WO2013027485A1 - Ion generator and air cleaning device provided with same - Google Patents

Ion generator and air cleaning device provided with same Download PDF

Info

Publication number
WO2013027485A1
WO2013027485A1 PCT/JP2012/066486 JP2012066486W WO2013027485A1 WO 2013027485 A1 WO2013027485 A1 WO 2013027485A1 JP 2012066486 W JP2012066486 W JP 2012066486W WO 2013027485 A1 WO2013027485 A1 WO 2013027485A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
discharge
ions
voltage
ion generator
Prior art date
Application number
PCT/JP2012/066486
Other languages
French (fr)
Japanese (ja)
Inventor
泰久 白山
直子 山本
愛雄 一井
哲也 江崎
与明 高土
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013027485A1 publication Critical patent/WO2013027485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes

Definitions

  • the present invention relates to an ion generator that includes an induction electrode and a discharge electrode, and generates ions by corona discharge, and an air cleaning device including the ion generator.
  • ion generators that generate positive ions or negative ions by corona discharge are installed in air cleaners and put into practical use.
  • the former ion generator can produce a relaxing effect, and the latter ion generator can produce effects such as decomposition of mold and viruses floating in the air, removal of odors, and dust collection.
  • the amount of ions released into the target space may be increased.
  • the voltage applied to the discharge electrode is made higher in order to increase the amount of ions, there is a problem that the discharge noise generated with the ions and the amount of ozone harmful to the human body also increase. Therefore, methods have been studied for efficiently releasing ions into the target space without increasing the voltage applied to the discharge electrode.
  • Patent Document 1 discloses an efficient negative ion generator. Negative ions are generated when electrons are liberated from the electrode surface by applying a voltage to the electrodes, and the electrons are adsorbed on moisture or gas molecules. However, when negative ions increase and stay on the electrode surface, the electric field on the electrode surface is relaxed, making it difficult for electrons to be released from the electrode, and as a result, the production of negative ions is hindered.
  • Patent Document 1 includes an auxiliary electrode, and FIG. 7 shows a configuration diagram thereof.
  • the front opening of the cylindrical insulator 71 serves as an outlet 72 for negative ions, and the rear opening serves as an air intake 73.
  • An annular electrode A74 to which a low voltage is applied is held in the vicinity of the outlet 72 inside the cylindrical insulator 71, and free to generate negative ions at a substantially intermediate position in the axial direction of the cylindrical insulator 71.
  • An acicular electrode B75 that emits electrons is held, and an annular electrode C76 to which a higher voltage is applied is held behind the acicular electrode B75.
  • the needle electrode B75 is held at the center position of the cylindrical insulator 71 by an electrode holding insulator 77.
  • the present invention includes an auxiliary electrode for discharging the generated ions into the target space, and further recovers the induction electrode and other components by devising a voltage waveform applied to the electrode.
  • An object of the present invention is to realize an ion generator capable of suppressing the amount and improving the ion emission efficiency.
  • the repulsion electrode is disposed on the opposite side to the direction in which ions generated by the discharge means are conveyed.
  • the repelling electrode is applied to the grounding state by a voltage applying means, and a voltage having the same polarity as that of ions is applied to the repelling electrode during a non-discharge period during a period of 3/4 or more of the discharge period by the discharging means.
  • the repulsion electrode may be brought into a grounded state almost simultaneously with the discharge, and a voltage having the same polarity as the ions generated at the repulsion electrode may be applied almost simultaneously with the stop of the discharge.
  • two or more sets of discharge electrodes and induction electrodes may be provided to generate both positive and negative ions. You may comprise the air purifying apparatus provided with the said ion generator.
  • a repulsive electrode that functions as an auxiliary electrode is disposed behind the discharge electrode and the induction electrode, and the voltage waveform to be applied is devised, whereby ions are more efficiently discharged into the target space. Can do.
  • FIG. 4 is a voltage waveform diagram applied to the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 according to Example 1.
  • FIG. It is a voltage waveform figure applied to the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 which concern on a comparative example. It is a figure showing the relationship between the time difference which concerns on a comparative example, and a carbon rod electric current.
  • 6 is a voltage waveform diagram applied to the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 according to Example 2.
  • FIG. It is a block diagram of the conventional negative ion generator.
  • FIG. 1 is a configuration diagram of an ion generator according to an embodiment of the present invention.
  • the ion generator 10 includes a discharge electrode 11, an induction electrode 12 having a hole, a repulsion electrode 13 that functions as an auxiliary electrode, a voltage application device 14 that is a voltage application unit connected to each electrode, and a blower fan 15. Is provided.
  • the discharge electrode 11 is made of a needle-like conductor whose tip is sharply sharpened so that electric field concentration tends to occur.
  • the discharge electrode 11 is held on an insulating substrate or the like and is connected to the voltage application device 14 through a lead wire or a wiring pattern. Is done.
  • the induction electrode 12 is made of a conductor and has a thin, hollow, substantially circular shape, and is arranged so that the center of the circular shape and the center of the tip of the discharge electrode 11 substantially coincide. In this configuration, either a positive ion or a negative ion is generated by forming a uniform electric field around the discharge electrode 11 and generating a stable corona discharge.
  • the induction electrode 12 is also held on an insulating substrate or the like and connected to the voltage application device 14 through a lead wire or a wiring pattern.
  • the repulsive electrode 13 is made of a conductor, and is disposed at a position substantially coincident with the centers of the discharge electrode needle 11 and the induction electrode 12 behind the discharge electrode 11 and the induction electrode 12.
  • the repulsive electrode 13 is also connected to the voltage applying device 14 through a lead wire or a wiring pattern, and a voltage having the same polarity as ions generated by corona discharge between the discharge electrode 11 and the induction electrode 12 is applied. Therefore, ions can be repelled toward the opening and efficiently released.
  • the repulsive electrode 13 is made of a conductor and can have any shape such as a disk shape, a donut shape, or a polygonal shape as long as it has an effect of repelling ions.
  • a fan 15 is arranged to create a flow toward the outside of the ion generator 10, and the generated ions are transported through the ion generator 10 and released into the target space.
  • FIG. 2 is a diagram showing a measuring apparatus used for verifying the effect of the ion generating apparatus in the embodiment of FIG.
  • the discharge electrode 11, the induction electrode 12 and the repulsion electrode 13 of FIG. 1 are described, and in addition to this, as a measuring device, the carbon rod 16 for measuring the discharge current, the weak current of the carbon rod is amplified.
  • the state is described that includes a current-voltage conversion circuit 17 using an operational amplifier and a resistor and voltage measuring means 18 for measuring the voltage across the resistor.
  • the discharge electrode 11 in FIG. 2 was made of a conductive metal, and a needle-shaped one having a sufficiently sharp edge with a shaft portion having a diameter of 1 mm and a length of 5 mm was used.
  • the induction electrode 12 was made of a conductive metal, and a wire-shaped one having a diameter of 13 mm was used.
  • the repelling electrode 13 is also made of a conductive metal, and has a hollow disk shape having an inner diameter of 8 mm, an outer diameter of 20 mm, and a thickness of 0.5 mm.
  • shaft of each electrode was made to correspond and the repulsion electrode 13 was fixed to the back 5 mm position of the induction
  • FIG. The amount of ions generated is measured by the magnitude of the current flowing through the carbon rod 16 arranged 40 mm away from the tip of the discharge electrode 11.
  • FIG. 3 is a diagram showing voltage waveforms applied to the electrodes shown in FIG. 2 in order to verify the effect of the ion generator according to the present embodiment.
  • V1 represents a voltage waveform applied to the discharge electrode 11
  • V2 represents a voltage waveform applied to the induction electrode 12
  • V3 represents a voltage waveform applied to the repulsion electrode 13
  • FIG. 3A shows a case where positive ions are generated.
  • (B) shows the case where negative ions are generated.
  • T1 is a discharge period in which a potential difference is created between the discharge electrode 11 and the induction electrode 12 to cause discharge
  • T2 is a positive voltage applied to the discharge electrode 11 and the induction electrode 12
  • This is a non-discharge period in which no discharge occurs.
  • the repulsion electrode 13 maintains the ground state almost simultaneously with the discharge so as not to affect the electric field of the discharge between the discharge electrode 11 and the induction electrode 12.
  • the ground state means that the ground state is approached, and a potential may be applied as long as it does not substantially affect the amount of ions generated by discharge.
  • FIG. 3B shows the voltage applied to the discharge electrode 11, the induction electrode 12 and the repulsion electrode 13 having the opposite polarity to that shown in FIG.
  • V1 is a DC voltage of 4 kV
  • V2 and V3 are pulse voltages of 0 kV in the discharge period T1 and 4 kV in the non-discharge period T2
  • V2 and V3 are frequencies of 2 kHz
  • the duty ratio causing discharge is 5%.
  • the repulsive electrode 13 in order to more efficiently release ions into the target space using the repulsive electrode 13, the repulsive electrode 13 is brought close to the ground state in the discharge period T1, and is generated in the repellent electrode 13 in the non-discharge period T2. It turns out that it is good to apply the voltage of the same polarity to the ion to make.
  • Example 2 the carbon rod current was measured with a time difference T20 between the pulse voltage V3 applied to the repulsive electrode 13 and the pulse voltage V2 applied to the induction electrode 12 shown in the voltage waveform diagram of Example 1.
  • FIG. 4 shows a diagram of voltage waveforms applied to each electrode
  • FIG. 5 shows measurement results showing the relationship between the time difference T20 between V2 and V3 and the carbon rod current. Note that the same measuring apparatus as in Example 1 shown in FIG. 2 was used.
  • FIG. 4 shows voltage waveforms applied to the respective electrodes according to Example 2. Unlike Example 1, a time difference T20 of ⁇ 16 ⁇ s to 16 ⁇ s was provided between V2 and V3, and the amount of positive ions generated was measured. The measurement result is shown in FIG.
  • the carbon rod current increases as the time difference T20 decreases.
  • the carbon rod current increased by 80% or more compared to the carbon rod current of 108 nA measured when a DC voltage of 4 kV was applied to the repelling electrode. 6 ⁇ s corresponds to almost a quarter of the discharge period. From this, it can be seen that if the discharge period T1 and the period in which the repulsive electrode 13 is brought close to the ground state overlap in a period of approximately three quarters or more of the discharge period T1, ions can be efficiently released to some extent. . Even when negative ions are generated, the tendency of the amount of generated ions is the same.
  • Example 3 is different from Examples 1 and 2 in that a DC voltage is applied to the induction electrode 12, a pulse voltage is applied to the discharge electrode 11, and a pulse voltage is applied to the discharge electrode 11 in order to generate ions. Note that the same measuring apparatus as in Example 1 is used. As in Examples 1 and 2, the repulsive electrode 13 is grounded so as not to affect the electric field of the discharge in the discharge period T1, and in the non-discharge period T2, a voltage having the same polarity as the ions generated in T1. Applied. FIG.
  • FIG. 6 is a diagram of voltage waveforms applied to the respective electrodes according to the third embodiment, where V1 is a voltage waveform applied to the discharge electrode 11, V2 is a voltage waveform applied to the induction electrode 12, and V3 is applied to the repulsive electrode 13.
  • V1 is a voltage waveform applied to the discharge electrode 11
  • V2 is a voltage waveform applied to the induction electrode 12
  • V3 is applied to the repulsive electrode 13.
  • 6A shows a case where positive ions are generated
  • FIG. 6B shows a case where negative ions are generated.
  • the ions can be efficiently discharged into the target space by controlling the voltage applied to the repulsion electrode.
  • the ion generation apparatus 10 that generates either positive or negative ions using one set of the discharge electrode 11 and the induction electrode 12 is shown.
  • Positive ions and negative ions may be generated using a pair or more.
  • a repulsive electrode 13 to which a positive voltage is applied is disposed behind the discharge electrode 11 and the induction electrode 12 that generate positive ions
  • a negative electrode is disposed behind the discharge electrode 11 and the induction electrode 12 that generate negative ions.
  • the repulsive electrode 13 to which a voltage of 1 is applied is disposed.
  • the shapes and applied voltages of the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 used in the embodiments of the present invention are set according to the distance between the electrodes, the amount of ions to be generated, and the like.
  • the ventilation fan 15 was used as a sending means, the effect by the ventilation fan 15 is for diffusing ion to a wider range, and the structure without the ventilation fan 15 may be sufficient according to the objective.
  • Air purifiers here are air conditioners, dehumidifiers, humidifiers, air purifiers, fan heaters, etc., mainly in the interior of a house, a room in a building, a hospital room, a car cabin. It is a device that is used to adjust the air in an airplane cabin, a ship cabin, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

The present invention achieves an ion generator that can efficiently release ions into a target space and an air cleaning device provided with the same. The ion generator is provided with: a discharge means that includes a discharge electrode and induction electrodes; repulsion electrodes; and a voltage application means. The ion generator is characterized by: the repulsion electrodes being disposed on a side opposite to the direction in which ions generated by the discharge means are conveyed; the repulsion electrodes, in a period of three-fourths or more of the period of discharge by the discharge means, approaching a grounded state by means of the voltage application means; and during non-discharge periods, a voltage with the same polarity as the ions being applied to the repulsion electrodes.

Description

イオン発生装置及びこれを備えた空気清浄装置Ion generator and air purifier equipped with the same
 本発明は、誘導電極と放電電極とを備え、コロナ放電によりイオンを発生させるイオン発生装置及びこれを備えた空気清浄装置に関するものである。 The present invention relates to an ion generator that includes an induction electrode and a discharge electrode, and generates ions by corona discharge, and an air cleaning device including the ion generator.
 近年、コロナ放電によりプラスイオンあるいはマイナスイオンを発生させるイオン発生装置が、空気清浄装置などに多く搭載され、実用化されている。イオン発生装置には大きく分けると2種類あり、マイナスイオンだけを発生させるものと、プラスイオン及びマイナスイオンを発生させるものがある。前者のイオン発生装置は、リラックス効果を生むことができ、後者のイオン発生装置は、空気中に浮遊するカビ菌やウィルスの分解、ニオイの除去、集塵等などの効果を生むことができる。 In recent years, many ion generators that generate positive ions or negative ions by corona discharge are installed in air cleaners and put into practical use. There are roughly two types of ion generators: one that generates only negative ions and one that generates positive ions and negative ions. The former ion generator can produce a relaxing effect, and the latter ion generator can produce effects such as decomposition of mold and viruses floating in the air, removal of odors, and dust collection.
 上記の効果を促進するためには、対象の空間内へ放出させるイオンの量を増加させれば良い。しかしながら、イオン量を増加させるために、放電電極に印加する電圧をより高くすると、イオンと共に生ずる放電音や人体に有害なオゾン量も増加するという問題がある。そこで、放電電極に印加する電圧を高くせずに、効率よくイオンを対象空間内へ放出する方法が研究されてきた。 In order to promote the above effect, the amount of ions released into the target space may be increased. However, if the voltage applied to the discharge electrode is made higher in order to increase the amount of ions, there is a problem that the discharge noise generated with the ions and the amount of ozone harmful to the human body also increase. Therefore, methods have been studied for efficiently releasing ions into the target space without increasing the voltage applied to the discharge electrode.
 例えば、特許文献1には、効率のよいマイナスイオン発生装置が開示されている。マイナスイオンは、電極への電圧印加により、電極表面から電子が遊離し、水分や気体分子に電子が吸着することで生ずる。しかし、マイナスイオンが多くなり電極表面に滞留すると、電極表面の電界は緩和され、電極からの電子の遊離が起き難くなり、結果としてマイナスイオンの生成を妨げてしまう。 For example, Patent Document 1 discloses an efficient negative ion generator. Negative ions are generated when electrons are liberated from the electrode surface by applying a voltage to the electrodes, and the electrons are adsorbed on moisture or gas molecules. However, when negative ions increase and stay on the electrode surface, the electric field on the electrode surface is relaxed, making it difficult for electrons to be released from the electrode, and as a result, the production of negative ions is hindered.
 その問題を改善するために、例えば、特許文献1では補助的な電極を備えているが、図7にその構成図を示す。筒状絶縁体71の前方開口部がマイナスイオンの流出口72に、また後方開口部が空気の取り入れ口73となっている。そして、筒状絶縁体71の内部で流出口72付近に、低電圧を印加された環状電極A74が保持され、筒状絶縁体71の軸方向のほぼ中間位置に、マイナスイオン生成のための自由電子を放出する針状電極B75が保持され、さらに針状電極B75の後方に、それよりもより高い電圧を印加された環状電極C76が保持されている。前記針状電極B75は、電極保持用絶縁体77により筒状絶縁体71の中心位置に保持されている。特許文献1によれば、針状電極B75で生成されたマイナスイオンは、環状電極A74、環状電極C76間に形成される電界の作用により針状電極B75周囲より移動する。よって、従来発生していた針状電極周辺のマイナスイオンの滞留が発生せず、針状電極B75先端部の電界の緩和が起こらないため、針状電極B75表面からの自由電子の放出が容易になり、マイナスイオンの生成が円滑に行われる。 In order to improve the problem, for example, Patent Document 1 includes an auxiliary electrode, and FIG. 7 shows a configuration diagram thereof. The front opening of the cylindrical insulator 71 serves as an outlet 72 for negative ions, and the rear opening serves as an air intake 73. An annular electrode A74 to which a low voltage is applied is held in the vicinity of the outlet 72 inside the cylindrical insulator 71, and free to generate negative ions at a substantially intermediate position in the axial direction of the cylindrical insulator 71. An acicular electrode B75 that emits electrons is held, and an annular electrode C76 to which a higher voltage is applied is held behind the acicular electrode B75. The needle electrode B75 is held at the center position of the cylindrical insulator 71 by an electrode holding insulator 77. According to Patent Document 1, negative ions generated by the needle electrode B75 move from the periphery of the needle electrode B75 by the action of an electric field formed between the annular electrode A74 and the annular electrode C76. Therefore, the negative ions around the needle electrode B, which has been generated conventionally, do not stay and the electric field at the tip of the needle electrode B75 does not relax, so that free electrons can be easily emitted from the surface of the needle electrode B75. Thus, negative ions are generated smoothly.
特開2004-31145号公報(平成16年1月29日公開)JP 2004-31145 A (published January 29, 2004)
 しかしながら、特許文献1に示す技術は、筒状絶縁体71の流出口72に環状電極A74が配置されているため、針状電極B75で発生させたマイナスイオンが、流出口72と反対の方向へ押し戻されてしまう。また、環状電極C76には高い電圧が印加されているため、針状電極B75表面の電界が緩和され、マイナスイオンの発生量に悪影響を及ぼしているという問題がある。 However, in the technique shown in Patent Document 1, since the annular electrode A74 is disposed at the outlet 72 of the cylindrical insulator 71, negative ions generated by the needle-like electrode B75 are directed in the direction opposite to the outlet 72. It will be pushed back. In addition, since a high voltage is applied to the annular electrode C76, the electric field on the surface of the needle-like electrode B75 is relaxed, which has a problem of negatively affecting the amount of negative ions generated.
 そこで、本発明は、発生させたイオンを対象空間内へ放出させるための補助的な電極を備え、さらにその電極に印加する電圧波形を工夫することによって、誘導電極及びその他の構成物への回収量を抑制し、イオンの放出効率を向上できるイオン発生装置を実現することにある。 Therefore, the present invention includes an auxiliary electrode for discharging the generated ions into the target space, and further recovers the induction electrode and other components by devising a voltage waveform applied to the electrode. An object of the present invention is to realize an ion generator capable of suppressing the amount and improving the ion emission efficiency.
 放電電極及び誘導電極を含む放電手段と、反発電極と、電圧印加手段とを備えたイオン発生装置において、反発電極は、放電手段が発生するイオンが搬送される方向と反対側に配置されており、反発電極は、電圧印加手段により、放電手段による放電期間の4分の3以上の期間は、接地状態に近づけ、非放電期間は、イオンと同極性の電圧を反発電極に印加することを特徴とする。 In an ion generating apparatus including a discharge means including a discharge electrode and an induction electrode, a repulsion electrode, and a voltage application means, the repulsion electrode is disposed on the opposite side to the direction in which ions generated by the discharge means are conveyed. The repelling electrode is applied to the grounding state by a voltage applying means, and a voltage having the same polarity as that of ions is applied to the repelling electrode during a non-discharge period during a period of 3/4 or more of the discharge period by the discharging means. And
 また、放電を起こすとほぼ同時に前記反発電極を接地状態に近づけ、放電を止めるとほぼ同時に前記反発電極に発生させるイオンと同極性の電圧を印加させても良い。また、放電電極及び誘導電極を2組以上備え、プラス及びマイナスの両イオンを発生させても良い。前記イオン発生装置を備えた空気清浄装置を構成しても良い。 Alternatively, the repulsion electrode may be brought into a grounded state almost simultaneously with the discharge, and a voltage having the same polarity as the ions generated at the repulsion electrode may be applied almost simultaneously with the stop of the discharge. Further, two or more sets of discharge electrodes and induction electrodes may be provided to generate both positive and negative ions. You may comprise the air purifying apparatus provided with the said ion generator.
 本発明によれば、放電電極及び誘導電極の後方位置に補助的な電極として機能する反発電極を配置し、印加する電圧波形を工夫することで、より効率良く対象空間内へイオンを放出することができる。 According to the present invention, a repulsive electrode that functions as an auxiliary electrode is disposed behind the discharge electrode and the induction electrode, and the voltage waveform to be applied is devised, whereby ions are more efficiently discharged into the target space. Can do.
本発明の実施の形態におけるイオン発生装置の断面図である。It is sectional drawing of the ion generator in embodiment of this invention. 実施例1に係るイオン発生装置の測定装置を示す図である。It is a figure which shows the measuring apparatus of the ion generator which concerns on Example 1. FIG. 実施例1に係る放電電極11、誘導電極12及び、反発電極13に印加する電圧波形図である。4 is a voltage waveform diagram applied to the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 according to Example 1. FIG. 比較例に係る放電電極11、誘導電極12及び、反発電極13に印加する電圧波形図である。It is a voltage waveform figure applied to the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 which concern on a comparative example. 比較例に係る時間差と炭素棒電流の関係を表した図である。It is a figure showing the relationship between the time difference which concerns on a comparative example, and a carbon rod electric current. 実施例2に係る放電電極11、誘導電極12及び、反発電極13に印加する電圧波形図である。6 is a voltage waveform diagram applied to the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 according to Example 2. FIG. 従来のマイナスイオン発生装置の構成図である。It is a block diagram of the conventional negative ion generator.
 本発明による実施の形態について、図面に基づき説明する。 Embodiments according to the present invention will be described with reference to the drawings.
 図1は、本発明の一つの実施形態におけるイオン発生装置の構成図である。このイオン発生装置10は、放電電極11、孔をもつ誘導電極12、補助的な電極として機能する反発電極13、それぞれの電極に接続された電圧印加手段である電圧印加装置14、及び送風ファン15を備える。 FIG. 1 is a configuration diagram of an ion generator according to an embodiment of the present invention. The ion generator 10 includes a discharge electrode 11, an induction electrode 12 having a hole, a repulsion electrode 13 that functions as an auxiliary electrode, a voltage application device 14 that is a voltage application unit connected to each electrode, and a blower fan 15. Is provided.
 放電電極11は、電界集中が起こりやすいように先端を鋭利に尖らせた針状の導電体からなっており、絶縁体の基板等に保持され、リード線あるいは配線パターンを通じて電圧印加装置14に接続される。 The discharge electrode 11 is made of a needle-like conductor whose tip is sharply sharpened so that electric field concentration tends to occur. The discharge electrode 11 is held on an insulating substrate or the like and is connected to the voltage application device 14 through a lead wire or a wiring pattern. Is done.
 誘導電極12は、導電体からなっており、薄い中空のほぼ円形状であり、その円形状の中心と、放電電極11の先端中心がほぼ一致するように配置される。この構成において、放電電極11の周囲に均一な電界を形成させ、安定的にコロナ放電を発生させることで、プラスイオンあるいはマイナスイオンのいずれかを発生させる。誘導電極12についても、絶縁体の基板等に保持され、リード線あるいは配線パターンを通じて電圧印加装置14に接続される。 The induction electrode 12 is made of a conductor and has a thin, hollow, substantially circular shape, and is arranged so that the center of the circular shape and the center of the tip of the discharge electrode 11 substantially coincide. In this configuration, either a positive ion or a negative ion is generated by forming a uniform electric field around the discharge electrode 11 and generating a stable corona discharge. The induction electrode 12 is also held on an insulating substrate or the like and connected to the voltage application device 14 through a lead wire or a wiring pattern.
 反発電極13は、導電体からなっており、放電電極11及び誘導電極12の後方位置で、放電電極針11及び誘導電極12の中心とほぼ一致する位置に配置される。反発電極13についても、リード線あるいは配線パターンを通じて電圧印加装置14に接続され、放電電極11及び誘導電極12間のコロナ放電により発生するイオンと同極性の電圧が印加される。そのため、イオンを開口部のほうへ反発させ、効率良く放出させることができる。なお、反発電極13は、導電体から成り、イオンを反発させる効果があれば、円板状、ドーナツ状、あるいは多角形状等とあらゆる形状が考えられる。 The repulsive electrode 13 is made of a conductor, and is disposed at a position substantially coincident with the centers of the discharge electrode needle 11 and the induction electrode 12 behind the discharge electrode 11 and the induction electrode 12. The repulsive electrode 13 is also connected to the voltage applying device 14 through a lead wire or a wiring pattern, and a voltage having the same polarity as ions generated by corona discharge between the discharge electrode 11 and the induction electrode 12 is applied. Therefore, ions can be repelled toward the opening and efficiently released. The repulsive electrode 13 is made of a conductor and can have any shape such as a disk shape, a donut shape, or a polygonal shape as long as it has an effect of repelling ions.
 またファン15が配置され、イオン発生装置10の外側に向かって流れを作り、発生したイオンは、イオン発生装置10内を搬送され、対象空間内へ放出される。以下、上記の実施形態を用いた具体的な実施例について説明する。 Also, a fan 15 is arranged to create a flow toward the outside of the ion generator 10, and the generated ions are transported through the ion generator 10 and released into the target space. Hereinafter, specific examples using the above embodiment will be described.
 図2は、図1の実施形態におけるイオン発生装置の効果を検証するために用いた測定装置を示す図である。図2においては、図1の放電電極11、誘導電極12及び反発電極13を記載するとともに、これに加えて、測定装置として、放電電流測定のための炭素棒16、炭素棒の微弱電流を増幅するためのオペアンプと抵抗を用いた電流電圧変換回路17及び前記抵抗の両端の電圧を測定する電圧測定手段18を有する様子を記載している。 FIG. 2 is a diagram showing a measuring apparatus used for verifying the effect of the ion generating apparatus in the embodiment of FIG. In FIG. 2, the discharge electrode 11, the induction electrode 12 and the repulsion electrode 13 of FIG. 1 are described, and in addition to this, as a measuring device, the carbon rod 16 for measuring the discharge current, the weak current of the carbon rod is amplified. The state is described that includes a current-voltage conversion circuit 17 using an operational amplifier and a resistor and voltage measuring means 18 for measuring the voltage across the resistor.
 図2における放電電極11は、導電性の金属製であり、軸部分の太さ直径1mm、長さ5mmで、十分に先鋭度のある針状のものを用いた。また誘導電極12は、導電性の金属製であり、直径13mmのワイヤ状のものを用いた。さらに反発電極13も、導電性の金属製であり、内径8mm、外径20mm、厚さ0.5mmの中空の円板形状のものを用いた。それぞれの電極の中心軸を一致させており、反発電極13は誘導電極12の後方5mm位置に固定した。発生したイオン量は、放電電極11の先端から40mm離して配置されている炭素棒16に流れる電流の大きさにより測定する。 The discharge electrode 11 in FIG. 2 was made of a conductive metal, and a needle-shaped one having a sufficiently sharp edge with a shaft portion having a diameter of 1 mm and a length of 5 mm was used. The induction electrode 12 was made of a conductive metal, and a wire-shaped one having a diameter of 13 mm was used. Further, the repelling electrode 13 is also made of a conductive metal, and has a hollow disk shape having an inner diameter of 8 mm, an outer diameter of 20 mm, and a thickness of 0.5 mm. The center axis | shaft of each electrode was made to correspond and the repulsion electrode 13 was fixed to the back 5 mm position of the induction | guidance | derivation electrode 12. FIG. The amount of ions generated is measured by the magnitude of the current flowing through the carbon rod 16 arranged 40 mm away from the tip of the discharge electrode 11.
 図3は、本実施例に係るイオン発生装置の効果を検証するために、図2に記載の各電極に印加した電圧波形を示した図である。V1は放電電極11に印加する電圧波形、V2は誘導電極12に印加する電圧波形、V3は反発電極13に印加する電圧波形を示し、図3(a)はプラスイオンを発生させる場合、図3(b)はマイナスイオンを発生させる場合を示す。 FIG. 3 is a diagram showing voltage waveforms applied to the electrodes shown in FIG. 2 in order to verify the effect of the ion generator according to the present embodiment. V1 represents a voltage waveform applied to the discharge electrode 11, V2 represents a voltage waveform applied to the induction electrode 12, V3 represents a voltage waveform applied to the repulsion electrode 13, and FIG. 3A shows a case where positive ions are generated. (B) shows the case where negative ions are generated.
 図3(a)において、T1は、放電電極11と誘導電極12間に電位差を作り、放電を生じさせる放電期間であり、T2は、放電電極11及び誘導電極12に正の電圧を印加させ、放電を生じさせない非放電期間である。反発電極13は、放電期間T1では、放電電極11及び誘導電極12間の放電の電界に影響を与えないように、放電を起こすとほぼ同時に接地状態を保つ。なお、接地状態とは、接地状態に近づけることを意味し、放電によるイオンの発生量にほぼ影響を及ぼさない程度であれば、電位が印加されていても良い。また、非放電期間T2では、T1で発生させたプラスイオンを効率よく放出させるため、放電を止めるとほぼ同時に発生させたイオンと同極性である正の電圧を印加する。また、図3(b)は、放電電極11、誘導電極12及び反発電極13に印加する電圧を図3(a)とは逆極性にしたものである。 In FIG. 3A, T1 is a discharge period in which a potential difference is created between the discharge electrode 11 and the induction electrode 12 to cause discharge, and T2 is a positive voltage applied to the discharge electrode 11 and the induction electrode 12, This is a non-discharge period in which no discharge occurs. In the discharge period T1, the repulsion electrode 13 maintains the ground state almost simultaneously with the discharge so as not to affect the electric field of the discharge between the discharge electrode 11 and the induction electrode 12. Note that the ground state means that the ground state is approached, and a potential may be applied as long as it does not substantially affect the amount of ions generated by discharge. Further, in the non-discharge period T2, in order to efficiently release the positive ions generated in T1, a positive voltage having the same polarity as the ions generated almost simultaneously is applied when the discharge is stopped. FIG. 3B shows the voltage applied to the discharge electrode 11, the induction electrode 12 and the repulsion electrode 13 having the opposite polarity to that shown in FIG.
 ここで、図3(a)に示す印加電圧波形によるプラスイオンの発生量の測定を行った。なお、V1は4kVの直流電圧、V2及びV3は放電期間T1に0kV、非放電期間T2に4kVとなるパルス電圧とし、V2及びV3は周波数2kHz、放電を起こすDuty比は5%とした。 Here, the amount of positive ions generated was measured using the applied voltage waveform shown in FIG. V1 is a DC voltage of 4 kV, V2 and V3 are pulse voltages of 0 kV in the discharge period T1 and 4 kV in the non-discharge period T2, V2 and V3 are frequencies of 2 kHz, and the duty ratio causing discharge is 5%.
 この構成において、イオンを発生させている状況下で炭素棒16に流れる電流を測定すると、215nAであった。放電電極11及び誘導電極12に印加する電圧は同じ条件で、反発電極に4kVの直流電圧を印加した場合に測定された炭素棒電流108nAと比較すると、炭素棒電流が約2倍に増加していることがわかる。これは、放電期間T1に、反発電極13に電圧を印加しないことにより、放電電極11と誘導電極12間に形成させる電界が影響を及ぼされず、安定してイオンを発生させることができるからである。 In this configuration, when the current flowing through the carbon rod 16 was measured under conditions where ions were generated, it was 215 nA. The voltage applied to the discharge electrode 11 and the induction electrode 12 is approximately the same as that of the carbon rod current 108 nA measured when a DC voltage of 4 kV is applied to the repelling electrode. I understand that. This is because, by applying no voltage to the repulsive electrode 13 during the discharge period T1, the electric field formed between the discharge electrode 11 and the induction electrode 12 is not affected and ions can be generated stably. .
 以上の結果から、反発電極13を用いてより効率良く対象空間内へイオンを放出させるためには、放電期間T1では反発電極13を接地状態に近づけて、非放電期間T2では反発電極13に発生させるイオンを同極性の電圧を印加させるのが良いことがわかる。 From the above results, in order to more efficiently release ions into the target space using the repulsive electrode 13, the repulsive electrode 13 is brought close to the ground state in the discharge period T1, and is generated in the repellent electrode 13 in the non-discharge period T2. It turns out that it is good to apply the voltage of the same polarity to the ion to make.
 また、実施例1ではプラスイオンを発生させた場合を述べたが、マイナスイオンを発生させる場合についても図3(b)のように放電電極11、誘導電極12及び反発電極13に印加する電圧を逆極性にすることで、同傾向の結果を得ることができることは言うまでもない。 Further, in the first embodiment, the case where positive ions are generated has been described. However, in the case where negative ions are generated, voltages applied to the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 as shown in FIG. It goes without saying that the result of the same tendency can be obtained by setting the reverse polarity.
 実施例2では、実施例1の電圧波形図に示す反発電極13に印加するパルス電圧V3と誘導電極12に印加するパルス電圧V2間に時間差T20をつけて、炭素棒電流の測定を行った。図4は、各電極に印加する電圧波形の図を示し、図5は、V2とV3の時間差T20と炭素棒電流の関係を示した測定結果である。なお、測定装置は図2で示した実施例1と同様のものを用いた。 In Example 2, the carbon rod current was measured with a time difference T20 between the pulse voltage V3 applied to the repulsive electrode 13 and the pulse voltage V2 applied to the induction electrode 12 shown in the voltage waveform diagram of Example 1. FIG. 4 shows a diagram of voltage waveforms applied to each electrode, and FIG. 5 shows measurement results showing the relationship between the time difference T20 between V2 and V3 and the carbon rod current. Note that the same measuring apparatus as in Example 1 shown in FIG. 2 was used.
 図4は、実施例2に係る各電極に印加する電圧波形であり、実施例1と異なり、V2とV3の間に-16μsから16μsの時間差T20をもたせ、プラスイオンの発生量を測定した。その測定結果が、図5である。 FIG. 4 shows voltage waveforms applied to the respective electrodes according to Example 2. Unlike Example 1, a time difference T20 of −16 μs to 16 μs was provided between V2 and V3, and the amount of positive ions generated was measured. The measurement result is shown in FIG.
 図5より時間差T20が小さいほど炭素棒電流が大きくなることがわかる。例えば、-6μs~6μs間においては、反発電極に4kVの直流電圧を印加した場合に測定された炭素棒電流108nAと比較すると、8割以上炭素棒電流が増加している。6μsは放電期間のほぼ4分の1にあたる。このことから、放電期間T1と反発電極13を接地状態に近づけている期間が放電期間T1のほぼ4分の3以上の期間において重なっていれば、ある程度効率良くイオンを放出させることができることがわかる。また、マイナスイオンを発生させる場合においても、イオン発生量の傾向は同じである。 5 that the carbon rod current increases as the time difference T20 decreases. For example, between -6 μs and 6 μs, the carbon rod current increased by 80% or more compared to the carbon rod current of 108 nA measured when a DC voltage of 4 kV was applied to the repelling electrode. 6 μs corresponds to almost a quarter of the discharge period. From this, it can be seen that if the discharge period T1 and the period in which the repulsive electrode 13 is brought close to the ground state overlap in a period of approximately three quarters or more of the discharge period T1, ions can be efficiently released to some extent. . Even when negative ions are generated, the tendency of the amount of generated ions is the same.
 実施例3は、イオンを発生させるために誘導電極12に直流電圧、放電電極11にパルス電圧を印加し、放電電極11にパルス電圧を印加させている点が実施例1、2と異なる。なお、測定装置は実施例1と同様のものを用いている。反発電極13は、実施例1、2と同様に、放電期間T1では、放電の電界に影響を与えないように接地状態にし、非放電期間T2では、T1で発生させたイオンと同極性の電圧を印加される。図6は、実施例3に係る各電極に印加する電圧波形の図であり、V1は放電電極11に印加する電圧波形、V2は誘導電極12に印加する電圧波形、V3は反発電極13に印加する電圧波形を示し、図6(a)はプラスイオンを発生させる場合、図6(b)はマイナスイオンを発生させる場合を示す。 Example 3 is different from Examples 1 and 2 in that a DC voltage is applied to the induction electrode 12, a pulse voltage is applied to the discharge electrode 11, and a pulse voltage is applied to the discharge electrode 11 in order to generate ions. Note that the same measuring apparatus as in Example 1 is used. As in Examples 1 and 2, the repulsive electrode 13 is grounded so as not to affect the electric field of the discharge in the discharge period T1, and in the non-discharge period T2, a voltage having the same polarity as the ions generated in T1. Applied. FIG. 6 is a diagram of voltage waveforms applied to the respective electrodes according to the third embodiment, where V1 is a voltage waveform applied to the discharge electrode 11, V2 is a voltage waveform applied to the induction electrode 12, and V3 is applied to the repulsive electrode 13. 6A shows a case where positive ions are generated, and FIG. 6B shows a case where negative ions are generated.
 放電電極11にパルス電圧を印加し、イオンを発生させても、反発電極に印加する電圧を制御することで、効率良く対象空間内へイオンを放出させることができる。 Even if a pulse voltage is applied to the discharge electrode 11 to generate ions, the ions can be efficiently discharged into the target space by controlling the voltage applied to the repulsion electrode.
 実施例1から実施例3では、放電電極11及び誘導電極12を1組用いてプラスあるいはマイナスのいずれかのイオンを発生させるイオン発生装置10を示したが、放電電極11及び誘導電極12を2組以上用いて、プラスイオン及びマイナスイオンを発生させても良い。この場合、プラスイオンを発生させる放電電極11及び誘導電極12の後方に、正の電圧を印加された反発電極13を配置し、マイナスイオンを発生させる放電電極11及び誘導電極12の後方に、負の電圧を印加された反発電極13を配置する。両イオンを発生させることで、空気中に浮遊するカビ菌やウィルスの分解、ニオイの除去、集塵等などの効果を生むことができる。 In the first to third embodiments, the ion generation apparatus 10 that generates either positive or negative ions using one set of the discharge electrode 11 and the induction electrode 12 is shown. Positive ions and negative ions may be generated using a pair or more. In this case, a repulsive electrode 13 to which a positive voltage is applied is disposed behind the discharge electrode 11 and the induction electrode 12 that generate positive ions, and a negative electrode is disposed behind the discharge electrode 11 and the induction electrode 12 that generate negative ions. The repulsive electrode 13 to which a voltage of 1 is applied is disposed. By generating both ions, effects such as decomposition of fungi and viruses floating in the air, removal of odors, and dust collection can be produced.
 以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment, The range of this invention is shown by a claim, and the meaning and range equivalent to a claim All changes within are intended to be included.
 例えば、本発明の実施例で用いた放電電極11、誘導電極12及び反発電極13の形状及び印加電圧は、電極間の距離、発生させたいイオン量等に応じて設定される。また、送出手段として送風ファン15を用いたが、送風ファン15による効果は、イオンをより広い範囲に拡散させるためであり、目的に応じては送風ファン15がない構成でも良い。 For example, the shapes and applied voltages of the discharge electrode 11, the induction electrode 12, and the repulsion electrode 13 used in the embodiments of the present invention are set according to the distance between the electrodes, the amount of ions to be generated, and the like. Moreover, although the ventilation fan 15 was used as a sending means, the effect by the ventilation fan 15 is for diffusing ion to a wider range, and the structure without the ventilation fan 15 may be sufficient according to the objective.
 また、本発明に係るイオン発生装置は、空気清浄装置に搭載することが可能である。なお、ここでいう空気清浄装置は、空気調和機、除湿器、加湿器、空気清浄機、ファンヒ-タ等であり、主として、家屋の室内、ビルの一室、病院の病室、自動車の車室内、飛行機の機内、船の船室内等の空気を調整すべく用いられる装置である。 Moreover, the ion generator according to the present invention can be mounted on an air cleaning device. Air purifiers here are air conditioners, dehumidifiers, humidifiers, air purifiers, fan heaters, etc., mainly in the interior of a house, a room in a building, a hospital room, a car cabin. It is a device that is used to adjust the air in an airplane cabin, a ship cabin, and the like.
 10 イオン発生装置
 11 放電電極
 12 誘導電極
 13 反発電極
 14 電圧印加装置
 15 送風ファン
 16 炭素棒
 17 電流電圧変換回路
 18 電圧測定手段
 71 筒状絶縁体
 72 流出口
 73 取り入れ口
 74 環状電極A
 75 針状電極B
 76 環状電極C
 77 電極保持用絶縁体
DESCRIPTION OF SYMBOLS 10 Ion generator 11 Discharge electrode 12 Induction electrode 13 Repulsion electrode 14 Voltage application apparatus 15 Blower fan 16 Carbon rod 17 Current voltage conversion circuit 18 Voltage measuring means 71 Cylindrical insulator 72 Outflow port 73 Inlet port 74 Annular electrode A
75 Needle electrode B
76 Annular electrode C
77 Insulator for electrode holding

Claims (4)

  1.  放電電極及び誘導電極を含む放電手段と、反発電極と、電圧印加手段とを備えたイオン発生装置において、
     前記反発電極は、前記放電手段が発生するイオンが搬送される方向と反対側に配置されており、
     前記反発電極は、前記電圧印加手段により、放電手段による放電期間の4分の3以上の期間は、接地状態に近づけ、
     非放電期間は、前記イオンと同極性の電圧を前記反発電極に印加することを特徴とするイオン発生装置。
    In an ion generator comprising a discharge means including a discharge electrode and an induction electrode, a repulsion electrode, and a voltage application means,
    The repulsion electrode is disposed on the opposite side to the direction in which ions generated by the discharge means are conveyed,
    The repulsion electrode is brought close to a ground state by the voltage application means for a period of three quarters or more of the discharge period by the discharge means,
    In the non-discharge period, an ion generator is characterized in that a voltage having the same polarity as the ions is applied to the repulsion electrode.
  2.  放電を起こすとほぼ同時に前記反発電極を接地状態に近づけ、放電を止めるとほぼ同時に前記反発電極に発生させるイオンと同極性の電圧を印加させることを特徴とする請求項1に記載のイオン発生装置。 2. The ion generating apparatus according to claim 1, wherein the repulsive electrode is brought close to a ground state almost simultaneously with discharge, and a voltage having the same polarity as that of ions generated on the repellent electrode is applied almost simultaneously with stopping the discharge. .
  3.  前記放電電極及び前記誘導電極を2組以上備え、プラス及びマイナスの両イオンを発生させることを特徴とする請求項1に記載のイオン発生装置。 The ion generator according to claim 1, wherein two or more sets of the discharge electrode and the induction electrode are provided to generate both positive and negative ions.
  4.  請求項1~3のいずれかに記載のイオン発生装置を備えることを特徴とする空気清浄装置。 An air purifier comprising the ion generator according to any one of claims 1 to 3.
PCT/JP2012/066486 2011-08-23 2012-06-28 Ion generator and air cleaning device provided with same WO2013027485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-181056 2011-08-23
JP2011181056A JP5118241B1 (en) 2011-08-23 2011-08-23 Ion generator and air purifier equipped with the same

Publications (1)

Publication Number Publication Date
WO2013027485A1 true WO2013027485A1 (en) 2013-02-28

Family

ID=47692804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066486 WO2013027485A1 (en) 2011-08-23 2012-06-28 Ion generator and air cleaning device provided with same

Country Status (2)

Country Link
JP (1) JP5118241B1 (en)
WO (1) WO2013027485A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528656A (en) * 2017-07-27 2020-09-24 ナチュリオン ピーティーイー.リミテッド Ion generator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761424B2 (en) * 2013-12-27 2015-08-12 ダイキン工業株式会社 Discharge device and air treatment device
JP5896069B1 (en) * 2014-09-19 2016-03-30 ダイキン工業株式会社 Discharge unit
JP2018176983A (en) * 2017-04-12 2018-11-15 株式会社Soken Jet flow generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500059A (en) * 1985-06-06 1988-01-07 アストラ−ベント・ア−・ベ− Air conveying arrangement
JP2004031145A (en) * 2002-06-26 2004-01-29 Hitachi Media Electoronics Co Ltd Negative ion generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500059A (en) * 1985-06-06 1988-01-07 アストラ−ベント・ア−・ベ− Air conveying arrangement
JP2004031145A (en) * 2002-06-26 2004-01-29 Hitachi Media Electoronics Co Ltd Negative ion generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020528656A (en) * 2017-07-27 2020-09-24 ナチュリオン ピーティーイー.リミテッド Ion generator
JP7153712B2 (en) 2017-07-27 2022-10-14 ナチュリオン ピーティーイー.リミテッド ion generator

Also Published As

Publication number Publication date
JP2013045531A (en) 2013-03-04
JP5118241B1 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
US7638104B2 (en) Air conditioner device including pin-ring electrode configurations with driver electrode
US7077890B2 (en) Electrostatic precipitators with insulated driver electrodes
US20060018812A1 (en) Air conditioner devices including pin-ring electrode configurations with driver electrode
JP2018520851A (en) High-speed ion wind self-adsorption type low temperature plasma air cleaner
JP5118241B1 (en) Ion generator and air purifier equipped with the same
US20130284024A1 (en) Electrostatic collecting system for suspended particles in a gaseous medium
US7517503B2 (en) Electro-kinetic air transporter and conditioner devices including pin-ring electrode configurations with driver electrode
JP2014029821A (en) Discharge unit and air cleaning apparatus using the same
JP2004031145A (en) Negative ion generator
WO2013121669A1 (en) Ion-generating element and ion generator provided with same
JP2014121424A (en) Discharge unit and air cleaner using the same
KR100992507B1 (en) 3 dimentional ion generating and tornado ion accelerating apparatus
JP5303020B2 (en) Ion generator and air purifier
JPS59209664A (en) Blower
WO2014002453A1 (en) Electricity discharging unit and air cleaning device using same
JP5053450B1 (en) Ion generator and ion generation method
WO2006039562A2 (en) Air conditioner system including pin-ring electrode configuration with a pin-ring electrode cleaning mechanism
JP4810780B2 (en) Air cleaner
JP2014127378A (en) Ion generator and air cleaner including the same
JP2004142691A (en) Ion generator for air conditioner
JP2007196199A (en) Discharge device, air cleaning apparatus and air-flow generating device equipped with the discharge device
WO2013121684A1 (en) Ion generator
JP2014108315A (en) Microorganism inactivation device
JP2014044888A (en) Discharge unit and air cleaning apparatus using the same
CN211914183U (en) Air purification apparatus for separating airborne particles from an air stream

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825340

Country of ref document: EP

Kind code of ref document: A1