slot Data1
  • the slot reception total bandwidth power R WP and the each slot interference signal code power ISCP calculate the interference signal code power ISCP_new corrected for each time slot.
  • the technical solution provided by the embodiment of the present invention compares the total bandwidth power R WP1 of each time slot in the uplink data, the total bandwidth power R WP received by each time slot, and the interference signal of each time slot. the ISCP power number, to obtain the corrected each time slot interference Signal Code power ISCP_ new, while the subject according to the corrected interference signal code power obtained ISCP- new, to ensure that when the CPE accesses the base station UE, priority access
  • the slot with less tailing interference minimizes interference when the UE terminal accesses the network.
  • 1 is a frame structure of a conventional TD-SCDMA system
  • FIG. 2 is a schematic diagram of remote interference of a TO-SCDMA base station in the prior art
  • FIG. 3 is a schematic diagram of moving an UpPCH location to another time slot in the prior art
  • FIG. 4 is a schematic diagram of a time slot structure according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a method for detecting interference signal power in a communication system according to the present invention
  • FIG. 6 is a flowchart of a method for user access in a communication system according to the present invention.
  • FIG. 7 is a schematic block diagram of an embodiment of a network access device according to the present invention.
  • each time slot in the communication system includes a first partial data Data1 41, a second partial data Data2 43 and a Mdamble code 42, which is a physical signal burst structure of the D-SCDMA system. Training sequence.
  • the solution of the present invention obtains each time slot by detecting the first partial data Data1 of each time slot in the uplink data, the total bandwidth power RTWP1, the total bandwidth power R WP received by each time slot, and the ISCP of each time slot interference signal code.
  • the corrected interference signal code power ISCP.new, and according to the corrected interference signal code power ISCP_new obtained by the detection ensures that when the user equipment UE accesses the base station, the priority access is less affected by the tailing interference. Gap.
  • An embodiment of the present invention provides a method for detecting an interference signal code power in a communication system, where the method is mainly used to detect when each DATA1 41 of each time slot in the uplink data is subjected to DwPTS smearing interference, detecting each time slot of the uplink data.
  • Interference signal code power as shown in FIG. 5, the method includes the steps of:
  • the base station detects the total bandwidth power RTWP1 of each time slot in the uplink data, and receives the total bandwidth power R WP of each time slot and the interference signal code power ISCP of each time slot;
  • the base station receives the total bandwidth power RWP and the time slot interference signal code power ISCP according to the total bandwidth power RTWP received by each time slot Data1, and calculates the interference signal code power ISCP_new of each time slot. .
  • the base station mentioned in step 502 receives the total bandwidth power R WP1 according to the time slots Date1, the total bandwidth power RTWP received by each time slot, and the ISCP of each time slot interference signal code power.
  • the interference signal code power ISCP_new after the time slot correction is detected, and the specific calculation formula is: ISCP_new ISCP+max(0, (RTWP1-RTWP)).
  • each time slot includes a first partial data DATA1 41, a Midamble 42 and a second partial data DATA243, and the Midamble 42 is used to calculate the total bandwidth of each time slot.
  • the base station calculates the Datal reception total bandwidth power RTWP1 of each time slot according to the received power of the first L chips in which the DATA1 41 portion of each time slot is interfered.
  • the base station mentioned in step 501 detects the Datal reception total bandwidth power R WP1 of each time slot in the uplink data; the specific method is:
  • the base station receives the first L chips of the Data1 data of each time slot in the uplink data;
  • the base station averages the received powers of the first L chips of the Data1 data received in each time slot, and obtains the total bandwidth power R WP1 of the data slots of the time slots.
  • the L value is the length of the data that is smeared in Datal of each time slot in the uplink data, and the L value is usually 128. Because the length of Datal is 352 in each time slot, the value range of L is theoretically 1-352. The value of L actually depends on the length of the interference falling on Datel. This length value is difficult to estimate.
  • the embodiment takes the L value as 128 as an example only.
  • the specific calculation steps of the interference signal code power ISCP of each time slot mentioned in step 502 are:
  • the base station performs channel estimation using the Midamble of the slot that is subject to tailing interference;
  • the base station compares the channel estimation value with a preset threshold value in the base station, and averages the channel estimation values below the threshold value to obtain the time slot interference signal code power ISCP.
  • the total bandwidth power RTWP received by each time slot mentioned in step 502 is the average chip received power of 128 chips of the Midamble of each time slot.
  • ISCP_new ISCP+max( 0, (RTWP1-RTWP) ) .
  • the max(0, (RTWP1-RTWP)) represents a maximum value in 0 and (RTWP1-RTWP).
  • the corrected interference signal code power ISCP_n ew is calculated for all time slots in the uplink data.
  • L is the length of the chip that is subjected to tailing interference in Data1 of each time slot of the uplink data.
  • the L value is 0. no DATA1 slot interference by tailing, can now no longer on these slots undisturbed calculates ISCP ISCP_ NEW after correction.
  • the base station is a micro base station or a macro base station.
  • the embodiment provides a method for user access in a communication system, which detects the corrected interference signal code power ISCP_new of each time slot of the uplink data, and corrects the interference signal code power ISCP_new for each time slot. For comparison, the priority order of each time slot in the uplink data is obtained, so that when the user equipment UE accesses the network, the time slot with higher priority is preferentially accessed.
  • the method includes the following steps. Step:
  • Step 601 The base station detects Datal receiving total bandwidth power of each time slot in the uplink data, RTWP1, total time slot receiving total bandwidth power R WP and each time slot interference signal code power ISCP;
  • Step 602 The base station receives the total bandwidth power R WP1 according to the time slot of each time slot, receives the total bandwidth power RTWP and the time slot interference signal code power ISCP, and then calculates the modified time slots.
  • Step 603 The base station determines an access slot of the UE device UE according to the interference signal code power ISCP_new corrected by each time slot.
  • the base station calculates the interference signal code after the time slot correction according to the total bandwidth power R WP1, the total bandwidth power R WP received by each time slot, and the ISCP of each time slot interference signal code.
  • Power ISCP new, specifically:
  • ISCP— new ISCP+max( 0, (RTWP1-RTWP) ) .
  • the max(0, (RTWP1-RTWP)) represents the maximum value in 0 and (RTWP1-R WP).
  • the base station detects the Datal receiving total bandwidth power RTWP1 of each time slot in the uplink data; specifically:
  • the base station receives the first L chips of the Data1 data of each time slot in the uplink data;
  • the base station averages the received powers of the first L chips of the Data1 data received in each time slot, and obtains the total bandwidth power RTW1 of the data slots of the time slots.
  • the L value is the length of the data that is smeared in Datal of each time slot in the uplink data, and the L value is usually 128. Because the length of Datal is 352 in each time slot, the theoretical value of L is 1-352. The value of L actually depends on the length of the interference falling on Datal. This length value is difficult to estimate.
  • the embodiment takes the L value as 128 as an example only.
  • the specific calculation steps of the interference signal code power ISCP of each time slot mentioned in step 601 are:
  • the base station performs signal estimation using M kmbk of the slot of the tailed interference
  • the base station compares the channel estimation value with a preset threshold value, and averages the channel estimation values below the threshold value to obtain the time slot interference signal code power ISCP.
  • the total bandwidth power RTWP received by each time slot mentioned in step 602 is the average chip power of 128 chips of the Midambk of each time slot.
  • a method of user access communication system after all the timeslots for the uplink data should be corrected ISCP_ new ISCP calculation, and then the interference signal corrected in accordance with each slot The number power IS CP_n ew values are compared to determine the priority of each time slot.
  • ISCP_new ISCP+max( 0, (RTWP1-RTWP) ) .
  • the max(0, (RTWP1-RTWP)) represents the maximum value in 0 and (RTWP1-RTWP).
  • the method for calculating the corrected interference signal code power ISCP_new in one time slot in the uplink time slot is introduced, but the method for calculating the corrected interference signal code power ISCP_new value for all time slots of the uplink data is it's the same.
  • All slots in the uplink data should be carried out after the correction ISCP ISCP- new. It should be specially pointed out that when the length of the data subjected to the trailing interference in Datal of each time slot of the uplink data is L, if a certain time slot in the uplink data is not subjected to the tailing interference, the L value is 0. There is no DATA1 in the time slot that is subject to smearing interference. In this case, it is no longer necessary to enter these uninterrupted time slots. The calculation of the corrected interference signal code power ISCP_new.
  • the base station determines the access slot of the user equipment UE according to the interference signal code power ISCP_n ew corrected by the time slot.
  • the base station corrects the interference signal according to the time slot.
  • the number power ISCP_new uses an IDCA (Intelligent Dynamic Channel Assignment) algorithm to determine the access slot of the UE.
  • the IDCA algorithm is:
  • the ordering may be performed by the base station, or the base station may send the interference signal code power ISCP_new value corrected by each time slot to the RNC, and the RNC performs priority ordering, and then the base station receives the radio network controller according to the The sorting result of prioritizing the time slots by the size of the interference signal code power ISCP_new value after each time slot is corrected.
  • the base station When the UE requests the access, the base station preferentially assigns the time slot access with higher priority to the user equipment UE according to the time slot priority.
  • the radio network controller RNC or the base station prioritizes the time slots according to the size of the interference signal code power ISCP_new value corrected by each time slot, specifically:
  • the radio network controller RNC or the base station When the corrected interference signal code power ISCP_new difference corresponding to the two time slots is less than or equal to the preset threshold ⁇ ISCP ⁇ the radio network controller RNC or the base station considers that the two time slots have the same priority.
  • the radio network controller RNC or the base station uses the corrected interference signal code power ISCP_new value of each time slot, and considers that when the two time slots have the same priority, the operation and maintenance OM (Operation Maintenance) configuration is adopted.
  • the gap priority is admitted.
  • the IDCA algorithm determines the access time slot of the user equipment UE, and further includes:
  • the PRACH (Physical Random Access Channel) algorithm or the DPCH (Dedicated Physical Channel) algorithm is used to determine the open-loop transmission of the UE equipment UE on the PRACH channel and the DPCH channel on the access slot. power.
  • the PRACH algorithm or the DPCH algorithm is specifically:
  • the base station calculates the open-loop expected received power of the uplink physical random access channel PRACH and the uplink dedicated physical channel DPCH according to the corrected interference signal code power ISCP_new corresponding to the time slot accessed by the UE, and randomly connects the uplink physical
  • the open loop desired received power of the inbound channel PRACH and the uplink dedicated physical channel DPCH is notified to the user equipment UE;
  • the user equipment UE calculates the uplink physical random access channel (PRACH) open-loop transmit power according to the received open-loop expected received power of the uplink physical random access channel (PRACH); and calculates the uplink according to the open-loop expected received power of the uplink dedicated physical channel DPCH.
  • PRACH physical random access channel
  • the open-loop expected reception power of the uplink physical random access channel PRACH is obtained by multiplying the uplink physical random access channel PRACH fixed signal to interference ratio SIR (Signal to Interfetence Radio) and ISCP_new;
  • SIR Signal to Interfetence Radio
  • the open-loop expected received power of the uplink dedicated physical channel DPCH is obtained by multiplying the signal-to-interference ratio SIR of the uplink dedicated physical channel DPCH by the ISCP_new;
  • the open loop transmission power of the uplink physical random access channel PRACH is according to the uplink physical
  • the open-loop expected received power and the path loss value of the random access channel PRACH are added in a logarithmic domain; the open-loop transmit power on the uplink dedicated physical channel DPCH is expected to be received according to the open-loop of the uplink dedicated physical channel DPCH
  • the power and path loss values are added in the logarithmic domain.
  • the base station is a micro base station or a macro base station.
  • This embodiment provides a network access device, as shown in FIG. 7, including:
  • the first processor 71 is configured to detect a total bandwidth power RTW1 of each time slot in the uplink data, a total bandwidth power R WP received by each time slot, and an interference signal code power ISCP of each time slot;
  • the second processor 72 is configured to calculate the total time according to the time slot Data1, the total bandwidth power R WP1, the time slot receiving total bandwidth power R WP, and the time slot interference signal code power ISCP.
  • the interference signal code power ISCP_new after the gap correction.
  • the embodiment further includes a third processor 73: configured to determine an access slot of the UE device UE according to the interference signal code power ISCP_new corrected by the time slots.
  • a third processor 73 configured to determine an access slot of the UE device UE according to the interference signal code power ISCP_new corrected by the time slots.
  • the embodiment further includes a fourth processor 74: configured to determine, by the UE, the open-loop expected received power on the uplink physical random access channel (PRACH) and the uplink dedicated physical channel (DPCH) on the access slot. Transmitting the open loop desired received power to the client device.
  • a fourth processor 74 configured to determine, by the UE, the open-loop expected received power on the uplink physical random access channel (PRACH) and the uplink dedicated physical channel (DPCH) on the access slot. Transmitting the open loop desired received power to the client device.
  • PRACH physical random access channel
  • DPCH uplink dedicated physical channel
  • the first processor 71 detects the Datal reception total bandwidth power R WP1 of each time slot in the uplink data; specifically:
  • the first processor 71 receives the first L chips of the Data1 data of each time slot in the uplink data; the first processor 71 performs the received power of the first L chips of the Data1 data received in each time slot. The average calculation obtains the total bandwidth power RTWP1 of the Datal reception of each time slot.
  • the L value is the length of the data that is smeared in the Data1 of each time slot in the uplink data, usually The L value is taken as 128. Because the length of Datal is 352 in each time slot, the theoretical value of L is 1-352. The value of L actually depends on the length of the interference falling on Datal. This length value is difficult to estimate.
  • the embodiment takes the L value as 128 as an example only.
  • the second processor 72 is configured to calculate the interference signal code power ISCP of each time slot, and the specific calculation steps are:
  • the second processor 72 performs channel estimation using the Midamble of each slot
  • the second processor 72 compares the channel estimation value with a preset threshold value, and averages channel estimation values lower than the threshold value to obtain a Midamble interference signal code power ISCP of each time slot.
  • the total bandwidth power RTWP received by each time slot is the average chip power of 128 chips of the Midambk of each time slot.
  • the second processor 72 receives the total bandwidth power RTWP1, the total time slot received total bandwidth power R WP and the time slot interference signal code power ISCP according to the time slots Data1 to detect the time slot correction.
  • the max(0, (RTWP1-RTWP)) represents a maximum value in 0 and (RTWP1-RTWP).
  • the third processor 73 determines the access time slot of the user equipment UE by using the IDCA algorithm according to the interference signal code power ISCP_new corrected by each time slot, which is specifically:
  • the third processor 73 prioritizes the time slots according to the size of the interference signal code power ISCP_new value corrected by each time slot or the base station receives the interference signal code power ISCP_n ew value corrected by the radio network controller according to each time slot.
  • the third processor 73 determines the time slot corresponding to the smaller ISCP_new value of the preferential access of the user equipment UE according to the ranking result.
  • the third processor 73 may also directly prioritize the size of the interference signal code power ISCP_new value corrected by each time slot;
  • the third processor 73 preferentially assigns the higher priority time slot access to the user equipment UE according to the time slot priority.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种检测干扰信号码功率的方法、用户接入方法和接入设备,实现在移动通信中,通过检测上行数据中各时隙的Datal接收总带宽功率RTWP1、各时隙接收总带宽功率RTWP和所述各时隙干扰信号码功率ISCP,来获得各时隙修正后的干扰信号码功率ISCP_new,同时根据该获得的修正后的干扰信号码功率ISCP_new,保证在用户端设备UE接入基站时,优先接入受拖尾干扰较小的时隙。

Description

一种检测干扰信号码功率的方法、 用户接入方法和接入设备 本申请要求于 2011年 8月 26日提交中国专利局、 申请号为
201110246870.3、 发明名称为 "一种检测干扰信号码功率的方法、 用户接入方 法和接入设备" 的中国专利申请的优先杈, 其全部内容通过引用结合在本 申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种检测干扰信号码功率的方法、 用户接 入方法和设备。 背景技术
TD-SCDMA系统受到的时间选择性干扰来源有多样, 从干扰源角度看, 可分为 系统内干扰和系统外干扰。 其中系统外干扰大多来自于各种其他有一定信号周期的 通信设备, 意外的泄露了一部分功率到 TD-SCDMA系统频段, 如微波传输、 手机电 视、 民用和警用天线等, 系统外干扰对 TD-SCDMA系统影响较小, 仅会影响到个别 设备覆盖范围; 而系统内干扰主要是 GPS定时偏差和基站远端干扰, 前者是设备的 故障导致, 后者则是所有时分移动通信系统不可避免的问题, 基站远端干扰顾名思 义, 是来自于理论认为信号可忽略的远端基站。 图 1为现有 TO-SCDMA系统的帧结 构。 TD-SCDMA系统的时隙结构总共有 4种类型, 分别是 DwPTS (Downlink Pilot Time Slot, 下行导频时隙) 、 UpPTS (Uplink Pilot Time Slot, 上行导频时隙) 、 GP (Guard Period,保护周期)特殊时隙和 TS0-TS6常规时隙,其中, DwPTS和 UpPTS 分别用作上行同步和下行同步,不承载用户数据, GP用作上行同步建立过程中的传 播时延保护, TS0-TS6用于承载用户数据或控制信息。 如图 1所示, D-SCDMA系统 的每个帧长度为 10ms, —个 10ms的帧分成两个结构完全相同的子帧, 每个子帧的时 长为 5ms, 每一个子帧又分成了长度为 675us的 7个常规时隙和 3个特殊时隙。 下行转 上行的保护间隔 GP (Guard Period, 保护周期) 为 75us, 折算成信号的空间传播距 离为 22.5km, 这个距离对应小区内上下行工作机制确定的小区半径为 11.25km。 而对 于基站之间的干扰来说, 对应的同步基站的干扰距离为 2Z5km。
从 TD-SCDMA系统的帧结构可以看到, 如果距离 22.5km以外的基站的 TS0和下 行导频时隙 DwPTS经过传播延迟到达目标基站后, 可能对被干扰基站的上行导频 时隙 UpPTS甚至上行业务时隙产生干扰, 而且, 远端基站数量随距离平方级增长, 在某些情况下干扰不能忽略。
图 2是现有技术中 D-SCDMA基站远端干扰原理图, 如图 2所示, 有三个距 离不同的基站对被干扰基站产生了干扰, 由于距离不同, 时延不同, 最终所产生的 干扰影响区域有所不同。
通常情况下基站间的信号传播受到衰减大于自由空间传播损耗, 在 GP对应的 距离保护范围内, 信号已经衰减至噪底以下, 但宏小区条件下, 2GHz 频段附近的 无线信号在空间的传播方式主要有自由空间传播、对流层的散射、无线信号的衍射、 地表障碍物无线传播的影响和大气的折射等。 在一定的气象条件下, 在近地层中传 播的电磁波, 受大气折射的影响, 其传播轨迹弯向地面, 当曲率超过地球表面曲率 时, 电磁波会部分地在一定厚度的大气薄层内传播, 就像电磁波在金属波导管中传 播一样, 这种现象称为电磁波的大气波导传播。 此时, 经过波导的无线信号将会对 GP后的上行导频时隙 UpPTS乃至上行信号的 TS1和 TS2时隙产生干扰, 大量远 端基站的干扰叠加是一个随机的强干扰, 强度可能远超噪底几十 dB , 对于 TD-SCDMA系统, 干扰强度可达 -100dBm~-80dBm。
当下行导频时隙 DwPTS拖尾干扰到上行导频时隙 UpPTS时,会影响用户 的上行信号的同步, 当干扰较大时, UpPCH ( Uplink Pilot Channel , 上行导频 信道) 检测失败会增多, 导致用户无法接入, 现有技术中, 当出现这种情况 时, 采用 Up Shifting (Uppch Shifting, 上行导频信道移位) 将 UpPCH位置移 动到其他时隙, 以避开强干扰。
Up Shifting处理过程如下:
1、 如图 3所示, 在 RNC (Radio Network Controller , 无线网络控制器) 上配置 5 个测量时隙, 假设该 5个测量时隙的位置编号为 0、 22、 53、 76、 105 ;
2、 NodeB会根据 RNC配置的各个测量时隙, 如图 5所示各位置, 进行
ISCP(Interference Signal Code Powet, 干扰信号码功率)测量;
3、 当前 UpPCH所在时隙的 ISCP值大于预先设定的门限值的情况下,对其他时 隙上的不大于门限值的 ISCP测量值从低到高进行排列,然后将 UpPCH偏移 到 ISCP最小对应的时隙上去;
4、 用户端设备 UE会根据系统消息中广播的新 UpPCH所在时隙进行上行同 步。
Up Shifting主要将 UpPCH位置移动到其他时隙, 以避开强干扰, 从而满 足用户的上行同步要求。 从目前现网 DwPTS拖尾干扰的统计发现, 越来越多 的 DwPTS 拖尾不但干扰到 UpPTS , 而且也会干扰到 TS1 的第一部分数据 Datal , 从而影响到了业务时隙的解调性能, 此时 Up Shifting 只能规避上行 UpPCH上的干扰, 却不能解决 TS1的 Datal部分所受到的干扰的问题。 发明内容
本发明的实施例提供一种检测干扰信号码功率的方法、 用户接入方法和设备, 实现在移动通信中,通过检测上行数据中各时隙的 Datal接收总带宽功率 RTWP1、 各时隙接收总带宽功率 R WP和所述各时隙干扰信号码功率 ISCP,来计算得到 各时隙修正后的干扰信号码功率 ISCP_new。然后根据该计算得到的修正后的干扰 信号码功率 ISCP_new , 保证在用户端设备 UE基站时, 优先接入受拖尾干扰较小 的时隙。
为达到上述发明目的, 本发明的实施例采用如下技术方案:
一方面,本发明的实施例提供一种通信系统中检测干扰信号码功率的方法,包 括:
基站检测上行数据中各时隙的第一部分数据 Datal 接收总带宽功率 RTWP1、 各时隙接收总带宽功率 RTWP和各时隙干扰信号码功率 ISCP; 基站根据所述各时隙 Datal接收总带宽功率 R WP1、 各时隙接收总带宽功 率 RTWP和各时隙干扰信号码功率 ISCP计算出所述各时隙修正后的干扰信号 码功率 ISCP— new。
另一方面, 本发明的实施例一种通信系统中用户接入的方法, 包括:
基站检测上行数据中各时隙的 Datal接收总带宽功率 R WP1、各时隙接收 总带宽功率 RTWP和各时隙干扰信号码功率 I S C P;
基站根据所述各时隙 Datal接收总带宽功率 R WP1、所述各时隙接收总 带宽功率 RTWP和所述各时隙干扰信号码功率 ISCP计算出所述各时隙修 正后的干扰信号码功率 ISCP_new;
基站根据所述各时隙修正后的干扰信号码功率 ISCP— new, 决定用户端设 备 UE的接入时隙。
另一方面, 本发明的实施例一种接入设备, 包括:
第一处理器:用于检测上行数据中各时隙的 Datal接收总带宽功率 RTWP1、 各时隙接收总带宽功率 RTWP和各时隙干扰信号码功率 ISCP;
第二处理器: 用于根据所述各时隙 Datal接收总带宽功率 R WP1、所述各时 隙接收总带宽功率 R WP和所述各时隙干扰信号码功率 ISCP计算出所述各时隙 修正后的干扰信号码功率 ISCP— new。
本发明实施例提供的技术方案, 与现有技术相比, 通过检测上行数据中各时隙 的 Datal接收总带宽功率 R WP1、各时隙接收总带宽功率 R WP和所述各时隙 干扰信号码功率 ISCP ,来获得各时隙修正后的干扰信号码功率 ISCP_new, 同时 根据该检获得的修正后的干扰信号码功率 ISCP— new,保证在用户端设备 UE接入 基站时, 优先接入受拖尾干扰较小的时隙, 使用户端终端 UE接入网络时受到干扰 最小。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有 TD-SCDMA系统的帧结构;
图 2为现有技术中 TO-SCDMA基站远端干扰原理图;
图 3为现有技术中 UpPCH位置移动到其他时隙示意图;
图 4为本发明实施例时隙结构示意图;
图 5为本发明一种通信系统中检测干扰信号码功率的方法实施例流程图; 图 6为本发明一种通信系统中用户接入的方法实施例流程图;
图 7为本发明一种网络接入设备实施例原理框图。 具体实施方式 本发明的实施例提供一种检测干扰信号码功率的方法、 用户接入方法和网络 接入设备。 如图 4所示, 通信系统中每个时隙都包括第一部分数据 Datal 41、 第二 部分数据 Data2 43和 Mdamble码 42, 所述 Mdamble码 42是 D— SCDMA系统物 理信遒突发结构中的训练序列。 本发明所述方案通过检测上行数据中各时隙的第一 部分数据 Datal接收总带宽功率 RTWP1、各时隙接收总带宽功率 R WP和所述 各时隙干扰信号码功率 ISCP , 来获得各时隙修正后的干扰信号码功率 ISCP.new, 同时根据该检获得的修正后的干扰信号码功率 ISCP— new, 保证在用 户端设备 UE接入基站时, 优先接入受拖尾干扰较小的时隙。
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实 施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下 所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一
本发明实施例提供了一种通信系统中检测干扰信号码功率的方法,该方法主要 用于检测当上行数据中的各时隙的 DATA1 41受到 DwPTS拖尾干扰时, 检测上 行数据各时隙的干扰信号码功率, 如图 5所示, 所述方法包括步骤:
501:基站检测上行数据中各时隙的 Datal接收总带宽功率 RTWP1 ,各时隙接 收总带宽功率 R WP和各时隙干扰信号码功率 ISCP ;
502: 基站根据所述各时隙 Datal接收总带宽功率 RTWP 各时隙接收总 带宽功率 R WP和各时隙干扰信号码功率 ISCP计算出所述各时隙修正后的干 扰信号码功率 ISCP— new。
本实施例中, 步骤 502提到的基站根据所述各时隙 Datel 接收总带宽功率 R WP1、所述各时隙接收总带宽功率 RTWP和所述各时隙干扰信号码功率 ISCP 检测出所述时隙修正后的干扰信号码功率 ISCP_new,具体用到的计算公式为: ISCP_new= ISCP+max( 0, (RTWP1-RTWP) )。
所述 max(0, (RTWP1-RTWP) )表示取 0和 (RTWP1-RTWP) 中的最大值。 图 4是上行数据各时隙的结构示意图, 从图 4可以看到, 每个时隙包括第一 部分数据 DATA1 41、 Midamble 42和第二部分数据 DATA243 , Midamble 42用 于计算各时隙接收总带宽功率 RTWP和所述各时隙干扰信号码功率 ISCP。 基 站根据各时隙中 DATA1 41部分受到干扰的前 L个码片的接收功率, 计算各时 隙的 Datal接收总带宽功率 RTWP1。
在步骤 501 提到的基站检测上行数据中各时隙的 Datal 接收总带宽功率 R WP1 ; 具体方法为:
基站接收上行数据中各时隙的 Datal数据的前 L个码片;
基站对接收到各时隙的 Datal数据的前 L个码片的接收功率进行平均计算, 得 到所述各时隙的 Datal接收总带宽功率 R WP1。
所述 L值为上行数据中各时隙的 Datal 中被拖尾干扰的数据的长度,通常所 述 L值取 128。 因为在各个时隙中 Datal的长度为 352 ,理论上 L的取值范围为 1-352 , L的取值实际上主要取决于干扰落在 Datel上的长度, 这个长度值很 难估计出来, 本实施例将 L值取 128仅作为一个示例。
在上行数据中, 并不是所有时隙的 Datal部分都会受到拖尾干扰,但当受 到拖尾干扰的时隙越多, 表示干扰越严重, 如果上行数据中某些时隙的 Datal 没有受到拖尾干扰, 则 L取值为 0。
本实施例中, 步骤 502提到的各时隙干扰信号码功率 ISCP具体计算步骤 为:
基站利用受拖尾干扰的时隙的 Midamble进行信道估计; 基站将所述信道估计值与基站内预设的门限值比较, 对低于所述门限值 的信道估计值取平均值, 得到所述各时隙干扰信号码功率 ISCP。
本实施例中, 步骤 502提到的各时隙接收总带宽功率 RTWP为所述各时隙 的 Midamble的 128个码片的平均码片接收功率。
在计算出各时隙接收总带宽功率 R WP、 各时隙的 Datal接收总带宽功率
RTWP1和各时隙干扰信号码功率 ISCP后, 就可利用下面公式:
ISCP_new= ISCP+max( 0, (RTWP1-RTWP) ) .
所述 max(0, (RTWP1-RTWP) )表示取 0和 (RTWP1-RTWP) 中的最大值。 计算上行数据中的所有时隙都要进行修正后的干扰信号码功率 ISCP_new。 本实施例虽然只介绍了上行时隙中某一个时隙计算其修正后的干扰信号 码功率 ISCP— new的方法,但对于上行数据所有时隙的修正后的干扰信号码功 率 ISCP_new值计算方法都是一样的。
需要特别指出的是, L是上行数据的各时隙的 Datal 中受到拖尾干扰的码 片的长度, 当上行数据中的某个时隙如果没有受到拖尾干扰时, 则 L值为 0, 时隙中没有 DATA1受到拖尾干扰,此时可以不用再对这些未受到干扰的时隙 进行修正后的干扰信号码功率 ISCP_NEW的计算。
本实施例中所述基站为微型基站或宏基站。
实施例二
本实施例提供了一种通信系统中用户接入的方法, 检测出上行数据各时隙经修 正后的干扰信号码功率 ISCP— new , 并对所述各时隙经修正后干扰信号码功率 ISCP_new进行比较, 获得上行数据中各时隙的优先级顺序, 使得用户端设备 UE接入网络时, 优先接入优先级较高的的时隙, 如图 6所示, 本方法包括步 骤:
步骤 601 : 基站检测上行数据中各时隙的 Datal接收总带宽功率 RTWP1、 各时 隙接收总带宽功率 R WP和各时隙干扰信号码功率 ISCP;
步骤 602 : 基站根据各时隙的 Datel接收总带宽功率 R WP1、 所述各时隙接 收总带宽功率 RTWP和所述各时隙干扰信号码功率 ISCP , 然后计算出所述各 时隙修正后的干扰信号码功率 ISCP— new;
步骤 603 : 基站根据所述各时隙修正后的干扰信号码功率 ISCP— new, 决定 用户端设备 UE的接入时隙。
上述步骤 602中, 基站根据该时隙所述 Datal接收总带宽功率 R WP1、 各 时隙接收总带宽功率 R WP和各时隙干扰信号码功率 ISCP计算出所述时隙修 正后的干扰信号码功率 ISCP— new, 具体为:
ISCP— new= ISCP+max( 0, (RTWP1-RTWP) ) .
所述 max(0, (RTWP1-RTWP) )表示取 0和 (RTWP1- R WP) 中的最大值。 上述步骤 601 中, 基站检测上行数据中每个时隙的 Datal 接收总带宽功率 RTWP1 ; 具体为:
基站接收上行数据中各时隙的 Datal数据的前 L个码片;
基站对接收到各时隙的 Datal数据的前 L个码片的接收功率进行平均计算, 得 到所述各时隙的 Datal接收总带宽功率 RTW1。
所述 L值为上行数据中各时隙的 Datal 中被拖尾干扰的数据的长度,通常所 述 L值取 128。 因为在各个时隙中 Datal的长度为 352 ,理论上 L的取值范围为 1-352 , L的取值实际上主要取决于干扰落在 Datal上的长度, 这个长度值很 难估计出来, 本实施例将 L值取 128仅作为一个示例。
在上行数据中, 并不是所有时隙都会受到拖尾干扰, 但当受到拖尾干扰的 时隙越多, 表示干扰越严重, 如果上行数据中某些时隙没有受到拖尾干扰, 则 L取值为 0。
本实施例中, 步骤 601提到的各时隙干扰信号码功率 ISCP的具体计算步 骤为:
基站利用所述受拖尾干扰的时隙的 M kmbk进行信遒估计;
基站将所述信道估计值与预设的门限值比较, 对低于所述门限值的信道 估计值取平均值, 得到所述各时隙干扰信号码功率 ISCP。
本实施例中, 步骤 602提到的各时隙接收总带宽功率 RTWP为所述各时隙 的 Midambk的 128个码片的平均码片功率。
本实施例所述的一种通信系统中用户接入的方法, 是对上行数据中的所有时 隙都要进行修正后的干扰信号码功率 ISCP_new计算, 再根据各时隙修正后的 干扰信号码功率 I S CP_n e w值进行比较, 从而判断各时隙的优先级。
在计算出各时隙接收总带宽功率 R WP、 各时隙的 D atal接收总带宽功率
RTW1和各时隙干扰信号码功率 ISCP后, 就可利用下面公式:
ISCP_new= ISCP+max( 0, (RTWP1-RTWP) ) .
所述 max(0, (RTWP1-RTWP) )表示取 0和 (RTWP1-RTWP) 中的最大值。 本实施例虽然只介绍了上行时隙中某一个时隙计算其修正后的干扰信号 码功率 ISCP— new的方法,但对于上行数据所有时隙的修正后的干扰信号码功 率 ISCP_new值计算方法都是一样的。
上行数据中的所有时隙都要进行修正后的干扰信号码功率 ISCP— new。 需要 特别指出的是, 当由于 L是上行数据的各时隙的 Datal 中受到拖尾干扰的数据 的长度, 当上行数据中的某个时隙如果没有受到拖尾干扰时, 则 L值为 0, 时 隙中没有 DATA1受到拖尾干扰,此时可以不用再对这些未受到干扰的时隙进 行修正后的干扰信号码功率 ISCP_new的计算。
步骤 603中,基站根据所述各时隙修正后的干扰信号码功率 ISCP_new,决 定用户端设备 UE的接入时隙,在本实施例中, 基站根据所述各时隙修正后的 干扰信号码功率 ISCP_new , 采用 IDCA ( Intelligence Dynamic Channel Assignment, 智能动态信道分配) 算法决定用户端设备 UE的接入时隙, 所述 IDCA算法为:
根据所述各时隙修正后的干扰信号码功率 ISCP— new值的大小对时隙进行 优先级排序;
在实际应用中,所述排序可以由基站进行,也可以是基站将各时隙修正后的 干扰信号码功率 ISCP_new值发给 RNC,由 RNC进行优先级排序,再由基站接 收无线网络控制器根据各时隙修正后的干扰信号码功率 ISCP— new值的大小对 时隙进行优先级排序的排序结果。
用户端设备 UE 请求接入时, 基站根据时隙优先级, 优先给用户端设备 UE分配优先级较高的时隙接入。
所述无线网络控制器 RNC 或基站根据所述各时隙修正后的干扰信号码功 率 ISCP— new值的大小对时隙进行优先级排序, 具体为:
当两个时隙对应的修正后的干扰信号码功率 ISCP_new差值小于或等于预 设的门限 Δ ISCP ^无线网络控制器 RNC或基站认为所述两个时隙优先级一样。
所述无线网络控制器 RNC 或基站根据各时隙的修正后的干扰信号码功率 ISCP_new值,认为所述两个时隙优先级一样时,采用操作维护 OM ( Operation Maintenance , 操作维护) 配置的时隙优先级进行准入。
当两个时隙对应的修正后的干扰信号码功率 ISCP_new差值大于预设的门 限 A ISCT Bi, 无线网络控制器 RNC或基站认为较大的修正后的干扰信号码功率 ISCP_new值对应的时隙优先级较低。
可选地,本实施例在所述基站或 RNC根据所述各时隙修正后的干扰信号码 功率 ISCP_new, 采用 IDCA算法决定用户端设备 UE的接入时隙后, 还进一 步包括:
采用 PRACH (Physical Random Access Channel , 物理随机接入信道) 算法 或 DPCH (Dedicated Physical Channel, 专用物理信道) 算法决定用户端设备 UE在所述接入时隙上 PRACH信道和 DPCH信道上的开环发射功率。
所述 PRACH算法或 DPCH算法, 具体为:
基站根据用户端设备 UE 接入的时隙对应的的修正后的干扰信号码功率 ISCP_new, 计算上行物理随机接入信道 PRACH和上行专用物理信道 DPCH 的开环期望接收功率,并将上行物理随机接入信道 PRACH和上行专用物理信 道 DPCH的开环期望接收功率告知用户端设备 UE;
用户端设备 UE根据接收到的上行物理随机接入信道 PRACH的开环期望 接收功率来计算上行物理随机接入信道 PRACH开环发射功率;根据上行专用 物理信道 DPCH的开环期望接收功率来计算上行专用物理信道 DPCH上的开 环发射功率, 并且根据该 PRACH信道和 DPCH信道上的开环发射功率进行 初始接入。
所述上行物理随机接入信道 PRACH的开环期望接收功率根据上行物理随 机接入信道 PRACH固定的信干比 SIR (Signal to Interfetence Radio , 信干比) 与 ISCP_new相乘得到;
所述上行专用物理信道 DPCH 的开环期望接收功率根据上行专用物理信 道 DPCH固定的信干比 SIR与 ISCP— new相乘得到;
所述上行物理随机接入信道 PRACH的开环发射功率是根据所述上行物理 随机接入信道 PRACH的开环期望接收功率和路损值在对数域相加得到; 所述上行专用物理信道 DPCH 上的开环发射功率是根据所述上行专用物 理信道 DPCH的开环期望接收功率和路损值在对数域相加得到。
本实施例中所述基站为微型基站或宏基站。 实施例三
本实施例提供了一种网络接入设备, 如图 7所示, 包括:
第一处理器 71:用于检测上行数据中各时隙的 Datal接收总带宽功率 RTW1、 各时隙接收总带宽功率 R WP和各时隙干扰信号码功率 ISCP ;
第二处理器 72: 用于根据所述各时隙 Datal接收总带宽功率 R WP1、 所述 各时隙接收总带宽功率 R WP和所述各时隙干扰信号码功率 ISCP计算出所述 各时隙修正后的干扰信号码功率 ISCP_new。
优选地, 本实施例还包括第三处理器 73 : 用于根据所述各时隙修正后的干 扰信号码功率 ISCP— new, 决定用户端设备 UE的接入时隙。
优选地, 本实施例还包括第四处理器 74: 用于决定用户端设备 UE在所述 接入时隙上上行物理随机接入信道 PRACH和上行专用物理信道 DPCH上的 开环期望接收功率并将所述开环期望接收功率发送给用户端设备。
所述第一处理器 71检测上行数据中各时隙的 Datal接收总带宽功率 R WP1; 具体为:
所述第一处理器 71接收上行数据中各时隙的 Datal数据的前 L个码片; 所述第一处理器 71对接收到各时隙的 Datal数据的前 L个码片的接收功率进行 平均计算, 得到所述各时隙的 Datal接收总带宽功率 RTWP1。
所述 L值为上行数据中各时隙的 Datal 中被拖尾干扰的数据的长度,通常所 述 L值取 128。 因为在各个时隙中 Datal的长度为 352 ,理论上 L的取值范围为 1-352 , L的取值实际上主要取决于干扰落在 Datal上的长度, 这个长度值很 难估计出来, 本实施例将 L值取 128仅作为一个示例。
在上行数据中, 并不是所有时隙都会受到拖尾干扰, 但当受到拖尾干扰的 时隙越多, 表示干扰越严重, 如果上行数据中某些时隙没有受到拖尾干扰, 则 L取值为 0。
本实施例中, 第二处理器 72用于计算各时隙干扰信号码功率 ISCP , 其具 体计算步骤为:
第二处理器 72利用各时隙的 Midamble进行信道估计;
第二处理器 72将所述信道估计值与预设的门限值比较, 对低于所述门限 值的信道估计值取平均值,得到所述各时隙的 Midamble干扰信号码功率 ISCP。
本实施例中,各时隙接收总带宽功率 RTWP为所述各时隙的 Midambk的 128 个码片的平均码片功率。
所述第二处理器 72根据所述各时隙 Datal接收总带宽功率 RTWP1、 所述 各时隙接收总带宽功率 R WP和所述各时隙干扰信号码功率 ISCP检测出所述 时 隙 修 正 后 的 干 扰 信 号 码 功 率 ISCP_new , 具 体 为 : ISCP_new= ISCP+ 0, (RTWP1-RTWP) )。 所述 max(0, (RTWP1-RTWP) )表示取 0和 (RTWP1-RTWP) 中的最大值。 所述第三处理器 73根据所述各时隙修正后的干扰信号码功率 ISCP_new , 采用 IDCA算法决定用户端设备 UE的接入时隙, 具体为:
所述第三处理器 73根据各时隙修正后的干扰信号码功率 ISCP_new值的 大小对时隙进行优先级排序或者基站接收无线网络控制器根据各时隙修正后 的干扰信号码功率 ISCP_new值的大小对时隙进行优先级排序的排序结果; 第三处理器 73 根据排序结果, 决定用户端设备 UE 的优先接入较小的 ISCP_new值对应的时隙。
所述第三处理器 73 还可以直接将所述各时隙修正后的干扰信号码功率 ISCP_new值的大小对时隙进行优先级排序;
用户端设备 UE请求接入时, 第三处理器 73根据时隙优先级, 优先给用 户端设备 UE分配优先级较高的时隙接入。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本发明可 借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但很多情况下前 者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本质上或者说对现有技 术做出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在可读 取的存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若干指令用以使得一台计 算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例 所述的方法。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以所述权利要 求的保护范围为准。

Claims

杈 利 要 求 书
1、 一种通信系统中检测干扰信号码功率的方法, 其特征在于, 包括:
基站检测上行数据中各时隙的第一部分数据 Datal 接收总带宽功率 R WP1、 各时隙接收总带宽功率 R WP和各时隙干扰信号码功率 ISCP; 基站根据所述各时隙 Datal接收总带宽功率 RTWP1、 各时隙接收总带 宽功率 R WP和各时隙干扰信号码功率 ISCP计算出所述各时隙修正后的 干扰信号码功率 ISCP_new
2、 根据杈利要求 1所述的方法, 其特征在于:
基站根据所述各时隙 Datal接收总带宽功率 RTWP1、 所述各时隙接收 总带宽功率 R WP和所述各时隙干扰信号码功率 ISCP计算出所述时隙修 正后的干扰信号码功率 ISCP_new, 具体计箅公式为:
ISCP_new= ISCP+ 0, (RTWP1-RTWP) ) ·
所述 max(0, (RTWP1-R WP) )表示取 0和 (RTWP1-R WP) 中的最 大值。
3、 根据杈利要求 1所述的方法, 其特征在于, 基站检测上行数据中各时隙的 Datal 接收总带宽功率 R WP1 ; 具体为:
基站接收上行数据中各时隙的 Datal数据的前 L个码片;
基站对接收到各时隙的 Datal数据的前 L个码片的接收功率进行平均计算, 得 到所述各时隙的 Datal接收总带宽功率 R WP1。
4、 根据杈利要求 3所述的方法, 其特征在于:
所述 L值为上行数据中各时隙的第一部分数据 Datol中被干扰的数据的长 度。 杈 利 要 求 书
、 根据杈利要求 3或 4所述的方法, 其特征在于:
所述 L值取 128。
、 根据杈利要求 1或 2所述的方法, 其特征在于:
检测各时隙干扰信号码功率 ISCP的具体步骤为:
基站利用各时隙的 Mdamble码进行信道估计;
基站将所述信道估计值与基站内预设的门限值比较, 对低于所述门限 值的信道估计值取平均值, 得到所述各时隙干扰信号码功率 ISCP。
、 根据杈利要求 1或 2所述的方法, 其特征在于:
所述各时隙接收总带宽功率 R WP为所述各时隙的 Mdamble的 128个 码片的平均码片接收功率。
、 根据杈利要求 1所述的方法, 其特征在于:
所述基站为微型基站或宏基站。
、 一种通信系统中用户接入的方法, 其特征在于, 包括:
基站检测上行数据中各时隙的 Datal接收总带宽功率 RTWP1、各时隙接收 总带宽功率 R WP和各时隙干扰信号码功率 I S C P;
基站根据所述各时隙 Datal接收总带宽功率 R WP1、所述各时隙接收总 带宽功率 RTWP和所述各时隙干扰信号码功率 ISCP计算出所述各时隙修 正后的干扰信号码功率 ISCP_new;
基站根据所述各时隙修正后的干扰信号码功率 ISCP— new, 决定用户端 设备 UE的接入时隙。
0、 根据杈利要求 9所述的方法, 其特征在于, 基站根据所述各时隙修正后的干 扰信号码功率 ISCP_new, 决定用户端设备 UE的接入时隙, 具体为: 杈 利 要 求 书
基站根据各时隙修正后的干扰信号码功率 ISCP— new值的大小对时隙 进行优先级排序或者基站接收无线网络控制器根据各时隙修正后的干扰 信号码功率 ISCP_new值的大小对时隙进行优先级排序的排序结果;
基站根据排序结果,决定用户端设备 UE的优先接入较小的 ISCP— new 值对应的时隙。
、 根据杈利要求 10所述的方法, 其特征在于, 所述根据各时隙修正后的干 扰信号码功率 ISCP_new值的大小对时隙进行优先级排序, 具体为:
当两个时隙对应的修正后的干扰信号码功率 ISCP_new差值小于或等于 预设的门 P艮 Δ ISCP B , 认为所述两个时隙优先级一样;
当两个时隙对应的修正后的干扰信号码功率 I SCP_new差值大于预设的 门限 A ISCT tf , 认为修正后的干扰信号码功率 ISCP_new值较大对应的时隙 优先级较低。
、 根据杈利要求 10或 11所述的方法, 其特征在于:
当两个时隙优先级一样时, 采用操作维护 OM 配置的时隙优先级进行 接入。
、 根据权利要求 9所述的方法, 其特征在于, 所述基站根据所述各时隙修正后 的干扰信号码功率 ISCP— new, 决定用户端设备 UE的接入时隙后, 还进 一步包括:
决定用户端设备 UE 在所述接入时隙上上行物理随机接入信道 PRACH和上行专用物理信道 DPCH上的开环期望接收功率并将所述开环 期望接收功率发送给用户端设备。
、 根据权利要求 13所述的方法, 其特征在于: 杈 利 要 求 书
所述决定用户端设备 UE 在所述接入时隙上上行物理随机接入信道 PRACH 和上行专用物理信道 DPCH 上的开环期望接收功率并将所述 PRACH和 DPCH上的开环期望接收功率发送给用户端设备具体为: 基站根据用户端设备 UE接入的时隙对应的 ISCP— new计算上行物理 随机接入信道 PRACH 和上行专用物理信道 DPCH 的开环期望接收功 率, 并将所述 PRACH或 DPCH的开环期望接收功率发送给用户端设备 UE。
、 根据杈利要求 14所述的方法, 其特征在于:
所述决定用户端设备 UE 在所述接入时隙上上行物理随机接入信道 PRACH和上行专用物理信道 DPCH上的开环期望接收功率具体为: 根据上行物理随机接入信道 PRACH 固定的信干比 SIR与 ISCP— new 相乘得到所述上行物理随机接入信道 PRACH的开环期望接收功率;
根据上行专用物理信道 DPCH固定的信干比 SIR与 ISCP— new相乘得 到所述上行专用物理信道 DPCH的开环期望接收功率。
、 根据杈利要求 9所述的方法, 其特征在于:
基站根据各时隙所述 Datal接收总带宽功率 RTWP1、 该时隙接收总带 宽功率 RTWP和该时隙干扰信号码功率 ISCP检测出所述时隙修正后的干 扰信号码功率 ISCP_new, 具体为:
ISCP— new: ISCP+max( 0, (RTWP1-RTWP) ) .
所述 max(0, (RTWP1-RTWP) )表示取 0和 (RTWP1-R WP) 中的最 大值。
、 根据杈利要求 9所述的方法, 其特征在于, 基站检测上行数据中每个时隙的 杈 利 要 求 书
Datal接收总带宽功率 RTWP1 ; 具体为:
基站接收上行数据中各时隙的 Datal数据的前 L个码片;
基站对接收到各时隙的 Datal数据的前 L个码片的接收功率进行平均计算, 得到所述各时隙的 Datal接收总带宽功率 RTWP1。
、 根据杈利要求 17所述的方法, 其特征在于:
所述 L值为上行数据中各时隙的 Dalai 中被干扰数据的长度。
、 根据杈利要求 17或 18所述的方法, 其特征在于:
所述 L值取 128。
、 根据权利要求 9所述的方法, 其特征在于:
所述基站为微型基站或宏基站。
、 一种网络接入设备, 其特征在于, 包括:
第一处理器:用于检测上行数据中各时隙的 Datal接收总带宽功率 R WP1、 各时隙接收总带宽功率 RTWP和各时隙干扰信号码功率 ISCP ;
第二处理器: 用于根据所述各时隙 Datal接收总带宽功率 R WP1、 所 述各时隙接收总带宽功率 R WP和所述各时隙干扰信号码功率 ISCP计算 出所述各时隙修正后的干扰信号码功率 ISCP— new。
、 根据权利要求 21所述的接入设备, 其特征在于, 还包括:
第三处理器:用于根据所述各时隙修正后的干扰信号码功率 ISCP_new , 决定用户端设备 UE的接入时隙。
、 根据杈利要求 21所述的接入设备, 其特征在于, 还包括:
第四处理器: 用于决定用户端设备 UE在所述接入时隙上上行物理随机 接入信道: PRACH和上行专用物理信道 DPCH上的开环期望接收功率并将 杈 利 要 求 书
所述开环期望接收功率发送给用户端设备。
4、 根据杈利要求 21所述的接入设备, 其特征在于:
所述第一处理器检测上行数据中各时隙的 Datal接收总带宽功率 RTWP1 具体为:
所述第一处理器接收上行数据中各时隙的 Datal数据的前 L个码片; 所述 第一处理器对接收到各时隙的 Dated数据的前 L个码片的接收功率进行平均计 算, 得到所述各时隙的 Datal接收总带宽功率 RT P1。
5、 根据杈利要求 24所述的接入设备, 其特征在于:
所述 L值为上行数据中各时隙的 Datal 中被干扰数据的长度。
6、 根据杈利要求 21所述的接入设备, 其特征在于:
所述第二处理器根据所述各时隙 Datal接收总带宽功率 RT P1、所述各 时隙接收总带宽功率 R WP和所述各时隙干扰信号码功率 ISCP检测出所 述 时 隙修 正 后 的 干 扰 信 号 码 功 率 ISCP— new , 具 体 为 : ISCP_new= ISCP+ 0, (RTWP1-RTWP) ) . 所述 max(0, (RTWP1-R WP) )表示取 0和 (R P1-R WP) 中的最大 值。
7、 根据杈利要求 22所述的接入设备, 所述第三处理器根据所述各时隙修正后 的干扰信号码功率 ISCP_new, 决定用户端设备 UE的接入时隙, 其特征在于: 所述第三处理器根据各时隙修正后的干扰信号码功率 ISCP_new值的 大小对时隙进行优先级棑序或者基站接收无线网络控制器根据各时隙修 正后的干扰信号码功率 ISCP— new值的大小对时隙进行优先级排序的排序 结果; 杈 利 要 求 书
第三处理器根据排序结果, 决定用户端设备 UE 的优先接入较小的 ISCP— new值对应的时隙。
PCT/CN2012/078661 2011-08-26 2012-07-14 一种检测干扰信号码功率的方法、用户接入方法和接入设备 WO2013029433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110246870.3 2011-08-26
CN2011102468703A CN102958092A (zh) 2011-08-26 2011-08-26 一种检测干扰信号码功率的方法、用户接入方法和接入设备

Publications (1)

Publication Number Publication Date
WO2013029433A1 true WO2013029433A1 (zh) 2013-03-07

Family

ID=47755292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078661 WO2013029433A1 (zh) 2011-08-26 2012-07-14 一种检测干扰信号码功率的方法、用户接入方法和接入设备

Country Status (2)

Country Link
CN (1) CN102958092A (zh)
WO (1) WO2013029433A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129220A1 (zh) * 2019-12-24 2021-07-01 中兴通讯股份有限公司 定位大气波导干扰的方法、基站及计算机可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103987121B (zh) * 2014-05-28 2017-06-23 电信科学技术研究院 一种分层组网中的资源分配方法和设备
CN105530694A (zh) * 2014-09-29 2016-04-27 国际商业机器公司 用户设备与基站同步的方法和装置
KR102386229B1 (ko) * 2018-07-05 2022-04-14 삼성전자주식회사 무선 통신 시스템에서 간섭 측정 방법 및 장치
CN111836387B (zh) * 2019-04-17 2022-12-23 大唐移动通信设备有限公司 一种远端干扰的自适应方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177453A (ja) * 2008-01-24 2009-08-06 Nec Access Technica Ltd ノイズレベル測定方法および装置
CN101605003A (zh) * 2008-06-11 2009-12-16 大唐移动通信设备有限公司 干扰信号码功率的测量方法及装置
CN102082584A (zh) * 2009-11-26 2011-06-01 中国移动通信集团北京有限公司 时分同步码分多址接入系统中的干扰检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050412B2 (en) * 2003-06-23 2006-05-23 Interdigital Technology Corporation System and method for determining measurement value for radio resource management in wireless communications
CN1992432B (zh) * 2005-12-26 2011-05-25 中兴通讯股份有限公司 一种智能天线上行赋形增益的确定方法
CN101345558B (zh) * 2007-07-09 2012-02-22 大唐移动通信设备有限公司 控制上行外环功率的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177453A (ja) * 2008-01-24 2009-08-06 Nec Access Technica Ltd ノイズレベル測定方法および装置
CN101605003A (zh) * 2008-06-11 2009-12-16 大唐移动通信设备有限公司 干扰信号码功率的测量方法及装置
CN102082584A (zh) * 2009-11-26 2011-06-01 中国移动通信集团北京有限公司 时分同步码分多址接入系统中的干扰检测方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021129220A1 (zh) * 2019-12-24 2021-07-01 中兴通讯股份有限公司 定位大气波导干扰的方法、基站及计算机可读存储介质

Also Published As

Publication number Publication date
CN102958092A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
TWI609574B (zh) 適用於毫米波通訊系統的網路登錄後的連結方法、及使用該方法之用戶設備與基站
TWI716035B (zh) 用於傳送波束故障恢復請求的方法及使用者設備
CN111511039B (zh) 用于跟踪信道的系统及方法
US8761826B2 (en) Uplink power control in coordinated multi-point wireless communication system
EP3206313B1 (en) Method and system for detecting idle channel in wireless communication system
CN101998415B (zh) Td-lte系统干扰自避免的基站选址方法
US8565215B2 (en) Method and base station for detecting interfering base station
WO2021008710A1 (en) Power exposure reporting for wireless networks
EP3143790B1 (en) Access to a communications channel in a wireless communications network
EP3342064B1 (en) Power control in high speed scenario
WO2013029433A1 (zh) 一种检测干扰信号码功率的方法、用户接入方法和接入设备
US11838245B2 (en) Apparatus and method for managing interference in wireless communication system
US9674820B2 (en) Adaptive beacon transmission
US20140204861A1 (en) Method and Apparatus for Power Control and Parameter Configuration
US20240244555A1 (en) Timing advance offset for reconfigurable intelligent surface (ris) aided wireless communication systems
US20200389920A1 (en) Systems and methods for wi-fi latency reduction in docsis backhaul
CN117981451A (zh) 灵活随机接入信道配置
CN110324120B (zh) 一种参考信号的发送方法及装置、设备、存储介质
Hu et al. Analysis of clustered licensed-assisted access in unlicensed spectrum
CN114600382A (zh) 波束对准
Bhartia et al. WiFi-XL: Extending WiFi to wide areas in white spaces
EP4418759A2 (en) Systems and methods for high-power transmission
US11956045B2 (en) Interference suppression method and base station
CN118019137A (zh) 一种通信方法和装置
Akimoto et al. Location-based virtual sector method for interference control in WLAN multicell environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829071

Country of ref document: EP

Kind code of ref document: A1