WO2013026189A1 - Concrete pump truck and hydraulic control system thereof - Google Patents

Concrete pump truck and hydraulic control system thereof Download PDF

Info

Publication number
WO2013026189A1
WO2013026189A1 PCT/CN2011/078649 CN2011078649W WO2013026189A1 WO 2013026189 A1 WO2013026189 A1 WO 2013026189A1 CN 2011078649 W CN2011078649 W CN 2011078649W WO 2013026189 A1 WO2013026189 A1 WO 2013026189A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
subsystem
oil inlet
oil
distribution
Prior art date
Application number
PCT/CN2011/078649
Other languages
French (fr)
Chinese (zh)
Inventor
李沛林
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Priority to PCT/CN2011/078649 priority Critical patent/WO2013026189A1/en
Publication of WO2013026189A1 publication Critical patent/WO2013026189A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

Disclosed are a concrete pump truck and a hydraulic control system thereof. The hydraulic control system includes: a first hydraulic pump (11); a flow control assembly (2) of which an input end is connected with an oil outlet of the first hydraulic pump (11); an arm hydraulic subsystem (31) of which an oil inlet is connected with an output end of the flow control assembly (2); a support leg hydraulic subsystem (32) of which an oil inlet is connected with the output end of the flow control assembly (2). The hydraulic control system also includes a distribution hydraulic subsystem (33) and a stirring-cleaning-cooling hydraulic subsystem (34), wherein at least one oil inlet of the distribution hydraulic subsystem (33) and the stirring-cleaning-cooling hydraulic subsystem (34) is connected with the output end of the flow control assembly (2). The hydraulic control system has simpler structure, lower cost, lower fault rate and convenience of the unified allocation of power.

Description

混凝土泵车及其液压控制系统 技术领域 本发明涉及混凝土技术领域, 尤其涉及一种混凝土泵车及其液压控制系统。 背景技术 混凝土泵车由于施工机动灵活, 在现代工程中应用越来越广泛。 液压控制系统是 混凝土泵车中最关键的部分, 如图 1所示, 混凝土泵车的液压控制系统一般包含臂架 液压子系统 31、 支腿液压子系统 32、 分配液压子系统 33、 搅拌清洗冷却液压子系统 34和泵送液压子系统 35等。 一般采用多个泵分别给每个子系统供油。 从而, 该液压 控制系统还包括多个液压泵,其中第一液压泵 11的出油口通过流量控制组件 2与臂架 液压子系统 31和支腿液压子系统 32连接, 向其供油, 从图 1中可以看出, 现有技术 中, 第二液压泵 12、 第三液压泵 13和第四液压泵 14串联起来组成一套泵组, 分别向 泵送液压子系统 35、 分配液压子系统 33和搅拌清洗冷却液压子系统供油。 该第一液 压泵 11一般为柱塞泵; 该第二液压泵 12—般为柱塞泵; 该第三液压泵 13—般为恒压 泵; 该第四液压泵 14一般为齿轮泵。 具体地,泵送液压子系统 35用于驱动混凝土泵车中的泵送油缸,控制泵送油缸的 方向和速度。 分配液压子系统 33驱动分配机构, 控制分配机构的换向。其结构如图 2所示, 包 括单向阀 331, 压力表 332, 溢流阀 333, 蓄能器 334, 电磁换向阀 335, 液动换向阀 336,分配液压缸 337、 338。来自第三液压泵 13的压力油经单向阀 331进入蓄能器 334 充压至设定值后系统保压, 当分配液压缸 337、 338需要动作时, 第三液压泵 13、 蓄 能器 334—起供油, 经液动换向阀 336进入分配液压缸 337或 338, 推动液压缸动作。 分配液压子系统压力由第三液压泵 13设定, 由溢流阀 333限制系统最高压力。 搅拌清洗冷却液压子系统 34用于驱动搅拌机构。图 3为常用的一种搅拌清洗冷却 液压子系统简图。 该子系统包括压力表 343, 溢流阀 344, 电磁换向阀 345, 搅拌马达 346。 第四液压泵 14的压力油经电磁换向阀 345驱动搅拌马达 346旋转。 系统最高压 力由溢流阀 344设定。 臂架液压子系统 31用于驱动臂架油缸,控制臂架动作速度和方向; 支腿液压子系 统 32用于控制支腿的动作。图 4为常用的一种臂架及支腿液压子系统及流量控制组件 的连接简图。 可以看到, 第一液压泵 11 的出油口连接有过滤器 15, 流量控制组件 2 包括比例多路阀组 21,该比例多路阀组 21中设有连接块 212以及多片比例多路阀 211。 第一液压泵 11输出的液压油经过滤器 15、 比例多路阀 211驱动臂架液压子系统 31或 支腿液压子系统 32动作。 现有技术中的混凝土泵车的液压控制系统存在以下缺点: 首先, 液压泵泵数量较多, 导致系统复杂, 故障率高, 成本高, 且因为各个子系 统 (臂架液压子系统、 支腿液压子系统等) 单独供油, 功率不能统一调配优化, 系统 效率较低。 另外, 第三液压泵 13为恒压泵, 使得分配液压子系统 33的分配压力不能根据需 要自动调节, 第三液压泵 13长期处于高压小流量状态, 影响第三液压泵 13寿命。 此外, 第四液压泵 14为齿轮泵, 使得搅拌清洗冷却液压子系统 34的搅拌速度固 定, 不能根据需要自动调节。 发明内容 本发明所要解决的技术问题是提供一种混凝土泵车及其液压控制系统, 该液压控 制系统更简单, 成本更低, 且其分配液压子系统的压力或搅拌清洗冷却液压子系统的 转速可调。 为解决上述技术问题, 根据本发明的一个方面, 提供了一种混凝土泵车的液压控 制系统, 包括: 第一液压泵; 流量控制组件, 其输入端与第一液压泵的出油口连接; 臂架液压子系统, 其进油口与流量控制组件的输出端连接; 支腿液压子系统, 其进油 口与流量控制组件的输出端连接, 该液压控制系统还包括: 分配液压子系统和搅拌清 洗冷却液压子系统, 分配液压子系统和搅拌清洗冷却液压子系统中的至少一个的进油 口与流量控制组件的输出端连接。 进一步地,流量控制组件包括比例多路阀组, 比例多路阀组包括多片比例多路阀, 形成至少第一组比例多路阀和第二组比例多路阀,每片比例多路阀包括多个输出油路, 其中, 臂架液压子系统的多个进油口分别与比例多路阀组中的第一组比例多路阀的多 个输出油路连接; 支腿液压子系统的进油口与比例多路阀组中的第二组比例多路阀的 一个或多个输出油路连接。 进一步地, 第一液压泵为负荷敏感泵, 其上设有负荷敏感阀, 分配液压子系统的 进油口和 /或搅拌清洗冷却液压子系统的进油口与负荷敏感阀之间连接有单向阀, 单向 阀朝向负荷敏感阀的方向导通。 进一步地, 第一液压泵为排量可调变量泵。 进一步地, 流量控制组件还包括一个或两个流量阀, 其中, 每个流量阀的进油口 连接至第一液压泵的出油口; 每个流量阀的出油口连接至分配液压子系统和搅拌清洗 冷却液压子系统中的一个的进油口。 进一步地, 分配液压子系统和搅拌清洗冷却液压子系统中的至少一个的进油口连 接至一片比例多路阀的一个输出油路。 进一步地, 流量控制组件还包括分流阀, 其中, 分流阀的进油口连接至一片比例 多路阀的一个输出油路; 分流阀的第一出油口连接至分配液压子系统的进油口; 分流 阀的第二出油口连接至搅拌清洗冷却液压子系统的进油口。 进一步地, 流量控制组件还包括一个流量阀, 流量阀的进油口连接至第一液压泵 的出油口, 流量阀的出油口连接至分配液压子系统和搅拌清洗冷却液压子系统中的一 个的进油口; 分配液压子系统和搅拌清洗冷却液压子系统中的另一个连接至一片比例 多路阀的一个出油口。 进一步地, 分配液压子系统的进油口处设有压力传感器, 当压力传感器检测到分 配液压子系统中的分配压力达到预设值时, 流量控制组件中与分配液压子系统相连的 输出端的液压流量被减小或关闭。 进一步地, 还包括: 第二液压泵; 泵送液压系统, 其进油口与第二液压泵的出油 口连接。 根据本发明的另一个方面, 还提供了一种混凝土泵车, 该混凝土泵车包括上述的 任何一种的混凝土泵车的液压控制系统。 本发明具有以下有益效果: 本发明的混凝土泵车的液压控制系统中的分配液压子系统和搅拌清洗冷却液压子 系统中的至少一个的进油口与流量控制组件的输出端连接, 从而可以通过与流量控制 组件相连的第一液压泵来供油, 使得可以省去液压控制系统中为分配液压子系统和 / 或搅拌清洗冷却液压子系统供油的液压泵, 使得该液压控制系统更简单, 成本更低, 故障率更低, 方便功率的统一调配。 此外, 通过流量控制组件能够调节分配液压子系 统的压力或搅拌清洗冷却液压子系统的转速, 使得实现分配液压子系统中的分配压力 根据需要自动变化,以及实现搅拌清洗冷却液压子系统的搅拌速度根据需要自动变化。 在本发明的混凝土泵车的液压控制系统中, 上述的第一液压泵还可以为负荷敏感 泵、 排量可调变量泵等变量泵, 这时可以根据负载的实际情况调节第一液压泵的输出 液压油排量, 从而提高第一液压泵的利用效率, 进而提高整个液压控制系统的效率。 除了上面所描述的目的、特征和优点之外, 本发明还有其它的目的、特征和优点。 下面将参照图, 对本发明作进一步详细的说明。 附图说明 附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是现有技术中混凝土泵车的液压控制系统的整体连接结构示意图; 图 2是现有技术中混凝土泵车的液压控制系统中分配液压子系统的连接结构示意 图; 图 3是现有技术中混凝土泵车的液压控制系统中搅拌清洗冷却液压子系统的连接 结构示意图; 图 4是现有技术中混凝土泵车的液压控制系统中臂架及支腿液压子系统及流量控 制组件的连接结构示意图; 图 5是根据本发明的混凝土泵车的液压控制系统的整体连接结构示意图; 图 6 是根据本发明的第一实施例的混凝土泵车的液压控制系统的连接结构示意 图, 图中略去了泵送液压子系统; 图 7 是根据本发明的第二实施例的混凝土泵车的液压控制系统的连接结构示意 图, 图中略去了泵送液压子系统; 图 8 是根据本发明的第三实施例的混凝土泵车的液压控制系统的连接结构示意 图, 图中略去了泵送液压子系统; 图 9是根据本发明的混凝土泵车的液压控制系统中分配液压子系统的连接结构示 意图。 具体实施方式 以下结合附图对本发明的实施例进行详细说明, 但是本发明可以由权利要求限定 和覆盖的多种不同方式实施。 如图 5所示, 根据本发明的混凝土泵车的液压控制系统包括: 第一液压泵 11、 流 量控制组件 2、 臂架液压子系统 31、 支腿液压子系统 32、 以及分配液压子系统 33和 搅拌清洗冷却液压子系统 34。 该流量控制组件 2的输入端与第一液压泵 11的出油口 连接,该流量控制组件 2的多个输出端分别与臂架液压子系统 31的进油口以及支腿液 压子系统 32 的进油口、 分配液压子系统 33 的进油口和搅拌清洗冷却液压子系统 34 的进油口连接。 在图 5 中, 分配液压子系统 33 的进油口和搅拌清洗冷却液压子系统 34的进油口均与流量控制组件 2—个输出端连接, 在实践中, 分配液压子系统 33和 搅拌清洗冷却液压子系统 34中的一个的进油口与流量控制组件 2的一个输出端连接也 是可能的。 由于该混凝土泵车的液压控制系统中的分配液压子系统 33 和搅拌清洗冷却液压 子系统 34中的至少一个的进油口与流量控制组件 2的输出端连接,从而可以通过与流 量控制组件 2相连的第一液压泵 11来供油,使得可以省去现有技术中的液压控制系统 中为分配液压子系统 33和 /或搅拌清洗冷却液压子系统 34供油的液压泵(即第三液压 泵 13和第四液压泵 14), 使得该液压控制系统更简单, 成本更低, 故障率更低, 方便 功率的统一调配。此外,通过流量控制组件 2能够调节分配液压子系统 33的压力或搅 拌清洗冷却液压子系统 34的转速, 使得实现分配液压子系统 33中的分配压力根据需 要自动变化, 以及实现搅拌清洗冷却液压子系统 34的搅拌速度根据需要自动变化。 优选地, 如图 6所示, 在根据本发明的第一实施例的混凝土泵车的液压控制系统 中, 流量控制组件 2包括比例多路阀组 21, 该比例多路阀组 21包括多片比例多路阀 211, 形成至少第一组比例多路阀和第二组比例多路阀, 每片比例多路阀 211包括多个 输出油路。 其中, 臂架液压子系统 31的多个进油口分别与比例多路阀组 21中的第一 组比例多路阀 (在本发明的实施例中为右侧四个比例多路阀 211 ) 的多个输出油路连 接; 支腿液压子系统 32的进油口与比例多路阀组 21中的第二组比例多路阀 (在本发 明的实施例中为左侧第一个比例多路阀 211 ) 的一个或多个 (在本发明的实施例中为 一个) 输出油路连接。 优选地, 如图 6所示, 在根据本发明的第一实施例的混凝土泵车的液压控制系统 中, 第一液压泵 11为负荷敏感泵, 其上设有负荷敏感阀 111, 分配液压子系统 33的 进油口和 /或搅拌清洗冷却液压子系统 34的进油口与负荷敏感阀 111之间连接有单向 阀 23, 单向阀 23朝向负荷敏感阀 111的方向导通。 具体地, 在第一实施例中, 如图 6 所示, 分配液压子系统 33的进油口和搅拌清洗冷却液压子系统 34的进油口均与流量 控制组件 2的一个输出端连接,分配液压子系统 33的进油口和搅拌清洗冷却液压子系 统 34的进油口分别与负荷敏感阀 111之间连接有一个单向阀 23, 并且该两个单向阀 23的下游的油路节点连接至第一液压泵 11的负荷敏感阀 111。 该第一液压泵 11能够 根据其负荷敏感阀 111所感测到的负载侧的油压来控制输出的液压油排量, 从而提高 第一液压泵的利用效率, 进而提高整个液压控制系统的效率。 在本发明的附图中没有示出的实施例中,例如只有分配液压子系统 33与流量控制 组件 2的输出端连接, 而搅拌倾斜冷却液压系统 34有其单独的液压泵供油的情况下, 可以理解, 只需一个单向阀 23, 连接在分配液压子系统 33与负荷敏感阀 111之间即 可。 另外, 优选地, 在根据本发明的其他实施例中, 第一液压泵 11也可以为排量可调 变量泵,这时需要通过系统中的控制器接收分配液压子系统 33中的油压值, 并输出电 信号以控制该第一液压泵 11的输出液压油排量。可以理解, 该排量可调变量泵同样可 以使得提高液压泵的利用效率, 进而起到提高整个液压控制系统的效率的作用。 优选地, 流量控制组件 2还包括一个或两个流量阀 22, 其中, 每个流量阀 22的 进油口连接至第一液压泵 11的出油口; 每个流量阀 22的出油口连接至分配液压子系 统 33和搅拌清洗冷却液压子系统 34中的一个的进油口。 如图 6所示, 根据本发明的 第一实施例的的混凝土泵车的液压控制系统中,由于分配液压子系统 33和搅拌清洗冷 却液压子系统 34均分别与流量控制组件 2的一个输出端连接, 所以需要两个流量阀 22。 分配液压子系统 33和搅拌清洗冷却液压子系统 34均与流量控制组件连接, 而不 与比例多路阀的输出油路连接, 还会减小比例多路阀的负荷, 从而可以选择较小的比 例多路阀, 降低成本。 或者优选地, 分配液压子系统 33和搅拌清洗冷却液压子系统 34中的至少一个的 进油口也可以连接至一片比例多路阀 211的一个输出油路。 如图 7所示, 在根据本发 明的第二实施例的混凝土泵车的液压控制系统中,分配液压子系统 33的进油口连接至 左侧第一片比例多路阀 211的一个输出油路, 通过该比例多路阀 211 向其供油。 并且 在该第二实施例中, 搅拌清洗冷却液压子系统 34的进油口通过流量阀 22与第一液压 泵 11的出油口连接。 当然, 在根据本发明的其他实施例中, 分配液压子系统 33与搅 拌清洗冷却液压子系统 34的位置时可以互换的。 优选地, 如图 8所示, 在根据本发明的第三实施例的混凝土泵车的液压控制系统 中, 流量控制组件 2还包括分流阀 24, 其中, 分流阀 24的进油口连接至一片比例多 路阀 211的一个输出油路; 分流阀 24的第一出油口连接至分配液压子系统 33的进油 口; 分流阀 24的第二出油口连接至搅拌清洗冷却液压子系统 34的进油口。 该分流阀 24的设置使得只需一片比例多路阀的一个输出油路便可以控制分配液压子系统 33和 搅拌清洗冷却液压子系统 34两个液压系统。 该分流阀 24的分流比例可以根据需要进 行调节。 优选地, 如图 9所示, 原分配液压子系统 33的进油口处的压力表 332可以换为压 力传感器 332a, 当该压力传感器 332a检测到分配液压子系统 33中的分配压力达到预 设值时,可以将流量控制组件 2中与分配液压子系统 33相连的输出端的液压流量减小, 仅用来补充系统泄漏量;或者将流量控制组件 2中与分配液压子系统 33相连的输出端 关闭, 具体为将与分配液压子系统 33相连的流量阀 22或比例多路阀的相应输出油路 关闭, 使分配液压子系统保压。 优选地, 根据本发明的混凝土泵车的液压控制系统还包括: 第二液压泵 12; 以及 泵送液压系统 35, 其进油口与第二液压泵 12的出油口连接。 本发明还提供了一种混凝土泵车, 包括上述的任何一种混凝土泵车的液压控制系 统。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 TECHNICAL FIELD The present invention relates to the technical field of concrete, and in particular to a concrete pump truck and its hydraulic control system. BACKGROUND Concrete pump trucks are more and more widely used in modern engineering due to their mobility and flexibility in construction. The hydraulic control system is the most critical part of the concrete pump truck. As shown in Figure 1, the hydraulic control system of the concrete pump truck generally includes a boom hydraulic subsystem 31, an outrigger hydraulic subsystem 32, a distribution hydraulic subsystem 33, and a mixing and cleaning system. Cooling hydraulic subsystem 34, pumping hydraulic subsystem 35 and so on. Generally, multiple pumps are used to supply oil to each subsystem separately. Therefore, the hydraulic control system further includes a plurality of hydraulic pumps, wherein the oil outlet of the first hydraulic pump 11 is connected to the boom hydraulic subsystem 31 and the outrigger hydraulic subsystem 32 through the flow control assembly 2 to supply oil to them, It can be seen from FIG. 1 that in the prior art, the second hydraulic pump 12, the third hydraulic pump 13 and the fourth hydraulic pump 14 are connected in series to form a set of pump groups, which are respectively pumped to the hydraulic sub-system 35 and distributed to the hydraulic sub-system. 33 and mixing, cleaning and cooling hydraulic subsystem for oil supply. The first hydraulic pump 11 is generally a plunger pump; the second hydraulic pump 12 is generally a plunger pump; the third hydraulic pump 13 is generally a constant pressure pump; and the fourth hydraulic pump 14 is generally a gear pump. Specifically, the pumping hydraulic subsystem 35 is used to drive the pumping cylinder in the concrete pump truck and control the direction and speed of the pumping cylinder. The distribution hydraulic subsystem 33 drives the distribution mechanism and controls the commutation of the distribution mechanism. Its structure is shown in FIG. 2 and includes a one-way valve 331, a pressure gauge 332, an overflow valve 333, an accumulator 334, an electromagnetic reversing valve 335, a hydraulic reversing valve 336, and distributing hydraulic cylinders 337 and 338. The pressure oil from the third hydraulic pump 13 enters the accumulator 334 through the one-way valve 331, and the system maintains the pressure after being charged to the set value. When the distributing hydraulic cylinders 337 and 338 need to act, the third hydraulic pump 13, the accumulator 334—Oil supply, enters the distribution hydraulic cylinder 337 or 338 through the hydraulic reversing valve 336, and pushes the hydraulic cylinder to move. The pressure of the distribution hydraulic subsystem is set by the third hydraulic pump 13, and the maximum pressure of the system is limited by the overflow valve 333. The mixing, cleaning and cooling hydraulic subsystem 34 is used to drive the mixing mechanism. Figure 3 is a schematic diagram of a commonly used hydraulic subsystem for mixing, cleaning and cooling. The subsystem includes a pressure gauge 343, an overflow valve 344, an electromagnetic reversing valve 345, and a stirring motor 346. The pressure oil of the fourth hydraulic pump 14 drives the stirring motor 346 to rotate through the electromagnetic reversing valve 345. The maximum pressure of the system is set by the overflow valve 344. The boom hydraulic subsystem 31 is used to drive the boom cylinder to control the motion speed and direction of the boom; the outrigger hydraulic subsystem 32 is used to control the motion of the outrigger. Figure 4 is a commonly used boom and outrigger hydraulic subsystem and flow control components Connection diagram. It can be seen that a filter 15 is connected to the oil outlet of the first hydraulic pump 11, and the flow control assembly 2 includes a proportional multi-way valve group 21. The proportional multi-way valve group 21 is provided with a connecting block 212 and a multi-piece proportional multi-way valve group. Valve 211. The hydraulic oil output by the first hydraulic pump 11 drives the boom hydraulic sub-system 31 or the outrigger hydraulic sub-system 32 through the filter 15 and the proportional multi-way valve 211 to act. The hydraulic control system of the concrete pump truck in the prior art has the following shortcomings: First of all, the number of hydraulic pumps is large, which leads to complex systems, high failure rates, and high costs. (Hydraulic subsystem, etc.) separate oil supply, the power cannot be uniformly allocated and optimized, and the system efficiency is low. In addition, the third hydraulic pump 13 is a constant pressure pump, so that the distribution pressure of the distribution hydraulic subsystem 33 cannot be automatically adjusted as required. The third hydraulic pump 13 is in a high-pressure and low-flow state for a long time, which affects the life of the third hydraulic pump 13. In addition, the fourth hydraulic pump 14 is a gear pump, so that the stirring speed of the stirring, cleaning and cooling hydraulic subsystem 34 is fixed and cannot be automatically adjusted as required. SUMMARY OF THE INVENTION The technical problem to be solved by the present invention is to provide a concrete pump truck and its hydraulic control system. The hydraulic control system is simpler, has lower cost, and distributes the pressure of the hydraulic subsystem or the rotational speed of the mixing, cleaning and cooling hydraulic subsystem. Adjustable. In order to solve the above technical problems, according to one aspect of the present invention, a hydraulic control system for a concrete pump truck is provided, including: a first hydraulic pump; a flow control assembly, the input end of which is connected with the oil outlet of the first hydraulic pump; The boom hydraulic subsystem, whose oil inlet is connected to the output end of the flow control assembly; the outrigger hydraulic subsystem, whose oil inlet is connected to the output end of the flow control assembly, the hydraulic control system also includes: a distribution hydraulic subsystem and The mixing, cleaning and cooling hydraulic subsystem, and the oil inlet of at least one of the distribution hydraulic subsystem and the mixing, cleaning and cooling hydraulic subsystem is connected to the output end of the flow control component. Further, the flow control assembly includes a proportional multiple-way valve group, the proportional multiple-way valve group includes multiple pieces of proportional multiple-way valves, forming at least a first group of proportional multiple-way valves and a second group of proportional multiple-way valves, each piece of proportional multiple-way valve It includes multiple output oil circuits, where multiple oil inlets of the boom hydraulic subsystem are respectively connected with multiple output oil circuits of the first group of proportional multi-way valves in the proportional multi-way valve group; the outrigger hydraulic subsystem The oil inlet is connected with one or more output oil circuits of the second group of proportional multi-way valves in the proportional multi-way valve group. Further, the first hydraulic pump is a load-sensitive pump with a load-sensitive valve installed thereon, and a single unit is connected between the oil inlet of the distribution hydraulic subsystem and/or the oil inlet of the stirring, cleaning and cooling hydraulic subsystem and the load-sensitive valve. The one-way valve conducts in the direction of the load sensing valve. Further, the first hydraulic pump is a variable displacement pump. Further, the flow control assembly further includes one or two flow valves, wherein the oil inlet of each flow valve is connected to the oil outlet of the first hydraulic pump; the oil outlet of each flow valve is connected to the distribution hydraulic subsystem And mixing and cleaning the oil inlet of one of the cooling hydraulic subsystems. Further, the oil inlet of at least one of the distribution hydraulic sub-system and the stirring, washing and cooling hydraulic sub-system is connected to an output oil circuit of a piece of proportional multi-way valve. Further, the flow control assembly further includes a diverter valve, wherein the oil inlet of the diverter valve is connected to an output oil circuit of a proportional multi-way valve; the first oil outlet of the diverter valve is connected to the oil inlet of the distribution hydraulic subsystem ; The second oil outlet of the diverter valve is connected to the oil inlet of the mixing, cleaning and cooling hydraulic subsystem. Further, the flow control assembly further includes a flow valve, the oil inlet of the flow valve is connected to the oil outlet of the first hydraulic pump, and the oil outlet of the flow valve is connected to the distribution hydraulic subsystem and the mixing, cleaning and cooling hydraulic subsystem. One oil inlet; the other of the distribution hydraulic subsystem and the mixing, cleaning and cooling hydraulic subsystem is connected to an oil outlet of a proportional multi-way valve. Further, a pressure sensor is provided at the oil inlet of the distribution hydraulic subsystem, and when the pressure sensor detects that the distribution pressure in the distribution hydraulic subsystem reaches a preset value, the hydraulic pressure at the output end connected to the distribution hydraulic subsystem in the flow control component The flow is reduced or turned off. Further, it further includes: a second hydraulic pump; a pumping hydraulic system, the oil inlet of which is connected with the oil outlet of the second hydraulic pump. According to another aspect of the present invention, there is also provided a concrete pump truck, which includes any one of the hydraulic control systems of the concrete pump truck described above. The present invention has the following beneficial effects: The oil inlet of at least one of the distribution hydraulic subsystem and the mixing, cleaning and cooling hydraulic subsystem in the hydraulic control system of the concrete pump truck of the present invention is connected to the output end of the flow control assembly, so that it can pass through The first hydraulic pump connected to the flow control assembly is used for oil supply, so that the hydraulic pump for supplying oil for the distribution hydraulic subsystem and/or the mixing, cleaning and cooling hydraulic subsystem in the hydraulic control system can be omitted, making the hydraulic control system simpler, Lower cost, The failure rate is lower, which facilitates the unified deployment of power. In addition, the flow control component can adjust the pressure of the distribution hydraulic subsystem or the rotation speed of the stirring, cleaning and cooling hydraulic subsystem, so that the distribution pressure in the distribution hydraulic subsystem can be automatically changed as needed, and the stirring speed of the stirring, cleaning, cooling, and hydraulic subsystem can be realized. Automatically change as needed. In the hydraulic control system of the concrete pump truck of the present invention, the above-mentioned first hydraulic pump may also be a variable pump such as a load-sensitive pump, a variable displacement pump and the like. At this time, the first hydraulic pump can be adjusted according to the actual condition of the load. The hydraulic oil displacement is output, thereby improving the utilization efficiency of the first hydraulic pump, thereby improving the efficiency of the entire hydraulic control system. In addition to the objectives, features, and advantages described above, the present invention has other objectives, features, and advantages. Hereinafter, the present invention will be described in further detail with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are used to provide a further understanding of the present invention and constitute a part of this application. The exemplary embodiments of the present invention and the description thereof are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the drawings: Figure 1 is a schematic diagram of the overall connection structure of the hydraulic control system of a concrete pump truck in the prior art; Figure 2 is a schematic diagram of the connection structure of the distribution hydraulic subsystem in the hydraulic control system of the concrete pump truck in the prior art; 3 is a schematic diagram of the connection structure of the mixing, cleaning and cooling hydraulic subsystem in the hydraulic control system of the concrete pump truck in the prior art; Figure 4 is the hydraulic subsystem and flow rate of the boom and outriggers in the hydraulic control system of the concrete pump truck in the prior art Fig. 5 is a schematic diagram of the overall connection structure of the hydraulic control system of the concrete pump truck according to the present invention; Fig. 6 is a schematic diagram of the connection structure of the hydraulic control system of the concrete pump truck according to the first embodiment of the present invention , The pumping hydraulic subsystem is omitted in the figure; Figure 7 is a schematic diagram of the connection structure of the hydraulic control system of the concrete pump truck according to the second embodiment of the present invention, and the pumping hydraulic subsystem is omitted in the figure; Figure 8 is based on this A schematic diagram of the connection structure of the hydraulic control system of the concrete pump truck according to the third embodiment of the invention, and the pumping hydraulic subsystem is omitted in the figure; Fig. 9 is a schematic diagram of the connection structure of the distribution hydraulic subsystem in the hydraulic control system of the concrete pump truck according to the present invention. DETAILED DESCRIPTION OF THE EMBODIMENTS The following describes the embodiments of the present invention in detail with reference to the accompanying drawings, but the present invention can be implemented in a variety of different ways defined and covered by the claims. As shown in FIG. 5, the hydraulic control system of the concrete pump truck according to the present invention includes: a first hydraulic pump 11, a flow control component 2, a boom hydraulic sub-system 31, an outrigger hydraulic sub-system 32, and a distribution hydraulic sub-system 33 And mixing, cleaning and cooling hydraulic subsystem 34. The input end of the flow control assembly 2 is connected to the oil outlet of the first hydraulic pump 11, and multiple output ends of the flow control assembly 2 are respectively connected to the oil inlet of the boom hydraulic subsystem 31 and the outrigger hydraulic subsystem 32. The oil inlet, the oil inlet of the distribution hydraulic subsystem 33 and the oil inlet of the mixing, cleaning and cooling hydraulic subsystem 34 are connected. In FIG. 5, the oil inlet of the distribution hydraulic subsystem 33 and the oil inlet of the mixing and cleaning cooling hydraulic subsystem 34 are both connected to the 2 output ends of the flow control assembly. In practice, the distribution of the hydraulic subsystem 33 and the mixing and cleaning It is also possible to connect an oil inlet of one of the cooling hydraulic sub-systems 34 to an output end of the flow control assembly 2. Since the oil inlet of at least one of the distribution hydraulic subsystem 33 and the mixing, cleaning and cooling hydraulic subsystem 34 in the hydraulic control system of the concrete pump truck is connected to the output end of the flow control assembly 2, it can be connected to the flow control assembly 2 The first hydraulic pump 11 is connected to supply oil, so that the hydraulic pump (that is, the third hydraulic The pump 13 and the fourth hydraulic pump 14) make the hydraulic control system simpler, lower in cost, lower in failure rate, and convenient for unified deployment of power. In addition, the flow control component 2 can adjust the pressure of the distribution hydraulic sub-system 33 or the speed of the mixing, cleaning and cooling hydraulic sub-system 34, so that the distribution pressure in the distribution hydraulic sub-system 33 can be automatically changed as required, and the mixing, cleaning, and cooling hydraulic sub-system can be realized. The stirring speed of the system 34 is automatically changed as required. Preferably, as shown in FIG. 6, in the hydraulic control system of the concrete pump truck according to the first embodiment of the present invention, the flow control assembly 2 includes a proportional multi-way valve group 21, and the proportional multi-way valve group 21 includes a plurality of pieces. The proportional multiple-way valve 211 forms at least a first group of proportional multiple-way valves and a second group of proportional multiple-way valves, and each piece of the proportional multiple-way valve 211 includes a plurality of output oil passages. Among them, the multiple oil inlets of the boom hydraulic subsystem 31 are respectively connected to the first group of proportional multi-way valves in the proportional multi-way valve group 21 (in the embodiment of the present invention, the four proportional multi-way valves 211 on the right side) The multiple output oil circuits are connected; the oil inlet of the outrigger hydraulic subsystem 32 is connected to the second group of proportional multiple valves in the proportional multiple valve group 21 (in the embodiment of the present invention, the first proportional multiple valve on the left One or more (in the embodiment of the present invention, one) of the way valve 211) is connected to the output oil circuit. Preferably, as shown in FIG. 6, in the hydraulic control system of the concrete pump truck according to the first embodiment of the present invention, the first hydraulic pump 11 is a load-sensitive pump, and a load-sensitive valve 111 is provided thereon, and the hydraulic pressure is distributed. A check valve 23 is connected between the oil inlet of the system 33 and/or the oil inlet of the mixing, cleaning and cooling hydraulic subsystem 34 and the load sensitive valve 111, and the check valve 23 is conducted in the direction of the load sensitive valve 111. Specifically, in the first embodiment, as shown in FIG. 6, the oil inlet of the distribution hydraulic subsystem 33 and the oil inlet of the stirring, cleaning and cooling hydraulic subsystem 34 are both connected to an output end of the flow control assembly 2. A one-way valve 23 is connected between the oil inlet of the hydraulic subsystem 33 and the oil inlet of the stirring, cleaning and cooling hydraulic subsystem 34 and the load sensing valve 111 respectively, and the oil path node downstream of the two one-way valves 23 Connected to the load sensing valve 111 of the first hydraulic pump 11. The first hydraulic pump 11 can control the output hydraulic oil displacement according to the oil pressure on the load side sensed by the load sensing valve 111, thereby improving the utilization efficiency of the first hydraulic pump, and thus the efficiency of the entire hydraulic control system. In an embodiment not shown in the drawings of the present invention, for example, only the distribution hydraulic sub-system 33 is connected to the output end of the flow control assembly 2, and the stirring and inclined cooling hydraulic system 34 has its own hydraulic pump for oil supply. It can be understood that only one one-way valve 23 is required to be connected between the distribution hydraulic sub-system 33 and the load sensing valve 111. In addition, preferably, in other embodiments according to the present invention, the first hydraulic pump 11 may also be a variable displacement pump. In this case, the controller in the system needs to receive the oil pressure value in the distribution hydraulic subsystem 33. , And output an electrical signal to control the output hydraulic oil displacement of the first hydraulic pump 11. It can be understood that the variable displacement pump with variable displacement can also improve the utilization efficiency of the hydraulic pump, thereby improving the efficiency of the entire hydraulic control system. Preferably, the flow control assembly 2 further includes one or two flow valves 22, wherein the oil inlet of each flow valve 22 is connected to the oil outlet of the first hydraulic pump 11; the oil outlet of each flow valve 22 is connected To the oil inlet of one of the distribution hydraulic subsystem 33 and the mixing, cleaning and cooling hydraulic subsystem 34. As shown in FIG. 6, in the hydraulic control system of the concrete pump truck according to the first embodiment of the present invention, since the distribution hydraulic subsystem 33 and the mixing, cleaning and cooling hydraulic subsystem 34 are respectively connected to an output end of the flow control assembly 2. Connection, so two flow valves 22 are required. The distribution hydraulic subsystem 33 and the mixing, cleaning and cooling hydraulic subsystem 34 are both connected to the flow control component instead of the output oil circuit of the proportional multi-way valve, which will also reduce the load of the proportional multi-way valve, so that a smaller one can be selected. Proportional multi-way valve reduces costs. Or preferably, the oil inlet of at least one of the distribution hydraulic subsystem 33 and the stirring, washing and cooling hydraulic subsystem 34 may also be connected to an output oil circuit of a piece of proportional multi-way valve 211. As shown in FIG. 7, in the hydraulic control system of the concrete pump truck according to the second embodiment of the present invention, the oil inlet of the distribution hydraulic subsystem 33 is connected to an output oil of the first proportional multi-way valve 211 on the left. Through the proportional multi-way valve 211 to supply oil to it. And in the second embodiment, the oil inlet of the stirring, cleaning and cooling hydraulic subsystem 34 is connected to the first hydraulic pressure through the flow valve 22 The oil outlet of the pump 11 is connected. Of course, in other embodiments according to the present invention, the positions of the distribution hydraulic subsystem 33 and the mixing, washing and cooling hydraulic subsystem 34 can be interchanged. Preferably, as shown in FIG. 8, in the hydraulic control system of the concrete pump truck according to the third embodiment of the present invention, the flow control assembly 2 further includes a diverter valve 24, wherein the oil inlet of the diverter valve 24 is connected to a piece of One output oil circuit of the proportional multi-way valve 211; the first oil outlet of the diverter valve 24 is connected to the oil inlet of the distribution hydraulic subsystem 33; the second oil outlet of the diverter valve 24 is connected to the mixing, cleaning and cooling hydraulic subsystem 34的油口。 The oil inlet. The setting of the diverter valve 24 makes it possible to control the two hydraulic systems of the distribution hydraulic subsystem 33 and the mixing, cleaning and cooling hydraulic subsystem 34 with only one output oil circuit of a proportional multi-way valve. The split ratio of the split valve 24 can be adjusted as required. Preferably, as shown in FIG. 9, the pressure gauge 332 at the oil inlet of the original distribution hydraulic subsystem 33 can be replaced with a pressure sensor 332a, when the pressure sensor 332a detects that the distribution pressure in the distribution hydraulic subsystem 33 reaches a preset value Value, the hydraulic flow of the output port connected to the distribution hydraulic subsystem 33 in the flow control component 2 can be reduced to only supplement the system leakage; or the output port of the flow control component 2 connected to the distribution hydraulic sub-system 33 can be reduced Closing specifically refers to closing the corresponding output oil circuit of the flow valve 22 or the proportional multi-way valve connected to the distribution hydraulic sub-system 33, so that the distribution hydraulic sub-system maintains pressure. Preferably, the hydraulic control system of the concrete pump truck according to the present invention further includes: a second hydraulic pump 12; and a pumping hydraulic system 35 whose oil inlet is connected to the oil outlet of the second hydraulic pump 12. The present invention also provides a concrete pump truck, including any of the hydraulic control systems of the concrete pump truck described above. The foregoing descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims

权 利 要 求 书 Claims
1. 一种混凝土泵车的液压控制系统, 包括: 1. A hydraulic control system of a concrete pump truck, including:
第一液压泵 (11); The first hydraulic pump (11);
流量控制组件 (2), 其输入端与所述第一液压泵 (11) 的出油口连接; 臂架液压子系统(31), 其进油口与所述流量控制组件(2)的输出端连接; 支腿液压子系统(32), 其进油口与所述流量控制组件(2)的输出端连接, 其特征在于, 还包括: The flow control component (2), the input end of which is connected to the oil outlet of the first hydraulic pump (11); the boom hydraulic subsystem (31), the oil inlet of which is connected to the output of the flow control component (2) End connection; the outrigger hydraulic subsystem (32), whose oil inlet is connected to the output end of the flow control assembly (2), is characterized in that it also includes:
分配液压子系统(33)和搅拌清洗冷却液压子系统(34), 所述分配液压子 系统 (33) 和搅拌清洗冷却液压子系统 (34) 中的至少一个的进油口与所述流 量控制组件 (2) 的输出端连接。 The distribution hydraulic subsystem (33) and the mixing, cleaning and cooling hydraulic subsystem (34), the oil inlet of at least one of the distribution hydraulic subsystem (33) and the mixing, cleaning and cooling hydraulic subsystem (34) and the flow control Connect the output terminal of the component (2).
2. 根据权利要求 1所述的混凝土泵车的液压控制系统, 其特征在于, 所述流量控 制组件 (2) 包括比例多路阀组 (21), 所述比例多路阀组 (21) 包括多片比例 多路阀 (211), 形成至少第一组比例多路阀和第二组比例多路阀, 每片所述比 例多路阀 (211) 包括多个输出油路, 其中, 2. The hydraulic control system of the concrete pump truck according to claim 1, wherein the flow control component (2) comprises a proportional multi-way valve group (21), and the proportional multi-way valve group (21) comprises The multi-piece proportional multi-way valve (211) forms at least a first group of proportional multi-way valves and a second group of proportional multi-way valves. Each piece of the proportional multi-way valve (211) includes a plurality of output oil channels, wherein,
所述臂架液压子系统 (31) 的多个进油口分别与所述比例多路阀组 (21) 中的第一组比例多路阀的多个输出油路连接; The multiple oil inlets of the boom hydraulic subsystem (31) are respectively connected with multiple output oil circuits of the first group of proportional multiple valves in the proportional multiple valve group (21);
所述支腿液压子系统 (32) 的进油口与所述比例多路阀组 (21) 中的第二 组比例多路阀的一个或多个输出油路连接。 The oil inlet of the outrigger hydraulic subsystem (32) is connected with one or more output oil circuits of the second group of proportional multi-way valves in the proportional multi-way valve group (21).
3. 根据权利要求 1所述的混凝土泵车的液压控制系统, 其特征在于, 3. The hydraulic control system of the concrete pump truck according to claim 1, characterized in that:
所述第一液压泵 (11) 为负荷敏感泵, 其上设有负荷敏感阀 (111), 所述分配液压子系统 (33) 的进油口和 /或搅拌清洗冷却液压子系统 (34) 的进油口与所述负荷敏感阀 (111)之间连接有单向阀 (23), 所述单向阀 (23) 朝向所述负荷敏感阀 (111) 的方向导通。 The first hydraulic pump (11) is a load-sensitive pump, on which a load-sensitive valve (111) is arranged, the oil inlet of the distribution hydraulic subsystem (33) and/or the mixing, cleaning and cooling hydraulic subsystem (34) A one-way valve (23) is connected between the oil inlet of the oil inlet and the load-sensitive valve (111), and the one-way valve (23) conducts in the direction of the load-sensitive valve (111).
4. 根据权利要求 1所述的混凝土泵车的液压控制系统, 其特征在于, 所述第一液 压泵 (11) 为排量可调变量泵。 4. The hydraulic control system of the concrete pump truck according to claim 1, wherein the first hydraulic pump (11) is a variable displacement pump.
5. 根据权利要求 1-4中任何一项所述的混凝土泵车的液压控制系统,其特征在于, 每个所述流量阀 (22) 的进油口连接至所述第一液压泵 (11 ) 的出油口; 每个所述流量阀 (22) 的出油口连接至所述分配液压子系统 (33 ) 和搅拌 清洗冷却液压子系统 (34) 中的一个的进油口。 根据权利要求 2所述的混凝土泵车的液压控制系统, 其特征在于, 所述分配液 压子系统 (33 ) 和所述搅拌清洗冷却液压子系统 (34) 中的至少一个的进油口 连接至一片所述比例多路阀 (211 ) 的一个输出油路。 根据权利要求 6所述的混凝土泵车的液压控制系统, 其特征在于, 所述流量控 制组件 (2) 还包括分流阀 (24), 其中, 5. The hydraulic control system of the concrete pump truck according to any one of claims 1-4, characterized in that: The oil inlet of each flow valve (22) is connected to the oil outlet of the first hydraulic pump (11); the oil outlet of each flow valve (22) is connected to the distribution hydraulic subsystem (33) and the oil inlet of one of the mixing, cleaning and cooling hydraulic subsystems (34). The hydraulic control system of the concrete pump truck according to claim 2, wherein the oil inlet of at least one of the distribution hydraulic subsystem (33) and the mixing, washing and cooling hydraulic subsystem (34) is connected to One output circuit of the proportional multi-way valve (211). The hydraulic control system of the concrete pump truck according to claim 6, characterized in that, the flow control assembly (2) further comprises a diverter valve (24), wherein:
所述分流阀(24)的进油口连接至一片所述比例多路阀(211 )的一个输出 油路; The oil inlet of the diverter valve (24) is connected to an output oil circuit of a piece of the proportional multi-way valve (211);
所述分流阀 (24) 的第一出油口连接至所述分配液压子系统 (33 ) 的进油 The first oil outlet of the diverter valve (24) is connected to the oil inlet of the distribution hydraulic subsystem (33)
Π ; Π;
所述分流阀(24)的第二出油口连接至所述搅拌清洗冷却液压子系统(34) 的进油口。 根据权利要求 2所述的混凝土泵车的液压控制系统, 其特征在于, The second oil outlet of the diverter valve (24) is connected to the oil inlet of the stirring, cleaning and cooling hydraulic subsystem (34). The hydraulic control system of the concrete pump truck according to claim 2, characterized in that:
所述流量控制组件 (2) 还包括一个流量阀 (22), 所述流量阀 (22) 的进 油口连接至所述第一液压泵 (11 ) 的出油口, 所述流量阀 (22) 的出油口连接 至所述分配液压子系统 (33 ) 和搅拌清洗冷却液压子系统 (34) 中的一个的进 油口; The flow control assembly (2) further includes a flow valve (22), the oil inlet of the flow valve (22) is connected to the oil outlet of the first hydraulic pump (11), and the flow valve (22) The oil outlet of) is connected to the oil inlet of one of the distribution hydraulic subsystem (33) and the mixing, cleaning and cooling hydraulic subsystem (34);
所述分配液压子系统 (33 ) 和所述搅拌清洗冷却液压子系统 (34) 中的另 一个连接至一片所述比例多路阀 (211 ) 的一个出油口。 根据权利要求 1所述的混凝土泵车的液压控制系统, 其特征在于, 所述分配液 压子系统(33 )的进油口处设有压力传感器(332a), 当所述压力传感器(332a) 检测到所述分配液压子系统 (33 ) 中的分配压力达到预设值时, 所述流量控制 组件(2)中与所述分配液压子系统(33 )相连的输出端的液压流量被减小或关 闭。 根据权利要求 1所述的混凝土泵车的液压控制系统, 其特征在于, 还包括: 第二液压泵 (12); The other of the distribution hydraulic sub-system (33) and the stirring, cleaning and cooling hydraulic sub-system (34) is connected to an oil outlet of the proportional multi-way valve (211). The hydraulic control system of the concrete pump truck according to claim 1, wherein a pressure sensor (332a) is provided at the oil inlet of the distribution hydraulic subsystem (33), and when the pressure sensor (332a) detects When the distribution pressure in the distribution hydraulic sub-system (33) reaches a preset value, the hydraulic flow of the output end connected to the distribution hydraulic sub-system (33) in the flow control assembly (2) is reduced or closed . The hydraulic control system of the concrete pump truck according to claim 1, further comprising: a second hydraulic pump (12);
泵送液压系统 (35 ), 其进油口与所述第二液压泵 (12) 的出油口连接。 A pumping hydraulic system (35), the oil inlet of which is connected with the oil outlet of the second hydraulic pump (12).
1. 一种混凝土泵车, 其特征在于, 包括权利要求 1-10中任何一项所述的混凝土泵 车的液压控制系统。 1. A concrete pump truck, characterized by comprising the hydraulic control system of the concrete pump truck according to any one of claims 1-10.
PCT/CN2011/078649 2011-08-19 2011-08-19 Concrete pump truck and hydraulic control system thereof WO2013026189A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078649 WO2013026189A1 (en) 2011-08-19 2011-08-19 Concrete pump truck and hydraulic control system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078649 WO2013026189A1 (en) 2011-08-19 2011-08-19 Concrete pump truck and hydraulic control system thereof

Publications (1)

Publication Number Publication Date
WO2013026189A1 true WO2013026189A1 (en) 2013-02-28

Family

ID=47745841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078649 WO2013026189A1 (en) 2011-08-19 2011-08-19 Concrete pump truck and hydraulic control system thereof

Country Status (1)

Country Link
WO (1) WO2013026189A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208198A (en) * 2000-01-25 2001-08-03 Furukawa Co Ltd Hydraulic circuit for working machine
US6299416B1 (en) * 1998-10-10 2001-10-09 Daewoo Heavy Industries Ltd. Bulk material pump device
JP2003294005A (en) * 2002-04-04 2003-10-15 Kayaba Ind Co Ltd Hydraulic control system
CN201287664Y (en) * 2008-10-22 2009-08-12 三一重工股份有限公司 Concrete pump vehicle
CN101550763A (en) * 2008-04-03 2009-10-07 上海鸿得利重工股份有限公司 47-meter R-type foldable arm rack concrete pump truck and a producing method thereof
CN101654075A (en) * 2008-08-21 2010-02-24 上海鸿得利重工股份有限公司 22-meter RZ type folding arm support concrete pump truck
CN101936069A (en) * 2010-09-07 2011-01-05 金朝福 Jib concrete mixing pumper

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299416B1 (en) * 1998-10-10 2001-10-09 Daewoo Heavy Industries Ltd. Bulk material pump device
JP2001208198A (en) * 2000-01-25 2001-08-03 Furukawa Co Ltd Hydraulic circuit for working machine
JP2003294005A (en) * 2002-04-04 2003-10-15 Kayaba Ind Co Ltd Hydraulic control system
CN101550763A (en) * 2008-04-03 2009-10-07 上海鸿得利重工股份有限公司 47-meter R-type foldable arm rack concrete pump truck and a producing method thereof
CN101654075A (en) * 2008-08-21 2010-02-24 上海鸿得利重工股份有限公司 22-meter RZ type folding arm support concrete pump truck
CN201287664Y (en) * 2008-10-22 2009-08-12 三一重工股份有限公司 Concrete pump vehicle
CN101936069A (en) * 2010-09-07 2011-01-05 金朝福 Jib concrete mixing pumper

Similar Documents

Publication Publication Date Title
CN103303801B (en) Hydraulic confluence control system for truck crane
CN102336370A (en) Rotating hydraulic system of crane and its control method
JP2013542383A (en) Hydraulic drive circuit with accumulator with parallel structure
CN105351271A (en) Proportional hydraulic control system
CN102312873B (en) Concrete pump truck and hydraulic control system thereof
CN102713088B (en) Hydraulic system for construction machinery
CN203532386U (en) Pump truck and arm frame hydraulic system thereof
JP2018087634A (en) Hydraulic systems for construction machinery
JP4777910B2 (en) Circuit equipment
CN202646195U (en) Hydraulic pressurization system
CN103511364A (en) Hydraulic pressurizing system
CN208185091U (en) Positive control load sensitive system
WO2013026189A1 (en) Concrete pump truck and hydraulic control system thereof
JP2013036534A (en) Hybrid type hydraulic device
CN104179743A (en) Modularized load-sensitive electric-hydraulic proportional multiway valve
CN102979771B (en) Single-pump multi-motor closed hydraulic system and engineering machinery including same
CN202251170U (en) Concrete pump truck and hydraulic control system thereof
JPH0384204A (en) Confluence valve device for load sensing type hydraulic circuit
CN103032395B (en) Single pump multi-motor closed type hydraulic system and comprise the engineering machinery of this hydraulic system
CN108825575B (en) Intelligent dividing and converging multi-way valve device and engineering machinery
CN110725821B (en) Distribution hydraulic system and concrete distribution equipment
CN102996539B (en) Single-pump multi-motor unidirectional rotating closed type hydraulic system and engineering machinery comprising same
JP2022516145A (en) Variable capacity hydraulic pump set and excavator
KR20140078860A (en) Hydraulic System with using Single Pump for Construction Equipment with using Closed Center Circuit in Independent Metering System
JP4434392B2 (en) Plumbing equipment for water supply equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871327

Country of ref document: EP

Kind code of ref document: A1