WO2013027501A1 - Control device and fuel cell system - Google Patents

Control device and fuel cell system Download PDF

Info

Publication number
WO2013027501A1
WO2013027501A1 PCT/JP2012/067307 JP2012067307W WO2013027501A1 WO 2013027501 A1 WO2013027501 A1 WO 2013027501A1 JP 2012067307 W JP2012067307 W JP 2012067307W WO 2013027501 A1 WO2013027501 A1 WO 2013027501A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature
electrode
alkaline fuel
current value
Prior art date
Application number
PCT/JP2012/067307
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 佐多
宏隆 水畑
吉田 章人
忍 竹中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013027501A1 publication Critical patent/WO2013027501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an alkaline fuel cell control device capable of operating an alkaline fuel cell with high output and power generation efficiency, and a fuel cell system using the same.
  • the fuel cell includes a membrane electrode assembly (MEA) having a configuration in which an electrolyte membrane is sandwiched between an anode and a cathode as a main part of power generation.
  • MEA membrane electrode assembly
  • a polymer electrolyte fuel cell (direct fuel) Battery) phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, alkaline fuel cell and the like.
  • the alkaline fuel cell is a fuel cell in which an anion conductive electrolyte membrane (anion exchange membrane) is used as an electrolyte membrane, and charge carriers are hydroxide ions (OH ⁇ ).
  • anion exchange membrane anion exchange membrane
  • charge carriers are hydroxide ions (OH ⁇ ).
  • the supplied fuel for example, H 2 gas and OH ⁇ transmitted from the cathode electrode are expressed by the following formula (2):
  • Alkaline fuel cells have advantages such as fewer restrictions on constituent materials such as catalysts and can be manufactured at a lower cost, but unlike other fuel cells, the electrolyte of the electrolyte membrane and catalyst layer is an anion conductive electrolyte. Therefore, the electrolyte membrane and the catalyst layer absorb carbon dioxide (CO 2 ) in the environment, and OH ⁇ in the electrolyte membrane and the catalyst layer is represented by the following formulas (3) and (4): CO 2 + 2OH ⁇ ⁇ CO 3 2 ⁇ + H 2 O (3) CO 2 + OH - ⁇ HCO 3 - (4) It has an inherent problem that it is easily replaced by CO 3 2 ⁇ and / or HCO 3 ⁇ (hereinafter sometimes referred to as “CO 2 -derived anion”) by such a reaction.
  • CO 2 + 2OH ⁇ ⁇ CO 3 2 ⁇ + H 2 O CO 2 + OH - ⁇ HCO 3 - (4)
  • Self-purge refers to a CO 2 -derived anion contained in an electrolyte membrane and a catalyst layer, which causes a decrease in anion conductivity, for example, by causing a current to flow between the anode and the cathode by operating an alkaline fuel cell. Is moved to the anode electrode, reduced by fuel, and discharged from the anode electrode as CO 2 gas.
  • the power generation amount of the fuel cell is adjusted according to the power consumption of the electronic device using the fuel cell as a power source.
  • the power generation amount that is, the operating current value
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an alkaline fuel cell control device capable of operating an alkaline fuel cell with high output and power generation efficiency, and a fuel cell system using the same. There is to do.
  • a detection unit for detecting a state of an alkaline fuel cell including a membrane electrode assembly including an anion conductive electrolyte membrane;
  • a temperature changing unit for changing the temperature of the alkaline fuel cell;
  • a current value changing unit for changing a current value flowing through the membrane electrode assembly of the alkaline fuel cell;
  • a control device comprising:
  • the detection unit includes a temperature of the alkaline fuel cell, the unit time T in 0, the membrane electrode ratio T 1 / T 0 of the complex to a predetermined current value A or more current flows time T 1 And the control device according to [1].
  • the temperature changing unit includes a heating / cooling device capable of heating and cooling the alkaline fuel cell or a heating device for heating the alkaline fuel cell. Control device.
  • the membrane electrode assembly is opposed to the first surface of the anion conductive electrolyte membrane, the first electrode laminated on the first surface of the anion conductive electrolyte membrane, and the first surface of the anion conductive electrolyte membrane. And a second electrode laminated on the second surface,
  • the control device according to any one of [1] to [5], wherein the temperature changing unit changes a temperature of the first electrode.
  • a fuel cell system comprising a fuel cell unit including the alkaline fuel cell and the control device according to any one of [1] to [9].
  • the alkaline fuel cell can be operated with high output and power generation efficiency.
  • FIG. 1 is a schematic diagram showing a configuration of a control device according to the present invention and a fuel cell system to which the control device is applied.
  • the control device of the present invention is connected to a fuel cell unit 10 including an alkaline fuel cell, and is connected to the fuel cell unit 10; a detection unit 20 for detecting the state of the alkaline fuel cell.
  • a temperature changing unit 30 for changing the temperature of the alkaline fuel cell; a current value changing unit for changing the current value of the current connected to the fuel cell unit 10 and flowing through the membrane electrode assembly of the alkaline fuel cell 40; and basically a control unit 50 connected to the detection unit 20, the temperature changing unit 30, and the current value changing unit 40.
  • the control unit 50 receives a detection result (information signal) related to the state of the alkaline fuel cell from the detection unit 20, and raises the temperature of the alkaline fuel cell according to the received detection result, thereby causing the temperature to reach a predetermined temperature.
  • the temperature changing unit 30 is controlled so as to be equal to or higher than X
  • the current value changing unit 40 is controlled so that a current equal to or higher than the predetermined current value A flows through the membrane electrode assembly for a predetermined time at a temperature equal to or higher than the predetermined temperature X. To do.
  • the fuel cell system of the present invention includes a fuel cell unit 10 including an alkaline fuel cell, and the control device.
  • the fuel cell unit 10 includes a detection unit 20, a temperature changing unit 30, and a current value of the control device. Connected to the changing unit 40.
  • the alkaline fuel cell constituting the fuel cell unit 10 includes a membrane electrode assembly having an anion conductive electrolyte membrane.
  • a current of a predetermined current value A or more is “a certain time” in the membrane electrode assembly of the alkaline fuel cell included in the fuel cell unit 10 at a temperature of the predetermined temperature X or higher.
  • the fuel cell is controlled to flow.
  • FIG. 2 is a conceptual diagram showing a state in which a cycle in which a current of a predetermined current value A or more flows for a certain period of time within a unit time is repeated in a membrane electrode assembly of an alkaline fuel cell.
  • a current of a predetermined current value A or more flows through the membrane electrode assembly for a certain period of time means that an alkaline fuel cell supplies power to an electronic device using this as a power source. This means that a current equal to or greater than the predetermined current value A flows for a certain period of time within the unit time T 0 regardless of whether or not (that is, whether or not power is being generated).
  • a cycle of unit time T 0 including a certain time during which a current of a predetermined current value A or more flows that is, a current of a predetermined current value A or more is intermittently generated). (Flowing state) is repeated.
  • the above “regardless of whether the alkaline fuel cell is supplying power to an electronic device using this as a power source (that is, whether or not it is generating power)” means that a current of a predetermined current value A or more is This means that it does not matter whether it is due to power generation according to a request from an electronic device or whether the control device is forced to flow.
  • a cycle of unit time T 0 including a certain time during which a current of a predetermined current value A or more is flowing is repeated two or more times, all the above certain times may have the same time length, or two or more kinds Different time lengths may be included.
  • the current flowing through the membrane electrode assembly is not particularly limited as long as it is equal to or greater than the predetermined current value A, and may all be the same current value or may include two or more different current values.
  • a current greater than or equal to the predetermined current value A may be supplied a plurality of times within the unit time T 0 .
  • a cycle of a unit time T 0 including a certain time during which a current of a predetermined current value A or more flows in the membrane electrode assembly of an alkaline fuel cell is repeated (a current of a predetermined current value A or more is The state of the change in the CO 2 -derived anion concentration when the gas flows intermittently is also shown.
  • a cycle of unit time T 0 including a certain time during which a current of a predetermined current value A or more flows self-purge with a large current of a predetermined current value A or more is repeated intermittently.
  • the CO 2 -derived anion concentration in the membrane electrode assembly can be maintained at a substantially low level, and the accumulation of CO 2 -derived anions can be suppressed.
  • the problem of increase in cell resistance and increase in reaction overvoltage at the anode electrode can be improved, and the output and power generation efficiency of the alkaline fuel cell can be improved.
  • FIG. 3 shows only one unit time T 0 including a certain time during which a current of a predetermined current value A or more flows through the membrane electrode assembly of an alkaline fuel cell (a current of a predetermined current value A or more is It shows conceptually how the CO 2 -derived anion concentration changes when it flows only once).
  • Such a case is, for example, a case where a current of a predetermined current value A or more is forcibly supplied by the control device, and thereafter the control device and the alkaline fuel cell are not operated;
  • the alkaline fuel cell When the alkaline fuel cell generates power at a current lower than a predetermined current value A after that; after the alkaline fuel cell generates power at a current higher than the predetermined current value A, and thereafter The alkaline fuel cell generates power with a current less than a predetermined current value A, or the alkaline fuel cell is stopped.
  • a current of a predetermined current value A or more flows through the membrane electrode assembly for a certain period of time includes a case where the current of a predetermined current value A or more flows as shown in FIG. Although there may be a case where there is only one unit time T 0 , such a cycle of unit time T 0 is preferably repeated as shown in FIG. This is because the CO 2 -derived anion concentration in the membrane electrode complex can be maintained substantially always low.
  • T 0 including a certain time during which a current greater than or equal to the predetermined current value A flows, a sufficiently high output or power is generated when the alkaline fuel cell generates power after the unit time T 0. It may be difficult to obtain power generation efficiency.
  • a predetermined current value A or more is obtained. There may be only one unit time T 0 including a certain time during which the current flows.
  • the temperature change unit 30 is controlled together with the current value change unit 40 to raise the temperature of the alkaline fuel cell to a predetermined temperature X or higher.
  • the temperature is controlled so that a current of a predetermined current value A or more flows through the membrane electrode assembly for a predetermined time at the temperature.
  • the predetermined temperature X is a temperature higher than the temperature of the alkaline fuel cell immediately before raising the temperature (hereinafter also referred to as the immediately preceding temperature).
  • the value of current that can be passed through the membrane electrode assembly increases as the temperature of the alkaline fuel cell increases.
  • a current value equal to or higher than the predetermined current value A is realized more than when the temperature of the alkaline fuel cell is maintained at the immediately preceding temperature.
  • the current value of the current that flows for a certain period of time can be increased. Since a larger current can flow, the amount of CO 2 gas discharged from the anode electrode per unit time can be increased, and as a result, the concentration of CO 2 -derived anions in the membrane electrode assembly can be reduced earlier. Can be made.
  • the temperature of the alkaline fuel cell is set to a predetermined temperature X or more, and the membrane electrode assembly has a predetermined current value A.
  • the above current is controlled so as to flow for a certain period of time.
  • the concentration of anion derived from CO 2 in the membrane electrode assembly is relatively high, the electrolyte in the electrolyte membrane or the electrode catalyst layer is mainly carbonate ion type. Therefore, even if the temperature of the alkaline fuel cell is raised, these deteriorations are unlikely to occur.
  • the membrane electrode assembly Since the concentration of CO 2 -derived anions in the inside can be kept substantially low at all times, an alkaline fuel cell can generate power while suppressing an increase in cell resistance and an increase in reaction overvoltage at the anode electrode. Thereby, output and power generation efficiency can be improved.
  • the CO 2 -derived anion concentration in the membrane electrode assembly can be reduced earlier, so that the length of time during which a current greater than or equal to the predetermined current value A flows (that is, Since the fixed time T 2 ), which will be described later, can be shortened, the effect of improving the output and power generation efficiency can be obtained earlier, and it is advantageous in further reducing the surplus power and improving the output and power generation efficiency.
  • control device of the present invention and the fuel cell system to which the control device is applied can exhibit the following operational effects.
  • the temperature and current value control by the control device of the present invention is performed at the time of steady operation of the alkaline fuel cell (during power generation), at the start-up after operation stop (initial operation stage), or at the standby operation of the alkaline fuel cell. It can be implemented in any one or more operation modes (state in which power is not supplied to the electronic device).
  • control is performed so that the operating current value increases for a certain period of time within the unit time T 0 , and only for the certain period of time, or only for the certain period of time and for the specified period before and after this period (the shorter the specified period, the better) It is preferable to control the temperature to be equal to or higher than the predetermined temperature X.
  • the alkaline type The amount of water produced at the anode of the fuel cell can be increased [see the above formula (2)].
  • the water content of the anion conductive electrolyte membrane can be maintained at a moderately high level and the anion conductive resistance can be maintained at a low level. This also contributes to improvement of output and power generation efficiency and shortening of startup time.
  • the anode electrode when the temperature of the alkaline fuel cell is increased in accordance with the control according to the present invention, the anode electrode is in an appropriate dry state due to a decrease in the relative humidity of the fuel. Even when a current of a predetermined current value A or more is applied to the composite, flooding of the anode electrode is difficult to occur, and according to an aspect in which the operating current value is intermittently increased, the flooding suppression effect is maintained for a long time. can do.
  • the state of the fuel cell” detected by the detection unit 20 refers to an index (parameter) that can evaluate the CO 2 -derived anion concentration in the membrane electrode assembly.
  • Specific examples of the battery include the following.
  • [A] is in the unit time T in 0, the ratio T 1 / T 0 of the time predetermined current value A or more current flows through the membrane electrode assembly T 1, [B] CO 2 -derived anion concentration (or CO 3 2 ⁇ concentration of these) in the anion conductive electrolyte membrane, [C] pH of the anion conductive electrolyte membrane, [D] resistance value of the anion conductive electrolyte membrane, [E] Output voltage value of alkaline fuel cell.
  • the detection unit 20 is derived from CO 2 in the membrane electrode complex. It is preferable to detect the above [a] as a parameter for evaluating the anion concentration. In addition to the parameters for evaluating the CO 2 -derived anion concentration in the membrane electrode assembly, the detection unit 20 can usually detect the temperature of the alkaline fuel cell and the value of the current flowing through the membrane electrode assembly.
  • FIG. 4 is a schematic diagram illustrating a control device according to the present embodiment and a fuel cell system to which the control device is applied.
  • the control device and the fuel cell system are connected to an electronic device (electronic device 60) to which power is supplied.
  • the structure of is shown.
  • the control device according to the present embodiment includes the above-described detection unit 20 connected to a fuel cell unit 10a as a fuel cell unit 10 including an alkaline fuel cell including a membrane electrode assembly having an anion conductive electrolyte membrane.
  • Detection unit 20a for detecting (a ratio T 1 / T 0 of time T 1 in which a current equal to or greater than a predetermined current value A flows in the membrane electrode assembly within a certain unit time T 0 ); connected to the fuel cell unit 10a A temperature controller 30a for changing the temperature of the alkaline fuel cell as the temperature changing unit 30; connected to the fuel cell unit 10a and connected in parallel to the electronic device 60 Electronic load device 40a for changing the current value of the current flowing through the membrane electrode assembly of the alkaline fuel cell as changing unit 40; and detection unit 20a, temperature controller 30a, and electronic load device 40
  • the temperature controller 30a is controlled by increasing the temperature of the alkaline fuel cell according to the detection result by the detection unit 20a so that the temperature becomes equal to or higher than the predetermined temperature X, and the predetermined temperature X
  • a control unit 50a is provided for controlling the electronic load device 40a so that a current of a predetermined current value A or more flows through the membrane electrode assembly for a certain period of time under
  • the detection unit 20a detects the value of the current flowing through the membrane electrode assembly [more specifically, the value of the current flowing between the first electrode (for example, the anode electrode) and the second electrode (for example, the cathode electrode) of the membrane electrode assembly. ]
  • the detection unit 20a also includes a time measuring means (such as a timer) for measuring the unit time T 0 and the time T 1 when a current equal to or greater than the predetermined current value A flows through the membrane electrode assembly, and the current value and the time T. 0 , T 1 storing means (memory etc.) is provided.
  • the time measuring means and the storage means can be included in the control unit 50a.
  • Examples of the temperature controller 30a include a heating / cooling device that can heat and cool the alkaline fuel cell, and a heating device (heater, etc.) for heating the alkaline fuel cell.
  • a heating / cooling device a device for heating and cooling an alkaline fuel cell using a heat medium as described later can be preferably used.
  • a current of a predetermined current value A or higher is passed through the membrane electrode assembly, it is necessary to raise the temperature of the alkaline fuel cell to a predetermined temperature X or higher.
  • a heating / cooling device capable of heating and cooling as the temperature controller 30a.
  • the temperature controller 30a can set the temperature of at least the first electrode (for example, the anode electrode) and the second electrode (for example, the cathode electrode) to a predetermined temperature X or higher.
  • a heating / cooling device or a heating device connected to both the first electrode and the second electrode a heating / cooling device or a heating device connected to the first electrode and a second electrode
  • a heating / cooling device or a heating device may be provided separately
  • the controller 50a is not particularly limited as long as it can control the temperature controller 30a and the electronic load device 40a according to the detection result of the detector 20a, and may be a personal computer, for example.
  • connection between the fuel cell unit 10a and the electronic device 60 may be connected via a converter (step-up circuit).
  • the detection section 20a detects always preferably the time rate T 1 / T 0, it is determined by the control unit 50a the time ratio T 1 / T 0 is less than the predetermined time rate W T In this case, the control unit 50a determines that the temperature of the alkaline fuel cell (at least the first electrode and the second electrode) is equal to the predetermined temperature X, regardless of whether the fuel cell unit 10a performs power generation (power supply to the electronic device 60).
  • the temperature controller 30a is controlled so as to rise to the above, and at a temperature equal to or higher than the predetermined temperature X, a current equal to or higher than a predetermined current value A is supplied to the membrane electrode assembly (between the first electrode and the second electrode) for a predetermined time.
  • the electronic load device 40a is controlled to flow (for example, to obtain a current waveform pattern as shown in FIG. 2).
  • the control unit 50a determines that the time ratio T 1 / T 0 is less than the predetermined time ratio W T , the first electrode (anode electrode) is fuel and the second electrode (cathode electrode).
  • the temperature controller 30a While controlling the temperature controller 30a so that the temperature of the alkaline fuel cell (at least the first electrode and the second electrode) is raised to a predetermined temperature X or higher by the controller 50a.
  • the first electrode-the second electrode for a certain time T 2 such that T 2 / T 0 ⁇ W T is satisfied.
  • a current of a predetermined current value A or more is passed between the two electrodes.
  • the time ratio T 1 / T 0 is constantly detected so that a cycle of unit time T 0 including a certain time during which a current of a predetermined current value A or more flows is repeated.
  • the first electrode - after flowing over the current predetermined current value A between the second electrode i.e., out of the unit time T 0, the time other than the predetermined time T 2
  • Controls the temperature regulator 30a so that the temperature of the alkaline fuel cell is less than the predetermined temperature X, and preferably the temperature just before the above.
  • a state where a current of a predetermined current value A or more flows through the membrane electrode assembly for a certain period of time is maintained, for example, a unit time T 0 including a certain time during which a current of a predetermined current value A or more flows.
  • a unit time T 0 including a certain time during which a current of a predetermined current value A or more flows is maintained.
  • the control unit 50a is forced to exceed the predetermined current value A according to the control flow.
  • the CO 2 -derived anion is substantially always low. Concentration is realized.
  • the unit time T 0 is not particularly limited, and can be, for example, in the range of about 10 to 30 minutes.
  • the predetermined time ratio W T is determined in consideration of a desired output, a degree of improvement in power generation efficiency, a degree of improvement in start-up time, and the like, and may be selected from a range of, for example, 5 to 20% (eg, 10%). it can.
  • the predetermined current value A is also determined in consideration of the desired output, the degree of improvement in power generation efficiency, the degree of improvement in start-up time, etc., and is in the range of 400 to 1000 mA / cm 2 , preferably in the range of 600 to 1000 mA / cm 2 , More preferably, it can be selected from the range of 700 to 1000 mA / cm 2 .
  • the current value (both the current value detected by the detection unit and the current value of the current that flows for a certain time (T 2 )) in the present invention is a membrane electrode complex [first electrode (anode electrode) ⁇ second electrode]. The value obtained by dividing the amount of current flowing between (cathode electrodes) by the projected area of the cathode electrode on the electrolyte membrane.
  • the value of “current greater than or equal to the predetermined current value A” that is passed through the membrane electrode assembly for a certain time (time length T 2 ) according to the detection result by the detection unit 20a is detected by the detection unit 20a as “unit time T 0.
  • T 2 is normally set to be longer than T 1 .
  • the predetermined temperature X may be any temperature that is higher than the immediately preceding temperature and that can realize a current value equal to or higher than the predetermined current value A, and is preferably 105% to 150% of the immediately preceding temperature, preferably Is a temperature of 110% to 125% of the immediately preceding temperature.
  • FIG. 5 is a schematic cross-sectional view showing an example of an alkaline fuel cell that can be provided in the fuel cell unit 10a.
  • An alkaline fuel cell 100 shown in FIG. 5 includes an anion conductive electrolyte membrane 101, a first electrode (anode electrode) 102 laminated on the first surface of the anion conductive electrolyte membrane 101, and a first electrode of the anion conductive electrolyte membrane 101.
  • a membrane electrode assembly composed of a second electrode (cathode electrode) 103 laminated on a second surface opposite to the first surface; laminated on the first electrode 102, comprising at least a fuel receiving portion 106 for receiving fuel A first separator 104; a second separator 105 stacked on the second electrode 103, which includes at least an oxidant receiving portion 107 for receiving an oxidant.
  • the first electrode 102 and the second electrode 103 are provided to face each other with the anion conductive electrolyte membrane 101 interposed therebetween. More specifically, the first electrode 102 and the second electrode 103 are laminated at substantially the center of the surface of the anion conductive electrolyte membrane 101 so that the positions in the surface of the anion conductive electrolyte membrane 101 coincide.
  • a gasket 150 (for example, a layer made of an elastic resin such as silicone rubber or a cured material layer of a curable resin such as an epoxy resin) is provided at the periphery of the electrode in order to prevent intrusion of air or the like from the electrode end face. Is provided.
  • Anion-conducting electrolyte membrane 101 is electrically insulative in order to conduct OH - ions and prevent a short circuit between the first electrode 102 and the second electrode 103. Although it does not restrict
  • the anion conductive solid polymer electrolyte membrane include, for example, perfluorosulfonic acid type, perfluorocarboxylic acid type, styrene vinyl benzene type, quaternary ammonium type solid polymer electrolyte membrane (anion exchange membrane). It is done.
  • a membrane obtained by impregnating a concentrated potassium hydroxide solution into polyacrylic acid, an anion conductive solid oxide electrolyte membrane, or a layered double hydroxide exhibiting hydroxide conductivity can also be used as the anion conductive electrolyte membrane 101.
  • the anion conductive electrolyte membrane 101 preferably has an anion conductivity of 10 ⁇ 5 S / cm or more, and an electrolyte membrane having an anion conductivity of 10 ⁇ 3 S / cm or more such as a perfluorosulfonic acid polymer electrolyte membrane. It is more preferable to use
  • the thickness of the anion conductive electrolyte membrane 101 is usually 5 to 300 ⁇ m, preferably 10 to 200 ⁇ m.
  • the second electrode 103 functioning as a cathode electrode during power generation includes at least a catalyst layer composed of a porous layer containing a catalyst and an electrolyte. These catalyst layers are laminated in contact with the surface of the anion conductive electrolyte membrane 101.
  • the first electrode 102 catalyst (anode catalyst) is fuel and OH supplied to the first electrode 102 - from an anion, which catalyzes a reaction to produce water and electrons.
  • the catalyst (cathode catalyst) of the second electrode 103 catalyzes the reaction of generating OH 2 ⁇ anion from the oxidant and water supplied to the second electrode 103 and the electrons transferred from the first electrode 102.
  • the electrolyte contained in the catalyst layer (cathode catalyst layer) of the second electrode 103 has a function of conducting the generated OH ⁇ anion to the anion conductive electrolyte membrane 101.
  • anode catalyst and the cathode catalyst conventionally known ones can be used.
  • the alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel.
  • the anode catalyst and the cathode catalyst may be the same or different.
  • the anode catalyst and the cathode catalyst are preferably those supported on a carrier, preferably a conductive carrier.
  • a carrier preferably a conductive carrier.
  • the conductive carrier include carbon black such as acetylene black, furnace black, channel black, and ketjen black, and conductive carbon particles such as graphite and activated carbon.
  • carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
  • the same electrolyte as that constituting the anion conductive solid polymer electrolyte membrane can be used.
  • the content ratio of the catalyst to the electrolyte in each catalyst layer is usually about 5/1 to 1/4, and preferably about 3/1 to 1/3 on a weight basis.
  • the first electrode 102 and the second electrode 103 may each include a gas diffusion layer laminated on the catalyst layer.
  • the gas diffusion layer has a function of diffusing the supplied fuel or oxidant in the surface and a function of transferring electrons to and from the catalyst layer.
  • the gas diffusion layer can be a porous layer having electrical conductivity. Specifically, for example, carbon paper; carbon cloth; epoxy resin film containing carbon particles; metal or alloy foam, sintered body Or it can be a fiber nonwoven fabric.
  • the thickness of the gas diffusion layer is preferably 10 ⁇ m or more in order to reduce the diffusion resistance of the fuel or oxidant in the direction perpendicular to the thickness direction (in-plane direction). In order to reduce, it is preferable that it is 1 mm or less.
  • the thickness of the gas diffusion layer is more preferably 100 to 500 ⁇ m.
  • the first separator 104 and the second separator 105 are members for supplying fuel and oxidant to the first electrode 102 and the second electrode 103, respectively.
  • the first separator 104 can be a member having at least a concave portion constituting the fuel receiving portion 106 on the surface on the anion conductive electrolyte membrane 101 side
  • the second separator 105 has a concave portion constituting the oxidant receiving portion 107 as an anion. It can be a member having at least the conductive electrolyte membrane 101 side surface.
  • the concave portion constituting the fuel receiving portion 106 and the concave portion constituting the oxidant receiving portion 107 are the anion conductive electrolytes of the first separator 104 and the second separator 105 in the region where the first electrode 102 and the second electrode 103 are laminated, respectively. Provided on the surface of the film 101 side.
  • the recesses constituting the fuel receiving part 106 and the oxidant receiving part 107 can each be, for example, one or two or more flow channel grooves having a serpentine shape, a line shape, or other shapes.
  • the recesses may be formed to spread over a relatively large area.
  • the fuel introduced into the fuel receiving part 106 is supplied to the first electrode 102 disposed immediately above it, and the oxidant introduced into the oxidant receiving part 107 is supplied to the second electrode 103 disposed immediately below it. Is done.
  • a fuel supply pipe and a fuel discharge pipe may be connected to the inlet side end portion and the outlet side end portion of the concave portion constituting the fuel receiving portion 106, respectively.
  • an oxidant supply pipe and an oxidant discharge pipe may be connected to the inlet side end part and the outlet side end part of the concave part constituting the oxidant receiving part 107, respectively.
  • the material of the first separator 104 and the second separator 105 is not particularly limited, but is preferably a conductive material such as a carbon material, a conductive polymer, various metals, and an alloy typified by stainless steel.
  • a conductive material such as a carbon material, a conductive polymer, various metals, and an alloy typified by stainless steel.
  • the first separator 104 and the second separator 105 may be made of a non-conductive material such as a plastic material, and an anode current collecting layer and a cathode current collecting layer may be provided separately. In this case, these current collection layers are arrange
  • the bipolar plate As the first separator 104 and the second separator 105, a so-called bipolar plate having both a fuel receiving portion and an oxidant receiving portion can be used.
  • the bipolar plate has a concave portion constituting the fuel receiving portion 106 on one main surface (first surface), and the oxidant receiving portion 107 on the other main surface (second surface) opposite to the first surface. Has a recess.
  • the bipolar plate is laminated on the first electrode 102 so that the first surface thereof is on the anion conductive electrolyte membrane 101 side.
  • bipolar plate When a bipolar plate is used as the second separator 105, it is laminated on the second electrode 103 so that its second surface is on the anion conductive electrolyte membrane 101 side.
  • the use of the bipolar plate is advantageous for thinning the stack structure when, for example, a stack structure is constructed by stacking a plurality of single cells.
  • FIG. 6 is a schematic cross-sectional view showing another example of an alkaline fuel cell that can be provided in the fuel cell unit 10a.
  • the fuel cell unit 10a may include an alkaline fuel cell 200 as shown in FIG.
  • the alkaline fuel cell 200 shown in FIG. 6 has an anode having a volume of the catalyst layer (anode catalyst layer) of the first electrode 102 larger than that of the catalyst layer (cathode catalyst layer) of the second electrode 103. Except that the weight of the anode catalyst contained in the catalyst layer is larger than the weight of the cathode catalyst contained in the cathode catalyst layer, it is the same as the alkaline fuel cell 100 of FIG.
  • the amount of CO 2 gas discharged per unit time from the first electrode (anode electrode) 102 can be increased, and as a result, the concentration of CO 2 -derived anions in the membrane electrode assembly can be reduced earlier. be able to.
  • the area of the anode catalyst layer is made larger.
  • the area of the surface of the anode catalyst layer on the side of the anion conductive electrolyte membrane 101 is made larger than the area of the surface of the cathode catalyst layer on the side of the anion conductive electrolyte membrane 101; the thickness of the anode catalyst layer is made larger than the thickness of the cathode catalyst layer; And combinations thereof.
  • Increasing the area and thickness of the anode catalyst layer is advantageous from the viewpoint of improving the durability of the anode catalyst layer.
  • FIG. 6 shows an example in which the area of the anode catalyst layer is larger than that of the cathode catalyst layer.
  • FIG. 7 is a schematic cross-sectional view showing still another example of an alkaline fuel cell that can be provided in the fuel cell unit 10a.
  • FIG. 8 is a schematic top view showing the second separator 105 constituting the alkaline fuel cell 300 shown in FIG. 7, and shows the surface of the second separator 105 on the anion conductive electrolyte membrane 101 side.
  • FIG. 9 is a schematic top view showing a state in which the second wall 113 is arranged on the surface of the second separator 105.
  • the alkaline fuel cell 300 shown in FIG. 7 has a heat medium flow path 120 for circulating the heat medium, and the other configuration is basically the alkaline fuel cell 100 of FIG. Can be similar.
  • the alkaline fuel cell 300 includes an anion conductive electrolyte membrane 101, a first electrode (anode electrode) 102 stacked on the first surface 101 b of the anion conductive electrolyte membrane 101, and a first surface of the anion conductive electrolyte membrane 101.
  • a membrane electrode assembly composed of a second electrode (cathode electrode) 103 laminated on the second surface 101a facing to 101b; a first electrode laminated on the first electrode 102, comprising at least a fuel receiving portion 106 for receiving fuel; 1 separator 104; mainly comprising a second separator 105 stacked on the second electrode 103, which includes at least an oxidant receiving portion 107 for receiving an oxidant; and a heat medium flow path 120.
  • the temperature controller 30a heats (preferably further cools) the alkaline fuel cell using the heat medium. It is used when doing something.
  • the temperature controller 30a includes a device that supplies the temperature-controlled heat medium to the heat medium flow path 120 of the alkaline fuel cell.
  • the heat medium flow path 120 is configured so that the heat medium is brought into contact with only the anion conductive electrolyte membrane 101 in the membrane electrode assembly.
  • the first heat medium flow path 122 for contacting the heat medium only to the first electrode side surface (first surface 101b) of the anion conductive electrolyte membrane 101, and the anion conductive electrolyte membrane It consists of the 2nd heat-medium flow path 121 for making a heat medium contact only to the 2nd electrode side surface (2nd surface 101a) of 101 [refer FIG. 7].
  • the electrode Since the temperature of the anion conductive electrolyte membrane 101 positioned directly is directly adjusted by the heat medium, it is possible to improve the heat exchange efficiency (thus shortening the time required for the fuel cell to reach a desired temperature). And the accuracy of temperature adjustment of the electrode and the anion conductive electrolyte membrane 101 can be improved.
  • the electrode pores are blocked as represented by flooding, and the power generation efficiency and output stability of the alkaline fuel cell are reduced. It is possible to prevent the decrease, and there is no possibility that the electrode is deteriorated by a small amount of impurities in the heat medium.
  • the first electrode 102 and the second electrode 103 have an area smaller than that of the anion conductive electrolyte membrane 101, the first separator 104, and the second separator 105, and accordingly, on the side of each electrode. Thus, there is a gap (space) where no electrode exists between the anion conductive electrolyte membrane 101 and each separator.
  • the 1st electrode 102 and the 2nd electrode 103 are laminated
  • the first heat medium flow path 122 is a part of a gap (space) where the above-mentioned electrode interposed between the first separator 104 and the anion conductive electrolyte membrane 101 does not exist, and is separated from the two.
  • the first space 110 is sandwiched between the first walls 112, and more specifically, the first space 110 and the first space 110 located immediately below the first space 110 and continuing to the first space 110. 1 recess 108.
  • the first wall 112 is formed along both ends in the width direction of the first recess 108 (similar to FIG. 9), and the anion conductivity from the surface of the first separator 104 on the anion conductive electrolyte membrane 101 side in the thickness direction. It extends to the first surface 101b of the electrolyte membrane 101. That is, the first space 110 is an internal space formed by the first separator 104, the anion conductive electrolyte membrane 101, and the two first walls 112. Thereby, the leakage of the heat medium to the outside of the first space 110 is prevented.
  • the first space 110 is isolated (spatially separated) from other portions of the gap (space) where no electrode exists and the first electrode 102 and the fuel receiving portion 106 by the first wall 112 provided at the periphery thereof. It is in contact with only the first surface 101b of the anion conductive electrolyte membrane 101 in the membrane electrode assembly.
  • the first recess 108 is a recess provided on the anion conductive electrolyte membrane 101 side surface of the first separator 104 in a region where the first electrode 102 does not exist, and is independent of the third recess constituting the fuel receiving unit 106. And is formed so as to surround the fuel receiving portion 106 (similar to FIG. 8).
  • the second heat medium flow path 121 is a part of a gap (space) where the above-described electrode interposed between the second separator 105 and the anion conductive electrolyte membrane 101 does not exist, and is spaced apart.
  • the second space 111 is sandwiched between the two second walls 113. More specifically, the second space 111 is located immediately above the second space 111 and in the second space 111.
  • the second recess 109 is continuous.
  • the second wall 113 is formed along both widthwise ends of the second recess 109 [see FIG. 9], and the anion conductive electrolyte from the anion conductive electrolyte membrane 101 side surface of the second separator 105 in the thickness direction.
  • the film 101 extends to the second surface 101a. That is, the second space 111 is an internal space formed by the second separator 105, the anion conductive electrolyte membrane 101 and the two second walls 113. Thereby, the leakage of the heat medium to the outside of the second space 111 is prevented.
  • the second space 111 is isolated (spatially separated) from the other part of the gap (space) where no electrode exists and the second electrode 103 and the oxidant receiving portion 107 by the second wall 113 provided at the periphery thereof.
  • the membrane electrode assembly only the second surface 101a of the anion conductive electrolyte membrane 101 is in contact.
  • the second recess 109 is a recess provided on the surface of the second separator 105 on the anion conductive electrolyte membrane 101 side in a region where the second electrode 103 does not exist, and is independent of the fourth recess constituting the oxidant receiving unit 107. And it is formed so as to surround the oxidant receiving portion 107 (see FIG. 8).
  • the first separator 104 includes a third recess that constitutes the fuel receiving portion 106 and a first recess 108 that is a part of the first heat medium flow path 122 on the anion conductive electrolyte membrane 101 side. It can be a member having at least the surface.
  • the second separator 105 is a member having at least a fourth concave portion constituting the oxidant receiving portion 107 and a second concave portion 109 which is a part of the second heat medium flow path 121 on the surface on the anion conductive electrolyte membrane 101 side. Can be.
  • the third recess and the fourth recess are respectively provided on the surface of the first separator 104 and the second separator 105 on the anion conductive electrolyte membrane 101 side in the region where the first electrode 102 and the second electrode 103 are laminated.
  • the third recess and the fourth recess can be one or more flow channel grooves having a serpentine shape, a line shape, or other shapes as shown in FIG. It can be a recess formed so as to spread.
  • a fuel supply pipe and a fuel discharge pipe may be connected to the inlet side end and the outlet side end of the third recess, respectively.
  • an oxidant supply pipe and an oxidant discharge pipe may be connected to the fourth recess at the inlet side end and the outlet side end, respectively.
  • the first recess 108 and the second recess 109 are respectively the fuel receiving portion 106 (third recess) and the oxidant receiving portion 107 (fourth).
  • the present invention is not limited to this, and various shapes can be taken in consideration of heat exchange efficiency and the like.
  • the first recess 108 and the second recess 109 have a plurality of channel grooves, branched channel grooves, and a relatively large tank shape so that the heat medium can be brought into contact over a wider area of the electrolyte membrane surface.
  • the surface of the first separator 104 and the second separator 105 may be all or almost the entire area excluding the fuel receiving portion 106 and the oxidant receiving portion 107, respectively. It may be formed.
  • the first recess 108 and the second recess 109 are provided in order to obtain good heat exchange efficiency and temperature uniformity in the fuel cell.
  • the first electrode 102 and the second electrode 103 are divided into a plurality of parts, and the fuel receiving part 106 and the oxidant receiving part 107 are also divided into a plurality of parts in accordance with this, and the divided fuel receiving part 106 and oxidant receiving part 107 are divided.
  • a bipolar plate having both a fuel receiving portion and an oxidant receiving portion may be used as the first separator 104 and the second separator 105.
  • the first wall 112 and the second wall 113 respectively pass through the first space 110 and the second space 111 that are a part of the heat medium flow path, the other part of the gap (space) in which the above-described electrode does not exist, and the electrode And a wall that is isolated from the fuel / oxidant receiving portion, and extends from the surface of the separator on the anion conductive electrolyte membrane 101 side to the surface of the anion conductive electrolyte membrane 101 in the thickness direction.
  • the first wall 112 and the second wall 113 are formed so as to be substantially parallel to the first concave portion 108 and the second concave portion 109 and along both ends in the width direction of the concave portion [see FIG. 9].
  • the first wall 112 and the second wall 113 may be formed so as to cover all gaps (spaces) where no electrode exists, except for the first space 110 and the second space 111. In that case, an alkaline fuel cell is used.
  • each of the first wall 112 and the second wall 113 is fitted into a groove formed so as to extend along both ends in the width direction of the recess substantially parallel to the first recess 108 and the second recess 109. You may arrange so that it may come in. According to such a configuration, the first wall 112 and the second wall 113 can be easily positioned when the alkaline fuel cell is assembled, and the productivity is improved. In addition, since the displacement of the first wall 112 and the second wall 113 can be prevented, a highly reliable alkaline fuel cell can be provided.
  • the material of the first wall 112 and the second wall 113 is not particularly limited as long as it is resistant to the heat medium and is impermeable to the heat medium.
  • Elastic bodies such as silicon rubber, tetrafluoroethylene propylene rubber, tetrafluoroethylene perfluoromethylvinylidene rubber; thermoplastic resin represented by tetrafluoroethylene, polypropylene, polymethylpentene, metal represented by stainless steel, or An inelastic material such as an alloy can be used.
  • the 1st wall 112 and the 2nd wall 113 consist of elastic bodies.
  • An elastic wall formed by applying pressure in the thickness direction of the fuel cell by using an elastic wall as an isolation wall interposed between each separator and the anion conductive electrolyte membrane 101 and forming a part of the heat medium flow path space By utilizing this deformation, the elastic wall, each separator, and the anion conductive electrolyte membrane 101 can be brought into good surface contact. Thereby, the sealing performance of these interfaces can be improved, and the leakage of the heat medium to the electrode and further to the fuel receiving portion 106 / oxidant receiving portion 107 can be more reliably prevented.
  • the elastic wall in order to obtain a good sealing property at the interface between the elastic wall and the separator and the anion conductive electrolyte membrane 101, and a sufficient reduction effect of the contact resistance between the electrode and the separator, Even when a sufficient pressure is applied in the thickness direction of the fuel cell by fastening between the first separator and the second separator, the elastic wall is appropriately crushed by the pressure to generate a repulsive force. This can effectively prevent an increase in material diffusion resistance due to pore blockage.
  • heat medium a known heat medium such as air, water vapor, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, etc .; water, aqueous solution, oil, liquid such as ethylene glycol can be used, but the heat capacity is high and efficient. It is preferable to use a liquid from the viewpoints of heat exchange and handling, and it is more preferable to use water or an aqueous solution.
  • the anion conductive electrolyte membrane 101 can be directly humidified, and moisture can be supplied to the second electrode (cathode electrode) 103 via the anion conductive electrolyte membrane 101. Therefore, it is possible to omit a humidifier for humidifying the fuel and / or oxidant, which has been conventionally required, which is advantageous for miniaturization of the fuel cell system. Further, the humidification of the anion conductive electrolyte membrane 101 can improve the power generation efficiency and startability (the time required to obtain a desired output from the start of power generation).
  • the alkaline fuel cell 300 having the recesses (the first recess 108 and the second recess 109) formed on the separator surface as a part of the heat medium channel has been described as an alkaline fuel cell having the heat medium channel.
  • the present invention is not limited to this, and the heat medium flow path may be formed inside the separator, or may be provided at a location different from the separator (the heat medium flow path is separately provided in the alkaline fuel cell). Attached etc.).
  • the fuel supplied to the first electrode (anode electrode) of the alkaline fuel cell for example, H 2 gas, hydrocarbon gas, alcohol such as methanol, ammonia gas, or the like can be used, and among them, H 2 gas is used. It is preferable.
  • the oxidant supplied to the second electrode (cathode electrode) for example, O 2 gas or a gas containing O 2 such as air can be used, and air is preferably used.
  • the fuel and / or oxidant may be humidified.
  • the temperature regulator 30a (temperature changing unit) An apparatus for supplying a medium to a heat medium flow path of an alkaline fuel cell;
  • a temperature controller 30a for example, a connection flow path (FIG. 7) that is connected to a heat medium flow path of an alkaline fuel cell and forms a circulation flow path for circulating the heat medium together with the heat medium flow path.
  • the temperature of the heat medium is obtained by heat exchange between the connection flow path 130 in 10 to 10), the circulation device (circulation pump or the like) that circulates the heat medium in the circulation flow path, and the heat medium in the circulation flow path.
  • the heat exchange device is provided, for example, in a tank that contains a heat medium (second heat medium) different from the heat medium supplied to the heat medium flow path of the alkaline fuel cell, around the connection flow path, 2 It can be a jacket or the like for circulating a heat medium.
  • control device and the fuel cell system of the present invention are not limited to the embodiment described above, and various modifications are possible.
  • the temperature controller 30a temperature changing unit
  • the temperature controller 30a can change the temperature of any one of the electrodes so that only one of the electrodes has a predetermined temperature X or more.
  • the other temperature may be maintained at or near the previous temperature.
  • the electrode to be raised to a temperature equal to or higher than the predetermined temperature X is an anode, and the electrode maintained at or near the temperature just above is a cathode.
  • the electrode to be raised to a temperature equal to or higher than the predetermined temperature X is an anode
  • the electrode maintained at or near the temperature just above is a cathode.
  • a temperature changing unit including a device for supplying a heat medium to the heat medium flow path by providing a heat medium flow path only to a separator laminated on the electrode
  • a temperature changing unit temperature controller
  • a heating / cooling device or a heating device connected only to the electrodes and the like.
  • the detection unit 20 may detect any of the above [b] to [e] as “the state of the alkaline fuel cell”. In such a case, the same effect can be obtained. obtain.
  • the concentration is detected by the detection unit 20.
  • the control unit 50 determines the temperature of the alkaline fuel cell regardless of whether the fuel cell unit 10 is generating power.
  • the temperature changing unit 30 is controlled so that the temperature becomes equal to or higher than the predetermined temperature X, and a current equal to or higher than the predetermined current value A is supplied to the membrane electrode assembly for a certain period of time under the temperature equal to or higher than the predetermined temperature X.
  • the current value changing unit 40 is controlled to flow.
  • the resistance value is constantly or constant by the detection unit 20 by a method such as current interrupt measurement or impedance measurement.
  • the control unit 50 performs the control as described above.
  • the control unit 50 When detecting the output voltage value of the alkaline fuel cell as “the state of the alkaline fuel cell”, the voltage value is constantly or constant by the detection unit 20 (voltmeter connected to the membrane electrode assembly). If it is determined that the obtained voltage / current characteristic is lower than the predetermined voltage / current characteristic (inferior to the predetermined voltage / current characteristic), the control unit 50 performs the control as described above. To do.
  • Example 1 [Production of control device and fuel cell system] ⁇ Example 1> In the following procedure, an alkaline fuel cell having the same configuration as that of FIG. 7 was produced, and a control device and a fuel cell system having the same configuration as that of FIG. 4 were produced using the alkaline fuel cell.
  • the catalyst-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt-supported amount of Pt / C of 50% by weight and the above-obtained electrolyte solution have a weight ratio of 2 / 0.2.
  • a catalyst paste for the anode catalyst layer was prepared by mixing and further adding ion exchange water and ethanol.
  • a catalyst-supporting carbon particle (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt support amount of 50% by weight and Pt / C and the electrolyte solution obtained above are 2 / 0.2 in weight ratio.
  • the catalyst paste for the cathode catalyst layer was prepared by mixing the mixture as described above and further adding ion exchange water and ethanol.
  • carbon paper (“TGP-H-060” manufactured by Toray Industries Inc., thickness of about 190 ⁇ m) is cut into an anode gas diffusion layer into a size of 22.3 mm long ⁇ 22.3 mm wide, and one side of the anode gas diffusion layer
  • the catalyst paste for the anode catalyst layer was applied using a screen printing plate having a window of 22.3 mm in length and 22.3 mm in width so that the amount of catalyst was 0.5 mg / cm 2.
  • the thickness of the obtained anode 102 was about 200 ⁇ m.
  • carbon paper (“TGP-H-060” manufactured by Toray Industries Inc., thickness of about 190 ⁇ m) is cut into a size of 22.3 mm long ⁇ 22.3 mm wide as a cathode gas diffusion layer, and one side of the cathode gas diffusion layer.
  • the above-mentioned catalyst paste for the cathode catalyst layer was applied using a screen printing plate having a window of 22.3 mm in length and 22.3 mm in width so that the amount of catalyst was 0.5 mg / cm 2.
  • the cathode electrode (second electrode) 103 in which the cathode catalyst layer was formed on the entire surface of one side of the carbon paper that was the cathode gas diffusion layer was produced by drying with the above.
  • the thickness of the obtained cathode electrode 103 was about 200 ⁇ m.
  • a fluororesin polymer electrolyte (“Aciplex” manufactured by Asahi Kasei Co., Ltd.) cut into a size of 90 mm in length ⁇ 90 mm in width is used as the anion conductive electrolyte membrane 101, and the anode electrode 102, electrolyte membrane 101, and cathode electrode are used.
  • 103 are stacked in this order so that the respective catalyst layers face the electrolyte membrane 101, and then subjected to thermocompression bonding at 130 ° C. and 10 kN for 2 minutes, whereby the anode electrode 102 and the cathode electrode 103 are connected to the electrolyte membrane 101.
  • the superposition was performed so that the positions of the anode electrode 102 and the cathode electrode 103 in the plane of the electrolyte membrane 101 coincided, and the centers of the anode electrode 102, the electrolyte membrane 101, and the cathode electrode 103 coincided.
  • the outer shape is 90 mm long ⁇ 90 mm wide ⁇ 20 mm thick, and one surface has a channel groove as shown in FIG. 8 (the fuel receiving portion 106 and the first concave portion 108 in FIG. Alternatively, two members made of a carbon material in which the oxidant receiving portion 107 and the second concave portion 109) are formed are prepared as the first separator 104 and the second separator 105 having a current collecting function, respectively.
  • the fuel receiving portion 106 included in the first separator 104 and the oxidant receiving portion 107 included in the second separator 105 are serpentine-shaped flow channel grooves as shown in FIG. 8 (flow channel width 800 ⁇ m, depth 800 ⁇ m). .
  • the regions where the fuel receiving portion 106 and the oxidant receiving portion 107 are formed are the centers of the first separator 104 and the second separator 105, respectively, and the size is 22.3 mm long ⁇ 22.3 mm wide.
  • the first recess 108 and the second recess 109 have a width of 800 ⁇ m and a depth of 800 ⁇ m, and are formed so as to surround the periphery of the fuel receiving portion 106 and the oxidant receiving portion 107, respectively.
  • the first separator 104 is formed with a hole for inserting a temperature sensor (thermocouple) constituting the detection unit 20a.
  • first wall 112 and the second wall 113 two tetrafluoroethylene propylene rubber sheets (thickness 180 ⁇ m) as shown in FIG. 9 are used, and these are shown in FIG. 9 of the first separator 104 and the second separator 105, respectively. It was arranged at the position shown in
  • the first space 110 between the first walls 112 and 112 is formed on the anode gas diffusion layer of the membrane electrode assembly obtained in (1) so that the groove forming surface faces the anode gas diffusion layer.
  • the first separator 104 is laminated so as to be disposed immediately above the first recess 108 (so that the anode 102 is disposed immediately above the fuel receiving portion 106), and a groove forming surface is formed on the cathode gas diffusion layer.
  • the cathode space 103 is disposed immediately below the oxidant receiving portion 107 so as to face the cathode gas diffusion layer and the second space 111 between the second walls 113 and 113 is disposed immediately below the second recess 109.
  • the second separator 105 was laminated and these were fastened using bolts and nuts to obtain an alkaline fuel cell.
  • control device having the same configuration as in FIG. 4 was manufactured, and a fuel cell system was manufactured using the alkaline fuel cell manufactured above as the fuel cell unit 10a. Specifically, it is as follows.
  • the fuel supply pipe is connected so that fuel can be supplied to the fuel receiving portion 106 of the first separator 104, and the oxidant supply pipe is connected so that oxidant can be supplied to the fuel receiving portion 107 of the second separator 105.
  • a charge / discharge battery system (“PFX2011” manufactured by Kikusui Electric Co., Ltd., an ammeter, a voltmeter, and an electronic load device are integrally provided) as the detection unit 20a and the electronic load device 40a is provided in the fuel cell unit 10a. While connecting to the 1 separator 104 and the 2nd separator 105, the thermocouple as the detection part 20a was inserted in the hole for temperature sensor attachment of the 1st separator 104.
  • This detection unit 20a detects the ratio T 1 / T 0 of the time T 1 during which a current of a predetermined current value A or more flows between the anode electrode and the cathode electrode of the membrane electrode assembly within the unit time T 0 . is there.
  • SUS pipes are connected to the inlet end and the outlet end of the heat medium flow path (the heat medium flow path of both the first separator 104 and the second separator 105) of the alkaline fuel cell. Then, a circulation channel for circulating the heat medium was constructed. A double plunger pump for circulating the heat medium was interposed in the circulation channel. A part of the SUS pipe was immersed in an oil bath capable of adjusting the temperature, and the temperature of the heat medium could be controlled.
  • a personal computer for storing current values and times T 0 and T 1 as the control unit 50a is provided. Is connected to the oil bath constituting the charge / discharge battery system, the thermocouple and the temperature controller 30a so that the detection result can be received, and the control information can be transmitted to the charge / discharge battery system based on the detection result.
  • humidified H 2 gas (relative Humidity 95%) is supplied to the fuel receiving portion 106 of the alkaline fuel cell at a flow rate of 200 mL / min
  • humidified oxygen gas (relative humidity 95%) is supplied to the oxidant receiving portion 107 at a flow rate of 500 mL / min.
  • the current value is a value obtained by dividing the amount of current flowing between the anode and cathode by the projected area of the cathode on the electrolyte membrane.
  • Example 2 Instead of the second separator 105 having the second recess 109, a separator not having the recess was used, and an alkaline fuel cell was produced in the same manner as in Example 1 except that the installation of the second wall 113 was omitted. Using this, a fuel cell system was produced in the same manner as in Example 1.

Abstract

Provided is a control device provided with: a detection unit that detects the state of an alkaline fuel cell provided with a membrane electrode assembly that includes an anion-conductive electrolyte membrane; a temperature changing unit for changing the temperature of the alkaline fuel cell; a current value changing unit for changing the value of a current flowing in the membrane electrode assembly of the alkaline fuel cell; and a control unit, which is connected to the detection unit, temperature changing unit, and current value changing unit, for controlling the temperature changing unit such that the temperature of the alkaline fuel cell is a prescribed temperature X or greater by increasing the temperature of the alkaline fuel cell according to the detection results from the detection unit and also for controlling the current value changing unit such that a current of a prescribed current value A or greater flows for a given amount of time in the membrane electrode assembly at a temperature of the prescribed temperature X or greater. Also provided is a fuel cell system using the control device.

Description

制御装置および燃料電池システムControl device and fuel cell system
 本発明は、高い出力および発電効率でアルカリ形燃料電池を稼動させることができるアルカリ形燃料電池の制御装置およびこれを用いた燃料電池システムに関する。 The present invention relates to an alkaline fuel cell control device capable of operating an alkaline fuel cell with high output and power generation efficiency, and a fuel cell system using the same.
 燃料電池は、発電主要部として、電解質膜をアノード極およびカソード極で挟持した構成の膜電極複合体(MEA)を備えており、電解質膜の種類によって、固体高分子形燃料電池(直接形燃料電池を含む)、リン酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、アルカリ形燃料電池などに分類される。 The fuel cell includes a membrane electrode assembly (MEA) having a configuration in which an electrolyte membrane is sandwiched between an anode and a cathode as a main part of power generation. Depending on the type of electrolyte membrane, a polymer electrolyte fuel cell (direct fuel) Battery), phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, alkaline fuel cell and the like.
 上記のうち、アルカリ形燃料電池は、電解質膜としてアニオン伝導性電解質膜(アニオン交換膜)を用いた、電荷キャリアが水酸化物イオン(OH-)である燃料電池である。アルカリ形燃料電池においては、アノード極とカソード極とを電気的に接続すると、次のような電気化学反応によりアノード極とカソード極との間に電流が流れ、電気エネルギーを得ることができる。すなわち、カソード極に酸化剤(たとえば酸素または空気など)および水(この水は、アノード極で生じ、電解質膜を透過した水であり得る)を供給すると、下記式(1):
 カソード極:1/2O2+H2O+2e- → 2OH-    (1)
で表される触媒反応によりOH-が生成される。このOH-は、水分子との水和状態で電解質膜を介してアノード極側に伝達される。一方、アノード極では、供給された燃料、たとえばH2ガスとカソード極から伝達されたOH-とが、下記式(2):
 アノード極:H2+2OH- → 2H2O+2e-      (2)
で表される触媒反応を起こし、水および電子を生成する。
Among the above, the alkaline fuel cell is a fuel cell in which an anion conductive electrolyte membrane (anion exchange membrane) is used as an electrolyte membrane, and charge carriers are hydroxide ions (OH ). In an alkaline fuel cell, when an anode electrode and a cathode electrode are electrically connected, a current flows between the anode electrode and the cathode electrode by the following electrochemical reaction, and electric energy can be obtained. That is, when an oxidizing agent (for example, oxygen or air) and water (this water may be water generated at the anode electrode and permeated through the electrolyte membrane) are supplied to the cathode electrode, the following formula (1):
Cathode electrode: 1 / 2O 2 + H 2 O + 2e → 2OH (1)
OH is generated by the catalytic reaction represented by This OH is transmitted to the anode side through the electrolyte membrane in a hydrated state with water molecules. On the other hand, in the anode electrode, the supplied fuel, for example, H 2 gas and OH transmitted from the cathode electrode are expressed by the following formula (2):
Anode electrode: H 2 + 2OH → 2H 2 O + 2e (2)
To generate water and electrons.
 アルカリ形燃料電池は、触媒などの構成材料の制限が少なく、より安価に製造できるなどの利点を有している一方、他の燃料電池と異なり、電解質膜および触媒層の電解質にアニオン伝導性電解質を用いるために、電解質膜および触媒層が環境中の二酸化炭素(CO2)を吸収し、電解質膜および触媒層中のOH-が、下記式(3)および(4):
 CO2+2OH- → CO3 2-+H2O           (3)
 CO2+OH- → HCO3 -               (4)
のような反応によってCO3 2-および/またはHCO3 -(以下、「CO2由来アニオン」ということがある。)に置換されやすいという本来的な課題を有している。このようなCO2由来アニオンの濃度上昇(OH-イオン濃度の低下)は、電解質のアニオン伝導度を低下させ、結果、セル抵抗を大きく増大させるため、出力および発電効率の低下を招く。
Alkaline fuel cells have advantages such as fewer restrictions on constituent materials such as catalysts and can be manufactured at a lower cost, but unlike other fuel cells, the electrolyte of the electrolyte membrane and catalyst layer is an anion conductive electrolyte. Therefore, the electrolyte membrane and the catalyst layer absorb carbon dioxide (CO 2 ) in the environment, and OH in the electrolyte membrane and the catalyst layer is represented by the following formulas (3) and (4):
CO 2 + 2OH → CO 3 2− + H 2 O (3)
CO 2 + OH - → HCO 3 - (4)
It has an inherent problem that it is easily replaced by CO 3 2− and / or HCO 3 (hereinafter sometimes referred to as “CO 2 -derived anion”) by such a reaction. Such an increase in the concentration of CO 2 -derived anions (decrease in OH ion concentration) decreases the anion conductivity of the electrolyte, and as a result greatly increases the cell resistance, leading to a decrease in output and power generation efficiency.
 上記セル抵抗増大の問題は、「セルフパージ」により改善できることが知られている〔たとえばHiroyuki Yanagi,and Kenji Fukuta,ECS Transactions,16(2),257-262(2008)(非特許文献1)〕。「セルフパージ」とは、たとえばアルカリ形燃料電池の稼動によってアノード極とカソード極の間に電流を流すことにより、アニオン伝導度の低下の要因である、電解質膜および触媒層に含まれるCO2由来アニオンがアノード極に移動し、燃料によって還元され、CO2ガスとしてアノード極から排出させる操作をいい、具体的には下記式(5)および(6):
 H2+CO3 2- → CO2+H2O+2e-          (5)
 H2+2HCO3 - → 2CO2+2H2O+2e-       (6)
で表すことができる。
It is known that the problem of the cell resistance increase can be improved by “self-purge” [for example, Hiroyuki Yanagi, and Kenji Fukuta, ECS Transactions, 16 (2), 257-262 (2008) (Non-patent Document 1)]. “Self-purge” refers to a CO 2 -derived anion contained in an electrolyte membrane and a catalyst layer, which causes a decrease in anion conductivity, for example, by causing a current to flow between the anode and the cathode by operating an alkaline fuel cell. Is moved to the anode electrode, reduced by fuel, and discharged from the anode electrode as CO 2 gas. Specifically, the following formulas (5) and (6):
H 2 + CO 3 2− → CO 2 + H 2 O + 2e (5)
H 2 + 2HCO 3 → 2CO 2 + 2H 2 O + 2e (6)
Can be expressed as
 ところで、アルカリ形燃料電池に限らず、燃料電池の発電電力を有効に利用するためには、当該燃料電池を電力源とする電子機器の電力消費量に応じて、燃料電池の発電量を調整する必要がある。たとえば、電子機器の電力消費が無い場合には、燃料電池の稼動(発電)を停止したり、電子機器の電力消費が小さい場合には、燃料電池の発電量(すなわち、動作電流値)を小さくしたり、電力消費が大きい場合には、燃料電池の発電量を大きくしたりする必要がある。 By the way, in order to effectively use the power generated by the fuel cell, not limited to the alkaline fuel cell, the power generation amount of the fuel cell is adjusted according to the power consumption of the electronic device using the fuel cell as a power source. There is a need. For example, when there is no power consumption of the electronic device, the operation (power generation) of the fuel cell is stopped, or when the power consumption of the electronic device is small, the power generation amount (that is, the operating current value) of the fuel cell is decreased. If the power consumption is large, it is necessary to increase the power generation amount of the fuel cell.
 しかしながら、アルカリ形燃料電池においては、電子機器の電力消費量に応じて稼動停止したり、動作電流値を小さくしたりすると、セルフパージによるアノード極からのCO2ガスの排出が十分に進行せず、セル抵抗増大による出力および発電効率の低下を十分に抑制することができない。また、アノード極へのCO2由来アニオンの蓄積が進行することにより、アノード極における反応過電圧が高くなるという問題もある。反応過電圧の増大も出力および発電効率を低下させる要因となる〔Yu Matsui,Morihiro Saito,Akimasa Tasaka,and Minoru Inaba,ECS Transactions,25(13),105-110(2010)(非特許文献2)参照〕。 However, in alkaline fuel cells, if the operation is stopped according to the power consumption of the electronic device or the operating current value is reduced, the discharge of CO 2 gas from the anode electrode by self-purge does not proceed sufficiently, A decrease in output and power generation efficiency due to an increase in cell resistance cannot be sufficiently suppressed. There is also a problem that the reaction overvoltage at the anode electrode increases due to the accumulation of CO 2 -derived anions on the anode electrode. An increase in reaction overvoltage also causes a decrease in output and power generation efficiency [see Yu Matsui, Morihiro Saito, Aki Masa Tasa, and Minoru Inaba, ECS Transactions, 25 (13), 105-110 (2010) (Non-Patent Document 2). ].
 本発明は上記課題に鑑みなされたものであり、その目的は、高い出力および発電効率でアルカリ形燃料電池を稼動させることができるアルカリ形燃料電池の制御装置およびこれを用いた燃料電池システムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an alkaline fuel cell control device capable of operating an alkaline fuel cell with high output and power generation efficiency, and a fuel cell system using the same. There is to do.
 本発明は以下のものを含む。
 [1]アニオン伝導性電解質膜を含む膜電極複合体を備えるアルカリ形燃料電池の状態を検出する検出部と、
 前記アルカリ形燃料電池の温度を変更するための温度変更部と、
 前記アルカリ形燃料電池の膜電極複合体に流れる電流値を変更するための電流値変更部と、
 前記検出部、前記温度変更部および前記電流値変更部に接続され、前記検出部による検出結果に応じて、前記アルカリ形燃料電池の温度を上昇させることにより該温度が所定温度X以上になるように前記温度変更部を制御するとともに、前記所定温度X以上の温度下において、前記膜電極複合体に所定電流値A以上の電流が一定時間流れるように前記電流値変更部を制御するための制御部と、
を備える制御装置。
The present invention includes the following.
[1] A detection unit for detecting a state of an alkaline fuel cell including a membrane electrode assembly including an anion conductive electrolyte membrane;
A temperature changing unit for changing the temperature of the alkaline fuel cell;
A current value changing unit for changing a current value flowing through the membrane electrode assembly of the alkaline fuel cell;
Connected to the detection unit, the temperature change unit, and the current value change unit, and according to the detection result by the detection unit, the temperature of the alkaline fuel cell is increased so that the temperature becomes a predetermined temperature X or more. And a control for controlling the current value changing unit so that a current of a predetermined current value A or more flows through the membrane electrode assembly for a predetermined time under a temperature of the predetermined temperature X or higher. And
A control device comprising:
 [2]前記検出部は、前記アルカリ形燃料電池の温度と、単位時間T0内における、前記膜電極複合体に所定電流値A以上の電流が流れた時間T1の割合T1/T0とを少なくとも検出するものである[1]に記載の制御装置。 [2] The detection unit includes a temperature of the alkaline fuel cell, the unit time T in 0, the membrane electrode ratio T 1 / T 0 of the complex to a predetermined current value A or more current flows time T 1 And the control device according to [1].
 [3]前記温度変更部は、前記アルカリ形燃料電池を加熱および冷却することが可能な加熱冷却装置または前記アルカリ形燃料電池を加熱するための加熱装置を含む[1]または[2]に記載の制御装置。 [3] The temperature changing unit includes a heating / cooling device capable of heating and cooling the alkaline fuel cell or a heating device for heating the alkaline fuel cell. Control device.
 [4]前記温度変更部は、前記アルカリ形燃料電池が備える、熱媒体を流通させるための流路に対して熱媒体を供給するための装置を含む[3]に記載の制御装置。 [4] The control device according to [3], wherein the temperature changing unit includes a device for supplying the heat medium to a flow path for circulating the heat medium, which is included in the alkaline fuel cell.
 [5]前記電流値変更部は、前記アルカリ形燃料電池に接続される電子負荷装置または可変抵抗器を含む[1]~[4]のいずれかに記載の制御装置。 [5] The control device according to any one of [1] to [4], wherein the current value changing unit includes an electronic load device or a variable resistor connected to the alkaline fuel cell.
 [6]前記膜電極複合体は、前記アニオン伝導性電解質膜と、前記アニオン伝導性電解質膜の第1表面に積層される第1電極と、前記アニオン伝導性電解質膜の前記第1表面に対向する第2表面に積層される第2電極とからなり、
 前記温度変更部は、前記第1電極の温度を変更するものである[1]~[5]のいずれかに記載の制御装置。
[6] The membrane electrode assembly is opposed to the first surface of the anion conductive electrolyte membrane, the first electrode laminated on the first surface of the anion conductive electrolyte membrane, and the first surface of the anion conductive electrolyte membrane. And a second electrode laminated on the second surface,
The control device according to any one of [1] to [5], wherein the temperature changing unit changes a temperature of the first electrode.
 [7]前記第1電極がアノード極であり、前記第2電極がカソード極である[6]に記載の制御装置。 [7] The control device according to [6], wherein the first electrode is an anode electrode and the second electrode is a cathode electrode.
 [8]前記所定温度Xは、前記温度変更部によって温度を上昇させる直前のアルカリ形燃料電池の温度の105%~150%の温度である[1]~[7]のいずれかに記載の制御装置。 [8] The control according to any one of [1] to [7], wherein the predetermined temperature X is 105% to 150% of the temperature of the alkaline fuel cell immediately before the temperature is changed by the temperature changing unit. apparatus.
 [9]前記所定電流値Aは、600~1000mA/cm2の範囲内である[1]~[8]のいずれかに記載の制御装置。 [9] The control device according to any one of [1] to [8], wherein the predetermined current value A is in a range of 600 to 1000 mA / cm 2 .
 [10]前記アルカリ形燃料電池を含む燃料電池部と、[1]~[9]のいずれかに記載の制御装置とを備える燃料電池システム。 [10] A fuel cell system comprising a fuel cell unit including the alkaline fuel cell and the control device according to any one of [1] to [9].
 本発明の制御装置および燃料電池システムによれば、高い出力および発電効率でアルカリ形燃料電池を稼動させることができる。 According to the control device and the fuel cell system of the present invention, the alkaline fuel cell can be operated with high output and power generation efficiency.
本発明に係る制御装置およびこれを適用した燃料電池システムの構成を示す概略図である。It is the schematic which shows the structure of the control apparatus which concerns on this invention, and the fuel cell system to which this is applied. アルカリ形燃料電池の膜電極複合体に、ある単位時間内における一定時間、所定電流値A以上の電流が流れるサイクルが繰り返されている状態およびこのときのCO2由来アニオン濃度の変化の様子を示す概念図である。A state in which a cycle in which a current of a predetermined current value A or more flows through a membrane electrode assembly of an alkaline fuel cell for a certain period of time within a certain unit time is repeated, and the state of changes in the CO 2 -derived anion concentration at this time is shown. It is a conceptual diagram. アルカリ形燃料電池の膜電極複合体に所定電流値A以上の電流が1回のみ流れるときのCO2由来アニオン濃度の変化の様子を示す概念図である。Is a conceptual diagram showing changes in the CO 2 from the anion concentration when flowing only once or more current predetermined current value A to the membrane electrode assembly of the alkaline fuel cell. 本発明の第1の実施形態に係る制御装置およびこれを適用した燃料電池システムを示す概略図である。It is the schematic which shows the control apparatus which concerns on the 1st Embodiment of this invention, and the fuel cell system to which this is applied. 燃料電池部が備え得るアルカリ形燃料電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the alkaline fuel cell with which a fuel cell part can be equipped. 燃料電池部が備え得るアルカリ形燃料電池の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the alkaline fuel cell with which a fuel cell part can be equipped. 燃料電池部が備え得るアルカリ形燃料電池のさらに他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the alkaline fuel cell with which a fuel cell part can be equipped. 図7に示されるアルカリ形燃料電池を構成する第2セパレータを示す概略上面図である。It is a schematic top view which shows the 2nd separator which comprises the alkaline fuel cell shown by FIG. 図8に示される第2セパレータの表面に第2壁を配置した状態を示す概略上面図である。It is a schematic top view which shows the state which has arrange | positioned the 2nd wall on the surface of the 2nd separator shown by FIG. 第2セパレータの他の一例を示す概略上面図である。It is a schematic top view which shows another example of a 2nd separator.
 図1は、本発明に係る制御装置およびこれを適用した燃料電池システムの構成を示す概略図である。図1に示されるように、本発明の制御装置は、アルカリ形燃料電池を含む燃料電池部10に接続され、アルカリ形燃料電池の状態を検出するための検出部20;燃料電池部10に接続され、アルカリ形燃料電池の温度を変更するための温度変更部30;燃料電池部10に接続され、アルカリ形燃料電池の膜電極複合体に流れる電流の電流値を変更するための電流値変更部40;ならびに、検出部20、温度変更部30および電流値変更部40に接続される制御部50を基本的に備える。制御部50は、検出部20からアルカリ形燃料電池の状態に関する検出結果(情報信号)を受信し、受信した検出結果に応じて、アルカリ形燃料電池の温度を上昇させることにより該温度が所定温度X以上になるように温度変更部30を制御するとともに、該所定温度X以上の温度下において、膜電極複合体に所定電流値A以上の電流が一定時間流れるように電流値変更部40を制御する。 FIG. 1 is a schematic diagram showing a configuration of a control device according to the present invention and a fuel cell system to which the control device is applied. As shown in FIG. 1, the control device of the present invention is connected to a fuel cell unit 10 including an alkaline fuel cell, and is connected to the fuel cell unit 10; a detection unit 20 for detecting the state of the alkaline fuel cell. A temperature changing unit 30 for changing the temperature of the alkaline fuel cell; a current value changing unit for changing the current value of the current connected to the fuel cell unit 10 and flowing through the membrane electrode assembly of the alkaline fuel cell 40; and basically a control unit 50 connected to the detection unit 20, the temperature changing unit 30, and the current value changing unit 40. The control unit 50 receives a detection result (information signal) related to the state of the alkaline fuel cell from the detection unit 20, and raises the temperature of the alkaline fuel cell according to the received detection result, thereby causing the temperature to reach a predetermined temperature. The temperature changing unit 30 is controlled so as to be equal to or higher than X, and the current value changing unit 40 is controlled so that a current equal to or higher than the predetermined current value A flows through the membrane electrode assembly for a predetermined time at a temperature equal to or higher than the predetermined temperature X. To do.
 本発明の燃料電池システムは、アルカリ形燃料電池を含む燃料電池部10と、上記制御装置とを備えるものであり、燃料電池部10は、制御装置の検出部20、温度変更部30および電流値変更部40と接続される。燃料電池部10を構成するアルカリ形燃料電池は、アニオン伝導性電解質膜を有する膜電極複合体を備えるものである。 The fuel cell system of the present invention includes a fuel cell unit 10 including an alkaline fuel cell, and the control device. The fuel cell unit 10 includes a detection unit 20, a temperature changing unit 30, and a current value of the control device. Connected to the changing unit 40. The alkaline fuel cell constituting the fuel cell unit 10 includes a membrane electrode assembly having an anion conductive electrolyte membrane.
 本発明の制御装置および燃料電池システムは、上記所定温度X以上の温度下において、燃料電池部10に含まれるアルカリ形燃料電池の膜電極複合体に所定電流値A以上の電流が「一定時間」流れるように燃料電池を制御するものである。図2はアルカリ形燃料電池の膜電極複合体に、ある単位時間内における一定時間、所定電流値A以上の電流が流れるサイクルが繰り返されている状態を示した概念図である。図2を参照して説明すると、本発明において「膜電極複合体に所定電流値A以上の電流が一定時間流れる」とは、アルカリ形燃料電池がこれを電力源とする電子機器への電力供給を行なっているか(すなわち、発電しているか)否かに関わらず、単位時間T0内におけるある一定時間、所定電流値A以上の電流が流れていることを意味している。そして好ましくは、図2に示されるように、このような所定電流値A以上の電流が流れている一定時間を含む単位時間T0のサイクル(すなわち、間欠的に所定電流値A以上の電流が流れている状態)が繰り返される。 In the control device and the fuel cell system of the present invention, a current of a predetermined current value A or more is “a certain time” in the membrane electrode assembly of the alkaline fuel cell included in the fuel cell unit 10 at a temperature of the predetermined temperature X or higher. The fuel cell is controlled to flow. FIG. 2 is a conceptual diagram showing a state in which a cycle in which a current of a predetermined current value A or more flows for a certain period of time within a unit time is repeated in a membrane electrode assembly of an alkaline fuel cell. Referring to FIG. 2, in the present invention, “a current of a predetermined current value A or more flows through the membrane electrode assembly for a certain period of time” means that an alkaline fuel cell supplies power to an electronic device using this as a power source. This means that a current equal to or greater than the predetermined current value A flows for a certain period of time within the unit time T 0 regardless of whether or not (that is, whether or not power is being generated). Preferably, as shown in FIG. 2, a cycle of unit time T 0 including a certain time during which a current of a predetermined current value A or more flows (that is, a current of a predetermined current value A or more is intermittently generated). (Flowing state) is repeated.
 上記の「アルカリ形燃料電池がこれを電力源とする電子機器への電力供給を行なっているか(すなわち、発電しているか)否かに関わらず」とは、所定電流値A以上の電流が、電子機器からの要求に従った発電によるものか、制御装置が強制的に流したものであるかを問わないことを意味している。 The above “regardless of whether the alkaline fuel cell is supplying power to an electronic device using this as a power source (that is, whether or not it is generating power)” means that a current of a predetermined current value A or more is This means that it does not matter whether it is due to power generation according to a request from an electronic device or whether the control device is forced to flow.
 所定電流値A以上の電流が流れている一定時間を含む単位時間T0のサイクルが2回以上繰り返される場合において、上記一定時間はすべて同じ時間長さであってもよいし、2種以上の異なる時間長さを含んでいてもよい。また、膜電極複合体に流れる電流は所定電流値A以上である限り特に制限されず、すべて同じ電流値であってもよいし、2種以上の異なる電流値を含んでいてもよい。単位時間T0内に所定電流値A以上の電流が複数回流されてもよい。 In the case where a cycle of unit time T 0 including a certain time during which a current of a predetermined current value A or more is flowing is repeated two or more times, all the above certain times may have the same time length, or two or more kinds Different time lengths may be included. Further, the current flowing through the membrane electrode assembly is not particularly limited as long as it is equal to or greater than the predetermined current value A, and may all be the same current value or may include two or more different current values. A current greater than or equal to the predetermined current value A may be supplied a plurality of times within the unit time T 0 .
 図2には、アルカリ形燃料電池の膜電極複合体に所定電流値A以上の電流が流れている一定時間を含む単位時間T0のサイクルが繰り返されている(所定電流値A以上の電流が間欠的に流れている)ときの、CO2由来アニオン濃度の変化の様子を併せて示している。図示されるように、所定電流値A以上の電流が流れている一定時間を含む単位時間T0のサイクルが繰り返されることにより、所定電流値A以上の大電流でのセルフパージが間欠的に繰り返されるため、膜電極複合体中のCO2由来アニオン濃度を実質的に常に低い状態に維持することができ、CO2由来アニオンの蓄積を抑制することができる。これにより、セル抵抗増大およびアノード極における反応過電圧の上昇の問題が改善され、アルカリ形燃料電池の出力および発電効率を向上させることができる。 In FIG. 2, a cycle of a unit time T 0 including a certain time during which a current of a predetermined current value A or more flows in the membrane electrode assembly of an alkaline fuel cell is repeated (a current of a predetermined current value A or more is The state of the change in the CO 2 -derived anion concentration when the gas flows intermittently is also shown. As shown in the figure, by repeating a cycle of unit time T 0 including a certain time during which a current of a predetermined current value A or more flows, self-purge with a large current of a predetermined current value A or more is repeated intermittently. Therefore, the CO 2 -derived anion concentration in the membrane electrode assembly can be maintained at a substantially low level, and the accumulation of CO 2 -derived anions can be suppressed. Thereby, the problem of increase in cell resistance and increase in reaction overvoltage at the anode electrode can be improved, and the output and power generation efficiency of the alkaline fuel cell can be improved.
 一方、図3は、アルカリ形燃料電池の膜電極複合体に所定電流値A以上の電流が流れている一定時間を含む単位時間T0が1つのみである(所定電流値A以上の電流が1回のみ流れる)ときの、CO2由来アニオン濃度の変化の様子を概念的に示したものである。このような場合とは、たとえば、制御装置によって所定電流値A以上の電流を強制的に流し、それ以降、制御装置およびアルカリ形燃料電池の稼動を行なわない場合;制御装置によって所定電流値A以上の電流を強制的に流し、それ以降、所定電流値A未満の電流でアルカリ形燃料電池が発電を行なう場合;所定電流値A以上の電流でアルカリ形燃料電池が発電を行なった後、それ以降、所定電流値A未満の電流でアルカリ形燃料電池が発電を行なうか、またはアルカリ形燃料電池の稼動を停止する場合などである。 On the other hand, FIG. 3 shows only one unit time T 0 including a certain time during which a current of a predetermined current value A or more flows through the membrane electrode assembly of an alkaline fuel cell (a current of a predetermined current value A or more is It shows conceptually how the CO 2 -derived anion concentration changes when it flows only once). Such a case is, for example, a case where a current of a predetermined current value A or more is forcibly supplied by the control device, and thereafter the control device and the alkaline fuel cell are not operated; When the alkaline fuel cell generates power at a current lower than a predetermined current value A after that; after the alkaline fuel cell generates power at a current higher than the predetermined current value A, and thereafter The alkaline fuel cell generates power with a current less than a predetermined current value A, or the alkaline fuel cell is stopped.
 本発明における「膜電極複合体に所定電流値A以上の電流が一定時間流れる」とは、図3に示されるような場合、すなわち、所定電流値A以上の電流が流れている一定時間を含む単位時間T0が1つのみである場合を含み得るが、好ましくは図2に示されるように、このような単位時間T0のサイクルが繰り返される。膜電極複合体中のCO2由来アニオン濃度を実質的に常に低い状態に維持できるためである。所定電流値A以上の電流が流れている一定時間を含む単位時間T0が1つのみである場合には、当該単位時間T0後にアルカリ形燃料電池の発電を行なう際、十分に高い出力または発電効率が得られにくい場合がある。ただし、出力や発電効率を顕著に低下させる程度にまでCO2由来アニオンが電解質膜および触媒層中に蓄積された後にアルカリ形燃料電池の発電を行なわないような場合には、所定電流値A以上の電流が流れている一定時間を含む単位時間T0が1つのみであってもよい。 In the present invention, “a current of a predetermined current value A or more flows through the membrane electrode assembly for a certain period of time” includes a case where the current of a predetermined current value A or more flows as shown in FIG. Although there may be a case where there is only one unit time T 0 , such a cycle of unit time T 0 is preferably repeated as shown in FIG. This is because the CO 2 -derived anion concentration in the membrane electrode complex can be maintained substantially always low. When there is only one unit time T 0 including a certain time during which a current greater than or equal to the predetermined current value A flows, a sufficiently high output or power is generated when the alkaline fuel cell generates power after the unit time T 0. It may be difficult to obtain power generation efficiency. However, when the alkaline fuel cell does not generate power after the CO 2 -derived anion is accumulated in the electrolyte membrane and the catalyst layer to such an extent that the output and power generation efficiency are remarkably reduced, a predetermined current value A or more is obtained. There may be only one unit time T 0 including a certain time during which the current flows.
 ここで、本発明の制御装置および燃料電池システムの特徴の1つは、電流値変更部40とともに温度変更部30を制御して、アルカリ形燃料電池の温度を上昇させることによって所定温度X以上の温度とし、該温度下において、膜電極複合体に所定電流値A以上の電流が一定時間流れるように制御することにある。所定温度Xは、温度を上昇させる直前のアルカリ形燃料電池の温度(以下、直前温度ともいう)よりも高い温度である。膜電極複合体に流すことができる電流値は、アルカリ形燃料電池の温度が高いほど大きくなる。したがって、アルカリ形燃料電池の温度を高い温度領域に調節することにより、アルカリ形燃料電池の温度が上記直前温度に維持される場合と比較して、所定電流値A以上の電流値がより実現しやすくなるとともに、一定時間流される電流の電流値をより大きくすることができる。より大きな電流を流すことができるため、アノード極から排出される単位時間あたりのCO2ガス量を増大させることができ、その結果、膜電極複合体中のCO2由来アニオン濃度をより早期に低減させることができる。 Here, one of the features of the control device and the fuel cell system of the present invention is that the temperature change unit 30 is controlled together with the current value change unit 40 to raise the temperature of the alkaline fuel cell to a predetermined temperature X or higher. The temperature is controlled so that a current of a predetermined current value A or more flows through the membrane electrode assembly for a predetermined time at the temperature. The predetermined temperature X is a temperature higher than the temperature of the alkaline fuel cell immediately before raising the temperature (hereinafter also referred to as the immediately preceding temperature). The value of current that can be passed through the membrane electrode assembly increases as the temperature of the alkaline fuel cell increases. Therefore, by adjusting the temperature of the alkaline fuel cell to a high temperature range, a current value equal to or higher than the predetermined current value A is realized more than when the temperature of the alkaline fuel cell is maintained at the immediately preceding temperature. In addition to being easy, the current value of the current that flows for a certain period of time can be increased. Since a larger current can flow, the amount of CO 2 gas discharged from the anode electrode per unit time can be increased, and as a result, the concentration of CO 2 -derived anions in the membrane electrode assembly can be reduced earlier. Can be made.
 なお、本発明においては基本的に、膜電極複合体中のCO2由来アニオン濃度が比較的高い場合に、アルカリ形燃料電池の温度を所定温度X以上とし、膜電極複合体に所定電流値A以上の電流が一定時間流れるように制御を行なうが、膜電極複合体中のCO2由来アニオン濃度が比較的高い場合においては、電解質膜や電極触媒層中の電解質は、主に炭酸イオン型になっているので、アルカリ形燃料電池の温度を上げてもこれらの劣化は生じ難い。 In the present invention, basically, when the concentration of the CO 2 -derived anion in the membrane electrode assembly is relatively high, the temperature of the alkaline fuel cell is set to a predetermined temperature X or more, and the membrane electrode assembly has a predetermined current value A. The above current is controlled so as to flow for a certain period of time. However, when the concentration of anion derived from CO 2 in the membrane electrode assembly is relatively high, the electrolyte in the electrolyte membrane or the electrode catalyst layer is mainly carbonate ion type. Therefore, even if the temperature of the alkaline fuel cell is raised, these deteriorations are unlikely to occur.
 本発明によれば、上記のとおり、アルカリ形燃料電池が発電しているか否か(換言すれば、アルカリ形燃料電池を電力源とする電子機器の電力消費量)に関わらず、膜電極複合体中のCO2由来アニオン濃度を実質的に常に低くした状態に維持することができるため、セル抵抗増大およびアノード極における反応過電圧の上昇を抑制した状態でアルカリ形燃料電池を発電させることができ、これにより出力および発電効率を向上させることができる。そしてさらに本発明によれば、上記のとおり、膜電極複合体中のCO2由来アニオン濃度をより早期に低減させることができることにより、所定電流値A以上の電流が流される時間長さ(すなわち、後述する一定時間T2)を短くできるため、出力および発電効率の改善効果をより早期に得ることができるとともに、さらなる余剰電力の低減ならびに、出力および発電効率の向上においても有利となる。 According to the present invention, as described above, regardless of whether the alkaline fuel cell is generating electricity (in other words, the power consumption of the electronic device using the alkaline fuel cell as a power source), the membrane electrode assembly Since the concentration of CO 2 -derived anions in the inside can be kept substantially low at all times, an alkaline fuel cell can generate power while suppressing an increase in cell resistance and an increase in reaction overvoltage at the anode electrode. Thereby, output and power generation efficiency can be improved. Further, according to the present invention, as described above, the CO 2 -derived anion concentration in the membrane electrode assembly can be reduced earlier, so that the length of time during which a current greater than or equal to the predetermined current value A flows (that is, Since the fixed time T 2 ), which will be described later, can be shortened, the effect of improving the output and power generation efficiency can be obtained earlier, and it is advantageous in further reducing the surplus power and improving the output and power generation efficiency.
 さらに、本発明の制御装置およびこれを適用した燃料電池システムは、次のような作用効果を奏し得る。 Furthermore, the control device of the present invention and the fuel cell system to which the control device is applied can exhibit the following operational effects.
 〔i〕膜電極複合体中のCO2由来アニオン濃度を低くした状態でアルカリ形燃料電池の稼動を停止することができ、また、停止中においても、CO2由来アニオン濃度を低くした状態に維持できるため、アルカリ形燃料電池を起動する際の立ち上げ(立ち上げ時間)を早くすることができる(すなわち、要求される発電量に達するまでの時間を短くすることができる)。 [I] Alkaline fuel cell operation can be stopped with the CO 2 -derived anion concentration in the membrane electrode assembly being low, and the CO 2 -derived anion concentration can be kept low even during shutdown. Therefore, the start-up (start-up time) when starting up the alkaline fuel cell can be accelerated (that is, the time required to reach the required power generation amount can be shortened).
 なお、本発明の制御装置による温度および電流値制御は、アルカリ形燃料電池の定常運転時(発電時)、稼動停止後の起動時(稼動初期段階)、または、アルカリ形燃料電池の待機運転時(電子機器に電力を供給しない状態)のいずれか1以上の運転モードにおいて実施することができる。 Note that the temperature and current value control by the control device of the present invention is performed at the time of steady operation of the alkaline fuel cell (during power generation), at the start-up after operation stop (initial operation stage), or at the standby operation of the alkaline fuel cell. It can be implemented in any one or more operation modes (state in which power is not supplied to the electronic device).
 〔ii〕単位時間T0内におけるある一定時間、動作電流値が大きくなるように制御する本発明によれば、連続的に動作電流値を大きくする場合と比べて、余剰電力(電子機器が要求する量を超える電力)の発生を抑制することができる。このことも出力および発電効率の向上に寄与する。なお、当該余剰電力に起因する出力および発電効率の低下を抑制するために、間欠的に動作電流値が大きくする場合においても、余剰電力をたとえば図示しない蓄電池などに蓄電してもよい。 [Ii] According to the present invention in which the operating current value is controlled to increase for a certain period of time within the unit time T 0 , as compared with the case where the operating current value is continuously increased, surplus power (required by the electronic device) Occurrence of electric power exceeding the amount to be generated) can be suppressed. This also contributes to improvement of output and power generation efficiency. Note that, in order to suppress a decrease in output and power generation efficiency due to the surplus power, surplus power may be stored in a storage battery (not shown), for example, even when the operating current value is intermittently increased.
 また上記のように、膜電極複合体中のCO2由来アニオン濃度が比較的高い場合においては、アルカリ形燃料電池の温度を上げても電解質膜や電極触媒層中の電解質の劣化は生じ難い一方、CO2由来アニオン濃度が低下し、電解質膜や電解質が主にOH-型になると、高い温度下では、OH-が電解質膜や電解質のカチオン部位を攻撃し劣化しやすくなることに鑑みても、単位時間T0内におけるある一定時間、動作電流値が大きくなるように制御するとともに、当該一定時間のみ、あるいは、当該一定時間およびこの前後の特定時間のみ(この特定時間が短いほど好ましい。)、所定温度X以上の温度となるように制御することが好ましい。 Further, as described above, when the concentration of the CO 2 -derived anion in the membrane electrode assembly is relatively high, deterioration of the electrolyte in the electrolyte membrane and the electrode catalyst layer hardly occurs even when the temperature of the alkaline fuel cell is increased. In view of the fact that when the concentration of anion derived from CO 2 decreases and the electrolyte membrane or electrolyte mainly becomes OH type, OH tends to attack and degrade the cation site of the electrolyte membrane or electrolyte at a high temperature. In addition, control is performed so that the operating current value increases for a certain period of time within the unit time T 0 , and only for the certain period of time, or only for the certain period of time and for the specified period before and after this period (the shorter the specified period, the better) It is preferable to control the temperature to be equal to or higher than the predetermined temperature X.
 〔iii〕間欠的に動作電流値が大きくなるように制御する態様によれば、たとえば1回のみ動作電流値が大きくなるように制御する場合と比べて、高い出力および発電効率を長時間維持することができる。 [Iii] According to the aspect in which the operation current value is intermittently increased, the high output and the power generation efficiency are maintained for a long time as compared with the case where the operation current value is increased only once, for example. be able to.
 〔iv〕単位時間T0内におけるある一定時間、動作電流値を大きくするよう制御する本発明によれば、このような制御を一切行なわない(大電流を流さない)場合と比べて、アルカリ形燃料電池のアノード極における生成水量を増加させることができる〔上記式(2)参照〕。これにより、アニオン伝導性電解質膜の含水量を適度に高く維持してそのアニオン伝導抵抗を低く維持することができるようになる。このこともまた、出力および発電効率の向上ならびに立ち上げ時間の短縮化に寄与する。 [Iv] According to the present invention which controls to increase the operating current value for a certain period of time within the unit time T 0 , compared with the case where such control is not performed at all (no large current is passed), the alkaline type The amount of water produced at the anode of the fuel cell can be increased [see the above formula (2)]. As a result, the water content of the anion conductive electrolyte membrane can be maintained at a moderately high level and the anion conductive resistance can be maintained at a low level. This also contributes to improvement of output and power generation efficiency and shortening of startup time.
 一方、本発明による制御に従い、アルカリ形燃料電池の温度を上昇させたときには、燃料の相対湿度が低下することによりアノード極が適度な乾燥状態となるため、所定温度X以上の温度下において膜電極複合体に所定電流値A以上の電流を流してもアノード極のフラッディングが生じ難く、また、間欠的に動作電流値が大きくなるように制御する態様によれば、当該フラッディング抑制効果を長時間維持することができる。 On the other hand, when the temperature of the alkaline fuel cell is increased in accordance with the control according to the present invention, the anode electrode is in an appropriate dry state due to a decrease in the relative humidity of the fuel. Even when a current of a predetermined current value A or more is applied to the composite, flooding of the anode electrode is difficult to occur, and according to an aspect in which the operating current value is intermittently increased, the flooding suppression effect is maintained for a long time. can do.
 また本発明において、検出部20によって検出される「燃料電池の状態」とは、膜電極複合体中のCO2由来アニオン濃度を評価することができる指標(パラメータ)を指しており、アルカリ形燃料電池に関し、具体的には次のものを挙げることができる。 In the present invention, “the state of the fuel cell” detected by the detection unit 20 refers to an index (parameter) that can evaluate the CO 2 -derived anion concentration in the membrane electrode assembly. Specific examples of the battery include the following.
 〔a〕ある単位時間T0内における、膜電極複合体に所定電流値A以上の電流が流れた時間T1の割合T1/T0
 〔b〕アニオン伝導性電解質膜中のCO2由来アニオン濃度(またはこのうちのCO3 2-濃度)、
 〔c〕アニオン伝導性電解質膜のpH、
 〔d〕アニオン伝導性電解質膜の抵抗値、
 〔e〕アルカリ形燃料電池の出力電圧値。
[A] is in the unit time T in 0, the ratio T 1 / T 0 of the time predetermined current value A or more current flows through the membrane electrode assembly T 1,
[B] CO 2 -derived anion concentration (or CO 3 2− concentration of these) in the anion conductive electrolyte membrane,
[C] pH of the anion conductive electrolyte membrane,
[D] resistance value of the anion conductive electrolyte membrane,
[E] Output voltage value of alkaline fuel cell.
 上記のなかでも、膜電極複合体中のCO2由来アニオン濃度に影響を与える指標であるとともに、検出手法が比較的容易であることから、検出部20は、膜電極複合体中のCO2由来アニオン濃度を評価するためのパラメータとして上記〔a〕を検出するものであることが好ましい。検出部20は、膜電極複合体中のCO2由来アニオン濃度を評価するためのパラメータに加え、通常、アルカリ形燃料電池の温度および膜電極複合体に流れる電流値を検出できるものである。 Among the above, since it is an index that affects the CO 2 -derived anion concentration in the membrane electrode complex and the detection method is relatively easy, the detection unit 20 is derived from CO 2 in the membrane electrode complex. It is preferable to detect the above [a] as a parameter for evaluating the anion concentration. In addition to the parameters for evaluating the CO 2 -derived anion concentration in the membrane electrode assembly, the detection unit 20 can usually detect the temperature of the alkaline fuel cell and the value of the current flowing through the membrane electrode assembly.
 以下、実施の形態を示して本発明の制御装置および燃料電池システムについてより詳細に説明する。後述する実施形態はいずれも、アルカリ形燃料電池の状態として上記〔a〕を検出するものである。 Hereinafter, the control device and the fuel cell system of the present invention will be described in more detail with reference to embodiments. In all of the embodiments described later, the above [a] is detected as the state of the alkaline fuel cell.
 図4は、本実施形態に係る制御装置およびこれを適用した燃料電池システムを示す概略図であり、電力が供給される電子機器(電子機器60)と接続された状態で制御装置および燃料電池システムの構成を示したものである。本実施形態の制御装置は、アニオン伝導性電解質膜を有する膜電極複合体を備えるアルカリ形燃料電池を含む燃料電池部10としての燃料電池部10aに接続される、検出部20としての、上記〔a〕(ある単位時間T0内における、膜電極複合体に所定電流値A以上の電流が流れた時間T1の割合T1/T0)を検出する検出部20a;燃料電池部10aに接続される、温度変更部30としての、アルカリ形燃料電池の温度を変更するための温度調節器30a;燃料電池部10aに接続されるとともに、電子機器60に対して並列に接続される、電流値変更部40としての、アルカリ形燃料電池の膜電極複合体に流れる電流の電流値を変更するための電子負荷装置40a;ならびに、検出部20a、温度調節器30aおよび電子負荷装置40aに接続され、検出部20aによる検出結果に応じて、アルカリ形燃料電池の温度を上昇させることにより該温度が所定温度X以上になるように温度調節器30aを制御するとともに、該所定温度X以上の温度下において、膜電極複合体に所定電流値A以上の電流が一定時間流れるように電子負荷装置40aを制御するための制御部50aを備えている。 FIG. 4 is a schematic diagram illustrating a control device according to the present embodiment and a fuel cell system to which the control device is applied. The control device and the fuel cell system are connected to an electronic device (electronic device 60) to which power is supplied. The structure of is shown. The control device according to the present embodiment includes the above-described detection unit 20 connected to a fuel cell unit 10a as a fuel cell unit 10 including an alkaline fuel cell including a membrane electrode assembly having an anion conductive electrolyte membrane. a] Detection unit 20a for detecting (a ratio T 1 / T 0 of time T 1 in which a current equal to or greater than a predetermined current value A flows in the membrane electrode assembly within a certain unit time T 0 ); connected to the fuel cell unit 10a A temperature controller 30a for changing the temperature of the alkaline fuel cell as the temperature changing unit 30; connected to the fuel cell unit 10a and connected in parallel to the electronic device 60 Electronic load device 40a for changing the current value of the current flowing through the membrane electrode assembly of the alkaline fuel cell as changing unit 40; and detection unit 20a, temperature controller 30a, and electronic load device 40 The temperature controller 30a is controlled by increasing the temperature of the alkaline fuel cell according to the detection result by the detection unit 20a so that the temperature becomes equal to or higher than the predetermined temperature X, and the predetermined temperature X A control unit 50a is provided for controlling the electronic load device 40a so that a current of a predetermined current value A or more flows through the membrane electrode assembly for a certain period of time under the above temperature.
 本実施形態において検出部20aは、膜電極複合体に流れる電流値〔より具体的には膜電極複合体の第1電極(たとえばアノード極)-第2電極(たとえばカソード極)間を流れる電流値〕を測定するための、燃料電池部10a(アルカリ形燃料電池)に接続された電流計と、燃料電池部10a(アルカリ形燃料電池)の温度を測定するための温度センサ(温度計)とを備えている。また、検出部20aは、単位時間T0および膜電極複合体に所定電流値A以上の電流が流れた時間T1を測定するための時間測定手段(タイマーなど)、ならびに、電流値および時間T0、T1を記憶する記憶手段(メモリなど)を具備する。ただし、時間測定手段および記憶手段は制御部50aに包含させることもできる。 In the present embodiment, the detection unit 20a detects the value of the current flowing through the membrane electrode assembly [more specifically, the value of the current flowing between the first electrode (for example, the anode electrode) and the second electrode (for example, the cathode electrode) of the membrane electrode assembly. ] An ammeter connected to the fuel cell unit 10a (alkaline fuel cell) and a temperature sensor (thermometer) for measuring the temperature of the fuel cell unit 10a (alkaline fuel cell). I have. The detection unit 20a also includes a time measuring means (such as a timer) for measuring the unit time T 0 and the time T 1 when a current equal to or greater than the predetermined current value A flows through the membrane electrode assembly, and the current value and the time T. 0 , T 1 storing means (memory etc.) is provided. However, the time measuring means and the storage means can be included in the control unit 50a.
 温度調節器30aとしては、たとえばアルカリ形燃料電池を加熱および冷却することが可能な加熱冷却装置や、アルカリ形燃料電池を加熱するための加熱装置(ヒータ等)などを挙げることができる。加熱冷却装置としては、後述するような熱媒体を用いてアルカリ形燃料電池の加熱冷却を行なうものを好ましく用いることができる。上述のように、膜電極複合体に所定電流値A以上の電流を流す際には、アルカリ形燃料電池の温度を上昇させて所定温度X以上とする必要がある一方、膜電極複合体に所定電流値A以上の電流を流す必要のない状態(CO2由来アニオン濃度が十分に低い状態等)においては、電解質膜や電極触媒層中の電解質の劣化抑制の観点から、所定温度X未満(望ましくは、上記直前温度)まで温度を低下させておくことが好ましいことから、温度調節器30aとしては、加熱および冷却が可能な加熱冷却装置を用いることが好ましい。 Examples of the temperature controller 30a include a heating / cooling device that can heat and cool the alkaline fuel cell, and a heating device (heater, etc.) for heating the alkaline fuel cell. As the heating / cooling device, a device for heating and cooling an alkaline fuel cell using a heat medium as described later can be preferably used. As described above, when a current of a predetermined current value A or higher is passed through the membrane electrode assembly, it is necessary to raise the temperature of the alkaline fuel cell to a predetermined temperature X or higher. In a state where it is not necessary to pass a current greater than or equal to the current value A (a state where the CO 2 -derived anion concentration is sufficiently low, etc.), from the viewpoint of suppressing deterioration of the electrolyte in the electrolyte membrane or the electrode catalyst layer, it is preferably less than a predetermined temperature X Therefore, it is preferable to use a heating / cooling device capable of heating and cooling as the temperature controller 30a.
 ここで、本実施形態において温度調節器30aは、少なくとも第1電極(たとえばアノード極)および第2電極(たとえばカソード極)の双方の温度を所定温度X以上にすることができるものである。このようなものとしては、たとえば第1電極および第2電極の双方に接続された加熱冷却装置または加熱装置(第1電極に接続される加熱冷却装置または加熱装置と、第2電極に接続される加熱冷却装置または加熱装置とを別個に有していてもよい)、ならびに、燃料電池部10a(アルカリ形燃料電池)全体を収容する温度調節可能な恒温槽などが挙げられる。 Here, in the present embodiment, the temperature controller 30a can set the temperature of at least the first electrode (for example, the anode electrode) and the second electrode (for example, the cathode electrode) to a predetermined temperature X or higher. For example, a heating / cooling device or a heating device connected to both the first electrode and the second electrode (a heating / cooling device or a heating device connected to the first electrode and a second electrode) A heating / cooling device or a heating device may be provided separately), and a temperature-controlled thermostat housing the entire fuel cell unit 10a (alkaline fuel cell).
 電子負荷装置40aとしては従来公知のものを使用することができ、可変抵抗器を使用することもできる。制御部50aとしては、検出部20aによる検出結果に応じて、温度調節器30aおよび電子負荷装置40aを制御できるものであれば特に制限されず、たとえばパーソナルコンピュータなどであることができる。 Conventionally known devices can be used as the electronic load device 40a, and a variable resistor can also be used. The controller 50a is not particularly limited as long as it can control the temperature controller 30a and the electronic load device 40a according to the detection result of the detector 20a, and may be a personal computer, for example.
 なお、燃料電池部10aと電子機器60との接続に関し、これらはコンバータ(昇圧回路)を介して接続されてもよい。 In addition, regarding the connection between the fuel cell unit 10a and the electronic device 60, these may be connected via a converter (step-up circuit).
 本実施形態において、検出部20aは上記時間割合T1/T0を好ましくは常時検出し、この時間割合T1/T0が所定の時間割合WT未満であると制御部50aによって判断された場合、制御部50aは、燃料電池部10aが発電(電子機器60への電力供給)を行なっているかに関わらず、アルカリ形燃料電池(少なくとも第1電極および第2電極)の温度が所定温度X以上まで上昇するように温度調節器30aを制御するとともに、該所定温度X以上の温度下において、膜電極複合体(第1電極-第2電極間)に所定電流値A以上の電流が一定時間流れるように(たとえば図2に示されるような電流波形パターンが得られるように)電子負荷装置40aを制御する。 In the present embodiment, the detection section 20a detects always preferably the time rate T 1 / T 0, it is determined by the control unit 50a the time ratio T 1 / T 0 is less than the predetermined time rate W T In this case, the control unit 50a determines that the temperature of the alkaline fuel cell (at least the first electrode and the second electrode) is equal to the predetermined temperature X, regardless of whether the fuel cell unit 10a performs power generation (power supply to the electronic device 60). The temperature controller 30a is controlled so as to rise to the above, and at a temperature equal to or higher than the predetermined temperature X, a current equal to or higher than a predetermined current value A is supplied to the membrane electrode assembly (between the first electrode and the second electrode) for a predetermined time. The electronic load device 40a is controlled to flow (for example, to obtain a current waveform pattern as shown in FIG. 2).
 より具体的に説明すると、時間割合T1/T0が所定の時間割合WT未満であると制御部50aによって判断された場合、第1電極(アノード極)に燃料、第2電極(カソード極)に酸化剤を供給しつつ、制御部50aによって、アルカリ形燃料電池(少なくとも第1電極および第2電極)の温度を上昇させて所定温度X以上となるように温度調節器30aを制御しつつ、該所定温度X以上の温度下において、電子負荷装置40aに流れる負荷電流を大きくすることにより、T2/T0≧WTとなるようなある一定時間T2の間、第1電極-第2電極間に所定電流値A以上の電流を流す。そして好ましくは時間割合T1/T0を常時検出して、所定電流値A以上の電流が流れている一定時間を含む単位時間T0のサイクルが繰り返されるようにする。また、好ましくは、一定時間T2の間、第1電極-第2電極間に所定電流値A以上の電流を流した後(すなわち、単位時間T0のうち、一定時間T2以外の時間)は、アルカリ形燃料電池の温度が所定温度X未満となるように、望ましくは上記直前温度となるように温度調節器30aを制御する。 More specifically, when the control unit 50a determines that the time ratio T 1 / T 0 is less than the predetermined time ratio W T , the first electrode (anode electrode) is fuel and the second electrode (cathode electrode). ) While controlling the temperature controller 30a so that the temperature of the alkaline fuel cell (at least the first electrode and the second electrode) is raised to a predetermined temperature X or higher by the controller 50a. By increasing the load current flowing through the electronic load device 40a at a temperature equal to or higher than the predetermined temperature X, the first electrode-the second electrode for a certain time T 2 such that T 2 / T 0 ≧ W T is satisfied. A current of a predetermined current value A or more is passed between the two electrodes. Preferably, the time ratio T 1 / T 0 is constantly detected so that a cycle of unit time T 0 including a certain time during which a current of a predetermined current value A or more flows is repeated. Also, preferably, during the predetermined time T 2, the first electrode - after flowing over the current predetermined current value A between the second electrode (i.e., out of the unit time T 0, the time other than the predetermined time T 2) Controls the temperature regulator 30a so that the temperature of the alkaline fuel cell is less than the predetermined temperature X, and preferably the temperature just before the above.
 なお上述のように、本発明においては、実質的に常に低いCO2由来アニオン濃度を実現するために、燃料電池部10aが発電(電子機器60への電力供給)を行なっているかに関わらず、好ましくは、膜電極複合体に所定電流値A以上の電流が一定時間流れている状態が維持されればよく、たとえば、所定電流値A以上の電流が流れている一定時間を含む単位時間T0のサイクルが繰り返される場合において、流れる電流の少なくとも一部は、電子機器60の要求に従って行なわれた発電によるものであってもよい。すなわち、電子機器60の要求に従って発電が行なわれ、膜電極複合体に所定電流値A以上の電流が流れている場合、上記制御フローに従えば、制御部50aは強制的に所定電流値A以上の電流が流れるような制御を行なわないが、この場合でも、膜電極複合体に所定電流値A以上の電流が一定時間流れている状態が維持されるため、実質的に常に低いCO2由来アニオン濃度が実現される。 As described above, in the present invention, regardless of whether the fuel cell unit 10a performs power generation (power supply to the electronic device 60) in order to achieve a substantially always low CO 2 -derived anion concentration, Preferably, a state where a current of a predetermined current value A or more flows through the membrane electrode assembly for a certain period of time is maintained, for example, a unit time T 0 including a certain time during which a current of a predetermined current value A or more flows. When the above cycle is repeated, at least part of the flowing current may be due to power generation performed in accordance with the request of the electronic device 60. That is, when power generation is performed in accordance with the request of the electronic device 60 and a current greater than or equal to the predetermined current value A flows through the membrane electrode assembly, the control unit 50a is forced to exceed the predetermined current value A according to the control flow. However, even in this case, since a state where a current of a predetermined current value A or more flows in the membrane electrode assembly for a certain period of time is maintained, the CO 2 -derived anion is substantially always low. Concentration is realized.
 上記単位時間T0は特に制限されず、たとえば10~30分程度の範囲内とすることができる。上記所定の時間割合WTは、所望する出力および発電効率向上の程度や立ち上げ時間向上の程度などを考慮して決定され、たとえば5~20%の範囲(たとえば10%)から選択することができる。 The unit time T 0 is not particularly limited, and can be, for example, in the range of about 10 to 30 minutes. The predetermined time ratio W T is determined in consideration of a desired output, a degree of improvement in power generation efficiency, a degree of improvement in start-up time, and the like, and may be selected from a range of, for example, 5 to 20% (eg, 10%). it can.
 所定電流値Aも、所望する出力および発電効率向上の程度や立ち上げ時間向上の程度などを考慮して決定され、400~1000mA/cm2の範囲、好ましくは600~1000mA/cm2の範囲、さらに好ましくは700~1000mA/cm2の範囲から選択することができる。なお本発明でいう電流値(検出部によって検出する電流値および一定時間(T2)流される電流の電流値の双方)とは、膜電極複合体〔第1電極(アノード極)-第2電極(カソード極)間〕に流れる電流量を、カソード極の電解質膜への投影面積で割った値である。 The predetermined current value A is also determined in consideration of the desired output, the degree of improvement in power generation efficiency, the degree of improvement in start-up time, etc., and is in the range of 400 to 1000 mA / cm 2 , preferably in the range of 600 to 1000 mA / cm 2 , More preferably, it can be selected from the range of 700 to 1000 mA / cm 2 . The current value (both the current value detected by the detection unit and the current value of the current that flows for a certain time (T 2 )) in the present invention is a membrane electrode complex [first electrode (anode electrode) −second electrode]. The value obtained by dividing the amount of current flowing between (cathode electrodes) by the projected area of the cathode electrode on the electrolyte membrane.
 検出部20aによる検出結果に応じて、膜電極複合体に一定時間(時間長さT2)流される「所定電流値A以上の電流」の値は、検出部20aによって検出する「単位時間T0内における、膜電極複合体に所定電流値A以上の電流が流れた時間T1の割合T1/T0」において設定される「所定電流値A」と同じであってもよいし、これより大きくてもよい。T2は通常、T1より長くなるように設定される。 The value of “current greater than or equal to the predetermined current value A” that is passed through the membrane electrode assembly for a certain time (time length T 2 ) according to the detection result by the detection unit 20a is detected by the detection unit 20a as “unit time T 0. In this case, it may be the same as the “predetermined current value A” set in the ratio T 1 / T 0 of the time T 1 when the current of the predetermined current value A or more flows through the membrane electrode assembly. It can be large. T 2 is normally set to be longer than T 1 .
 所定温度Xは、上記直前温度より高い温度であって、かつ、上記所定電流値A以上の電流値を実現できる温度であればよく、たとえば直前温度の105%~150%の温度であり、好ましくは直前温度の110%~125%の温度である。 The predetermined temperature X may be any temperature that is higher than the immediately preceding temperature and that can realize a current value equal to or higher than the predetermined current value A, and is preferably 105% to 150% of the immediately preceding temperature, preferably Is a temperature of 110% to 125% of the immediately preceding temperature.
 〔アルカリ形燃料電池〕
 次に、燃料電池部10aが備え得るアルカリ形燃料電池について詳細に説明する。図5は、燃料電池部10aが備え得るアルカリ形燃料電池の一例を示す概略断面図である。図5に示されるアルカリ形燃料電池100は、アニオン伝導性電解質膜101、アニオン伝導性電解質膜101の第1表面に積層される第1電極(アノード極)102およびアニオン伝導性電解質膜101の第1表面に対向する第2表面に積層される第2電極(カソード極)103からなる膜電極複合体(MEA);燃料を受け入れるための燃料受容部106を少なくとも備える、第1電極102上に積層される第1セパレータ104;酸化剤を受け入れるための酸化剤受容部107を少なくとも備える、第2電極103上に積層される第2セパレータ105を備える。
[Alkaline fuel cell]
Next, an alkaline fuel cell that can be included in the fuel cell unit 10a will be described in detail. FIG. 5 is a schematic cross-sectional view showing an example of an alkaline fuel cell that can be provided in the fuel cell unit 10a. An alkaline fuel cell 100 shown in FIG. 5 includes an anion conductive electrolyte membrane 101, a first electrode (anode electrode) 102 laminated on the first surface of the anion conductive electrolyte membrane 101, and a first electrode of the anion conductive electrolyte membrane 101. A membrane electrode assembly (MEA) composed of a second electrode (cathode electrode) 103 laminated on a second surface opposite to the first surface; laminated on the first electrode 102, comprising at least a fuel receiving portion 106 for receiving fuel A first separator 104; a second separator 105 stacked on the second electrode 103, which includes at least an oxidant receiving portion 107 for receiving an oxidant.
 第1電極102と第2電極103とは、アニオン伝導性電解質膜101を介して対向するように設けられている。より具体的には、第1電極102および第2電極103は、アニオン伝導性電解質膜101面内における位置が一致するように、アニオン伝導性電解質膜101表面の略中心部に積層されている。電極の周縁には、電極端面からの空気等の浸入を防止するために、ガスケット150(たとえば、シリコーンゴム等の弾性樹脂からなる層や、エポキシ系樹脂等の硬化性樹脂の硬化物層)が設けられている。 The first electrode 102 and the second electrode 103 are provided to face each other with the anion conductive electrolyte membrane 101 interposed therebetween. More specifically, the first electrode 102 and the second electrode 103 are laminated at substantially the center of the surface of the anion conductive electrolyte membrane 101 so that the positions in the surface of the anion conductive electrolyte membrane 101 coincide. A gasket 150 (for example, a layer made of an elastic resin such as silicone rubber or a cured material layer of a curable resin such as an epoxy resin) is provided at the periphery of the electrode in order to prevent intrusion of air or the like from the electrode end face. Is provided.
 (1)アニオン伝導性電解質膜
 アニオン伝導性電解質膜101としては、OH-イオンを伝導でき、かつ、第1電極102と第2電極103との間の短絡を防止するために電気的絶縁性を有する限り特に制限されないが、アニオン伝導性固体高分子電解質膜を好適に用いることができる。アニオン伝導性固体高分子電解質膜の好ましい例は、たとえば、パーフルオロスルホン酸系、パーフルオロカルボン酸系、スチレンビニルベンゼン系、第4級アンモニウム系の固体高分子電解質膜(アニオン交換膜)が挙げられる。また、ポリアクリル酸に濃厚水酸化カリウム溶液を含浸させた膜やアニオン伝導性固体酸化物電解質膜、水酸化物伝導性を示す層状複水酸化物をアニオン伝導性電解質膜101として用いることもできる。
(1) Anion-conducting electrolyte membrane The anion-conducting electrolyte membrane 101 is electrically insulative in order to conduct OH - ions and prevent a short circuit between the first electrode 102 and the second electrode 103. Although it does not restrict | limit as long as it has, it can use an anion conductive solid polymer electrolyte membrane suitably. Preferable examples of the anion conductive solid polymer electrolyte membrane include, for example, perfluorosulfonic acid type, perfluorocarboxylic acid type, styrene vinyl benzene type, quaternary ammonium type solid polymer electrolyte membrane (anion exchange membrane). It is done. Further, a membrane obtained by impregnating a concentrated potassium hydroxide solution into polyacrylic acid, an anion conductive solid oxide electrolyte membrane, or a layered double hydroxide exhibiting hydroxide conductivity can also be used as the anion conductive electrolyte membrane 101. .
 アニオン伝導性電解質膜101は、アニオン伝導率が10-5S/cm以上であることが好ましく、パーフルオロスルホン酸系高分子電解質膜などのアニオン伝導率が10-3S/cm以上の電解質膜を用いることがより好ましい。アニオン伝導性電解質膜101の厚みは、通常5~300μmであり、好ましくは10~200μmである。 The anion conductive electrolyte membrane 101 preferably has an anion conductivity of 10 −5 S / cm or more, and an electrolyte membrane having an anion conductivity of 10 −3 S / cm or more such as a perfluorosulfonic acid polymer electrolyte membrane. It is more preferable to use The thickness of the anion conductive electrolyte membrane 101 is usually 5 to 300 μm, preferably 10 to 200 μm.
 (2)第1電極および第2電極
 アニオン伝導性電解質膜101の第1表面に積層され、発電時にアノード極として機能する第1電極102、および、第1表面に対向する第2表面に積層され、発電時にカソード極として機能する第2電極103は、触媒と電解質とを含有する多孔質層からなる触媒層を少なくとも含む。これらの触媒層は、アニオン伝導性電解質膜101の表面に接して積層される。第1電極102の触媒(アノード触媒)は、第1電極102に供給された燃料とOH-アニオンとから、水および電子を生成する反応を触媒する。第1電極102の触媒層(アノード触媒層)に含有される電解質は、アニオン伝導性電解質膜101から伝導してきたOH-アニオンを触媒反応サイトへ伝導する機能を有する。一方、第2電極103の触媒(カソード触媒)は、第2電極103に供給された酸化剤および水と、第1電極102から伝達された電子とから、OH-アニオンを生成する反応を触媒する。第2電極103の触媒層(カソード触媒層)に含有される電解質は、生成したOH-アニオンをアニオン伝導性電解質膜101へ伝導する機能を有する。
(2) 1st electrode and 2nd electrode It laminates | stacks on the 1st surface of the anion conductive electrolyte membrane 101, and is laminated | stacked on the 2nd surface facing the 1st electrode 102 which functions as an anode pole at the time of electric power generation, and a 1st surface. The second electrode 103 functioning as a cathode electrode during power generation includes at least a catalyst layer composed of a porous layer containing a catalyst and an electrolyte. These catalyst layers are laminated in contact with the surface of the anion conductive electrolyte membrane 101. The first electrode 102 catalyst (anode catalyst) is fuel and OH supplied to the first electrode 102 - from an anion, which catalyzes a reaction to produce water and electrons. Electrolyte contained in the catalyst layer of the first electrode 102 (anode catalyst layer), OH has been conducted from the anion conducting electrolyte membrane 101 - has the function of conducting anion to the catalyst reaction sites. On the other hand, the catalyst (cathode catalyst) of the second electrode 103 catalyzes the reaction of generating OH 2 anion from the oxidant and water supplied to the second electrode 103 and the electrons transferred from the first electrode 102. . The electrolyte contained in the catalyst layer (cathode catalyst layer) of the second electrode 103 has a function of conducting the generated OH anion to the anion conductive electrolyte membrane 101.
 アノード触媒およびカソード触媒としては、従来公知のものを使用することができ、たとえば、白金、鉄、コバルト、ニッケル、パラジウム、銀、ルテニウム、イリジウム、モリブデン、マンガン、これらの金属化合物、およびこれらの金属の2種以上を含む合金からなる微粒子が挙げられる。合金は、白金、鉄、コバルト、ニッケルのうち少なくとも2種以上を含有する合金が好ましく、たとえば、白金-鉄合金、白金-コバルト合金、鉄-コバルト合金、コバルト-ニッケル合金、鉄-ニッケル合金等、鉄-コバルト-ニッケル合金が挙げられる。アノード触媒とカソード触媒とは同種であってもよいし、異種であってもよい。 As the anode catalyst and the cathode catalyst, conventionally known ones can be used. For example, platinum, iron, cobalt, nickel, palladium, silver, ruthenium, iridium, molybdenum, manganese, these metal compounds, and these metals And fine particles made of an alloy containing two or more of the above. The alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel. For example, platinum-iron alloy, platinum-cobalt alloy, iron-cobalt alloy, cobalt-nickel alloy, iron-nickel alloy, etc. And iron-cobalt-nickel alloys. The anode catalyst and the cathode catalyst may be the same or different.
 アノード触媒およびカソード触媒は、担体、好ましくは導電性の担体に担持されたものを用いることが好ましい。導電性担体としては、たとえば、アセチレンブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等のカーボンブラック、黒鉛、活性炭等の導電性カーボン粒子が挙げられる。また、気相法炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノワイヤー等の炭素繊維を用いることもできる。 The anode catalyst and the cathode catalyst are preferably those supported on a carrier, preferably a conductive carrier. Examples of the conductive carrier include carbon black such as acetylene black, furnace black, channel black, and ketjen black, and conductive carbon particles such as graphite and activated carbon. In addition, carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
 第1電極102および第2電極103の触媒層に含有される電解質としては、アニオン伝導性固体高分子電解質膜を構成する電解質と同様のものを用いることができる。各触媒層における触媒と電解質との含有比は、重量基準で、通常5/1~1/4程度であり、好ましくは3/1~1/3程度である。 As the electrolyte contained in the catalyst layers of the first electrode 102 and the second electrode 103, the same electrolyte as that constituting the anion conductive solid polymer electrolyte membrane can be used. The content ratio of the catalyst to the electrolyte in each catalyst layer is usually about 5/1 to 1/4, and preferably about 3/1 to 1/3 on a weight basis.
 第1電極102および第2電極103はそれぞれ、触媒層上に積層されるガス拡散層を備えていてもよい。ガス拡散層は、供給される燃料または酸化剤を面内において拡散させる機能を有するとともに、触媒層との間で電子の授受を行なう機能を有する。 The first electrode 102 and the second electrode 103 may each include a gas diffusion layer laminated on the catalyst layer. The gas diffusion layer has a function of diffusing the supplied fuel or oxidant in the surface and a function of transferring electrons to and from the catalyst layer.
 ガス拡散層は、導電性を有する多孔質層であることができ、具体的には、たとえば、カーボンペーパー;カーボンクロス;カーボン粒子を含有するエポキシ樹脂膜;金属または合金の発泡体、焼結体または繊維不織布などであることができる。ガス拡散層の厚みは、厚み方向に対して垂直な方向(面内方向)への燃料または酸化剤の拡散抵抗を低減させるために、10μm以上であることが好ましく、厚み方向への拡散抵抗を低減させるために、1mm以下であることが好ましい。ガス拡散層の厚みは、より好ましくは100~500μmである。 The gas diffusion layer can be a porous layer having electrical conductivity. Specifically, for example, carbon paper; carbon cloth; epoxy resin film containing carbon particles; metal or alloy foam, sintered body Or it can be a fiber nonwoven fabric. The thickness of the gas diffusion layer is preferably 10 μm or more in order to reduce the diffusion resistance of the fuel or oxidant in the direction perpendicular to the thickness direction (in-plane direction). In order to reduce, it is preferable that it is 1 mm or less. The thickness of the gas diffusion layer is more preferably 100 to 500 μm.
 (3)第1セパレータおよび第2セパレータ
 第1セパレータ104および第2セパレータ105はそれぞれ、第1電極102、第2電極103に燃料、酸化剤を供給するための部材である。第1セパレータ104は、燃料受容部106を構成する凹部をアニオン伝導性電解質膜101側表面に少なくとも有する部材であることができ、第2セパレータ105は、酸化剤受容部107を構成する凹部をアニオン伝導性電解質膜101側表面に少なくとも有する部材であることができる。
(3) First Separator and Second Separator The first separator 104 and the second separator 105 are members for supplying fuel and oxidant to the first electrode 102 and the second electrode 103, respectively. The first separator 104 can be a member having at least a concave portion constituting the fuel receiving portion 106 on the surface on the anion conductive electrolyte membrane 101 side, and the second separator 105 has a concave portion constituting the oxidant receiving portion 107 as an anion. It can be a member having at least the conductive electrolyte membrane 101 side surface.
 燃料受容部106を構成する凹部、酸化剤受容部107を構成する凹部はそれぞれ、第1電極102、第2電極103が積層される領域における第1セパレータ104、第2セパレータ105のアニオン伝導性電解質膜101側表面に設けられる。 The concave portion constituting the fuel receiving portion 106 and the concave portion constituting the oxidant receiving portion 107 are the anion conductive electrolytes of the first separator 104 and the second separator 105 in the region where the first electrode 102 and the second electrode 103 are laminated, respectively. Provided on the surface of the film 101 side.
 燃料受容部106を構成する凹部、酸化剤受容部107を構成する凹部はそれぞれ、たとえばサーペンタイン状、ライン状またはその他の形状を有する1または2以上の流路溝であることができる他、槽型の比較的大面積に広がって形成された凹部などであることができる。燃料受容部106に導入された燃料は、その直上に配置された第1電極102に供給され、酸化剤受容部107に導入された酸化剤は、その直下に配置された第2電極103に供給される。燃料受容部106を構成する凹部には、その入口側端部、出口側端部にそれぞれ、燃料供給用配管、燃料排出用配管を接続してもよい。同様に、酸化剤受容部107を構成する凹部には、その入口側端部、出口側端部にそれぞれ、酸化剤供給用配管、酸化剤排出用配管を接続してもよい。 The recesses constituting the fuel receiving part 106 and the oxidant receiving part 107 can each be, for example, one or two or more flow channel grooves having a serpentine shape, a line shape, or other shapes. The recesses may be formed to spread over a relatively large area. The fuel introduced into the fuel receiving part 106 is supplied to the first electrode 102 disposed immediately above it, and the oxidant introduced into the oxidant receiving part 107 is supplied to the second electrode 103 disposed immediately below it. Is done. A fuel supply pipe and a fuel discharge pipe may be connected to the inlet side end portion and the outlet side end portion of the concave portion constituting the fuel receiving portion 106, respectively. Similarly, an oxidant supply pipe and an oxidant discharge pipe may be connected to the inlet side end part and the outlet side end part of the concave part constituting the oxidant receiving part 107, respectively.
 第1セパレータ104および第2セパレータ105の材質は特に制限されないが、好ましくはカーボン材料、導電性高分子、各種金属、ステンレスに代表される合金などの導電性材料である。導電性材料を用いることにより、これらのセパレータに集電機能、すなわち、接する電極との間で電子の授受を行なうとともに電気的配線を行なう取り出し電極としての機能を付与することができる。ただし、第1セパレータ104および第2セパレータ105をプラスチック材料等の非導電性材料で構成し、別途、アノード集電層およびカソード集電層を設けてもよい。この場合、これらの集電層は、たとえば電極とセパレータとの間に配置される。 The material of the first separator 104 and the second separator 105 is not particularly limited, but is preferably a conductive material such as a carbon material, a conductive polymer, various metals, and an alloy typified by stainless steel. By using a conductive material, it is possible to give these separators a current collecting function, that is, a function as a take-out electrode for transferring and receiving electrons with an electrode in contact with the separator. However, the first separator 104 and the second separator 105 may be made of a non-conductive material such as a plastic material, and an anode current collecting layer and a cathode current collecting layer may be provided separately. In this case, these current collection layers are arrange | positioned, for example between an electrode and a separator.
 第1セパレータ104および第2セパレータ105として、燃料受容部と酸化剤受容部とを兼ね備えた、いわゆるバイポーラプレートを用いることもできる。この場合、バイポーラプレートは、一方の主面(第1表面)に燃料受容部106を構成する凹部を有し、第1表面に対向する他方の主面(第2表面)に酸化剤受容部107を構成する凹部を有する。このバイポーラプレートを第1セパレータ104として用いる場合には、その第1表面がアニオン伝導性電解質膜101側となるように第1電極102上に積層される。バイポーラプレートを第2セパレータ105として用いる場合には、その第2表面がアニオン伝導性電解質膜101側となるように第2電極103上に積層される。バイポーラプレートの使用は、たとえば単セルを複数積層してスタック構造を構築する際におけるスタック構造の薄型化に有利である。 As the first separator 104 and the second separator 105, a so-called bipolar plate having both a fuel receiving portion and an oxidant receiving portion can be used. In this case, the bipolar plate has a concave portion constituting the fuel receiving portion 106 on one main surface (first surface), and the oxidant receiving portion 107 on the other main surface (second surface) opposite to the first surface. Has a recess. When this bipolar plate is used as the first separator 104, the bipolar plate is laminated on the first electrode 102 so that the first surface thereof is on the anion conductive electrolyte membrane 101 side. When a bipolar plate is used as the second separator 105, it is laminated on the second electrode 103 so that its second surface is on the anion conductive electrolyte membrane 101 side. The use of the bipolar plate is advantageous for thinning the stack structure when, for example, a stack structure is constructed by stacking a plurality of single cells.
 図6は、燃料電池部10aが備え得るアルカリ形燃料電池の他の一例を示す概略断面図である。燃料電池部10aは、図6に示されるようなアルカリ形燃料電池200を備えるものであってもよい。図6に示されるアルカリ形燃料電池200は、その第1電極102が有する触媒層(アノード触媒層)の体積を第2電極103が有する触媒層(カソード触媒層)の体積より大きくして、アノード触媒層に含有されるアノード触媒の重量をカソード触媒層に含有されるカソード触媒の重量より多くしたこと以外は、図5のアルカリ形燃料電池100と同様である。これにより、第1電極(アノード極)102から排出される単位時間あたりのCO2ガス量を増大させることができ、その結果、膜電極複合体中のCO2由来アニオン濃度をより早期に低減させることができる。このことは、所定電流値A以上の電流が流される時間長さ(すなわち、一定時間T2)を短くできることを意味しており、さらなる余剰電力の低減ならびに、出力および発電効率の向上に寄与する。 FIG. 6 is a schematic cross-sectional view showing another example of an alkaline fuel cell that can be provided in the fuel cell unit 10a. The fuel cell unit 10a may include an alkaline fuel cell 200 as shown in FIG. The alkaline fuel cell 200 shown in FIG. 6 has an anode having a volume of the catalyst layer (anode catalyst layer) of the first electrode 102 larger than that of the catalyst layer (cathode catalyst layer) of the second electrode 103. Except that the weight of the anode catalyst contained in the catalyst layer is larger than the weight of the cathode catalyst contained in the cathode catalyst layer, it is the same as the alkaline fuel cell 100 of FIG. As a result, the amount of CO 2 gas discharged per unit time from the first electrode (anode electrode) 102 can be increased, and as a result, the concentration of CO 2 -derived anions in the membrane electrode assembly can be reduced earlier. be able to. This means that the length of time during which a current greater than or equal to the predetermined current value A flows (that is, the fixed time T 2 ) can be shortened, which contributes to further reduction of surplus power and improvement of output and power generation efficiency. .
 第1電極102が有する触媒層(アノード触媒層)の体積を第2電極103が有する触媒層(カソード触媒層)の体積より大きくする手段としては、アノード触媒層の面積をより大きくする、すなわち、アノード触媒層におけるアニオン伝導性電解質膜101側の面の面積をカソード触媒層におけるアニオン伝導電解質膜101側の面の面積より大きくする;アノード触媒層の厚さをカソード触媒層の厚さより大きくする;および、これらの組み合わせが挙げられる。このようなアノード触媒層の面積や厚みをより大きくすることは、アノード触媒層の耐久性向上の観点からも有利である。図6は、アノード触媒層の面積をカソード触媒層より大きくした例である。 As a means for making the volume of the catalyst layer (anode catalyst layer) of the first electrode 102 larger than the volume of the catalyst layer (cathode catalyst layer) of the second electrode 103, the area of the anode catalyst layer is made larger. The area of the surface of the anode catalyst layer on the side of the anion conductive electrolyte membrane 101 is made larger than the area of the surface of the cathode catalyst layer on the side of the anion conductive electrolyte membrane 101; the thickness of the anode catalyst layer is made larger than the thickness of the cathode catalyst layer; And combinations thereof. Increasing the area and thickness of the anode catalyst layer is advantageous from the viewpoint of improving the durability of the anode catalyst layer. FIG. 6 shows an example in which the area of the anode catalyst layer is larger than that of the cathode catalyst layer.
 図7は、燃料電池部10aが備え得るアルカリ形燃料電池のさらに他の一例を示す概略断面図である。図8は、図7に示されるアルカリ形燃料電池300を構成する第2セパレータ105を示す概略上面図であり、第2セパレータ105のアニオン伝導性電解質膜101側表面を示したものである。また図9には、第2セパレータ105の表面に第2壁113を配置した状態を概略上面図で示している。 FIG. 7 is a schematic cross-sectional view showing still another example of an alkaline fuel cell that can be provided in the fuel cell unit 10a. FIG. 8 is a schematic top view showing the second separator 105 constituting the alkaline fuel cell 300 shown in FIG. 7, and shows the surface of the second separator 105 on the anion conductive electrolyte membrane 101 side. FIG. 9 is a schematic top view showing a state in which the second wall 113 is arranged on the surface of the second separator 105.
 図7に示されるアルカリ形燃料電池300は、熱媒体を流通させるための熱媒体流路120を有することを特徴としており、それ以外の構成は、基本的には図5のアルカリ形燃料電池100と同様であることができる。 The alkaline fuel cell 300 shown in FIG. 7 has a heat medium flow path 120 for circulating the heat medium, and the other configuration is basically the alkaline fuel cell 100 of FIG. Can be similar.
 アルカリ形燃料電池300は、アニオン伝導性電解質膜101、アニオン伝導性電解質膜101の第1表面101bに積層される第1電極(アノード極)102、および、アニオン伝導性電解質膜101の第1表面101bに対向する第2表面101aに積層される第2電極(カソード極)103からなる膜電極複合体;燃料を受け入れるための燃料受容部106を少なくとも備える、第1電極102上に積層される第1セパレータ104;酸化剤を受け入れるための酸化剤受容部107を少なくとも備える、第2電極103上に積層される第2セパレータ105;ならびに、熱媒体流路120から主に構成される。 The alkaline fuel cell 300 includes an anion conductive electrolyte membrane 101, a first electrode (anode electrode) 102 stacked on the first surface 101 b of the anion conductive electrolyte membrane 101, and a first surface of the anion conductive electrolyte membrane 101. A membrane electrode assembly composed of a second electrode (cathode electrode) 103 laminated on the second surface 101a facing to 101b; a first electrode laminated on the first electrode 102, comprising at least a fuel receiving portion 106 for receiving fuel; 1 separator 104; mainly comprising a second separator 105 stacked on the second electrode 103, which includes at least an oxidant receiving portion 107 for receiving an oxidant; and a heat medium flow path 120.
 アルカリ形燃料電池300のような、熱媒体流路を有するアルカリ形燃料電池は、温度調節器30a(温度変更部)が、熱媒体を用いてアルカリ形燃料電池の加熱(好ましくは、さらに冷却)を行なうものである場合に使用される。この場合、温度調節器30a(温度変更部)は、温度調節された熱媒体をアルカリ形燃料電池の熱媒体流路120に供給する装置を含む。 In the alkaline fuel cell having a heat medium flow path such as the alkaline fuel cell 300, the temperature controller 30a (temperature changing unit) heats (preferably further cools) the alkaline fuel cell using the heat medium. It is used when doing something. In this case, the temperature controller 30a (temperature changing unit) includes a device that supplies the temperature-controlled heat medium to the heat medium flow path 120 of the alkaline fuel cell.
 以下、図面を参照しながら、アルカリ形燃料電池300についてさらに詳細に説明すると、熱媒体流路120は、膜電極複合体のうちアニオン伝導性電解質膜101のみに熱媒体を接触させるように構成されており、具体的には、アニオン伝導性電解質膜101の第1電極側表面(第1表面101b)のみに熱媒体を接触させるための第1熱媒体流路122、および、アニオン伝導性電解質膜101の第2電極側表面(第2表面101a)のみに熱媒体を接触させるための第2熱媒体流路121からなる〔図7参照〕。 Hereinafter, the alkaline fuel cell 300 will be described in more detail with reference to the drawings. The heat medium flow path 120 is configured so that the heat medium is brought into contact with only the anion conductive electrolyte membrane 101 in the membrane electrode assembly. Specifically, the first heat medium flow path 122 for contacting the heat medium only to the first electrode side surface (first surface 101b) of the anion conductive electrolyte membrane 101, and the anion conductive electrolyte membrane It consists of the 2nd heat-medium flow path 121 for making a heat medium contact only to the 2nd electrode side surface (2nd surface 101a) of 101 [refer FIG. 7].
 このように、熱媒体が膜電極複合体のうちアニオン伝導性電解質膜101のみに接触、供給されるように構成された熱媒体流路120を備えたアルカリ形燃料電池300によれば、電極の直近に位置するアニオン伝導性電解質膜101が直接、熱媒体により温度調節されるため、熱交換効率の向上を図ることができる(したがって、燃料電池が所望の温度に達するのに要する時間を短くすることができる)とともに、電極およびアニオン伝導性電解質膜101の温度調節の精度を向上させることができる。 As described above, according to the alkaline fuel cell 300 including the heat medium flow channel 120 configured so that the heat medium contacts and is supplied only to the anion conductive electrolyte membrane 101 in the membrane electrode assembly, the electrode Since the temperature of the anion conductive electrolyte membrane 101 positioned directly is directly adjusted by the heat medium, it is possible to improve the heat exchange efficiency (thus shortening the time required for the fuel cell to reach a desired temperature). And the accuracy of temperature adjustment of the electrode and the anion conductive electrolyte membrane 101 can be improved.
 また、膜電極複合体の電極に熱媒体が直接的に供給されることがないので、フラッディングに代表されるような電極細孔の閉塞が生じてアルカリ形燃料電池の発電効率や出力安定性が低下することを防止でき、また、電極が熱媒体中の微量不純物によって劣化するおそれもない。 In addition, since the heat medium is not directly supplied to the electrodes of the membrane electrode assembly, the electrode pores are blocked as represented by flooding, and the power generation efficiency and output stability of the alkaline fuel cell are reduced. It is possible to prevent the decrease, and there is no possibility that the electrode is deteriorated by a small amount of impurities in the heat medium.
 アルカリ燃料電池300において第1電極102および第2電極103は、アニオン伝導性電解質膜101、第1セパレータ104および第2セパレータ105よりも小さい面積を有しており、したがって、各電極の側方であってアニオン伝導性電解質膜101と各セパレータとの間に、電極が存在しない隙間(空間)を有している。第1電極102および第2電極103は、アニオン伝導性電解質膜101面内における位置が一致するように、アニオン伝導性電解質膜101表面の略中心部に積層されている。 In the alkaline fuel cell 300, the first electrode 102 and the second electrode 103 have an area smaller than that of the anion conductive electrolyte membrane 101, the first separator 104, and the second separator 105, and accordingly, on the side of each electrode. Thus, there is a gap (space) where no electrode exists between the anion conductive electrolyte membrane 101 and each separator. The 1st electrode 102 and the 2nd electrode 103 are laminated | stacked on the approximate center part of the anion conductive electrolyte membrane 101 surface so that the position in the anion conductive electrolyte membrane 101 surface may correspond.
 第1熱媒体流路122は、第1セパレータ104とアニオン伝導性電解質膜101の間に介在する上述の電極が存在しない隙間(空間)の一部であって、離間して配置された2つの第1壁112によって挟まれた第1空間110を含んで構成されており、より具体的には、第1空間110と、第1空間110の直下に位置するとともに第1空間110に連続する第1凹部108とで構成されている。第1壁112は、第1凹部108の幅方向両端部に沿うように形成され〔図9と同様〕、また厚み方向に関して、第1セパレータ104におけるアニオン伝導性電解質膜101側表面からアニオン伝導性電解質膜101の第1表面101bまで延びる。すなわち、第1空間110は、第1セパレータ104、アニオン伝導性電解質膜101および2つの第1壁112によって形成された内部空間である。これにより、第1空間110外への熱媒体の漏洩が防止されている。 The first heat medium flow path 122 is a part of a gap (space) where the above-mentioned electrode interposed between the first separator 104 and the anion conductive electrolyte membrane 101 does not exist, and is separated from the two. The first space 110 is sandwiched between the first walls 112, and more specifically, the first space 110 and the first space 110 located immediately below the first space 110 and continuing to the first space 110. 1 recess 108. The first wall 112 is formed along both ends in the width direction of the first recess 108 (similar to FIG. 9), and the anion conductivity from the surface of the first separator 104 on the anion conductive electrolyte membrane 101 side in the thickness direction. It extends to the first surface 101b of the electrolyte membrane 101. That is, the first space 110 is an internal space formed by the first separator 104, the anion conductive electrolyte membrane 101, and the two first walls 112. Thereby, the leakage of the heat medium to the outside of the first space 110 is prevented.
 第1空間110は、その周縁に設けられた第1壁112によって、電極が存在しない隙間(空間)の他の部分、ならびに、第1電極102および燃料受容部106から隔離(空間的に分離)されており、膜電極複合体のうちアニオン伝導性電解質膜101の第1表面101bのみに接している。 The first space 110 is isolated (spatially separated) from other portions of the gap (space) where no electrode exists and the first electrode 102 and the fuel receiving portion 106 by the first wall 112 provided at the periphery thereof. It is in contact with only the first surface 101b of the anion conductive electrolyte membrane 101 in the membrane electrode assembly.
 第1凹部108は、第1電極102が存在しない領域における第1セパレータ104のアニオン伝導性電解質膜101側表面に設けられた凹部であり、燃料受容部106を構成する第3凹部とは独立して、かつ燃料受容部106を取り囲むように形成されている〔図8と同様〕。 The first recess 108 is a recess provided on the anion conductive electrolyte membrane 101 side surface of the first separator 104 in a region where the first electrode 102 does not exist, and is independent of the third recess constituting the fuel receiving unit 106. And is formed so as to surround the fuel receiving portion 106 (similar to FIG. 8).
 同様に、第2熱媒体流路121は、第2セパレータ105とアニオン伝導性電解質膜101の間に介在する上述の電極が存在しない隙間(空間)の一部であって、離間して配置された2つの第2壁113によって挟まれた第2空間111を含んで構成されており、より具体的には、第2空間111と、第2空間111の直上に位置するとともに第2空間111に連続する第2凹部109とで構成されている。第2壁113は、第2凹部109の幅方向両端部に沿うように形成され〔図9参照〕、また厚み方向に関して、第2セパレータ105におけるアニオン伝導性電解質膜101側表面からアニオン伝導性電解質膜101の第2表面101aまで延びる。すなわち、第2空間111は、第2セパレータ105、アニオン伝導性電解質膜101および2つの第2壁113によって形成された内部空間である。これにより、第2空間111外への熱媒体の漏洩が防止されている。 Similarly, the second heat medium flow path 121 is a part of a gap (space) where the above-described electrode interposed between the second separator 105 and the anion conductive electrolyte membrane 101 does not exist, and is spaced apart. The second space 111 is sandwiched between the two second walls 113. More specifically, the second space 111 is located immediately above the second space 111 and in the second space 111. The second recess 109 is continuous. The second wall 113 is formed along both widthwise ends of the second recess 109 [see FIG. 9], and the anion conductive electrolyte from the anion conductive electrolyte membrane 101 side surface of the second separator 105 in the thickness direction. The film 101 extends to the second surface 101a. That is, the second space 111 is an internal space formed by the second separator 105, the anion conductive electrolyte membrane 101 and the two second walls 113. Thereby, the leakage of the heat medium to the outside of the second space 111 is prevented.
 第2空間111は、その周縁に設けられた第2壁113によって、電極が存在しない隙間(空間)の他の部分、ならびに、第2電極103および酸化剤受容部107から隔離(空間的に分離)されており、膜電極複合体のうちアニオン伝導性電解質膜101の第2表面101aのみに接している。 The second space 111 is isolated (spatially separated) from the other part of the gap (space) where no electrode exists and the second electrode 103 and the oxidant receiving portion 107 by the second wall 113 provided at the periphery thereof. In the membrane electrode assembly, only the second surface 101a of the anion conductive electrolyte membrane 101 is in contact.
 第2凹部109は、第2電極103が存在しない領域における第2セパレータ105のアニオン伝導性電解質膜101側表面に設けられた凹部であり、酸化剤受容部107を構成する第4凹部とは独立して、かつ酸化剤受容部107を取り囲むように形成されている〔図8参照〕。 The second recess 109 is a recess provided on the surface of the second separator 105 on the anion conductive electrolyte membrane 101 side in a region where the second electrode 103 does not exist, and is independent of the fourth recess constituting the oxidant receiving unit 107. And it is formed so as to surround the oxidant receiving portion 107 (see FIG. 8).
 アルカリ形燃料電池300において、第1セパレータ104は、燃料受容部106を構成する第3凹部と、第1熱媒体流路122の一部である第1凹部108とをアニオン伝導性電解質膜101側表面に少なくとも有する部材であることができる。第2セパレータ105は、酸化剤受容部107を構成する第4凹部と、第2熱媒体流路121の一部である第2凹部109とをアニオン伝導性電解質膜101側表面に少なくとも有する部材であることができる。第3凹部、第4凹部はそれぞれ、第1電極102、第2電極103が積層される領域における第1セパレータ104、第2セパレータ105のアニオン伝導性電解質膜101側表面に設けられる。 In the alkaline fuel cell 300, the first separator 104 includes a third recess that constitutes the fuel receiving portion 106 and a first recess 108 that is a part of the first heat medium flow path 122 on the anion conductive electrolyte membrane 101 side. It can be a member having at least the surface. The second separator 105 is a member having at least a fourth concave portion constituting the oxidant receiving portion 107 and a second concave portion 109 which is a part of the second heat medium flow path 121 on the surface on the anion conductive electrolyte membrane 101 side. Can be. The third recess and the fourth recess are respectively provided on the surface of the first separator 104 and the second separator 105 on the anion conductive electrolyte membrane 101 side in the region where the first electrode 102 and the second electrode 103 are laminated.
 第3凹部および第4凹部は、たとえば図8に示されるようなサーペンタイン状、ライン状またはその他の形状を有する1または2以上の流路溝であることができる他、槽型の比較的大面積に広がって形成された凹部などであることができる。第3凹部には、その入口側端部、出口側端部にそれぞれ、燃料供給用配管、燃料排出用配管を接続してもよい。同様に、第4凹部には、その入口側端部、出口側端部にそれぞれ、酸化剤供給用配管、酸化剤排出用配管を接続してもよい。 The third recess and the fourth recess can be one or more flow channel grooves having a serpentine shape, a line shape, or other shapes as shown in FIG. It can be a recess formed so as to spread. A fuel supply pipe and a fuel discharge pipe may be connected to the inlet side end and the outlet side end of the third recess, respectively. Similarly, an oxidant supply pipe and an oxidant discharge pipe may be connected to the fourth recess at the inlet side end and the outlet side end, respectively.
 図8(第2セパレータ105を例示したものである)に示されるように、第1凹部108、第2凹部109はそれぞれ、燃料受容部106(第3凹部)、酸化剤受容部107(第4凹部)を取り囲むように形成された一本の流路溝であるが、これに限定されるものではなく、熱交換効率などを考慮して種々の形状を採り得る。たとえば、第1凹部108および第2凹部109は、電解質膜表面のより広い面積にわたって熱媒体を接触させることができるよう、複数の流路溝や枝分かれ状の流路溝、槽型の比較的大面積に広がって形成された凹部(溝)などであることができ、それぞれ第1セパレータ104、第2セパレータ105表面の、燃料受容部106、酸化剤受容部107を除く全領域またはほぼ全領域に形成してもよい。 As shown in FIG. 8 (exemplifying the second separator 105), the first recess 108 and the second recess 109 are respectively the fuel receiving portion 106 (third recess) and the oxidant receiving portion 107 (fourth). However, the present invention is not limited to this, and various shapes can be taken in consideration of heat exchange efficiency and the like. For example, the first recess 108 and the second recess 109 have a plurality of channel grooves, branched channel grooves, and a relatively large tank shape so that the heat medium can be brought into contact over a wider area of the electrolyte membrane surface. The surface of the first separator 104 and the second separator 105 may be all or almost the entire area excluding the fuel receiving portion 106 and the oxidant receiving portion 107, respectively. It may be formed.
 また、たとえば図10(第2セパレータ105を例示したものである)のように、第1凹部108および第2凹部109は、良好な熱交換効率や燃料電池内の温度の均一性を得るために、第1電極102や第2電極103を複数に分割するとともに、これに応じて燃料受容部106や酸化剤受容部107も複数に分割し、分割された燃料受容部106や酸化剤受容部107の間に第1凹部108や第2凹部109を配置するなどの構成を採用することにより、第1凹部108および第2凹部109が第1セパレータ104や第2セパレータ105表面のできるだけ広い面積にわたって、また面内にできるだけ均一に配置されるようにしてもよい。このような構成とすることで、熱交換量が多くなり熱交換効率を高めることができることに加え、セパレータ面内の温度均一性、ひいては、アルカリ形燃料電池内の温度の均一性を高めることができる。 Further, as shown in FIG. 10 (exemplifying the second separator 105), the first recess 108 and the second recess 109 are provided in order to obtain good heat exchange efficiency and temperature uniformity in the fuel cell. The first electrode 102 and the second electrode 103 are divided into a plurality of parts, and the fuel receiving part 106 and the oxidant receiving part 107 are also divided into a plurality of parts in accordance with this, and the divided fuel receiving part 106 and oxidant receiving part 107 are divided. By adopting a configuration such as disposing the first concave portion 108 and the second concave portion 109 between the first concave portion 108 and the second concave portion 109 over the largest possible area of the surface of the first separator 104 or the second separator 105, Further, it may be arranged as uniformly as possible in the plane. By adopting such a configuration, in addition to increasing the amount of heat exchange and improving the heat exchange efficiency, it is possible to improve the temperature uniformity in the separator surface, and thus the temperature uniformity in the alkaline fuel cell. it can.
 アルカリ形燃料電池300においても、第1セパレータ104および第2セパレータ105として、燃料受容部と酸化剤受容部とを兼ね備えたバイポーラプレートを用いてもよい。 Also in the alkaline fuel cell 300, a bipolar plate having both a fuel receiving portion and an oxidant receiving portion may be used as the first separator 104 and the second separator 105.
 第1壁112および第2壁113はそれぞれ、熱媒体流路の一部である第1空間110、第2空間111を、上述の電極が存在しない隙間(空間)の他の部分、ならびに、電極および燃料/酸化剤受容部から隔離する壁であり、厚み方向に関して、セパレータのアニオン伝導性電解質膜101側表面からアニオン伝導性電解質膜101表面まで延びている。 The first wall 112 and the second wall 113 respectively pass through the first space 110 and the second space 111 that are a part of the heat medium flow path, the other part of the gap (space) in which the above-described electrode does not exist, and the electrode And a wall that is isolated from the fuel / oxidant receiving portion, and extends from the surface of the separator on the anion conductive electrolyte membrane 101 side to the surface of the anion conductive electrolyte membrane 101 in the thickness direction.
 第1壁112および第2壁113はそれぞれ、第1凹部108、第2凹部109と略平行に、該凹部の幅方向両端部に沿うように形成される〔図9参照〕。第1壁112および第2壁113は、第1空間110、第2空間111以外の、電極が存在しない隙間(空間)のすべてを覆うように形成してもよく、その場合、アルカリ形燃料電池の第1セパレータと、第2セパレータとを締結部材等で締結した際に、応力が均等化され、安定性が向上する。第1セパレータ-第2セパレータ間の締結は、ネジやボルト・ナットなどの締結部材を用いて行なうことができる。 The first wall 112 and the second wall 113 are formed so as to be substantially parallel to the first concave portion 108 and the second concave portion 109 and along both ends in the width direction of the concave portion [see FIG. 9]. The first wall 112 and the second wall 113 may be formed so as to cover all gaps (spaces) where no electrode exists, except for the first space 110 and the second space 111. In that case, an alkaline fuel cell is used. When the first separator and the second separator are fastened with a fastening member or the like, the stress is equalized and the stability is improved. Fastening between the first separator and the second separator can be performed using fastening members such as screws, bolts and nuts.
 また、第1壁112および第2壁113はそれぞれ、第1凹部108、第2凹部109と略平行に、該凹部の幅方向両端部に沿うように形成された溝に、その一部を嵌め込むように配置してもよい。このような構成によれば、アルカリ形燃料電池組立時の第1壁112、第2壁113の位置決めが容易になり、生産性が向上する。また、第1壁112、第2壁113の位置ズレを防止することができるため、信頼性の高いアルカリ形燃料電池を提供できることができる。 Further, a part of each of the first wall 112 and the second wall 113 is fitted into a groove formed so as to extend along both ends in the width direction of the recess substantially parallel to the first recess 108 and the second recess 109. You may arrange so that it may come in. According to such a configuration, the first wall 112 and the second wall 113 can be easily positioned when the alkaline fuel cell is assembled, and the productivity is improved. In addition, since the displacement of the first wall 112 and the second wall 113 can be prevented, a highly reliable alkaline fuel cell can be provided.
 第1壁112および第2壁113の材質は、熱媒体に対して耐性を有し、かつ熱媒体不透過性である限り特に制限されず、たとえば、ブチルゴム、エチレンプロピレンゴム、クロロプレンゴム、ニトリルゴム、シリコンゴム、四フッ化エチレンプロピレンゴム、四フッ化エチレンパーフルオロメチルビニリデン系ゴム等の弾性体;テトラフルオロエチレン、ポリプロピレン、ポリメチルペンテンに代表される熱可塑性樹脂、ステンレスに代表される金属または合金等の非弾性体などを挙げることができる。 The material of the first wall 112 and the second wall 113 is not particularly limited as long as it is resistant to the heat medium and is impermeable to the heat medium. For example, butyl rubber, ethylene propylene rubber, chloroprene rubber, nitrile rubber , Elastic bodies such as silicon rubber, tetrafluoroethylene propylene rubber, tetrafluoroethylene perfluoromethylvinylidene rubber; thermoplastic resin represented by tetrafluoroethylene, polypropylene, polymethylpentene, metal represented by stainless steel, or An inelastic material such as an alloy can be used.
 なかでも、第1壁112および第2壁113は弾性体からなることが好ましい。各セパレータとアニオン伝導性電解質膜101との間に介在され、熱媒体流路空間の一部を形成する隔離壁として弾性壁を用いることにより、燃料電池の厚み方向に圧力を加えることによる弾性壁の変形を利用して、弾性壁と各セパレータおよびアニオン伝導性電解質膜101とを良好に面接触させることができる。これにより、これら界面のシール性を向上させることができ、電極、さらには燃料受容部106/酸化剤受容部107への熱媒体の漏洩をより確実に防止することができる。 Especially, it is preferable that the 1st wall 112 and the 2nd wall 113 consist of elastic bodies. An elastic wall formed by applying pressure in the thickness direction of the fuel cell by using an elastic wall as an isolation wall interposed between each separator and the anion conductive electrolyte membrane 101 and forming a part of the heat medium flow path space By utilizing this deformation, the elastic wall, each separator, and the anion conductive electrolyte membrane 101 can be brought into good surface contact. Thereby, the sealing performance of these interfaces can be improved, and the leakage of the heat medium to the electrode and further to the fuel receiving portion 106 / oxidant receiving portion 107 can be more reliably prevented.
 また、弾性壁を用いることにより、弾性壁とセパレータおよびアニオン伝導性電解質膜101との界面の良好なシール性、ならびに、電極とセパレータとの間の接触抵抗の十分な低減効果を得るために、第1セパレータ-第2セパレータ間を締結することにより燃料電池の厚み方向に十分な圧力を加えた場合においても、該圧力により弾性壁が適度に潰れ反発力を生じるので、電極の過度の潰れおよびこれに伴う細孔閉塞による物質拡散抵抗の増大を有効に防止することができる。 In addition, by using the elastic wall, in order to obtain a good sealing property at the interface between the elastic wall and the separator and the anion conductive electrolyte membrane 101, and a sufficient reduction effect of the contact resistance between the electrode and the separator, Even when a sufficient pressure is applied in the thickness direction of the fuel cell by fastening between the first separator and the second separator, the elastic wall is appropriately crushed by the pressure to generate a repulsive force. This can effectively prevent an increase in material diffusion resistance due to pore blockage.
 熱媒体としては、空気、水蒸気、クロロフルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン等の気体;水、水溶液、油、エチレングリコール等の液体など公知の熱媒体を用いることができるが、熱容量が高く効率的な熱交換が可能であること、および、取扱い性の観点から液体を用いることが好ましく、水または水溶液を用いることがより好ましい。 As the heat medium, a known heat medium such as air, water vapor, chlorofluorocarbon, hydrochlorofluorocarbon, hydrofluorocarbon, etc .; water, aqueous solution, oil, liquid such as ethylene glycol can be used, but the heat capacity is high and efficient. It is preferable to use a liquid from the viewpoints of heat exchange and handling, and it is more preferable to use water or an aqueous solution.
 また、水または水溶液を熱媒体として用いると、アニオン伝導性電解質膜101を直接加湿することができるとともに、アニオン伝導性電解質膜101を介して第2電極(カソード極)103に水分を供給することができるため、従来必要であった燃料および/または酸化剤を加湿するための加湿器を省略することが可能となり、燃料電池システムの小型化に有利である。また、アニオン伝導性電解質膜101の加湿により、発電効率および起動性(発電開始から所望の出力を得るために要する時間)を向上させることができる。 In addition, when water or an aqueous solution is used as a heat medium, the anion conductive electrolyte membrane 101 can be directly humidified, and moisture can be supplied to the second electrode (cathode electrode) 103 via the anion conductive electrolyte membrane 101. Therefore, it is possible to omit a humidifier for humidifying the fuel and / or oxidant, which has been conventionally required, which is advantageous for miniaturization of the fuel cell system. Further, the humidification of the anion conductive electrolyte membrane 101 can improve the power generation efficiency and startability (the time required to obtain a desired output from the start of power generation).
 以上、熱媒体流路を有するアルカリ形燃料電池として、セパレータ表面に形成された凹部(第1凹部108および第2凹部109)を熱媒体流路の一部とするアルカリ形燃料電池300について説明したが、これに限定されるものではなく、熱媒体流路はセパレータ内部に形成されていてもよく、あるいはセパレータとは異なる箇所に設けられてもよい(アルカリ形燃料電池に熱媒体流路を別途付設する等)。 The alkaline fuel cell 300 having the recesses (the first recess 108 and the second recess 109) formed on the separator surface as a part of the heat medium channel has been described as an alkaline fuel cell having the heat medium channel. However, the present invention is not limited to this, and the heat medium flow path may be formed inside the separator, or may be provided at a location different from the separator (the heat medium flow path is separately provided in the alkaline fuel cell). Attached etc.).
 アルカリ形燃料電池の第1電極(アノード極)に供給される燃料としては、たとえばH2ガス、炭化水素ガス、メタノール等のアルコール、アンモニアガスなどを用いることができ、なかでもH2ガスを用いることが好ましい。第2電極(カソード極)に供給される酸化剤としては、たとえばO2ガスや、空気等のO2を含むガスなどを用いることができ、なかでも空気が好ましく用いられる。燃料および/または酸化剤は加湿されていてもよい。 As the fuel supplied to the first electrode (anode electrode) of the alkaline fuel cell, for example, H 2 gas, hydrocarbon gas, alcohol such as methanol, ammonia gas, or the like can be used, and among them, H 2 gas is used. It is preferable. As the oxidant supplied to the second electrode (cathode electrode), for example, O 2 gas or a gas containing O 2 such as air can be used, and air is preferably used. The fuel and / or oxidant may be humidified.
 上述のように、燃料電池部10aとして、たとえばアルカリ形燃料電池300のような熱媒体流路を有するアルカリ形燃料電池を用いる場合、温度調節器30a(温度変更部)は、温度調節された熱媒体をアルカリ形燃料電池の熱媒体流路に供給する装置を含む。このような温度調節器30aとしては、たとえば、アルカリ形燃料電池の熱媒体流路に接続され、該熱媒体流路とともに熱媒体を循環させるための循環流路を形成する接続流路(図7~10における接続流路130)と、該循環流路内に熱媒体を循環させる循環装置(循環ポンプ等)と、循環流路内の熱媒体との間での熱交換により、熱媒体の温度調節を行なう熱交換装置とを有するものを挙げることができる。熱交換装置は、たとえば、アルカリ形燃料電池の熱媒体流路に供給される熱媒体とは別の熱媒体(第2熱媒体)を収容する槽や、接続流路の周囲に設けられ、第2熱媒体を流通させるジャケットなどであることができる。 As described above, when an alkaline fuel cell having a heat medium flow path, such as the alkaline fuel cell 300, is used as the fuel cell unit 10a, the temperature regulator 30a (temperature changing unit) An apparatus for supplying a medium to a heat medium flow path of an alkaline fuel cell; As such a temperature controller 30a, for example, a connection flow path (FIG. 7) that is connected to a heat medium flow path of an alkaline fuel cell and forms a circulation flow path for circulating the heat medium together with the heat medium flow path. The temperature of the heat medium is obtained by heat exchange between the connection flow path 130 in 10 to 10), the circulation device (circulation pump or the like) that circulates the heat medium in the circulation flow path, and the heat medium in the circulation flow path. And a device having a heat exchange device for adjustment. The heat exchange device is provided, for example, in a tank that contains a heat medium (second heat medium) different from the heat medium supplied to the heat medium flow path of the alkaline fuel cell, around the connection flow path, 2 It can be a jacket or the like for circulating a heat medium.
 本発明の制御装置および燃料電池システムは、以上に示した実施形態に限定されるものではなく、種々の変形が可能である。たとえば、上記の実施形態においては、アルカリ形燃料電池の温度を所定温度X以上の温度に上昇させる際、少なくとも第1電極および第2電極の双方(たとえばアルカリ形燃料電池全体)の温度を所定温度X以上にするようにしているが、温度調節器30a(温度変更部)として、いずれか一方の電極の温度を変更できるものを使用することにより、当該いずれか一方の電極のみを所定温度X以上の温度まで上昇させ、他方の温度を上記直前温度またはその付近に維持するようにしてもよい。 The control device and the fuel cell system of the present invention are not limited to the embodiment described above, and various modifications are possible. For example, in the above embodiment, when the temperature of the alkaline fuel cell is raised to a temperature equal to or higher than the predetermined temperature X, at least the temperatures of both the first electrode and the second electrode (for example, the entire alkaline fuel cell) are set to the predetermined temperature. However, the temperature controller 30a (temperature changing unit) can change the temperature of any one of the electrodes so that only one of the electrodes has a predetermined temperature X or more. The other temperature may be maintained at or near the previous temperature.
 上記の場合において、所定温度X以上の温度まで上昇させる電極はアノード極であり、上記直前温度またはその付近に維持される電極はカソード極であることがとりわけ好ましい。これにより、OH-アニオンを生成し、OH-アニオン濃度が高くなる傾向にある電極であるカソード極が高い温度下におかれることによって触媒層の電解質が劣化することを抑制しつつ、アノード極から排出される単位時間あたりのCO2ガス量を増大させることができ、もって膜電極複合体中のCO2由来アニオン濃度を早期に低減させることができる。 In the above case, it is particularly preferable that the electrode to be raised to a temperature equal to or higher than the predetermined temperature X is an anode, and the electrode maintained at or near the temperature just above is a cathode. Thus, OH - generates anion, OH - while suppressing the electrolyte in the catalyst layer is deteriorated by the cathode is an electrode tends to anion concentration becomes higher is placed under high temperature, from the anode electrode The amount of CO 2 gas discharged per unit time can be increased, so that the concentration of CO 2 -derived anions in the membrane electrode assembly can be reduced early.
 いずれか一方の電極の温度のみを変更する手段としては、たとえば、当該電極に積層するセパレータのみに熱媒体流路を設け、該熱媒体流路に熱媒体を供給する装置を含む温度変更部(温度調節器)を用いることや、当該電極のみに接続された加熱冷却装置または加熱装置からなる温度変更部(温度調節器)を用いることなどが挙げられる。 As a means for changing only the temperature of either one of the electrodes, for example, a temperature changing unit (including a device for supplying a heat medium to the heat medium flow path by providing a heat medium flow path only to a separator laminated on the electrode) For example, use of a temperature changing unit (temperature controller) including a heating / cooling device or a heating device connected only to the electrodes, and the like.
 また、検出部20は、「アルカリ形燃料電池の状態」として、上述の〔b〕~〔e〕のいずれかを検出するものであってもよく、このような場合においても同様の効果を奏し得る。 Further, the detection unit 20 may detect any of the above [b] to [e] as “the state of the alkaline fuel cell”. In such a case, the same effect can be obtained. obtain.
 「アルカリ形燃料電池の状態」として、〔b〕アニオン伝導性電解質膜中のCO2由来アニオン濃度(またはこのうちのCO3 2-濃度)を検出する場合においては、当該濃度を検出部20により常時または一定時間おきに検出し、当該濃度が所定の濃度を超えていると判断された場合、制御部50は、燃料電池部10が発電を行なっているかに関わらず、アルカリ形燃料電池の温度を上昇させることにより該温度が所定温度X以上になるように温度変更部30を制御するとともに、該所定温度X以上の温度下において、膜電極複合体に所定電流値A以上の電流が一定時間流れるよう電流値変更部40を制御する。 In the case of detecting the concentration of the CO 2 -derived anion (or CO 3 2− concentration among these) in the anion conductive electrolyte membrane as “the state of the alkaline fuel cell”, the concentration is detected by the detection unit 20. When it is detected constantly or at regular intervals and it is determined that the concentration exceeds a predetermined concentration, the control unit 50 determines the temperature of the alkaline fuel cell regardless of whether the fuel cell unit 10 is generating power. And the temperature changing unit 30 is controlled so that the temperature becomes equal to or higher than the predetermined temperature X, and a current equal to or higher than the predetermined current value A is supplied to the membrane electrode assembly for a certain period of time under the temperature equal to or higher than the predetermined temperature X. The current value changing unit 40 is controlled to flow.
 「アルカリ形燃料電池の状態」として、〔c〕アニオン伝導性電解質膜のpHを検出する場合においては、当該pHを検出部20(アニオン伝導性電解質膜に接触させたpHメータ)により常時または一定時間おきに検出し、当該pHが所定のpHを下回っていると判断された場合、制御部50は上記のような制御を行なう。 [C] When detecting the pH of the anion conductive electrolyte membrane as “the state of the alkaline fuel cell”, the pH is constantly or constant by the detection unit 20 (pH meter brought into contact with the anion conductive electrolyte membrane). If it is detected every hour and it is determined that the pH is lower than the predetermined pH, the control unit 50 performs the control as described above.
 「アルカリ形燃料電池の状態」として、〔d〕アニオン伝導性電解質膜の抵抗値を検出する場合においては、当該抵抗値を検出部20により、カレントインタラプト測定またはインピーダンス測定などの方法で常時または一定時間おきに検出し、当該抵抗値が所定の抵抗値を超えていると判断された場合、制御部50は上記のような制御を行なう。 In the case of detecting the resistance value of [d] anion conductive electrolyte membrane as “the state of the alkaline fuel cell”, the resistance value is constantly or constant by the detection unit 20 by a method such as current interrupt measurement or impedance measurement. When it is detected every time and it is determined that the resistance value exceeds a predetermined resistance value, the control unit 50 performs the control as described above.
 「アルカリ形燃料電池の状態」として、〔e〕アルカリ形燃料電池の出力電圧値を検出する場合においては、当該電圧値を検出部20(膜電極複合体に接続した電圧計)により常時または一定時間おきに検出し、得られる電圧/電流特性が所定の電圧/電流特性を下回っている(所定の電圧/電流特性より劣っている)と判断された場合、制御部50は上記のような制御を行なう。 [E] When detecting the output voltage value of the alkaline fuel cell as “the state of the alkaline fuel cell”, the voltage value is constantly or constant by the detection unit 20 (voltmeter connected to the membrane electrode assembly). If it is determined that the obtained voltage / current characteristic is lower than the predetermined voltage / current characteristic (inferior to the predetermined voltage / current characteristic), the control unit 50 performs the control as described above. To do.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 〔制御装置および燃料電池システムの作製〕
 <実施例1>
 以下の手順で、図7と同様の構成のアルカリ形燃料電池を作製し、これを用いて、図4と同様の構成を有する制御装置および燃料電池システムを作製した。
[Production of control device and fuel cell system]
<Example 1>
In the following procedure, an alkaline fuel cell having the same configuration as that of FIG. 7 was produced, and a control device and a fuel cell system having the same configuration as that of FIG. 4 were produced using the alkaline fuel cell.
 (1)膜電極複合体の作製
 芳香族ポリエーテルスルホン酸と芳香族ポリチオエーテルスルホン酸との共重合体をクロロメチル化した後、アミノ化することにより、触媒層用のアニオン伝導性固体高分子電解質を得た。これをテトラヒドロフランに添加することにより、5重量%アニオン伝導性固体高分子電解質溶液を得た。
(1) Production of membrane electrode composite Anion-conducting solid polymer for catalyst layer by chloromethylating a copolymer of aromatic polyether sulfonic acid and aromatic polythioether sulfonic acid and then amination An electrolyte was obtained. By adding this to tetrahydrofuran, a 5 wt% anion conductive solid polymer electrolyte solution was obtained.
 Pt担持量が50重量%のPt/Cである触媒担持カーボン粒子(田中貴金属社製「TEC10E50E」)と、上記で得られた電解質溶液とを、重量比で2/0.2となるように混合し、さらにイオン交換水およびエタノールを添加することにより、アノード触媒層用の触媒ペーストを調製した。 The catalyst-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt-supported amount of Pt / C of 50% by weight and the above-obtained electrolyte solution have a weight ratio of 2 / 0.2. A catalyst paste for the anode catalyst layer was prepared by mixing and further adding ion exchange water and ethanol.
 同様に、Pt担持量が50重量%のPt/Cである触媒担持カーボン粒子(田中貴金属社製「TEC10E50E」)と、上記で得られた電解質溶液とを、重量比で2/0.2となるように混合し、さらにイオン交換水およびエタノールを添加することにより、カソード触媒層用の触媒ペーストを調製した。 Similarly, a catalyst-supporting carbon particle (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt support amount of 50% by weight and Pt / C and the electrolyte solution obtained above are 2 / 0.2 in weight ratio. The catalyst paste for the cathode catalyst layer was prepared by mixing the mixture as described above and further adding ion exchange water and ethanol.
 次に、アノードガス拡散層としてカーボンペーパー(東レ社製「TGP-H-060」、厚み約190μm)を縦22.3mm×横22.3mmのサイズに切り出し、そのアノードガス拡散層の一方の面に、上記のアノード触媒層用の触媒ペーストを触媒量が0.5mg/cm2となるように、縦22.3mm×横22.3mmのウィンドウを有したスクリーン印刷版を用いて塗布し、室温にて乾燥させることにより、アノードガス拡散層であるカーボンペーパーの片面の全面にアノード触媒層が形成されたアノード極(第1電極)102を作製した。得られたアノード極102の厚みは約200μmであった。 Next, carbon paper (“TGP-H-060” manufactured by Toray Industries Inc., thickness of about 190 μm) is cut into an anode gas diffusion layer into a size of 22.3 mm long × 22.3 mm wide, and one side of the anode gas diffusion layer The catalyst paste for the anode catalyst layer was applied using a screen printing plate having a window of 22.3 mm in length and 22.3 mm in width so that the amount of catalyst was 0.5 mg / cm 2. The anode electrode (first electrode) 102 in which the anode catalyst layer was formed on the entire surface of one side of the carbon paper, which was the anode gas diffusion layer, was produced. The thickness of the obtained anode 102 was about 200 μm.
 同様に、カソードガス拡散層としてカーボンペーパー(東レ社製「TGP-H-060」、厚み約190μm)を縦22.3mm×横22.3mmのサイズに切り出し、そのカソードガス拡散層の一方の面に、上記のカソード触媒層用の触媒ペーストを触媒量が0.5mg/cm2となるように、縦22.3mm×横22.3mmのウィンドウを有したスクリーン印刷版を用いて塗布し、室温にて乾燥させることにより、カソードガス拡散層であるカーボンペーパーの片面の全面にカソード触媒層が形成されたカソード極(第2電極)103を作製した。得られたカソード極103の厚みは約200μmであった。 Similarly, carbon paper (“TGP-H-060” manufactured by Toray Industries Inc., thickness of about 190 μm) is cut into a size of 22.3 mm long × 22.3 mm wide as a cathode gas diffusion layer, and one side of the cathode gas diffusion layer Then, the above-mentioned catalyst paste for the cathode catalyst layer was applied using a screen printing plate having a window of 22.3 mm in length and 22.3 mm in width so that the amount of catalyst was 0.5 mg / cm 2. The cathode electrode (second electrode) 103 in which the cathode catalyst layer was formed on the entire surface of one side of the carbon paper that was the cathode gas diffusion layer was produced by drying with the above. The thickness of the obtained cathode electrode 103 was about 200 μm.
 次に、縦90mm×横90mmのサイズに切り出したフッ素樹脂系高分子電解質(旭化成社製「アシプレックス」)をアニオン伝導性電解質膜101として用い、上記アノード極102と電解質膜101と上記カソード極103をこの順で、それぞれの触媒層が電解質膜101に対向するように重ね合わせた後、130℃、10kNで2分間の熱圧着を行なうことにより、アノード極102およびカソード極103を電解質膜101に接合し、膜電極複合体を得た。上記重ね合わせは、アノード極102とカソード極103の電解質膜101の面内における位置が一致するように、かつアノード極102と電解質膜101とカソード極103の中心が一致するように行なった。 Next, a fluororesin polymer electrolyte (“Aciplex” manufactured by Asahi Kasei Co., Ltd.) cut into a size of 90 mm in length × 90 mm in width is used as the anion conductive electrolyte membrane 101, and the anode electrode 102, electrolyte membrane 101, and cathode electrode are used. 103 are stacked in this order so that the respective catalyst layers face the electrolyte membrane 101, and then subjected to thermocompression bonding at 130 ° C. and 10 kN for 2 minutes, whereby the anode electrode 102 and the cathode electrode 103 are connected to the electrolyte membrane 101. To obtain a membrane electrode composite. The superposition was performed so that the positions of the anode electrode 102 and the cathode electrode 103 in the plane of the electrolyte membrane 101 coincided, and the centers of the anode electrode 102, the electrolyte membrane 101, and the cathode electrode 103 coincided.
 (2)アルカリ形燃料電池の作製
 外形が縦90mm×横90mm×厚み20mmであり、一方の表面に図8に示されるような流路溝(図7における燃料受容部106および第1凹部108、または、酸化剤受容部107および第2凹部109)が形成されたカーボン材料からなる部材を2つ用意し、これらをそれぞれ、集電機能を有する第1セパレータ104、第2セパレータ105とした。第1セパレータ104が有する燃料受容部106および第2セパレータ105が有する酸化剤受容部107は、図8に示されるようなサーペンタイン状の流路溝である(流路の幅800μm、深さ800μm)。燃料受容部106および酸化剤受容部107が形成されている領域はそれぞれ、第1セパレータ104、第2セパレータ105の中心であり、そのサイズは縦22.3mm×横22.3mmである。また、第1凹部108および第2凹部109は幅800μm、深さ800μmであり、それぞれ燃料受容部106、酸化剤受容部107の周囲を取り囲むように形成されている。第1セパレータ104には、検出部20aを構成する温度センサ(熱電対)を挿入するための穴が形成されている。
(2) Fabrication of alkaline fuel cell The outer shape is 90 mm long × 90 mm wide × 20 mm thick, and one surface has a channel groove as shown in FIG. 8 (the fuel receiving portion 106 and the first concave portion 108 in FIG. Alternatively, two members made of a carbon material in which the oxidant receiving portion 107 and the second concave portion 109) are formed are prepared as the first separator 104 and the second separator 105 having a current collecting function, respectively. The fuel receiving portion 106 included in the first separator 104 and the oxidant receiving portion 107 included in the second separator 105 are serpentine-shaped flow channel grooves as shown in FIG. 8 (flow channel width 800 μm, depth 800 μm). . The regions where the fuel receiving portion 106 and the oxidant receiving portion 107 are formed are the centers of the first separator 104 and the second separator 105, respectively, and the size is 22.3 mm long × 22.3 mm wide. The first recess 108 and the second recess 109 have a width of 800 μm and a depth of 800 μm, and are formed so as to surround the periphery of the fuel receiving portion 106 and the oxidant receiving portion 107, respectively. The first separator 104 is formed with a hole for inserting a temperature sensor (thermocouple) constituting the detection unit 20a.
 第1壁112、第2壁113として、それぞれ、図9に示されるような2つの四フッ化エチレンプロピレンゴムシート(厚み180μm)を用い、これらを第1セパレータ104、第2セパレータ105の図9に示されるような位置に配置した。 As the first wall 112 and the second wall 113, two tetrafluoroethylene propylene rubber sheets (thickness 180 μm) as shown in FIG. 9 are used, and these are shown in FIG. 9 of the first separator 104 and the second separator 105, respectively. It was arranged at the position shown in
 ついで、上記(1)で得られた膜電極複合体のアノードガス拡散層上に、溝形成面がアノードガス拡散層に対向するように、かつ第1壁112,112間の第1空間110が第1凹部108の直上に配置されるように(アノード極102が燃料受容部106の直上に配置されるように)第1セパレータ104を積層するとともに、カソードガス拡散層上に、溝形成面がカソードガス拡散層に対向するように、かつ第2壁113,113間の第2空間111が第2凹部109の直下に配置されるように(カソード極103が酸化剤受容部107の直下に配置されるように)第2セパレータ105を積層し、これらをボルトおよびナットを用いて締結することにより、アルカリ形燃料電池を得た。 Next, the first space 110 between the first walls 112 and 112 is formed on the anode gas diffusion layer of the membrane electrode assembly obtained in (1) so that the groove forming surface faces the anode gas diffusion layer. The first separator 104 is laminated so as to be disposed immediately above the first recess 108 (so that the anode 102 is disposed immediately above the fuel receiving portion 106), and a groove forming surface is formed on the cathode gas diffusion layer. The cathode space 103 is disposed immediately below the oxidant receiving portion 107 so as to face the cathode gas diffusion layer and the second space 111 between the second walls 113 and 113 is disposed immediately below the second recess 109. The second separator 105 was laminated and these were fastened using bolts and nuts to obtain an alkaline fuel cell.
 (3)制御装置および燃料電池システムの作製
 図4と同様の構成を有する制御装置を作製し、上記で作製したアルカリ形燃料電池を燃料電池部10aとして用いて、燃料電池システムを作製した。具体的には次のとおりである。
(3) Manufacture of Control Device and Fuel Cell System A control device having the same configuration as in FIG. 4 was manufactured, and a fuel cell system was manufactured using the alkaline fuel cell manufactured above as the fuel cell unit 10a. Specifically, it is as follows.
 燃料供給用配管を第1セパレータ104の燃料受容部106に燃料を供給できるように接続するとともに、酸化剤供給用配管を第2セパレータ105の燃料受容部107に酸化剤を供給できるように接続した。また、検出部20aおよび電子負荷装置40aとしての充放電バッテリシステム(菊水電気工業株式会社製「PFX2011」、電流計、電圧計および電子負荷装置を一体として備えている)を燃料電池部10aの第1セパレータ104および第2セパレータ105に接続するとともに、第1セパレータ104の温度センサ取り付け用穴に検出部20aとしての熱電対を挿入した。この検出部20aは、単位時間T0内における、膜電極複合体のアノード極-カソード極間に所定電流値A以上の電流が流れた時間T1の割合T1/T0を検出するものである。 The fuel supply pipe is connected so that fuel can be supplied to the fuel receiving portion 106 of the first separator 104, and the oxidant supply pipe is connected so that oxidant can be supplied to the fuel receiving portion 107 of the second separator 105. . Further, a charge / discharge battery system ("PFX2011" manufactured by Kikusui Electric Co., Ltd., an ammeter, a voltmeter, and an electronic load device are integrally provided) as the detection unit 20a and the electronic load device 40a is provided in the fuel cell unit 10a. While connecting to the 1 separator 104 and the 2nd separator 105, the thermocouple as the detection part 20a was inserted in the hole for temperature sensor attachment of the 1st separator 104. This detection unit 20a detects the ratio T 1 / T 0 of the time T 1 during which a current of a predetermined current value A or more flows between the anode electrode and the cathode electrode of the membrane electrode assembly within the unit time T 0 . is there.
 また、温度調節器30aとして、アルカリ形燃料電池の熱媒体流路(第1セパレータ104および第2セパレータ105双方の熱媒体流路)の入口端部および出口端部にSUS製配管を接続して、熱媒体を流通させるための循環流路を構築した。該循環流路には、熱媒体を循環させるダブルプランジャーポンプを介在させた。SUS配管の一部を、温度調節可能なオイルバスに浸漬させ、熱媒体の温度制御を可能とした。 Further, as the temperature controller 30a, SUS pipes are connected to the inlet end and the outlet end of the heat medium flow path (the heat medium flow path of both the first separator 104 and the second separator 105) of the alkaline fuel cell. Then, a circulation channel for circulating the heat medium was constructed. A double plunger pump for circulating the heat medium was interposed in the circulation channel. A part of the SUS pipe was immersed in an oil bath capable of adjusting the temperature, and the temperature of the heat medium could be controlled.
 さらに、制御部50aとしてのパーソナルコンピュータ〔時間測定手段(タイマー)および電流値および時間T0、T1を記憶する記憶手段(メモリ)を備えている。〕を充放電バッテリシステム、熱電対および温度調節器30aを構成するオイルバスに接続して検出結果を受信可能にするとともに、該検出結果に基づき充放電バッテリシステムに制御情報を送信可能とした。 Furthermore, a personal computer [time measuring means (timer) and storage means (memory) for storing current values and times T 0 and T 1 as the control unit 50a is provided. Is connected to the oil bath constituting the charge / discharge battery system, the thermocouple and the temperature controller 30a so that the detection result can be received, and the control information can be transmitted to the charge / discharge battery system based on the detection result.
 〔アルカリ形燃料電池の発電効率の評価〕
 (1)50℃の環境下に置かれ、単位時間T0=14分、時間割合WT(=T1/T0)=10%、所定電流値A=600mA/cm2、所定電流値Aの電流を流す時間T2を6分、所定温度X=55℃(アノード極側、カソード極側双方)に設定した実施例1の制御装置(燃料電池システム)において、加湿したH2ガス(相対湿度95%)を、アルカリ形燃料電池の燃料受容部106に200mL/分の流量で供給するとともに、加湿した酸素ガス(相対湿度95%)を、酸化剤受容部107に500mL/分の流量で供給しながら、燃料電池部10a(アルカリ形燃料電池)の発電を停止(電流値0mA/cm2)しておくことにより、電流値0mA/cm2(14分間、50℃)→電流値0mA/cm2(2分間、50℃から55℃まで昇温)→電流値600mA/cm2(6分間、55℃)→電流値0mA/cm2(2分間、55℃から50℃へ降温)→電流値0mA/cm2(14分間、50℃)→・・・という温度および電流値パターンで、膜電極複合体に間欠的に600mA/cm2の電流を強制的に流した。
[Evaluation of power generation efficiency of alkaline fuel cells]
(1) Placed in an environment of 50 ° C., unit time T 0 = 14 minutes, time ratio W T (= T 1 / T 0 ) = 10%, predetermined current value A = 600 mA / cm 2 , predetermined current value A In the control device (fuel cell system) of Example 1 in which the time T 2 for flowing the current was set to a predetermined temperature X = 55 ° C. (both anode side and cathode side) for 6 minutes, humidified H 2 gas (relative Humidity 95%) is supplied to the fuel receiving portion 106 of the alkaline fuel cell at a flow rate of 200 mL / min, and humidified oxygen gas (relative humidity 95%) is supplied to the oxidant receiving portion 107 at a flow rate of 500 mL / min. While supplying, by stopping power generation of the fuel cell unit 10a (alkaline fuel cell) (current value 0 mA / cm 2 ), current value 0 mA / cm 2 (14 minutes, 50 ° C.) → current value 0 mA / cm 2 (2 minutes, 50 ° C to 55 ° C Temperature rise) → current value 600 mA / cm 2 (6 minutes, 55 ° C.) → current value 0 mA / cm 2 (2 minutes, temperature drop from 55 ° C. to 50 ° C.) → current value 0 mA / cm 2 (14 minutes, 50 ° C. ) → ... A current of 600 mA / cm 2 was forcibly passed through the membrane electrode assembly in a temperature and current pattern.
 このようなパターンでの電流取り出しは、制御部50aによる時間割合WT=0との判断に基づくものである。上記のようなパターンでの電流取り出しを2時間行なった後、200mA/cm2の電流を取り出したところ、50%の発電効率が得られるまでの時間は4分であった。なお、電流値はいずれもアノード極-カソード極間に流れる電流量を、カソード極の電解質膜への投影面積で割った値である。 The current extraction in such a pattern is based on the determination by the control unit 50a that the time ratio W T = 0. After taking out the current in the pattern as described above for 2 hours and then taking out a current of 200 mA / cm 2 , the time until a power generation efficiency of 50% was obtained was 4 minutes. The current value is a value obtained by dividing the amount of current flowing between the anode and cathode by the projected area of the cathode on the electrolyte membrane.
 発電効率は、充放電バッテリシステムが備える電圧計によって計測された実電圧値(出力電圧値)に基づき、下記式:
 発電効率=実電圧値/1.23
により算出した。
The power generation efficiency is based on the actual voltage value (output voltage value) measured by the voltmeter included in the charge / discharge battery system, and the following formula:
Power generation efficiency = actual voltage value / 1.23
Calculated by
 (2)次に、所定電流値A=700mA/cm2に設定を変更し、加湿したH2ガス(相対湿度95%)を、アルカリ形燃料電池の燃料受容部106に200mL/分の流量で供給するとともに、加湿した酸素ガス(相対湿度95%)を、酸化剤受容部107に500mL/分の流量で供給しながら、燃料電池部10a(アルカリ形燃料電池)の発電を停止(電流値0mA/cm2)しておくことにより、電流値0mA/cm2(14分間、50℃)→電流値0mA/cm2(2分間、50℃から55℃まで昇温)→電流値700mA/cm2(6分間、55℃)→電流値0mA/cm2(2分間、55℃から50℃へ降温)→電流値0mA/cm2(14分間、50℃)→・・・という温度および電流値パターンで、膜電極複合体に間欠的に700mA/cm2の電流を強制的に流した。 (2) Next, the setting is changed to a predetermined current value A = 700 mA / cm 2 , and humidified H 2 gas (relative humidity 95%) is supplied to the fuel receiving portion 106 of the alkaline fuel cell at a flow rate of 200 mL / min. While supplying the humidified oxygen gas (relative humidity 95%) to the oxidant receiving unit 107 at a flow rate of 500 mL / min, power generation in the fuel cell unit 10a (alkaline fuel cell) is stopped (current value 0 mA). by / cm 2) to keep the current value 0mA / cm 2 (14 min, 50 ° C.) → current 0mA / cm 2 (2 min, heating from 50 ° C. to 55 ° C.) → current value 700 mA / cm 2 (6 minutes, 55 ° C.) → current value 0 mA / cm 2 (2 minutes, temperature drop from 55 ° C. to 50 ° C.) → current value 0 mA / cm 2 (14 minutes, 50 ° C.) → ... Temperature and current value pattern In the membrane electrode assembly intermittently A current of 700 mA / cm 2 was forced to flow.
 上記のようなパターンでの電流取り出しを2時間行なった後、200mA/cm2の電流を取り出したところ、50%の発電効率が得られるまでの時間は3分であった。 After taking out the current with the above pattern for 2 hours and taking out a current of 200 mA / cm 2 , it took 3 minutes to obtain a power generation efficiency of 50%.
 <実施例2>
 第2凹部109を有する第2セパレータ105の代わりに、該凹部を有しないセパレータを用い、第2壁113の設置を省略したこと以外は実施例1と同様にしてアルカリ形燃料電池を作製し、これを用いて実施例1と同様にして燃料電池システムを作製した。
<Example 2>
Instead of the second separator 105 having the second recess 109, a separator not having the recess was used, and an alkaline fuel cell was produced in the same manner as in Example 1 except that the installation of the second wall 113 was omitted. Using this, a fuel cell system was produced in the same manner as in Example 1.
 上記実施例1の(1)と同様にして発電効率を評価したところ(ただし、55℃まで昇温されるのはアノード極側のみである)、50%の発電効率が得られるまでの時間は4分であった。 When the power generation efficiency was evaluated in the same manner as in (1) of Example 1 above (however, only the anode side is heated to 55 ° C.), the time until 50% power generation efficiency is obtained is It was 4 minutes.
 <比較例1>
 温度調節器30aを有していないこと以外は実施例1と同様にして燃料電池システムを作製した。
<Comparative Example 1>
A fuel cell system was produced in the same manner as in Example 1 except that the temperature controller 30a was not provided.
 50℃の環境下に置かれ、単位時間T0=14分、時間割合WT(=T1/T0)=10%、所定電流値A=500mA/cm2、所定電流値Aの電流を流す時間T2を6分に設定した比較例1の制御装置(燃料電池システム)において、加湿したH2ガス(相対湿度95%)を、アルカリ形燃料電池の燃料受容部106に200mL/分の流量で供給するとともに、加湿した酸素ガス(相対湿度95%)を、酸化剤受容部107に500mL/分の流量で供給しながら、燃料電池部10a(アルカリ形燃料電池)の発電を停止(電流値0mA/cm2)しておくことにより、電流値0mA/cm2(14分間、50℃)→電流値500mA/cm2(6分間、50℃)→電流値0mA/cm2(14分間、50℃)→・・・という温度および電流値パターンで、膜電極複合体に間欠的に500mA/cm2の電流を強制的に流した。 Placed in an environment of 50 ° C., unit time T 0 = 14 minutes, time ratio W T (= T 1 / T 0 ) = 10%, predetermined current value A = 500 mA / cm 2 , current of predetermined current value A In the control device (fuel cell system) of Comparative Example 1 in which the flow time T 2 is set to 6 minutes, humidified H 2 gas (relative humidity 95%) is supplied to the fuel receiving unit 106 of the alkaline fuel cell at 200 mL / min. While supplying at a flow rate, while supplying humidified oxygen gas (relative humidity 95%) to the oxidant receiving unit 107 at a flow rate of 500 mL / min, power generation of the fuel cell unit 10a (alkaline fuel cell) is stopped (current) Value 0 mA / cm 2 ), current value 0 mA / cm 2 (14 minutes, 50 ° C.) → current value 500 mA / cm 2 (6 minutes, 50 ° C.) → current value 0 mA / cm 2 (14 minutes, 50 ° C) → ... temperature and A current of 500 mA / cm 2 was forcibly passed through the membrane electrode assembly in a current value pattern.
 上記のようなパターンでの電流取り出しを2時間行なった後、200mA/cm2の電流を取り出したところ、50%の発電効率が得られるまでの時間は8分であった。 After taking out the current in the above pattern for 2 hours and then taking out a current of 200 mA / cm 2 , the time required to obtain 50% power generation efficiency was 8 minutes.
 10,10a 燃料電池部、20,20a 検出部、30 温度変更部、30a 温度調節器、40 電流値変更部、40a 電子負荷装置、50,50a 制御部、60 電子機器、100,200,300 アルカリ形燃料電池、101 アニオン伝導性電解質膜、101a 第2表面、101b 第1表面、102 第1電極、103 第2電極、104 第1セパレータ、105 第2セパレータ、106 燃料受容部、107 酸化剤受容部、108 第1凹部、109 第2凹部、110 第1空間、111 第2空間、112 第1壁、113 第2壁、120 熱媒体流路、121 第2熱媒体流路、122 第1熱媒体流路、130 接続流路、150 ガスケット。 10, 10a Fuel cell part, 20, 20a detection part, 30 temperature change part, 30a temperature regulator, 40 current value change part, 40a electronic load device, 50, 50a control part, 60 electronic device, 100, 200, 300 alkali Fuel cell, 101 anion conductive electrolyte membrane, 101a second surface, 101b first surface, 102 first electrode, 103 second electrode, 104 first separator, 105 second separator, 106 fuel receiving part, 107 oxidant receiving , 108, first recess, 109, second recess, 110, first space, 111, second space, 112, first wall, 113, second wall, 120, heat medium flow path, 121, second heat medium flow path, 122, first heat Medium flow path, 130 connection flow path, 150 gasket.

Claims (10)

  1.  アニオン伝導性電解質膜を含む膜電極複合体を備えるアルカリ形燃料電池の状態を検出する検出部と、
     前記アルカリ形燃料電池の温度を変更するための温度変更部と、
     前記アルカリ形燃料電池の膜電極複合体に流れる電流値を変更するための電流値変更部と、
     前記検出部、前記温度変更部および前記電流値変更部に接続され、前記検出部による検出結果に応じて、前記アルカリ形燃料電池の温度を上昇させることにより該温度が所定温度X以上になるように前記温度変更部を制御するとともに、前記所定温度X以上の温度下において、前記膜電極複合体に所定電流値A以上の電流が一定時間流れるように前記電流値変更部を制御するための制御部と、
    を備える制御装置。
    A detection unit for detecting a state of an alkaline fuel cell including a membrane electrode assembly including an anion conductive electrolyte membrane;
    A temperature changing unit for changing the temperature of the alkaline fuel cell;
    A current value changing unit for changing a current value flowing through the membrane electrode assembly of the alkaline fuel cell;
    Connected to the detection unit, the temperature change unit, and the current value change unit, and according to the detection result by the detection unit, the temperature of the alkaline fuel cell is increased so that the temperature becomes a predetermined temperature X or more. And a control for controlling the current value changing unit so that a current of a predetermined current value A or more flows through the membrane electrode assembly for a predetermined time under a temperature of the predetermined temperature X or higher. And
    A control device comprising:
  2.  前記検出部は、前記アルカリ形燃料電池の温度と、単位時間T0内における、前記膜電極複合体に所定電流値A以上の電流が流れた時間T1の割合T1/T0とを少なくとも検出するものである請求項1に記載の制御装置。 The detection unit at least includes the temperature of the alkaline fuel cell and a ratio T 1 / T 0 of a time T 1 during which a current of a predetermined current value A or more flows through the membrane electrode assembly within a unit time T 0 . The control device according to claim 1, which is to be detected.
  3.  前記温度変更部は、前記アルカリ形燃料電池を加熱および冷却することが可能な加熱冷却装置または前記アルカリ形燃料電池を加熱するための加熱装置を含む請求項1に記載の制御装置。 The control device according to claim 1, wherein the temperature changing unit includes a heating / cooling device capable of heating and cooling the alkaline fuel cell or a heating device for heating the alkaline fuel cell.
  4.  前記温度変更部は、前記アルカリ形燃料電池が備える、熱媒体を流通させるための流路に対して熱媒体を供給するための装置を含む請求項3に記載の制御装置。 The control device according to claim 3, wherein the temperature changing unit includes a device for supplying the heat medium to a flow path for circulating the heat medium, which is included in the alkaline fuel cell.
  5.  前記電流値変更部は、前記アルカリ形燃料電池に接続される電子負荷装置または可変抵抗器を含む請求項1に記載の制御装置。 The control device according to claim 1, wherein the current value changing unit includes an electronic load device or a variable resistor connected to the alkaline fuel cell.
  6.  前記膜電極複合体は、前記アニオン伝導性電解質膜と、前記アニオン伝導性電解質膜の第1表面に積層される第1電極と、前記アニオン伝導性電解質膜の前記第1表面に対向する第2表面に積層される第2電極とからなり、
     前記温度変更部は、前記第1電極の温度を変更するものである請求項1に記載の制御装置。
    The membrane electrode assembly includes the anion conductive electrolyte membrane, a first electrode laminated on a first surface of the anion conductive electrolyte membrane, and a second electrode facing the first surface of the anion conductive electrolyte membrane. A second electrode laminated on the surface,
    The control device according to claim 1, wherein the temperature changing unit changes a temperature of the first electrode.
  7.  前記第1電極がアノード極であり、前記第2電極がカソード極である請求項6に記載の制御装置。 The control device according to claim 6, wherein the first electrode is an anode electrode and the second electrode is a cathode electrode.
  8.  前記所定温度Xは、前記温度変更部によって温度を上昇させる直前のアルカリ形燃料電池の温度の105%~150%の温度である請求項1に記載の制御装置。 The control device according to claim 1, wherein the predetermined temperature X is 105% to 150% of the temperature of the alkaline fuel cell immediately before the temperature is raised by the temperature changing unit.
  9.  前記所定電流値Aは、600~1000mA/cm2の範囲内である請求項1に記載の制御装置。 The control device according to claim 1, wherein the predetermined current value A is in a range of 600 to 1000 mA / cm 2 .
  10.  前記アルカリ形燃料電池を含む燃料電池部と、請求項1に記載の制御装置とを備える燃料電池システム。 A fuel cell system comprising a fuel cell unit including the alkaline fuel cell and the control device according to claim 1.
PCT/JP2012/067307 2011-08-25 2012-07-06 Control device and fuel cell system WO2013027501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-183789 2011-08-25
JP2011183789A JP2013045701A (en) 2011-08-25 2011-08-25 Control device and fuel cell system

Publications (1)

Publication Number Publication Date
WO2013027501A1 true WO2013027501A1 (en) 2013-02-28

Family

ID=47746253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067307 WO2013027501A1 (en) 2011-08-25 2012-07-06 Control device and fuel cell system

Country Status (2)

Country Link
JP (1) JP2013045701A (en)
WO (1) WO2013027501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584881A (en) * 2019-02-19 2020-08-25 本田技研工业株式会社 Method for manufacturing fuel cell

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018000115T5 (en) * 2017-12-18 2019-08-08 Ngk Insulators, Ltd. SOLID ALKALI FUEL CELL
DE112018000119T5 (en) * 2017-12-18 2019-08-08 Ngk Insulators, Ltd. SOLID ALKALI FUEL CELL
JP6963596B2 (en) * 2018-12-17 2021-11-10 日本碍子株式会社 Electrochemical cell
JP6850851B1 (en) * 2019-10-24 2021-03-31 日本碍子株式会社 Fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182589A (en) * 2009-02-06 2010-08-19 Toyota Motor Corp Fuel cell system
WO2011025797A1 (en) * 2009-08-24 2011-03-03 Cellera, Inc. Systems and methods of securing immunity to air co2 in alkaline fuel cells

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182589A (en) * 2009-02-06 2010-08-19 Toyota Motor Corp Fuel cell system
WO2011025797A1 (en) * 2009-08-24 2011-03-03 Cellera, Inc. Systems and methods of securing immunity to air co2 in alkaline fuel cells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584881A (en) * 2019-02-19 2020-08-25 本田技研工业株式会社 Method for manufacturing fuel cell

Also Published As

Publication number Publication date
JP2013045701A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5925860B2 (en) Alkaline membrane fuel cell and apparatus and method for supplying water to the same
JP4907894B2 (en) Fuel cell stack
JP5519858B2 (en) Direct oxidation fuel cell system
WO2013027501A1 (en) Control device and fuel cell system
US9190678B2 (en) Alkaline fuel cell and alkaline fuel cell system
JP5093640B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP2005129518A (en) Fuel cell system, electronic device using the system, and operation method and business method of fuel cell
WO2011064951A1 (en) Direct-oxidation fuel cell system
JP5806862B2 (en) Direct alcohol fuel cell system
JP2006049115A (en) Fuel cell
JP6956392B1 (en) Compressor
JP2009245641A (en) Fuel cell system
JP2009064604A (en) Single cell of fuel cell and fuel cell stack
WO2008050640A1 (en) Fuel cell
WO2011118138A1 (en) Direct oxidation fuel cell
WO2013080415A1 (en) Fuel cell system
JP2010153158A (en) Separator for fuel cell, and fuel cell
US20120148928A1 (en) Direct oxidation fuel cell system
JP5650025B2 (en) Control device and fuel cell system
JP2014186905A (en) Fuel cell stack
JP2013097949A (en) Direct oxidation fuel cell
JP5657413B2 (en) Alkaline fuel cell system
CN114628746B (en) Fuel cell system
JP5657412B2 (en) Alkaline fuel cell system
JP2011096460A (en) Cathode electrode for fuel cell and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826031

Country of ref document: EP

Kind code of ref document: A1