WO2013026379A1 - 一种常压水蓄能装置及其蓄能方法 - Google Patents

一种常压水蓄能装置及其蓄能方法 Download PDF

Info

Publication number
WO2013026379A1
WO2013026379A1 PCT/CN2012/080352 CN2012080352W WO2013026379A1 WO 2013026379 A1 WO2013026379 A1 WO 2013026379A1 CN 2012080352 W CN2012080352 W CN 2012080352W WO 2013026379 A1 WO2013026379 A1 WO 2013026379A1
Authority
WO
WIPO (PCT)
Prior art keywords
regulating valve
water
container
pressure
nitrogen
Prior art date
Application number
PCT/CN2012/080352
Other languages
English (en)
French (fr)
Inventor
刘洪�
Original Assignee
北京佩尔优科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佩尔优科技有限公司 filed Critical 北京佩尔优科技有限公司
Publication of WO2013026379A1 publication Critical patent/WO2013026379A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F2005/0039Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using a cryogen, e.g. CO2 liquid or N2 liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/76Oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to an air conditioning energy storage technology, in particular to a normal pressure water energy storage device and an energy storage method thereof. Background technique
  • Air-conditioning energy storage technology is a load-switching technology applied to the peak-to-valley time-sharing electricity price system. It means: When the air-conditioning system has no load or low load, the energy storage device is used to store energy, and then in the air-conditioning system. During the period of heavy load, this part of the energy is released, thereby achieving a win-win situation in which the power grid "shifts the peaks and fills the valley", balances the load, and saves the user's electricity bill.
  • Water storage uses water as an energy storage medium to store heat (or cold) by sensible heat absorbed and released when the temperature of the water changes.
  • it can be divided into water storage and water storage.
  • the refrigerator is used to cool the water in the energy storage tank to a predetermined cold storage temperature.
  • the cold water stored in the cold storage tank is taken out to the end of the air conditioner, and the cold water is supplied to the load instead of the refrigerator.
  • the energy storage water in order to reduce the cost of the energy storage tank, usually the energy storage water
  • the slot has an open structure.
  • the water surface in the water tank is directly connected to the atmosphere, and its area is as small as several tens of square meters, and as many as several hundred or even thousands of square meters, which greatly increases the chance of oxygen dissolved in water, resulting in the dissolution of the treated air conditioning circulating water.
  • the oxygen will return to the state of natural water in a short time.
  • the amount of dissolved oxygen in the circulating water increases, on the one hand, it accelerates the rusting speed of the air conditioning water system and shortens the service life; on the other hand, it is beneficial to the growth of microorganisms in the water, increasing the flow resistance and reducing the heat transfer efficiency.
  • the prior art generally adopts the following methods: First, shortening the water treatment time interval of the circulating water of the air conditioner, increasing the number of water treatments; Second, filling the surface with floating objects, reducing the water surface and the atmosphere as much as possible The contact surface; the third is to make the water surface of the water tank and the upper gas phase space of the water tank as small as possible. When the water fills the water tank, the upper gas phase space of the water tank is sealed, so that the total amount of oxygen in the water tank is no longer increased; In the project, water vapor is injected into the gas phase space in the upper part of the water tank to isolate the oxygen from the water surface by water vapor.
  • the technical problem to be solved by the present invention is to provide an atmospheric pressure water storage device capable of effectively isolating oxygen from contact with a water surface and a method for storing energy using the device.
  • the atmospheric water storage device comprises a closed atmospheric pressure vessel, an upper water distributor, a lower water distributor and a nitrogen source, wherein the upper water distributor and the lower water distributor are located in the container.
  • the top of the container is provided with a breathing safety valve and an intake pipe, the intake pipe is connected to a nitrogen source, and the intake pipe is provided with a regulating valve.
  • the regulating valve is a self-operated pressure regulating valve, and the pressure regulating valve is provided with a pressure guiding tube, and the pressure guiding tube is inserted into the The top of the container.
  • a self-operated pressure regulating valve is disposed on the intake pipe, and a pressure guiding pipe is disposed on the pressure regulating valve, and the pressure guiding pipe is inserted into the sealed atmospheric pressure container. a top portion, thereby guiding the air pressure in the head space of the closed atmospheric pressure vessel to a pressure detecting mechanism of the self-operated pressure regulating valve, when the air pressure in the atmospheric pressure sealed container is lower than a set pressure value, the pressure The regulating valve is automatically opened and filled with nitrogen; when the air pressure in the atmospheric sealed container reaches a set pressure value, the pressure regulating valve is automatically closed to stop charging nitrogen. Thereby, the process of introducing nitrogen gas is controlled in a pneumatically controlled manner.
  • the regulating valve is an electronically controlled regulating valve
  • an oxygen concentration detector is disposed in the top gas phase space of the container, and the oxygen concentration detector and the electric Control valves are connected to the computer control system.
  • the oxygen measured by the detector can be obtained by providing an electronically controlled regulating valve on the intake pipe and an oxygen concentration detector in the top gas phase space of the sealed atmospheric container.
  • the concentration data is transmitted to the computer control system, and then the electronic control valve is turned on and off by a computer.
  • the computer control system is turned on.
  • the process of introducing nitrogen gas is controlled in a manner of controlling the oxygen concentration.
  • the "closed atmospheric pressure vessel” refers to a closed steel water tank, a water tank, and a reinforced concrete that can operate normally within an internal pressure range of -4.95 kPa to 2 kPa. Closed container made of pool or other materials.
  • the pressure value used in the present invention is such that the internal pressure of the atmospheric pressure vessel should be in the range of -4.99 kPa to 2 kPa.
  • the person skilled in the art can set the valve of the self-operated pressure regulating valve to automatically open and close according to actual needs.
  • the pressure value or setting the oxygen concentration value of the electronically controlled regulator valve is turned on or off by the computer control system.
  • the introduction of nitrogen gas is controlled regardless of the pressure or oxygen concentration control mode.
  • the process can automatically introduce nitrogen into the gas phase space at the top of the closed vessel, thereby effectively isolating the contact between the oxygen and the water surface in the vessel, and avoiding the phenomenon that the pressure in the vessel is too high due to excessive nitrogen filling.
  • the intake pipe is provided with an intake pipe shutoff valve.
  • the intake pipe having the above structure can not only cut off nitrogen gas quickly and reliably, but also appropriately adjust the flow rate of nitrogen gas.
  • the type of the upper water distributor and the lower water distributor of the present invention is not particularly limited, and any water dispenser capable of distributing water on the working surface can be used for the water energy storage device provided by the present invention. Therefore, the upper water distributor and the lower water distributor according to the present invention may be any conventional water distributor in the art, such as a water distribution pipe, a water distribution water distribution plate, or the like.
  • the function of the respiratory safety valve is that when the pressure in the sealed atmospheric pressure vessel exceeds the range of -0.45 kPa to 2 kPa, the safety valve will automatically open to ensure the above container The internal pressure is in a safe state.
  • the respiratory safety valve is preferably arranged as follows: When the pressure in the sealed atmospheric pressure vessel reaches 1.5 kPa, the breathing safety valve is opened, and the gas in the container is exhaled to ensure sealing.
  • the pressure in the atmospheric pressure vessel is less than 2 kPa, and the gas that does not cause excessive pressure will break the container; when the pressure in the closed atmospheric pressure vessel drops to -0.2 kPa, the breathing safety valve is also opened, and the air outside the container is sucked. , to ensure that the pressure in the closed atmospheric pressure vessel is greater than -4.95 kPa, so that the container is sucked without a large vacuum inside the container.
  • the water injection level of the circulating water of the air conditioner in the atmospheric pressure vessel can be controlled by any means known in the art, including artificially observing the water level, and stopping the water injection without making the water level of the water injection water and the design water level too large.
  • an overflow pipe can be provided at a side wall close to the design of the water level of the sealed atmospheric container.
  • the overflow pipe is further provided with an overflow pipe shut-off valve. Adopted with the above The structure's overflow tube cuts fluid quickly and reliably.
  • the nitrogen source may be nitrogen provided by any of the nitrogen supply methods known in the art.
  • a nitrogen gas source is used to charge the intake pipe with a nitrogen gas cylinder or a nitrogen gas generator.
  • the method for storing energy using the water storage device provided by the present invention comprises the following steps:
  • the air-conditioning circulating water as a cold storage/heat medium, storing the cold/heat generated during the low price period, and storing the cold/heat storage air-conditioning circulating water in the airtight state through the upper water distributor and the lower water distributor
  • the cold/heat storage air conditioning circulating water is released through the upper water distributor and the lower water distributor for cooling or heating.
  • the regulating valve described in the step 2) is a self-operated pressure regulating valve, and the self-operating pressure regulating valve is provided with a pressure guiding tube, and the pressure guiding tube is Inserting into the top of the closed atmospheric pressure vessel, and opening and closing the pressure regulating valve in the following manner, the valve will automatically open and be filled with nitrogen; when the pressure in the atmospheric pressure sealed container reaches a set pressure value It is indicated that the nitrogen gas has filled the top gas phase space of the closed atmospheric pressure vessel, and the pressure regulating valve valve will automatically close and stop filling with nitrogen gas. Under the premise that the internal pressure should be in the range of -0. 49 kPa to 2 kPa, those skilled in the art can set the pressure value of the self-operated pressure regulating valve to be automatically opened or closed according to actual needs.
  • the pressure regulating valve is preferably opened and closed in the following manner: when the pressure in the gas phase space at the top of the closed atmospheric pressure vessel is lower than 0.8 kPa, the pressure regulating valve When the pressure in the gas phase space at the top of the closed atmospheric pressure vessel reaches 1. 2 kPa, the pressure regulating valve is automatically closed. Further, preferably, when the pressure in the gas phase space at the top of the closed atmospheric pressure vessel is lower than 1. OkPa, the pressure regulating valve is automatically opened; when the pressure in the gas phase space at the top of the closed atmospheric pressure vessel reaches 1. OkPa The pressure regulating valve is automatically closed.
  • the regulating valve described in the step 2) is an electronically controlled regulating valve, and an oxygen concentration detector is disposed in the top gas phase space of the sealed atmospheric container.
  • the oxygen concentration detector and the electronically controlled regulating valve are both connected to a computer control system, and the electronically controlled regulating valve is opened and closed as follows: when the measured oxygen concentration of the detector is higher than a set At the oxygen concentration value, the electronically controlled regulating valve is opened by the computer control system to fill the top of the atmospheric pressure sealed container; when the oxygen concentration measured by the detector is lower than the set oxygen concentration value, It is indicated that the nitrogen gas has filled the top gas phase space of the closed atmospheric pressure vessel, and the electronically controlled regulating valve is closed by the computer control system to stop charging with nitrogen.
  • the electronically controlled regulating valve For the energy storage method provided by the present invention, it is preferred to open and close the electronically controlled regulating valve in the following manner: When the value of the oxygen concentration in the gas phase space at the top of the closed atmospheric pressure vessel is higher than 10 ⁇ . /.
  • the regulating valve is opened by a computer control system; the oxygen concentration in the gas phase space at the top of the closed atmospheric vessel is less than 5 ⁇ /.
  • the regulating valve is closed by a computer control system.
  • the air conditioning circulating water described in the step 1) is preferably tap water after the water treatment.
  • a water storage device having the structure of the present invention is provided with an intake pipe at the top of the closed atmospheric pressure vessel, through which nitrogen gas is introduced to fill the top gas phase space of the vessel, and the air conditioning circulating water in the atmospheric pressure vessel is The atmosphere is separated to effectively isolate the oxygen in the container from the water surface and prevent oxygen from being dissolved into the air conditioning circulating water.
  • the atmospheric water storage device provided by the invention is used as a cold/heat storage device, which can not only store the cold/heat generated during the nighttime low price period, but also utilize the stored cold/heat during the peak daytime price. Cooling or heating, reducing the energy consumption and With the cost, it provides an effective energy storage method for realizing the "shifting peak filling" and balancing load of the power grid, and can effectively maintain the low oxygen content of the circulating water in the air conditioner of the closed atmospheric pressure vessel and slow down the corrosion of the equipment. Speed, extend the service life of the energy storage device, improve the heat transfer efficiency of the air conditioning circulating water, and reduce the water treatment cost.
  • FIG. 1 is a schematic structural view of an atmospheric pressure water storage device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an atmospheric pressure water storage device according to another embodiment of the present invention.
  • Fig. 1 shows an atmospheric water storage device according to an embodiment of the present invention.
  • the device has a top-retaining sealed atmospheric pressure vessel 101, and the sealed atmospheric pressure vessel is provided with an upper water distributor 110 and a lower water distributor 111, and a respiratory safety valve 102 and an intake pipe are respectively installed at the top of the container 105.
  • the function of the respiratory safety valve 102 is as follows: when the pressure in the sealed atmospheric pressure vessel reaches 1.5 kPa, the breathing safety valve is opened, and the gas in the container is exhaled; when the pressure in the sealed atmospheric pressure vessel is lowered - At 0 kPa, the breathing safety valve is also opened, and the air outside the container is sucked in to ensure that the atmospheric pressure sealed container 101 is always in a safe state.
  • An overflow pipe 108 is provided on the side wall at the design water level of the closed atmospheric pressure vessel 101, and an overflow pipe shutoff valve 109 is provided on the overflow pipe.
  • a compressed nitrogen bottle 106 is disposed on one side of the sealed atmospheric container 101, and the nitrogen bottle communicates with the nitrogen gas inlet hole at the top of the container through the intake pipe 105, and the self-operated pressure regulating valve 103 is respectively disposed on the intake pipe 105.
  • the intake pipe shutoff valve 107, the pressure guiding pipe 104 is led out on the pressure regulating valve 103, and the pressure guiding pipe is inserted into the gas phase space at the top of the vessel 101.
  • the self-operated pressure regulating valve 103 is adjusted to set the working pressure of the gas phase space in the top of the sealed atmospheric container 101 to about 1 kPa, that is, when the gas pressure in the gas phase space at the top of the sealed atmospheric container 101 is lower than the set pressure lkPa. , the pressure regulating valve is automatically opened; When the air pressure in the gas phase space at the top of the closed atmospheric pressure vessel 101 reaches a set pressure of 1 kPa, the pressure regulating valve is automatically closed.
  • the method for performing cold storage using the water storage device shown in Fig. 1 includes the following steps: First, the overflow pipe shutoff valve 109 is opened, and the water treated tap water is injected into the container 101 through the lower water distributor 111. Some of the air is discharged from the overflow pipe, and when the overflow pipe 108 has a water overflow, the water injection is stopped.
  • the intake pipe shutoff valve 107 is opened, and the overflow pipe shutoff valve 109 is opened, and the gas phase space above the water surface in the atmospheric pressure vessel 101 is opened to the atmosphere through the overflow pipe 108.
  • the pressure in the top gas phase space of the atmospheric pressure vessel 101 is lower than 1 kPa
  • the pressure regulating valve 103 is automatically opened, nitrogen gas is poured out from the compressed nitrogen gas cylinder 106, and flows into the head space of the atmospheric pressure vessel 101 via the intake pipe 105. Since the specific gravity of nitrogen is less than that of air and oxygen, the nitrogen that has entered the vessel in advance will accumulate in the upper portion of the headspace of the vessel.
  • the nitrogen gas is squeezed downward and the original air in the head space of the vessel 101 is discharged from the overflow pipe 108.
  • the overflow pipe shutoff valve 109 is closed.
  • the pressure regulating valve 103 is automatically closed, and the nitrogen filling is completed. Oxygen operation.
  • the cold storage and the cold release cycle are performed: the cold water produced by the water-treated tap water in the container 101 is stored in the nighttime electricity price trough period, and is stored by the upper water distributor 110 and the lower water distributor 111.
  • the cold tap water is stored in the closed atmospheric pressure vessel 101; during the daytime peak hour, the cold water stored in the cold water is discharged through the upper water distributor 110 and the lower water distributor 111.
  • the specific operation process of the above-mentioned cold storage and release cooling cycle is as follows: During the nighttime low electricity price period, the refrigerator is turned on, and the water in the upper part of the vessel 101 is taken out from the container by the upper water distributor 110, sent to the refrigerator to cool down, and then the obtained refrigerator is prepared. The cold water is injected back into the atmospheric pressure vessel 101 through the lower water distributor 111 to have a specific gravity greater than that of the warm water, so that the injected cold water will accumulate at the bottom of the vessel 101, and The original water in the container is pushed until the water in the container is completely withdrawn, and the cold water occupies the entire container, and the cold storage cycle ends.
  • the refrigerator is turned off, and the cold water stored in the atmospheric pressure vessel 101 is taken out from the container through the lower water distributor 111, and sent to the end of the air conditioner (usually including the air conditioning unit and the fan coil) instead of being closed.
  • the refrigerator is cooled to the user, and the warm water returned from the end of the air conditioner after the release of the cold is returned to the container 101 through the upper water distributor 110. Since the temperature of the warm water flowing back into the container is much higher than the original cold water in the container, the warm water flowing back will be accumulated in the upper part of the container 101, and the cold water will be pushed down until the cold water in the container is completely extracted, and the warm water occupies the entire container.
  • the release cycle ends.
  • the above-mentioned atmospheric water storage device can be used not only for summer energy storage but also for winter heat storage.
  • the method of using the water storage device shown in FIG. 1 for storing the cold storage is similar to the method for performing the heat storage method, that is, the water is treated with the tap water after the water treatment, and the heat is generated during the nighttime electricity price period.
  • the upper water distributor and the lower water distributor are stored in a closed atmospheric pressure vessel, and then the stored tap water is released for heat supply through the upper water distributor and the lower water distributor during the peak price period.
  • Example 2
  • Fig. 2 shows a water storage device according to another embodiment of the present invention.
  • the self-operated pressure regulating valve 103 and the pressure guiding tube 104 shown in FIG. 1 with the electronically controlled regulating valve 203 and the oxygen concentration detector 204 connected to the computer control system 212, and replacing the compressed nitrogen gas cylinder 106 with nitrogen gas.
  • the structure of the water accumulator shown in Fig. 1 is the same as that of the water accumulator shown in Fig. 1, and the function of the breathing safety valve 202 provided on the top of the closed-closed atmospheric container 201 is also It functions the same as the respiratory safety valve 102 in FIG.
  • the electronically controlled regulating valve 203 is set in such a manner that the oxygen concentration value in the gas phase space at the top of the closed atmospheric pressure vessel 201 is higher than 10 ⁇ . /.
  • the regulating valve 203 is opened by the computer control system 212; the oxygen concentration value in the gas phase space at the top of the sealed atmospheric container 201 is lower than 5 v°/.
  • the regulator valve 203 is closed by the computer control system 212.
  • the method for performing cold storage using the water storage device shown in Fig. 1 includes the following steps: First, the overflow pipe shutoff valve 209 is opened to start the flow to the container 201 through the lower water distributor 211. Injecting water-treated tap water, the original air in the container is discharged from the overflow pipe, when the overflow pipe
  • the intake pipe shutoff valve 207 is opened, and the overflow pipe shutoff valve 209 is in an open state, and the gas phase space above the water surface in the atmospheric pressure vessel 201 is open to the atmosphere through the overflow pipe 208.
  • the oxygen concentration in the top gas phase space of the atmospheric pressure vessel 201 measured by the oxygen concentration detector 204 is higher than 10%, and the electronically controlled regulating valve 203 is opened by the computer control system 212, and nitrogen gas is generated from the nitrogen generator 206.
  • the head space of the atmospheric pressure vessel 201 flows into the atmospheric pressure vessel 201 via the intake pipe 205. Since the specific gravity of nitrogen is less than that of air and oxygen, nitrogen gas that has entered the vessel in advance will accumulate in the upper portion of the headspace of the vessel.
  • the nitrogen As nitrogen continues to flow in, the nitrogen is squeezed down and eventually the original air in the headspace of the vessel is expelled from the overflow 208.
  • the overflow pipe shutoff valve 209 When the volumetric oxygen concentration of the gas discharged from the overflow pipe 208 is less than 7% or the volume of nitrogen gas charged into the vessel 201 reaches three times the volume of the top gas phase space of the vessel 201, the overflow pipe shutoff valve 209 is closed.
  • the regulating valve 203 is automatically closed by the computer control system 212 to complete the nitrogen-filling and oxygen-insulating operation.
  • a cold storage cycle and a cooling and cooling cycle are performed, and the water-treated tap water in the container 201 is used to store the cold amount obtained during the nighttime electricity price trough, and is passed through the upper water distributor 210 and the lower water distributor 211.
  • the tap water storing the cold amount is stored in the sealed atmospheric container 201; during the daytime peak hour, the tap water stored in the cold water is discharged through the upper water distributor 210 and the lower water distributor 211 for cooling.
  • the specific operation procedures of the above-described cold storage cycle and release cycle are the same as those of the cold storage cycle and the refrigeration cycle described in Embodiment 1.
  • the atmospheric water storage device of the present invention after the air conditioning circulating water is injected into the sealed atmospheric container according to the present invention, the water level in the sealed atmospheric container hardly changes during normal use. As long as the sealing performance of the container is good, there is little chance that nitrogen gas is discharged outside the container, and air outside the container rarely enters the container, and the daily consumption of nitrogen is extremely small, thereby effectively maintaining circulating water. Low oxygen content, slowing the corrosion rate of equipment, Reduce water treatment costs.
  • the atmospheric pressure water storage device of the present invention stores the cold I heat during the nighttime low electricity price period, and uses the stored cold/heat to supply cooling or heating to the customer during the peak daytime electricity price, thereby reducing the energy consumption of the air conditioner user and
  • the cost of use provides an effective way to store energy in order to achieve "shifting peaks and valleys" and balancing loads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种常压水蓄能装置和蓄能方法,该装置包括密闭式常压容器(101)、上布水器(110)、下布水器(111)和氮气源(106),上布水器(110)和下布水器(111)位于容器(101)内,容器(101)的顶部设有呼吸安全阀(102)和进气管(105),进气管(105)连接氮气源(106),进气管(105)上设有调节阀(103)。该方法包括:1)将空调循环水注入密闭式常压容器(101)中;2)开启调节阀(103),通过氮气源(106)向进气管(105)充入氮气,待氮气充满容器(101)的顶部气相空间后,关闭调节阀(103),停止充氮;3)采用空调循环水作为蓄冷/热介质,储存在电价低谷时段制取的冷/热量,在电价高峰时段,将储存了冷/热量的空调循环水释放出来,供冷或供暖。

Description

一种常压水蓄能装置及其蓄能方法
技术领域
本发明涉及空调蓄能技术, 特别涉及一种常压水蓄能装置及其蓄能 方法。 背景技术
随着生活水平的不断提高, 冬天需要热源、 夏天需要冷源的空气调 节技术使用愈来愈普遍。 通常情况下, 空调系统的电力负荷昼重夜轻, 之一。 为保证电网的安全、 合理和经济运行, 鼓励用户调荷, 实现 "移 峰填谷", 供电企业实行了峰谷分时电价。
空调蓄能技术是一种应用于峰谷分时电价制度下的调荷技术, 它是 指: 在空调系统没有负荷或负荷较小的时段, 利用蓄能设备将能量储存 起来, 然后在空调系统负荷较大的时段, 将这部分能量释放出来, 从而 达到电网 "移峰填谷"、 平衡负荷并使用户节约电费的双贏局面。
水蓄能是以水为蓄能介质, 利用水温变化时所吸收和释放的显热进 行热量(或冷量) 的储存。 根据使用对象和储存温度的高低, 可以分为 水蓄冷和水蓄热。 以水蓄冷为例, 在夜间电价低谷时段, 采用制冷机将 蓄能水槽中的水降温至预定蓄冷温度。 待白天电价高峰时段, 将贮存在 蓄冷水槽中的冷水抽出送往空调末端, 代替制冷机向负荷供冷。 通过上 述手段能够减少制冷机在电价高峰时段的运行能耗, 从而节省空调的运 行费用。
由于市政自来水含有较多的杂质, 因此, 为减少空调循环水对设备 及管路的腐蚀, 保证整个空调系统的正常运行, 通常在使用前自来水必 须经过处理, 除去其中的有害物质, P条低溶氧量, 才能作为空调系统中 的循环水使用。
但是, 在水蓄能技术应用中, 为降低蓄能水槽的造价, 通常蓄能水 槽采用开式结构。 水槽内的水面直接与大气相通, 其面积少则几十平方 米, 多则可达几百甚至上千平方米, 大大增加了氧气溶于水的机会, 导 致经过处理后的空调循环水的溶氧量短时间内就会恢复到自然水的状 况。 循环水的溶氧量增加, 一方面会加快空调水系统的锈蚀速度、 缩短 使用寿命; 另一方面有利于水中微生物的生长, 增加流动阻力, 降低传 热效率。
在水蓄热工程中溶氧量的影响尤为突出, 由于温度高, 腐蚀速度显 著增加。 无法控制溶氧量成为制约水蓄热工程推广的一个重要因素。
为克服上述缺陷, 现有技术通常采用如下几种方式处理: 一是缩短 空调循环水的水处理时间间隔, 增加水处理的次数; 二是在水面布满漂 浮物, 尽可能减少水面与大气的接触面; 三是在建造时使水槽的水面及 其上部气相空间尽可能小, 当水充满水槽后密闭水槽的上部气相空间, 使水槽中的总氧气量不再增加; 四是在水蓄热工程中, 向水槽上部气相 空间注入水蒸汽, 以水蒸汽隔绝氧气与水面的接触。
采用以上方式均能达到一定的效果。 但是, 采用方式一, 使水处理 费用大大增加; 采用方式二, 水槽中的漂浮物会由于日久破损而下沉, 影响水槽的正常使用; 采用方式三,对水槽的顶部形状、结构均有影响, 设备的造价会相应提高; 采用方式四, 需要不断地补充水蒸汽, 以维持 因冷凝而降低的压力,且方式四不适用于蓄冷。 发明内容
本发明要解决的技术问题是提供一种能有效隔绝氧气与水面接触 的常压水蓄能装置以及采用所述装置进行蓄能的方法。
本发明所提供的常压水蓄能装置包括密闭式常压容器、 上布水器、 下布水器和氮气源, 其中, 所述上布水器和下布水器位于所述容器内, 所述容器的顶部设有呼吸安全阀和进气管, 所述进气管连接氮气源, 所 述进气管上设有调节阀。
才艮据本发明水蓄能装置的一个优选实施方式, 所述调节阀为自力式 压力调节阀, 并且所述压力调节阀上设有导压管, 所述导压管插入所述 容器的顶部。
在本发明的水蓄能装置中, 通过在进气管上设置自力式压力调节阀 以及在所述压力调节阀上设置导压管, 并将所述导压管插入所述密闭式 常压容器的顶部, 从而将所述密闭式常压容器顶部空间的气压引至自力 式压力调节阀的压力检测机构, 当所述常压密闭式容器内的气压低于设 定的压力值时, 所述压力调节阀阀门自动打开, 充入氮气; 当所述常压 密闭式容器内的气压达到设定的压力值时, 所述压力调节阀阀门自动关 闭,停止充入氮气。 由此, 实现以气压控制的方式控制引入氮气的过程。
才艮据本发明水蓄能装置的另一个优选实施方式, 所述调节阀为电控 调节阀, 并且所述容器的顶部气相空间内设有氧气浓度探测器, 所述氧 气浓度探测器和电控调节阀均与计算机控制系统相连。
在本发明所述的水蓄能装置中, 通过在进气管上设置电控调节阀以 及在密闭式常压容器的顶部气相空间内设置氧气浓度探测器, 可以将所 述探测器测得的氧气浓度数据传入计算机控制系统中, 然后通过计算机 控制电控调节阀的开启与关闭, 当所述探测器测得的氧气浓度高于设定 的氧气浓度值时, 通过所述计算机控制系统开启该电控调节阀, 使氮气 充入常压密闭式容器的顶部气相空间; 当所述氧气浓度探测器测得的氧 气浓度低于设定的氧气浓度值时, 通过所述计算机控制系统关闭该电控 调节阀, 停止充入氮气。 由此, 实现以氧气浓度控制的方式控制引入氮 气的过程。
在本发明所提供的水蓄能装置中, 所述 "密闭式常压容器" 是指能 在 -0. 49kPa ~ 2kPa的内压范围内正常工作的密闭式钢制水罐、 水箱、钢 筋混凝土水池或其他材料制造的密闭式容器。 本发明所采用的压力值均 常压容器的内压应在 -0. 49kPa至 2kPa范围内) 的前提下, 本领域技术 人员可以根据实际需要设定自力式压力调节阀阀门自动打开和关闭的 压力值或者设定通过计算机控制系统打开或关闭电控式调节阀的氧气 浓度值。
在本发明中, 无论采用压力或氧气浓度控制方式控制引入氮气的过 程, 都能自动将氮气引入密闭容器顶部的气相空间内, 从而有效地隔绝 容器内的氧气与水面的接触的目的, 同时避免氮气充入过量导致容器内 的压力过高的现象。
进一步优选地, 所述进气管上设有进气管截止阀。 采用具有上述结 构的进气管, 不仅能够快速、 可靠地切断氮气, 还能对氮气的流量进行 适当调节。
本发明对于上布水器和下布水器的类型没有特别限定, 只要能够在 工作面上均勾地布水的布水器, 都可用于本发明所提供的水蓄能装置。 因此, 本发明所述的上布水器和下布水器可以为本领域内任意常规的布 水器, 例如布水管、 均流布水板等。
在本发明所提供的水蓄能装置中, 所述呼吸安全阀的作用是当密闭 式常压容器内的压力超出 -0. 49kPa ~ 2kPa 的范围时, 安全阀将自动开 启, 以确保上述容器的内压处于安全状态。
在本发明的水蓄能装置中, 优选按照如下方式设置所述呼吸安全 阀: 当密闭式常压容器内的压力达到 1. 5kPa 时, 呼吸安全阀开启, 将 容器内的气体呼出, 确保密闭式常压容器内的压力小于 2kPa, 不致压力 过高的气体将容器撑破; 当密闭式常压容器内的压力降至 -0. 2kPa 时, 呼吸安全阀也开启, 将容器外的空气吸入, 确保密闭式常压容器内的压 力大于 -0. 49kPa , 不致容器内出现较大的真空度而使容器被吸瘪。
通常, 在采用水蓄能装置进行蓄能前, 需要将空调循环水注入密闭 式常压容器中, 并且, 本领域技术人员可以根据实际需要设定所述密闭 式常压容器中的设计水位。 对于本发明而言, 可以采用本领域任意公知 的方式控制空调循环水在所述常压容器内的注水水位, 包括人为地观测 水位, 不使注水水位与设计水位偏差太大即可停止注水。
根据本发明水蓄能装置的一个优选实施方式, 可以在接近所述密闭 式常压容器设计水位的侧壁处设置溢流管。 采用具有上述结构的水蓄能 装置, 当溢流管中有水溢出时, 说明容器内的循环水的水位已经达到设 计水位, 停止注水。
进一步优选地, 所述溢流管上还设有溢流管截止阀。 采用具有上述 结构的溢流管, 能够快速、 可靠地切断流体。
在本发明所提供的水蓄能装置中, 所述氮气源可以是本领域任意公 知的供氮方式所提供的氮气。 才 据本发明水蓄能装置的一个优选实施方 式, 采用压缩氮气瓶或氮气发生器作为氮气源向进气管充入氮气。 采用本发明所提供的水蓄能装置进行蓄能的方法包括下述步骤:
1 )将空调循环水注入密闭式常压容器中;
2 ) 开启进气管上的调节阀, 通过氮气源向进气管充入氮气, 待氮 气充满所述密闭式常压容器的顶部气相空间后,关闭调节阀,停止充氮;
3 )采用所述空调循环水作为蓄冷 /热介质, 储存在电价低谷时段制 取的冷 /热量, 并通过上布水器和下布水器将储存了冷 /热量的空调循环 水储存在密闭式常压容器内, 在电价高峰时段, 通过上布水器和下布水 器将储存了冷 /热量的空调循环水释放出来, 供冷或供暖。
才艮据本发明蓄能方法的一个优选实施方式, 步骤 2 ) 中所述的调节 阀为自力式压力调节阀, 所述自力式压力调节阀上设有导压管, 将所述 导压管插入所述密闭式常压容器的顶部, 并按照下述方式开启和关闭所 压力调节阀阀门将自动打开, 充入氮气; 当所述常压密闭式容器内的气 压达到设定的压力值时, 说明氮气已经充满所述密闭式常压容器的顶部 气相空间, 所述压力调节阀阀门将自动关闭, 停止充入氮气。 内压应在 -0. 49kPa至 2kPa范围内) 的前提下, 本领域技术人员可以才艮 据实际需要设定自力式压力调节阀自动打开或关闭的压力值。
对于本发明提供的蓄能方法而言, 优选按照下述方式开启和关闭自 力式压力调节阀: 当密闭式常压容器顶部的气相空间内的压力低于 0. 8kPa时, 所述压力调节阀自动开启; 当密闭式常压容器顶部的气相空 间内的压力达到 1. 2kPa时, 所述压力调节阀自动关闭。 进一步优选地, 当密闭式常压容器顶部的气相空间内的压力低于 1. OkPa ,所述压力调节 阀自动开启; 当密闭式常压容器顶部的气相空间内的压力达到 l . OkPa 时, 所述压力调节阀自动关闭。
才艮据本发明水蓄能方法的另一个优选实施方式, 步骤 2 ) 中所述的 调节阀为电控调节阀, 所述密闭式常压容器的顶部气相空间内设有氧气 浓度探测器, 所述氧气浓度探测器和所述电控调节阀均与计算机控制系 统相连, 并按照下述方式开启和关闭所述电控调节阀: 当所述探测器测 得的氧气浓度高于设定的氧气浓度值时, 通过所述计算机控制系统开启 该电控调节阀, 使氮气充入常压密闭式容器的顶部; 当所述探测器测得 的氧气浓度低于设定的氧气浓度值时, 说明氮气已经充满所述密闭式常 压容器的顶部气相空间, 通过所述计算机控制系统关闭该电控调节阀, 停止充入氮气。 内压应在 -0. 49kPa至 2kPa范围内) 的前提下, 本领域技术人员可以才艮 据实际需要设定通过计算机控制系统打开或关闭电控调节阀的氧气浓 度值。
对于本发明提供的蓄能方法而言, 优选按照下述方式开启和关闭所 述电控调节阀: 当密闭式常压容器顶部的气相空间内的氧气浓度值高于 1 0ν。/。时, 通过计算机控制系统开启所述调节阀; 当密闭式常压容器顶部 的气相空间内的氧气浓度值低于 5ν°/。时, 通过计算机控制系统关闭所述 调节阀。
对于本发明提供的蓄能方法而言, 步骤 1 ) 中所述的空调循环水优 选为经过水处理后的自来水。 采用具有本发明所述结构的水蓄能装置, 在密闭式常压容器的顶部 设置进气管, 通过该管引入氮气, 使其充满容器的顶部气相空间, 将常 压容器内的空调循环水与大气隔开, 从而有效地隔绝了容器内的氧气与 水面的接触, 避免氧气溶入空调循环水中。
因此, 采用本发明提供的常压水蓄能装置作为冷 /热量的蓄能装置, 不仅能将夜间电价低谷时段制取的冷 /热量储存起来, 在白天电价高峰 时段利用储存的冷 /热量为客户供冷或供暖, 减少空调用户的能耗和使 用费用, 为实现电网的 "移峰填谷" 、 平衡负荷提供一种有效的蓄能方 式, 还能够有效地保持密闭式常压容器内空调循环水的低含氧量, 减緩 设备的腐蚀速度, 延长蓄能装置的使用寿命, 提高空调循环水的传热效 率, 降低水处理费用。 附图说明
图 1为本发明一个实施方案的常压水蓄能装置的结构示意图; 图 2为本发明另一个实施方案的常压水蓄能装置的结构示意图。 具体实施方式
下面结合附图所描述的实施方式进一步详细说明本发明。 实施例 1
图 1示出了才 据本发明一个实施方案的常压水蓄能装置。 所述装置 具有换顶密闭式常压容器 101,所述密闭式常压容器内设有上布水器 110 和下布水器 111, 在所述容器的顶部分别安装呼吸安全阀 102和进气管 105。 设置所述呼吸安全阀 102 的作用在于: 当密闭式常压容器内的压 力达到 1. 5kPa 时, 呼吸安全阀开启, 将容器内的气体呼出; 当密闭式 常压容器内的压力降至 -0. 2kPa 时, 呼吸安全阀也开启, 将容器外的空 气吸入, 以确保常压密闭式容器 101始终处于安全状态。
在密闭式常压容器 101的设计水位处的侧壁上设置溢流管 108, 在 所述溢流管上设有溢流管截止阀 109。 在密闭式常压容器 101的一侧设 有压缩氮气瓶 106, 该氮气瓶通过进气管 105与所述容器顶部的氮气进 气孔连通, 在进气管 105上分别设有自力式压力调节阀 103和进气管截 止阀 107, 在所述压力调节阀 103上引出导压管 104并将该导压管插入 容器 101顶部的气相空间内。
调节自力式压力调节阀 103, 将密闭式常压容器 101顶部气相空间 的工作气压设定在 lkPa左右, 即, 当密闭式常压容器 101顶部的气相 空间内的气压低于设定压力 lkPa 时, 所述压力调节阀自动开启; 当密 闭式常压容器 101顶部的气相空间内的气压达到设定压力 lkPa时, 所 述压力调节阀自动关闭。 采用图 1所示的水蓄能装置进行蓄冷的方法包括下述步骤: 首先, 开启溢流管截止阀 109, 开始通过下布水器 111向容器 101 注入经水处理过的自来水, 容器 101内原有的空气自溢流管排出, 当溢 流管 108出现水溢流时, 停止注水。
接着, 打开进气管截止阀 107, 溢流管截止阀 109处于开启状态, 常压容器 101内水面上方的气相空间通过溢流管 108与大气相通。此时, 常压容器 101的顶部气相空间内的压力低于 lkPa, 所述压力调节阀 103 自动开启, 氮气自压缩氮气瓶 106中涌出, 经由进气管 105流入常压容 器 101的顶部空间。 因为氮气的比重小于空气和氧气, 先期进入容器内 的氮气将积存在所述容器顶部空间的上部。但是,随着氮气的不断涌入, 氮气向下挤压并使容器 101的顶部空间中原有的空气从溢流管 108中排 出。 当测得溢流管 108 排出的气体的体积氧浓度低于 5%或者充入容器 101 内的氮气体积达到容器 101的顶部气相空间容积的 3倍时, 关闭溢 流管截止阀 109。 此时, 为了确保容器外的空气不会进入容器, 需要继 续充氮, 直至密闭式常压容器 101 的顶部气相空间内的压力达到 lkPa 时, 所述压力调节阀 103 自动关闭, 完成充氮隔氧操作。
然后, 进行蓄冷和释冷循环: 通过所述容器 101内的经水处理过的 自来水储存在夜间电价低谷时段制取的冷量, 并通过上布水器 110和下 布水器 111将储存了冷量的自来水存储在密闭式常压容器 101内; 在白 天电价高峰时段, 通过上布水器 110和下布水器 111将储存了冷量的自 来水释放出来供冷。
上述蓄冷和释冷循环的具体操作过程如下: 在夜间电价低谷时段, 开启制冷机, 通过上布水器 110将容器 101上部的水自容器内抽出, 送 入制冷机降温, 然后将制得的冷水通过下布水器 111注回常压容器 101 的比重大于温水, 因此, 注入的冷水将积存在所述容器 101的底部, 并 将容器内原有的水上推,直至容器内的水全部抽出,冷水占据整个容器, 蓄冷循环结束。
在白天电价高峰时段, 关闭全部或部分制冷机, 通过下布水器 111 将常压容器 101中储存的冷水自容器内抽出, 送往空调末端(通常包括 空调机组和风机盘管), 代替关闭的制冷机向用户供冷, 释冷后自空调 末端返回的温水则通过上布水器 110流回容器 101中。 由于流回容器内 的温水的温度远高于容器内原有的冷水, 因此, 流回的温水将积存于容 器 101的上部, 将冷水向下推, 直至容器内的冷水全部抽出, 温水占据 整个容器, 释冷循环结束。
上述常压水蓄能装置不仅可以用于夏天蓄能, 还能用于冬季蓄热。 采用如图 1所示的水蓄能装置进行蓄冷的方法与进行蓄热的方法的 原理是类似的, 即, 以经水处理后的自来水为热量的载体, 在夜间电价 低谷时段制取热量并通过上布水器和下布水器存储在密闭式常压容器 内, 然后在电价高峰时段通过上布水器和下布水器将储存了热量的自来 水释放出来供热。 实施例 2
图 2示出了才 据本发明另一个实施方案的水蓄能装置。 除了将图 1 中所示的自力式压力调节阀 103和导压管 104分别替换为与计算机控制 系统 212相连的电控调节阀 203和氧气浓度探测器 204, 以及将压缩氮 气瓶 106替换为氮气发生器 206之外, 图 1所示的水蓄能装置的结构与 图 1所示的水蓄能装置的结构相同, 设置在换顶密闭式常压容器 201顶 部的呼吸安全阀 202的作用也与图 1中的呼吸安全阀 102的作用相同。
按照下述方式设定电控调节阀 203: 当密闭式常压容器 201顶部的 气相空间内的氧气浓度值高于 10ν。/。时,通过计算机控制系统 212开启所 述调节阀 203; 当密闭式常压容器 201顶部的气相空间内的氧气浓度值 低于 5v°/。时, 通过计算机控制系统 212关闭所述调节阀 203。 采用图 1所示的水蓄能装置进行蓄冷的方法包括下述步骤: 首先, 开启溢流管截止阀 209, 开始通过下布水器 211向容器 201 注入经水处理过的自来水, 容器内原有的空气自溢流管排出, 当溢流管
208出现水溢流时, 停止注水。
接着, 打开进气管截止阀 207, 溢流管截止阀 209处于开启状态, 常压容器 201内水面上方的气相空间通过溢流管 208与大气相通。 通过 氧气浓度探测器 204测得的常压容器 201的顶部气相空间内的氧气浓度 高于 10v%, 通过所述计算机控制系统 212开启电控调节阀 203, 氮气自 氮气发生器 206中涌出,经由进气管 205流入常压容器 201的顶部空间。 因为氮气的比重小于空气和氧气, 先期进入容器内的氮气将积存在所述 容器顶部空间的上部。 随着氮气的不断涌入, 氮气向下挤压并最终使容 器顶部空间中原有的空气从溢流管 208中排出。 当测得溢流管 208排出 的气体的体积氧浓度低于 7%或者充入容器 201 内的氮气体积达到容器 201的顶部气相空间容积的 3倍时, 关闭溢流管截止阀 209。 为了确保 容器外的空气不会进入容器, 需要继续充氮, 直至氧气浓度探测器 204 测得的常压容器 201的顶部气相空间内的氧气浓度低于 5ν。/。时, 通过所 述计算机控制系统 212关闭调节阀 203 自动关闭, 完成充氮隔氧操作。
然后, 进行蓄冷循环和释冷循环, 通过所述容器 201内的经水处理 过的自来水为储存在夜间电价低谷时段制取的冷量, 并通过上布水器 210和下布水器 211将储存了冷量的自来水存储在密闭式常压容器 201 内; 在白天电价高峰时段, 通过上布水器 210和下布水器 211将储存了 冷量的自来水释放出来供冷。 上述蓄冷循环和释冷循环的具体操作过程 与实施例 1所述的蓄冷循环和释冷循环的具体操作过程相同。 采用图 1 所示的水蓄能装置进行蓄热的方法与采用图 1所示的水蓄能装置进行蓄 热的方法也相同。 采用本发明所述的常压水蓄能装置, 将空调循环水注入本发明所述 的密闭式常压容器后, 在正常使用过程中, 所述密闭式常压容器中的水 位几乎不会变化, 只要该容器的密闭性能好, 极少会出现氮气被排出容 器外的情况, 也极少出现容器外的空气进入容器内的情况, 氮气的日常 消耗量极小,从而有效地保持循环水的低含氧量,减緩设备的腐蚀速度, 降低水处理费用。 同时, 通过本发明常压水蓄能装置将夜间电价低谷时 段制取冷 I热量存储起来, 在白天电价高峰时段利用储存的冷 /热量为客 户供冷或供暖, 减少了空调用户的能耗和使用费用, 为实现电网 "移峰 填谷"、 平衡负荷提供了一种有效的蓄能方式。

Claims

权 利 要 求
1、 一种常压水蓄能装置, 其特征在于, 所述装置包括密闭式常压容 器、 上布水器、 下布水器和氮气源, 所述上布水器和下布水器位于所述 容器内, 所述容器的顶部设有呼吸安全阀和进气管, 所述进气管连接氮 气源, 所述进气管上设有调节阀。
1、 根据权利要求 1所述的水蓄能装置, 其特征在于, 所述调节阀为 自力式压力调节阀, 并且所述压力调节阀上设有导压管, 所述导压管插 入所述容器的顶部。
3、 根据权利要求 1所述的水蓄能装置, 其特征在于, 所述调节阀为 电控调节阀, 并且所述容器的顶部气相空间内设有氧气浓度探测器, 所 述氧气浓度探测器和电控调节阀均与计算机控制系统相连。
4、 根据权利要求前述任一项所述的水蓄能装置, 其特征在于, 在接 近所述常压容器设计水位的侧壁处设置溢流管。
5、 根据权利要求 2或 3所述的水蓄能装置, 其特征在于, 所述进气 管上还设有进气管截止阀。
6、 根据权利要求 4所述的水蓄能装置, 其特征在于, 所述溢流管上 还设有溢流管截止阀。
7、 根据权利要求 1或 4所述的水蓄能装置, 其特征在于, 所述氮气 源为压缩氮气瓶或氮气发生器。
8、采用如权利要求 1-7中任一项所述的水蓄能装置进行蓄能的方法, 所述方法包括下述步骤:
1 )将空调循环水注入密闭式常压容器中;
2 )开启调节阀, 通过氮气源向进气管充入氮气, 待氮气充满所述密 闭式常压容器的顶部气相空间后, 关闭调节阀, 停止充氮;
3 )采用所述空调循环水作为蓄冷 /热介质, 储存在电价低谷时段制 取的冷 /热量, 并通过上布水器和下布水器将储存了冷 /热量的空调循环 水储存在密闭式常压容器内, 在电价高峰时段, 通过上布水器和下布水 器将储存了冷 /热量的空调循环水释放出来, 供冷或供暖。 9、 根据权利要求 8所述的蓄能方法, 其特征在于, 步骤 2 ) 中所述 的调节阀为自力式压力调节阀, 所述自力式压力调节阀上设有导压管, 所述导压管插入所述常压容器的顶部, 并按照下述方式开启和关闭所述 调节阀: 当密闭式常压容器顶部的气相空间内的压力低于 lkPa时, 所述 压力调节阀自动开启; 当密闭式常压容器顶部的气相空间内的压力达到 lkPa时, 所述压力调节阀自动关闭。
10、 根据权利要求 8所述的蓄能方法, 其特征在于, 步骤 2 )中所述 的调节阀为电控调节阀, 所述容器的顶部气相空间内设有氧气浓度探测 器, 所述氧气浓度探测器和所述电控调节阀均与计算机控制系统相连, 并按照下述方式开启和关闭所述调节阀: 当密闭式常压容器顶部的气相 空间内的氧气浓度值高于 10ν。/。时,通过计算机控制系统开启所述调节阀; 当密闭式常压容器顶部的气相空间内的氧气浓度值低于 5Vy。时,通过计算 机控制系统关闭所述调节阀。
PCT/CN2012/080352 2011-08-22 2012-08-20 一种常压水蓄能装置及其蓄能方法 WO2013026379A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120309209.8 2011-08-22
CN2011203092098U CN202254144U (zh) 2011-08-22 2011-08-22 一种常压水蓄能装置

Publications (1)

Publication Number Publication Date
WO2013026379A1 true WO2013026379A1 (zh) 2013-02-28

Family

ID=46115377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080352 WO2013026379A1 (zh) 2011-08-22 2012-08-20 一种常压水蓄能装置及其蓄能方法

Country Status (2)

Country Link
CN (1) CN202254144U (zh)
WO (1) WO2013026379A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202254144U (zh) * 2011-08-22 2012-05-30 北京佩尔优科技有限公司 一种常压水蓄能装置
CN106958977A (zh) * 2017-04-18 2017-07-18 海南佩尔优科技有限公司 一种冷库供冷设备及其控制方法
CN108302741A (zh) * 2018-03-28 2018-07-20 广州贝龙环保热力设备股份有限公司 设有防落水倒灌警示装置的空调管道系统
CN110701765B (zh) * 2019-10-16 2024-04-30 北京佩尔优能源科技有限公司 一种蓄水罐及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2121640U (zh) * 1992-04-20 1992-11-11 济南市长清张夏水暖器材厂 高低压膨胀罐自动稳压补水装置
WO2003002915A1 (en) * 2001-06-27 2003-01-09 Andersson, Ola Arrangement in a heating or cooling system
CN101008541A (zh) * 2006-12-31 2007-08-01 刘洪� 一种多贮水槽水蓄能系统及其使用方法
CN101825317A (zh) * 2009-03-06 2010-09-08 武汉凯迪控股投资有限公司 季节性低位能地表水蓄冷空调方法及其设备
CN201628504U (zh) * 2010-04-09 2010-11-10 北京佩尔优科技有限公司 一种金属蓄能水罐
CN202254144U (zh) * 2011-08-22 2012-05-30 北京佩尔优科技有限公司 一种常压水蓄能装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2121640U (zh) * 1992-04-20 1992-11-11 济南市长清张夏水暖器材厂 高低压膨胀罐自动稳压补水装置
WO2003002915A1 (en) * 2001-06-27 2003-01-09 Andersson, Ola Arrangement in a heating or cooling system
CN101008541A (zh) * 2006-12-31 2007-08-01 刘洪� 一种多贮水槽水蓄能系统及其使用方法
CN101825317A (zh) * 2009-03-06 2010-09-08 武汉凯迪控股投资有限公司 季节性低位能地表水蓄冷空调方法及其设备
CN201628504U (zh) * 2010-04-09 2010-11-10 北京佩尔优科技有限公司 一种金属蓄能水罐
CN202254144U (zh) * 2011-08-22 2012-05-30 北京佩尔优科技有限公司 一种常压水蓄能装置

Also Published As

Publication number Publication date
CN202254144U (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
CN103557674B (zh) 一种用于冷库热制冷剂融霜的安全控制系统
WO2013026379A1 (zh) 一种常压水蓄能装置及其蓄能方法
CN107389227B (zh) 一种相变储能材料剩余蓄热量的测定装置及其测量方法
CN201852386U (zh) 一种冷风机热氟融霜制冷系统
CN101965870B (zh) 利用自动循环热管组低温储粮设施的储粮方法
CN204612524U (zh) 闭式防冻供冷装置
CN109630876A (zh) 一种深冷高压储氢供氢装置
CN102012130A (zh) 太阳能、热泵与毛细管网复合热水采暖制冷装置
CN201903221U (zh) 太阳能、热泵与毛细管网复合热水采暖制冷装置
CN203132234U (zh) 一种用于闭式热源塔的融霜装置
CN109916135B (zh) 一种用于小型气体液化装置的无泵循环方法
CN200965388Y (zh) 一种节能降耗型快速加热直饮机
CN206905581U (zh) 数据中心多功能节能型冷却塔
CN201803419U (zh) 集中式多联冷热源中央空调系统
CN102679636B (zh) 一种相变储能蒸发式冷凝器
CN203464559U (zh) 液化气储存罐快速降温装置
CN209877408U (zh) 一种兼有蓄能和溶液再生功能的能源塔热泵系统
CN204787192U (zh) 热水机
CN207214321U (zh) 精简高效水蓄冷系统
CN108488964A (zh) 一种高效的以水为媒介的蓄热蓄冷系统
CN212108993U (zh) 基于空气能热泵的节能节水建筑工地热水系统
CN201945110U (zh) 冷媒量控制装置及具有该控制装置的空调机组
CN106016871B (zh) 一种抑制空气源热泵热水器低温运行结霜的方法及其装置
CN204478353U (zh) 一种蓄冰量显示系统
CN211060714U (zh) 低温冷却换热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825568

Country of ref document: EP

Kind code of ref document: A1