WO2013027527A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2013027527A1
WO2013027527A1 PCT/JP2012/068767 JP2012068767W WO2013027527A1 WO 2013027527 A1 WO2013027527 A1 WO 2013027527A1 JP 2012068767 W JP2012068767 W JP 2012068767W WO 2013027527 A1 WO2013027527 A1 WO 2013027527A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
motor control
motor
operation mode
axis
Prior art date
Application number
PCT/JP2012/068767
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 尚礼
裕一 清水
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN201280035434.4A priority Critical patent/CN103688459B/en
Priority to KR1020137033958A priority patent/KR101523334B1/en
Publication of WO2013027527A1 publication Critical patent/WO2013027527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/181Circuit arrangements for detecting position without separate position detecting elements using different methods depending on the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the present invention relates to a motor control device and a drive device using the same.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-166658 is known as a prior art of a compressor driving device capable of stably starting a compressor.
  • Patent Document 1 in response to an instruction to stop the compressor, the rotational speed is gradually decreased, and a phase fixing operation is performed in response to reaching the predetermined rotational speed, and the piston is moved to a predetermined position. A configuration for stopping is disclosed.
  • Patent Document 2 discloses a configuration in which a driving current is supplied to a comp motor in one phase based on a starting motor constant before starting, and a stator position is waited at a starting initial position, and then starting from this starting initial position is started. Is disclosed.
  • Patent Document 1 describes a mechanism for stopping a piston at a predetermined position.
  • the compressor driving device of Patent Document 1 does not take into consideration the case where the piston moves from the stop position or the change in load characteristics.
  • an object of the present invention is to provide a motor control device that stably drives a motor regardless of the stop position and when the load characteristic changes, and a drive device using the motor control device.
  • Patent Document 2 describes a mechanism for waiting the rotor position at the starting initial position.
  • the compressor driving device of Patent Document 2 only considers a specific type of compressor.
  • an object of the present invention is to provide a motor control device applicable to a device whose load torque characteristics change periodically regardless of the compressor, and a drive device using the motor control device.
  • the present invention includes a plurality of means for solving the above-mentioned problems. For example, a synchronous operation mode that does not use information about the rotational angle position and a position sensorless operation mode that uses the information about the rotational angle position to drive. And a periodic torque estimating means for estimating a periodic torque component that varies in one mechanical angle cycle or an integer multiple of one mechanical angle cycle, wherein the inclination of the periodic torque is zero. The operation mode is switched in the vicinity or in a negative period.
  • the present invention it is possible to provide a motor control device that can be applied regardless of the stop position and when the load characteristic changes, and a drive device using the motor control device. Further, it is possible to provide a motor control device applicable to a device whose load torque characteristics change periodically regardless of the compressor, and a drive device using the motor control device.
  • FIG. 1 is an example of a configuration diagram of a motor control device 1 of the present embodiment.
  • the motor control device 1 is roughly divided into a current detection unit 12 that detects a current flowing through the motor (electric motor) 6 and a control that calculates a voltage command value to be applied to the motor 6 based on current information detected by the current detection unit 12.
  • Unit 2 power conversion circuit 5 that applies a voltage to motor 6 according to the voltage command value, and compression mechanism unit 500 that is mechanically connected to motor 6.
  • This embodiment is an example in which a permanent magnet motor having a permanent magnet as a rotor is used as the motor 6. Therefore, description will be made assuming that the position of the control shaft and the position of the rotor are basically synchronized.
  • the rotational angle position information of the rotor is obtained by position sensorless control that is estimated based on information such as a current flowing through the motor and a motor applied voltage.
  • the position of the rotor in the magnetic flux direction is the d axis, and the virtual rotor position dc in terms of control with respect to the dq axis (rotational coordinate system) consisting of the q axis that is electrically advanced 90 degrees in the rotational direction therefrom.
  • the control is basically based on a dc-qc axis (rotating coordinate system) consisting of an axis and a qc axis that is electrically advanced 90 degrees in the rotation direction therefrom.
  • a dc-qc axis rotating coordinate system
  • the relationship between these axes is shown in FIG.
  • the dq axis is called a real axis and the dc-qc axis is called a control axis.
  • FIG. 19 shows the relationship between the three-phase axis, which is a fixed coordinate system, and the control axis.
  • the rotation angle position (magnetic pole position) ⁇ dc of the dc axis is defined.
  • the dc axis rotates in the direction of the arrow in the figure, and the magnetic pole position ⁇ dc can be obtained by integrating the rotation frequency (inverter frequency command value ⁇ 1, which will be described later).
  • the current detection means 12 detects a current flowing in the U phase and the W phase among the three-phase AC current flowing in the motor 6. Although all phases of AC current may be detected, if one of the three phases can be detected from Kirchhoff's law, the other one phase can be calculated from the detected two phases.
  • a single shunt for detecting the AC side current of the power conversion circuit 5 from a DC current flowing through a shunt resistor added to the DC side of the power conversion circuit 5 described later.
  • a current detection method uses the fact that the current flowing through the shunt resistor changes with time depending on the energization state of the switching elements constituting the power conversion circuit 5. Although not shown, there is no problem even if a single shunt current detection method is used for the current detection means 12.
  • the control unit 2 includes a 3 ⁇ / dq converter 8 that performs coordinate conversion of the AC current detection values (I u and I w ) on the three-phase axis to current detection values on the control axis, and a current detection value (I dc on the control axis). And I qc ) and voltage command values (V d * and V q * ), an axis error calculator 10 for calculating an axis error ⁇ c (shown in FIG.
  • control unit 2 is configured by a semiconductor integrated circuit (arithmetic control means) such as a microcomputer or a DSP, and is realized by software or the like.
  • a semiconductor integrated circuit such as a microcomputer or a DSP
  • the power conversion circuit 5 includes an inverter 21, a DC voltage source 20, and a driver circuit 23 as shown in FIG.
  • the inverter 21 is configured by a switching element 22 (for example, a semiconductor switching element such as IGBT or MOS-FET). These switching elements 22 are connected in series and constitute upper and lower arms of the U phase, the V phase, and the W phase. The connection point of the upper and lower arms of each phase is wired to the motor 6.
  • the switching element 22 performs a switching operation according to the pulsed drive signals (24a to 24f) output from the driver circuit 23.
  • By switching the DC voltage source 20, an AC voltage having an arbitrary frequency is applied to the motor 6 to drive the motor.
  • the shunt resistor 25 When the shunt resistor 25 is added to the DC side of the power conversion circuit 5, it can be used for an overcurrent protection circuit for protecting the switching element 22 when an excessive current flows, a single shunt current detection method, or the like.
  • the compression mechanism 500 drives the piston 501 using the motor 6 as a power source. Thereby, a compression operation is performed.
  • a crankshaft 503 is connected to the shaft 502 of the motor 6 to convert the rotational motion of the motor 6 into linear motion.
  • the piston 501 also operates to perform a series of steps such as suction, compression, and discharge. First, the refrigerant is sucked from the suction port 505 provided in the cylinder 504. Thereafter, the valve 506 is closed to perform compression, and the compressed refrigerant is discharged from the discharge port 507.
  • FIG. 5 shows an example of a change in load torque with respect to the rotor position in one mechanical angle cycle.
  • FIG. 5 an example of a four-pole motor is shown as the motor 6, so that two electrical angle cycles correspond to one mechanical angle cycle.
  • FIG. 5 shows the change from the bottom dead center of the piston. It is characteristic that when the compression process starts, the load torque increases, and in the discharge process, the load torque decreases rapidly. From FIG. 5, it can be seen that the load torque fluctuates during one rotation, and the load torque fluctuates every rotation. Therefore, when viewed from the motor 6, the load torque fluctuates periodically.
  • the load torque varies due to various factors such as the number of rotations of the motor 6, the pressure of the suction port 505 and the discharge port 507, and the pressure difference between the suction port 505 and the discharge port 507. There are changing characteristics. Further, the relationship between the opening / closing timing of the valve 506 and the position of the piston varies depending on the configuration of the valve 506, and varies depending on the pressure condition depending on the valve 506.
  • FIG. 6 is an example of an operation mode showing transition of each operation mode when starting the motor 6.
  • the operation mode includes a positioning mode in which a direct current is supplied to a motor winding of an arbitrary phase to fix the stator of the motor 6 at a certain position, a d-axis current command value I d *, and a q-axis current command value I q *.
  • a synchronous operation mode for determining a voltage to be applied to the motor 6 based on the frequency command value ⁇ *, and a position sensorless mode for adjusting the inverter frequency command value ⁇ 1 so that the axis error ⁇ c becomes zero.
  • one or more of the d-axis current command value (I d * ), the q-axis current command value (I q * ), and the inverter frequency command value ⁇ 1 are changed, or the control unit 2
  • the provided control changeover switches (16a and 16b) By switching the provided control changeover switches (16a and 16b), a transition is made to another operation mode. Note that the two control changeover switches (16a and 16b) are simultaneously switched unless otherwise specified.
  • the control changeover switches (16a and 16b) are set to the A side. That is, the frequency command value ⁇ * becomes the inverter frequency command value ⁇ 1 as it is. Further, the q-axis current command value I q * 0 (given from the host controller or the like or determined in advance in the control unit 2) becomes the q-axis current command value I q * as it is.
  • the inverter frequency command value ⁇ 1 is set to zero.
  • the d-axis current command value I d * is increased in a linear function with time. Of course, there is no problem in giving the d-axis current command value I d * other than that shown in FIG.
  • phase to be positioned may be fixed to a specific phase, or may be a phase that is different every time it is started.
  • the magnetic pole position ⁇ dc in the positioning mode may be changed at each activation. For example, when ⁇ dc is set to zero, positioning is performed in the U phase.
  • the mode changes to the synchronous operation mode.
  • the control changeover switches (16a and 16b) remain on the A side.
  • the d-axis current command value I d * remains at a constant value (this activation method is called “d-axis activation”), and the inverter frequency command value ⁇ 1 is increased.
  • the motor 66 accelerates following the inverter frequency command value ⁇ 1 .
  • Transition to the position sensorless mode is made by setting the control switch (16a and 16b) to the B side.
  • the PLL controller 13 operates to adjust the inverter frequency command value ⁇ 1 so that the shaft error ⁇ c becomes the shaft error command value ⁇ * (usually zero).
  • the speed controller 14 adjusts the q-axis current command value I q * so that the difference between the frequency command value ⁇ * given from others such as the host controller and the inverter frequency command value ⁇ 1 becomes zero.
  • the permanent magnet motor of this embodiment is a non-salient pole type. Therefore, the reluctance torque generated due to the difference in inductance between the d axis and the q axis is not taken into consideration. Therefore, the torque generated by the motor 6 is proportional to the current flowing through the q axis. Further, the d-axis current command value I d * in the position sensorless mode is set to zero.
  • FIG. Determining a difference axis error command value [Delta] [theta] * and the axis error [Delta] [theta] c subtractor 11a, a calculation result of the proportional operation section 42a for proportional control by multiplying the proportional gain K P_pll thereto, integral control by multiplying the integral gain K I_pll a calculation result of the integration unit 43a which is added by the adder 18a, and outputs the inverter frequency command value omega 1.
  • a configuration example of the speed controller 14 is shown in FIG.
  • the difference between the frequency command value ⁇ * and the inverter frequency command value ⁇ 1 is obtained by the subtractor 11b, and is multiplied by the proportional gain K p_asr to perform proportional control, and the integral gain K i_asr is multiplied to integrate.
  • the adder 18b adds the calculation results of the integral calculation unit 43b to be controlled, and outputs the q-axis current command value I q * .
  • the example of the operation mode diagram shown in FIG. 6 is a schematic diagram showing the relationship between the control switch (16a and 16b) and each value.
  • each value changes according to the load (load torque) of the motor 6, the PLL controller 13, the current controllers 42 and 43, and the response frequency (proportional gain or integral gain) of the speed controller 14.
  • the behavior when the load torque fluctuates during the transition from the synchronous operation mode to the position sensorless mode will be described in detail with reference to FIGS. It is assumed that the current controller is an ideal controller, and that the current according to the current command value flows through the motor 6.
  • the axis error ⁇ c in the synchronous operation mode is a value near zero.
  • an axis error load angle
  • I d * is flowing on the dc axis.
  • the torque generated by the motor 6 is proportional to the q-axis current.
  • the piston 501 of the compression mechanism unit 500 is described as an example of a reciprocating type that moves linearly.
  • a rotary type that compresses by rotating the piston a spiral type, or the like
  • scroll types that consist of a swirling wing.
  • the variation of the load torque varies depending on the type of the compressor, and even in the same compressor, it varies depending on operating conditions (such as suction port and discharge port pressure and compressor temperature) and the number of rotations of the motor. For this reason, it is better to determine the switching timing from actual load fluctuations than to determine the switching timing in advance, and this is one of the purposes of this embodiment.
  • the periodic torque estimating means 30 and the control switching determination unit 31 which are one of means for realizing these objects will be described. Since there are several examples of these configurations, each will be described.
  • the periodic torque estimating means 30 estimates a load torque component that varies periodically based on the current information detected by the current detecting means 12.
  • the q-axis current detection value I qc obtained by the 3 ⁇ / dq converter 8 is converted into a coordinate system that rotates at the mechanical angular frequency ⁇ m using the single-phase coordinate converter 32. Perform coordinate transformation.
  • the frequency command value ⁇ * is used to obtain the mechanical angular frequency, but the inverter frequency command value ⁇ 1 may be used.
  • a component (I qm ) of the mechanical angular frequency ⁇ m is extracted from the q-axis current detection value I qc . That is, by observing the change in the output of the single-phase coordinate converter, it is possible to estimate a periodic change in load torque that varies at the mechanical angular frequency ⁇ m .
  • the output of the periodic torque estimating means 30a is input to the control switching determination unit 31a.
  • the operation mode is switched when the frequency command value ⁇ * reaches a predetermined value or a predetermined time elapses.
  • a signal is output to the control switch 16 when the change in the load torque is near zero or the conventional operation mode switching determination is established in the period when the load torque decreases.
  • the operation mode is switched to the position sensorless mode. For example, a signal is output to the control switch 16 when the pulsation component extraction value I qm shown in FIG.
  • the motor 6 can be stably started without starting failure.
  • a waveform of each part of the control switching determination unit 31a and a simulation result waveform are shown in FIG. It can also be seen from the simulation result waveform that the pulsation component extraction value I qm is very close to the change in the load torque by using the periodic torque estimating means 30a.
  • the motor 6 can be stably started without failing to start because the mode is switched to the position sensorless mode in a period when the load torque fluctuation is small.
  • the dq-axis voltage command values (V d * and V q * ) are input to the periodic torque estimation means 30b shown in FIG. Since the dq axis voltage command value is a value on the control axis, it usually has a direct current component. However, when there is a periodic load variation, the current control controls the dq axis current to be constant, so the voltage command value on the control axis also varies. Therefore, the voltage command value is input to the periodic torque estimation means 30b, and the fluctuation of the voltage command value is extracted, or the differential value of the voltage command value is output to the control switching determination unit 31b using the incomplete differentiator 34.
  • FIG. 22 shows a result of calculating incomplete differential values (V d * _div and V q * _div ) of the dq-axis voltage command value using the configuration of FIG. As can be seen from this waveform, the fluctuation of the load torque can also be estimated from the differentiation of the voltage command value.
  • the control switching determination unit 31b is configured to switch the switching determination value in a period in which the variation of the voltage command value or the differential value of the voltage command value is near zero, or the differential value of the voltage command value is negative, or as shown in FIG.
  • a signal is output to the control switch 16 to switch the operation mode to the position sensorless mode.
  • the voltage command value generator 3 can be expressed by the following equation.
  • R is the winding resistance value of the motor 6
  • L d is the d-axis inductance
  • L q is the q-axis inductance
  • K e is the induced voltage constant.
  • the q-axis voltage command value is more influenced by the cyclic fluctuation torque than the d-axis voltage command value, so that it is more effective to input the q-axis voltage command value.
  • the square sum of squares of the d-axis voltage command value and the q-axis voltage command value is calculated, in other words, the amplitude value of the voltage command value is calculated, and this is calculated as a control switching determination device. The same effect can be obtained even if it is input to 31b.
  • the drive signal 24 for driving the switching element of each phase may be input to the periodic torque estimating unit 30b.
  • the drive signal 24 when the drive signal 24 is input, a larger voltage is required during a period when the load torque is large, so that the switching duty increases (the pulse width of the drive signal increases). That is, the width of the drive signal during a heavy load changes from that of other periods.
  • the voltage applied to the motor 6 has a predetermined value.
  • the amplitude value of the current (I u , I v , I w ) on the three-phase axis changes depending on the load angle that changes according to the load. Therefore, the current value of each phase detected by the current detection unit 12 is input to the periodic torque estimation unit 30c.
  • the envelope detector 34 detects an envelope of a three-phase alternating current and outputs it to the control switching determination unit 31c.
  • FIG. 23 shows a relationship diagram between the load torque and the three-phase alternating current obtained by the simulation. As can be seen from FIG. 23, it can be seen that the envelope changes at the timing when the load increases.
  • the control switching determination unit 31c outputs a signal to the control changeover switch 16 when the conventional operation mode switching determination is established during a period in which the envelope variation is substantially constant or the envelope increases. To the position sensorless mode. Thereby, since it switches to position sensorless mode in the period when load torque fluctuation is small, the motor 6 can be started stably without starting failure.
  • the mode is switched to the position sensorless mode in a period in which the load torque fluctuation is small, so that the startup is not failed and stable.
  • the motor 6 can be started.
  • the present invention is applicable to any compression method without being limited to a specific compressor method.
  • the suction pressure P s and the discharge pressure P d in one step of the compressor of the motor 6 vary depending on the state of the system (for example, the refrigeration cycle) to which the compressor is connected, but load torque fluctuations in one step occur. Therefore, it is applicable to motor control devices having various load characteristics by estimating the load torque fluctuation and using the information for the operation mode switching determination.
  • the present invention can be applied not only to a compressor but also to a motor control device having a load torque characteristic that varies periodically.
  • FIG. 16 is an example of a configuration diagram illustrating a refrigerator using the motor control device 1 according to the second embodiment.
  • the refrigerator 301 includes a heat exchanger 302, a blower 303, a compressor 304, a compressor driving motor 305, and the like.
  • the refrigerator control device 306 includes an internal control device 307 and a motor control device 1 that control a blower, an internal light, and the like based on various sensor information.
  • one of the objects of this embodiment is to provide a solution that can switch to the position sensorless mode and start the motor stably during the period when the gradient of the load torque is near zero or negative. It is.
  • the electrical angle has a plurality of cycles.
  • two electrical angles are one mechanical angle. Therefore, when DC positioning is performed in the positioning mode, even if it is electrically the same position (d-axis), it is mechanically positioned at different positions (for example, 0 degrees and 180 degrees in mechanical angle). . In this state, a transition is made to the synchronous operation mode, and acceleration is performed according to a preset acceleration rate.
  • FIG. 17 shows a temporal enlarged view at this time.
  • the lower left side of FIG. 17 (example 1) is an example in the case where the sensorless switching rotation speed achievement timing does not overlap with a period when the load fluctuation is large. At this time, since the load fluctuation is small, the control mode can be switched stably.
  • the lower right side (example 2) of FIG. 17 is an example in the case where the sensorless switching rotation speed achievement timing overlaps with a period in which the load fluctuation is large.
  • the load suddenly increases, so the inverter frequency command value ⁇ 1 may change suddenly, causing the motor to step out and stop.
  • the periodic torque estimation means 30d and the control switching determination unit 31c shown in FIG. 18 are used.
  • the frequency command value ⁇ * (or inverter frequency command value ⁇ 1 ) is input to the periodic torque estimation means 30d, and the mechanical angle is calculated by dividing by the number of pole pairs.
  • the q-axis current detection value I qc is also input to the periodic torque estimation means 30d. Since the periodic torque estimating means 30d is a means suitable for short-time activation, it determines the magnitude of the change in the periodic torque within the two electrical angle periods. For example, the peak hold circuit 34 is used to determine whether the peak value of I qc in one cycle of the mechanical angle is in a mechanical angle of 0 ° to 180 ° or 180 ° to 360 °.
  • the control mode is switched.
  • the mode is switched to the position sensorless mode.
  • the motor 6 is stably started without failing to start because the mode is switched to the position sensorless mode in a period when the load torque fluctuation is small. Can be made. Also, since the magnitude of load fluctuation in one cycle of electrical angle is compared with a plurality of electrical angles, it does not depend on the initial position of the motor, for example, after positioning, the rotor moves to another position due to some disturbance. The motor can be started stably even if
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing procedures, and the like may be realized in hardware by designing a part or all of them, for example, with an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • the motor has been described as a permanent magnet motor, other electric motors (for example, induction machines, synchronous machines, switched reluctance motors, synchronous reluctance motors, etc.) may be used.
  • the calculation method in the voltage command value generator varies depending on the electric motor, but other methods can be applied in the same manner, and the object of the present embodiment can be achieved.
  • the speed control type configuration has been described as an example, but the present invention can of course be applied to a torque control type configuration.
  • the calculation method of the q-axis current command value is different, and the control mode switching can be similarly applied, and the object of the present embodiment can be achieved.
  • the switching timing of the control mode has been described, but it is not limited to switching the control mode.
  • the energization method is switched from 120-degree energization to 180-degree energization (of course, the opposite is also possible)
  • the periodic torque estimation means and the control switching determination device described in this embodiment current fluctuation, individuality fluctuation, etc. Switching shock can be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Provided are a motor control device that stably drives a motor regardless of the stop position and even in the event of fluctuations of load characteristics, and a drive device that utilizes said motor control device. This motor control device has a synchronous operation mode that does not utilize any rotational angular position information and a position sensorless operation mode that utilizes rotational angular position information for driving, and switches between the operation modes during the driving. The motor control device is characterized by being provided with a means for estimating a cyclic torque component, which fluctuates at one mechanical radian cycle or at a cycle equal to an integral multiple of the one mechanical radian cycle, in order to switch between the operation modes during a period in which the cyclic torque ramp becomes close to zero or negative.

Description

モータ制御装置Motor control device
 本発明は、モータ制御装置、およびそれを用いた駆動装置に関する。 The present invention relates to a motor control device and a drive device using the same.
 圧縮機を安定に起動させることが可能な圧縮機の駆動装置の従来技術として、特開2006-166658号公報(特許文献1)がある。特許文献1には、圧縮機の停止が指示されたことに応じて、回転数を徐々に低下させ、所定の回転数に到達したことに応じて相固定運転を行い、ピストンを所定の位置に停止させる構成が開示されている。 Japanese Patent Laid-Open No. 2006-166658 (Patent Document 1) is known as a prior art of a compressor driving device capable of stably starting a compressor. In Patent Document 1, in response to an instruction to stop the compressor, the rotational speed is gradually decreased, and a phase fixing operation is performed in response to reaching the predetermined rotational speed, and the piston is moved to a predetermined position. A configuration for stopping is disclosed.
 また、起動失敗のないレシプロ式コンプレッサの駆動装置の従来技術として、特開2005-90466号公報(特許文献2)がある。特許文献2には、起動前に、コンプモータに起動モータ定数に基づいて一相に駆動電流を流し、固定子の位置を起動初期位置に待機させ、その後、この起動初期位置から起動を始める構成が開示されている。 Also, as a conventional technique of a reciprocating compressor drive device without starting failure, there is JP-A-2005-90466 (Patent Document 2). Patent Document 2 discloses a configuration in which a driving current is supplied to a comp motor in one phase based on a starting motor constant before starting, and a stator position is waited at a starting initial position, and then starting from this starting initial position is started. Is disclosed.
特開2006-166658号公報JP 2006-166658 A 特開2005-90466号公報JP 2005-90466 A
 特許文献1には、ピストンを所定の位置に停止させる仕組みが記載されている。しかし、特許文献1の圧縮機の駆動装置は、停止位置からピストンが動いた場合や負荷特性の変化について考慮されていない。 Patent Document 1 describes a mechanism for stopping a piston at a predetermined position. However, the compressor driving device of Patent Document 1 does not take into consideration the case where the piston moves from the stop position or the change in load characteristics.
 そこで、本発明は、停止位置によらず、かつ負荷特性が変化した場合にも安定にモータを駆動するモータ制御装置、およびそれを用いた駆動装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a motor control device that stably drives a motor regardless of the stop position and when the load characteristic changes, and a drive device using the motor control device.
 また、特許文献2には、回転子の位置を起動初期位置に待機させる仕組みが記載されている。しかし、特許文献2のコンプレッサの駆動装置は、特定の方式のコンプレッサについてしか考慮されていない。 Further, Patent Document 2 describes a mechanism for waiting the rotor position at the starting initial position. However, the compressor driving device of Patent Document 2 only considers a specific type of compressor.
 そこで、本発明は、コンプレッサに関わらず、負荷トルク特性が周期的に変化するものに適用可能なモータ制御装置、およびそれを用いた駆動装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a motor control device applicable to a device whose load torque characteristics change periodically regardless of the compressor, and a drive device using the motor control device.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, for example, the configuration described in the claims is adopted.
 本発明は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、回転角度位置に関する情報を用いない同期運転モードと回転角度位置に関する情報を用いて駆動する位置センサレス運転モードとを備え、前記運転モードを駆動中に切り替えるモータ制御装置において、機械角1周期もしくは機械角1周期の整数倍で変動する周期トルク成分を推定する周期トルク推定手段を備え、周期トルクの傾きがゼロ近傍または負になる期間に前記運転モードを切り替えることを特徴とする。 The present invention includes a plurality of means for solving the above-mentioned problems. For example, a synchronous operation mode that does not use information about the rotational angle position and a position sensorless operation mode that uses the information about the rotational angle position to drive. And a periodic torque estimating means for estimating a periodic torque component that varies in one mechanical angle cycle or an integer multiple of one mechanical angle cycle, wherein the inclination of the periodic torque is zero. The operation mode is switched in the vicinity or in a negative period.
 本発明によれば、停止位置によらず、かつ負荷特性が変化した場合にも適用できるモータ制御装置、およびそれを用いた駆動装置を提供することができる。また、コンプレッサに関わらず、負荷トルク特性が周期的に変化するものに適用可能なモータ制御装置、およびそれを用いた駆動装置を提供することができる。 According to the present invention, it is possible to provide a motor control device that can be applied regardless of the stop position and when the load characteristic changes, and a drive device using the motor control device. Further, it is possible to provide a motor control device applicable to a device whose load torque characteristics change periodically regardless of the compressor, and a drive device using the motor control device.
モータ制御装置の構成図の例である。It is an example of the block diagram of a motor control apparatus. 座標軸の説明図である。It is explanatory drawing of a coordinate axis. 電力変換回路の構成図の例である。It is an example of a block diagram of a power converter circuit. 圧縮機構部の構成図の例である。It is an example of the block diagram of a compression mechanism part. 回転子の位置に対する負荷トルクの変化の例である。It is an example of the change of the load torque with respect to the position of a rotor. 運転モードの例である。It is an example of an operation mode. PLL制御器の構成図の例である。It is an example of a block diagram of a PLL controller. 速度制御器の構成図の例である。It is an example of the block diagram of a speed controller. 負荷が軽い場合の実軸と制御軸の関係図の例である。It is an example of the related figure of a real axis and a control axis when the load is light. 負荷が重たい場合の実軸と制御軸の関係図の例である。It is an example of the relationship figure of a real axis and a control axis when a load is heavy. 負荷が軽い場合の運転モード図の例である。It is an example of the operation mode figure in case a load is light. 負荷が重たい場合の運転モード図の例である。It is an example of the operation mode figure in case a load is heavy. 周期トルク推定手段の構成図の例である。It is an example of the block diagram of a period torque estimation means. 周期トルク推定手段の別の構成図(電圧指令値利用型)の例である。It is an example of another block diagram (voltage command value utilization type) of a period torque estimation means. 周期トルク推定手段の別の構成図(電流の包絡線利用型)の例である。It is an example of another block diagram (current envelope utilization type) of a period torque estimation means. 駆動装置の構成図の例である。It is an example of the block diagram of a drive device. 制御モード切替タイミングの拡大図の例である。It is an example of the enlarged view of control mode switching timing. 簡易トルク推定手段の構成図の例である。It is an example of the block diagram of a simple torque estimation means. 制御軸と3相軸の関係図の例である。It is an example of the relationship diagram of a control axis and a three-phase axis. 負荷トルクと脈動成分抽出値の関係図の例である。It is an example of the relationship diagram of load torque and a pulsation component extraction value. 周期トルク推定手段30aのシミュレーション結果の例である。It is an example of the simulation result of the period torque estimation means 30a. 周期トルク推定手段30bのシミュレーション結果の例である。It is an example of the simulation result of the period torque estimation means 30b. 周期トルク推定手段30cのシミュレーション結果の例である。It is an example of the simulation result of the period torque estimation means 30c.
 以下、図面を用いて本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例では、圧縮機を駆動するモータ制御装置1の例を説明する。 In this embodiment, an example of a motor control device 1 that drives a compressor will be described.
 図1は、本実施例のモータ制御装置1の構成図の例である。モータ制御装置1は、大きく分け、モータ(電動機)6に流れる電流を検出する電流検出手段12と、電流検出手段12で検出した電流情報を基にモータ6へ印加する電圧指令値を演算する制御部2と、その電圧指令値に従ってモータ6へ電圧を印加する電力変換回路5と、モータ6に機械的に接続されている圧縮機構部500から構成される。 FIG. 1 is an example of a configuration diagram of a motor control device 1 of the present embodiment. The motor control device 1 is roughly divided into a current detection unit 12 that detects a current flowing through the motor (electric motor) 6 and a control that calculates a voltage command value to be applied to the motor 6 based on current information detected by the current detection unit 12. Unit 2, power conversion circuit 5 that applies a voltage to motor 6 according to the voltage command value, and compression mechanism unit 500 that is mechanically connected to motor 6.
 本実施例は、モータ6として、回転子に永久磁石を有する永久磁石モータを用いた例である。そのため、制御軸の位置と回転子の位置は、基本的に同期しているとして説明する。回転子の回転角度位置情報は、モータに流れる電流およびモータ印加電圧などの情報を基に推定する位置センサレス制御により得るものとしている。その際、回転子の磁束方向の位置をd軸、そこから回転方向に電気的に90度進んだq軸からなるd-q軸(回転座標系)に対し、制御上の仮想回転子位置dc軸と、そこから回転方向に電気的に90度進んだqc軸からなるdc-qc軸(回転座標系)での制御を基本としている。これらの軸の関係を図2に示す。なお、これ以降の説明において、d-q軸を実軸、dc-qc軸を制御軸と呼ぶ。 This embodiment is an example in which a permanent magnet motor having a permanent magnet as a rotor is used as the motor 6. Therefore, description will be made assuming that the position of the control shaft and the position of the rotor are basically synchronized. The rotational angle position information of the rotor is obtained by position sensorless control that is estimated based on information such as a current flowing through the motor and a motor applied voltage. At this time, the position of the rotor in the magnetic flux direction is the d axis, and the virtual rotor position dc in terms of control with respect to the dq axis (rotational coordinate system) consisting of the q axis that is electrically advanced 90 degrees in the rotational direction therefrom. The control is basically based on a dc-qc axis (rotating coordinate system) consisting of an axis and a qc axis that is electrically advanced 90 degrees in the rotation direction therefrom. The relationship between these axes is shown in FIG. In the following description, the dq axis is called a real axis and the dc-qc axis is called a control axis.
 固定座標系である3相軸と制御軸との関係を図19に示す。U相を基準に、dc軸の回転角度位置(磁極位置)θdcと定義する。dc軸は図中の矢印の方向に回転しており、回転周波数(後に示す、インバータ周波数指令値ω1)を積分することで、磁極位置θdcを得られる。 FIG. 19 shows the relationship between the three-phase axis, which is a fixed coordinate system, and the control axis. With reference to the U phase, the rotation angle position (magnetic pole position) θ dc of the dc axis is defined. The dc axis rotates in the direction of the arrow in the figure, and the magnetic pole position θ dc can be obtained by integrating the rotation frequency (inverter frequency command value ω 1, which will be described later).
 電流検出手段12は、モータ6に流れる3相の交流電流の内、U相とW相に流れる電流を検出する。全相の交流電流検出をしても構わないが、キルヒホッフの法則から、3相のうち2相が検出できれば、他の1相は検出した2相から算出できる。 The current detection means 12 detects a current flowing in the U phase and the W phase among the three-phase AC current flowing in the motor 6. Although all phases of AC current may be detected, if one of the three phases can be detected from Kirchhoff's law, the other one phase can be calculated from the detected two phases.
 モータ6に流れる交流電流を検出する別方式として、例えば、後述する電力変換回路5の直流側に付加されたシャント抵抗に流れる直流電流から、電力変換回路5の交流側の電流を検出するシングルシャント電流検出方式がある。この方式は、電力変換回路5を構成するスイッチング素子の通電状態によって、シャント抵抗に流れる電流が時間的に変化することを利用している。図示はしていないが、電流検出手段12に、シングルシャント電流検出方式を用いても問題ない。 As another method for detecting the AC current flowing through the motor 6, for example, a single shunt for detecting the AC side current of the power conversion circuit 5 from a DC current flowing through a shunt resistor added to the DC side of the power conversion circuit 5 described later. There is a current detection method. This method uses the fact that the current flowing through the shunt resistor changes with time depending on the energization state of the switching elements constituting the power conversion circuit 5. Although not shown, there is no problem even if a single shunt current detection method is used for the current detection means 12.
 制御部2は、3相軸上の交流電流検出値(IuおよびIw)を制御軸上の電流検出値へ座標変換する3φ/dq変換器8、制御軸上の電流検出値(IdcおよびIqc)および電圧指令値(Vd *およびVq *)を用いて実軸と制御軸との軸誤差Δθc(図2に図示)を演算する軸誤差演算器10と、周期的に変動する負荷トルクを推定する周期トルク推定手段30と、軸誤差Δθcを軸誤差指令値Δθ*(通常はゼロ)に追従させるためにモータ6に印加する電圧の周波数(インバータ周波数指令値ω1)を調整するPLL制御器13と、後に詳細に説明する運転モードを切り替える制御切替スイッチ(16aおよび16b)と、制御切替判定器31、電圧指令値作成器3と、dq軸上の電圧指令値(Vd *およびVq *)を制御軸から3相軸へ座標変換するdq/3φ変換器4、電流制御器112、積分器9などから構成される。 The control unit 2 includes a 3φ / dq converter 8 that performs coordinate conversion of the AC current detection values (I u and I w ) on the three-phase axis to current detection values on the control axis, and a current detection value (I dc on the control axis). And I qc ) and voltage command values (V d * and V q * ), an axis error calculator 10 for calculating an axis error Δθ c (shown in FIG. 2) between the real axis and the control axis, and periodically Periodic torque estimation means 30 for estimating the fluctuating load torque, and the frequency of the voltage applied to the motor 6 (inverter frequency command value ω 1 ) to cause the shaft error Δθ c to follow the shaft error command value Δθ * (usually zero). ), A control changeover switch (16a and 16b) for switching an operation mode, which will be described in detail later, a control change determination device 31, a voltage command value generator 3, and a voltage command value on the dq axis. coordinate transformation from (V d * and V q *) to the control shaft to the three-phase axes That dq / 3 [phi] converter 4, the current controller 112, and the like integrator 9.
 制御部2の多くは、マイコン(マイクロコンピュータ)やDSPなどの半導体集積回路(演算制御手段)によって構成され、ソフトウェアなどで実現している。 Most of the control unit 2 is configured by a semiconductor integrated circuit (arithmetic control means) such as a microcomputer or a DSP, and is realized by software or the like.
 電力変換回路5は、図3に示すように、インバータ21、直流電圧源20、ドライバ回路23によって構成される。インバータ21は、スイッチング素子22(例えば、IGBT、MOS-FETなどの半導体スイッチング素子)によって構成される。これらのスイッチング素子22は直列に接続され、U相、V相、W相の上下アームを構成している。それぞれの相の上下アームの接続点がモータ6へ配線されている。スイッチング素子22は、ドライバ回路23が出力するパルス状のドライブ信号(24a~24f)に応じてスイッチング動作をする。直流電圧源20をスイッチングすることで、任意の周波数の交流電圧をモータ6に印加してモータを駆動する。 The power conversion circuit 5 includes an inverter 21, a DC voltage source 20, and a driver circuit 23 as shown in FIG. The inverter 21 is configured by a switching element 22 (for example, a semiconductor switching element such as IGBT or MOS-FET). These switching elements 22 are connected in series and constitute upper and lower arms of the U phase, the V phase, and the W phase. The connection point of the upper and lower arms of each phase is wired to the motor 6. The switching element 22 performs a switching operation according to the pulsed drive signals (24a to 24f) output from the driver circuit 23. By switching the DC voltage source 20, an AC voltage having an arbitrary frequency is applied to the motor 6 to drive the motor.
 電力変換回路5の直流側にシャント抵抗25を付加した場合、過大な電流が流れた際にスイッチング素子22を保護するための過電流保護回路や、シングルシャント電流検出方式などに利用できる。 When the shunt resistor 25 is added to the DC side of the power conversion circuit 5, it can be used for an overcurrent protection circuit for protecting the switching element 22 when an excessive current flows, a single shunt current detection method, or the like.
 図4に示すように、圧縮機構部500は、モータ6を動力源としてピストン501を駆動している。これにより、圧縮動作を行う。モータ6のシャフト502に、クランクシャフト503が接続され、モータ6の回転運動を直線運動に変換している。モータ6の回転に応じて、ピストン501も動作し、吸込み、圧縮、吐出、といった一連の工程を行う。まず、シリンダ504に設けられた吸込み口505から冷媒を吸い込む。その後、弁506を閉じて圧縮を行い、吐出口507から圧縮した冷媒を吐出する。 As shown in FIG. 4, the compression mechanism 500 drives the piston 501 using the motor 6 as a power source. Thereby, a compression operation is performed. A crankshaft 503 is connected to the shaft 502 of the motor 6 to convert the rotational motion of the motor 6 into linear motion. As the motor 6 rotates, the piston 501 also operates to perform a series of steps such as suction, compression, and discharge. First, the refrigerant is sucked from the suction port 505 provided in the cylinder 504. Thereafter, the valve 506 is closed to perform compression, and the compressed refrigerant is discharged from the discharge port 507.
 一連の工程において、ピストン501にかかる圧力が変化する。これは、ピストンを駆動するモータ6から見ると、周期的に負荷トルクが変化していることを意味する。図5は、機械角1周期における回転子の位置に対する負荷トルクの変化の例を示している。図5では、モータ6として4極モータの例を示しているため、電気角2周期が機械角1周期に相当する。回転子の位置とピストンとの位置の関係は、組み付けによって異なるが、図5では、ピストンの下死点からの変化を示してある。圧縮工程が始まると、負荷トルクが大きくなり、吐出工程では、急激に負荷トルクが小さくなるのが特徴的である。図5から、1回転中において負荷トルクが変動していることが分かり、毎回転負荷トルクが変動するため、モータ6から見ると周期的に負荷トルクが変動していることになる。 In the series of steps, the pressure applied to the piston 501 changes. This means that the load torque changes periodically when viewed from the motor 6 that drives the piston. FIG. 5 shows an example of a change in load torque with respect to the rotor position in one mechanical angle cycle. In FIG. 5, an example of a four-pole motor is shown as the motor 6, so that two electrical angle cycles correspond to one mechanical angle cycle. Although the relationship between the position of the rotor and the position of the piston varies depending on the assembly, FIG. 5 shows the change from the bottom dead center of the piston. It is characteristic that when the compression process starts, the load torque increases, and in the discharge process, the load torque decreases rapidly. From FIG. 5, it can be seen that the load torque fluctuates during one rotation, and the load torque fluctuates every rotation. Therefore, when viewed from the motor 6, the load torque fluctuates periodically.
 なお、負荷トルクの変動は、同じ圧縮機構部500を用いても、モータ6の回転数、吸込み口505や吐出口507の圧力、吸込み口505と吐出口507の圧力差、など様々な要因で変化する特徴がある。また、弁506の開閉タイミングとピストンの位置の関係は、弁506の構成によって変わり、弁506によっては圧力条件によっても変わる。 Even if the same compression mechanism 500 is used, the load torque varies due to various factors such as the number of rotations of the motor 6, the pressure of the suction port 505 and the discharge port 507, and the pressure difference between the suction port 505 and the discharge port 507. There are changing characteristics. Further, the relationship between the opening / closing timing of the valve 506 and the position of the piston varies depending on the configuration of the valve 506, and varies depending on the pressure condition depending on the valve 506.
 モータ6を起動する際の基本動作について説明し、その後、圧縮機など周期的な脈動トルクがある場合の課題について説明する。図6は、モータ6を起動する際の各運転モードの遷移を示した運転モードの例である。運転モードは、任意の相のモータ巻線に、直流電流を流してモータ6の固定子をある位置に固定する位置決めモードと、d軸電流指令値Id *とq軸電流指令値Iq *と周波数指令値ω*を基にモータ6に印加する電圧を決定する同期運転モードと、軸誤差Δθcがゼロになるようにインバータ周波数指令値ω1を調整する位置センサレスモード、の3つがある。 A basic operation when starting the motor 6 will be described, and then a problem when there is a periodic pulsation torque such as a compressor will be described. FIG. 6 is an example of an operation mode showing transition of each operation mode when starting the motor 6. The operation mode includes a positioning mode in which a direct current is supplied to a motor winding of an arbitrary phase to fix the stator of the motor 6 at a certain position, a d-axis current command value I d *, and a q-axis current command value I q *. And a synchronous operation mode for determining a voltage to be applied to the motor 6 based on the frequency command value ω *, and a position sensorless mode for adjusting the inverter frequency command value ω 1 so that the axis error Δθ c becomes zero. .
 これらの運転モードは、d軸電流指令値(Id *)、q軸電流指令値(Iq *)、インバータ周波数指令値ω1の内、いずれかまたは複数を変更、もしくは、制御部2に設けた制御切替スイッチ(16aおよび16b)を切り替えることによって、別の運転モードへ遷移する。なお、制御切替スイッチ(16aおよび16b)は、特に断りがない限り2つとも同時に切り替わる。 In these operation modes, one or more of the d-axis current command value (I d * ), the q-axis current command value (I q * ), and the inverter frequency command value ω 1 are changed, or the control unit 2 By switching the provided control changeover switches (16a and 16b), a transition is made to another operation mode. Note that the two control changeover switches (16a and 16b) are simultaneously switched unless otherwise specified.
 位置決めモードでは、制御切替スイッチ(16aおよび16b)をA側にする。つまり、周波数指令値ω*がそのままインバータ周波数指令値ω1となる。さらに、起動時q軸電流指令値Iq * 0(上位コントローラなどから与えられるか、制御部2内であらかじめ決定してある)が、そのままq軸電流指令値Iq *となる。位置決めモードdは、モータ6に直流電流を流すため、インバータ周波数指令値ω1はゼロとする。一方、d軸電流指令値Id *は、時間経過と共に一次関数的に増加させる。もちろん、d軸電流指令値Id *の与え方は図6に示した以外でも問題ない。また、位置決めをする相は、特定の相固定でも良いし、起動毎に毎回違う相にしても良い。すなわち、位置決めモードにおける磁極位置θdcを起動毎に変えればよい。例えば、θdcをゼロとした場合、U相に位置決めすることになる。 In the positioning mode, the control changeover switches (16a and 16b) are set to the A side. That is, the frequency command value ω * becomes the inverter frequency command value ω 1 as it is. Further, the q-axis current command value I q * 0 (given from the host controller or the like or determined in advance in the control unit 2) becomes the q-axis current command value I q * as it is. In the positioning mode d, since a direct current flows through the motor 6, the inverter frequency command value ω 1 is set to zero. On the other hand, the d-axis current command value I d * is increased in a linear function with time. Of course, there is no problem in giving the d-axis current command value I d * other than that shown in FIG. Further, the phase to be positioned may be fixed to a specific phase, or may be a phase that is different every time it is started. In other words, the magnetic pole position θ dc in the positioning mode may be changed at each activation. For example, when θ dc is set to zero, positioning is performed in the U phase.
 位置決めモードが終了後、同期運転モードへ遷移する。制御切替スイッチ(16aおよび16b)はA側のままである。同期運転モードでは、d軸電流指令値Id *を一定値のままとし(この起動方法をd軸起動と呼ぶ)、インバータ周波数指令値ω1を増加させる。これにより、モータ66はインバータ周波数指令値ω1に追従して加速する。 After the positioning mode ends, the mode changes to the synchronous operation mode. The control changeover switches (16a and 16b) remain on the A side. In the synchronous operation mode, the d-axis current command value I d * remains at a constant value (this activation method is called “d-axis activation”), and the inverter frequency command value ω 1 is increased. As a result, the motor 66 accelerates following the inverter frequency command value ω 1 .
 位置センサレスモードへは、制御切替スイッチ(16aおよび16b)をB側にすることで遷移する。位置センサレスモードでは、PLL制御器13が動作して、軸誤差Δθcが軸誤差指令値Δθ*(通常はゼロ)になるようにインバータ周波数指令値ω1を調整する。それと共に、上位制御器などの他から与えられる周波数指令値ω*とインバータ周波数指令値ω1との差がゼロになるように速度制御器14がq軸電流指令値Iq *を調整する。 Transition to the position sensorless mode is made by setting the control switch (16a and 16b) to the B side. In the position sensorless mode, the PLL controller 13 operates to adjust the inverter frequency command value ω 1 so that the shaft error Δθ c becomes the shaft error command value Δθ * (usually zero). At the same time, the speed controller 14 adjusts the q-axis current command value I q * so that the difference between the frequency command value ω * given from others such as the host controller and the inverter frequency command value ω 1 becomes zero.
 本実施例の永久磁石モータは、非突極型としている。そのため、d軸とq軸のインダクタンスの差によって発生するリラクタンストルクは考慮していない。したがって、モータ6の発生トルクはq軸を流れる電流に比例する。また、位置センサレスモードにおけるd軸電流指令値Id *はゼロを設定している。 The permanent magnet motor of this embodiment is a non-salient pole type. Therefore, the reluctance torque generated due to the difference in inductance between the d axis and the q axis is not taken into consideration. Therefore, the torque generated by the motor 6 is proportional to the current flowing through the q axis. Further, the d-axis current command value I d * in the position sensorless mode is set to zero.
 突極型の場合は、q軸電流によるトルクの他に、d軸とq軸のインダクタンスの差に起因するリラクタンストルクがあるため、それを考慮してd軸電流指令値Id *を設定することで、少ないq軸電流で同じトルクを発生できる。 In the case of the salient pole type, in addition to the torque due to the q-axis current, there is a reluctance torque caused by the difference in inductance between the d-axis and the q-axis, and the d-axis current command value I d * is set in consideration of this. Thus, the same torque can be generated with a small q-axis current.
 PLL制御器13の構成例を図7に示す。軸誤差指令値Δθ*と軸誤差Δθcの差を減算器11aで求め、これに比例ゲインKp_pllを乗じて比例制御する比例演算部42aの演算結果と、積分ゲインKi_pllを乗じて積分制御する積分演算部43aの演算結果とを加算器18aで加算し、インバータ周波数指令値ω1を出力する。 A configuration example of the PLL controller 13 is shown in FIG. Determining a difference axis error command value [Delta] [theta] * and the axis error [Delta] [theta] c subtractor 11a, a calculation result of the proportional operation section 42a for proportional control by multiplying the proportional gain K P_pll thereto, integral control by multiplying the integral gain K I_pll a calculation result of the integration unit 43a which is added by the adder 18a, and outputs the inverter frequency command value omega 1.
 速度制御器14の構成例を図8に示す。周波数指令値ω*とインバータ周波数指令値ω1の差を減算器11bで求め、これに比例ゲインKp_asrを乗じて比例制御する比例演算部42bの演算結果と、積分ゲインKi_asrを乗じて積分制御する積分演算部43bの演算結果とを加算器18bで加算し、q軸電流指令値Iq *を出力する。 A configuration example of the speed controller 14 is shown in FIG. The difference between the frequency command value ω * and the inverter frequency command value ω 1 is obtained by the subtractor 11b, and is multiplied by the proportional gain K p_asr to perform proportional control, and the integral gain K i_asr is multiplied to integrate. The adder 18b adds the calculation results of the integral calculation unit 43b to be controlled, and outputs the q-axis current command value I q * .
 図6に示した運転モード図の例は、制御切替スイッチ(16aおよび16b)や各値の関係を示した概略図である。実際には、モータ6の負荷(負荷トルク)、PLL制御器13、電流制御器42および43、速度制御器14の応答周波数(比例ゲインや積分ゲイン)に応じて、各値が変化する。以下、同期運転モードから位置センサレスモードに遷移する際に、負荷トルクが変動した場合の挙動について、図9~図12を用いて、詳しく説明する。なお、電流制御器は理想的な制御器であると仮定し、電流指令値通りの電流がモータ6に流れているとする。 The example of the operation mode diagram shown in FIG. 6 is a schematic diagram showing the relationship between the control switch (16a and 16b) and each value. Actually, each value changes according to the load (load torque) of the motor 6, the PLL controller 13, the current controllers 42 and 43, and the response frequency (proportional gain or integral gain) of the speed controller 14. Hereinafter, the behavior when the load torque fluctuates during the transition from the synchronous operation mode to the position sensorless mode will be described in detail with reference to FIGS. It is assumed that the current controller is an ideal controller, and that the current according to the current command value flows through the motor 6.
 まず、モータ6の負荷が軽い場合について説明する。d軸起動を採用している場合、同期運転モードにおける軸誤差Δθcは、ほぼゼロ近傍の値となる。同期運転モードでは、回転子の回転角度位置情報(もしくは位置推定値)を用いて制御していないため、モータ6の発生トルクと負荷トルクが釣り合うように、軸誤差(負荷角)が発生する。図9に示した実軸と制御軸の関係図の例を用いて説明すると、次のようになる。d軸電流指令値Id *がdc軸上に流れている。モータ6の発生トルクは、q軸電流に比例する。負荷が軽い場合は、q軸電流は小さくてよいため、負荷角が小さくなる。 First, the case where the load of the motor 6 is light will be described. When d-axis activation is employed, the axis error Δθ c in the synchronous operation mode is a value near zero. In the synchronous operation mode, since control is not performed using the rotation angle position information (or position estimated value) of the rotor, an axis error (load angle) is generated so that the generated torque of the motor 6 and the load torque are balanced. This will be described below using the example of the relationship diagram between the real axis and the control axis shown in FIG. The d-axis current command value I d * is flowing on the dc axis. The torque generated by the motor 6 is proportional to the q-axis current. When the load is light, the q-axis current may be small, so the load angle is small.
 一方、負荷が重い場合は、図10に示すように、負荷角が大きくなる。これによって、q軸に大きな電流が流れ、モータ6はより大きなトルクを発生する。 On the other hand, when the load is heavy, the load angle increases as shown in FIG. As a result, a large current flows through the q axis, and the motor 6 generates a larger torque.
 次に、位置センサレスモードに移行した際の各値の動きについて、負荷が軽い場合(図11)、負荷が重たい場合(図12)、それぞれ説明する。先述の通り、位置センサレスモードに移行すると、PLL制御器13と速度制御器14が動作する。この時、軸誤差Δθcが正の値であるため、インバータ周波数指令値ω1を減少させる。これにより、周波数指令値ω*とインバータ周波数指令値ω1の差は負の値となり、速度制御器14はq軸電流指令値Iq *を大きくする。これによって、インバータ周波数指令値ω1は、周波数指令値ω*に追従する。 Next, the movement of each value when shifting to the position sensorless mode will be described when the load is light (FIG. 11) and when the load is heavy (FIG. 12). As described above, when shifting to the position sensorless mode, the PLL controller 13 and the speed controller 14 operate. At this time, since the axis error Δθ c is a positive value, the inverter frequency command value ω 1 is decreased. As a result, the difference between the frequency command value ω * and the inverter frequency command value ω 1 becomes a negative value, and the speed controller 14 increases the q-axis current command value I q * . As a result, the inverter frequency command value ω 1 follows the frequency command value ω * .
 一方、負荷が重たい場合、同期運転モードにおける軸誤差Δθcは、より大きな正の値となる。したがって、位置センサレスモードに移行してPLL制御器13が動作すると、インバータ周波数指令値ω1をより下げる。場合によってはゼロ近傍まで下がり、これによってモータ6が脱調し、起動失敗を招く恐れがある。図5に示したように、特に圧縮機は、周期的な負荷変動が大きいため、機械角1周期の平均負荷トルクは小さくとも、周期的な負荷変動によって一時的に負荷が大きくなるタイミングと位置センサレスモードに切り替えるタイミングが重なった場合、起動失敗する可能性が高くなる。そのため、周期的な負荷変動が大きい場合にも起動失敗せず、安定にモータ6を起動させることが本実施例の目的のひとつである。 On the other hand, when the load is heavy, the shaft error Δθ c in the synchronous operation mode becomes a larger positive value. Therefore, when the mode is shifted to the position sensorless mode and the PLL controller 13 operates, the inverter frequency command value ω 1 is further lowered. In some cases, the voltage drops to near zero, which causes the motor 6 to step out and cause a start failure. As shown in FIG. 5, since the periodic load fluctuation is particularly large in the compressor, the timing and position at which the load temporarily increases due to the periodic load fluctuation even if the average load torque for one cycle of the mechanical angle is small. When the timing for switching to the sensorless mode overlaps, there is a high possibility that the activation will fail. Therefore, it is one of the objects of this embodiment to start the motor 6 stably without failing to start even when the periodic load fluctuation is large.
 本実施例では、圧縮機構部500のピストン501は、直線的に動くレシプロ式を例に説明しているが、圧縮機構の別な方式として、ピストンが回転することで圧縮するロータリー式や、渦巻状の旋回翼からなるスクロール式などがある。それぞれの圧縮方式によって周期的な負荷変動の特性は異なるものの、いずれの圧縮方式においても圧縮工程に起因する負荷変動がある。そのため、周期的な負荷変動によって一時的に負荷が大きくなるタイミングと運転モードの切替タイミングとが重なることによって、起動失敗をする恐れがある。そこで、いずれの圧縮方式にも適用可能な解決策を提供することが本実施例の目的のひとつである。負荷トルクの変動は、圧縮機の形式でも変わり、同じ圧縮機でも運転条件(吸込み口や吐出口の圧力、圧縮機の温度など)やモータの回転数によっても変化する。そのため、予め切替タイミングを決めておくよりも、実際の負荷変動から切替タイミングを決定するのが良く、これが本実施例の目的のひとつである。 In the present embodiment, the piston 501 of the compression mechanism unit 500 is described as an example of a reciprocating type that moves linearly. However, as another method of the compression mechanism, a rotary type that compresses by rotating the piston, a spiral type, or the like There are scroll types that consist of a swirling wing. Although the characteristic of periodic load fluctuation varies depending on the compression method, there is load fluctuation caused by the compression process in any compression method. Therefore, there is a possibility that the start failure may occur due to the overlap of the timing at which the load temporarily increases due to the periodic load fluctuation and the operation mode switching timing. Therefore, one of the objects of the present embodiment is to provide a solution applicable to any compression method. The variation of the load torque varies depending on the type of the compressor, and even in the same compressor, it varies depending on operating conditions (such as suction port and discharge port pressure and compressor temperature) and the number of rotations of the motor. For this reason, it is better to determine the switching timing from actual load fluctuations than to determine the switching timing in advance, and this is one of the purposes of this embodiment.
 これらの目的を実現する手段の1つである、周期トルク推定手段30と制御切替判定器31について説明する。これらの構成例はいくつかあるため、それぞれについて説明する。 The periodic torque estimating means 30 and the control switching determination unit 31 which are one of means for realizing these objects will be described. Since there are several examples of these configurations, each will be described.
 周期トルク推定手段30は、電流検出手段12で検出した電流情報を基に、周期的に変動する負荷トルク成分を推定する。図13に示した周期トルク推定手段30aでは、3φ/dq変換器8によって得たq軸電流検出値Iqcを、単相座標変換器32を用いて機械角周波数ωmで回転する座標系に座標変換をする。 The periodic torque estimating means 30 estimates a load torque component that varies periodically based on the current information detected by the current detecting means 12. In the periodic torque estimation means 30a shown in FIG. 13, the q-axis current detection value I qc obtained by the 3φ / dq converter 8 is converted into a coordinate system that rotates at the mechanical angular frequency ω m using the single-phase coordinate converter 32. Perform coordinate transformation.
 例えば、モータ6の回転子の磁極数が4極の場合、電気角2周期が機械角1周期に相当する。そのため、周波数指令値ω*(電気角)をモータ6の極対数(=極数/2)で除算すれば、機械角周波数ωmを得られる。なお、本実施例では、機械角周波数を求めるために、周波数指令値ω*を用いているが、インバータ周波数指令値ω1でも構わない。 For example, when the number of magnetic poles of the rotor of the motor 6 is 4, the electrical angle 2 period corresponds to the mechanical angle 1 period. Therefore, the mechanical angular frequency ω m can be obtained by dividing the frequency command value ω * (electrical angle) by the number of pole pairs of the motor 6 (= number of poles / 2). In this embodiment, the frequency command value ω * is used to obtain the mechanical angular frequency, but the inverter frequency command value ω 1 may be used.
 座標変換は、次式を用いて行う。 Coordinate conversion is performed using the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 これにより、q軸電流検出値Iqcの内、機械角周波数ωmのcos成分(Iqc_cos)とsin成分(Iqc_sin)が抽出される。負荷トルクの変動の高次成分を除去したい場合や、電流検出値のノイズを除去したい場合には、定域通過フィルタ(LPF)35を追加する。この後、再度、次式を用いて、座標変換を行う。 As a result, the cos component (I qc_cos ) and the sin component (I qc_sin ) of the mechanical angular frequency ω m are extracted from the q-axis current detection value I qc . A constant pass filter (LPF) 35 is added when it is desired to remove higher-order components of fluctuations in load torque or to remove noise in the current detection value. Thereafter, coordinate transformation is performed again using the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この演算結果通しを加算することにより、q軸電流検出値Iqcの内、機械角周波数ωmの成分(Iqm)が抽出される。すなわち、単相座標変換器の出力の変化を見ることで、機械角周波数ωmで変動する周期的な負荷トルクの変化を推定できる。 By adding the calculation result series , a component (I qm ) of the mechanical angular frequency ω m is extracted from the q-axis current detection value I qc . That is, by observing the change in the output of the single-phase coordinate converter, it is possible to estimate a periodic change in load torque that varies at the mechanical angular frequency ω m .
 この一連の動きについて、図20を用いて、説明する。同期運転モードでは、位置情報をフィードバックしていないため、負荷トルクが変動した際は、前述の通りに、負荷角が変わることでモータトルクが負荷トルクに追従する。この時、電流制御をしていない場合は、図20中のIqcのように、負荷角に応じた電流が流れる。これを、周期トルク推定手段30aにて、q軸電流検出値Iqcの機械角周波数ωmの成分を抽出すると、脈動成分抽出値Iqmのような波形となる。 This series of movement will be described with reference to FIG. Since the position information is not fed back in the synchronous operation mode, when the load torque fluctuates, the motor torque follows the load torque by changing the load angle as described above. At this time, when current control is not performed, a current corresponding to the load angle flows as indicated by I qc in FIG. When the component of the mechanical angular frequency ω m of the q-axis current detection value I qc is extracted by the periodic torque estimation means 30a, a waveform like the pulsation component extraction value I qm is obtained .
 次に、周期トルク推定手段30aの出力を制御切替判定器31aに入力する。従来、同期運転モードから位置センサレスモードへは、例えば、周波数指令値ω*が所定の値に達するか所定時間が経過した際に運転モードを切り替えていた。このような従来の運転モード切替判定の場合、周期的な負荷変動によって一時的に負荷が大きくなるタイミングと運転モードの切替タイミングとが重なる可能性がある。そこで、単相座標変換器の出力を基に、負荷トルクの変化がゼロ近傍、もしくは負荷トルクが減少する期間において、従来の運転モード切替判定が成立した場合に、制御切替スイッチ16に信号を出力し、運転モードを位置センサレスモードへ切り替える。例えば、図20に示した脈動成分抽出値Iqmを切替判定値以下の場合に、制御切替スイッチ16に信号を出力する。 Next, the output of the periodic torque estimating means 30a is input to the control switching determination unit 31a. Conventionally, from the synchronous operation mode to the position sensorless mode, for example, the operation mode is switched when the frequency command value ω * reaches a predetermined value or a predetermined time elapses. In such a conventional operation mode switching determination, there is a possibility that the timing at which the load temporarily increases due to periodic load fluctuations overlaps with the operation mode switching timing. Therefore, based on the output of the single-phase coordinate converter, a signal is output to the control switch 16 when the change in the load torque is near zero or the conventional operation mode switching determination is established in the period when the load torque decreases. Then, the operation mode is switched to the position sensorless mode. For example, a signal is output to the control switch 16 when the pulsation component extraction value I qm shown in FIG.
 これにより、負荷トルク変動が小さい期間、つまり軸誤差Δθcの変動が小さい期間において、位置センサレスモードへ切り替えるため、起動失敗せず安定にモータ6を起動させることができる。 As a result, since the mode is switched to the position sensorless mode in a period in which the load torque fluctuation is small, that is, in a period in which the fluctuation of the axis error Δθ c is small, the motor 6 can be stably started without starting failure.
 制御切替判定器31aの各部の波形をシミュレーション結果の波形を図21に示す。シミュレーション結果の波形からも、周期トルク推定手段30aを用いることで、脈動成分抽出値Iqmは負荷トルクの変化に非常に近いことが分かる。切替判定値以下の場合に、運転モード切り替えを行うと、負荷トルク変動が小さい期間において、位置センサレスモードへ切り替えるため、起動失敗せず安定にモータ6を起動させることができる。 A waveform of each part of the control switching determination unit 31a and a simulation result waveform are shown in FIG. It can also be seen from the simulation result waveform that the pulsation component extraction value I qm is very close to the change in the load torque by using the periodic torque estimating means 30a. When the operation mode is switched when the switching determination value is equal to or less than the switching determination value, the motor 6 can be stably started without failing to start because the mode is switched to the position sensorless mode in a period when the load torque fluctuation is small.
 周期トルク推定手段と制御切替判定器の別な構成例を、図14を用いて説明する。図14に示した周期トルク推定手段30bには、dq軸電圧指令値(Vd *およびVq *)を入力する。dq軸電圧指令値は制御軸上の値であるため、通常は直流成分となる。しかし、周期的な負荷変動がある場合は、電流制御がdq軸の電流を一定に制御するため、制御軸上の電圧指令値も変動する。そこで、周期トルク推定手段30bに電圧指令値を入力し、電圧指令値の変動分を抽出、もしくは不完全微分器34を用いて電圧指令値の微分値を制御切替判定器31bへ出力する。 Another configuration example of the periodic torque estimation means and the control switching determination device will be described with reference to FIG. The dq-axis voltage command values (V d * and V q * ) are input to the periodic torque estimation means 30b shown in FIG. Since the dq axis voltage command value is a value on the control axis, it usually has a direct current component. However, when there is a periodic load variation, the current control controls the dq axis current to be constant, so the voltage command value on the control axis also varies. Therefore, the voltage command value is input to the periodic torque estimation means 30b, and the fluctuation of the voltage command value is extracted, or the differential value of the voltage command value is output to the control switching determination unit 31b using the incomplete differentiator 34.
 図22に、図14の構成を用いて、dq軸電圧指令値の不完全微分値(Vd * _divおよびVq * _div)を演算した結果を示す。この波形から分かるように、電圧指令値の微分からも、負荷トルクの変動を推定できる。 FIG. 22 shows a result of calculating incomplete differential values (V d * _div and V q * _div ) of the dq-axis voltage command value using the configuration of FIG. As can be seen from this waveform, the fluctuation of the load torque can also be estimated from the differentiation of the voltage command value.
 制御切替判定器31bは、電圧指令値の変動分または電圧指令値の微分値がゼロ近傍、もしくは電圧指令値の微分値が負の期間において、あるいは、図22に示したように、切替判定値以下の期間において、従来の運転モード切替判定が成立した場合に、制御切替スイッチ16に信号を出力し、運転モードを位置センサレスモードへ切り替える。これにより、負荷トルク変動が小さい期間において、位置センサレスモードへ切り替えるため、起動失敗せず安定にモータ6を起動させることができる。 The control switching determination unit 31b is configured to switch the switching determination value in a period in which the variation of the voltage command value or the differential value of the voltage command value is near zero, or the differential value of the voltage command value is negative, or as shown in FIG. In the following period, when the conventional operation mode switching determination is established, a signal is output to the control switch 16 to switch the operation mode to the position sensorless mode. Thereby, since it switches to position sensorless mode in the period when load torque fluctuation is small, the motor 6 can be started stably without starting failure.
 ここで、電圧指令値作成器3は、次式で表わせる。 Here, the voltage command value generator 3 can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、Rはモータ6の巻線抵抗値、Ldはd軸のインダクタンス、Lqはq軸のインダクタンス、Keは誘起電圧定数である。 Here, R is the winding resistance value of the motor 6, L d is the d-axis inductance, L q is the q-axis inductance, and K e is the induced voltage constant.
 上記の電圧指令値を演算する式から考えると、d軸電圧指令値よりもq軸電圧指令値の方が周期変動トルクによる影響が大きいため、q軸電圧指令値を入力する方が効果が大きい。また、制御軸上の電圧指令値ではなく、d軸電圧指令値とq軸電圧指令値の二乗和平方根を演算し、言い換えれば、電圧指令値の振幅値を演算し、これを制御切替判定器31bに入力しても同様の効果が得られる。また、周期トルク推定手段30bには、各相のスイッチング素子を駆動するドライブ信号24を入力しても構わない。例えば、ドライブ信号24を入力した場合、負荷トルクが大きい期間においては、より大きな電圧が必要になるため、スイッチングデューティーが高くなる(ドライブ信号のパルス幅が広がる)。つまり、負荷が重たい期間のドライブ信号は、他の期間と幅が変わる。 Considering the above equation for calculating the voltage command value, the q-axis voltage command value is more influenced by the cyclic fluctuation torque than the d-axis voltage command value, so that it is more effective to input the q-axis voltage command value. . Further, not the voltage command value on the control axis, but the square sum of squares of the d-axis voltage command value and the q-axis voltage command value is calculated, in other words, the amplitude value of the voltage command value is calculated, and this is calculated as a control switching determination device. The same effect can be obtained even if it is input to 31b. In addition, the drive signal 24 for driving the switching element of each phase may be input to the periodic torque estimating unit 30b. For example, when the drive signal 24 is input, a larger voltage is required during a period when the load torque is large, so that the switching duty increases (the pulse width of the drive signal increases). That is, the width of the drive signal during a heavy load changes from that of other periods.
 同期運転モードにおいて、電流制御を行っていない場合に有効な、周期トルク推定手段と制御切替判定器の別な構成例を図15を用いて説明する。電流制御を行っていない場合は、モータ6に印加される電圧は、あらかじめ決められた値になる。この場合、負荷に応じて変化する負荷角によって、3相軸上の電流(Iu、Iv、Iw)の振幅値が変化する。そこで、電流検出手段12で検出した各相の電流値を周期トルク推定手段30cに入力する。包絡線検出器34によって、3相の交流電流の包絡線を検出し、それを制御切替判定器31cに出力する。 A description will be given of another configuration example of the periodic torque estimating means and the control switching determination unit that is effective when current control is not performed in the synchronous operation mode, with reference to FIG. When current control is not performed, the voltage applied to the motor 6 has a predetermined value. In this case, the amplitude value of the current (I u , I v , I w ) on the three-phase axis changes depending on the load angle that changes according to the load. Therefore, the current value of each phase detected by the current detection unit 12 is input to the periodic torque estimation unit 30c. The envelope detector 34 detects an envelope of a three-phase alternating current and outputs it to the control switching determination unit 31c.
 図23に、シミュレーションで求めた、負荷トルクと3相交流電流の関係図を示す。図23から分かるように、負荷が重くなるタイミングで、包絡線が変化しているのが分かる。 FIG. 23 shows a relationship diagram between the load torque and the three-phase alternating current obtained by the simulation. As can be seen from FIG. 23, it can be seen that the envelope changes at the timing when the load increases.
 制御切替判定器31cでは、包絡線の変動がほぼ一定の期間、もしくは包絡線が増加する期間において、従来の運転モード切替判定が成立した場合に、制御切替スイッチ16に信号を出力し、運転モードを位置センサレスモードへ切り替える。これにより、負荷トルク変動が小さい期間において、位置センサレスモードへ切り替えるため、起動失敗せず安定にモータ6を起動させることができる。 The control switching determination unit 31c outputs a signal to the control changeover switch 16 when the conventional operation mode switching determination is established during a period in which the envelope variation is substantially constant or the envelope increases. To the position sensorless mode. Thereby, since it switches to position sensorless mode in the period when load torque fluctuation is small, the motor 6 can be started stably without starting failure.
 このように、いくつかある周期トルク推定手段30と制御切替判定器31の構成例のいずれかを用いることで、負荷トルク変動が小さい期間において、位置センサレスモードへ切り替えるため、起動失敗せず安定にモータ6を起動させることができる。負荷トルクの変動を推定するため、特定の圧縮機の方式に限定されることなく、いずれの圧縮方式においても適用可能なことは明らかである。 As described above, by using any one of the configuration examples of the periodic torque estimation unit 30 and the control switching determination unit 31, the mode is switched to the position sensorless mode in a period in which the load torque fluctuation is small, so that the startup is not failed and stable. The motor 6 can be started. In order to estimate the variation of the load torque, it is apparent that the present invention is applicable to any compression method without being limited to a specific compressor method.
 モータ6の圧縮機の一工程での吸込み圧力Psと吐出圧力Pdは、圧縮機が繋がるシステム(例えば、冷凍サイクル)の状態によって変化するが、一工程における負荷トルク変動は発生する。そのため、負荷トルク変動を推定し、その情報を運転モードの切替判断に用いることで、様々な負荷特性のモータ制御装置へ適用可能である。 The suction pressure P s and the discharge pressure P d in one step of the compressor of the motor 6 vary depending on the state of the system (for example, the refrigeration cycle) to which the compressor is connected, but load torque fluctuations in one step occur. Therefore, it is applicable to motor control devices having various load characteristics by estimating the load torque fluctuation and using the information for the operation mode switching determination.
 圧縮機だけでなく、周期的に変動する負荷トルク特性を有するモータ制御装置にも適用可能で、同様の効果があることは言うまでもない。 Needless to say, the present invention can be applied not only to a compressor but also to a motor control device having a load torque characteristic that varies periodically.
 以上の説明では、モータ6のシャフトは、クランクシャフト503を介して圧縮機構部500のピストン501に接続されている例を用いた。そのため、圧縮機としての一連の工程は機械角1周期となり、その結果、負荷トルクの変動も機械角1周期であった。例えば、モータ6のシャフトとクランクシャフト503の間に、ギアを追加した場合、負荷トルクの変動は、機械角1周期の整数倍で変動する。この場合も、負荷トルクの変動周期があらかじめ分かっていれば、本実施例に記載の内容を適用可能で、同様の効果を得られる。 In the above description, an example in which the shaft of the motor 6 is connected to the piston 501 of the compression mechanism unit 500 via the crankshaft 503 is used. For this reason, a series of steps as a compressor has one mechanical angle cycle, and as a result, the variation in load torque is one mechanical angle cycle. For example, when a gear is added between the shaft of the motor 6 and the crankshaft 503, the variation of the load torque varies at an integral multiple of one cycle of the mechanical angle. Also in this case, if the fluctuation cycle of the load torque is known in advance, the contents described in this embodiment can be applied and the same effect can be obtained.
 また、モータ6を減速する場合、すなわち、運転モードを位置センサレスモードから同期運転モードに切り替える場合にも、本実施例に記載の内容を適用可能で、同様の効果を得られる。 Also, when the motor 6 is decelerated, that is, when the operation mode is switched from the position sensorless mode to the synchronous operation mode, the contents described in the present embodiment can be applied and the same effect can be obtained.
 本実施例では、起動時間が短い場合においても負荷トルクの変動を推定することができるモータ制御装置の例を説明する。 In the present embodiment, an example of a motor control device that can estimate the variation of the load torque even when the start-up time is short will be described.
 図16は、実施例2におけるモータ制御装置1を用いた冷蔵庫を示す構成図の例である。 FIG. 16 is an example of a configuration diagram illustrating a refrigerator using the motor control device 1 according to the second embodiment.
 なお、既に説明した実施例1に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。 In addition, description is abbreviate | omitted about the part which has the same code | symbol shown in Example 1 already demonstrated, and the part which has the same function.
 冷蔵庫301は、図16に示すように、熱交換機302、送風機303、圧縮機304、圧縮機駆動用モータ305、などにより構成されている。また、冷蔵庫制御装置306は、各種センサ情報により、送風機や庫内灯などを制御する庫内制御装置307とモータ制御装置1から構成される。 As shown in FIG. 16, the refrigerator 301 includes a heat exchanger 302, a blower 303, a compressor 304, a compressor driving motor 305, and the like. The refrigerator control device 306 includes an internal control device 307 and a motor control device 1 that control a blower, an internal light, and the like based on various sensor information.
 冷蔵庫においては、圧縮機を停止状態から起動を行う場合、潤滑油をシリンダに吸い上げるため、短時間で(高い加速レートで)起動する必要がある。この場合、周期的な負荷変動を検出するのに時間がかかると、起動時間の遅れが懸念される。そこで、起動時間が短い場合においても、負荷トルクの傾きがゼロ近傍または負になる期間に、位置センサレスモードに切り替え、安定にモータを起動できる解決策を提供することが本実施例の目的のひとつである。 In the refrigerator, when starting the compressor from a stopped state, it is necessary to start the compressor in a short time (at a high acceleration rate) because the lubricating oil is sucked into the cylinder. In this case, if it takes a long time to detect periodic load fluctuations, there is a concern that the start-up time may be delayed. Therefore, even when the start-up time is short, one of the objects of this embodiment is to provide a solution that can switch to the position sensorless mode and start the motor stably during the period when the gradient of the load torque is near zero or negative. It is.
 以下、図17の制御モード切替タイミングの拡大図を用い説明をする。モータの極数が2極よりも多い場合、電気角では複数の周期となる。例えば、モータ6が4極の場合は、電気角2周期が機械角の1周期である。そのため、位置決めモードにて直流位置決めを行った場合、電気的に同じ位置(d軸)であっても、機械的には異なった位置(例えば、機械角で0度と180度)に位置決めされる。この状態で、同期運転モードに遷移し、予め設定した加速レートに従って加速をする。 Hereinafter, explanation will be given using an enlarged view of the control mode switching timing of FIG. When the motor has more than two poles, the electrical angle has a plurality of cycles. For example, when the motor 6 has four poles, two electrical angles are one mechanical angle. Therefore, when DC positioning is performed in the positioning mode, even if it is electrically the same position (d-axis), it is mechanically positioned at different positions (for example, 0 degrees and 180 degrees in mechanical angle). . In this state, a transition is made to the synchronous operation mode, and acceleration is performed according to a preset acceleration rate.
 インバータ周波数指令値ω1(または周波数指令値ω*)がセンサレス切替回転数に達した際(図17に太矢印で示した切替タイミング)に、制御切替スイッチを切り替えて、位置センサレスモードに遷移する。この時の時間的な拡大図を図17に示す。 When the inverter frequency command value ω 1 (or frequency command value ω * ) reaches the sensorless switching speed (switching timing indicated by a thick arrow in FIG. 17), the control switch is switched to shift to the position sensorless mode. . FIG. 17 shows a temporal enlarged view at this time.
 図17の左下側(例1)は、センサレス切替回転数達成タイミングが、負荷変動が大きい期間と重なっていない場合の例である。この時は、負荷変動が小さいため、安定に制御モードを切り替えることができる。 The lower left side of FIG. 17 (example 1) is an example in the case where the sensorless switching rotation speed achievement timing does not overlap with a period when the load fluctuation is large. At this time, since the load fluctuation is small, the control mode can be switched stably.
 一方、図17の右下側(例2)は、センサレス切替回転数達成タイミングが、負荷変動が大きい期間と重なった場合の例である。この場合は、位置センサレス切替後に、急激に負荷が重くなるため、インバータ周波数指令値ω1が急激に変化し、モータが脱調して停止してしまう場合がある。 On the other hand, the lower right side (example 2) of FIG. 17 is an example in the case where the sensorless switching rotation speed achievement timing overlaps with a period in which the load fluctuation is large. In this case, after the position sensorless switching, the load suddenly increases, so the inverter frequency command value ω 1 may change suddenly, causing the motor to step out and stop.
 そこで、図18に示した周期トルク推定手段30dと制御切替判定器31cを用いる。周期トルク推定手段30dに周波数指令値ω*(またはインバータ周波数指令値ω1)を入力し、極対数で除すことで、機械角を演算する。周期トルク推定手段30dには、q軸電流検出値Iqcも入力する。周期トルク推定手段30dは、短時間起動に好適な手段であるため、電気角2周期の内、周期トルクの変化の大小を判別する。例えば、ピークホールド回路34を用いて、機械角1周期におけるIqcのピーク値が、機械角0度~180度にあるか、180度~360度にあるかを判定する。 Therefore, the periodic torque estimation means 30d and the control switching determination unit 31c shown in FIG. 18 are used. The frequency command value ω * (or inverter frequency command value ω 1 ) is input to the periodic torque estimation means 30d, and the mechanical angle is calculated by dividing by the number of pole pairs. The q-axis current detection value I qc is also input to the periodic torque estimation means 30d. Since the periodic torque estimating means 30d is a means suitable for short-time activation, it determines the magnitude of the change in the periodic torque within the two electrical angle periods. For example, the peak hold circuit 34 is used to determine whether the peak value of I qc in one cycle of the mechanical angle is in a mechanical angle of 0 ° to 180 ° or 180 ° to 360 °.
 例えば、Iqcのピーク値が機械角0度~180度にあり、その期間においてセンサレス切替回転数に達した場合(図17の右下側(例2)の場合)、制御モードの切り替えは行わず、電気角1周期経過した後に、位置センサレスモードへ切り替える。こうすることで、負荷トルク変動が小さい期間において、位置センサレスモードへ切り替えるため、起動失敗せず安定にモータ6を起動させることができる。 For example, when the peak value of I qc is at a mechanical angle of 0 to 180 degrees and the sensorless switching speed is reached during that period (in the lower right side of FIG. 17 (example 2)), the control mode is switched. First, after one electrical angle cycle has elapsed, the mode is switched to the position sensorless mode. By doing so, since the mode is switched to the position sensorless mode during a period when the load torque fluctuation is small, the motor 6 can be started stably without starting failure.
 例えば、図14に示した不完全微分器34などを用いて、Iqcの変化分も検出できる場合、センサレス切替回転数達成タイミングが、負荷変動が大きい期間と重なった後、電気角1周期を待たずとも、Iqcの微分値が負になったら、位置センサレスモードへ切り替えるとしてもよい。この場合、より短時間で起動したい場合などに有効である。 For example, when a change in I qc can also be detected using the incomplete differentiator 34 shown in FIG. 14 or the like, after the sensorless switching rotation speed achievement timing overlaps with a period during which the load fluctuation is large, one electrical angle cycle is set. Without waiting, when the differential value of I qc becomes negative, the mode may be switched to the position sensorless mode. This is effective when it is desired to start up in a shorter time.
 このように、本実施例の周期トルク推定手段と制御切替判定器の構成例を用いることで、負荷トルク変動が小さい期間において、位置センサレスモードへ切り替えるため、起動失敗せず安定にモータ6を起動させることができる。また、電気角1周期における負荷変動の大きさを複数の電気角と比較を行うため、モータの初期位置に依存せず、例えば、位置決め後に、何らかの外乱によって別の位置に回転子が動いてしまった場合でも安定にモータを起動することができる。 In this way, by using the configuration example of the periodic torque estimating means and the control switching determination device of the present embodiment, the motor 6 is stably started without failing to start because the mode is switched to the position sensorless mode in a period when the load torque fluctuation is small. Can be made. Also, since the magnitude of load fluctuation in one cycle of electrical angle is compared with a plurality of electrical angles, it does not depend on the initial position of the motor, for example, after positioning, the rotor moves to another position due to some disturbance. The motor can be started stably even if
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手続き等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現しても良い。また、上記の各構成や機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現しても良い。 In addition, each of the above-described configurations, functions, processing units, processing procedures, and the like may be realized in hardware by designing a part or all of them, for example, with an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
 モータは、永久磁石モータとして説明したが、その他の電動機(例えば、誘導機、同期機、スイッチトリラクタンスモータ、シンクロナスリラクタンスモータなど)を用いても構わない。その際、電動機によっては電圧指令値作成器での演算方法が変わるが、それ以外については同様に適用でき、本実施例の目的を達成可能である。 Although the motor has been described as a permanent magnet motor, other electric motors (for example, induction machines, synchronous machines, switched reluctance motors, synchronous reluctance motors, etc.) may be used. At that time, the calculation method in the voltage command value generator varies depending on the electric motor, but other methods can be applied in the same manner, and the object of the present embodiment can be achieved.
 上記の実施例では、速度制御型の構成を例に説明したが、もちろんトルク制御型の構成にも適用可能である。この場合は、q軸電流指令値の算出方法が異なるだけで、制御モード切り替えに関しては同様に適用でき、本実施例の目的を達成可能である。 In the above embodiment, the speed control type configuration has been described as an example, but the present invention can of course be applied to a torque control type configuration. In this case, the calculation method of the q-axis current command value is different, and the control mode switching can be similarly applied, and the object of the present embodiment can be achieved.
 上記の実施例では、制御モード(位置決めモード、同期運転モード、位置センサレスモード)の切替タイミングについて記載したが、制御モードの切り替えだけに限定されるものではない。例えば、通電方式を120度通電から180度通電に切り替える場合(もちろん反対も可)、本実施例に記載の周期トルク推定手段と制御切替判定器を用いることで、電流変動や独度変動などの切替ショックを最小限に抑えることができる。 In the above embodiment, the switching timing of the control mode (positioning mode, synchronous operation mode, position sensorless mode) has been described, but it is not limited to switching the control mode. For example, when the energization method is switched from 120-degree energization to 180-degree energization (of course, the opposite is also possible), by using the periodic torque estimation means and the control switching determination device described in this embodiment, current fluctuation, individuality fluctuation, etc. Switching shock can be minimized.
1 モータ制御装置,2 制御部,3 電圧指令値作成器,5 電力変換回路,6 モータ(電動機),10 軸誤差演算器,12 電流検出手段,13 PLL制御器,14 速度制御器,16 制御切替スイッチ,20 直流電圧源,30 周期トルク推定手段,31 制御切替判定器,301 冷蔵庫,500 圧縮機構部,503 クランクシャフト 1 motor controller, 2 controller, 3 voltage command value generator, 5 power conversion circuit, 6 motor (motor), 10 axis error calculator, 12 current detection means, 13 PLL controller, 14 speed controller, 16 control Changeover switch, 20 DC voltage source, 30 periodic torque estimation means, 31 control change determination device, 301 refrigerator, 500 compression mechanism, 503 crankshaft

Claims (5)

  1.  回転角度位置に関する情報を用いない同期運転モードと回転角度位置に関する情報を用いて駆動する位置センサレス運転モードとを備え、前記運転モードを駆動中に切り替えるモータ制御装置において、
     機械角1周期もしくは機械角1周期の整数倍で変動する周期トルク成分を推定する周期トルク推定手段を備え、周期トルクの傾きがゼロ近傍または負になる期間に前記運転モードを切り替えることを特徴とするモータ制御装置。
    In a motor control device comprising a synchronous operation mode that does not use information related to the rotation angle position and a position sensorless operation mode that is driven using information related to the rotation angle position, and switches the operation mode during driving,
    It comprises periodic torque estimation means for estimating a periodic torque component that fluctuates in one mechanical angle cycle or an integral multiple of one mechanical angle cycle, and the operation mode is switched during a period in which the gradient of the periodic torque is near zero or negative. Motor control device.
  2.  請求項1に記載のモータ制御装置において、
     トルク変動の1周期に整数倍の電気角周波数が複数含まれ、周期トルクが各電気角周波数における平均トルクの合計値より小さい電気角周波数の期間に前記運転モードを切り替えることを特徴とするモータ制御装置。
    The motor control device according to claim 1,
    Motor control characterized in that a plurality of integer times electrical angular frequency is included in one cycle of torque fluctuation, and the operation mode is switched during a period of electrical angular frequency that is smaller than the total value of average torque at each electrical angular frequency. apparatus.
  3.  請求項1または2に記載のモータ制御装置において、
     電流検出手段を備え、前記周期トルク推定手段は前記電流検出手段の情報を用いて機械角1周期もしくは機械角1周期の整数倍で変動する周期トルク成分を推定することを特徴とするモータ制御装置。
    The motor control device according to claim 1 or 2,
    A motor control device comprising: a current detection unit, wherein the periodic torque estimation unit estimates a periodic torque component that fluctuates by one mechanical angle cycle or an integer multiple of one mechanical angle cycle, using information of the current detection unit. .
  4.  請求項1から3のいずれかに記載のモータ制御装置において、
     電流制御手段を備え、出力電圧の変化から周期トルク成分を推定することを特徴とするモータ制御装置。
    In the motor control device according to any one of claims 1 to 3,
    A motor control device comprising a current control means and estimating a periodic torque component from a change in output voltage.
  5.  請求項3に記載のモータ制御装置において、前記周期トルク推定手段は前記電流検出手段で検出した電流の微分値を用いて機械角1周期もしくは機械角1周期の整数倍で変動する周期トルク成分を推定することを特徴とするモータ制御装置。 4. The motor control device according to claim 3, wherein the periodic torque estimating means uses a differential value of the current detected by the current detecting means to generate a periodic torque component that fluctuates by one mechanical angle period or an integral multiple of one mechanical angle period. A motor control device characterized by estimating.
PCT/JP2012/068767 2011-08-22 2012-07-25 Motor control device WO2013027527A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280035434.4A CN103688459B (en) 2011-08-22 2012-07-25 Motor control assembly
KR1020137033958A KR101523334B1 (en) 2011-08-22 2012-07-25 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011180109A JP5798838B2 (en) 2011-08-22 2011-08-22 Motor control device
JP2011-180109 2011-08-22

Publications (1)

Publication Number Publication Date
WO2013027527A1 true WO2013027527A1 (en) 2013-02-28

Family

ID=47746278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068767 WO2013027527A1 (en) 2011-08-22 2012-07-25 Motor control device

Country Status (4)

Country Link
JP (1) JP5798838B2 (en)
KR (1) KR101523334B1 (en)
CN (1) CN103688459B (en)
WO (1) WO2013027527A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093983A4 (en) * 2014-01-10 2017-01-18 Daikin Industries, Ltd. Motor control device
WO2018020731A1 (en) * 2016-07-27 2018-02-01 アイシン精機株式会社 Motor with crank mechanism, and vacuum pump
EP3376665A1 (en) * 2017-03-14 2018-09-19 OJ Electronics A/S Drive belt detector
CN112423938A (en) * 2018-07-18 2021-02-26 松下知识产权经营株式会社 Electric tool, control method, and program

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126896B2 (en) * 2013-04-24 2017-05-10 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP6259221B2 (en) * 2013-08-07 2018-01-10 日立アプライアンス株式会社 Motor control device
JP6126970B2 (en) * 2013-10-21 2017-05-10 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP6124808B2 (en) * 2014-01-10 2017-05-10 三菱電機株式会社 Control device and control method for synchronous motor
JP6368523B2 (en) * 2014-04-16 2018-08-01 日立アプライアンス株式会社 Motor control device
JP6010071B2 (en) * 2014-07-11 2016-10-19 シャープ株式会社 Motor control device and refrigeration / air-conditioning device
CN104242765A (en) * 2014-08-28 2014-12-24 四川长虹电器股份有限公司 Starting method for permanent magnet synchronous motor
JPWO2016035298A1 (en) * 2014-09-05 2017-06-22 パナソニックIpマネジメント株式会社 Motor drive device and brushless motor
CN104682787B (en) * 2015-03-17 2017-12-19 南京信息职业技术学院 Method for estimating initial position angle of three-phase switched reluctance motor rotor
KR101722141B1 (en) * 2015-03-30 2017-04-03 (주)원방엔지니어링 A switch gear with automatic recovery control function for start condition
JP6548627B2 (en) * 2016-11-29 2019-07-24 キヤノン株式会社 Sheet conveying apparatus and image forming apparatus
KR102403505B1 (en) * 2020-01-31 2022-05-27 국민대학교산학협력단 Rotor initial position detection method and device of pmsm in no-load envrionment
KR102213329B1 (en) * 2020-08-14 2021-02-05 원준희 Synchronous reluctance motor control system that controls according to drive mode
CN112600476A (en) * 2020-12-03 2021-04-02 四川虹美智能科技有限公司 Control device and method for electric machine
JP2024022700A (en) * 2020-12-23 2024-02-21 日立Astemo株式会社 Motor control device and motor control method
CN113037159B (en) * 2021-03-15 2022-08-02 哈尔滨工业大学 Online suppression method for rotor position offset error of permanent magnet synchronous motor
JP7250995B1 (en) * 2022-12-21 2023-04-03 日立ジョンソンコントロールズ空調株式会社 Motor drive control device, motor device, refrigerating air conditioner, fan device, and drive control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219784A (en) * 1992-02-07 1993-08-27 Daikin Ind Ltd Driving device for brushless dc motor
JP2000287483A (en) * 1999-03-31 2000-10-13 Matsushita Electric Ind Co Ltd Apparatus and method for controlling brushless motor, and self-priming pump
JP2001054295A (en) * 1999-08-05 2001-02-23 Sharp Corp Motor start control unit
JP2005057922A (en) * 2003-08-06 2005-03-03 Asmo Co Ltd Brushless motor and driving method for brushless motor
JP2006042419A (en) * 2004-07-22 2006-02-09 Denso Corp Control method and controller of motor for driving compressor
JP2009284682A (en) * 2008-05-23 2009-12-03 Calsonic Kansei Corp Controller of electric motor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117186A (en) * 1995-10-13 1997-05-02 Zexel Corp Dc brushless motor drive
US6483270B1 (en) * 1998-07-16 2002-11-19 Seiko Epson Corporation Method and device for controlling position sensorless motor
JP4465770B2 (en) * 2000-01-17 2010-05-19 パナソニック電工株式会社 Brushless motor control device and self-priming pump using the same
JP2004222382A (en) * 2003-01-14 2004-08-05 Mitsubishi Heavy Ind Ltd Apparatus and method for controlling operation of motor
JP4729356B2 (en) * 2005-07-29 2011-07-20 株式会社日立製作所 Motor controller, washing machine, air conditioner and electric oil pump
CN100576719C (en) * 2006-09-21 2009-12-30 三洋电机株式会社 The control device of motor for refrigerant compressor
CN101478281B (en) * 2009-01-22 2011-06-08 邱少杰 Starting method for brushless DC motor without position sensor based on current feedback

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219784A (en) * 1992-02-07 1993-08-27 Daikin Ind Ltd Driving device for brushless dc motor
JP2000287483A (en) * 1999-03-31 2000-10-13 Matsushita Electric Ind Co Ltd Apparatus and method for controlling brushless motor, and self-priming pump
JP2001054295A (en) * 1999-08-05 2001-02-23 Sharp Corp Motor start control unit
JP2005057922A (en) * 2003-08-06 2005-03-03 Asmo Co Ltd Brushless motor and driving method for brushless motor
JP2006042419A (en) * 2004-07-22 2006-02-09 Denso Corp Control method and controller of motor for driving compressor
JP2009284682A (en) * 2008-05-23 2009-12-03 Calsonic Kansei Corp Controller of electric motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3093983A4 (en) * 2014-01-10 2017-01-18 Daikin Industries, Ltd. Motor control device
US9929682B2 (en) 2014-01-10 2018-03-27 Daikin Industries, Ltd. Motor control device
WO2018020731A1 (en) * 2016-07-27 2018-02-01 アイシン精機株式会社 Motor with crank mechanism, and vacuum pump
EP3376665A1 (en) * 2017-03-14 2018-09-19 OJ Electronics A/S Drive belt detector
CN112423938A (en) * 2018-07-18 2021-02-26 松下知识产权经营株式会社 Electric tool, control method, and program
EP3825069A4 (en) * 2018-07-18 2021-10-13 Panasonic Intellectual Property Management Co., Ltd. Electric tool, control method, and program
US11855520B2 (en) 2018-07-18 2023-12-26 Panasonic Intellectual Property Management Co., Ltd. Electric tool, control method, and program

Also Published As

Publication number Publication date
KR20140024431A (en) 2014-02-28
KR101523334B1 (en) 2015-05-27
JP5798838B2 (en) 2015-10-21
CN103688459B (en) 2016-06-29
JP2013046424A (en) 2013-03-04
CN103688459A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5798838B2 (en) Motor control device
JP5937880B2 (en) Motor control device and refrigerator
EP2375558B1 (en) Motor drive device, and compressor and refrigerator using same
JP5838038B2 (en) Motor control device
JP5972138B2 (en) Electric motor control device, refrigerator using the same, and electric device
JP6368523B2 (en) Motor control device
JP4566100B2 (en) Electric motor drive
TWI476409B (en) Motor speed estimation method
JP2003079183A (en) Step-out detecting equipment of synchronous motor, step- out detecting method of synchronous motor, drive equipment of hermetic compressor and drive equipment of fan motor
Baratieri et al. An IF starting method for smooth and fast transition to sensorless control of BLDC motors
JP4060805B2 (en) Electric motor torque control device, electric motor torque control method, electric motor rotor position detection device, electric motor rotor position detection method, hermetic compressor, and refrigeration air conditioner
KR20070000946A (en) Three phase bldc motor controller and control method thereof
JP5517851B2 (en) Refrigeration equipment having a motor control device and a compressor drive device using the motor control device
JP2007060783A (en) Motor drive control device
JP2007282367A (en) Motor driving controller
Suzuki et al. Minimum current start-up method by combined use of two position-sensorless controls
JP6082558B2 (en) Motor control device and refrigerator using the same
JP5975830B2 (en) Motor control device and refrigeration equipment using the same
JP6082559B2 (en) Motor control device and refrigerator using the same
JP5975829B2 (en) Motor control device and refrigerator using the same
Iepure et al. Improved state observers for sensorless single phase BLDC-PM motor drives
JP6259221B2 (en) Motor control device
JP2009254191A (en) Motor controller, compressor, refrigerating apparatus, and air conditioner
JP6846939B2 (en) Motor control device, rotary compressor system and motor control method
CN113719443B (en) Apparatus and method for controlling compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137033958

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825486

Country of ref document: EP

Kind code of ref document: A1