WO2013026310A1 - 算路处理方法、装置及节点 - Google Patents

算路处理方法、装置及节点 Download PDF

Info

Publication number
WO2013026310A1
WO2013026310A1 PCT/CN2012/076869 CN2012076869W WO2013026310A1 WO 2013026310 A1 WO2013026310 A1 WO 2013026310A1 CN 2012076869 W CN2012076869 W CN 2012076869W WO 2013026310 A1 WO2013026310 A1 WO 2013026310A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
virtual
cascading
cascading level
attribute value
Prior art date
Application number
PCT/CN2012/076869
Other languages
English (en)
French (fr)
Inventor
何中圣
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013026310A1 publication Critical patent/WO2013026310A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks

Definitions

  • the present invention relates to the field of communications, and in particular to a method, an apparatus, and a node for calculating a path.
  • ASON Optical Network
  • the virtual TE link solves the problem of ASON and traditional network interconnection, it also has defects: when a virtual TE link contains a higher number of concatenations than the number of concatenations that need to establish services, although the service is It will return success when calculating the path, but will return a failure when allocating resources. Although the service may be successfully established after several retries in the case of other available resources, such an approach may result in greatly reduced service establishment or recovery efficiency. In addition, when there are a large number of virtual TE link resources, if a service needs to be established at this time, how to effectively manage a large number of virtual TE links is also a problem faced by ASON.
  • a method for processing a path comprising the steps of: bundling a transmission port having the same far-end ASON node and having the same attribute value in an ASON node to form a virtual TE link
  • the ASON node and the remote ASON node are connected by another network, and the network resource cross-mapping relationship between the ASON node and the remote ASON node is consistent, and the attribute values corresponding to different virtual TE links are
  • the attribute value is a cascading level.
  • determining whether the attribute value corresponding to the attribute value required by the service exists in the attribute value corresponding to the different virtual TE link during the calculation includes: for each virtual TE link, advertising the virtual TE link The maximum cascading level and the minimum cascading level are the cascading levels of the virtual TE link; when calculating the path, determining whether the cascading level corresponding to each virtual TE link exists with the service The required cascading level of the same cascading level.
  • the maximum cascading level and the minimum cascading level supported by the virtual TE link are both the cascading level of the virtual TE link, including: using the flooding to advertise the maximum cascading supported by the virtual TE link.
  • a level and a minimum cascading level wherein the maximum cascading level and the minimum cascading level are both carried in link flooding information.
  • each virtual TE link has a unique identifier, where the identifier is used to indicate an attribute value corresponding to the virtual TE link and the virtual TE link.
  • a calculation processing device comprising: a forming module configured to bundle a transmission port having the same remote ASON node and having the same attribute value in the bundled ASON node, forming a virtual TE link, where the ASON node and the remote ASON node are connected through another network, and the network resource cross-mapping relationship between the ASON node and the remote ASON node is consistent, and different virtual TE links are configured.
  • the corresponding attribute value is different; the judging module is configured to determine whether there is an attribute value that is the same as the attribute value required by the service in the attribute value corresponding to the different virtual TE link when calculating the path; determining the module, the judgment result is not In the case of existence, it is set to determine that the calculation failed.
  • the attribute value is a cascading level.
  • the determining module is further configured to, for each virtual TE link, advertise that the maximum cascading level and the minimum cascading level supported by the virtual TE link are cascading levels of the virtual TE link; In the case of the road, it is determined whether there is a cascading level in the cascading level corresponding to each virtual TE link that is the same as the cascading level required by the service.
  • the determining module is further configured to use the flooding to advertise the virtual TE when the maximum cascading level and the minimum cascading level supported by the virtual TE link are both the cascading level of the virtual TE link.
  • an ASON node is provided, where the ASON node includes any of the foregoing processing devices.
  • a virtual TE link is formed by bundling a transmission port having the same remote ASON node and having the same attribute value in the ASON node, and the resource value required for the service establishment and the resource of the virtual TE link are established.
  • FIG. 2 is a flowchart of a method for processing a road according to an embodiment of the present invention
  • FIG. 3 is a flowchart according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for managing ASON virtual TE link resources according to a preferred embodiment of the present invention
  • FIG. 5 is a diagram of an ASON network and a traditional network interconnection management according to a preferred embodiment of the present invention
  • FIG. 6 is a schematic diagram of a resource management manner for generating a virtual TE link with a transmission port of a conventional network according to the related art
  • FIG. 7 is a schematic diagram of a TE link resource management manner according to an embodiment of the present invention.
  • the ASON network is connected through another network, which may be a traditional network, or may be a new network type that appears as technology advances, and the other network may be understood as non-ASON.
  • the internet may be a traditional network, or may be a new network type that appears as technology advances, and the other network may be understood as non-ASON.
  • the following embodiments are applicable as long as problems occur in the background art. Therefore, in the following embodiments, a conventional network is taken as an example, but is limited thereto.
  • ASON and a legacy network may pass a traditional network (for example, an SDH network) connected to an ASON node.
  • a virtual TE link is configured to the upper ASON node for interconnection.
  • the problem in the prior art can be solved by modifying the route flooding protocol, but the modification of the protocol is complicated and the efficiency is relatively low.
  • a method for processing a path is provided, in which the attribute value (for example, the resource value) provided by the virtual TE link can be the same as the attribute value required for establishing the service.
  • Step S202 A bundle of ASON nodes having the same remote ASON node and having the same attribute value a port to form a virtual TE link, wherein the ASON node and the remote ASON node are connected through another network (for example, any traditional network, especially an SDH legacy network), and the network resources of the ASON node and the remote ASON node are cross-mapped.
  • another network for example, any traditional network, especially an SDH legacy network
  • Step S204 When calculating the path, determine whether the attribute values corresponding to the different virtual TE links have the same attribute value as the required attribute value of the service.
  • the attribute value may be a cascading level; and in step S206, if the result of the determination is non-existent, the path failure is determined.
  • the attribute value may be a cascading level.
  • the maximum cascading level and the minimum cascading level supported by the virtual TE link are all cascading levels of the virtual TE link.
  • a flooding manner may be adopted for the advertisement mode, that is, a maximum cascading level and a minimum cascading level supported by the virtual advertised virtual TE link, wherein the maximum cascading level and The minimum cascading level is carried in the link flooding information.
  • each virtual TE link has a unique identifier, where the identifier is used to indicate an attribute value corresponding to the virtual TE link and the virtual TE link.
  • the unique identifier can distinguish between the virtual TE link and the virtual TE link, and the implementation is relatively simple.
  • a circuit processing device is also provided, which is used to implement the above-described embodiments and preferred embodiments thereof, and has not been described again, and the following are The module is explained.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • FIG. 3 is a block diagram showing the structure of a road processing device according to an embodiment of the present invention. As shown in FIG. 3, the structure includes a forming module 30, a determining module 32, and a determining module 34. The various modules of the device and their functions are described below.
  • the forming module 30 is configured to bundle the transmitting ports having the same far-end ASON node and having the same attribute value (for example, cascading level) in the ASON node to form a virtual TE link, where the ASON node and the remote ASON node pass another In the network connection, the network resource cross-mapping relationship between the ASON node and the remote ASON node is consistent, and the attribute values corresponding to different virtual TE links are different.
  • the determining module 32 is connected to the forming module 30, and the determining module 32 is set to calculate the path.
  • the determining module 34 determines, in the attribute value corresponding to the different virtual TE links, whether the attribute value is the same as the attribute value required by the service; the determining module 34 is connected to the determining module 32, where the determining module 34 determines that the result is non-existent , set to determine that the calculation failed.
  • the determining module 32 is further configured to advertise the maximum supported by the virtual TE link for each virtual TE link.
  • the cascading level and the cascading level are both cascading levels of the virtual TE link; when calculating the path, determining whether the cascading level corresponding to each virtual TE link is the same as the cascading level required by the service Cascade level.
  • the determining module 32 is further configured to use flooding when advertising that the maximum cascading level and the minimum cascading level supported by the virtual TE link are both cascading levels of the virtual TE link.
  • the maximum cascading level and the minimum cascading level supported by the virtual TE link are advertised, where the maximum cascading level and the minimum cascading level are carried in the link flooding information.
  • an ASON node is further provided, and the ASON node includes any one or a combination thereof, and the calculation processing device of the preferred embodiment.
  • the following is a description of a preferred embodiment in connection with a conventional SDH network connection.
  • the preferred embodiment combines the above embodiments with preferred embodiments thereof.
  • an ASON is provided.
  • a virtual TE link resource management method which can effectively manage virtual TE link resources, and only needs to modify the link flooding information without modifying the route flooding protocol, thereby ensuring that the service is in the virtual TE link.
  • the correctness of the calculation on the road improves the efficiency of business establishment and recovery.
  • 4 is a flowchart of a method for managing an ASON virtual TE link resource according to a preferred embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • S402. Perform the configuration of the correspondence between the transmission port resources of the ASON node connected to the traditional network and the traditional network resources according to the configuration of the traditional network. That is, on the management plane, on the basis of establishing a connection in the traditional network, the configuration of the ASON resource cross-mapping relationship is completed. It should be noted that the configuration of the ASON node must be completed in the two ASON nodes that are connected to the traditional network and set each other at the remote end. The mapping relationship must be the same. The mapping relationship here can be the time slot resources of the two ASON nodes. Correspondence relationship.
  • S404 Bundle the transmission ports of the ASON node having the same remote end and having the same attribute, and form different virtual TE links according to different cascading levels.
  • the bundled resources may belong to different transmission ports, but they must belong to the same concatenation number or belong to the same non-cascading.
  • the ASON node at the opposite end also needs to perform the same bundling process, and the virtual TE link ID formed by the bundle needs to be different from the TE link ID of the general transmission port, and can distinguish which standard cascading level it belongs to (
  • the standard cascading level can include 1, 4, 16, 64, ..., etc.).
  • S406 Perform an advertisement in the ASON network for the virtual TE link formed after the bundle.
  • the content of the advertisement may include the total bandwidth, that is, the total number of bundled resources; the idle bandwidth, that is, the total number of unused resources; the maximum available cascading number and the minimum cascading number, that is, bundles The number of concatenations corresponding to the virtual TE link after the bundle.
  • the routing information of the link can be effectively modified, and the calculation of the virtual TE link can be effectively solved without modifying the specific routing protocol, and the ASON network and the traditional network are solved. Management of virtual TE links when interconnected.
  • 5 is a schematic diagram of an ASON network and a traditional network interconnection management according to a preferred embodiment of the present invention.
  • two nodes NODE1 (node 1) and NODE2 (node 2) of the ASON network are interconnected with a conventional network.
  • Each of the nodes has 3 transfer ports connected to the traditional network node.
  • the transmission ports of NODE1 and NODE2 and the transport network interconnection are 1.1, 1.2, 1.3, and P 2.1, 2.2, and 2.3, respectively.
  • the transmit port ID can be generated in the manner required by the standard protocol, or it can be defined by the system itself (for example, 1.1 corresponding transport port ID can be customized to 0x8404101, 2.1 corresponding port ID can be customized to 0x8408101), the following is customized
  • the ID of the above port is taken as an example for description.
  • Step 1 The virtual remote node corresponding to NODE1 configuration 1.1 is N0DE2, the remote transmission port is 2.1, and the resource label mapping relationship is set.
  • Table 1 is the resource mapping relationship table at both ends of the virtual TE link. table
  • the node only supports standard cascading, that is, only the cascading number is 1, 4, 16, 256..., and the bandwidth allocation must be performed on the continuous slot space of the data link and meet the specific
  • the starting time slot requirement for example, the starting time slot that satisfies the 4 cascading is only 1, 5, 9, 13....
  • port 1.2 of NODE1 corresponds to port 2.2 of NODE2
  • port 1.3 corresponds to port 2.3, and also has the same slot resource correspondence.
  • Step 2 Since the virtual remote nodes corresponding to the three transmission ports 1.1, 1.2, and 1.3 of NODE1 are NODE2, these three ports can be bundled.
  • the ID of the bundle link is set to a range of 0x1001 - OxFFFF, wherein each bundle is bundled, a bundle link ID is assigned; if a bundle is deleted The bundle then releases the corresponding bundle link ID, which can be reused by other bundles.
  • a new virtual TE link is formed according to different cascading levels. For example, a non-cascaded slot 1 of 1.1, a slot 1 of 1.2, and a slot 1 of 1.3 form a new TE link, wherein the TE link ID is at the bundle link ID.
  • the method may be based on, but not limited to, performing a bit or operation, but the method of obtaining a new TE link ID may be any manner in which different TE links can be distinguished.
  • the bundle link ID is 0x1001
  • the ID of the non-cascade-compatible TE link is a bit or operation of the bundle link ID bit and 0x10000
  • the ID of the TE link is 0x11001.
  • the TE link ID corresponding to the 16th cascade is 0x31001.
  • Step 3 Flood the virtual TE link bandwidth information according to the specific resource status. For example, Open Shortest Path First (OSPF) is used as an example.
  • OSPF Open Shortest Path First
  • the total idle bandwidth of the virtual TE link is 0.
  • the total number of the freebands is 3 VC4.
  • the maximum label switching path (LSP Switching Path, LSP for short) is supported.
  • the bandwidth is VC4, and the minimum bandwidth that can be supported is also VC4.
  • the TE link 0x21001 idle bandwidth is 12 VC4s, and the maximum and minimum LSPs that can be supported are 4 VC4s; the TE link 0x21001 idle bandwidth is 48 VC4s.
  • the maximum and minimum LSPs that can be supported are 16 VC4s. Therefore, it can be seen that for the same ASON node connected to the transmission network, after the bundled transmission ports having the same remote end through the transmission network are bundled, different virtual TE links are formed according to different cascading levels. Therefore, the virtual TE link of the same node is uniformly managed on the basis of the number of concatenations, which is conducive to the unified deployment and use of traditional resources. In the prior art, there is often a resource management manner for generating a virtual TE link with a transmission port interconnected by a conventional network. FIG.
  • FIG. 6 is a schematic diagram of a resource management manner for generating a virtual TE link with a transmission port of a conventional network according to the related art
  • FIG. 7 is a schematic diagram of a TE link resource management manner according to an embodiment of the present invention.
  • the following description will be made in conjunction with the problem of 6 and the process of solving the technical problem of FIG. 7.
  • the legacy network is configured with only non-cascading and 16-cascade connections.
  • the ID of the TE link generated by port 1.1 of the Bay ij NODE1 is 0x8404101, and the virtual remote end is the transmission port 2.1 of NODE2.
  • Table 2 is the configured resource mapping relationship table.
  • the idle bandwidth of the virtual TE link is 18 VC4, the maximum supported LSP bandwidth is 16 VC4, and the smallest LSP is VC4.
  • the bandwidth is calculated to meet the demand, but when the resources are allocated, there is no corresponding 4 cascaded resources, which leads to successful calculation and allocation. The resource fails. Because the calculation is successful, the calculation will be repeated. This will happen after the number of retries.
  • two TE links are generated for NODE1: 0x11001, 0x31001.
  • 0x11001 only supports the connection establishment of the maximum number of concatenations and the minimum concatenation number of VC4, 0x31001 only supports the connection establishment with the maximum concatenation number and the minimum concatenation number of 16, so the connection will fail during the calculation process. . If there are other resources, it can completely reduce unnecessary calculation and retry, which greatly improves the efficiency of connection establishment.
  • a calculation processing software for performing the technical solutions described in the above embodiments and preferred embodiments is also provided.
  • a storage medium is also provided, the software being stored, including but not limited to an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种算路处理方法、装置及节点,该方法包括如下步骤:捆束自动交换光网络ASON节点中具有相同远端ASON节点并具有相同属性值的传送端口,以形成虚拟流量工程TE链路,不同虚拟TE链路所对应的属性值不同;在算路时判断不同的虚拟TE链路所对应的属性值中是否存在与业务所需要的属性值相同的属性值;在判断结果为不存在的情况下,算路失败。通过本发明保证了算路的正确性。

Description

算路处理方法、 装置及节点 技术领域 本发明涉及通信领域, 具体而言, 涉及一种算路处理方法、 装置及节点。 背景技术 近年来, 随着通信领域技术的飞速发展, 自动交换光网络 (Automatic Switched
Optical Network, 简称为 ASON) 作为一种新兴的光网络管理模式, 由于其智能化、 个性化等特点成为近年来业界研究与应用的热点。与此同时, 由于成本和历史等原因, 传统的网络在通信领域中仍存在大规模的应用。 因此, 如何将 ASON与传统网络进行 有效地互联就成为了业界的一个研究课题。 例如, 在中国第 200610063057.1号专利中 就公开了一种 ASON与传统网络互联的方法,该方法通过将与 ASON节点之间的连接 的传统网络以一种虚拟流量工程(Traffic Engineering, 简称为 TE)链路的方式配置给 上层的 ASON节点,从而使得传统网络资源在 ASON网络中能够得到充分有效地使用。 虚拟 TE链路虽然解决了 ASON与传统网络互联的问题, 但也存在缺陷: 当一条 虚拟 TE链路包含的级联数比需要建立业务的级联数同时有高和低的时, 虽然业务在 算路时会返回成功,但在分配资源时会却返回失败。虽然在有其它可用资源的情况下, 重试几次后业务可能会建立成功, 但是, 这样的方式却会导致业务的建立或者恢复效 率大大降低。 此外, 当存在大量的虚拟 TE链路资源时, 如果这时需要建立业务, 则 如何有效地管理数量庞大的虚拟 TE链路也是 ASON面临的一个难题。 发明内容 本发明提供了一种算路处理方法、 装置及节点, 以至少解决上述问题之一。 根据本发明实施例的一个方面,提供了一种算路处理方法, 该方法包括如下步骤: 捆束 ASON节点中具有相同远端 ASON节点并具有相同属性值的传送端口,以形成虚 拟 TE链路, 其中, 所述 ASON节点和所述远端 ASON节点通过另一网络连接, 所述 ASON节点和所述远端 ASON节点的网络资源交叉映射关系配置一致, 不同虚拟 TE 链路所对应的属性值不同; 在算路时判断不同的虚拟 TE链路所对应的属性值中是否 存在与业务所需要的属性值相同的属性值; 在判断结果为不存在的情况下,算路失败。 优选地, 所述属性值为级联等级。 优选地, 在算路时判断不同虚拟 TE链路所对应的属性值中是否存在与业务所需 要的属性值相同的属性值包括: 对于每个虚拟 TE链路, 通告该虚拟 TE链路所支持的 最大级联等级和最小级联等级均为该虚拟 TE链路的级联等级; 在算路时, 判断所述 每个虚拟 TE链路所对应的级联等级中是否存在与所述业务所需要的级联等级相同的 级联等级。 优选地, 通告该虚拟 TE链路所支持的最大级联等级和最小级联等级均为该虚拟 TE链路的级联等级包括: 使用泛洪通告所述虚拟 TE链路所支持的最大级联等级和最 小级联等级,其中,所述最大级联等级和所述最小级联等级均携带在链路泛洪信息中。 优选地, 每个虚拟 TE链路具有唯一标识, 其中, 所述标识用于指示所述虚拟 TE 链路和所述虚拟 TE链路所对应的属性值。 根据本发明实施例的另一个方面, 还提供了一种算路处理装置, 该装置包括: 形 成模块,设置为捆束 ASON节点中具有相同远端 ASON节点并具有相同属性值的传送 端口, 形成虚拟 TE链路, 其中, 所述 ASON节点和所述远端 ASON节点通过另一网 络连接, 所述 ASON节点和所述远端 ASON节点的网络资源交叉映射关系配置一致, 不同虚拟 TE链路所对应的属性值不同; 判断模块, 设置为在算路时判断不同的虚拟 TE链路所对应的属性值中是否存在与业务所需要的属性值相同的属性值; 确定模块, 在判断结果为不存在的情况下, 设置为确定算路失败。 优选地, 所述属性值为级联等级。 优选地, 所述判断模块还设置为对于每个虚拟 TE链路, 通告该虚拟 TE链路所支 持的最大级联等级和最小级联等级均为该虚拟 TE链路的级联等级; 在算路时, 判断 所述每个虚拟 TE链路所对应的级联等级中是否存在与所述业务所需要的级联等级相 同的级联等级。 优选地, 所述判断模块还设置为在通告该虚拟 TE链路所支持的最大级联等级和 最小级联等级均为该虚拟 TE链路的级联等级时,使用泛洪通告所述虚拟 TE链路所支 持的最大级联等级和最小级联等级, 其中, 所述最大级联等级和所述最小级联等级均 携带在链路泛洪信息中。 根据本发明实施例的再一个方面, 还提供了一种 ASON节点, 所述 ASON节点包 括上述任一所述的算路处理装置。 通过本发明实施例,采用对 ASON节点中具有相同远端 ASON节点并具有相同属 性值的传送端口进行捆束来形成虚拟 TE链路, 将业务建立所需要的资源值和虚拟 TE 链路的资源值进行比较, 在比较结果为不同的情况下, 算路失败, 解决了现有技术中 在无法分配资源的情况下仍然反复算路而导致业务的建立或者恢复效率降低的问题, 从而提高了业务建立和恢复的效率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据与本实施例相关的 ASON网络与传统网络互联的结构示意图; 图 2是根据本发明实施例的算路处理方法的流程图; 图 3是根据本发明实施例的算路处理装置的结构框图; 图 4是根据本发明优选实施例的 ASON虚拟 TE链路资源的管理方法的流程图; 图 5是根据本发明优选实施例的 ASON网络与传统网络互联管理的示意图; 图 6是根据相关技术的与传统网络互联的传送端口生成一个虚拟 TE链路的资源 管理方式的示意图; 图 7是根据本发明实施例的 TE链路资源管理方式的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 在以下实施例中, ASON网络通过另一网络进行连接, 该另一网络可以是传统网 络, 或者也可以是随着技术发展所出现的新的网络类型, 该另一网络可以理解为非 ASON的网络。 但是, 无论该另一网络是哪种网络, 只要出现了背景技术中所出现的 问题, 以下实施例均可以适用。 因此, 在以下实施例以传统网络为例进行说明, 但并 限于此。 图 1是根据与本实施例相关的 ASON网络与传统网络互联的结构示意图, 如图 1 所示, ASON和传统网络可以通过与 ASON节点之间的连接的传统网络 (例如, SDH 网络) 以一种虚拟 TE链路的方式配置给上层的 ASON节点, 从而进行互联。 在该架 构中, 可以通过修改路由泛洪协议来解决现有技术中的问题, 但是, 协议的修改比较 复杂, 并且效率比较低。 基于此, 在本实施例中, 提供了一种算路处理方法, 在该方 法中, 通过虚拟 TE链路提供的属性值 (例如, 资源值) 可以和建立业务所需要的属 性值进行是否相同的比较, 在比较结果不相同的情况下, 算路失败, 从而解决了在资 源不匹配的情况下反复进行算路的问题, 提高了效率。 图 2是根据本发明实施例的算路处理方法的流程图, 如图 2所示, 该流程包括如 下步骤: 步骤 S202, 捆束 ASON节点中具有相同远端 ASON节点并具有相同属性值的传 送端口, 以形成虚拟 TE链路,其中, ASON节点和远端 ASON节点通过另一网络(例 如, 任何的传统网络, 尤其是 SDH传统网络) 连接, ASON节点和远端 ASON节点 的网络资源交叉映射关系配置一致, 不同虚拟 TE链路所对应的属性值不同; 步骤 S204, 在算路时判断不同的虚拟 TE链路所对应的属性值中是否存在与业务 所需要的属性值相同的属性值, 例如, 该属性值可以是级联等级; 步骤 S206, 在判断结果为不存在的情况下, 确定算路失败。 通过上述步骤, 在业务所需要的属性值与虚拟 TE链路所提供的属性值不相同的 情况下, 就确定算路失败, 从而解决了现有技术中在无法分配资源的情况下仍然反复 算路而导致业务的建立或者恢复效率降低的问题,从而提高了业务建立和恢复的效率。 作为一个较优的实施方式, 该属性值可以为级联等级, 此时, 通告该虚拟 TE链 路所支持的最大级联等级和最小级联等级均为该虚拟 TE链路的级联等级; 在算路时, 判断每个虚拟 TE链路所对应的级联等级中是否存在与业务所需要的级联等级相同的 级联等级。 作为另一较优的实施方式, 对于通告方式而言可以采用泛洪的方式, 即使用泛洪 通告虚拟 TE链路所支持的最大级联等级和最小级联等级, 其中, 最大级联等级和最 小级联等级均携带在链路泛洪信息中。 采用泛洪的方式进行通告比较可靠。 优选地, 每个虚拟 TE链路具有唯一标识, 其中, 标识用于指示虚拟 TE链路和虚 拟 TE链路所对应的属性值。这样, 该唯一标识既可以区分虚拟 TE链路又可以指示虚 拟 TE链路, 实现比较简单。 在本实施例中, 还提供了一种算路处理装置, 该装置用于实现上述实施例及其优 选的实施方式, 已经进行过说明的不再赘述, 下面对该对该装置涉及的各个模块进行 说明。 如以下所使用的, 术语"模块"可以实现预定功能的软件和 /或硬件的组合。 尽管 以下实施例所描述的系统和方法较佳地以软件来实现, 但是硬件, 或者软件和硬件的 组合的实现也是可能并被构想的。 图 3是根据本发明实施例的算路处理装置的结构框图, 如图 3所示, 该结构包括 形成模块 30, 判断模块 32和确定模块 34。 下面对该装置的各个模块及其功能进行说 明。 形成模块 30, 设置为捆束 ASON节点中具有相同远端 ASON节点并具有相同属 性值(例如级联等级)的传送端口,形成虚拟 TE链路,其中, ASON节点和远端 ASON 节点通过另一网络连接, ASON节点和远端 ASON节点的网络资源交叉映射关系配置 一致, 不同虚拟 TE链路所对应的属性值不同; 判断模块 32连接至形成模块 30, 该判 断模块 32, 设置为在算路时判断不同的虚拟 TE链路所对应的属性值中是否存在与业 务所需要的属性值相同的属性值; 确定模块 34连接至判断模块 32, 该确定模块 34在 判断结果为不存在的情况下, 设置为确定算路失败。 作为一个较优的实施方式, 以属性值为级联等级 (也称为级联级别) 为例, 判断 模块 32还设置为对于每个虚拟 TE链路, 通告该虚拟 TE链路所支持的最大级联等级 和最小级联等级均为该虚拟 TE链路的级联等级; 在算路时, 判断每个虚拟 TE链路所 对应的级联等级中是否存在与业务所需要的级联等级相同的级联等级。 作为另一个较优的实施方式, 判断模块 32还设置为在通告该虚拟 TE链路所支持 的最大级联等级和最小级联等级均为该虚拟 TE链路的级联等级时, 使用泛洪通告虚 拟 TE链路所支持的最大级联等级和最小级联等级, 其中, 最大级联等级和最小级联 等级均携带在链路泛洪信息中。 在本实施例中, 还提供了一种 ASON节点, 该 ASON节点包括任意一个或其组合 的上述实施例及其优选实施方式的算路处理装置。 下面结合优选实施例与传统的 SDH网络连接为例进行说明,进行说明, 该优选实 施例结合了上述实施例及其优选实施方式, 在本优选实施例中, 提供了一种 ASON的 虚拟 TE链路资源管理的方法,该方法可以对虚拟 TE链路资源进行有效地管理,并且, 只需修改链路泛洪信息, 无需修改路由泛洪协议, 从而保证了业务在虚拟 TE链路上 的算路的正确性, 提高了业务的建立和恢复效率。 图 4是根据本发明优选实施例的 ASON虚拟 TE链路资源的管理方法的流程图, 如图 4所示, 该流程包括如下步骤:
S402, 根据传统网路的配置, 完成与传统网路相连的 ASON节点传送端口资源与 传统网络资源的对应关系的配置。 即, 在管理平面, 在传统网络中建立连接的基础上, 完成 ASON资源交叉映射关系的配置。 需要说明的是, ASON 节点的配置必须在连接传统网络并互相设置远端的两个 ASON节点中完成, 配置的映射关系需要一致, 此处的映射关系可以是两个 ASON节 点的时隙资源的对应关系。
S404, 对于 ASON节点具有相同远端并具有相同属性的传送端口进行捆束, 并按 照不同的级联等级形成不同的虚拟 TE链路。 其中, 捆束的资源可以属于不同的传送 端口, 但必须属于同一级联数, 或者同属于非级联。 同时, 在对端的 ASON节点也需 进行相同的捆束处理, 并且, 捆束形成的虚拟 TE链路 ID 需不同于一般传送端口的 TE链路 ID, 并能够区分其属于哪个标准级联级别 (例如, 标准级联级别可以包括 1、 4、 16、 64....等)。
S406, 对于捆束后形成的虚拟 TE链路进行 ASON网络内的通告。 其中, 通告的 内容可以包括总带宽, 即, 捆束的资源的总个数; 空闲带宽, 即, 未使用的资源总个 数; 最大可用级联数和最小级联数, 即, 均是捆束后虚拟 TE链路对应的级联数。 采用本优选实施例, 可以在只修改链路的路由泛洪信息, 而不需要修改具体路由 协议的情况下, 有效地解决虚拟 TE链路的算路问题, 同时解决了 ASON网络与传统 网络大量互联时, 虚拟 TE链路的管理问题。 图 5是根据本发明优选实施例的 ASON网络与传统网络互联管理的示意图, 如图 5所示, ASON网络的两个节点 NODE1 (节点 1 )和 NODE2 (节点 2) 与传统的网络 进行互联, 其中每个节点与传统网络节点都有 3 个传送端口相互连接。 NODE1 和 NODE2与传送网络互联的传送端口分别是 1.1、 1.2、 1.3禾 P 2.1、 2.2、 2.3。 传送端口 ID可以按照标准协议中要求的方式生成, 也可以系统自己定义 (例如, 1.1对应的传 送端口 ID可自定义为 0x8404101, 2.1对应的端口 ID可自定义为 0x8408101 ), 下面 以自定义的上述端口的 ID为例进行说明。 第一步:在 NODE1配置 1.1对应的虚拟远端节点为 N0DE2,远端传送端口为 2.1, 并设置资源标签映射关系, 表一是虚拟 TE链路两端的资源映射关系表。 表
Figure imgf000009_0001
如表一所示, 节点只支持标准级联, 即只支持级联数为 1、 4、 16、 256..., 且带 宽分配必须在数据链路的连续时隙空间上进行, 并满足特定的起始时隙要求, 例如, 满足 4级联的起始时隙只有 1、 5、 9、 13....。 同样 NODE1的端口 1.2对应 NODE2的 端口 2.2, 端口 1.3对应端口 2.3, 并且也有同样的时隙资源对应关系。 第二步: 由于 NODE1 的三个传送端口 1.1、 1.2、 1.3 对应的虚拟远端节点都是 NODE2, 故可将这三个端口进行捆束。 为了区分捆束链路和一般的传送端口, 设置捆 束链路的 ID的取值范围为 0x1001 -OxFFFF, 其中, 每进行一次捆束, 则分配一个捆束 链路 ID; 如果删除了一个捆束, 则释放对应的捆束链路 ID, 该 ID可重新被其它捆束 使用。 需要说明的是, 对于捆束的资源, 按照其不同的级联等级形成新的虚拟 TE链路。 例如, 非级联的 1.1的 1号时隙、 1.2的 1号时隙、 1.3的 1号时隙, 捆束形成一个新 的 TE链路, 其中, TE链路 ID在捆束链路 ID的基础上可以但不限于进行位或操作, 但是, 获得新的 TE链路 ID的方法可以是任意可以区别不同的 TE链路的方式。例如, 假设捆束链路 ID为 0x1001,则非级联对应的 TE链路的 ID为捆束链路 ID位与 0x10000 进行位或操作, 可以得到 TE链路的 ID为 0x11001。 可以使用 1、 2、 3、 4...分别标识 非级联、 4级联、 16级联、 64级联 ..., 从而可以得到 4级联对应的虚拟 TE链路的 ID 为 0x21001, 16级联对应的 TE链路 ID为 0x31001。 因此, NODE1和 NODE2之间的 虚拟 TE链路有 0x11001, 0x21001 , 0x31001。 第三步: 根据具体的资源状况泛洪对应的虚拟 TE链路带宽信息。 以开放式最短路径优先(Open Shortest Path First, 简称为 OSPF)为例, 其中虚拟 TE链路的 0x11001 的总空闲带宽为 3 个 VC4, 可支持的最大标签交换路径 (Label Switching Path, 简称为 LSP) 带宽为 VC4, 可支持的最小带宽亦为 VC4; 同样, TE 链路 0x21001空闲带宽为 12个 VC4,可支持的最大和最小 LSP为 4个 VC4; TE链路 0x21001空闲带宽为 48个 VC4, 可支持的最大和最小 LSP为 16个 VC4。 由此可知, 对于同一个与传送网络相连的 ASON节点, 对于经过传送网络后具有 相同远端的传送端口进行捆束后, 根据不同的级联级别形成了不同的虚拟 TE链路。 从而对于同一节点的虚拟 TE链路在级联数的基础上进行了统一的管理, 有利于传统 资源的统一调配和使用。 现有技术中经常存在与传统网络互联的传送端口生成一个虚拟 TE链路的资源管 理方式。 图 6是根据相关技术的与传统网络互联的传送端口生成一个虚拟 TE链路的 资源管理方式的示意图, 图 7是根据本发明实施例的 TE链路资源管理方式的示意图。 下面结合 6存在问题以及图 7解决该技术问题的过程进行说明。 如图 6所示, 假设传统网络只配置了非级联和 16级联的连接, 贝 ij NODEl的端口 1.1生成的 TE链路的 ID = 0x8404101, 其虚拟远端为 NODE2的传送端口 2.1。表二是 配置的资源映射关系表。
Figure imgf000010_0001
Figure imgf000010_0002
如表二所示, 虚拟 TE链路的空闲带宽为 18个 VC4, 支持的最大 LSP带宽为 16 个 VC4, 最小的 LSP为 VC4。 假设需要建立一个 NODE1到 NODE2的级联数为 4个 VC4的连接, 并且两个节点之间只有虚拟 TE链路 0x8404101。 那么, 在算路的时候, 由于 1<4<16, 因此算路时带宽是满足需求的, 但在分配资源的时候, 并没有对应的 4 级联的资源, 如此就导致算路成功, 分配资源失败, 由于算路成功, 因此会重复算路, 在在重试次数之后还是会出现这种情况。 如图 7所示,对于 NODE1会生成两条 TE链路: 0x11001, 0x31001。由于 0x11001 只支持最大级联数和最小级联数均为 VC4的连接建立, 0x31001只支持最大级联数和 最小级联数均为 16的连接建立, 故连接在算路的过程中就会失败。如果在还有其他资 源的情况下, 则完全可以减少不必要的算路重试, 大大提高了连接建立的效率。 在另外一个实施例中, 还提供了一种算路处理软件, 该软件用于执行上述实施例 及优选实施例中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于光盘、 软盘、 硬盘、 可擦写存储器等。 以上所述, 仅为本发明的具体实施案例, 本发明的保护范围并不局限于此, 任何 熟悉本技术的技术人员在本发明所述的技术规范内, 对本发明的修改或替换, 都应在 本发明的保护范围之内。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种算路处理方法, 包括:
捆束自动交换光网络 ASON节点中具有相同远端 ASON节点并具有相同属 性值的传送端口, 以形成虚拟流量工程 TE链路, 其中, 所述 ASON节点和所 述远端 ASON节点通过另一网络连接, 所述 ASON节点和所述远端 ASON节 点的网络资源交叉映射关系配置一致, 不同虚拟 TE链路所对应的属性值不同; 在算路时判断不同的虚拟 TE链路所对应的属性值中是否存在与业务所需 要的属性值相同的属性值;
在判断结果为不存在的情况下, 算路失败。
2. 根据权利要求 1所述的方法, 其中, 所述属性值为级联等级。
3. 根据权利要求 2所述的方法, 其中, 在算路时判断不同虚拟 TE链路所对应的 属性值中是否存在与业务所需要的属性值相同的属性值包括:
对于每个虚拟 TE链路,通告该虚拟 TE链路所支持的最大级联等级和最小 级联等级均为该虚拟 TE链路的级联等级;
在算路时, 判断所述每个虚拟 TE链路所对应的级联等级中是否存在与所 述业务所需要的级联等级相同的级联等级。
4. 根据权利要求 3所述的方法, 其中, 通告该虚拟 TE链路所支持的最大级联等 级和最小级联等级均为该虚拟 TE链路的级联等级包括:
使用泛洪通告所述虚拟 TE链路所支持的最大级联等级和最小级联等级, 其中, 所述最大级联等级和所述最小级联等级均携带在链路泛洪信息中。
5. 根据权利要求 1至 4中任一项所述的方法, 其中, 每个虚拟 TE链路具有唯一 标识,其中,所述标识用于指示所述虚拟 TE链路和所述虚拟 TE链路所对应的 属性值。
6. 一种算路处理装置, 包括:
形成模块,设置为捆束 ASON节点中具有相同远端 ASON节点并具有相同 属性值的传送端口,形成虚拟 TE链路,其中,所述 ASON节点和所述远端 ASON 节点通过另一网络连接,所述 AS0N节点和所述远端 ASON节点的网络资源交 叉映射关系配置一致, 不同虚拟 TE链路所对应的属性值不同;
判断模块, 设置为在算路时判断不同的虚拟 TE链路所对应的属性值中是 否存在与业务所需要的属性值相同的属性值;
确定模块, 在判断结果为不存在的情况下, 设置为确定算路失败。 根据权利要求 6所述的装置, 其中, 所述属性值为级联等级。 根据权利要求 7所述的装置, 其中, 所述判断模块设置为对于每个虚拟 TE链 路, 通告该虚拟 TE链路所支持的最大级联等级和最小级联等级均为该虚拟 TE 链路的级联等级; 在算路时, 判断所述每个虚拟 TE链路所对应的级联等级中 是否存在与所述业务所需要的级联等级相同的级联等级。 根据权利要求 8所述的装置, 其中, 所述判断模块设置为在通告该虚拟 TE链 路所支持的最大级联等级和最小级联等级均为该虚拟 TE链路的级联等级时, 使用泛洪通告所述虚拟 TE链路所支持的最大级联等级和最小级联等级, 其中, 所述最大级联等级和所述最小级联等级均携带在链路泛洪信息中。 一种自动交换光网络 ASON节点, 其中, 包括: 权利要求 6-9中任一项所述的 装置。
PCT/CN2012/076869 2011-08-25 2012-06-13 算路处理方法、装置及节点 WO2013026310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110245528.1A CN102957976B (zh) 2011-08-25 2011-08-25 算路处理方法、装置及节点
CN201110245528.1 2011-08-25

Publications (1)

Publication Number Publication Date
WO2013026310A1 true WO2013026310A1 (zh) 2013-02-28

Family

ID=47745899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076869 WO2013026310A1 (zh) 2011-08-25 2012-06-13 算路处理方法、装置及节点

Country Status (2)

Country Link
CN (1) CN102957976B (zh)
WO (1) WO2013026310A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163090A (zh) * 2006-10-09 2008-04-16 华为技术有限公司 一种业务路径的计算方法
CN101969582A (zh) * 2009-07-27 2011-02-09 中兴通讯股份有限公司 一种捆束链路的标签分配系统及方法
CN102014040A (zh) * 2009-09-07 2011-04-13 华为技术有限公司 一种流量工程属性的发布方法及装置
US20110110272A1 (en) * 2009-11-10 2011-05-12 Electronics And Telecommunications Research Institute Device and method for generating traffic engineering topology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100454841C (zh) * 2006-06-02 2009-01-21 华为技术有限公司 一种多域路由计算方法和系统
CN101325560B (zh) * 2008-07-22 2011-12-28 中兴通讯股份有限公司 一种链路生成方法及其装置
CN101841739A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 基于链路捆束的标签交换路径选择方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163090A (zh) * 2006-10-09 2008-04-16 华为技术有限公司 一种业务路径的计算方法
CN101969582A (zh) * 2009-07-27 2011-02-09 中兴通讯股份有限公司 一种捆束链路的标签分配系统及方法
CN102014040A (zh) * 2009-09-07 2011-04-13 华为技术有限公司 一种流量工程属性的发布方法及装置
US20110110272A1 (en) * 2009-11-10 2011-05-12 Electronics And Telecommunications Research Institute Device and method for generating traffic engineering topology

Also Published As

Publication number Publication date
CN102957976A (zh) 2013-03-06
CN102957976B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN102959910B (zh) 通过通信信道将网元的分组转发配置的更改通知控制器
CN102823205B (zh) 聚合来自接入域的数据业务
TW202034737A (zh) 在網路運算環境中的路由最佳化
US20160359642A1 (en) Flow entry generating method and apparatus
CN107211036B (zh) 一种数据中心网络组网的方法以及数据中心网络
EP2045965B1 (en) Resource state monitoring method, device and communication network
CN108574639A (zh) Evpn报文处理方法、设备及系统
US9998366B2 (en) System, method and device for forwarding packet
CN108540328B (zh) Ason的控制平面建模方法和装置
EP2731313A1 (en) Distributed cluster processing system and message processing method thereof
CN104025513A (zh) 数据中心网络中的控制层级
WO2016165142A1 (zh) 一种虚拟网络的保护方法和装置
CN101729385A (zh) 一种路径计算及建立方法、装置和系统
WO2011103759A1 (zh) 关联的双向标签交换路径的创建方法及系统
US20230254245A1 (en) Data Frame Sending Method and Network Device
WO2012071909A1 (zh) 业务恢复方法及装置
WO2016124117A1 (zh) 一种sdn中的链路保护方法、交换设备及网络控制器
US8717909B1 (en) Methods and apparatus for route installation acknowledgement and acknowledgement aggregation in BGP
US10135715B2 (en) Buffer flush optimization in Ethernet ring protection networks
CN114401274A (zh) 一种通信线路创建方法、装置、设备及可读存储介质
WO2014029287A1 (zh) 隧道负荷分担方法及装置
US9906435B2 (en) Method and apparatus for determining intermediate routing node and system
CN104394075A (zh) 一种报文传输的方法和设备
WO2009062351A1 (fr) Procédé permettant de fusionner des systèmes d&#39;empilement
CN101102231B (zh) 一种ppp链路路由设备的自动发现方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825917

Country of ref document: EP

Kind code of ref document: A1