WO2013029139A1 - Fluorescent polyaniline nanoparticles - Google Patents

Fluorescent polyaniline nanoparticles Download PDF

Info

Publication number
WO2013029139A1
WO2013029139A1 PCT/BR2012/000321 BR2012000321W WO2013029139A1 WO 2013029139 A1 WO2013029139 A1 WO 2013029139A1 BR 2012000321 W BR2012000321 W BR 2012000321W WO 2013029139 A1 WO2013029139 A1 WO 2013029139A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent
nanoparticles
nanoparticle
manufacture
preparing
Prior art date
Application number
PCT/BR2012/000321
Other languages
French (fr)
Portuguese (pt)
Inventor
Celso Pinto De Melo
Kleber GOLÇALVES BEZERRA ALVES
César Augusto SOUZA DE ANDRADE
Clécio GOMES DOS SANTOS
Original Assignee
Universidade Federal De Pernambuco - Ufpe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal De Pernambuco - Ufpe filed Critical Universidade Federal De Pernambuco - Ufpe
Publication of WO2013029139A1 publication Critical patent/WO2013029139A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/008Preparations of disperse dyes or solvent dyes
    • C09B67/0082Preparations of disperse dyes or solvent dyes in liquid form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0083Solutions of dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • the present invention is applicable to the field of electroluminescent devices, such as organic LEDs, for increasing the luminous performance of fluorescent lamps, pH sensors, fluorescent colloidal inks, energy storage devices, and development of diagnostic fluorescent sensors. of pathologies.
  • the fluorescent particles of the present invention may also be applied for labeling biological molecules, such as antibodies or DNA, also providing medical and veterinary applications and diagnosing diseases caused by various pathogens.
  • the present invention is due to the application of a simple procedure described herein for obtaining fluorescent nanoparticles of a conductive polymer.
  • a simple method of preparation by "wet chemistry” techniques by combining polyaniline (PANI), an oxidizing agent and surfactants to obtain fluorescent materials.
  • PANI polyaniline
  • the nanoparticles of the present invention provide, among other advantages, the emission of light at various wavelengths, including in the deep blue range, ensuring - because they form stable dispersions in water - advantageous uses of their fluorescent properties in various ways. applications.
  • Organic Conductive Polymers have been used in a wide variety of organic electronic devices, including new types of electroluminescent (EL) and light-emitting diode (LED) devices; typically these devices feature the Anode is a transparent material that has the ability to inject holes into the EL material (such as indium tin oxide) and is deposited on a support material such as glass or plastic.
  • EL material includes fluorescent dyes, fluorescent or phosphorescent metal complexes, conjugated polymers, or a mixture thereof.
  • the cathode is usually a material that has the function of injecting electrons into the EL material.
  • fluorescent nanoparticles are produced by joining fluorescent or phosphorescent dyes with polymer particles. These nanoparticles are 30 - 100 nm in size and use an aqueous or water soluble carrier in adjusted amounts to produce an ink with a viscosity and surface tension suitable for application to conventional inkjet printers for printing on appropriate substrates.
  • immunofluorescent markers consist of fluorescent molecules or particles bound to a specific antibody. These markers are very useful in the medical and clinical diagnostic areas.
  • US Pat. No. 4,665,024 which relates to a fluorescent marker:
  • the marker is prepared, for example, by chemical or physical bonding between a non-fluorescent polymeric particle and one or more fluorescent dye types, resulting in fluorescent microparticles.
  • Pat. No. 6,344,272 and 6,428,811 describing the use of nanocomposites consisting of electrically conductive coated silica nanoparticles, with applications in the area of controlled drug release. US Pat. No.
  • Fluorescent nanoparticles are currently widely traded through various companies (Cromeon (Germany), Fluka Biosciences (Germany). These particles are produced in a wide variety of colors (emission), however they are obtained by joining fluorescent dyes with polymeric particles. - for more details see US Patent No. 0293409 A1.
  • the use of conductive polymers in electronic applications has also been extensively explored, as for example in US Patent No. 7,351,358 B2 where colloidal dispersions are produced.
  • Water soluble polypyrrols used to manufacture organic LEDs (OLEDs), electromagnetic shielding devices, electrochromic dials, field effect transistors and data storage devices.
  • PI 0805991-8 describes the synthesis of fluorescent nanoparticle composites. More specifically, it relates to the composites themselves, the process of preparing such composites, the rapid diagnostic systems (such as kits) containing such compounds and the use of such composites; in PI 0805991-8 the emission of light in the deep blue and / or green range is achieved by joining a conductive polymer with a metal (polyaniline / gold).
  • the present invention differs from said document in that it does not require the development of composite materials, that is, the joining of two chemically different materials, and therefore the fluorescence of the particles proposed in this patent is obtained from the PANI polymer itself.
  • the present invention shows a process of synthesis of fluorescent nanoparticles by a single step and using as a vehicle or means of dispersing water, which enables a greater diversity of applications such as, for example, in the areas of human and animal health. use in in vivo formulations in biological systems. Although such documents bear similarity to the present patent, existing differences can be observed by comparing these documents which can be seen in Table I below.
  • the main problems encountered in the present state of the art are: the use of organic solvents that are environmentally and biologically aggressive materials, in addition to influencing performance and efficiency by attacking materials, particularly plastics, which in general constitute devices that use these structures.
  • the present invention as it is the preparation of fluorescent materials that are dissolved in aqueous medium, does not present many of the limitations of use and applications of the usual techniques and can be applied, among others. possibilities, marking of biological molecules and systems in vivo.
  • the technique described here does not need and does not require the addition of other spectroscopically active materials, among which we can highlight: fluorescent dyes or pigments, fluorescent or phosphorescent metal complexes.
  • the disclosed technique does not require the use of substrates and / or metallic particles for polyaniline nanoparticles to exhibit the physical property of fluorescence. In this way, additional steps of synthesis and / or insertion of additional particles or molecules are avoided, making the described system more economically viable compared to commercially available systems that make use of unconventional polymers.
  • the object of the present invention is to present the possibility of preparing fluorescent polyaniline nanoparticles and to discuss their synthesis through a wet chemistry method that combines polyaniline (PANI), an oxidizing agent and surfactants, in order to minimize problems of harm to the environment and improve the performance of devices and appliances using these nanoparticles.
  • PANI polyaniline
  • the present invention avoids and dispenses with the need for chemical modifications and the use of commercial fluorophores / dyes and / or metal particles which may require special treatment during production and / or disposal in order to avoid becoming contaminants. of soils, effluents and / or food.
  • the present invention also aims at the development of novel nanoscale fluorescent systems for large scale production and low operating cost.
  • the inventive act related to the present invention is to obtain fluorescent polyaniline nanoparticles by specific process of wet chemistry technique. This makes this unique synthesis step provide an advantage over the current state of the art by saving time and cost. This synergistic effect of applying the wet chemistry technique to obtain fluorescence is the inventive act requested here. We are tentatively attributing the fluorescence of the polymer to the confinement of its chains in the small domain within the micelle, which should alter its organization form and the dielectric constant of the medium in which they are dispersed. Benefits
  • One of the advantages is the emission of light in the deep blue and green range, depending on the type of surfactant, the pH of the medium and the oxidation state of the polymer (See Fig. 1), providing the construction and manufacture of electroluminescent devices more efficient.
  • Water-soluble nanoparticles as described herein, are not environmentally friendly and do not interfere with the performance of the devices manufactured with them.
  • These fluorescent nanoparticles may also be used in the manufacture of nanocomposites which simultaneously exhibit the properties of magnetism and fluorescence, and these composites are obtained by incorporating fluorescent nanoparticles into magnetic materials such as superparamagnetic, paramagnetic, ferromagnetic metal oxides or a combination thereof,
  • magnetic materials such as superparamagnetic, paramagnetic, ferromagnetic metal oxides or a combination thereof.
  • said systems can be used for the purification of biological materials and components (such as proteins, DNA, RNA, etc.) and as biosensors for detecting pathologies of interest. From this combination, multifunctional materials (fluorescent and magnetic) can be obtained that have a promising application in the diagnostic area.
  • the nanoparticles of the invention can be prepared to provide different intensities according to pH, which is an advantage as it allows the application of such particulate systems in the area of pH sensors by fluorescence and can be applied in pathology laboratories. clinic, research and teaching laboratories, and industries.
  • the novelty of the present invention is the fluorescence presented by polyaniline particles by wet chemistry technique which, to date, has not been described in the scientific or patent literature, or even identified elsewhere. research or teaching institution. It is our working hypothesis, yet to be confirmed, that confinement of the conjugated polymer within the surfactant micelles predisposes to a maximization of polymer fluorescence by limiting the degree of electronic displacement of the conjugate system.
  • biological material is meant the group comprising, but not limited to, DNAs, RNAs, proteins, peptides, non-coding RNAs and / or any other biological materials which may be in the form of a single strand.
  • Principal genetic material means the group comprising, but not limited to, the biological material of any organism obtained from a small amount of blood or a simple smear of epithelial or mucosal cells.
  • Oxidizing agent means the group comprising, but not limited to, compounds containing (NH 4 ) 2 S20 8 , FeCl 3 , (NH 4 ) 2 Cr 20 07, Cu (NO 3 ) 2 , CuSO 4 , CuBr 2 , CuCl 2 , CuSO 4 , or any compound having greater reduction potential than the monomer.
  • “Monomer” means the group comprising, but not limited to, the smallest repetitive unit such as aniline (C 6 H 5 NH 2 ), thiophene (C 4 H 4 S), pyrrole (C 4 H 5 N) , or precursor molecules of the respective polymers, polyaniline, PEDOT ((Poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)) and polypyrrole, and / or a mixture thereof.
  • aniline C 6 H 5 NH 2
  • thiophene C 4 H 4 S
  • pyrrole C 4 H 5 N
  • precursor molecules of the respective polymers polyaniline
  • PEDOT Poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)
  • polypyrrole and / or a mixture thereof.
  • stabilizer is meant the group comprising, but not limited to, surfactants such as Sodium Dodecyl Sulfate (SDS), Dodecyltrimethylammonium Bromide (DTAB), Catyltrimethylammonium Bromide (CTAB), TRITON X-405 and / or a mixture of the same.
  • surfactants such as Sodium Dodecyl Sulfate (SDS), Dodecyltrimethylammonium Bromide (DTAB), Catyltrimethylammonium Bromide (CTAB), TRITON X-405 and / or a mixture of the same.
  • a surfactant to a slightly acidic aqueous solution by stirring it for a period of not less than five minutes to form micelles to receive previously distilled aniline, thereafter an oxidizing agent is added so that the polymerization process is initiated.
  • the assembly is then shaken for at least 12 hours to ensure complete aniline polymerization within the created micelles, and to obtain nanoscale polymeric particles, thereby obtaining the fluorescence potential.
  • the slightly acidic aqueous surfactant solution may be made with amounts of HCl ranging from 0.01M to 0.3M and with amounts of surfactants ranging from 0.05M to 0.25M.
  • the amount of previously dehydrated aniline should be at least 10 mM.
  • NPs_PANi Polyaniline nanoparticles
  • a thin surface layer of gold was sputtered through a Bal-tec SDS 050 (Japan) metallizer.
  • the compound ((NH4 SaOs) acts as an oxidizing agent, that is, as a polymerization initiator of the aniline.
  • surfactants as stabilizers for the formed polymeric nanoparticles.
  • colloidal dispersions obtained with SDS and DTAB showed good stability, with no evidence of precipitates or aggregate formation.
  • the average diameter of polyaniline nanoparticles using SDS, DTAB and TRITON X-405 in aqueous solution was determined by dynamic light scattering to be of the order of 5.6 nm; 124.7 nm and 242.3 nm, respectively.
  • the mean zeta potential value obtained for SDS, DTAB and TRITON X-405 polyaniline nanoparticles was 60.0 mV; 59.3 mV and 0.72 mV, respectively, indicating the presence of a well-defined Gouy-Chapman layer, which provides stability for colloidal solutions (Kim et al., 2005), in the case of samples prepared with SDS and DTAB. .
  • Fig. 2 shows the SEM micrographs of PANI_NPs obtained with the different types of surfactants.
  • NPs with size between 10 nm - 60 nm are observed, while Figs. 2b and 2c illustrate nanostructures between 40 nm - 80 nm in size; and 20 nm - 120 nm, respectively.
  • Fig. 3 shows the absorption spectra of PANI_NPs prepared with the different surfactants
  • the absorption spectra of PANI_NPs prepared with SDS and DTAB show the presence of three absorption bands.
  • the first band at 369 nm is associated with the ⁇ - ⁇ * electronic transitions involving benzenoid and / or quinoid rings.
  • the second (425 nm) and the third band (800 nm) are associated with electronic transitions involving higher and lower energy polaronic bands, respectively (RAY et al, 1989).
  • Fig. 4 shows the changes in PANI_NPs emission spectra at pH values that varied after treatment of the nanoparticles with acid (HCI) and basic (NaOH) solutions.
  • the fluorescence dependence on the pH of the surfactant polyaniline nanoparticles system was tested in a The results are shown in Fig. 5.
  • the PANI_NPs were excited at 380 nm, with the emission intensity measured in two regions, one between 420nm - 440 nm (curve a), and the other with measured emission. at 470 nm - 480 nm (curve b) as a function of pH.
  • 0.68, 0.19 and 0.29% for the SDS, DTAB and TRITON X-405 polyaniline nanoparticles system, respectively, which are high values of quantum yield when compared with those previously reported in the literature for polyaniline films on metal surfaces (See Table II); In fact, to date no other study reports quantum yield values for pure polyaniline particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention has as an inventive step the production of fluorescent polyaniline nanoparticles via a specific process relating to a wet chemistry technique whereby polyaniline (PANI), an oxidizing agent and surfactants are combined, for minimizing problems resulting from aggression to the environment, since organic solvents that are environmentally unfriendly materials are used in the current art, and the aim of said invention is to develop new nanoscale fluorescent systems and to improve the performance of machines that require such nanoparticles. The present invention can be used in the industry of electroluminescent devices, and for labelling biological molecules.

Description

NANOPARTÍCULAS FLUORESCENTES DE POLIANILINA  Fluorescent Polyaniline Nanoparticles
Campo da Invenção A presente invenção é aplicável à área de dispositivos eletroluminescentes, como LEDs orgânicos, para o aumento do rendimento luminoso de lâmpadas fluorescentes, sensores de pH, tintas coloidais fluorescentes, dispositivos de armazenamento de energia, e desenvolvimento de sensores fluorescentes para o diagnóstico de patologias. Field of the Invention The present invention is applicable to the field of electroluminescent devices, such as organic LEDs, for increasing the luminous performance of fluorescent lamps, pH sensors, fluorescent colloidal inks, energy storage devices, and development of diagnostic fluorescent sensors. of pathologies.
As partículas fluorescentes da presente invenção também podem ser aplicadas para a marcação de moléculas biológicas, como anticorpos ou DNA, proporcionando também aplicações nas áreas médicas e veterinárias e no diagnóstico de doenças causadas por diversos patógenos.  The fluorescent particles of the present invention may also be applied for labeling biological molecules, such as antibodies or DNA, also providing medical and veterinary applications and diagnosing diseases caused by various pathogens.
Sumário summary
A presente invenção é decorrente da aplicação de um procedimento simples, aqui descrito, para a obtenção de nanopartículas fluorescentes de um polímero condutor. Desta forma, descrevemos um simples método de preparação por meio de técnicas de "química molhada" através da associação de pol anilina (PANI), um agente oxidante e surfactantes para a obtenção de materiais fluorescentes. Em especial, as nanopartículas da presente invenção proporcionam, entre outras vantagens, a emissão de luz em vários comprimentos de onda, inclusive na faixa do azul profundo, assegurando - pelo fato de formarem dispersões estáveis em água - vantajosos usos de suas propriedades fluorescentes em diversas aplicações. The present invention is due to the application of a simple procedure described herein for obtaining fluorescent nanoparticles of a conductive polymer. Thus, we describe a simple method of preparation by "wet chemistry" techniques by combining polyaniline (PANI), an oxidizing agent and surfactants to obtain fluorescent materials. In particular, the nanoparticles of the present invention provide, among other advantages, the emission of light at various wavelengths, including in the deep blue range, ensuring - because they form stable dispersions in water - advantageous uses of their fluorescent properties in various ways. applications.
Anterioridades: Estado da Técnica Polímeros condutores orgânicos têm sido utilizados em uma grande variedade de dispositivos eletrônicos orgânicos, incluindo novos tipos de dispositivos eletroluminescentes (EL) e de diodos emissores de luz (LED); tipicamente esses dispositivos apresentam a seguinte configuração: o ânodo é um material transparente que tem a habilidade de injetar buracos no material EL (como, por exemplo, óxido de índio e estanho), e que é depositado em um material suporte como vidro ou plástico. Usualmente, o material EL inclui corantes fluorescentes, complexos metálicos fluorescentes ou fosforescentes, polímeros conjugados, ou uma mistura desses. O cátodo é geralmente um material que tem a função de injetar elétrons no material EL. Background: Organic Conductive Polymers have been used in a wide variety of organic electronic devices, including new types of electroluminescent (EL) and light-emitting diode (LED) devices; typically these devices feature the Anode is a transparent material that has the ability to inject holes into the EL material (such as indium tin oxide) and is deposited on a support material such as glass or plastic. Usually, EL material includes fluorescent dyes, fluorescent or phosphorescent metal complexes, conjugated polymers, or a mixture thereof. The cathode is usually a material that has the function of injecting electrons into the EL material.
A comercialização de nanopartículas fluorescentes é estabelecida atualmente por muitas empresas conhecidas, sendo que as partículas são produzidas através da união de corantes fluorescentes ou fosforescentes com partículas poliméricas. Essas nanopartículas apresentam tamanho entre 30 - 100 nm e utilizam veículo aquoso ou solúvel em água em quantidades ajustadas para produzir uma tinta com viscosidade e tensão superficial adequada para aplicação em impressoras convencionais à base de jato de tinta para impressão em substratos apropriados.  The commercialization of fluorescent nanoparticles is currently established by many well-known companies, and the particles are produced by joining fluorescent or phosphorescent dyes with polymer particles. These nanoparticles are 30 - 100 nm in size and use an aqueous or water soluble carrier in adjusted amounts to produce an ink with a viscosity and surface tension suitable for application to conventional inkjet printers for printing on appropriate substrates.
O uso de nanopartículas fluorescentes na área de marcadores e indicadores biológicos tem sido bastante explorado, sendo que marcadores imunofluorescentes são constituídos por moléculas ou partículas fluorescentes ligadas a um anticorpo específico. Esses marcadores se mostram bastante úteis nas áreas médicas e de diagnóstico clínico.  The use of fluorescent nanoparticles in the area of biological markers and markers has been widely explored, and immunofluorescent markers consist of fluorescent molecules or particles bound to a specific antibody. These markers are very useful in the medical and clinical diagnostic areas.
É conhecida, por exemplo, a patente U.S. Pat. No. 4,665,024, que se refere a um marcador fluorescente: o marcador é preparado, por exemplo, através da ligação química ou física entre uma partícula polimérica não fluorescente e um ou mais tipos de corantes fluorescentes, resultando em micropartículas fluorescentes. Também são conhecidas as patentes Pat. No. 6,344,272 e 6,428,811 que descrevem o uso de nanocompósitos constituídos de nanopartículas de sílica com revestimento eletricamente condutor, com aplicações na área de liberação controlada de fármacos. As patentes U.S. Pat No 5,830,912; 4,774,339; 5,187,288; 5,274,113; 5,433,896; 4,810,636 e 4,812,409 descrevem o uso de nanopartículas não fluorescentes incorporadas e/ou ligadas covalentemente a materiais capazes de emissão luminosa após excitação (fluoróforos), como pireno, antraceno, naftaleno, acridina, estilbeno, indol, oxazol, tiazol, cianinas, porfirinas, azuleno, piridina, quinolina, pirileno e cumarina e/ou combinação desses. Tintas fluorescentes utilizando água como dispersão são descritas na patente U.S. Pat. No. 6,268,222: essas partículas fluorescentes são obtidas através da ligação química e/ou incorporação de nanopartículas poliméricas com pigmentos fluorescentes, sendo que a incorporação do pigmento é realizada após a polimerização da nanopartícula. For example, US Pat. No. 4,665,024, which relates to a fluorescent marker: The marker is prepared, for example, by chemical or physical bonding between a non-fluorescent polymeric particle and one or more fluorescent dye types, resulting in fluorescent microparticles. Pat. No. 6,344,272 and 6,428,811 describing the use of nanocomposites consisting of electrically conductive coated silica nanoparticles, with applications in the area of controlled drug release. US Pat. No. 5,830,912; 4,774,339; 5,187,288; 5,274,113; 5,433,896; 4,810,636 and 4,812,409 describe the use of non-fluorescent nanoparticles incorporated and / or covalently linked to materials capable of light emission upon excitation (fluorophores) such as pyrene, anthracene, naphthalene, acridine, stilbene, indole, oxazole, thiazole, cyanines, porphyrins, azulene , pyridine, quinoline, pyrene and coumarin and / or combination thereof. Fluorescent inks using water as a dispersion are described in US Pat. No. 6,268,222: These fluorescent particles are obtained by chemical bonding and / or incorporation of polymeric nanoparticles with fluorescent pigments, and incorporation of the pigment is performed after polymerization of the nanoparticle.
Nanopartículas fluorescentes são bastante comercializadas atualmente através de diversas empresas (Cromeon (Alemanha), Fluka Biosciences (Alemanha). Essas partículas são produzidas em uma grande variedade de cores (emissão), no entanto elas são obtidas através da união de corantes fluorescentes com partículas poliméricas - para mais detalhes ver a patente U.S. Pat. No. 0293409 Al. A utilização de polímeros condutores em aplicações eletrônicas tem sido também bastante explorada, como, por exemplo, na patente US Pat. No. 7,351,358 B2, onde são produzidas dispersões coloidais de polipirrol solúveis em água, utilizadas para a fabricação de LEDs orgânicos (OLEDs), de dispositivos para blindagem eletromagnética, mostradores eletrocrômicos, transistor de efeito de campo e dispositivos de armazenamento de dados.  Fluorescent nanoparticles are currently widely traded through various companies (Cromeon (Germany), Fluka Biosciences (Germany). These particles are produced in a wide variety of colors (emission), however they are obtained by joining fluorescent dyes with polymeric particles. - for more details see US Patent No. 0293409 A1. The use of conductive polymers in electronic applications has also been extensively explored, as for example in US Patent No. 7,351,358 B2 where colloidal dispersions are produced. Water soluble polypyrrols, used to manufacture organic LEDs (OLEDs), electromagnetic shielding devices, electrochromic dials, field effect transistors and data storage devices.
A patente PI 0805991-8 descreve a síntese de compósitos de nanopartículas fluorescentes. Mais especificamente, refere-se aos compósitos em si, ao processo de preparação desses compósitos, a sistemas (como "kits") de diagnóstico rápido contendo tais compostos e ao uso de tais compósitos; no documento PI 0805991- 8 a emissão de luz na faixa do azul profundo e/ou no verde é alcançada pela união de um polímero condutor com um metal (polianilina/ouro). A presente invenção difere do referido documento por não necessitar do desenvolvimento de materiais compósitos, ou seja, da união de dois materiais diferentes quimicamente, sendo, portanto, a fluorescência das partículas propostas nesta patente obtida do polímero PANI em si.  PI 0805991-8 describes the synthesis of fluorescent nanoparticle composites. More specifically, it relates to the composites themselves, the process of preparing such composites, the rapid diagnostic systems (such as kits) containing such compounds and the use of such composites; in PI 0805991-8 the emission of light in the deep blue and / or green range is achieved by joining a conductive polymer with a metal (polyaniline / gold). The present invention differs from said document in that it does not require the development of composite materials, that is, the joining of two chemically different materials, and therefore the fluorescence of the particles proposed in this patent is obtained from the PANI polymer itself.
A presente invenção mostra um processo de síntese de nanopartículas fluorescentes através de um único passo e utilizando como veículo ou meio de dispersão a água, o que possibilita uma maior diversidade de aplicações como, por exemplo, nas áreas de saúde humana e animal, permitindo inclusive o uso em formulações in vivo em sistemas biológicos. Muito embora tais documentos apresentem semelhança em relação à presente patente, as diferenças existentes podem ser observadas através da comparação entre esses documentos que pode ser visualizada na Tabela I abaixo. The present invention shows a process of synthesis of fluorescent nanoparticles by a single step and using as a vehicle or means of dispersing water, which enables a greater diversity of applications such as, for example, in the areas of human and animal health. use in in vivo formulations in biological systems. Although such documents bear similarity to the present patent, existing differences can be observed by comparing these documents which can be seen in Table I below.
Tabela I - comparação entre as componentes características de cada invento Table I - Comparison between the characteristic components of each invention
Figure imgf000006_0001
Problemas e Limitações do Estado da Técnica
Figure imgf000006_0001
Prior Art Problems and Limitations
Os principais problemas encontrados no estado presente da técnica são: uso de solventes orgânicos que são materiais agressivos ao meio ambiente e a sistemas biológicos, além de influenciarem no rendimento e eficiência por atacarem os materiais, particularmente plásticos, que, em geral, constituem dispositivos que utilizam essas estruturas. A presente invenção, por se tratar da preparação de materiais fluorescentes que são dissolvidos em meio aquoso, não apresenta muitas das limitações de uso e aplicações das técnicas usuais, podendo ser aplicada, dentre outras possibilidades, à marcação de moléculas biológicas e sistemas in vivo. The main problems encountered in the present state of the art are: the use of organic solvents that are environmentally and biologically aggressive materials, in addition to influencing performance and efficiency by attacking materials, particularly plastics, which in general constitute devices that use these structures. The present invention, as it is the preparation of fluorescent materials that are dissolved in aqueous medium, does not present many of the limitations of use and applications of the usual techniques and can be applied, among others. possibilities, marking of biological molecules and systems in vivo.
Além disso, podemos destacar que a técnica aqui descrita não necessita e dispensa a adição de outros materiais espectroscopicamente ativos, dentre os quais podemos destacar: corantes ou pigmentos fluorescentes, complexos metálicos fluorescentes ou fosforescentes. Além disso, a técnica apresentada dispensa a utilização de substratos e/ou partículas metálicas para que as nanopartículas de polianilina apresentem a propriedade física da fluorescência. Dessa forma, são evitados passos adicionais da síntese e/ou inserção de partículas ou moléculas adicionais, tornando o sistema descrito mais viável do ponto de vista económico em comparação com os sistemas disponíveis no mercado que fazem uso de polímeros não-convencionais. In addition, we can highlight that the technique described here does not need and does not require the addition of other spectroscopically active materials, among which we can highlight: fluorescent dyes or pigments, fluorescent or phosphorescent metal complexes. Furthermore, the disclosed technique does not require the use of substrates and / or metallic particles for polyaniline nanoparticles to exhibit the physical property of fluorescence. In this way, additional steps of synthesis and / or insertion of additional particles or molecules are avoided, making the described system more economically viable compared to commercially available systems that make use of unconventional polymers.
Objetivos da Invenção O objetivo da presente invenção é apresentar a possibilidade de preparação de nanopartículas fluorescentes de polianilina e discutir sua síntese através de um método de química molhada que associa a polianilina (PANI), um agente oxidante e surfactantes, de modo a minimizar problemas de agressão ao meio ambiente e melhorar o desempenho de dispositivos e aparelhos que utilizem estas nanopartículas. A presente invenção evita e dispensa a necessidade de modificações químicas e a utilização de fluoróforos/corantes comerciais e/ou partículas metálicas que possam vir a requerer tratamentos especiais durante a produção e/ou o seu descarte, de modo a evitar que se tornem agentes contaminantes de solos, efluentes e/ou alimentos. Objectives of the Invention The object of the present invention is to present the possibility of preparing fluorescent polyaniline nanoparticles and to discuss their synthesis through a wet chemistry method that combines polyaniline (PANI), an oxidizing agent and surfactants, in order to minimize problems of harm to the environment and improve the performance of devices and appliances using these nanoparticles. The present invention avoids and dispenses with the need for chemical modifications and the use of commercial fluorophores / dyes and / or metal particles which may require special treatment during production and / or disposal in order to avoid becoming contaminants. of soils, effluents and / or food.
A presente invenção também tem como objetivo o desenvolvimento de novos sistemas fluorescentes em escala nanométrica para produção em larga escala e de baixo custo operacional. Solução The present invention also aims at the development of novel nanoscale fluorescent systems for large scale production and low operating cost. Solution
O ato inventivo relacionado com a presente invenção é a obtenção de nanopartículas de poiianilina fluorescentes através processo específico de técnica de química molhada. Isso faz com que esta etapa única de síntese forneça uma vantagem em comparação ao estado da técnica atual através da economia de tempo e custo. Este efeito sinérgico da aplicação da técnica de química molhada para obtenção da fluorescência é o ato inventivo pedido aqui. Tentativamente, estamos atribuindo a fluorescência do polímero ao confinamento de suas cadeias no pequeno domínio no interior da micela, o que deve alterar sua forma de organização e a constante dielétrica do meio em que se encontram dispersas. Vantagens The inventive act related to the present invention is to obtain fluorescent polyaniline nanoparticles by specific process of wet chemistry technique. This makes this unique synthesis step provide an advantage over the current state of the art by saving time and cost. This synergistic effect of applying the wet chemistry technique to obtain fluorescence is the inventive act requested here. We are tentatively attributing the fluorescence of the polymer to the confinement of its chains in the small domain within the micelle, which should alter its organization form and the dielectric constant of the medium in which they are dispersed. Benefits
Uma das vantagens é a emissão de luz na faixa do azul profundo e do verde, a depender do tipo do surfactante, do pH do meio e do estado de oxidação do polímero (Ver Fig. 1), proporcionando a construção e fabricação de dispositivos eletroluminescentes mais eficientes. One of the advantages is the emission of light in the deep blue and green range, depending on the type of surfactant, the pH of the medium and the oxidation state of the polymer (See Fig. 1), providing the construction and manufacture of electroluminescent devices more efficient.
Nanopartículas solúveis em água, como as aqui descritas, não são agressivas ao meio ambiente e não interferem no desempenho próprio dos dispositivos fabricados com elas.  Water-soluble nanoparticles, as described herein, are not environmentally friendly and do not interfere with the performance of the devices manufactured with them.
Essas nanopartículas fluorescentes podem também ser utilizadas na fabricação de nanocompósitos que apresentem simultaneamente as propriedades de magnetismo e fluorescência, sendo esses compósitos obtidos através da incorporação das nanopartículas fluorescentes a materiais magnéticos como, por exemplo, óxidos metálicos superparamagnéticos, paramagnéticos, ferromagnéticos ou combinação desses, o que representa uma vantagem adicional, pois os referidos sistemas podem ser utilizados para a purificação de materiais e componentes biológicos (como, por exemplo, proteínas, DNA, RNA, etc) e como biosenssores para a detecção de patologias de interesse. A partir dessa combinação, podem ser obtidos materiais multifuncionais (fluorescentes e magnéticos) que apresentem uma promissora aplicação na área de diagnóstico. As nanopartículas da invenção podem ser preparadas de forma a proporcionarem intensidades diferentes, de acordo com o pH, o que é uma vantagem, pois permite a aplicação desses sistemas particulados na área de sensores de pH através da fluorescência, podendo ser aplicados em laboratórios de patologia clínica, laboratórios de pesquisa e ensino e indústrias. These fluorescent nanoparticles may also be used in the manufacture of nanocomposites which simultaneously exhibit the properties of magnetism and fluorescence, and these composites are obtained by incorporating fluorescent nanoparticles into magnetic materials such as superparamagnetic, paramagnetic, ferromagnetic metal oxides or a combination thereof, This represents an additional advantage as said systems can be used for the purification of biological materials and components (such as proteins, DNA, RNA, etc.) and as biosensors for detecting pathologies of interest. From this combination, multifunctional materials (fluorescent and magnetic) can be obtained that have a promising application in the diagnostic area. The nanoparticles of the invention can be prepared to provide different intensities according to pH, which is an advantage as it allows the application of such particulate systems in the area of pH sensors by fluorescence and can be applied in pathology laboratories. clinic, research and teaching laboratories, and industries.
A novidade e o efeito técnico alcançado Resumindo, a novidade da presente invenção é a fluorescência apresentada por partículas de polianilina por técnica de química molhada que, até o presente momento, não havia sido descrita na literatura científica ou patentária, ou mesmo identificada em nenhuma outra instituição de pesquisa ou ensino. É nossa hipótese de trabalho, ainda a ser confirmada, que o confinamento do polímero conjugado no interior das micelas do surfactante predispõe a uma maximização da fluorescência do polímero, pela limitação no grau de deslocalização eletrônica do sistema conjugado. Descrição Detalhada The novelty and the technical effect achieved In summary, the novelty of the present invention is the fluorescence presented by polyaniline particles by wet chemistry technique which, to date, has not been described in the scientific or patent literature, or even identified elsewhere. research or teaching institution. It is our working hypothesis, yet to be confirmed, that confinement of the conjugated polymer within the surfactant micelles predisposes to a maximization of polymer fluorescence by limiting the degree of electronic displacement of the conjugate system. Detailed Description
Os exemplos a seguir não têm o intuito de limitar o escopo da invenção, mas apenas de ilustrar uma das inúmeras maneiras de se realizar a invenção. The following examples are not intended to limit the scope of the invention, but merely to illustrate one of the numerous ways of carrying out the invention.
Entende-se por "material biológico" o grupo que compreende, mas não se limita a, DNAs, RNAs, proteínas, peptídeos, RNAs não- codificantes e/ou quaisquer outros materiais biológicos que possam se apresentar na forma de fita simples.  By "biological material" is meant the group comprising, but not limited to, DNAs, RNAs, proteins, peptides, non-coding RNAs and / or any other biological materials which may be in the form of a single strand.
Entende-se por "material genético do paciente" o grupo que compreende, mas não se restringe, ao material biológico de qualquer organismo obtido a partir de uma pequena quantidade de sangue ou de um simples esfregaço de células epiteliais ou de mucosas.  "Patient genetic material" means the group comprising, but not limited to, the biological material of any organism obtained from a small amount of blood or a simple smear of epithelial or mucosal cells.
Entende-se por "agente oxidante" o grupo que compreende, mas não se restringe a compostos contendo (NH4)2S208, FeCI3, (NH4)2Cr207, Cu(N03)2, CuS04, CuBr2, CuCI2, CuS04,ou qualquer composto que apresente maior potencial de redução que o monômero. Entende-se por "monômero" o grupo que compreende, mas não se restringe, à menor unidade repetitiva, como anilina (C6H5NH2), tiofeno (C4H4S), pirrol (C4H5N), ou moléculas precursoras dos respectivos polímeros, polianilina, PEDOT ((Poli(3,4- etilenedioxitiofeno) poli(estirenosulfonato)) e polipirrol, e/ou mistura das mesmas. "Oxidizing agent" means the group comprising, but not limited to, compounds containing (NH 4 ) 2 S20 8 , FeCl 3 , (NH 4 ) 2 Cr 20 07, Cu (NO 3 ) 2 , CuSO 4 , CuBr 2 , CuCl 2 , CuSO 4 , or any compound having greater reduction potential than the monomer. "Monomer" means the group comprising, but not limited to, the smallest repetitive unit such as aniline (C 6 H 5 NH 2 ), thiophene (C 4 H 4 S), pyrrole (C 4 H 5 N) , or precursor molecules of the respective polymers, polyaniline, PEDOT ((Poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate)) and polypyrrole, and / or a mixture thereof.
Entende-se por "estabilizador" o grupo que compreende, mas não se restringe a, surfactantes como Dodecil Sulfato de Sódio (SDS), Brometo de Dodeciltrimetilamônio (DTAB), Brometo de Catiltrimetilamônio (CTAB), TRITON X-405 e/ou mistura dos mesmos.  By "stabilizer" is meant the group comprising, but not limited to, surfactants such as Sodium Dodecyl Sulfate (SDS), Dodecyltrimethylammonium Bromide (DTAB), Catyltrimethylammonium Bromide (CTAB), TRITON X-405 and / or a mixture of the same.
De uma maneira geral consegue-se chegar à invenção adicionando um surfactante a uma solução aquosa levemente ácida agitando-a por um período não inferior a cinco minutos para a formação de micelas para receber anilina previamente destilada, posteriormente é adicionado um agente oxidante para que o processo de polimerização seja iniciado. O conjunto é então agitado por pelo menos 12 horas para que garantir que haja a polimerização completa da anilina no interior das micelas criadas, e obtenção de partículas poliméricas em escala nanométrica, obtendo assim o potencial de fluorescência.  In general, it is possible to arrive at the invention by adding a surfactant to a slightly acidic aqueous solution by stirring it for a period of not less than five minutes to form micelles to receive previously distilled aniline, thereafter an oxidizing agent is added so that the polymerization process is initiated. The assembly is then shaken for at least 12 hours to ensure complete aniline polymerization within the created micelles, and to obtain nanoscale polymeric particles, thereby obtaining the fluorescence potential.
Mais especificamente, a solução aquosa levemente ácida com surfactante pode ser feita com quantidades de HCI que podem variar de 0,01M a 0,3M e com quantidades de surfactantes que podem variar de 0,05M a 0,25M. A quantidade de anilina previamente desidratada deve ser de pelo menos 10 mM.  More specifically, the slightly acidic aqueous surfactant solution may be made with amounts of HCl ranging from 0.01M to 0.3M and with amounts of surfactants ranging from 0.05M to 0.25M. The amount of previously dehydrated aniline should be at least 10 mM.
O exemplo a seguir mostra um caso mais específico de realização. Exemplo 1. Síntese e caracterização das nanopartículas  The following example shows a more specific case of realization. Example 1. Synthesis and Characterization of Nanoparticles
Preparação de Nanopartículas Nanoparticle Preparation
As nanopartículas de polianilina (NPs_PANi) foram sintetizadas pelo método de polimerização química oxidativa da anilina em solução aquosa contendo surfactantes. Surfactante aniônico: SDS; Surfactante Catiônico: DTAB; Surfactante não-iônico: TRITON X- 405. Para isto, inicialmente uma determinada quantidade de surfactante (0,15M) foi adicionada para 20mL de uma solução aquosa de HCI (0,1M), sendo o conjunto agitado à temperatura ambiente por 20min, antes da introdução de 50mM de anilina. Finalmente uma solução com 30μΜ do oxidante ((NH^SzOs) foi adicionada e mantida sob agitação continuada por 24h. NenhumPolyaniline nanoparticles (NPs_PANi) were synthesized by the oxidative chemical polymerization method of aniline in aqueous solution containing surfactants. Anionic surfactant: SDS; Cationic Surfactant: DTAB; Nonionic surfactant: TRITON X-405. For this, initially a certain amount of surfactant (0.15M) was added to 20mL of a solution. HCl (0.1M), the whole being stirred at room temperature for 20min before introducing 50mM of aniline. Finally a 30μΜ solution of the oxidant ((NH 4 SzOs)) was added and kept under continuous stirring for 24h.
5 precipitado foi observado durante a preparação das dispersões coloidais descritas acima e um pH final de aproximadamente 1,8 foi encontrado para todas as amostras. A Anilina (ANi - C6H5NH2), utilizada após destilação à vácuo, foi adquirida da Vetec (Brazil). Os outros compostos foram adquiridos da Aldrich Co. (EUA), com í o pureza de 99%. As medidas foram feitas até 48 horas após a obtenção das soluções. A precipitate was observed during the preparation of the colloidal dispersions described above and a final pH of approximately 1.8 was found for all samples. Aniline (ANi - C 6 H 5 NH 2 ), used after vacuum distillation, was purchased from Vetec (Brazil). The other compounds were purchased from Aldrich Co. (USA), 99% pure. Measurements were made within 48 hours of obtaining solutions.
Caracterização das Nanopartículas Nanoparticle Characterization
15 Os espectros de absorção na região do ultravioleta-visível- infravermelho próximo foram obtidos em um espectrofotômetro Cary 5E (Varian, Austrália) na região de 300 a 900 nm, utilizando-se cubetas de quartzo com caminho óptico de 1 cm. Os espectros foram obtidos a partir das dispersões coloidais diluídas em água 0 deionizada quando necessário. Propriedades de fotoluminescência foram verificadas com um espectrofluorímetro PCI (ISS, USA) a 20 ± 1 °C pelo uso de uma cubeta de quartzo (1 cm e 5 mL). Análises morfológicas foram realizadas utilizando um microscópio eletrônico de varrredura (MEV) JSM-5900 (JEOL, Japão). As amostras foram 5 montadas sobre uma lamínula de vidro presa ao porta-amostras através de fita de carbono dupla face. Posteriormente, uma fina camada superficial de ouro foi depositada por sputtering, através de uma metalizadora Bal-tec SDS 050 (Japão). Um instrumento NanoZetasizer Nano-ZS90 (Malvern, UK) foi utilizado para investigar0 as amostras coloidais dispersas em água à temperatura de 25°C; o tamanho foi determinado por espalhamento dinâmico de luz de um laser (λ=633ηητι) a um ângulo de espalhamento de 90°, enquanto o método de mobilidade eletroforética foi utilizado para a determinação do potencial zeta (ζ) das partículas.15 Absorption spectra in the near-infrared ultraviolet-visible region were obtained on a Cary 5E spectrophotometer (Varian, Australia) in the 300 to 900 nm region using 1 cm optical path quartz cuvettes. Spectra were obtained from colloidal dispersions diluted in deionized water when needed. Photoluminescence properties were verified with a PCI Spectrofluorimeter (ISS, USA) at 20 ± 1 ° C using a quartz cuvette (1 cm and 5 mL). Morphological analyzes were performed using a JSM-5900 scanning electron microscope (SEM) (JEOL, Japan). The samples were mounted on a glass coverslip attached to the sample holder by double sided carbon tape. Subsequently, a thin surface layer of gold was sputtered through a Bal-tec SDS 050 (Japan) metallizer. A NanoZetasizer Nano-ZS90 instrument (Malvern, UK) was used to investigate 0 colloidal samples dispersed in water at 25 ° C; The size was determined by dynamic light scattering of a laser (λ = 633ηητι) at a scattering angle of 90 °, while the electrophoretic mobility method was used to determine the zeta potential (ζ) of the particles.
5 5th
Características das nanopartículas  Nanoparticle Characteristics
Na metodologia empregada, o composto ((NH^SaOs) atua como agente oxidante, ou seja, como iniciador da polimerização da anilina. Utilizamos ainda diferentes surfactantes como estabilizantes para as nanopartícuias poliméricas formadas. In the methodology employed, the compound ((NH4 SaOs) acts as an oxidizing agent, that is, as a polymerization initiator of the aniline. We also use different surfactants as stabilizers for the formed polymeric nanoparticles.
As dispersões coloidais obtidas com o SDS e DTAB apresentaram uma boa estabilidade, sem evidência de precipitados ou formação de agregados. O diâmetro médio das nanopartícuias de polianilina utilizando SDS, DTAB e TRITON X-405 em solução aquosa foi determinado por espalhamento dinâmico de luz como sendo da ordem de 5,6 nm; 124,7 nm e 242,3 nm, respectivamente. O valor médio do potencial zeta obtido para as nanopartícuias de polianilina com SDS, DTAB e TRITON X-405 foi de 60,0 mV; 59,3 mV e 0,72 mV, respectivamente, indicando a presença de uma bem definida camada de Gouy-Chapman, que confere estabilidade para as soluções coloidais (Kim et al., 2005), no caso das amostras preparadas com SDS e DTAB.  Colloidal dispersions obtained with SDS and DTAB showed good stability, with no evidence of precipitates or aggregate formation. The average diameter of polyaniline nanoparticles using SDS, DTAB and TRITON X-405 in aqueous solution was determined by dynamic light scattering to be of the order of 5.6 nm; 124.7 nm and 242.3 nm, respectively. The mean zeta potential value obtained for SDS, DTAB and TRITON X-405 polyaniline nanoparticles was 60.0 mV; 59.3 mV and 0.72 mV, respectively, indicating the presence of a well-defined Gouy-Chapman layer, which provides stability for colloidal solutions (Kim et al., 2005), in the case of samples prepared with SDS and DTAB. .
A Fig. 2 apresenta as micrografias de MEV das PANI_NPs obtidas com os diferentes tipos de surfactantes. Na Figura 2a são observadas NPs com tamanho entre 10 nm - 60 nm, enquanto que as Figs. 2b e 2c ilustram nanoestruturas com tamanho entre 40 nm - 80 nm; e 20 nm - 120 nm, respectivamente.  Fig. 2 shows the SEM micrographs of PANI_NPs obtained with the different types of surfactants. In Figure 2a NPs with size between 10 nm - 60 nm are observed, while Figs. 2b and 2c illustrate nanostructures between 40 nm - 80 nm in size; and 20 nm - 120 nm, respectively.
A Fig. 3 mostras os espectros de absorção das PANI_NPs preparadas com os diferentes surfactantes, os espectros de absorção das PANI_NPs preparadas com SDS e DTAB mostram a presença de três bandas de absorção. A primeira banda em 369 nm está associada às transições eletrônicas π-π* envolvendo anéis benzenóides e/ou quinóides. A segunda (425 nm) e a terceira banda (800 nm) estão associadas às transições eletrônicas envolvendo bandas polarônicas de maior e menor energia, respectivamente (RAY et al, 1989). Estes resultados estão de acordo com os discutidos na literatura para o espectro de absorção da PANI dopada na forma de sal de esmeraldina, enquanto que para as sintetizadas com o TRITON X-405 são observadas duas bandas de absorção, em 380 nm e 570 nm, indicando que a PANI está na forma de base de esmeraldina (WEI et al, 1994).  Fig. 3 shows the absorption spectra of PANI_NPs prepared with the different surfactants, the absorption spectra of PANI_NPs prepared with SDS and DTAB show the presence of three absorption bands. The first band at 369 nm is associated with the π-π * electronic transitions involving benzenoid and / or quinoid rings. The second (425 nm) and the third band (800 nm) are associated with electronic transitions involving higher and lower energy polaronic bands, respectively (RAY et al, 1989). These results are in line with those discussed in the literature for the absorption spectrum of emerald salt salt doped NIBP, while for those synthesized with TRITON X-405 two absorption bands are observed, at 380 nm and 570 nm, indicating that NIBP is in the base form of emeraldine (WEI et al, 1994).
A Fig. 4 demonstra as mudanças nos espectros de emissão das PANI_NPs em valores de pH que foi variado após o tratamento das nanopartícuias com soluções ácidas (HCI) e básica (NaOH).  Fig. 4 shows the changes in PANI_NPs emission spectra at pH values that varied after treatment of the nanoparticles with acid (HCI) and basic (NaOH) solutions.
A dependência da fluorescência em função do pH do sistema de nanopartícuias de polianilina com surfactantes foi testada numa faixa de 1 a 13. Os resultados são apresentados na Fig. 5. As PANI_NPs foram excitadas a 380 nm, com a intensidade de emissão mensurada em duas regiões, uma entre 420nm - 440 nm (curva a), e outra, com emissão medida em 470 nm - 480 nm (curva b), em função do pH. O efeito do pH sobre a intensidade de fluorescência do sistema de nanopartículas de polianilina com surfactantes pode ser explicado em termos de mudanças na absorção da polianilina, conforme bem estabelecido na literatura (Pringsheim et ai, 2001), a característica da dependência de absorção com o pH é devido ao processo de protonação e desprotonação da PANI na forma esmeraldina, mudando do verde (sal de esmeraldina) para o azul (base de esmeraldina) e posteriormente para o violeta (leucoesmeraldina) na desprotonação. The fluorescence dependence on the pH of the surfactant polyaniline nanoparticles system was tested in a The results are shown in Fig. 5. The PANI_NPs were excited at 380 nm, with the emission intensity measured in two regions, one between 420nm - 440 nm (curve a), and the other with measured emission. at 470 nm - 480 nm (curve b) as a function of pH. The effect of pH on the fluorescence intensity of the surfactant polyaniline nanoparticle system can be explained in terms of changes in polyaniline absorption, as well established in the literature (Pringsheim et al, 2001), the characteristic of absorption dependence with pH is due to the process of protonation and deprotonation of NIBP in the emerald form, changing from green (emerald salt) to blue (emerald base) and later to the violet (leucoesmeraldine) on deprotonation.
Tabela II - Valores de Φ para diferentes tipos de polianilinas. Table II - Values of Φ for different types of polyanilines.
Figure imgf000013_0001
Figure imgf000013_0001
O rendimento quântico de fluorescência (Φ) das PANI_NPs em solução aquosa foi obtido pela integração do espectro de emissão das PANI_NPs em condições ácidas (Âexc = 350 nm) e utilizando como molécula padrão de referência uma solução de Sulfato de Quinina 0,1 M em H2S04 (o =0,54%) (Valeur, 2001). Nós encontramos um Φ = 0,68, 0,19 e 0,29% para o sistema de nanopartículas de polianilina com SDS, DTAB e TRITON X-405, respectivamente, o que são valores elevados de rendimento quântico, quando comparado com aqueles anteriormente reportados na literatura para filmes de polianilina em superfícies metálicas (Ver Tabela II); de fato, até o presente momento nenhum outro estudo reporta valores de rendimento quântico para partículas de polianilina pura. The fluorescence quantum yield (Φ) of PANI_NPs in aqueous solution was obtained by integrating the emission spectrum of PANI_NPs under acidic conditions (Â exc = 350 nm) and using as standard reference molecule a 0.1 M Quinine Sulphate solution. in H 2 SO 4 (o = 0.54%) (Valeur, 2001). We found a Φ = 0.68, 0.19 and 0.29% for the SDS, DTAB and TRITON X-405 polyaniline nanoparticles system, respectively, which are high values of quantum yield when compared with those previously reported in the literature for polyaniline films on metal surfaces (See Table II); In fact, to date no other study reports quantum yield values for pure polyaniline particles.

Claims

REIVINDICAÇÕES
1. NANOP ARTICULA FLUORESCENTE DE POLIANILINA caracterizada por ser obtida a partir de uma solução contendo um surfactante em solução aquosa ácida onde, após agitação de cinco minutos ou mais, se adiciona anilina destilada e se agita a solução resultante por 10 minutos ou mais, sendo posteriormente adicionado um agente oxidante, sendo o conjunto mantido sob agitação vigorosa por doze horas ou mais.1. NANOP FLUORESCENT POLYYLINE ARTICULA characterized by being obtained from a solution containing a surfactant in an aqueous acidic solution where, after stirring for five minutes or more, distilled aniline is added and the resulting solution is stirred for 10 minutes or more. an oxidizing agent is then added, the whole being kept under vigorous stirring for twelve hours or more.
2. NANOP ARTICULA FLUORESCENTE DE POLIANILINA, conforme reivindicação 1 , caracterizada pelo fato do referido agente oxidante serNANOP FLUORESCENT POLYYLINE ARTICULA according to claim 1, characterized in that said oxidizing agent is
(NH4)2S208, FeCl3, (NH4)2Cr207, Cu(N03)2, CuS04, CuBr2, CuCl2 ou CuS04, ou qualquer composto que apresente maior potencial de redução que o monômero. (NH 4 ) 2S 2 0 8 , FeCl 3 , (NH 4 ) 2 Cr 2 0 7 , Cu (N0 3 ) 2 , CuS0 4 , CuBr 2 , CuCl 2 or CuS0 4 , or any compound with the greatest reduction potential than the monomer.
3. NANOPARTÍCULA FLUORESCENTE DE POLIANILINA, conforme reivindicação 1 , caracterizada pelo fato do referido o estabilizador ser Fluorescent polyaniline nanoparticle according to claim 1, characterized in that said stabilizer is
Dodecil Sulfato de sódio (SDS), Brometo de Dodeciltrimetilamônio, (DTAB) ou TRITON X-405, ou qualquer derivado que possua a capacidade surfactante. Sodium Dodecyl Sulphate (SDS), Dodecyltrimethylammonium Bromide, (DTAB) or TRITON X-405, or any derivative having surfactant capacity.
4. NANOPARTÍCULA FLUORESCENTE DE POLIANILINA, conforme reivindicação 1 , caracterizada pelo fato do referido monômero ser anilina. Fluorescent polyaniline nanoparticle according to claim 1, characterized in that said monomer is aniline.
5. NANOPARTÍCULA FLUORESCENTE DE POLIANILINA, conforme reivindicação 1 , caracterizada pelo fato do referido monômero ser qualquer composto que possa ser polimerizado pela ação do agente oxidante conforme a reivindicação 2. Fluorescent polyaniline nanoparticle according to claim 1, characterized in that said monomer is any compound that can be polymerized by the action of the oxidizing agent according to claim 2.
6. NANOPARTÍCULA FLUORESCENTE DE POLIANILINA, conforme reivindicações 1 , 2, 3 ou 4, caracterizada pelo fato dos referidos compósitos fluorescentes compreendem partículas com cerca de 250 nm de diâmetro ou menos. Fluorescent polyaniline nanoparticle according to claims 1, 2, 3 or 4, characterized in that said fluorescent composites comprise particles of about 250 nm in diameter or less.
7. PROCESSO PARA A PREPARAÇÃO DE NANOP ARTICULAS FLUORESCENTES, caracterizado por uma etapa de adição de um surfactante a uma solução aquosa ácida, sendo então essa solução agitada por um período não inferior a cinco minutos, e por outra etapa onde anilina previamente destilada é adicionada à referida solução, sendo então essa mistura do surfactante com anilina agitada por não menos que dez minutos, até a adição de um agente oxidante, com a solução final sendo mantida sob vigorosa agitação por não menos de 12 horas.  7. A process for the preparation of NANOP FLUORESCENT ARTICULES, characterized by a step of adding a surfactant to an acidic aqueous solution, which solution is then stirred for not less than five minutes, and by another step where previously distilled aniline is added. Said surfactant-aniline mixture is then stirred for not less than ten minutes until the addition of an oxidizing agent, with the final solution being stirred vigorously for not less than 12 hours.
8. PROCESSO PARA A PREPARAÇÃO DE NANOP ARTICULAS FLUORESCENTES, conforme reivindicação 7, caracterizado pelo fato de que o referido agente oxidante ser selecionado do grupo de agentes oxidantes que compreende (NH4)2S2Os. 8. PROCESS FOR PREPARING FLUORESCENT NANOP ARTICLES according to claim 7, characterized in that said oxidizing agent is selected from the group of oxidizing agents comprising (NH 4 ) 2 S 2 Os.
9. PROCESSO PARA A PREPARAÇÃO DE NANOP ARTICULAS FLUORESCENTES, conforme reivindicação 7, caracterizado pelo fato do referido agente estabilizador ser SDS, DTAB ou TRITON.  A process for preparing fluoroescent nanoparticles according to claim 7, wherein said stabilizing agent is SDS, DTAB or TRITON.
10. PROCESSO PARA A PREPARAÇÃO DE NANOP ARTICULAS FLUORESCENTES, conforme reivindicação 7, caracterizado pelo fato do referido agente estabilizador ser qualquer outro agente surfactante de caráter aniônico, catiônico ou não-iônico.  A process for preparing fluoroescent nanoparticles according to claim 7, wherein said stabilizing agent is any other anionic, cationic or nonionic surfactant.
1 1. PROCESSO PARA A PREPARAÇÃO DE NANOP ARTICULAS FLUORESCENTES conforme reivindicação 7, caracterizado pelo fato do referido monômero ser anilina. A process for preparing fluoroescent nanoparticles according to claim 7, wherein said monomer is aniline.
12. PROCESSO PARA A PREPARAÇÃO DE NANOP ARTICULAS FLUORESCENTES conforme reivindicação 7, caracterizado pelo fato do referido monômero ser qualquer composto que possa ser polimerizado pela ação do agente oxidante conforme a reivindicação 3.  A process for preparing fluoroescent nanoparticles according to claim 7, wherein said monomer is any compound that can be polymerized by the action of the oxidizing agent according to claim 3.
13. PROCESSO PARA A PREPARAÇÃO DE NANOP ARTICULAS FLUORESCENTES conforme reivindicação 7, caracterizado pelo fato do referido solvente ser água.  PROCESS FOR PREPARING FLUORESCENT NANOP ARTICLES according to claim 7, characterized in that said solvent is water.
14. PROCESSO PARA A PREPARAÇÃO DE NANOP ARTICULAS FLUORESCENTES, conforme reivindicações 7-13, caracterizado pelo fato de que a referida agitação ocorre com velocidade entre 600 e 1.200 rpm.A process for preparing fluoroescent nanoparticles according to claims 7-13, characterized in that said agitation occurs at a speed of between 600 and 1,200 rpm.
15. USO DA NANOP ARTICULA FLUORESCENTE EM SI, conforme reivindicações 1, 2, 3, 4, 5 ou 6 para a fabricação de reativos e/ou insumos para diagnóstico. USE OF THE FLUORESCENT NANOP ARTICULA IN IT, according to claims 1, 2, 3, 4, 5 or 6 for the manufacture of diagnostic reagents and / or supplies.
16. USO DA NANOPARTÍCULA FLUORESCENTE EM SI, conforme reivindicações 1, 2, 3, 4, 5 ou 6 para a fabricação de dispositivos eletroluminescentes, misturados a pelo menos um polímero fluorescente. Use of the fluorescent nanoparticle on its own according to claims 1, 2, 3, 4, 5 or 6 for the manufacture of electroluminescent devices mixed with at least one fluorescent polymer.
17. USO DA NANOPARTÍCULA FLUORESCENTE EM SI, conforme reivindicações 1, 2, 3, 4, 5 ou 6 para a fabricação de dispositivos de LED orgânico ou dispositivo foto voltaico. Use of the fluorescent nanoparticle itself as claimed in claims 1, 2, 3, 4, 5 or 6 for the manufacture of organic LED devices or photovoltaic device.
18. USO DA NANOPARTÍCULA FLUORESCENTE EM SI, conforme reivindicações 1, 2, 3, 4, 5 ou 6 para a fabricação de lâmpada fluorescente. Use of the fluorescent nanoparticle itself according to claims 1, 2, 3, 4, 5 or 6 for the manufacture of fluorescent lamp.
19. USO DA NANOPARTÍCULA FLUORESCENTE EM SI, conforme r^vindTcações- 1 -2 -3 - 4~ 5~ ou-67-para-a fabricação de dispositivo ou substância para teste de fluorescência de detecção rápida de ataque de bioterrorismo ou ataque por armas biológicas. 19. USE OF THE FLUORESCENT NANOParticle IN IT, AS REVOLVED- 1 -2 -3 - 4 ~ 5 ~ or -67-for the manufacture of a device or substance for rapid detection fluorescence testing of bioterrorism attack or seizure attack. biological weapons.
20. USO DA NANOPARTICULA FLUORESCENTE conforme reivindicações 1, 2, 3, 4, 5 ou 6 para desenvolvimento e fabricação de sensores e dispositivos. Use of the fluoroscopic nanoparticle according to claims 1, 2, 3, 4, 5 or 6 for the development and manufacture of sensors and devices.
21. USO DA NANOPARTICULA FLUORESCENTE EM SI conforme reivindicações 1 , 2, 3, 4, 5 ou 6 para fabricação de dispositivos ou substância para marcação de proteínas nativas e desenoveladas.  USE OF THE FLUORESCENT NANOPARTICULATE IN SI according to claims 1, 2, 3, 4, 5 or 6 for the manufacture of devices and substance for labeling native and unfolded proteins.
22. USO DA NANOPARTICULA FLUORESCENTE EM SI conforme reivindicações 1, 2, 3, 4, 5 ou 6 para fabricação de pigmento fluorescente para tintas baseadas em resinas orgânicas.  USE OF THE FLUORESCENT NANOPARTICULATE IN SI according to claims 1, 2, 3, 4, 5 or 6 for manufacturing fluorescent pigment for inks based on organic resins.
PCT/BR2012/000321 2011-08-31 2012-08-29 Fluorescent polyaniline nanoparticles WO2013029139A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRMU9102087 2011-08-31
BRMU9102087U BRMU9102087U2 (en) 2011-08-31 2011-08-31 fluorescent polyaniline nanoparticles

Publications (1)

Publication Number Publication Date
WO2013029139A1 true WO2013029139A1 (en) 2013-03-07

Family

ID=47755132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000321 WO2013029139A1 (en) 2011-08-31 2012-08-29 Fluorescent polyaniline nanoparticles

Country Status (2)

Country Link
BR (1) BRMU9102087U2 (en)
WO (1) WO2013029139A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105709243A (en) * 2016-02-01 2016-06-29 吉林大学 Fe (III) and Cu (II) doped polyaniline nano-compound and application thereof
WO2016113622A1 (en) * 2015-01-12 2016-07-21 Nanomark Pesquisa E Desenvolvimento Tecnológico Ltda Magnetic nanocomposite retrieval of nucleotide sequence
CN113106455A (en) * 2021-05-08 2021-07-13 九江德福科技股份有限公司 Etching solution for copper foil microanalysis and preparation method and etching method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070074073A (en) * 2006-01-06 2007-07-12 주식회사 엘지화학 Method for preparation of fluorescent nanoparticle using low temperature microemulsion polymerization
WO2009117798A2 (en) * 2008-03-24 2009-10-01 Universidade Federal De Pernambuco - Ufpe Fluorescent nanoparticle composites themselves, process for the preparation of such composites, and use in rapid diagnosis systems with affinity to biological molecules
CN101701151A (en) * 2008-05-21 2010-05-05 北京大学 Fluorescent nanoparticle and preparation method and application thereof
WO2012026316A1 (en) * 2010-08-23 2012-03-01 株式会社 島津製作所 Switching fluorescent nanoparticle probe and fluorescent particle imaging method using same
WO2012118136A1 (en) * 2011-03-02 2012-09-07 国立大学法人京都大学 Switching-type fluorescent nanoparticle probe, and fluorescent molecular imaging method using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070074073A (en) * 2006-01-06 2007-07-12 주식회사 엘지화학 Method for preparation of fluorescent nanoparticle using low temperature microemulsion polymerization
WO2009117798A2 (en) * 2008-03-24 2009-10-01 Universidade Federal De Pernambuco - Ufpe Fluorescent nanoparticle composites themselves, process for the preparation of such composites, and use in rapid diagnosis systems with affinity to biological molecules
US20120252002A1 (en) * 2008-03-24 2012-10-04 Universidade Federal De Pernambuco- Ufpe Fluorescent nanoparticle composites themselves, process for the preparation of such composites, and use in rapid diagnosis systems with affinity to biological molecules
CN101701151A (en) * 2008-05-21 2010-05-05 北京大学 Fluorescent nanoparticle and preparation method and application thereof
WO2012026316A1 (en) * 2010-08-23 2012-03-01 株式会社 島津製作所 Switching fluorescent nanoparticle probe and fluorescent particle imaging method using same
WO2012118136A1 (en) * 2011-03-02 2012-09-07 国立大学法人京都大学 Switching-type fluorescent nanoparticle probe, and fluorescent molecular imaging method using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113622A1 (en) * 2015-01-12 2016-07-21 Nanomark Pesquisa E Desenvolvimento Tecnológico Ltda Magnetic nanocomposite retrieval of nucleotide sequence
CN105709243A (en) * 2016-02-01 2016-06-29 吉林大学 Fe (III) and Cu (II) doped polyaniline nano-compound and application thereof
CN105709243B (en) * 2016-02-01 2018-07-27 吉林大学 A kind of polyaniline nano compound and its application of Fe (III) and Cu (II) doping
CN113106455A (en) * 2021-05-08 2021-07-13 九江德福科技股份有限公司 Etching solution for copper foil microanalysis and preparation method and etching method thereof

Also Published As

Publication number Publication date
BRMU9102087U2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
Liu et al. Carbon dots: a new type of carbon-based nanomaterial with wide applications
Huang et al. Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications
Gao et al. Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging
Pandit et al. In situ synthesis of amino acid functionalized carbon dots with tunable properties and their biological applications
Xiao et al. Novel properties and applications of carbon nanodots
Ali et al. Red fluorescent carbon nanoparticle-based cell imaging probe
Chua et al. Aggregation-induced emission-active nanostructures: beyond biomedical applications
Mao et al. Study on the fluorescence characteristics of carbon dots
Fan et al. Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging
Guo et al. One-pot synthesis of orange emissive carbon quantum dots for all-type high color rendering index white light-emitting diodes
Wang et al. Ultrastable amine, sulfo cofunctionalized graphene quantum dots with high two-photon fluorescence for cellular imaging
Yan et al. Development of multicolor carbon nanoparticles for cell imaging
Yang et al. Facile synthesis of yellow emissive carbon dots with high quantum yield and their application in construction of fluorescence-labeled shape memory nanocomposite
Loukanov et al. Photosensitizer-conjugated ultrasmall carbon nanodots as multifunctional fluorescent probes for bioimaging
Huo et al. Preparation and biomedical applications of multicolor carbon dots: recent advances and future challenges
Hua et al. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury (II) ions
US9642815B2 (en) Biocompatible graphene quantum dots for drug delivery and bioimaging applications
Perikala et al. Highly stable white-light-emitting carbon dot synthesis using a non-coordinating solvent
Du et al. Highly fluorescent hyperbranched BODIPY-based conjugated polymer dots for cellular imaging
Zhai et al. Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique
Alves et al. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions
Ren et al. Photoluminescence enhancement of carbon dots by surfactants at room temperature
Perikala et al. Engineering photo-luminescent centers of carbon dots to achieve higher quantum yields
Wang et al. Effectively enhancing red fluorescence strategy and bioimaging applications of carbon dots
Guo et al. Europium (III)-induced water-soluble nano-aggregates of hyaluronic acid and chitosan: structure and fluorescence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828993

Country of ref document: EP

Kind code of ref document: A1