WO2013024892A1 - Solar cell back sheet, method for manufacturing same, and solar cell module - Google Patents

Solar cell back sheet, method for manufacturing same, and solar cell module Download PDF

Info

Publication number
WO2013024892A1
WO2013024892A1 PCT/JP2012/070856 JP2012070856W WO2013024892A1 WO 2013024892 A1 WO2013024892 A1 WO 2013024892A1 JP 2012070856 W JP2012070856 W JP 2012070856W WO 2013024892 A1 WO2013024892 A1 WO 2013024892A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polymer
solar cell
mass
composite polymer
Prior art date
Application number
PCT/JP2012/070856
Other languages
French (fr)
Japanese (ja)
Inventor
龍一 中山
畠山 晶
橋本 斉和
竜太 竹上
南 一守
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013024892A1 publication Critical patent/WO2013024892A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell backsheet, a manufacturing method thereof, and a solar cell module.
  • Solar cells are a power generation system that emits no carbon dioxide during power generation and has a low environmental load, and has been rapidly spreading in recent years.
  • a solar cell module is usually arranged between a front side glass on the side on which sunlight enters and a so-called back sheet disposed as a back protection sheet on the side opposite to the side on which sunlight enters (back side).
  • the solar battery cell solar battery element
  • a sealing material such as EVA (ethylene-vinyl acetate) resin is disposed between the front surface glass and the solar battery cell and between the solar battery cell and the back sheet.
  • the back sheet has a function of preventing moisture from entering from the back surface of the solar cell module.
  • glass or fluororesin has been used.
  • various materials such as polyester have been used from the viewpoint of cost. Resin materials have been studied.
  • the back sheet provided as the back surface protection sheet is not limited to a resin sheet as a simple protection application, but also has insulation and barrier properties against moisture, coloring (designability, light reflectivity, etc.), adhesion between layers (adhesion), It is preferable that various functions such as dimensional stability and long-term durability are provided. There is a case. Among these, as performance that the solar cell module should have, there is a high demand for battery performance, appearance, and long-term durability.
  • white inorganic particles such as titanium oxide may be included to give the back sheet a reflection function of reflecting light. This contributes to the improvement of battery performance by increasing the power generation efficiency by irregularly reflecting the light that passes through the battery cell out of the sunlight incident from the front side where the module's sunlight is irradiated and returning it to the cell again.
  • a white polyethylene terephthalate film to which white inorganic fine particles are added is disclosed (see, for example, JP-A Nos. 2003-060218 and 2006-210557).
  • a back surface protection sheet having a white ink layer containing a white pigment is disclosed (for example, see JP-A-2006-210557).
  • decorativeness may be required for the backsheet.
  • a solar cell backsheet having improved design by adding a perylene pigment as a black pigment is disclosed (see, for example, JP-A-2007-128943).
  • the white polyester film for reflectors in which a white polyester film is provided with a coating layer containing an antistatic agent and a silicone compound, and an adhesive layer containing an epoxy resin, a phenol resin, a vinyl copolymer, and a siloxane compound are organic.
  • a solar cell backsheet laminated on a film see, for example, Japanese Patent Application Laid-Open Nos. 2008-189828 and 2008-282873).
  • the method of forming a back sheet by laminating a plurality of sheets to each other increases the cost, and the adhesive used for laminating tends to deteriorate over time, and gradually decreases the adhesiveness. Tend to invite. This is particularly noticeable when exposed to a high temperature and high humidity environment.
  • the back sheet is generally placed in an environment that is directly exposed to moisture, heat, and light, such as outdoors, and therefore, from the viewpoint of long-term durability, it can be bonded for a long time even under such environmental conditions. The ability to stably maintain the properties is required.
  • polyester films and back sheets provided with a layer containing a silicone compound or a siloxane compound have also been proposed, but in the former case, the durability of the cationic polymer contained as an antistatic agent is poor. In the latter case, the durability of the resin or copolymer other than the siloxane compound is poor. Therefore, it is difficult to maintain adhesiveness stably for a long period of time in a humid and hot environment where the temperature and humidity are relatively high.
  • the present invention has been made in view of the above. That is, Under the above circumstances, it is excellent in interlayer adhesion (especially the adhesion of the outermost layer exposed to the wet heat environment) when aged in a high temperature and high humidity environment (hereinafter also referred to as a wet heat environment), and is manufactured at a low cost.
  • a solar cell backsheet and method for manufacturing the same There is also a need for a solar cell module that exhibits stable power generation performance over a long period of time.
  • a composite polymer layer
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different.
  • n represents an integer of 1 or more.
  • the plurality of R 1 and R 2 may be the same as or different from each other.
  • a polymer base material containing a colorant, a metal-containing layer containing a component selected from the group consisting of metals and metal compounds on one side of the polymer base, and the other side of the polymer base in the molecule A composite polymer layer containing a composite polymer having a siloxane structural unit represented by the general formula (1) having a mass ratio of 15 to 85 mass% and a non-siloxane structural unit having a mass ratio of 85 to 15 mass%; It is a solar cell backsheet.
  • ⁇ 4> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 3>, wherein the colorant is a white or black pigment.
  • ⁇ 5> The solar cell backsheet according to ⁇ 1>, ⁇ 3>, or ⁇ 4>, wherein a colored layer is formed by coating.
  • ⁇ 6> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 5>, wherein the component selected from the group consisting of a metal and a metal compound is foil-like aluminum.
  • ⁇ 7> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 5>, wherein the component selected from the group consisting of metals and metal compounds is aluminum oxide or silicon oxide.
  • ⁇ 8> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 7>, wherein the metal-containing layer is formed by vapor deposition.
  • ⁇ 9> The polymer base material according to any one of ⁇ 1> to ⁇ 8>, wherein the end-capping agent is contained in a range of 0.1% by mass to 10% by mass with respect to the total mass of the polymer. It is a solar cell backsheet.
  • ⁇ 10> The polymer substrate according to any one of ⁇ 1> to ⁇ 9>, wherein the surface of the polymer substrate is treated by a method selected from the group consisting of corona treatment, flame treatment, and glow discharge treatment. It is a solar cell backsheet.
  • the composite polymer layer further includes a structural portion derived from a crosslinking agent that crosslinks the composite polymer.
  • the crosslinking agent is a carbodiimide compound or an oxazoline compound.
  • ⁇ 13> The solar cell backsheet according to ⁇ 11> or ⁇ 12>, wherein the mass ratio of the structural portion derived from the crosslinking agent to the composite polymer in the composite polymer layer is 1 to 30% by mass.
  • ⁇ 14> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 13>, wherein the non-polysiloxane structural unit is an acrylic structural unit.
  • ⁇ 15> Forming a metal-containing layer containing a component selected from the group consisting of metals and metal compounds on a polymer substrate, and the mass ratio represented by the general formula (1) in the molecule is 15 to 85 mass And forming a composite polymer layer containing a composite polymer having a% siloxane structural unit and a non-siloxane-based structural unit having a mass ratio of 85 to 15% by mass on a polymer substrate, ⁇ 1> The method for producing a back sheet for a solar cell according to any one of ⁇ 14>.
  • ⁇ 16> Film formation for forming an unstretched resin sheet containing a polymer constituting the polymer base material, first stretching for stretching the resin sheet in the first direction, and stretching in the first direction Forming an undercoat layer to form an undercoat layer on at least one surface of the obtained resin sheet, and extending the resin sheet on which the undercoat layer is formed in a second direction orthogonal to the first direction. It is a manufacturing method as described in said ⁇ 15> which has.
  • ⁇ 17> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 14>, or the solar cell backsheet according to ⁇ 15> or ⁇ 16>.
  • the solar cell module provided with the back sheet for solar cells.
  • a solar cell module includes a transparent front substrate on which sunlight is incident, a cell structure portion provided on the front substrate and having a solar cell element and a sealing material for sealing the solar cell element, and a cell structure portion
  • the solar cell backsheet according to any one of ⁇ 1> to ⁇ 14>, provided on the side opposite to the side on which the front substrate is located and disposed adjacent to the sealing material, or the ⁇ 15 > Or a solar cell backsheet produced by the method for producing a solar cell backsheet described in ⁇ 16>.
  • a solar cell backsheet that is excellent in interlayer adhesion (especially the adhesion of the outermost layer that is exposed to a moist heat environment) when aged in a high temperature and high humidity environment, and that is manufactured at low cost.
  • a method is provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the solar cell module which exhibits the stable electric power generation performance over a long term is provided.
  • the back sheet for a solar cell according to the present invention, a method for producing the back sheet, and a solar cell module using the back sheet will be described in detail.
  • the back sheet for solar cell of the present invention is a back protective sheet for solar cell that is disposed in contact with a battery side substrate (preferably encapsulant) in which solar cell elements (solar cells) are sealed with a sealing material.
  • the solar cell backsheet of the first aspect of the present invention comprises: A polymer substrate; A colored layer containing a colorant provided on one side of the polymer substrate, a metal-containing layer containing a component selected from the group consisting of metals and metal compounds, Specific siloxane structural units (15 to 85% by mass based on the total mass of the polymer) represented by the following general formula (1) in the molecule and non-siloxane structural units provided on the other surface of the polymer substrate A composite polymer layer containing a composite polymer having (85-15% by weight based on the total polymer weight); It consists of Further, (2) the solar cell backsheet of the second aspect of the present invention comprises: A
  • a weather-resistant film or a colored film is bonded with an adhesive to impart durability and design.
  • the adhesive used for the bonding may be easily deteriorated in a wet heat environment, and the bonding is difficult to say in terms of cost.
  • a technique for coating and forming a weather-resistant layer with a solvent-based coating solution using a fluorine-containing resin or the like is known.
  • a colored layer or a metal-containing layer which is a functional element having a function relating to coloring (light reflectivity, designability (appearance), etc.) and / or a moisture-proof function.
  • a colored polymer base material and a composite polymer layer having good adhesion (adhesion) and excellent weather resistance are provided.
  • the polymer base material supporting the back sheet or the layer provided on one side thereof is provided with functionality including a component selected from the group consisting of a colorant, a metal and a metal compound, and the polymer base material.
  • a composite polymer layer that is a constituent layer of the backsheet is provided on the other side of the substrate, and this composite polymer layer is preferably formed using a specific composite polymer containing a non-siloxane structural unit and a (poly) siloxane structural unit in the molecule.
  • the adhesive strength can be kept high for a long period of time in a humid heat environment exposed to heat and moisture for a long time, and long-term durability can be ensured.
  • the above-mentioned various functions include a light reflection function that increases the power generation efficiency by reflecting incident light that has passed through the solar battery cell and returning it to the cell, a design imparting (appearance improving) function, and an installation environment. Includes moisture resistance against moisture.
  • the solar cell backsheet preferably has functions such as antistatic properties, dimensional stability, and insulating properties.
  • layers having the above functions are also collectively referred to as “functional layers”.
  • the solar cell backsheet of the present invention (hereinafter also simply referred to as “backsheet”) has a first functional layer (1) (for example, metal) on one surface of a polymer substrate 11.
  • Content layer 13 and a second functional layer (for example, a colored layer) 15, an aspect having the composite polymer layer 17 on the other side (first aspect), or a colorant as shown in FIG.
  • second embodiment having the metal-containing layer 13 as the functional layer (1) on one side of the polymer base material 21 to which the functionality is imparted, and the composite polymer layer 27 on the other side.
  • second embodiment having the metal-containing layer 13 as the functional layer (1) on one side of the polymer base material 21 to which the functionality is imparted, and the composite polymer layer 27 on the other side.
  • second embodiment having the metal-containing layer 13 as the functional layer (1) on one side of the polymer base material 21 to which the functionality is imparted, and the composite polymer layer 27 on the other side.
  • a resin film which is a polymer substrate as a supporting substrate, and a coloring agent-containing coloring disposed as a functional layer thereon
  • You may be comprised by the layer and the moisture-proof layer which shows moisture resistance including a metal and / or a metal compound.
  • a white pigment is used as the colorant
  • a black pigment is used, for example, the appearance (designability) is improved with the black layer.
  • a back sheet is obtained.
  • the colored layer and the metal-containing layer can further have other functions such as insulating properties, antistatic properties, and dimensional stability.
  • the insulating property can be imparted by appropriately adjusting the thickness of the polymer substrate.
  • the antistatic property can be imparted by including, for example, antimony-doped tin oxide (TWU-1, manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.).
  • TWU-1 antimony-doped tin oxide
  • the functional layer may be composed of two or more layers by overlapping an antistatic layer or the like together with a colored layer containing a colorant and / or a moisture-proof layer containing a metal or the like.
  • a colorant-containing colored film or sheet plate-shaped colored polymer substrate in which a colorant (for example, a pigment) is dispersed in the polymer by kneading the colorant into the polymer or the like.
  • a moisture-proof layer provided with moisture-proof properties including a metal and / or a metal compound (for example, metal oxide).
  • a white pigment is used as the colorant
  • a polymer substrate having a light reflecting function is obtained.
  • a black pigment for example, a polymer having improved decorativeness (design) in the appearance of the back sheet A substrate is obtained.
  • it can be produced by mixing and extruding a pigment or a metal into a molten resin that is melt-kneaded by a melt extruder or the like and forming it into a film (or sheet) shape.
  • the polymer base material in the present invention may have other functions such as insulation, antistatic properties, and dimensional stability in addition to coloring and moisture resistance.
  • Colored layers and metal-containing layers (1) A coating layer formed by coating a coating solution containing a colorant, metal and / or metal compound, or (2) A film or sheet containing a colorant, a metal and / or a metal compound, or a layer formed by laminating a foil plate (3) A layer formed by vapor phase deposition may be used.
  • the colored layer containing a colorant is preferably composed of (1) in terms of adhesiveness
  • the metal-containing layer containing a metal and / or a metal compound is composed of (3). It is preferable.
  • the back sheet of the present invention when a layer is formed by coating, when providing a colored layer, is a plate-like polymer substrate such as a resin film (or sheet), and a functional layer.
  • a multi-layer structure including a colored layer containing a colorant such as a pigment applied and formed on the substrate may be used. In this case, it can be produced by forming a colored layer by applying and drying a coating solution containing a colorant such as a pigment in a desired manner on a polymer substrate.
  • the colored layer contains at least a colorant, and is composed of other components such as a binder and a surfactant.
  • pigments and dyes can be used, and pigments are preferable in terms of weather resistance.
  • the pigment include inorganic pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, ultramarine blue, bitumen, and carbon black, and organic pigments such as phthalocyanine blue and phthalocyanine green. It can be appropriately selected and contained.
  • a white pigment when the functional layer is configured as a reflective layer that reflects light that has entered the front surface of the solar cell and passed through the solar cell and returned to the solar cell, a white pigment is preferable.
  • inorganic pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin and talc are preferable.
  • a black pigment is preferable as a pigment.
  • an inorganic pigment such as carbon black is preferable.
  • the content of the pigment in the functional layer is preferably in the range of 2.5 to 8.5 g / m 2 .
  • the content of the pigment in the functional layer is preferably in the range of 2.5 to 8.5 g / m 2 .
  • the pigment content is 2.5 g / m 2 or more, necessary coloring can be obtained, and reflectance and decorative properties can be effectively provided.
  • the content of the pigment in the functional layer is 8.5 g / m 2 or less, the surface shape of the functional layer is easily maintained and the film strength is excellent.
  • the pigment content is more preferably in the range of 4.5 to 8.0 g / m 2 .
  • the average particle diameter of the pigment is preferably 0.03 to 0.8 ⁇ m in volume average particle diameter, more preferably about 0.15 to 0.5 ⁇ m.
  • the average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • the thickness of the colored layer that is the coating layer is not particularly limited, but is preferably in the range of 2 to 30 ⁇ m from the viewpoint of effectively imparting reflectance and decorativeness while ensuring the strength of the coating film. More preferably, it is 4 to 20 ⁇ m.
  • the backsheet of the present invention is a transparent film obtained by coating a polyethylene terephthalate (PET) film or the like with an inorganic oxide such as silica or alumina, or two transparent films. Are provided with a laminated film formed by bonding the coating surfaces together.
  • PET polyethylene terephthalate
  • Application can be suitably performed by, for example, an application method using a gravure coater, roll coater, bar coater or the like.
  • the back sheet of the present invention comprises a plate-like polymer substrate such as a resin film (or sheet), and a functional layer.
  • a multilayer structure including a plate-like colored polymer substrate containing a colorant such as a pigment.
  • the colored polymer substrate here includes a material obtained by kneading a colorant such as a pigment into a polymer and forming it into a plate shape. For example, it may be produced by adding a colorant such as a pigment to a melted polymer melt-kneaded by a melt extruder, melt-extruding, and forming into a film (or sheet) shape.
  • the colored polymer substrate commercially available products may be used. For example, Lumirror E20 (white polyethylene terephthalate), Lumirror X20 (black polyethylene terephthalate) manufactured by Toray Industries, Inc. can be used.
  • the thickness of the plate-like colored polymer substrate is not particularly limited because it depends on the thickness of the polymer substrate to be bonded, but is preferably in the range of 10 to 400 ⁇ m.
  • the backsheet of the present invention has a multi-layer structure including a plate-like polymer substrate and a metal thin plate or a metal layer as a functional layer.
  • the metal thin plate may be configured by providing foil plate-like aluminum (for example, aluminum foil).
  • the metal layer may be configured by providing a water vapor barrier layer (for example, a metal vapor deposition film or a metal oxide vapor deposition film) formed by vapor deposition (for example, chemical vapor deposition) of a metal and / or a metal compound. it can.
  • the metal is selected from those which can suppress moisture permeation at the time of film formation and have a water vapor transmission rate of 0.005 g / m 2 / day or less at 40 ° C. and 90% relative humidity.
  • the metal include one or more selected from the group consisting of Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta and the like in terms of moisture resistance.
  • the metal compound include aluminum oxide such as aluminum oxide (Al 2 O 3 ), silicon oxide such as silicon oxide (SiO x such as SiO and SiO 2 ), indium oxide (InO 2 ), and the like. It is done.
  • the water vapor transmission rate is more preferably 0.001 g / m 2 / day or less.
  • a method for forming the metal-containing layer for example, a vapor deposition method such as a sputtering method, a vacuum deposition method, an ion plating method, or a plasma CVD method is suitable. Specifically, the forming methods described in Japanese Patent Nos. 3434344, 2002-322561, 2002-361774, and the like can be employed.
  • the metal-containing layer is provided, for example, by adhering a film (or sheet) having a desired function with an adhesive.
  • the adhesive is not particularly limited.
  • an adhesive obtained by mixing a curing agent with a main agent eg, LX660 (K) (manufactured by DIC Corporation) as a main agent is used as a curing agent with KW75 (DIC).
  • a two-component thermosetting urethane adhesive) and the like mixed with made by Co., Ltd. can be used.
  • the thickness of the metal-containing layer to be bonded is also not particularly limited because it depends on the thickness of the polymer base material to be bonded, and is appropriately selected depending on the degree of coloring, moisture resistance, and the like.
  • the thickness of the metal-containing layer formed by vapor deposition is preferably 10 nm or more and 500 nm from the viewpoint of moisture resistance against water vapor.
  • the polymer base material in the present invention can be further imparted with other functions such as insulation, antistatic properties, and dimensional stability.
  • other functions such as insulation, antistatic properties, and dimensional stability.
  • an antistatic agent in the polymer base material or the colored layer or the metal-containing layer in addition to the colored layer or the metal-containing layer in the present invention, for example, the colored layer or the metal-containing layer.
  • a layer containing an antistatic agent or the like may be further laminated on the layer.
  • One example of the backsheet of the present invention is a multilayer structure of a water vapor barrier layer (metal-containing layer) / reflective layer (white layer) or a design layer (black layer) (both colored layers) as seen from the polymer substrate side. It is the structure which has.
  • the back sheet of the present invention is configured by providing a polymer substrate.
  • the polymer component forming the polymer substrate include polyesters, polyolefins such as polypropylene and polyethylene, polyphenylene ethers, polystyrenes, and fluorine-based polymers such as polyvinyl fluoride.
  • polyester, polyphenylene ether, and syndiotactic polystyrene are preferable, and polyester is preferable from the viewpoint of cost and mechanical strength.
  • the polyester used for the polymer substrate (support substrate) is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate and the like. Of these, polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable from the viewpoint of balance between mechanical properties and cost.
  • the polyester may be a homopolymer or a copolymer. Further, polyester may be blended with a small amount of other types of resins such as polyimide.
  • an antimony (Sb) -based, germanium (Ge) -based, or titanium (Ti) -based compound as a catalyst from the viewpoint of keeping the carboxyl group content below a predetermined range.
  • Ti compounds are particularly preferred.
  • an embodiment is preferred in which the Ti-based compound is polymerized by using it as a catalyst so that the Ti element conversion value is in the range of 1 ppm to 30 ppm, more preferably 3 ppm to 15 ppm. If the amount of Ti compound used is within the above range in terms of Ti element, it is possible to adjust the terminal carboxyl group present in the polyester to the following range, and to keep the hydrolysis resistance of the polymer substrate low. it can.
  • Examples of the synthesis of polyester using a Ti compound include Japanese Patent Publication No. 8-301198, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 3897756, Japanese Patent No. 396226, and Japanese Patent No. 39786666.
  • No. 3, Patent No. 3,996,871, Patent No. 40000867, Patent No. 4053837, Patent No. 4,127,119, Patent No. 4,134,710, Patent No. 4,159,154, Patent No. 4,269,704, Patent No. 4,313,538 and the like can be applied.
  • the carboxyl group content in the polyester is preferably 55 equivalents / t (tons; the same shall apply hereinafter) or less, more preferably 35 equivalents / t or less.
  • the lower limit of the carboxyl group content is preferably 2 equivalents / t in terms of maintaining adhesion between the layer formed on the polyester (for example, a colored layer).
  • carboxyl group content is 55 equivalents / t or less, hydrolysis resistance can be maintained, and a decrease in strength when subjected to wet heat aging can be suppressed to be small.
  • “carboxyl group content” means the amount of the carboxyl group (—COOH) that the polyester has at the end of its molecular structure.
  • “Equivalent / t” represents a molar equivalent per ton.
  • the carboxyl group content in the polyester can be adjusted by the polymerization catalyst species and the film forming conditions (film forming temperature and time).
  • the carboxyl group content in this specification is a value measured by a titration method according to the method described in H. A. Pohl, Anal. Chem. 26 (1954) p.2145.
  • the polyester in the present invention is preferably solid-phase polymerized after polymerization.
  • Solid-phase polymerization may be a continuous method (a method in which a tower is filled with a resin, which is slowly heated for a predetermined time and then sent out), or a batch method (a resin is charged into a container). , A method of heating for a predetermined time).
  • Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392 are disclosed.
  • the method described in Japanese Patent No. 4167159 can be applied.
  • the temperature of the solid phase polymerization is preferably 170 ° C. or higher and 240 ° C. or lower, more preferably 180 ° C. or higher and 230 ° C. or lower, and further preferably 190 ° C. or higher and 220 ° C. or lower.
  • the solid phase polymerization time is preferably 5 hours to 100 hours, more preferably 10 hours to 75 hours, and still more preferably 15 hours to 50 hours.
  • the solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
  • the polyester base material containing polyester as a polymer component is obtained by, for example, melt-extruding the above polyester into a film and then cooling and solidifying it with a casting drum to form an unstretched film.
  • the unstretched film is Tg to (Tg + 60) ° C.
  • a stretched film is preferred.
  • heat treatment may be performed at 180 to 230 ° C. for 1 to 60 seconds as necessary.
  • a PET film can be formed as follows. It is preferable to form a PET film by melt-kneading the polyester after undergoing solid-phase polymerization and extruding it from a die (extrusion die) (melt extrusion).
  • the PET resin can be melted using an extruder during melt extrusion.
  • melt extrusion a raw material resin charged in an extruder is melt-kneaded in a cylinder, and the resin is melt-extruded into a sheet shape.
  • the melt kneading by an extruder uses a conventionally known extruder (preferably a twin screw extruder having a biaxial screw) provided with a screw for extruding a molten resin, and a desired resin (preferably a polyester resin). You can set the necessary conditions to obtain.
  • an extruder is roughly classified into a single axis and a multi-axis depending on the number of screws.
  • a twin-screw extruder As the multi-screw extruder, a twin-screw extruder (a twin-screw extruder) is suitable. Further, the extruder may be any device of small to large size. More preferably, the inside of the extruder is replaced with nitrogen from the viewpoint that generation of terminal COOH due to thermal decomposition can be further suppressed.
  • the melting temperature is preferably 250 ° C to 320 ° C, more preferably 260 ° C to 310 ° C, and further preferably 270 ° C to 300 ° C.
  • the molten resin (melt) of the PET resin is formed into a sheet by extruding it from an extrusion die through a gear pump, a filter or the like. At this time, it may be extruded as a single layer or may be extruded as a multilayer.
  • the melt-extruded melt is preferably cooled on a support, solidified and formed into a sheet. There is no restriction
  • a resin sheet can be formed by cooling the resin melt-extruded during melt extrusion.
  • a melt for example, a melt (melt) is passed through a gear pump and a filter, and then extruded from a die onto a cooling (chill) roll. By cooling and solidifying this, an unstretched sheet is obtained.
  • a melt (melt) can be stuck to a cooling roll using an electrostatic application method.
  • the temperature of the cooling roll itself is preferably 10 ° C. to 80 ° C., more preferably 15 ° C. to 70 ° C., and further preferably 20 ° C. to 60 ° C. Further, from the viewpoint of improving the adhesion between the molten resin (melt) and the cooling roll and increasing the cooling efficiency, it is preferable to apply static electricity before the melt contacts the cooling roll.
  • the thickness of the molten resin (melt) discharged in a band after solidification (before stretching) is in the range of 2600 ⁇ m to 6000 ⁇ m, and a polyester film having a thickness of 260 ⁇ m to 400 ⁇ m can be obtained through subsequent stretching.
  • the thickness of the melt after solidification is preferably in the range of 3100 ⁇ m to 6000 ⁇ m, more preferably in the range of 3300 ⁇ m to 5000 ⁇ m, and still more preferably in the range of 3500 ⁇ m to 4500 ⁇ m.
  • the thickness before stretching after solidification is 2600 ⁇ m or more suppresses uneven adhesion to the chill roll (cooling roll for solidification) generated due to weak melt, and is preferable from the viewpoint of reducing unevenness of the film.
  • the production method of the present invention may include stretching the produced extruded film (unstretched film) after the film formation.
  • the substrate is preferably biaxially stretched from the viewpoint of mechanical strength.
  • the stretching an embodiment having two stretching processes of first stretching and second stretching before and after forming the undercoat layer is preferable.
  • first stretching the formed resin sheet is stretched in the first direction.
  • the first direction may be either the sheet longitudinal direction (MD) or the sheet width direction (TD) orthogonal to the direction, but in the first stretching, it is preferably stretched to MD (so-called longitudinal stretching).
  • TD sheet width direction
  • a second stretching is further provided.
  • the resin sheet on which the undercoat layer is applied is stretched in a second direction orthogonal to the first direction.
  • the second direction may be either the sheet longitudinal direction (MD) or the sheet width direction (TD) orthogonal to the direction, but in the second stretching, it is preferably stretched to TD (so-called lateral stretching).
  • an undercoat layer is applied and formed on at least one surface of the resin sheet stretched in the first direction.
  • the undercoat layer can be suitably formed by applying the undercoat layer coating solution to the polymer substrate.
  • the coating method for applying the coating liquid for forming the undercoat layer, the solvent used for the preparation of the coating liquid, and the like are as described above.
  • the adhesion between the undercoat layer and the resin sheet can be improved by further performing the second stretching.
  • the thickness of the polymer substrate is preferably about 25 to 300 ⁇ m.
  • the thickness is 25 ⁇ m or more, the mechanical strength is good, and when the thickness is 300 ⁇ m or less, it is advantageous in terms of cost and hydrolysis resistance.
  • the polyester base material has a tendency that the hydrolysis resistance deteriorates as the thickness increases, and the durability during long-term use tends to decrease.
  • the thickness is 120 ⁇ m or more and 300 ⁇ m or less, and When the carboxyl group content in the polyester is 2 to 35 equivalents / t, the wet heat durability can be further improved.
  • inorganic particles or organic particles (hereinafter also collectively referred to as “fine particles”) can be mixed as a colorant in the polymer resin.
  • fine particles inorganic particles or organic particles
  • the reflectance (whiteness) of light can be improved and the electric power generation efficiency of a solar cell can be raised, or designability can be provided.
  • the average particle size of the fine particles is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and still more preferably 0.15 to 1 ⁇ m.
  • the content of the fine particles is preferably 0 to 50% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 5% by mass with respect to the total mass of the polymer.
  • the whiteness of the polymer substrate tends to be 50 or more.
  • the content of the fine particles is 1% by mass or more, the whiteness is easily set to 50 or more.
  • the content of the fine particles is 50% by mass or less, the weight of the polymer substrate does not become too large, and it is excellent in handling in processing or the like.
  • the average particle diameter and content refer to the average value of each layer when the polymer substrate has a multilayer structure. That is, the average particle diameter is calculated by (average value of particle diameter of each layer) ⁇ (thickness of each layer / thickness of all layers) for each layer, and the sum is obtained. (Average value of quantity) ⁇ (thickness of each layer / thickness of all layers) is calculated for each layer and indicates the sum total.
  • the average particle size of the fine particles is obtained by an electron microscope method. Specifically, the following method is used. The fine particles are observed with a scanning electron microscope, and the magnification is appropriately changed according to the size of the particles. Next, the outer circumference of each particle is traced for at least 200 fine particles selected at random. The equivalent circle diameter of the particles is measured from these trace images with an image analyzer. The average value of the measured values is defined as the average particle size.
  • the fine particles may be either inorganic particles or organic particles, or a combination of both. Thereby, the reflectance of light can be improved and the power generation efficiency of a solar cell can be improved.
  • Suitable inorganic particles include, for example, wet and dry silica, colloidal silica, calcium carbonate, aluminum silicate, calcium phosphate, alumina, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide (zinc white), antimony oxide, and oxidation.
  • titanium dioxide and barium sulfate are preferable.
  • the titanium oxide may be either anatase type or rutile type.
  • the surface of the fine particles may be subjected to an inorganic treatment using alumina, silica, or the like, or may be subjected to an organic treatment using a silicon or alcohol system.
  • the polymer substrate contains this, the polymer substrate can exhibit excellent durability even under light irradiation. Specifically, when UV irradiation is performed at 63 ° C., 50% Rh, irradiation intensity of 100 mW / cm 2 for 100 hours, the elongation at break is preferably 35% or more, more preferably 40% or more.
  • the polymer base material in the present invention is more suitable as a back surface protective film for solar cells used outdoors because photolysis and deterioration are suppressed.
  • Titanium dioxide includes those having a rutile crystal structure and those having an anatase crystal structure. It is preferable to add fine particles mainly composed of rutile-type titanium dioxide to the polymer substrate in the present invention.
  • the anatase type has a characteristic that the spectral reflectance of ultraviolet rays is very large, whereas the rutile type has a characteristic that the absorption rate of ultraviolet rays is large (spectral reflectance is small).
  • the present inventor pays attention to the difference in spectral characteristics in the crystal form of titanium dioxide, and can improve the light resistance in the backsheet for protecting the back surface of the solar cell by utilizing the ultraviolet absorption performance of rutile titanium dioxide. it can. Thereby, even if other ultraviolet absorbers are not substantially added, the film durability under light irradiation is excellent. For this reason, problems such as contamination due to bleeding out of the ultraviolet absorber and a decrease in adhesion are unlikely to occur.
  • the titanium dioxide particles in the present invention are mainly composed of rutile type titanium dioxide.
  • “mainly composed of rutile type titanium dioxide” means “rutile type in all titanium dioxide particles”. It means that the amount of titanium dioxide exceeds 50% by mass.
  • the amount of anatase-type titanium dioxide in all titanium dioxide particles is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 0% by mass or less.
  • the content of the anatase type titanium dioxide is not more than the above upper limit value, the amount of rutile type titanium dioxide in the total titanium dioxide particles can be secured, and the ultraviolet absorption performance can be kept good.
  • Rutile titanium dioxide and anatase titanium dioxide can be distinguished by X-ray structure diffraction and spectral absorption characteristics.
  • the surface of the rutile titanium dioxide fine particles may be subjected to inorganic treatment such as alumina or silica, or may be subjected to organic treatment such as silicon or alcohol.
  • the particle size may be adjusted and coarse particles may be removed using a purification process.
  • pulverizing means such as a jet mill and a ball mill
  • classification means such as dry or wet centrifugation can be applied.
  • the organic particles that can be contained in the polymer substrate are preferably those that can withstand the heat during film formation.
  • fine particles made of a cross-linked resin specific examples include fine particles made of polystyrene cross-linked with divinylbenzene. The size and amount of fine particles are the same as in the case of inorganic particles.
  • master pellets or master batch (MB) to which a large amount of fine particles are added are produced, and these and polyesters such as polyethylene terephthalate that do not contain fine particles; In which a predetermined amount of fine particles are contained.
  • MB method masterbatch method
  • a method can be employed in which MB is prepared while degassing moisture, air, and the like by putting polymer (for example, polyester resin) and fine particles that have not been dried in advance into an extruder.
  • the increase in the acid value of the polyester is suppressed by preparing the MB using a polyester resin that has been slightly dried in advance.
  • a polyester resin that has been slightly dried in advance. Examples of such a method include a method of extruding while degassing and a method of extruding without sufficiently degassing with a sufficiently dry polyester resin.
  • the moisture content of the polymer for example, polyester resin
  • the drying conditions are preferably 100 to 200 ° C., more preferably 120 to 180 ° C., for 1 hour or longer, more preferably 3 hours or longer, and even more preferably 6 hours or longer.
  • the moisture content of the polyester resin is preferably 50 ppm or less, more preferably 30 ppm or less.
  • the premixing method is not particularly limited, and may be a batch method or a single-screw or biaxial or more kneading extruder.
  • the polymer base material may contain many fine cavities (voids) inside. Thereby, higher whiteness can be suitably obtained.
  • the apparent specific gravity is 0.7 or more and 1.3 or less, preferably 0.9 or more and 1.3 or less, more preferably 1.05 or more and 1.2 or less.
  • the apparent specific gravity is 0.7 or more, the polymer base material has a waist, and the processing at the time of producing the solar cell module can be performed satisfactorily.
  • the apparent specific gravity is 1.3 or less, the weight of the polymer base material does not become too large, so that the solar cell can be reduced in weight.
  • the fine cavities can be formed from fine particles and / or a thermoplastic resin that is incompatible with the polymer constituting the polymer substrate described later.
  • the term “cavity derived from a thermoplastic resin that is incompatible with the fine particles or polymer” means that there are voids around the fine particles or the thermoplastic resin, and is confirmed by, for example, a cross-sectional photograph of the polymer substrate using an electron microscope. be able to.
  • the resin that can be added to the polymer base material for forming the cavity is preferably a resin that is incompatible with the polymer constituting the polymer base material (incompatible resin).
  • incompatible resins include polyolefin resins such as polyethylene, polypropylene, polybutene, polymethylpentene, polystyrene resins, polyacrylate resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, polysulfone resins, cellulose resins, And fluorine-based resins are preferred.
  • These incompatible resins may be homopolymers or copolymers, and two or more incompatible resins may be used in combination.
  • polyolefin resins and polystyrene resins such as polypropylene and polymethylpentene having a low surface tension are preferable, and polymethylpentene is most preferable. Since the polymethylpentene has a relatively large difference in surface tension from the polyester and a high melting point, the polyester film has a low affinity with the polyester and easily forms voids, and is particularly preferable as an incompatible resin. Is.
  • the amount thereof is 0 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass with respect to the entire polymer substrate. % Range.
  • the content is 30% by mass or less, the apparent density of the entire polymer base material can be secured, film tearing and the like hardly occur at the time of stretching, and productivity can be kept good.
  • the average particle size of the fine particles is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and still more preferably 0.15 to 1 ⁇ m.
  • the reflectance (whiteness) is maintained, and when the average particle size is 10 ⁇ m or less, a decrease in mechanical strength due to voids can be avoided.
  • the content of the fine particles is preferably 0 to 50% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 5% by mass with respect to the total mass of the polymer substrate. When the content is 50% by mass or less, the reflectance (whiteness) is kept good, and a decrease in mechanical strength due to voids can be avoided.
  • Preferable fine particles include those having a low affinity with polyester, specifically, barium sulfate and the like.
  • a white polymer base material that is, a polymer base material (for example, a polyester film) formed by voids by containing fine particles or the like may have a single layer or a laminated structure including two or more layers.
  • a laminated structure it is preferable to combine a high whiteness (a layer with a lot of voids and fine particles) and a low whiteness layer (a layer with a small amount of voids and fine particles).
  • the light reflection efficiency can be increased in a layer containing a lot of voids and fine particles, the mechanical strength is easily lowered (brittle) due to the voids and fine particles. In order to compensate for this, it is preferable to combine with a layer having low whiteness.
  • a layer with high whiteness for the outer layer of a polymer base material, and may be used for one side of a polymer base material, and may be used for both surfaces of a polymer base material.
  • titanium dioxide when a high white layer using titanium dioxide as fine particles is used as the outer layer of the polymer base material, titanium dioxide has a UV absorbing ability, so that an effect of improving the light resistance of the polymer base material can be obtained.
  • the amount of fine particles is preferably 5% by mass or more and 50% by mass or less, more preferably 6% by mass or more and 20% by mass or less.
  • the apparent specific gravity of the layer with high whiteness is preferably 0.7 or more and 1.2 or less, more preferably 0.8 or more and 1.1 or less.
  • the amount of fine particles is preferably 0% by mass or more and less than 5% by mass, more preferably 1% by mass or more and 4% by mass or less.
  • the layer with low whiteness is a layer in which a cavity is formed
  • the apparent specific gravity of the layer with low whiteness is 0.9 or more and 1.4 or less, and higher density than the high white layer is preferable, and more preferable Has an apparent specific gravity of 1.0 or more and 1.3 or less, and has a higher density than the high white layer.
  • the low white layer may not contain fine particles or cavities.
  • the thickness ratio of each layer in the laminated structure is not particularly limited, but the thickness of each layer is preferably 1% or more and 99% or less, more preferably 2% or more and 95% or less of the total layer thickness. Within this range, it is easy to obtain the effects of improving the reflection efficiency and imparting light resistance (UV) resistance.
  • the thickness of all layers of the polymer substrate is not particularly limited as long as it can be formed as a film, but is usually 20 to 500 ⁇ m, preferably 25 to 300 ⁇ m.
  • a so-called coextrusion method using two or three or more melt extruders is preferably used as a method for laminating a polymer substrate having a laminated structure.
  • a preferable addition amount is 0.01% by mass or more and 1% by mass or less, more preferably 0.05% by mass or more and 0.5% by mass or less, and still more preferably, with respect to the total mass of the white polymer substrate. It is 0.1 mass% or more and 0.3 mass% or less.
  • the addition amount is 0.01% by mass or more, the effect of improving the light reflectivity is easily obtained.
  • it can avoid that a reflectance falls by yellowing by the thermal decomposition by extrusion as the addition amount is 1 mass% or less.
  • a fluorescent whitening agent for example, OB-1 (trade name) manufactured by Eastman Kodak Co., Ltd. can be used.
  • the white polymer base material has an illuminance of 100 mW / cm 2 , a temperature of 60 ° C., a relative humidity of 50% RH, an irradiation time of 48 hours, and a yellowish change amount ( ⁇ b value) after irradiation with ultraviolet rays of less than 5 Is preferred.
  • the ⁇ b value is more preferably less than 4, and still more preferably less than 3.
  • a black polymer substrate can be obtained by adding a black pigment such as carbon black in the same manner.
  • the polymer base material can be configured to contain or not contain an end-capping agent in the range of 0 to 10% by mass relative to the polymer resin.
  • the content of the end-capping agent is preferably in the range of more than 0% by mass to 10% by mass, more preferably 0.2% by mass to 5% by mass, and further preferably 0.3% by mass to 2% by mass. .
  • Hydrolysis of polymers such as polyester is accelerated by the catalytic effect of hydrogen ions (H + ) generated from terminal carboxylic acids and the like, so that the hydrolysis resistance (weather resistance) is improved by reacting with terminal carboxyl groups. It is effective to add a terminal blocking agent. Therefore, when the content of the end-capping agent is within the above range, it can be avoided that the end-capping material acts as a plasticizer for the polymer to reduce the mechanical strength and heat resistance of the polymer base material. .
  • Examples of the end-capping agent include epoxy compounds, carbodiimide compounds, oxazoline compounds, carbonate compounds, and the like. Among these, a carbodiimide compound having high affinity with PET and high end-capping ability is preferable.
  • the molecular weight is preferably 200 to 100,000 in terms of weight average molecular weight, more preferably 2000 to 80,000, and still more preferably 10,000 to 50,000.
  • weight average molecular weight of the end-capping agent (particularly carbodiimide compound) is 100,000 or less, it is easy to uniformly disperse in the polyester, and the effect of improving weather resistance is exhibited well.
  • weight average molecular weight is 200 or more, it is difficult to volatilize during extrusion and film formation, and an effect of improving weather resistance is easily obtained.
  • a carbodiimide type terminal blocker is a carbodiimide compound which has a carbodiimide group.
  • This carbodiimide compound includes a monofunctional carbodiimide and a polyfunctional carbodiimide.
  • Examples of monofunctional carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide and di- ⁇ -naphthylcarbodiimide. Particularly preferred are dicyclohexylcarbodiimide and diisopropylcarbodiimide.
  • carbodiimide having a polymerization degree of 3 to 15 is preferably used.
  • the carbodiimide compound is preferably a carbodiimide compound having high heat resistance because an isocyanate gas is generated by thermal decomposition.
  • the higher the molecular weight (degree of polymerization), the better, and the terminal of the carbodiimide compound preferably has a structure with high heat resistance. Further, since the carbodiimide compound is likely to undergo further thermal decomposition once it is thermally decomposed, it is preferable to devise measures such as setting the extrusion temperature of a polymer such as polyester as low as possible.
  • the carbodiimide compound used as the end-capping agent preferably has a cyclic structure, and examples thereof include compounds described in JP2011-153209A. These exhibit the same effects as the above-described high molecular weight carbodiimide compounds even at low molecular weights. This is because the terminal carboxyl group of a polymer such as polyester and a cyclic carbodiimide undergo a ring-opening reaction, one of which reacts with this polyester, and the other of the ring-opening reacts with another polyester to increase the molecular weight, thereby generating an isocyanate gas. It is for suppressing doing.
  • the end-capping agent which is a carbodiimide compound having a cyclic structure, is preferably a compound having a carbodiimide group and a cyclic structure in which the first nitrogen and the second nitrogen are bonded by a bonding group.
  • the terminal blocking agent has a cyclic structure in which at least one carbodiimide group adjacent to the aromatic ring is present, and the first nitrogen and the second nitrogen of the carbodiimide group adjacent to the aromatic ring are bonded to each other by a bonding group. It is more preferably carbodiimide (also referred to as aromatic cyclic carbodiimide).
  • the aromatic cyclic carbodiimide may have a plurality of cyclic structures.
  • the aromatic cyclic carbodiimide is preferably an aromatic carbodiimide having no ring structure in which the first nitrogen and the second nitrogen of two or more carbodiimide groups are bonded by a linking group in the molecule, that is, a monocyclic ring. Can be used.
  • the cyclic structure has one carbodiimide group (—N ⁇ C ⁇ N—), and the first nitrogen and the second nitrogen are bonded by a bonding group.
  • One cyclic structure has only one carbodiimide group.
  • the compound may have a plurality of carbodiimide groups.
  • the number of atoms in the cyclic structure is preferably 8 to 50, more preferably 10 to 30, further preferably 10 to 20, and particularly preferably 10 to 15.
  • the number of atoms in the cyclic structure means the number of atoms directly constituting the cyclic structure.
  • the number of atoms is 8 for an 8-membered ring, and the number of atoms is 50 for a 50-membered ring. It is.
  • the number of atoms in the cyclic structure is 8 or more, the stability of the cyclic carbodiimide compound is maintained, which is suitable for storage and use.
  • there is no particular restriction on the upper limit of the number of ring members but a cyclic carbodiimide compound having 50 or less atoms is preferable in terms of suppressing cost increase due to difficulty in synthesis.
  • the number of atoms in the cyclic structure is preferably from 10 to 30, more preferably from 10 to 20, and particularly preferably from 10 to 15.
  • carbodiimide compound having a cyclic structure examples include the following compounds. However, the present invention is not limited to the specific examples shown below.
  • the epoxy-based end-capping agent is selected from epoxy compounds.
  • the epoxy compound include glycidyl ester compounds and glycidyl ether compounds.
  • glycidyl ester compounds include benzoic acid glycidyl ester, t-Bu-benzoic acid glycidyl ester, P-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, pelargonic acid glycidyl ester, stearic acid glycidyl ester, lauric acid glycidyl ester , Glycidyl palmitate, glycidyl behenate, glycidyl versatate, glycidyl oleate, glycidyl linoleate, glycidyl linolein, glycidyl behenol, glycidyl stearol, diglycidyl terephthalate, isophthalic acid Diglycidyl ester, diglycidyl phthalate, diglycidyl naphthalene dicar
  • the glycidyl ether compound examples include phenyl glycidyl ether, O-phenyl glycidyl ether, 1,4-bis ( ⁇ , ⁇ -epoxypropoxy) butane, 1,6-bis ( ⁇ , ⁇ - Epoxypropoxy) hexane, 1,4-bis ( ⁇ , ⁇ -epoxypropoxy) benzene, 1- ( ⁇ , ⁇ -epoxypropoxy) -2-ethoxyethane, 1- ( ⁇ , ⁇ -epoxypropoxy) -2-benzyl Oxyethane, 2,2-bis- [ politician- ( ⁇ , ⁇ -epoxypropoxy) phenyl] propane, 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxyphenyl) Examples thereof include bisglycidyl polyether obtained by the reaction of bisphenol such as methane and epichlorohydrin. These can use 1 type (s) or 2 or more types.
  • the oxazoline-based end capping agent is selected from oxazoline compounds.
  • a bisoxazoline compound is preferable. Specifically, 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-2-oxazoline), 2,2′-bis (4,4-dimethyl-2-oxazoline), 2,2′-bis (4-ethyl-2-oxazoline), 2,2′-bis (4,4′-diethyl-2-oxazoline), 2,2 '-Bis (4-propyl-2-oxazoline), 2,2'-bis (4-butyl-2-oxazoline), 2,2'-bis (4-hexyl-2-oxazoline), 2,2'- Bis (4-phenyl-2-oxazoline), 2,2′-bis (4-cyclohexyl-2-oxazoline), 2,2′-bis (4-benzyl-2-oxazoline), 2,2
  • 2,2′-bis (2-oxazoline) is most preferably used from the viewpoint of reactivity with polyester.
  • the bisoxazoline compounds listed above may be used alone or in combination of two or more as long as the object of the present invention is achieved.
  • Such an end-capping agent can be introduced by a method such as kneading into a polymer constituting the polymer substrate. That is, the said effect is acquired by making a terminal blocker and a polymer molecule contact directly, and making it react. Even when the end-capping agent is added to the coating layer on PET, a polymer such as polyester does not react with the end-capping agent.
  • the surface of the polymer substrate may be subjected to a surface treatment such as a corona treatment, a flame treatment, or a glow discharge treatment as necessary.
  • a surface treatment such as a corona treatment, a flame treatment, or a glow discharge treatment as necessary.
  • corona treatment and glow discharge treatment By applying these surface treatments, it is possible to further improve the adhesiveness when exposed to a humid heat environment.
  • corona treatment and glow discharge treatment a more excellent adhesive improvement effect can be obtained.
  • These surface treatments can increase adhesion by increasing carboxyl groups and hydroxyl groups on the surface of polymer substrates (for example, polyester substrates).
  • crosslinking agents especially oxazoline or carbodiimide compounds that are highly reactive with carboxyl groups
  • stronger adhesiveness can be obtained. This is more remarkable in the case of corona treatment and glow discharge treatment.
  • Corona discharge treatment is usually performed by applying high frequency and high voltage between a metal roll (dielectric roll) coated with a derivative and an insulated electrode to cause dielectric breakdown of the air between the electrodes. Is ionized to generate a corona discharge between the electrodes. And it performs by passing a polymer base material between this corona discharge.
  • the conditions for the corona discharge treatment are that the gap clearance between the electrode and the dielectric roll is 1 to 3 mm, the frequency is 1 to 100 kHz, and the applied energy is about 0.2 to 5 kV ⁇ A ⁇ min / m 2. preferable.
  • the glow discharge treatment is a method called vacuum plasma treatment or glow discharge treatment, in which plasma is generated by discharge in a gas (plasma gas) in a low-pressure atmosphere to treat the substrate surface.
  • the low-pressure plasma used here is non-equilibrium plasma generated under a condition where the pressure of the plasma gas is low.
  • Glow discharge treatment can be performed by placing a film to be treated in this low-pressure plasma atmosphere.
  • methods for generating plasma include direct current glow discharge, high frequency discharge, microwave discharge, and the like.
  • the power source used for discharging may be direct current or alternating current. When alternating current is used, a range of about 30 Hz to 20 MHz is preferable.
  • alternating current When alternating current is used, a commercial frequency of 50 Hz or 60 Hz may be used, or a high frequency of about 10 Hz to 50 kHz may be used. A method using a high frequency of 13.56 MHz is also preferable.
  • the plasma gas used in the glow discharge treatment include inorganic gases such as oxygen gas, nitrogen gas, water vapor gas, argon gas, and helium gas, and oxygen gas or a mixed gas of oxygen gas and argon gas is particularly preferable. Specifically, it is desirable to use a mixed gas of oxygen gas and argon gas.
  • a method is also preferable in which a gas such as the air entering the processing container due to a leak or water vapor coming out of the object to be processed is used as the plasma gas without introducing the gas into the processing container.
  • the specific plasma gas pressure is preferably in the range of 0.005 to 10 Torr, more preferably about 0.008 to 3 Torr. When the pressure of the plasma gas is 0.005 Torr or more, a good adhesive improvement effect is obtained. Conversely, when the pressure is 10 Torr or less, discharge instability due to an increase in current can be prevented.
  • the plasma output cannot be generally specified depending on the shape and size of the processing vessel, the shape of the electrode, and the like, but is preferably about 100 to 2500 W, and more preferably about 500 to 1500 W.
  • the treatment time for the glow discharge treatment is preferably 0.05 to 100 seconds, more preferably about 0.5 to 30 seconds. When the treatment time is 0.05 seconds or longer, a good effect of improving adhesiveness can be obtained. Conversely, when the treatment time is 100 seconds or less, deformation or coloring of the film to be treated can be prevented.
  • the discharge treatment intensity of the glow discharge treatment is preferably in the range of 0.01 to 10 kV ⁇ A ⁇ min / m 2 , more preferably 0.1 to 7 kV ⁇ A ⁇ min / m 2 , depending on the plasma output and the treatment time.
  • the discharge treatment strength is 0.01 kV ⁇ A ⁇ min / m 2 or more, a good adhesion improving effect can be obtained.
  • transformation, coloring, etc. of a to-be-processed film can be avoided because discharge processing intensity
  • the heating temperature is preferably in the range of 40 ° C. to the softening temperature of the film to be treated + 20 ° C., more preferably in the range of 70 ° C. to the softening temperature of the film to be processed.
  • the heating temperature is preferably in the range of 40 ° C. or higher.
  • a sufficient adhesive improvement effect can be obtained.
  • the handleability of a favorable film can be ensured during a process by making heating temperature below into the softening temperature of a to-be-processed film.
  • Specific methods for raising the temperature of the film to be treated in vacuum include heating with an infrared heater, heating by contacting with a hot roll, and the like.
  • the composite polymer layer in the present invention is a layer provided directly or via another layer on the polymer substrate, and is preferably a coating layer formed by a coating method.
  • This composite polymer layer is configured using a specific composite polymer having a (poly) siloxane structural unit represented by the following general formula (1) in the molecule.
  • the composite polymer layer in the present invention is excellent in moisture and heat resistance over a long period of time by including the composite polymer, and also has adhesion to the polymer substrate and adhesion between the other adjacent layers when another adjacent layer is provided. Excellent.
  • the composite polymer layer can be constituted by using other components depending on the application and the case of application.
  • the composite polymer layer in the present invention is, for example, the outermost layer exposed to the external environment, that is, the outermost layer on the back surface opposite to the front surface on which sunlight directly enters (battery side substrate on which the solar cells of the back sheet are arranged) Is preferably used as the outermost layer on the side opposite to the side on which is disposed.
  • the composite polymer layer may be configured as a reflective layer that increases power generation efficiency by returning light that is incident from the front surface side and passes through the solar cell (cell structure portion) to the cell again.
  • a colorant such as a white pigment can be further used.
  • the composite polymer layer / light reflective composite polymer layer (white layer) / polymer base material multilayer structure may be used. Excellent in adhesion and adhesion within the back sheet of the reflective layer.
  • the composite polymer layer in the present invention has a non-siloxane structure having a (poly) siloxane structural unit having a mass ratio of 15 to 85 mass% and a mass ratio of 85 to 15 mass% represented by the following general formula (1) in the molecule. And at least one kind of composite polymer containing units.
  • this composite polymer By containing this composite polymer, the adhesion between the polymer substrate as a support and the interlayer, that is, peeling resistance and shape stability, which are easily deteriorated when given heat and moisture, is dramatically improved compared to conventional products. Can do.
  • the composite polymer in the present invention is a block copolymer in which (poly) siloxane and at least one polymer are copolymerized.
  • the (poly) siloxane and the copolymerized polymer may be one kind alone, or two or more kinds.
  • the “siloxane structure” means a structure containing at least one siloxane bond.
  • the “polysiloxane structure” means a structure in which a plurality of siloxane bonds are continuous.
  • (poly) siloxane structure includes siloxane structures and polysiloxane structures in its scope, “the polymer has a siloxane structure in the molecule” and “the polymer has a (poly) siloxane structure in the molecule”. This means that the polymer contains a siloxane structure or a polysiloxane structure in its molecule.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group.
  • R 1 and R 2 may be the same or different, and the plurality of R 1 and R 2 may be the same or different from each other.
  • n represents an integer of 1 or more.
  • R 1 and R 2 may be the same or different and each represents a hydrogen atom, a halogen atom, or a monovalent organic group.
  • — (Si (R 1 ) (R 2 ) —O) n —” is a (poly) siloxane segment derived from various (poly) siloxanes having a linear, branched or cyclic structure.
  • Examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, and an iodine atom.
  • the “monovalent organic group” represented by R 1 and R 2 is a group capable of covalent bonding with a Si atom, and may be unsubstituted or have a substituent.
  • the monovalent organic group includes, for example, an alkyl group (eg, methyl group, ethyl group, etc.), an aryl group (eg: phenyl group, etc.), an aralkyl group (eg: benzyl group, phenylethyl etc.), and an alkoxy group (eg: A methoxy group, an ethoxy group, a propoxy group, etc.), an aryloxy group (eg, phenoxy group, etc.), a mercapto group, an amino group (eg, amino group, diethylamino group, etc.), an amide group and the like.
  • an alkyl group eg, methyl group, ethyl group, etc.
  • an aryl group eg: phenyl
  • R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an unsubstituted or substituted, in terms of adhesion to adjacent materials such as a polymer substrate and durability in a wet and heat environment.
  • Alkyl groups having 1 to 4 carbon atoms (particularly methyl and ethyl groups), unsubstituted or substituted phenyl groups, unsubstituted or substituted alkoxy groups (eg, methoxy group, ethoxy group, propoxy group, etc.)
  • An alkoxy group having 1 to 4 carbon atoms a mercapto group, an unsubstituted amino group, or an amide group, and more preferably an unsubstituted or substituted alkoxy group (from the viewpoint of durability in a humid heat environment)
  • Preferred is an alkoxy group having 1 to 4 carbon atoms.
  • N is preferably from 1 to 5000, and more preferably from 1 to 1000.
  • hydrolysis condensate containing a hydrolysis condensate of dimethyldimethoxysilane / ⁇ -methacryloxytrimethoxysilane, a hydrolysis condensate of dimethyldimethoxysilane / diphenyl / dimethoxysilane ⁇ -methacryloxytrimethoxysilane, and the like.
  • the hydrolyzed condensate contained is preferred.
  • the content ratio of “— (Si (R 1 ) (R 2 ) —O) n —” in the composite polymer is the total content of the composite polymer.
  • the content is 15 to 85% by mass with respect to the mass, and among them, the range of 20 to 80% by mass is preferable from the viewpoint of adhesion to the polymer substrate and durability in a moist heat environment.
  • the ratio of the polysiloxane moiety is less than 15% by mass, the adhesion to the polymer substrate and the adhesion durability when exposed to a wet heat environment are inferior, and when it exceeds 85% by mass, the liquid becomes unstable.
  • the content ratio of the non-siloxane structural unit is 85 to 15% by mass.
  • the silicone polymer is a copolymer having a (poly) siloxane structural unit and another structural unit, a moiety of “— (Si (R 1 ) (R 2 ) —O) n —” in the silicone polymer
  • the molecular weight of the (poly) siloxane structural unit represented by the general formula (1) is about 5000 to 300000 in terms of polystyrene-converted weight average molecular weight, and preferably about 10,000 to 150,000.
  • non-siloxane structural unit copolymerized with the siloxane structural unit is not particularly limited except that it does not have a siloxane structure, and is derived from any polymer.
  • Any of the polymer segments may be used.
  • the polymer (precursor polymer) that is a precursor of the polymer segment include various polymers such as a vinyl polymer, a polyester polymer, and a polyurethane polymer. From the viewpoint of easy preparation and excellent hydrolysis resistance, vinyl polymers and polyurethane polymers are preferred, and vinyl polymers are particularly preferred.
  • Typical examples of the vinyl polymer include various polymers such as an acrylic polymer, a carboxylic acid vinyl ester polymer, an aromatic vinyl polymer, and a fluoroolefin polymer.
  • an acrylic polymer that is, an acrylic structural unit as a non-siloxane structural unit
  • Monomers constituting the acrylic polymer include acrylic acid esters (eg, ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate, etc.) or methacrylic acid esters (eg, methyl methacrylate, butyl methacrylate, hydroxyethyl acrylate).
  • examples of monomers include carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, styrene, acrylonitrile, vinyl acetate, acrylamide, and divinylbenzene.
  • carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid
  • styrene acrylonitrile
  • vinyl acetate acrylamide
  • divinylbenzene divinylbenzene.
  • Butyl methacrylate, hydroxyethyl acrylate, acrylic acid, methacrylic acid and the like are preferable.
  • acrylic polymer examples include methyl methacrylate / ethyl acrylate / acrylic acid copolymer, methyl methacrylate / ethyl acrylate / 2-hydroxyethyl methacrylate / methacrylic acid copolymer, methyl methacrylate / butyl acrylate / 2- Examples include bidoxyethyl methacrylate / methacrylic acid / ⁇ -methacryloxytrimethoxysilane copolymer, methyl methacrylate / ethyl acrylate / glycidyl methacrylate / acrylic acid copolymer, and the like.
  • the polymer which comprises a non-siloxane type structural unit may be single 1 type, and 2 or more types of combined use may be sufficient as it.
  • the individual polymers may be homopolymers or copolymers.
  • the molecular weight of the polymer, which is a precursor of the polymer segment constituting the non-siloxane structural unit is about 5000 to 300000 in terms of polystyrene-equivalent weight average molecular weight, and preferably about 10,000 to 150,000.
  • the precursor polymer forming the non-siloxane structural unit is preferably one containing at least one of an acid group and a neutralized acid group and / or a hydrolyzable silyl group.
  • the vinyl polymer includes, for example, (a) a vinyl monomer containing an acid group and a vinyl monomer containing a hydrolyzable silyl group and / or a silanol group.
  • Such a precursor polymer can be produced and obtained using, for example, the method described in paragraph Nos. 0021 to 0078 of JP-A-2009-52011.
  • the composite polymer may be used alone as a binder, or may be used in combination with other polymers.
  • the ratio of the composite polymer in the present invention is preferably 30% by mass or more, more preferably 60% by mass or more of the total binder.
  • the ratio of the composite polymer is 30% by mass or more, the adhesiveness with the polymer base material and the durability under a moist heat environment are more excellent.
  • the molecular weight of the composite polymer is about 5000 to 300,000, preferably about 10,000 to 150,000.
  • a silane compound having a structure of “— (Si (R 1 ) (R 2 ) —O) n —” in which R 1 and / or R 2 is a hydrolyzable group in the presence of a precursor polymer Methods such as hydrolytic condensation can be used.
  • the silane compound used in the method (ii) include various silane compounds, and an alkoxysilane compound is particularly preferable.
  • the temperature is about 20 to 150 ° C. for about 30 minutes to 30 hours (preferably Can be prepared by reacting at 50 to 130 ° C. for 1 to 20 hours.
  • various silanol condensation catalysts such as an acidic compound, a basic compound, and a metal containing compound, can be added.
  • water and a silanol condensation catalyst are added to a mixture of a precursor polymer and an alkoxysilane compound, and the temperature is about 20 to 150 ° C. for 30 minutes to 30 hours. It can be prepared by hydrolytic condensation to a degree (preferably at 50 to 130 ° C. for 1 to 20 hours).
  • Preferred examples of the composite polymer include a hydrolysis condensate in which the (poly) siloxane structural unit contains a hydrolysis condensate of dimethyldimethoxysilane / ⁇ -methacryloxytrimethoxysilane, dimethyldimethoxysilane / diphenyl / dimethoxysilane ⁇ -methacrylate.
  • the polymer structure part copolymerized with the (poly) siloxane structural unit is ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate methyl methacrylate, methyl methacrylate, butyl
  • a composite polymer, which is an acrylic polymer composed of a monomer component selected from methacrylate, hydroxyethyl acrylate, acrylic acid, and methacrylic acid, can be mentioned as a more preferred example.
  • (Poly) siloxane structural unit comprises a hydrolysis condensate containing a hydrolysis condensate of dimethyldimethoxysilane / ⁇ -methacryloxytrimethoxysilane and a monomer component selected from methyl methacrylate, ethyl acrylate, acrylic acid and methacrylic acid
  • a hydrolysis condensate containing a hydrolysis condensate of dimethyldimethoxysilane / ⁇ -methacryloxytrimethoxysilane and a monomer component selected from methyl methacrylate, ethyl acrylate, acrylic acid and methacrylic acid
  • the composite polymer which is an acrylic polymer is mentioned.
  • the polymer having a (poly) siloxane structure may be used as the polymer having a (poly) siloxane structure.
  • DIC Corporation's Ceranate series for example, Ceranate WSA1070, WSA1060, etc.
  • Asahi Kasei Chemicals Corporation H7600 series H7650, H7630, H7620, etc.
  • JSR Co., Ltd. inorganic / acrylic composite emulsion manufactured by JSR Corporation, and the like
  • the content ratio of the polymer having a (poly) siloxane structure in the composite polymer layer is in the range of more than 0.2 g / m 2 and 15 g / m 2 or less.
  • the content ratio of the polymer is 0.2 g / m 2 or less, the ratio of the polymer is too small, and scratches generated due to external force cannot be suppressed.
  • the polymer content ratio exceeds 15 g / m 2 , the polymer ratio is too high, and the composite polymer layer is not sufficiently cured.
  • the range of 0.5g / m 2 ⁇ 10.0g / m 2 is preferably in the range of 1.0g / m 2 ⁇ 5.0g / m 2 More preferred.
  • the composite polymer layer preferably has a structural portion derived from a cross-linking agent that cross-links between the composite polymers. That is, the composite polymer layer can be formed using a cross-linking agent that can cross-link between the composite polymers.
  • crosslinking with a crosslinking agent adhesion after wet heat aging, specifically adhesion to a polymer substrate when exposed to a wet heat environment, and adhesion between layers can be further improved.
  • crosslinking agent examples include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • crosslinking agents such as carbodiimide compounds and oxazoline compounds are preferable.
  • oxazoline-based crosslinking agent examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline.
  • (co) polymers of these compounds are also preferably used.
  • a compound having an oxazoline group Epocros K2010E, K2020E, K2030E, WS-500, WS-700 (all manufactured by Nippon Shokubai Chemical Co., Ltd.) and the like can be used.
  • carbodiimide-based crosslinking agent examples include dicyclohexylmethane carbodiimide, tetramethylxylylene carbodiimide, and dicyclohexylmethane carbodiimide.
  • a carbodiimide compound described in JP-A-2009-235278 is also preferable.
  • carbodiimide-based crosslinking agents such as Carbodilite SV-02, Carbodilite V-02, Carbodilite V-02-L2, Carbodilite V-04, Carbodilite E-01, Carbodilite E-02 (all Nisshinbo Chemical Co., Ltd.) (Commercially available) can also be used.
  • the mass ratio of the structural part derived from the crosslinking agent to the composite polymer is preferably 1 to 30% by mass, more preferably 5 to 20% by mass.
  • the content of the crosslinking agent is 1% by mass or more, the strength of the composite polymer layer and the adhesiveness after wet heat aging are excellent, and when it is 30% by mass or less, the pot life of the coating solution can be kept long.
  • the composite polymer layer contains the composite polymer as described above, so that the adhesion to the polymer substrate is improved and the adhesion between the layers is improved. Furthermore, it is excellent in deterioration resistance (adhesion durability) in a humid heat environment. For this reason, it is also preferable to be provided as the outermost layer disposed at the position farthest from the polymer substrate. Specifically, for example, there is a back layer disposed on the opposite side (back side) to the side (front side) facing the battery side substrate including the solar cell element.
  • the thickness of one layer of the composite polymer layer is usually preferably from 0.3 ⁇ m to 22 ⁇ m, more preferably from 0.5 ⁇ m to 15 ⁇ m, still more preferably from 0.8 ⁇ m to 12 ⁇ m, particularly preferably from 1.0 ⁇ m to 8 ⁇ m. A range of 2 to 6 ⁇ m is most preferable.
  • the composite polymer layer has a thickness of 0.3 ⁇ m or more, more preferably 0.8 ⁇ m or more, it is difficult for moisture to penetrate from the surface of the composite polymer layer when exposed to a humid heat environment. Adhesiveness is remarkably improved by making it difficult for moisture to reach the interface with the material.
  • the thickness of the composite polymer layer is 22 ⁇ m or less, and further 12 ⁇ m or less, the composite polymer layer itself is difficult to become brittle, and the composite polymer layer is less likely to be destroyed when exposed to a humid heat environment. Is improved.
  • the composite polymer layer in the present invention has a cross-linked structure in which the composite polymer and the polymer molecules of the composite polymer are cross-linked with a cross-linking agent, and the ratio of the structural portion derived from the cross-linking agent to the composite polymer is 1 to 30% by mass.
  • the composite polymer layer has a thickness of 0.8 ⁇ m to 12 ⁇ m, the effect of improving the adhesion after wet heat aging is particularly excellent.
  • the composite polymer layer in the present invention may be configured to include other components such as various additives as necessary in addition to the composite polymer.
  • the back layer is supported. It is a back surface protective layer disposed on the opposite side of the polymer base material that forms the base material and facing the battery side substrate, and may have a single-layer structure or a structure in which two or more layers are laminated.
  • the back layer which is the composite polymer layer in the present invention, is disposed as the outermost layer farthest from the polymer substrate is preferable.
  • both back layers may be a composite polymer or a composite polymer layer containing both the composite polymer and a crosslinking agent, and only one back layer is a composite polymer or a composite polymer.
  • a composite polymer layer containing both a crosslinking agent and a crosslinking agent is preferable to be configured.
  • the second back layer provided further above the first back layer on the polymer substrate includes a (poly) siloxane structural unit and a non-polysiloxane structural unit represented by the general formula (1). It does not need to contain the composite polymer, but in that case, a uniform film without voids of the resin alone is formed to prevent moisture intrusion from the voids between the polymer and the pigment, and adhesion under wet heat environment is improved. From the viewpoint of enhancing, it is preferable not to contain a polysiloxane homopolymer.
  • surfactants As other components that can be contained in the back layer, surfactants, fillers and the like can be mentioned as described later. Moreover, you may include the pigment used for a colored layer. Details of these other components and pigments and preferred embodiments will be described later.
  • the composite polymer layer in the present invention can further contain a pigment in addition to the composite polymer.
  • the colored layer may further include other components such as various additives as necessary.
  • a composite polymer layer is comprised in a colored layer, it can contain at least 1 type of a pigment.
  • the same pigments that can be used for the functional layer constituting the polymer substrate described above can be used, and the details and preferred embodiments such as the type and average particle diameter of the pigment are also the same. .
  • the content in the colored layer of the pigment is 2.5 preferably in the range of ⁇ 8.5 g / m 2, and more preferably a range of 4.5 ⁇ 8.0g / m 2.
  • the pigment content is 2.5 g / m 2 or more, necessary coloring can be obtained, and reflectance and decorative properties can be effectively provided.
  • the pigment content is 8.5 g / m 2 or less, the surface state of the colored layer is easily maintained, and the film strength is excellent.
  • the content of the binder component is preferably in the range of 15 to 200% by mass, more preferably in the range of 17 to 100% by mass with respect to the pigment.
  • the content of the binder is 15% by mass or more, the strength of the colored layer is sufficiently obtained, and when it is 200% by mass or less, the reflectance and the decorativeness can be kept good.
  • a surfactant such as an anionic or nonionic surfactant can be used.
  • the addition amount is preferably 0.1 to 15 mg / m 2 , more preferably 0.5 to 5 mg / m 2 .
  • the addition amount of the surfactant is 0.1 mg / m 2 or more, it is possible to suppress the occurrence of repelling and to form a favorable layer, and when it is 15 mg / m 2 or less, the adhesion can be favorably performed. .
  • a filler may be further added to the composite polymer layer in the present invention.
  • the addition amount of the filler is preferably 20% by mass or less, more preferably 15% by mass or less per binder of the composite polymer layer. When the added amount of the filler is 20% by mass or less, the planar shape of the composite polymer layer can be kept better.
  • an undercoat layer may be provided between the polymer substrate and the composite polymer layer.
  • the thickness of the undercoat layer is preferably in the range of 2 ⁇ m or less, more preferably 0.05 ⁇ m to 2 ⁇ m, and still more preferably 0.1 ⁇ m to 1.5 ⁇ m. When the thickness is 2 ⁇ m or less, the planar shape can be kept good. Moreover, it is easy to ensure required adhesiveness because thickness is 0.05 micrometer or more.
  • the undercoat layer is preferably a layer containing one or more kinds of polymers selected from polyolefin resins, acrylic resins, polyester resins, and polyurethane resins.
  • polyolefin resin for example, a modified polyolefin copolymer is preferable.
  • polyolefin resin commercially available products may be used.
  • Arrow Base (registered trademark) SE-1013N Arrow Base (registered trademark) SD-1010
  • Arrow Base (registered trademark) TC-4010 Arrow Base (registered trademark) TD-4010 (both manufactured by Unitika Ltd.)
  • Hitech S3148, Hitech S3121, Hitech S8512 both manufactured by Toho Chemical Co., Ltd.
  • Arrow Base registered trademark
  • SE-1013N manufactured by Unitika Ltd.
  • acrylic resin for example, a polymer containing polymethyl methacrylate, polyethyl acrylate, or the like is preferable.
  • acrylic resin a commercially available product may be used.
  • AS-563A (trade name; manufactured by Die Self Einchem Co., Ltd.) can be preferably used.
  • polyester resin for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN) and the like are preferable.
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • the polyester resin a commercially available product may be used.
  • Vylonal (registered trademark) MD-1245 manufactured by Toyobo Co., Ltd.
  • carbonate type urethane resin is preferable, for example, for example, Superflex (registered trademark) 460 (Daiichi Kogyo Seiyaku Co., Ltd. product) can be used preferably.
  • polyolefin resin from the viewpoint of securing adhesiveness with the polymer substrate and the white layer.
  • these polymers may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types together, the combination of an acrylic resin and polyolefin resin is preferable.
  • the undercoat layer contains a crosslinking agent in that the durability of the undercoat layer can be improved.
  • the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • the crosslinking agent in the undercoat layer is preferably an oxazoline-based crosslinking agent.
  • the oxazoline-based crosslinking agent is a crosslinking agent having an oxazoline group.
  • Epocross (registered trademark) K2010E Epocross (registered trademark) K2020E
  • Epocross (registered trademark) K2030E Epocross (registered trademark) WS-500
  • Epocross (registered). (Trademark) WS-700 All manufactured by Nippon Shokubai Chemical Industry Co., Ltd.
  • the addition amount of the crosslinking agent is preferably 0.5% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 20% by mass or less, and particularly preferably 5% by mass or more with respect to the binder constituting the undercoat layer. It is less than 15% by mass.
  • the addition amount of the crosslinking agent is 0.5% by mass or more, a sufficient crosslinking effect can be obtained while maintaining the strength and adhesiveness of the undercoat layer.
  • the addition amount of the crosslinking agent is 30% by mass or less, the pot life of the coating solution can be kept long, and when it is less than 15% by mass, the coated surface state can be further improved.
  • the undercoat layer preferably contains an anionic or nonionic surfactant.
  • the range of the surfactant that can be used for the undercoat layer is the same as the range of the surfactant that can be used for the white layer.
  • nonionic surfactants are preferable.
  • a surfactant When a surfactant is contained, its content is preferably 0.1 to 10 mg / m 2 , more preferably 0.5 to 3 mg / m 2 .
  • the content of the surfactant is, if it is 0.1 mg / m 2 or more, good layer formation by suppressing the occurrence of cissing can be obtained, if it is 10 mg / m 2 or less, the polymer substrate and the white layer Adhesion can be performed satisfactorily.
  • the undercoat layer As a method for applying and forming the undercoat layer, a known coating method is appropriately adopted.
  • the coating method for example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, a coating method using a spray or a brush can be applied.
  • the undercoat layer may be formed by immersing the polymer base material in an adjustment liquid for forming the undercoat layer. Further, from the viewpoint of cost, the undercoat layer is formed by applying the adjustment liquid for forming the undercoat layer on the resin sheet in the process of manufacturing the resin sheet constituting the polymer base material, by applying the so-called in-line coating method.
  • the aspect in which the made resin film is manufactured is preferable.
  • the raw material resin is melt-kneaded, the resin is melt-extruded, the melt-extruded resin is cooled (for example, by casting on a cooling drum while using an electrostatic contact method), and the resin sheet is cooled.
  • a resin film having an undercoat layer is suitably produced by a method having a second stretching and a second stretching.
  • drying and heat treatment during coating depend on the thickness of the coating and the conditions of the apparatus, but immediately after coating, the film is sent to stretching in the perpendicular direction and dried in the preheating zone or stretching zone when stretching. preferable. In such a case, drying and heat treatment are usually performed at about 50 ° C. to 250 ° C.
  • the surface of the polymer substrate on which the undercoat layer is formed may be subjected to corona discharge treatment or other surface activation treatment.
  • melt extrusion Details of the melt extrusion, film formation, first stretching, second stretching, and formation of the resin layer are as described above.
  • the solid content concentration in the coating solution for forming the undercoat layer is preferably 30% by mass or less, and particularly preferably 10% by mass or less.
  • the lower limit of the solid content concentration is preferably 1% by mass, more preferably 3% by mass, and particularly preferably 5% by mass.
  • a colored layer can be provided on the side of the polymer substrate opposite to the side on which the first polymer layer is provided.
  • the light reflectance at 550 nm on the surface on which the colored layer is provided is preferably 75% or more.
  • the light reflectivity is the ratio of the amount of light incident from the surface reflected by the reflective layer and emitted from the surface again to the amount of incident light.
  • light having a wavelength of 550 nm is used as the representative wavelength light.
  • the light reflectance can be adjusted to 75% or more by controlling the content of the colorant in the range of 2.5 to 30 g / m 2 .
  • the solar cell backsheet of the present invention may have other functional layers in addition to the polymer substrate and the composite polymer layer.
  • an easily adhesive layer may be provided.
  • a fluorine-containing resin layer containing a fluoropolymer may be provided as still another functional layer.
  • the fluoropolymer used in the fluorine-containing resin layer is not particularly limited as long as it is a polymer having a repeating unit represented by-(CFX 1 -CX 2 X 3 )-(however, X 1 , X 2 , X 3 Represents a hydrogen atom, a fluorine atom, a chlorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms.
  • fluoropolymers examples include polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), polyvinyl fluoride (hereinafter sometimes referred to as PVF), and polyvinylidene fluoride (hereinafter referred to as PVDF). ), Polychloroethylene trifluoride (hereinafter sometimes referred to as PCTFE), polytetrafluoropropylene (hereinafter sometimes referred to as HFP), and the like.
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • PCTFE Polychloroethylene trifluoride
  • HFP polytetrafluoropropylene
  • the fluoropolymer may be a homopolymer obtained by polymerizing a single monomer or may be a copolymer obtained by copolymerizing two or more kinds. Examples thereof include a copolymer of tetrafluoroethylene and tetrafluoropropylene (abbreviated as P (TFE / HFP)), a copolymer of tetrafluoroethylene and vinylidene fluoride (abbreviated as P (TFE / VDF)), etc. Can be mentioned.
  • a polymer used for the fluorine-containing resin layer a polymer obtained by copolymerizing a fluorocarbon monomer represented by-(CFX 1 -CX 2 X 3 )-and another monomer (non-fluorine-containing monomer) is used.
  • fluorocarbon monomers include ethylene tetrafluoride, ethylene trifluoride, vinylidene fluoride, vinyl fluoride, hexafluoropropylene, fluorine-containing alkyl vinyl ethers (eg, perfluoroethyl vinyl ether), fluorine-containing esters. Etc. (perfluorobutyl methacrylate, etc.).
  • non-fluorine-containing monomer examples include ethylene, alkyl vinyl ether (eg, ethyl vinyl ether, cyclohexyl vinyl ether), and carboxylic acid (eg, acrylic acid, methacrylic acid, hydroxybutyme vinyl ether, etc.).
  • the fluoropolymer is a polymer obtained by copolymerizing a fluorocarbon monomer and a non-fluorine-containing monomer
  • the content of the fluorine-containing monomer with respect to the total mass of the fluoropolymer is preferably 30% by mass to 98% by mass, The amount is preferably 40 to 80% by mass.
  • the proportion of the fluorine-containing monomer is 30% by mass or more. Further, from the viewpoint of polymerization stability, it is preferably 98% by mass or less.
  • a polymer obtained by copolymerizing a fluorocarbon monomer and a non-fluorine-containing monomer a copolymer obtained by copolymerizing tetrafluoroethylene and ethylene (abbreviated as P (TFE / E)), tetrafluoro A copolymer obtained by copolymerizing ethylene and propylene (abbreviated as P (TFE / P)), a copolymer obtained by copolymerizing tetrafluoroethylene and vinyl ether (abbreviated as P (TFE / VE)), A copolymer obtained by copolymerizing tetrafluoroethylene and perfluorovinyl ether (abbreviated as P (TFE / FVE)), and a copo
  • a copolymer obtained by copolymerizing chlorotrifluoroethylene and perfluorovinyl ether (abbreviated as P (CTFE / FVE)), Copolymer made by copolymerizing trifluoroethylene, ethylene and acrylic acid, Copolymer made by copolymerizing hexafluoropropylene and tetrafluoroethylene, Copolymerized hexafluoropropylene, tetrafluoroethylene and ethylene
  • a copolymer obtained by copolymerization, Copolymerizing a Kka vinyl and ethyl acrylate and acrylic acid comprising a copolymer, and the like.
  • a copolymer obtained by copolymerizing chlorotrifluoroethylene and perfluoroethyl vinyl ether a copolymer obtained by copolymerizing chlorotrifluoroethylene, perfluoroethyl vinyl ether and methacrylic acid
  • chlorotrifluoro Copolymer made by copolymerizing ethylene and ethyl vinyl ether Copolymer made by copolymerizing chlorotrifluoroethylene, ethyl vinyl ether and methacrylic acid
  • Copolymerized vinylidene fluoride methyl methacrylate and methacrylic acid
  • a copolymer obtained by copolymerizing vinyl fluoride, ethyl acrylate and acrylic acid a copolymer obtained by copolymerizing vinyl
  • a copolymer obtained by copolymerizing chlorotrifluoroethylene and ethyl vinyl ether and a copolymer obtained by copolymerizing chlorotrifluoroethylene, ethyl vinyl ether and methacrylic acid are more preferable.
  • the fluorine-based polymer a commercially available one can be used. Specific examples of commercially available products include Lumiflon (registered trademark) LF200 (manufactured by Asahi Glass Co., Ltd.), Zeffle (registered trademark) GK570 (manufactured by Daikin Industries, Ltd.), Obligard SW0011F (trade name, manufactured by AGC Co-Tech Co., Ltd.) and the like. is there.
  • the molecular weight of the fluorine-based polymer can be about 2,000 to 1,000,000 in terms of polystyrene equivalent weight average molecular weight, and preferably about 3,000 to 300,000.
  • the fluoropolymer may be used by dissolving the polymer in an organic solvent, or may be used by dispersing polymer fine particles in water. The latter is preferable from the viewpoint of low environmental load.
  • water dispersions of fluoropolymers are described in, for example, JP-A Nos. 2003-231722, 2002-20409, and No. 9-194538.
  • an easy adhesion layer may be further provided on the polymer substrate.
  • the easy-adhesion layer is a layer for firmly bonding the back sheet to a sealing material for sealing a solar cell element (hereinafter also referred to as a power generation element) of the battery side substrate (battery body).
  • the easy-adhesion layer can be constituted using a binder and inorganic fine particles, and may further comprise other components such as additives as necessary.
  • the easy-adhesion layer is 10 N / cm or more (preferably 20 N / cm or more) with respect to an ethylene-vinyl acetate (EVA: ethylene-vinyl acetate copolymer) -based sealing material that seals the power generation element of the battery side substrate. It is preferable that it is comprised so that it may have the adhesive force of (). When the adhesive force is 10 N / cm or more, it is easy to obtain wet heat resistance capable of maintaining adhesiveness.
  • the adhesive strength can be adjusted by adjusting the amount of the binder and inorganic fine particles in the easy-adhesive layer, or applying a corona treatment to the surface of the back sheet that is bonded to the sealing material.
  • the easy-adhesion layer can contain at least one binder.
  • the binder suitable for the easy-adhesive layer include polyester, polyurethane, acrylic resin, polyolefin, and the like. Among these, acrylic resin and polyolefin are preferable from the viewpoint of durability. As the acrylic resin, a composite resin of acrylic and silicone is also preferable.
  • Examples of preferred binders include Chemipearl S-120 and S-75N (both manufactured by Mitsui Chemicals, Inc.) as specific examples of polyolefins, and Jurimer ET-410 and SEK-301 (both Nippon Pure Chemicals, Inc.) as specific examples of acrylic resins.
  • a composite resin of acrylic and silicone Ceranate WSA1060, WSA1070 (both manufactured by DIC Corporation) and H7620, H7630, H7650 (both manufactured by Asahi Kasei Chemicals Corporation) and the like can be given.
  • the content of the binder in the easy-adhesive layer is preferably in the range of 0.05 to 5 g / m 2 . In particular, the range of 0.08 to 3 g / m 2 is more preferable.
  • the content of the binder, 0.05 g / m 2 or more is desired as easy adhesion obtained to that, better surface state is obtained when the is 5 g / m 2 or less.
  • the easily adhesive layer can contain at least one kind of inorganic fine particles.
  • the inorganic fine particles include silica, calcium carbonate, magnesium oxide, magnesium carbonate, and tin oxide.
  • fine particles of tin oxide and silica are preferable in that the decrease in adhesiveness when exposed to a humid heat atmosphere is small.
  • the particle size of the inorganic fine particles is preferably about 10 to 700 nm, more preferably about 20 to 300 nm in terms of volume average particle size. When the particle size is within this range, better easy adhesion can be obtained.
  • the particle size is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • the shape of the inorganic fine particles is not particularly limited, and any shape such as a spherical shape, an irregular shape, or a needle shape can be used.
  • the content of the inorganic fine particles is in the range of 5 to 400% by mass with respect to the binder in the easy-adhesive layer.
  • the content of the inorganic fine particles is less than 5% by mass, good adhesiveness cannot be maintained when exposed to a wet and heat atmosphere, and when it exceeds 400% by mass, the surface state of the easily adhesive layer is deteriorated.
  • the content of inorganic fine particles is preferably in the range of 50 to 300% by mass.
  • the easily adhesive layer can contain at least one crosslinking agent.
  • the crosslinking agent suitable for the easily adhesive layer include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • an oxazoline-based cross-linking agent is particularly preferable from the viewpoint of ensuring adhesiveness after wet heat aging.
  • Specific examples of the oxazoline-based crosslinking agent include the same specific examples as described in the above-mentioned section of the composite polymer layer.
  • the content of the crosslinking agent in the easy-adhesive layer is preferably 5 to 50% by mass, more preferably 20 to 40% by mass, based on the binder in the easy-adhesive layer.
  • the content of the crosslinking agent is 5% by mass or more, a good crosslinking effect can be obtained, and the strength and adhesiveness of the colored layer can be maintained.
  • the content is 50% by mass or less, the pot life of the coating liquid Can be kept long.
  • the easily adhesive layer in the present invention may further contain a known matting agent such as polystyrene, polymethylmethacrylate, or silica, or a known surfactant such as anionic or nonionic. .
  • the easy-adhesive layer can be formed by a method in which a polymer sheet having easy adhesive properties is bonded to a substrate, or a method by coating. Especially, the method by application
  • a coating method for example, a known coating method such as a gravure coater or a bar coater can be used.
  • the coating solvent used for preparing the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone.
  • a coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
  • the thickness of the easy-adhesion layer is not particularly limited, but is usually preferably 0.05 to 8 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the thickness of the easy-adhesion layer is 0.05 ⁇ m or more, necessary easy adhesion can be suitably obtained, and when it is 8 ⁇ m or less, the surface shape becomes better.
  • the easily adhesive layer of the present invention needs to be transparent so as not to reduce the effect of the colored layer.
  • the back sheet for solar cell of the present invention has an interlayer adhesion after storage for 48 hours in an atmosphere of 120 ° C. and 100% RH of 75% or more with respect to the interlayer adhesion before storage. preferable.
  • the solar cell backsheet of the present invention has a predetermined composite polymer layer, so that an adhesive strength of 75% or more before storage can be obtained even after the storage. Thereby, as for the produced solar cell module, peeling of a backsheet and the fall of the power generation performance accompanying it are suppressed, and long-term durability improves more.
  • the solar cell backsheet of the present invention can form a composite polymer layer, a colored layer, a metal-containing layer, and, if necessary, an easily adhesive layer on the polymer substrate. Any method can be used.
  • a metal-containing layer containing a component selected from the group consisting of metals and metal compounds is formed on the polymer substrate, and the mass ratio represented by the general formula (1) described above in the molecule
  • a coating solution containing a composite polymer having a siloxane structural unit of 15 to 85% by mass and a non-siloxane structural unit having a mass ratio of 85 to 15% by mass, and preferably a cross-linking agent (and an easily adhesive layer if necessary) For example, a method for producing a back sheet for a solar cell of the present invention), and forming at least one composite polymer layer on a polymer substrate. be able to.
  • the coating solution for the composite polymer layer is a coating solution containing at least the composite polymer as described above, and preferably further contains a crosslinking agent selected from carbodiimide compounds and oxazoline compounds.
  • a crosslinking agent selected from carbodiimide compounds and oxazoline compounds.
  • a suitable coating method is also as described above.
  • a coating method using a gravure coater, a roll coater, or a bar coater can be applied.
  • a coating solution for a composite polymer layer is applied directly on the surface of the polymer substrate or through an undercoat layer having a thickness of 2 ⁇ m or less, and a composite polymer layer (for example, a colored layer ( Preferably, a reflective layer) and a back layer) can be formed.
  • the formation of the composite polymer layer can be performed by a method of bonding a polymer sheet to a polymer substrate, a method of co-extruding the composite polymer layer when forming the polymer substrate, a method by coating, or the like.
  • the method by coating is preferable because it is simple and uniform and can be formed as a thin film, and may be an aqueous mixed solvent in which an organic solvent is mixed with water.
  • a coating method for example, a known coating method using a gravure coater, a roll coater, a bar coater or the like can be used.
  • the coating solution may be an aqueous system using water as an application solvent, or a solvent system using an organic solvent such as toluene or methyl ethyl ketone. Among these, from the viewpoint of environmental burden, it is preferable to use water as a solvent.
  • a coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
  • the coating solution for the composite polymer layer is preferably an aqueous coating solution in which 50% by mass or more, preferably 60% by mass or more, of the solvent contained therein is water.
  • the aqueous coating solution is preferable in terms of environmental load, and is advantageous in that the environmental load is particularly reduced when the ratio of water is 60% by mass or more.
  • the proportion of water in the coating solution for the composite polymer layer is preferably larger from the viewpoint of environmental load, and more preferably 90% by mass or more of water in the total solvent.
  • drying may be provided under desired conditions.
  • the solar cell module of the present invention is configured by providing the solar cell backsheet of the present invention described above or the solar cell backsheet manufactured by the method of manufacturing the solar cell backsheet described above.
  • a solar cell element that converts light energy of sunlight into electrical energy is disposed between a transparent front substrate on which sunlight is incident and the above-described solar cell backsheet of the present invention.
  • the solar cell element is sealed and bonded with a sealing material such as ethylene-vinyl acetate between the front substrate and the back sheet. That is, a cell structure portion having a solar cell element and a sealing material for sealing the solar cell element is provided between the front substrate and the back sheet.
  • the transparent substrate only needs to have a light-transmitting property through which sunlight can be transmitted, and can be appropriately selected from base materials that transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better.
  • a transparent resin such as an acrylic resin, or the like can be suitably used.
  • Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as a group VI compound semiconductor can be applied.
  • the time from the start of decompression to the arrival of the predetermined stirring torque was 3 hours.
  • Syndiotactic Polystyrene Support Hydrogen of polystyrene-polybutadiene-polystyrene triblock copolymer (SBS) was added to 90 parts of syndiotactic polystyrene resin (Zarek 30A, manufactured by Idemitsu Petrochemical Co., Ltd.). 10 parts of an additive (Tuftec 1052 manufactured by Asahi Kasei Kogyo Co., Ltd.) was added to prepare a master pellet. Using this, it was melt-extruded by extrusion casting (cylinder temperature: 270 to 300 ° C.) and formed into a sheet to produce a sheet having a thickness of 50 ⁇ m. Thereafter, the sheet was heat-treated in a drier (in-machine temperature: 180 ° C.) using a tenter device. In this way, a syndiotactic polystyrene support (SPP) was produced.
  • SBS syndiotactic poly
  • white polyvinyl fluoride support (white PVF) Polyvinyl fluoride, dimethylformamide, polyethylene glycol, and titanium dioxide were mixed and stirred while heating to 110 ° C. to obtain a uniform solution. This solution was cast on a glass plate to a cast thickness of 0.1 mm in an oven preheated to 80 ° C., and then immediately poured into water at 30 ° C. to obtain white polyvinyl fluoride. A support (white PVF) was prepared.
  • Synthesis of Composite Polymer Water Dispersion P-1 A reaction vessel equipped with a stirrer and a dropping funnel and purged with nitrogen gas was charged with 81 parts of propylene glycol mono-n-propyl ether (PNP), isopropyl alcohol (IPA) 360 parts, phenyltrimethoxysilane (PTMS) 110 parts, and dimethyldimethoxysilane (DMDMS) 71 parts were charged, and the temperature was raised to 80 ° C. with stirring in a nitrogen gas atmosphere.
  • PNP propylene glycol mono-n-propyl ether
  • IPA isopropyl alcohol
  • PTMS phenyltrimethoxysilane
  • DDMS dimethyldimethoxysilane
  • a composite polymer aqueous dispersion P-1 having a solid content concentration of 42% by mass and an average particle size of 110 nm and containing a part derived from a carboxyl group-containing acrylic polymer and a polysiloxane part was obtained.
  • the composite polymer of the aqueous dispersion P-1 had about 25% polysiloxane sites and about 75% acrylic polymer portions.
  • Synthesis Example 2 Synthesis of Composite Polymer Water Dispersion P-2 Synthesis Example, except that the amount of monomer used in the synthesis of Composite Polymer Water Dispersion P-1 (Synthesis Example 1) was changed to the following amount: In the same manner as in Example 1, a composite polymer aqueous dispersion P-2 was synthesized.
  • the ratio of the monomers used is as follows: phenyltrimethoxysilane (PTMS): 210 parts, dimethyldimethoxysilane (DMDMS): 166 parts, 3-methacryloyloxypropyltrimethoxysilane (MPTMS): 24 parts, methyl methacrylate (MMA): 200 parts N-butyl methacrylate (BMA): 100 parts, n-butyl acrylate (BA) 70 parts, acrylic acid (AA) 30 parts.
  • PTMS phenyltrimethoxysilane
  • DDMS dimethyldimethoxysilane
  • MPTMS 3-methacryloyloxypropyltrimethoxysilane
  • MMA methyl methacrylate
  • BMA N-butyl methacrylate
  • BA n-butyl acrylate
  • acrylic acid AA
  • the ratio of the monomers used is as follows: phenyltrimethoxysilane (PTMS): 320 parts, dimethyldimethoxysilane (DMDMS): 244 parts, 3-methacryloyloxypropyltrimethoxysilane (MPTMS): 36 parts, methyl methacrylate (MMA): 90 parts N-butyl methacrylate (BMA): 60 parts, n-butyl acrylate (BA): 20 parts, and acrylic acid (AA): 30 parts.
  • PTMS phenyltrimethoxysilane
  • DDMS dimethyldimethoxysilane
  • MPTMS 3-methacryloyloxypropyltrimethoxysilane
  • MMA methyl methacrylate
  • BMA N-butyl methacrylate
  • BA n-butyl acrylate
  • acrylic acid (AA) 30 parts.
  • the composite polymer of the aqueous dispersion P-3 had about 75% polysi
  • Synthesis Example 4 Synthesis of Composite Polymer Aqueous Dispersion P-4 Synthesis Example except that the amount of monomers used in the synthesis of Synthetic Polymer Water Dispersion P-1 (Synthesis Example 1) was changed to the following amount: In the same manner as in Example 1, a composite polymer aqueous dispersion P-4 was synthesized.
  • phenyltrimethoxysilane 60 parts
  • dimethyldimethoxysilane DDMS
  • 3-methacryloyloxypropyltrimethoxysilane MPTMS
  • MMA 300 parts
  • BMA N-butyl methacrylate
  • BA n-butyl acrylate
  • acrylic acid AA: 30 parts.
  • the composite polymer of the aqueous dispersion P-4 had about 13% polysiloxane sites and about 87% acrylic polymer portions.
  • the ratio of the monomers used is as follows: phenyltrimethoxysilane (PTMS): 336 parts, dimethyldimethoxysilane (DMDMS): 320 parts, 3-methacryloyloxypropyltrimethoxysilane (MPTMS): 40 parts, methyl methacrylate (MMA): 44 parts N-butyl methacrylate (BMA): 30 parts, n-butyl acrylate (BA): 10 parts, and acrylic acid (AA): 20 parts.
  • the composite polymer of the aqueous dispersion P-5 had about 87% of the polysiloxane portion and about 87% of the acrylic polymer portion. This aqueous dispersion had a small amount of aggregation after synthesis and was slightly inferior in stability to the aqueous dispersions P-1 to P-4.
  • Example 1 Preparation of coating solution for forming polymer layer.
  • coating solution for forming polymer layer Each component in the following composition was mixed to prepare a coating solution for forming a polymer layer.
  • Silicone binder 362.3 parts (Previously described composite polymer aqueous dispersion P-1, solid content: adjusted to 40% by mass)
  • Carbodiimide compound (crosslinking agent) 36.2 parts (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Ltd., solid content: 40% by mass)
  • Surfactant ... 24.2 parts Nonaroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
  • Lubricant polyethylene wax
  • white polyethylene terephthalate (Lumirror E20, manufactured by Toray Industries, Inc .; white PET) having a thickness of 50 ⁇ m is formed on the surface of the PET (polymer substrate) where the weather-resistant layer is not formed under the following conditions.
  • the functional layer (light reflection layer) was formed by pasting.
  • thermosetting urethane adhesive obtained by mixing 10 parts of KW75 (manufactured by DIC Corporation; curing agent) with LX660 (K) (manufactured by DIC Corporation; main agent) was used.
  • An adhesive was applied to the side of the PET where the weather-resistant layer was not formed, and white PET was layered thereon, and hot-pressed with a vacuum laminator (vacuum laminator, manufactured by Nisshinbo Co., Ltd.) for adhesion.
  • Adhesion was performed by applying pressure for 2 minutes after evacuation at 80 ° C. for 3 minutes. The thickness of the adhesive layer after bonding was about 5 ⁇ m. Thereafter, the obtained sample was held at 40 ° C. for 4 days to complete the reaction, thereby obtaining a back sheet.
  • Adhesiveness (adhesion)
  • the obtained back sheet was conditioned for 24 hours in an atmosphere of 25 ° C. and 60% RH. After that, the surface of the polymer layer of the backsheet was scratched with 6 razors in the longitudinal and lateral directions at intervals of 3 mm using a razor. On top of that, a 20 mm wide Mylar tape was applied and quickly peeled off in the 180 ° direction. At this time, peeling was performed on the backsheet before and after aging for 90 hours under a wet heat condition of 120 ° C. and 100% RH. After peeling, the number of squares peeled off from the back sheet was counted and evaluated according to the following evaluation criteria. Note that what is practically acceptable is classified into ranks 3 to 5.
  • Example 2 Example 3
  • the composite polymer aqueous dispersion P-1 silicone-based binder
  • the composite polymer aqueous dispersion P-2 or P as shown in Table 1 below.
  • a backsheet was prepared and evaluated in the same manner as in Example 1 except that it was changed to -3 (both were adjusted to a solid content of 40% by mass). The evaluation results are shown in Table 1 below.
  • Example 1 the composite polymer aqueous dispersion P-1 (silicone-based binder) used for the preparation of the coating solution for forming the weathering layer was combined with the composite polymer aqueous dispersion P-4 or P as shown in Table 1 below.
  • a backsheet was prepared and evaluated in the same manner as in Example 1 except that it was changed to ⁇ 5 (both solid contents were adjusted to 40% by mass). The evaluation results are shown in Table 1 below.
  • Example 3 (Comparative Example 3)
  • the weathering layer formed by applying the coating solution for forming the weathering layer was replaced with an ETFE film having a thickness of 50 ⁇ m (neoflon EF-0050, manufactured by Daikin Industries, Ltd.).
  • a back sheet was prepared in the same manner as in Example 1 except that the ETFE film was bonded in the same manner as the method for forming the functional layer in Example 1.
  • the same evaluation was performed.
  • the evaluation results are shown in Table 1 below.
  • ⁇ Corona treatment> ⁇ Equipment: Solid state corona treatment machine 6KVA model made by Pillar Co.
  • Processing speed 10 m / min
  • Processing intensity 0.75 kV / A / min / m 2
  • Example 4 In Example 1, in order to impart white color to the weather resistant layer, as shown below, before applying the coating liquid for forming a polymer layer on one surface of PET, the following white color is applied to one surface of the PET: A resin layer forming coating solution was applied and dried to form a white resin layer, thereby forming a weather resistant layer consisting of two layers, a polymer layer and a white resin layer, in the same manner as in Example 1. A back sheet was prepared and subjected to the same evaluation. The evaluation results are shown in Table 1 below.
  • Nonionic surfactant 23.4 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, Ltd., concentration 1% by mass)
  • Oxazoline-based crosslinking agent 58.4 parts (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., concentration: 25% by mass)
  • Distilled water 51.0 parts
  • the polymer layer forming coating solution prepared in Example 1 was applied at a binder coating amount of 2.0 g / m 2. And dried at 180 ° C. for 1 minute to form a polymer layer having a dry thickness of about 2 ⁇ m.
  • Example 5 (Example 5)
  • the white PET Limirror E20, manufactured by Toray Industries, Inc.
  • the white resin layer forming coating solution No. 4 was applied so that the binder coating amount was 4.7 g / m 2 and the titanium dioxide coating amount was 5.6 g / m 2, and dried at 170 ° C. for 2 minutes to dry thickness.
  • a backsheet was prepared and evaluated in the same manner as in Example 1 except that a functional resin layer was formed by forming a 5.7 ⁇ m white resin layer. The evaluation results are shown in Table 1 below.
  • Example 6 a polymer sheet for a solar cell was produced in the same manner as in Example 1 except that the above-described PET used as the polymer substrate was replaced with a PET with an undercoat layer produced as follows.
  • ⁇ PET with undercoat> In the above-mentioned “(1) Production of polyethylene terephthalate support (PET)”, the produced unstretched PET sheet was stretched 3.4 times in the MD direction, and then the light-resistant layer side of this PET sheet was The undercoat layer coating solution was applied, and then further stretched 4.5 times in the TD direction. At this time, the thickness of the undercoat layer was 0.1 ⁇ m.
  • PET polyethylene terephthalate support
  • Example 7 a polymer sheet for a solar cell was produced in the same manner as in Example 5 except that the synthesis of PET used as the polymer substrate and the method for producing the polymer substrate were changed to the following methods.
  • the temperature in the polymerization apparatus was raised from 235 ° C. to 290 ° C. over 90 minutes, and at the same time, the pressure in the apparatus was reduced from atmospheric pressure to 100 Pa over 90 minutes.
  • the stirring torque of the contents of the polymerization apparatus reached a predetermined value
  • the inside of the apparatus was returned to atmospheric pressure with nitrogen gas to complete the polymerization.
  • bulb of the polymerization apparatus lower part was opened, the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polyethylene terephthalate which superposed
  • the strand was chipped with a cutter.
  • PET-A was pre-dried at 150 to 160 ° C. for 3 hours and then subjected to solid phase polymerization at 205 ° C. for 25 hours in an atmosphere of 100 torr and nitrogen gas to obtain PET-B.
  • PET-B and PET-C were dried at 180 ° C. for 3 hours, then charged into an extruder for mixing so that the end-capping material was 1% by mass with respect to the polymer resin, and kneaded at 280 ° C. Then, after passing through a gear pump and a filter, it was extruded onto a cooling drum of 25 ° C. to which electrostatic application was applied from a T die, and cooled and solidified to obtain an unstretched sheet. Thereafter, the unstretched polymer substrate was stretched 3.4 times in the machine direction at 90 ° C., biaxially stretched 4.5 times in the transverse direction at 120 ° C., and heat-set at 200 ° C. for 30 seconds.
  • the polymer substrate which is a polyethylene terephthalate film (PET film) having a thickness of 240 ⁇ m was prepared by relaxing the heat at 190 ° C. for 10 seconds.
  • PET film polyethylene terephthalate film
  • Example 8 a polymer sheet for a solar cell was produced in the same manner as in Example 5 except that the PET film was subjected to the glow discharge treatment described below.
  • ⁇ Glow discharge treatment> The polyethylene terephthalate film is heated to 145 ° C. using a heating roller in advance, and then the processing atmosphere pressure is 0.2 Torr, the discharge frequency is 30 kHz, the output is 5000 w, the physical strength is 4.2 kV ⁇ A ⁇ min / m 2 .
  • the surface treatment was performed.
  • Comparative Example 4 In Comparative Example 3, the ETFE film was replaced with the white PVF described above as a weather-resistant layer, and the white PETF was replaced with the white PVF described above. After the corona treatment is performed on the surface that is not bonded under the same conditions as in Comparative Example 3, the functional layer (light reflecting layer) is formed by bonding in the same manner as the method for forming the functional layer in Example 1. Except for the above, a back sheet was produced in the same manner as in Comparative Example 3, and the same evaluation was performed. The evaluation results are shown in Table 1 below.
  • Example 9 Example 9
  • the PET used as the polymer base material was replaced with PPE or SPP, and both sides of the polymer base material were treated in the same manner as in Example 1 except that the corona treatment was performed under the same conditions as in Comparative Example 3.
  • a back sheet was prepared and evaluated in the same manner. The evaluation results are shown in Table 1 below.
  • Example 11 In Example 1, the white PET provided as the functional layer (light reflecting layer) is replaced with black polyethylene terephthalate (Lumorer X20, manufactured by Toray Industries, Inc .; black PET) having a thickness of 50 ⁇ m, and the design has been improved.
  • a back sheet was prepared in the same manner as in Example 1 except that the adhesive layer was formed, and the adhesion was evaluated.
  • the optical density (OD) was evaluated by the following method. The evaluation results are shown in Table 2 below.
  • Optical Density The optical density (OD) in the visible light region (380-700 nm) was measured with a Macbeth optical densitometer on the obtained backsheet.
  • Example 12 In Example 1, white PET provided as a functional layer (light reflecting layer) was not used, and a black resin layer-forming coating solution having the following composition was applied to the surface on which the PET weather-resistant layer was not formed. Example 1 except that the coating amount was 1.45 g / m 2 and dried at 160 ° C. for 1 minute to form a black resin layer having a dry thickness of 1.3 ⁇ m to form a functional layer. Similarly, a back sheet was produced. Further, in the same manner as in Examples 1 and 10, the adhesiveness and optical density (OD) were evaluated. The evaluation results are shown in Table 2 below.
  • composition of coating solution for forming black resin layer > -Carbon black aqueous dispersion: 159.0 parts (manufactured by Dainichi Seika Co., Ltd.
  • Example 5 Comparative Example 5
  • the polymer layer formed by applying the coating solution for forming the polymer layer was replaced with hydrolysis-resistant PET, and corona treatment was performed on one surface of PET (polymer substrate) under the same conditions as in Comparative Example 3.
  • a back sheet was prepared in the same manner as in Example 11 except that hydrolysis resistant PET was applied to form a weather resistant layer. Further, in the same manner as in Example 11, the adhesiveness and optical density (OD) were evaluated. The evaluation results are shown in Table 2 below.
  • the following polyethylene terephthalate support was used as hydrolysis resistant PET. That is, In the same manner as in “(1) Production of polyethylene terephthalate support (PET)” in Example 1, the above [1] to [2] were carried out to obtain pellets, which were then maintained at 40 Pa. Solid-state polymerization was performed in a vacuum vessel at a temperature of 220 ° C. for 30 hours. And the pellet after passing through solid phase polymerization was melted at 280 ° C. and cast on a metal drum to produce an unstretched base having a thickness of about 3 mm. Thereafter, the film was stretched 3 times in the longitudinal direction at 90 ° C., and further stretched 3.3 times in the transverse direction at 120 ° C. to obtain a biaxially stretched polyethylene terephthalate support having a thickness of 300 ⁇ m. The carboxyl group content of the obtained biaxially stretched polyethylene terephthalate support was 30 equivalent / t.
  • Example 13 In Example 1, white PET provided as a functional layer is replaced with a SiO vapor deposition film, and a corona treatment is performed under the same conditions as in Comparative Example 3 on the side of the PET (polymer substrate) on which the weathering layer is not formed. A back sheet was prepared and evaluated for adhesiveness in the same manner as in Example 1 except that a SiO vapor deposition film was applied to form a functional layer. Further, the water vapor transmission rate was evaluated by the following method. The evaluation results are shown in Table 3 below.
  • the SiO vapor deposition film is a film in which a silicon oxide (SiO) layer is formed on a PET film having a thickness of 100 ⁇ m by a method described in paragraphs 0081 to 0082 of JP-A-2006-297737 (water vapor transmission rate: 0. 0). 005 g / m 2 / day or less) was used.
  • Example 14 Comparative Examples 6 to 7
  • the composite polymer aqueous dispersion P-1 silicone-based binder
  • the composite polymer aqueous dispersions P-2 to P as shown in Table 3 below.
  • a backsheet was prepared and evaluated in the same manner as in Example 13 except that it was changed to ⁇ 5 (both solid content was adjusted to 40% by mass). The evaluation results are shown in Table 3 below.
  • Example 13 the weathering layer formed by coating the coating solution for forming the weathering layer was replaced with an ETFE film having a thickness of 50 ⁇ m (neoflon EF-0050, manufactured by Daikin Industries, Ltd.) on one side of the PET. After performing corona treatment under the same conditions as in Comparative Example 3, the same method as in Example 13 was applied except that the ETFE film was bonded in the same manner as the method for forming the functional layer in Example 1. A back sheet was prepared and subjected to the same evaluation. The evaluation results are shown in Table 3 below.
  • Example 13 the SiO vapor deposition film provided as the functional layer was replaced with an aluminum oxide (Al 2 O 3 ) vapor deposition film or an aluminum foil (Al foil) with a thickness of 30 ⁇ m, and was the same as in Example 13.
  • a back sheet was prepared and evaluated in the same manner. The evaluation results are shown in Table 3 below.
  • Al deposited film aluminum oxide (Al 2 O 3 ) is formed on a PET film having a thickness of 100 ⁇ m by replacing the target from Si to Al in the method described in paragraphs 0081 to 0082 of JP-A-2006-297737. was used (water vapor permeability of 0.005 g / m 2 / day or less).
  • Example 18 In Example 13, in order to provide light reflectivity in addition to moisture resistance, white polyethylene terephthalate (Lumirror E20, manufactured by Toray Industries, Inc .; white PET) having a thickness of 50 ⁇ m was further laminated on the SiO vapor-deposited film. A backsheet was produced and evaluated in the same manner as in Example 13 except that a functional layer composed of layers was formed. The evaluation results are shown in Table 3 below.
  • Example 19 In Example 13, on one surface of PET, a white resin layer-forming coating solution was applied in the same manner as in Example 4 and dried to form a white resin layer. A polymer layer was further formed on the white resin layer. A coating layer is applied and dried to form a polymer layer, thereby providing a two-layer weather-resistant layer, and further on the SiO vapor deposition film formed on the other surface of PET, as in Example 4. A back sheet was prepared in the same manner as in Example 13 except that a white resin layer was formed by applying a white resin layer forming coating solution and drying to form a white resin layer. The same evaluation was performed. The evaluation results are shown in Table 3 below.
  • Comparative Example 9 a back sheet was produced in the same manner as in Comparative Example 8, except that the ETFE film was replaced with white PVF to form a weather resistant layer, and white PVF was further bonded onto the SiO vapor-deposited film. The same evaluation was performed. The evaluation results are shown in Table 3 below.
  • 10 parts of KW75 (made by DIC Corporation; hardening
  • LX660 made by DIC Corporation; main agent
  • Example 20 In Example 1, a coating solution for a fluorine-containing resin layer was further applied on the polymer layer formed as the weather resistant layer so that the binder coating amount was 1.3 g / m 2 , and the temperature was 170 ° C. for 2 minutes.
  • a backsheet was prepared and evaluated for adhesiveness in the same manner as in Example 1 except that it was dried to form a fluorine-containing resin layer having a dry thickness of about 1.6 ⁇ m. The evaluation results are shown in Table 4 below.
  • Example 10 Comparative Example 10
  • the coating solution for forming a weather-resistant layer using the composite polymer aqueous dispersion P-1 sicone-based binder
  • the coating solution for a fluorine-containing resin layer in Example 20 the Example In the same manner as in No. 1, a back sheet was prepared and the adhesion was evaluated.
  • the evaluation results are shown in Table 4 below.
  • Example 1 in order to provide anti-static property or adhesion to the battery-side substrate sealing material (EVA) in addition to light reflectivity, white PET provided on the surface on which the weathering layer of PET is not formed Besides, an antistatic film (Espet film T4100, manufactured by Toyobo Co., Ltd.) or an ethylene vinyl acetate (EVA) sheet (thickness: 100 ⁇ m) is further bonded to form a functional layer consisting of two layers. A back sheet was produced in the same manner as in Example 1, and the same evaluation was performed. The evaluation results are shown in Table 4 below.
  • thermosetting urethane adhesive for bonding of an antistatic film or an EVA sheet, two liquids in which 10 parts of KW75 (manufactured by DIC Corporation; curing agent) are mixed with LX660 (K) (manufactured by DIC Corporation; main agent) as an adhesive A thermosetting urethane adhesive was used.
  • Example 23 In Example 9, the PPE used as the polymer substrate was replaced with a SiO deposited film, The white resin layer of Example 4 was not used on the surface on which the PET weatherproof layer was not formed without using 50 ⁇ m-thick white PET (Lumirror E20, manufactured by Toray Industries, Inc.) used to form the functional layer.
  • the forming coating solution was applied so that the binder coating amount was 4.7 g / m 2 and the titanium dioxide coating amount was 5.6 g / m 2 , dried at 170 ° C. for 2 minutes, and dried to a white thickness of 5.7 ⁇ m.
  • a backsheet was prepared and evaluated in the same manner as in Example 9 except that the resin layer was formed into a functional layer.
  • Example 24 Preparation of polymer substrate- As a polymer substrate, white polyethylene terephthalate containing a white pigment (Lumirror E20, manufactured by Toray Industries, Inc., thickness 50 ⁇ m; white PET) was prepared.
  • white polyethylene terephthalate containing a white pigment Limirror E20, manufactured by Toray Industries, Inc., thickness 50 ⁇ m; white PET
  • primer layer forming coating solution Preparation of primer layer forming coating solution Components in the following composition were mixed to prepare a primer layer forming coating solution.
  • ⁇ Composition of coating solution> ⁇ Polyester binder: 47.7 parts (Vylonal MD-1245, manufactured by Toyobo Co., Ltd., solid content concentration: 30% by mass) ⁇ PMMA fine particles: 10.0 parts (MP-1000, manufactured by Soken Chemical Co., Ltd., solid content concentration: 5% by mass)
  • Nonionic surfactant 15.0 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content concentration: 1% by mass) ⁇ Distilled water ... 927.3 parts
  • primer layer-forming coating solution is applied to one surface of white PET prepared as a polymer substrate so that the binder coating amount is 0.12 g / m 2.
  • the primer treatment was performed after drying for 2 minutes.
  • Example 2 -Formation of polymer layer-
  • the polymer layer-forming coating solution of Example 1 was applied so that the binder coating amount was 2.0 g / m 2 and dried at 180 ° C. for 1 minute to form a weather resistant layer.
  • a polymer layer having a dry thickness of about 2 ⁇ m was formed.
  • a back sheet having a multilayer structure of a weather resistant layer / polymer substrate was produced, and the same evaluation was performed. The evaluation results are shown in Table 4 below.
  • Example 25 In Example 1, white PET (Lumirror E20, manufactured by Toray Industries, Inc.) having a thickness of 50 ⁇ m used for forming the functional layer was not used, and Example 4 was formed on the surface on which the weathering layer of PET was not formed.
  • the white resin layer-forming coating solution was applied so that the binder coating amount was 4.7 g / m 2 and the titanium dioxide coating amount was 5.6 g / m 2, and dried at 170 ° C. for 2 minutes to obtain a dry thickness of 5
  • a backsheet was prepared and evaluated in the same manner as in Example 1 except that a white resin layer of .7 ⁇ m was formed as a functional layer. The evaluation results are shown in Table 4 below.
  • Example 20 in which a fluorine-containing resin layer was provided together with a composite polymer layer containing a composite polymer to form a multilayer structure, better adhesiveness was obtained.
  • a form provided with functionality other than moisture resistance and coloring a form using a colored film having moisture resistance and light reflectivity as a polymer substrate, and a primer as a surface treatment Even when configured in a treated form, the adhesiveness of the weathering layer was not affected, and the change in the adhesiveness of the weathering layer over time with wet heat was suppressed to a small extent, and both showed good adhesiveness. .
  • Examples 26 to 50 3 mm thick tempered glass, EVA sheet (SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.), crystalline solar cell (polycrystalline 3 bus bar cell, 156 mm ⁇ 156 mm, manufactured by Q Cells Co., Ltd.), EVA sheet ( SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd. and any of the backsheets produced in Examples 1 to 25 are superposed in this order and hot-pressed using a vacuum laminator (Nisshinbo Co., Ltd., vacuum laminator). This was adhered to EVA. At this time, the backsheets produced in Examples 1 to 25 were arranged so that the functional layer was in contact with the EVA sheet.
  • a vacuum laminator Neshinbo Co., Ltd., vacuum laminator
  • the adhesion method is as follows. ⁇ Adhesion method> Using a vacuum laminator, evacuation was performed at 128 ° C. for 3 minutes, followed by pressurization for 2 minutes and temporary adhesion. Thereafter, the main adhesion treatment was performed in a dry oven at 150 ° C. for 30 minutes. As described above, a crystalline solar cell module was produced.

Abstract

The purpose of the present invention is to provide a solar cell back sheet that has an excellent interlayer adhesion over time under a high-temperature high-humidity environment and that is manufactured at low cost. This solar cell back sheet has: a polymer substrate (11); a coloring layer (15) containing a colorant, and a metal-containing layer (13) containing a component selected from the group consisting of a metal and a metal compound, provided on one surface of the polymer substrate (11); and a composite polymer layer (17) provided on the other surface of the polymer substrate, the composite polymer layer containing a composite polymer having, in a molecule, 15-85 mass% of siloxane structural units represented by general formula (1) and 85-15 mass% of non-siloxane structural units.

Description

太陽電池用バックシート及びその製造方法、並びに太陽電池モジュールSOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
 本発明は、太陽電池用バックシート及びその製造方法、並びに太陽電池モジュールに関する。 The present invention relates to a solar cell backsheet, a manufacturing method thereof, and a solar cell module.
 太陽電池は、発電時に二酸化炭素の排出がなく環境負荷が小さい発電方式であり、近年急速に普及が進んでいる。 Solar cells are a power generation system that emits no carbon dioxide during power generation and has a low environmental load, and has been rapidly spreading in recent years.
 太陽電池モジュールは、通常、太陽光が入射する側のオモテ面ガラスと、太陽光が入射する側とは反対側(裏面側)に裏面保護用シートとして配置される、いわゆるバックシートとの間に、太陽電池セル(太陽電池素子)が挟まれた構造を有している。オモテ面ガラスと太陽電池セルとの間、及び太陽電池セルとバックシートとの間には、それぞれEVA(エチレン-ビニルアセテート)樹脂などの封止材を配して封止されている。 A solar cell module is usually arranged between a front side glass on the side on which sunlight enters and a so-called back sheet disposed as a back protection sheet on the side opposite to the side on which sunlight enters (back side). The solar battery cell (solar battery element) is sandwiched. A sealing material such as EVA (ethylene-vinyl acetate) resin is disposed between the front surface glass and the solar battery cell and between the solar battery cell and the back sheet.
 バックシートは、太陽電池モジュールの裏面からの水分の浸入を防止する働きを有するもので、従来はガラスやフッ素樹脂等が用いられていたが、近年では、コスト等の観点からポリエステルなどをはじめ種々の樹脂材料が検討されている。裏面保護用シートとして設けられるバックシートは、単なる保護用途としての樹脂シートに留まらず、絶縁性や水分に対するバリア性、着色(意匠性や光反射性等)、各層間の接着性(密着)、寸法安定性、長期に亘る耐久性など、種々の機能が付与されていることが好ましい。
場合がある。このうち、太陽電池モジュールが備えるべき性能として、電池性能、外観、及び長期耐久性に対する要求は高い。
The back sheet has a function of preventing moisture from entering from the back surface of the solar cell module. Conventionally, glass or fluororesin has been used. However, in recent years, various materials such as polyester have been used from the viewpoint of cost. Resin materials have been studied. The back sheet provided as the back surface protection sheet is not limited to a resin sheet as a simple protection application, but also has insulation and barrier properties against moisture, coloring (designability, light reflectivity, etc.), adhesion between layers (adhesion), It is preferable that various functions such as dimensional stability and long-term durability are provided.
There is a case. Among these, as performance that the solar cell module should have, there is a high demand for battery performance, appearance, and long-term durability.
 バックシートに付与される機能として、例えば、酸化チタン等の白色無機粒子を含有させてバックシートに光を反射させる反射機能を持たせることがある。これは、モジュールの太陽光が照射されるオモテ面から入射した太陽光のうち、電池セルを素通りした光を乱反射して、再びセルに戻すことによって発電効率を高め、電池性能の向上に寄与する。このような機能を有する例として、白色無機微粒子が添加された白色ポリエチレンテレフタレートフィルムが開示されている(例えば、特開2003-060218号公報、特開2006-210557号公報参照)。また、白色顔料を含有する白色インキ層を有する裏面保護シートの例が開示されている(例えば、特開2006-210557号公報参照)。 As a function imparted to the back sheet, for example, white inorganic particles such as titanium oxide may be included to give the back sheet a reflection function of reflecting light. This contributes to the improvement of battery performance by increasing the power generation efficiency by irregularly reflecting the light that passes through the battery cell out of the sunlight incident from the front side where the module's sunlight is irradiated and returning it to the cell again. . As an example having such a function, a white polyethylene terephthalate film to which white inorganic fine particles are added is disclosed (see, for example, JP-A Nos. 2003-060218 and 2006-210557). Also, an example of a back surface protection sheet having a white ink layer containing a white pigment is disclosed (for example, see JP-A-2006-210557).
 また、バックシートに装飾性(意匠性)が要求される場合がある。装飾機能を持たせた例として、黒色顔料であるペリレン系顔料を添加して意匠性を改善した太陽電池用バックシートが開示されている(例えば、特開2007-128943号公報参照)。 Also, decorativeness (design) may be required for the backsheet. As an example having a decorative function, a solar cell backsheet having improved design by adding a perylene pigment as a black pigment is disclosed (see, for example, JP-A-2007-128943).
 さらに、前記機能として、接着機能を有していることも不可欠である。以上のような機能を付与するため、バックシートには、支持基材に所望とする機能を有する層が重層された構造が提案されており、種々の機能を持つシートを支持体に貼り合わせる方法が広く採られている。例えば、複数の樹脂フィルムの貼り合わせによりバックシートを形成する方法が開示されている(例えば、特開2002-100788号公報参照)。バックシートが重層構造に形成されている場合、各層間に強固な接着性が得られないときには、水分や熱の影響で剥がれやすく、長期での耐久性を保持できない。 Furthermore, it is indispensable to have an adhesive function as the function. In order to provide the above functions, a structure in which a layer having a desired function is laminated on a support base material has been proposed for the back sheet, and a method of bonding sheets having various functions to the support Is widely adopted. For example, a method of forming a back sheet by bonding a plurality of resin films is disclosed (see, for example, JP-A-2002-1000078). When the back sheet is formed in a multi-layer structure, when strong adhesiveness cannot be obtained between the respective layers, the back sheet is easily peeled off due to the influence of moisture and heat, and long-term durability cannot be maintained.
 また、支持体に色々な機能を持つ層を塗布する方法も開示されている(例えば、特開2006-210557号公報、特開2007-128943号公報、特開2010-212496号公報参照)。更には、白色ポリエステルフィルムに帯電防止剤及びシリコーン化合物を含有する塗布層が設けられた反射板用白色ポリエステルフィルムや、エポキシ樹脂、フェノール樹脂、ビニル共重合体、シロキサン化合物を含有する接着層が有機フィルム上に積層された太陽電池用バックシートに関する開示もある(例えば、特開2008-189828号公報、特開2008-282873号公報参照)。 Also disclosed are methods for applying layers having various functions to the support (see, for example, JP-A-2006-210557, JP-A-2007-128943, and JP-A-2010-212296). Furthermore, the white polyester film for reflectors in which a white polyester film is provided with a coating layer containing an antistatic agent and a silicone compound, and an adhesive layer containing an epoxy resin, a phenol resin, a vinyl copolymer, and a siloxane compound are organic. There is also a disclosure relating to a solar cell backsheet laminated on a film (see, for example, Japanese Patent Application Laid-Open Nos. 2008-189828 and 2008-282873).
 しかしながら、バックシートを構成する各層の接着性(密着)については、従来の技術のみでは必ずしも充分な性能が得られるに至っていない。すなわち、
 上記従来の技術のうち、複数のシートを互いに貼り合わせてバックシートを形成する方法では、コスト高になるほか、貼り合わせに用いられる接着剤が経時で劣化しやすく、徐々に接着性の低下を招く傾向にある。これは、特に高温高湿環境下に曝された場合に顕著に現れる。その一方で、バックシートは、一般に屋外等の水分や熱、光に直接曝される環境下に置かれることが多く、従って長期耐久性の観点から、このような環境条件下でも長期に亘り接着性を安定的に保持できる性能が求められる。
However, with respect to the adhesiveness (adhesion) of each layer constituting the back sheet, sufficient performance has not always been obtained with the conventional technology alone. That is,
Among the above conventional techniques, the method of forming a back sheet by laminating a plurality of sheets to each other increases the cost, and the adhesive used for laminating tends to deteriorate over time, and gradually decreases the adhesiveness. Tend to invite. This is particularly noticeable when exposed to a high temperature and high humidity environment. On the other hand, the back sheet is generally placed in an environment that is directly exposed to moisture, heat, and light, such as outdoors, and therefore, from the viewpoint of long-term durability, it can be bonded for a long time even under such environmental conditions. The ability to stably maintain the properties is required.
 また、従来から塗布による方法も知られているものの、上記従来の構成では、温湿度条件が比較的高い湿熱環境において長期間良好な接着性を保つことは難しい。そのため、貼り合わせより低廉に作製され、しかも、光反射性や意匠性等の諸機能と、温湿度に依存しない長期に亘る接着性とが両立された太陽電池用のバックシートは、未だ提供されるに至っていない。 In addition, although a method by coating is conventionally known, it is difficult to maintain good adhesion for a long period of time in a humid heat environment where the temperature and humidity conditions are relatively high with the above-described conventional configuration. Therefore, a back sheet for a solar cell that has been produced at a lower cost than bonding, and that has various functions such as light reflectivity and designability, and long-term adhesiveness independent of temperature and humidity is still provided. It has not reached.
 また上記のように、シリコーン化合物やシロキサン化合物を含む層が設けられたポリエステルフィルムやバックシートも提案されているが、前者では、帯電防止剤として含有されるカチオンポリマーの耐久性が悪い。また、後者では、シロキサン化合物以外の樹脂や共重合体の耐久性が悪い。そのため、温湿度が比較的高い湿熱環境下において、長期間安定的に接着性を維持することは困難である。 As described above, polyester films and back sheets provided with a layer containing a silicone compound or a siloxane compound have also been proposed, but in the former case, the durability of the cationic polymer contained as an antistatic agent is poor. In the latter case, the durability of the resin or copolymer other than the siloxane compound is poor. Therefore, it is difficult to maintain adhesiveness stably for a long period of time in a humid and hot environment where the temperature and humidity are relatively high.
 本発明は、上記に鑑みなされたものである。すなわち、
 上記状況のもと、高温高湿環境(以下、湿熱環境ともいう)下で経時させたときの層間接着性(特に湿熱環境に曝される最外層の接着性)に優れ、低廉に製造される太陽電池用バックシート及びその製造方法が必要とされている。また、長期に亘って安定した発電性能を発揮する太陽電池モジュールが必要とされている。
The present invention has been made in view of the above. That is,
Under the above circumstances, it is excellent in interlayer adhesion (especially the adhesion of the outermost layer exposed to the wet heat environment) when aged in a high temperature and high humidity environment (hereinafter also referred to as a wet heat environment), and is manufactured at a low cost. There is a need for a solar cell backsheet and method for manufacturing the same. There is also a need for a solar cell module that exhibits stable power generation performance over a long period of time.
 上記の課題を達成するための具体的手段は以下の通りである。
 <1> ポリマー基材と、ポリマー基材の一方面に、着色剤を含有する着色層と、金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層と、ポリマー基材の他方面に、分子中に下記一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを有する複合ポリマーを含有する複合ポリマー層と、を有する太陽電池用バックシートである。
Specific means for achieving the above-described problems are as follows.
<1> A polymer base, a colored layer containing a colorant on one side of the polymer base, a metal-containing layer containing a component selected from the group consisting of a metal and a metal compound, and the other side of the polymer base In the molecule contains a composite polymer having a siloxane structural unit represented by the following general formula (1) having a mass ratio of 15 to 85 mass% and a non-siloxane structural unit having a mass ratio of 85 to 15 mass%. And a composite polymer layer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、R及びRは、各々独立に、水素原子、ハロゲン原子、又は1価の有機基を表し、RとRとは同一でも異なってもよい。nは、1以上の整数を表す。複数のR及びRは各々、互いに同一でも異なってもよい。 In the general formula (1), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different. n represents an integer of 1 or more. The plurality of R 1 and R 2 may be the same as or different from each other.
 <2> 着色剤を含むポリマー基材と、ポリマー基材の一方面に、金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層と、ポリマー基材の他方面に、分子中に一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを有する複合ポリマーを含有する複合ポリマー層と、を有する太陽電池用バックシートである。
 <3> 着色剤が顔料である前記<1>又は前記<2>に記載の太陽電池用バックシートである。
 <4> 着色剤が白色又は黒色の顔料である前記<1>~前記<3>のいずれか1つに記載の太陽電池用バックシートである。
 <5> 着色層が塗布により形成された前記<1>、前記<3>、又は前記<4>に記載の太陽電池用バックシートである。
 <6> 金属及び金属化合物からなる群より選ばれる成分が、箔板状のアルミニウムである前記<1>~前記<5>のいずれか1つに記載の太陽電池用バックシートである。
 <7> 金属及び金属化合物からなる群より選ばれる成分が、アルミニウム酸化物又はケイ素酸化物である前記<1>~前記<5>のいずれか1つに記載の太陽電池用バックシートである。
 <8> 金属含有層が、気相成膜により形成された前記<1>~前記<7>のいずれか1つに記載の太陽電池用バックシートである。
 <9> ポリマー基材は、末端封止剤をポリマー全質量に対して0.1質量%~10質量%の範囲で含有する前記<1>~前記<8>のいずれか1つに記載の太陽電池用バックシートである。
<2> A polymer base material containing a colorant, a metal-containing layer containing a component selected from the group consisting of metals and metal compounds on one side of the polymer base, and the other side of the polymer base in the molecule A composite polymer layer containing a composite polymer having a siloxane structural unit represented by the general formula (1) having a mass ratio of 15 to 85 mass% and a non-siloxane structural unit having a mass ratio of 85 to 15 mass%; It is a solar cell backsheet.
<3> The solar cell backsheet according to <1> or <2>, wherein the colorant is a pigment.
<4> The solar cell backsheet according to any one of <1> to <3>, wherein the colorant is a white or black pigment.
<5> The solar cell backsheet according to <1>, <3>, or <4>, wherein a colored layer is formed by coating.
<6> The solar cell backsheet according to any one of <1> to <5>, wherein the component selected from the group consisting of a metal and a metal compound is foil-like aluminum.
<7> The solar cell backsheet according to any one of <1> to <5>, wherein the component selected from the group consisting of metals and metal compounds is aluminum oxide or silicon oxide.
<8> The solar cell backsheet according to any one of <1> to <7>, wherein the metal-containing layer is formed by vapor deposition.
<9> The polymer base material according to any one of <1> to <8>, wherein the end-capping agent is contained in a range of 0.1% by mass to 10% by mass with respect to the total mass of the polymer. It is a solar cell backsheet.
 <10> ポリマー基材は、表面がコロナ処理、火炎処理、及びグロー放電処理からなる群より選択される方法で処理されている前記<1>~前記<9>のいずれか1つに記載の太陽電池用バックシートである。
 <11> 複合ポリマー層は、更に、複合ポリマーを架橋する架橋剤由来の構造部分を含む前記<1>~前記<10>のいずれか1つに記載の太陽電池用バックシートである。
 <12> 架橋剤が、カルボジイミド化合物又はオキサゾリン化合物である前記<11>に記載の太陽電池用バックシートである。
 <13> 複合ポリマー層中における、複合ポリマーに対する架橋剤由来の構造部分の質量比率が1~30質量%である前記<11>又は前記<12>に記載の太陽電池用バックシートである。
 <14> 非ポリシロキサン系構造単位が、アクリル系構造単位である前記<1>~前記<13>のいずれか1つに記載の太陽電池用バックシートである。
 <15> 金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層をポリマー基材上に形成することと、分子中に一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを有する複合ポリマーを含有する複合ポリマー層をポリマー基材上に塗布により形成することとを有する、前記<1>~前記<14>のいずれか1つに記載の太陽電池用バックシートの製造方法である。
 <16> ポリマー基材を構成するポリマーを含む未延伸の樹脂シートを製膜する製膜ことと、樹脂シートを第1の方向に延伸する第1の延伸ことと、第1の方向に延伸された樹脂シートの少なくとも一方面に、塗布により下塗り層を形成する下塗り層形成ことと、下塗り層が形成された樹脂シートを、第1の方向と直交する第2の方向に延伸する第2の延伸ことと、を有する前記<15>に記載の製造方法である。
 <17> 前記<1>~前記<14>のいずれか1つに記載の太陽電池用バックシート、又は前記<15>又は前記<16>に記載の太陽電池用バックシートの製造方法により製造された太陽電池用バックシートを備えた太陽電池モジュールである。
<10> The polymer substrate according to any one of <1> to <9>, wherein the surface of the polymer substrate is treated by a method selected from the group consisting of corona treatment, flame treatment, and glow discharge treatment. It is a solar cell backsheet.
<11> The solar cell backsheet according to any one of <1> to <10>, wherein the composite polymer layer further includes a structural portion derived from a crosslinking agent that crosslinks the composite polymer.
<12> The solar cell backsheet according to <11>, wherein the crosslinking agent is a carbodiimide compound or an oxazoline compound.
<13> The solar cell backsheet according to <11> or <12>, wherein the mass ratio of the structural portion derived from the crosslinking agent to the composite polymer in the composite polymer layer is 1 to 30% by mass.
<14> The solar cell backsheet according to any one of <1> to <13>, wherein the non-polysiloxane structural unit is an acrylic structural unit.
<15> Forming a metal-containing layer containing a component selected from the group consisting of metals and metal compounds on a polymer substrate, and the mass ratio represented by the general formula (1) in the molecule is 15 to 85 mass And forming a composite polymer layer containing a composite polymer having a% siloxane structural unit and a non-siloxane-based structural unit having a mass ratio of 85 to 15% by mass on a polymer substrate, <1> The method for producing a back sheet for a solar cell according to any one of <14>.
<16> Film formation for forming an unstretched resin sheet containing a polymer constituting the polymer base material, first stretching for stretching the resin sheet in the first direction, and stretching in the first direction Forming an undercoat layer to form an undercoat layer on at least one surface of the obtained resin sheet, and extending the resin sheet on which the undercoat layer is formed in a second direction orthogonal to the first direction. It is a manufacturing method as described in said <15> which has.
<17> The solar cell backsheet according to any one of <1> to <14>, or the solar cell backsheet according to <15> or <16>. The solar cell module provided with the back sheet for solar cells.
 太陽電池モジュールは、太陽光が入射する透明性のフロント基板と、フロント基板の上に設けられ、太陽電池素子及び太陽電池素子を封止する封止材を有するセル構造部分と、セル構造部分のフロント基板が位置する側と反対側に設けられ、封止材と隣接して配置された、前記<1>~前記<14>のいずれか1つに記載の太陽電池用バックシート又は前記<15>又は前記<16>に記載の太陽電池用バックシートの製造方法により製造された太陽電池用バックシートと、を備えた構成であってもよい。 A solar cell module includes a transparent front substrate on which sunlight is incident, a cell structure portion provided on the front substrate and having a solar cell element and a sealing material for sealing the solar cell element, and a cell structure portion The solar cell backsheet according to any one of <1> to <14>, provided on the side opposite to the side on which the front substrate is located and disposed adjacent to the sealing material, or the <15 > Or a solar cell backsheet produced by the method for producing a solar cell backsheet described in <16>.
 本発明によれば、高温高湿環境下で経時させたときの層間接着性(特に湿熱環境に曝される最外層の接着性)に優れ、低廉に製造される太陽電池用バックシート及びその製造方法が提供される。また、
 本発明によれば、長期に亘って安定した発電性能を発揮する太陽電池モジュールが提供される。
According to the present invention, a solar cell backsheet that is excellent in interlayer adhesion (especially the adhesion of the outermost layer that is exposed to a moist heat environment) when aged in a high temperature and high humidity environment, and that is manufactured at low cost. A method is provided. Also,
ADVANTAGE OF THE INVENTION According to this invention, the solar cell module which exhibits the stable electric power generation performance over a long term is provided.
本発明の第1の態様に係る太陽電池用バックシートの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the solar cell backsheet which concerns on the 1st aspect of this invention. 本発明の第2の態様に係る太陽電池用バックシートの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the solar cell backsheet which concerns on the 2nd aspect of this invention.
 以下、本発明の太陽電池用バックシート及びその製造方法、並びにこれを用いた太陽電池モジュールについて詳細に説明する。 Hereinafter, the back sheet for a solar cell according to the present invention, a method for producing the back sheet, and a solar cell module using the back sheet will be described in detail.
<太陽電池用バックシート及びその製造方法>
 本発明の太陽電池用バックシートは、太陽電池素子(太陽電池セル)が封止材で封止された電池側基板(好ましくは封止剤)と接触させて配置される太陽電池用裏面保護シートであり、着色剤と金属及び金属化合物からなる群より選ばれる成分とポリマーを用いた機能性要素(すなわち着色剤や金属成分を含む機能性の層やポリマー基材)と、特定のシロキサン構造単位を有する複合ポリマーを含む複合ポリマー層とを有している。具体的には、(1)本発明の第1の態様の太陽電池用バックシートは、
 ポリマー基材と、
 ポリマー基材の一方面に設けられた、着色剤を含有する着色層と、金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層と、
 ポリマー基材の他方面に設けられた、分子中に以下に示す一般式(1)で表される特定のシロキサン構造単位(ポリマー全質量に対して15~85質量%)及び非シロキサン系構造単位(ポリマー全質量に対して85~15質量%)を有する複合ポリマーを含有する複合ポリマー層と、
で構成されている。
 また、(2)本発明の第2の態様の太陽電池用バックシートは、
 着色剤を含むポリマー基材と、
 ポリマー基材の一方面に設けられた、金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層と、
 ポリマー基材の他方面に設けられた、分子中に下記一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを有する複合ポリマーを含有する複合ポリマー層と、
で構成されている。
 これらの太陽電池用バックシートは、必要に応じて、更に、複合ポリマー層以外の他の層が設けられた構成を有していてもよい。
<Back sheet for solar cell and manufacturing method thereof>
The back sheet for solar cell of the present invention is a back protective sheet for solar cell that is disposed in contact with a battery side substrate (preferably encapsulant) in which solar cell elements (solar cells) are sealed with a sealing material. A functional element using a polymer and a component selected from the group consisting of a colorant, a metal and a metal compound (that is, a functional layer or a polymer substrate containing a colorant or a metal component), and a specific siloxane structural unit And a composite polymer layer including a composite polymer having Specifically, (1) the solar cell backsheet of the first aspect of the present invention comprises:
A polymer substrate;
A colored layer containing a colorant provided on one side of the polymer substrate, a metal-containing layer containing a component selected from the group consisting of metals and metal compounds,
Specific siloxane structural units (15 to 85% by mass based on the total mass of the polymer) represented by the following general formula (1) in the molecule and non-siloxane structural units provided on the other surface of the polymer substrate A composite polymer layer containing a composite polymer having (85-15% by weight based on the total polymer weight);
It consists of
Further, (2) the solar cell backsheet of the second aspect of the present invention comprises:
A polymer substrate comprising a colorant;
A metal-containing layer containing a component selected from the group consisting of a metal and a metal compound provided on one surface of the polymer substrate;
Provided on the other surface of the polymer substrate, a siloxane structural unit having a mass ratio of 15 to 85 mass% represented by the following general formula (1) in the molecule and a non-siloxane structure having a mass ratio of 85 to 15 mass% A composite polymer layer containing a composite polymer having units;
It consists of
These solar cell backsheets may have a configuration in which layers other than the composite polymer layer are further provided as necessary.
 太陽電池用バックシートに求められる諸機能のうち、特に電池性能、外観、及び長期耐久性は、太陽電池の長期性能を確保する上で重要であるが、従来から提案されている技術の多くは、耐候性のフィルムや着色フィルムを接着剤で貼り合わせ、耐久性や意匠性を付与している。貼り合わせに用いられる接着剤は、湿熱環境で劣化し易い場合があり、また貼合はコスト的に有利とも言い難い。
 また、貼り合わせ以外には、フッ素含有樹脂等を用いた溶剤系塗布液で耐候性の層を塗布形成する技術が知られている。フッ素含有樹脂等を用いた塗布では、塗膜自身が耐性である分の耐久性の向上効果は期待されるが、その接着性を湿熱環境下で安定的に保ち難く、比較的短期間のうちに剥がれを生じてしまう傾向がある。
 上記のような事情のもと、本発明においては、特に着色に関わる機能(光反射性や意匠性(外観)等)及び/又は防湿機能をそなえた機能性要素である着色層や金属含有層、着色等されたポリマー基材と、接着性(密着)が良好で耐候性に優れる複合ポリマー層とを設けた構成とする。具体的には、バックシートを支持するポリマー基材又はその一方面に設けられる層に、着色剤や金属及び金属化合物からなる群より選ばれる成分を含めて機能性を持たせると共に、ポリマー基材の他方面に、バックシートの構成層である複合ポリマー層を設け、この複合ポリマー層を、分子内に非シロキサン系構造単位と(ポリ)シロキサン構造単位を含む特定の複合ポリマーを用いて好ましくは塗布形成することで、湿熱環境下での耐久性に劣る接着剤量が低減され、ひいては熱や水分による劣化が抑えられる。
 これにより、諸機能を付与しながら、熱や水分に長時間曝される湿熱環境下において、長期に亘り接着強度を高く保つことができ、長期耐久性を確保することができる。また、太陽電池モジュールを作製したときには、良好な発電性能が得られると共に、長期に亘り発電効率を安定に保つことができる。
 ここで、上記の諸機能には、太陽電池セルを素通りした入射光を反射してセルに戻すことで発電効率を高める光反射機能や、意匠性付与(外観良化)機能、設置環境中の水分に対する耐湿機能が含まれる。また、太陽電池用バックシートとしては、上記に加え、帯電防止性、寸法安定性、絶縁性などの機能を有していることが好ましい。
 本明細書中において、上記のような機能を有する層を総じて「機能性層」ともいう。
Of the various functions required for solar cell backsheets, battery performance, appearance, and long-term durability are particularly important for ensuring the long-term performance of solar cells. A weather-resistant film or a colored film is bonded with an adhesive to impart durability and design. The adhesive used for the bonding may be easily deteriorated in a wet heat environment, and the bonding is difficult to say in terms of cost.
In addition to bonding, a technique for coating and forming a weather-resistant layer with a solvent-based coating solution using a fluorine-containing resin or the like is known. In the application using fluorine-containing resin, etc., the durability improvement effect is expected as long as the coating film itself is resistant, but it is difficult to keep its adhesion stably in a humid heat environment, and within a relatively short period of time Tend to peel off.
Under the circumstances as described above, in the present invention, a colored layer or a metal-containing layer, which is a functional element having a function relating to coloring (light reflectivity, designability (appearance), etc.) and / or a moisture-proof function. In addition, a colored polymer base material and a composite polymer layer having good adhesion (adhesion) and excellent weather resistance are provided. Specifically, the polymer base material supporting the back sheet or the layer provided on one side thereof is provided with functionality including a component selected from the group consisting of a colorant, a metal and a metal compound, and the polymer base material. A composite polymer layer that is a constituent layer of the backsheet is provided on the other side of the substrate, and this composite polymer layer is preferably formed using a specific composite polymer containing a non-siloxane structural unit and a (poly) siloxane structural unit in the molecule. By coating and forming, the amount of adhesive that is inferior in durability under a humid heat environment is reduced, and as a result, deterioration due to heat and moisture is suppressed.
Thereby, while providing various functions, the adhesive strength can be kept high for a long period of time in a humid heat environment exposed to heat and moisture for a long time, and long-term durability can be ensured. Moreover, when a solar cell module is produced, good power generation performance can be obtained, and power generation efficiency can be kept stable over a long period of time.
Here, the above-mentioned various functions include a light reflection function that increases the power generation efficiency by reflecting incident light that has passed through the solar battery cell and returning it to the cell, a design imparting (appearance improving) function, and an installation environment. Includes moisture resistance against moisture. In addition to the above, the solar cell backsheet preferably has functions such as antistatic properties, dimensional stability, and insulating properties.
In the present specification, layers having the above functions are also collectively referred to as “functional layers”.
 本発明の太陽電池用バックシート(以下、単に「バックシート」ともいう。)は、図1に示すように、ポリマー基材11の一方面に、第1の機能性層(1)(例えば金属含有層)13と、第2の機能性層(例えば着色層)15とを有し、他方面に複合ポリマー層17を有する態様(第1の態様)、又は図2に示すように、着色剤を含めて機能性が付与されたポリマー基材21の一方面に、機能性層(1)として金属含有層13を有し、他方面に複合ポリマー層27を有する態様(第2の態様)に構成することができる。 As shown in FIG. 1, the solar cell backsheet of the present invention (hereinafter also simply referred to as “backsheet”) has a first functional layer (1) (for example, metal) on one surface of a polymer substrate 11. Content layer) 13 and a second functional layer (for example, a colored layer) 15, an aspect having the composite polymer layer 17 on the other side (first aspect), or a colorant as shown in FIG. In an embodiment (second embodiment) having the metal-containing layer 13 as the functional layer (1) on one side of the polymer base material 21 to which the functionality is imparted, and the composite polymer layer 27 on the other side. Can be configured.
 具体的には、本発明の第1の態様は、少なくとも、支持基材としてのポリマー基材である樹脂フィルム(又はシート)と、この上に機能性層として配置される、着色剤含有の着色層と、金属及び/又は金属化合物を含めて防湿性を示す防湿性層とで構成されてもよい。この場合、着色剤として、例えば白色系顔料を用いたときには、光反射性が付与されたバックシートが得られ、また例えば黒色系顔料を用いたときには、黒色層で外観(意匠性)が改善されたバックシートが得られる。着色層や金属含有層には、更に絶縁性、帯電防止性、寸法安定性などの他の機能をも持たせることができる。この場合、絶縁性は、ポリマー基材の厚みを適宜調節することにより付与することができる。帯電防止性は、例えば、アンチモンドープ酸化スズ(TWU-1、三菱マテリアル電子化成(株)製)などを含めることにより付与することができる。また、寸法安定性は、ポリマーの熱収縮に影響するため、ポリマー基材となるフィルム成膜後の熱処理により調節することができる。
 これにより、さらに他の機能をも発揮する着色層や防湿性層が得られる。この場合、機能性層は、着色剤を含む着色層及び/又は金属等を含む防湿性層とともに帯電防止層等を重ねて2層以上に構成されていてもよい。
Specifically, in the first aspect of the present invention, at least a resin film (or sheet) which is a polymer substrate as a supporting substrate, and a coloring agent-containing coloring disposed as a functional layer thereon You may be comprised by the layer and the moisture-proof layer which shows moisture resistance including a metal and / or a metal compound. In this case, for example, when a white pigment is used as the colorant, a back sheet with light reflectivity is obtained, and when a black pigment is used, for example, the appearance (designability) is improved with the black layer. A back sheet is obtained. The colored layer and the metal-containing layer can further have other functions such as insulating properties, antistatic properties, and dimensional stability. In this case, the insulating property can be imparted by appropriately adjusting the thickness of the polymer substrate. The antistatic property can be imparted by including, for example, antimony-doped tin oxide (TWU-1, manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.). In addition, since the dimensional stability affects the thermal shrinkage of the polymer, it can be adjusted by a heat treatment after film formation as a polymer substrate.
Thereby, the colored layer and moisture-proof layer which also exhibit other functions are obtained. In this case, the functional layer may be composed of two or more layers by overlapping an antistatic layer or the like together with a colored layer containing a colorant and / or a moisture-proof layer containing a metal or the like.
 また、本発明の第2の態様では、着色剤をポリマー中に練りこむ等により着色剤(例えば顔料)がポリマー中に分散された着色剤含有の着色フィルム又はシート(板状の着色ポリマー基材)と、金属及び/又は金属化合物(例えば金属酸化物)を含む防湿性が付与された防湿性層とで構成されてもよい。着色剤として、例えば白色系顔料を用いたときには、光反射機能を持つポリマー基材が得られ、また例えば黒色系顔料を用いたときには、バックシート外観における装飾性(意匠性)が改善されたポリマー基材が得られる。この場合、溶融押出機等で溶融混練される溶融樹脂中に顔料等や金属等を混合して押出し、フィルム(又はシート)状に成形する等により作製することができる。 In the second embodiment of the present invention, a colorant-containing colored film or sheet (plate-shaped colored polymer substrate) in which a colorant (for example, a pigment) is dispersed in the polymer by kneading the colorant into the polymer or the like. ) And a moisture-proof layer provided with moisture-proof properties including a metal and / or a metal compound (for example, metal oxide). For example, when a white pigment is used as the colorant, a polymer substrate having a light reflecting function is obtained. When a black pigment is used, for example, a polymer having improved decorativeness (design) in the appearance of the back sheet A substrate is obtained. In this case, it can be produced by mixing and extruding a pigment or a metal into a molten resin that is melt-kneaded by a melt extruder or the like and forming it into a film (or sheet) shape.
 更に、本発明におけるポリマー基材には、着色及び防湿性以外に、絶縁性、帯電防止性、寸法安定性などの他の機能を持たせることもできる。 Furthermore, the polymer base material in the present invention may have other functions such as insulation, antistatic properties, and dimensional stability in addition to coloring and moisture resistance.
 着色層や金属含有層は、
 (1)着色剤や金属及び/又は金属化合物などを含む塗布液の塗布により形成された塗布層、又は、
 (2)着色剤や金属及び/又は金属化合物などを含むフィルムもしくはシート、又は箔板を貼合して形成される層
 (3)気相成膜された層
のいずれに構成されてもよい。中でも、着色剤を含有する着色層は、接着性の点で(1)で構成されていることが好ましく、金属及び/又は金属化合物を含有する金属含有層は、(3)で構成されていることが好ましい。
Colored layers and metal-containing layers
(1) A coating layer formed by coating a coating solution containing a colorant, metal and / or metal compound, or
(2) A film or sheet containing a colorant, a metal and / or a metal compound, or a layer formed by laminating a foil plate (3) A layer formed by vapor phase deposition may be used. Among them, the colored layer containing a colorant is preferably composed of (1) in terms of adhesiveness, and the metal-containing layer containing a metal and / or a metal compound is composed of (3). It is preferable.
 前記(1)において、塗布により層形成する場合、着色された着色層を設けるときには、本発明のバックシートは、樹脂フィルム(又はシート)等の板状のポリマー基材と、機能性層として、該基材上に塗布形成された顔料等の着色剤を含有する着色層とを含む重層構造であってもよい。この場合、ポリマー基材上に、顔料等の着色剤が分散含有された塗布液を所望の方法で塗布、乾燥させて着色層を形成することにより作製することができる。 In the above (1), when a layer is formed by coating, when providing a colored layer, the back sheet of the present invention is a plate-like polymer substrate such as a resin film (or sheet), and a functional layer. A multi-layer structure including a colored layer containing a colorant such as a pigment applied and formed on the substrate may be used. In this case, it can be produced by forming a colored layer by applying and drying a coating solution containing a colorant such as a pigment in a desired manner on a polymer substrate.
(着色層)
 着色層は、少なくとも着色剤を含有し、さらにバインダーや界面活性剤等の他の成分を用いて構成されている。
(Colored layer)
The colored layer contains at least a colorant, and is composed of other components such as a binder and a surfactant.
 着色剤としては、顔料及び染料等を用いることができ、耐候性の点で顔料が好ましい。
 顔料としては、例えば、二酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク、群青、紺青、カーボンブラック等の無機顔料、フタロシアニンブルー、フタロシアニングリーン等の有機顔料を、適宜選択して含有することができる。
As the colorant, pigments and dyes can be used, and pigments are preferable in terms of weather resistance.
Examples of the pigment include inorganic pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, ultramarine blue, bitumen, and carbon black, and organic pigments such as phthalocyanine blue and phthalocyanine green. It can be appropriately selected and contained.
 顔料のうち、機能性層を、太陽電池のオモテ面から入射して太陽電池セルを通過した光を反射して太陽電池セルに戻す反射層として構成する場合、白色系顔料が好ましい。白色系顔料としては、二酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク等の無機顔料が好ましい。
 また、外観を良くするため機能性層に意匠性を付与する場合、顔料として黒色系顔料が好ましい。黒色系顔料としては、カーボンブラック等の無機顔料が好ましい。
Among the pigments, when the functional layer is configured as a reflective layer that reflects light that has entered the front surface of the solar cell and passed through the solar cell and returned to the solar cell, a white pigment is preferable. As the white pigment, inorganic pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin and talc are preferable.
Moreover, when giving designability to a functional layer in order to improve an external appearance, a black pigment is preferable as a pigment. As the black pigment, an inorganic pigment such as carbon black is preferable.
 顔料の機能性層中における含有量は、2.5~8.5g/mの範囲が好ましい。顔料の含有量が2.5g/m以上であると、必要な着色が得られ、反射率や装飾性を効果的に与えることができる。また、顔料の機能性層中における含有量が8.5g/m以下であると、機能性層の面状を良好に維持しやすく、膜強度により優れる。中でも、顔料の含有量は、4.5~8.0g/mの範囲がより好ましい。 The content of the pigment in the functional layer is preferably in the range of 2.5 to 8.5 g / m 2 . When the pigment content is 2.5 g / m 2 or more, necessary coloring can be obtained, and reflectance and decorative properties can be effectively provided. Further, when the content of the pigment in the functional layer is 8.5 g / m 2 or less, the surface shape of the functional layer is easily maintained and the film strength is excellent. In particular, the pigment content is more preferably in the range of 4.5 to 8.0 g / m 2 .
 顔料の平均粒径としては、体積平均粒径で0.03~0.8μmが好ましく、より好ましくは0.15~0.5μm程度である。平均粒径が前記範囲内であると、白色系顔料を用いた系では光の反射効率が高く、また黒色系顔料を用いたときには意匠性に優れる。平均粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。 The average particle diameter of the pigment is preferably 0.03 to 0.8 μm in volume average particle diameter, more preferably about 0.15 to 0.5 μm. When the average particle size is within the above range, the light reflection efficiency is high in the system using the white pigment, and the design is excellent when the black pigment is used. The average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
 塗布層である着色層の厚みは、特に制限されるものではないが、塗膜の強度を確保しつつ、効果的に反射率や装飾性を付与する観点から、2~30μmの範囲が好ましく、より好ましくは4~20μmである。 The thickness of the colored layer that is the coating layer is not particularly limited, but is preferably in the range of 2 to 30 μm from the viewpoint of effectively imparting reflectance and decorativeness while ensuring the strength of the coating film. More preferably, it is 4 to 20 μm.
 また、防湿性を付与した機能性層を設ける場合は、本発明のバックシートは、ポリエチレンテレフタレート(PET)フィルム等にシリカ又はアルミナ等の無機酸化物をコーティングした透明フィルム、あるいはこの透明フィルム2枚をそのコーティング面同士を貼り合わせてなる積層フィルム等を備えたものが挙げられる。 When a functional layer imparted with moisture resistance is provided, the backsheet of the present invention is a transparent film obtained by coating a polyethylene terephthalate (PET) film or the like with an inorganic oxide such as silica or alumina, or two transparent films. Are provided with a laminated film formed by bonding the coating surfaces together.
 塗布は、例えば、グラビアコータやロールコータ、バーコータ等を利用した塗布方法により好適に行なえる。 Application can be suitably performed by, for example, an application method using a gravure coater, roll coater, bar coater or the like.
 前記(2)において、貼合により層形成する場合、着色された機能性層を設けるときには、本発明のバックシートは、樹脂フィルム(又はシート)等の板状のポリマー基材と、機能性層として、顔料等の着色剤を含有する板状の着色ポリマー基材とを含む重層構造であってもよい。
 ここでの着色ポリマー基材には、顔料等の着色剤をポリマー中に練り込んで板状に成形したもの等が含まれる。例えば、溶融押出機で溶融混練される溶融ポリマー中に顔料等の着色剤を添加して溶融押出し、フィルム(又はシート)状に成形等することで作製されたものでもよい。着色ポリマー基材としては、上市されている市販品を用いてもよく、例えば、東レ(株)製のルミラーE20(白色ポリエチレンテレフタレート)、ルミラーX20(黒色ポリエチレンテレフタレート)等を用いることができる。
In the above (2), when forming a layer by bonding, when providing a colored functional layer, the back sheet of the present invention comprises a plate-like polymer substrate such as a resin film (or sheet), and a functional layer. As a multilayer structure including a plate-like colored polymer substrate containing a colorant such as a pigment.
The colored polymer substrate here includes a material obtained by kneading a colorant such as a pigment into a polymer and forming it into a plate shape. For example, it may be produced by adding a colorant such as a pigment to a melted polymer melt-kneaded by a melt extruder, melt-extruding, and forming into a film (or sheet) shape. As the colored polymer substrate, commercially available products may be used. For example, Lumirror E20 (white polyethylene terephthalate), Lumirror X20 (black polyethylene terephthalate) manufactured by Toray Industries, Inc. can be used.
 板状の着色ポリマー基材の厚みは、貼り合わせられるポリマー基材の厚みにも依存するため、特に制限されるものではないが、10~400μmの範囲が好ましい。 The thickness of the plate-like colored polymer substrate is not particularly limited because it depends on the thickness of the polymer substrate to be bonded, but is preferably in the range of 10 to 400 μm.
 また、ポリマー基材上に金属含有層を設けることにより防湿性を付与する場合、本発明のバックシートは、板状のポリマー基材と、機能層として金属薄板や金属層とを含む重層構造とすることができる。金属薄板としては、箔板状のアルミニウム(例えばアルミニウム箔)を設けて構成されたものでもよい。また、金属層としては、金属及び/又は金属化合物を気相成膜(例えば化学蒸着)してなる水蒸気バリア層(例えば、金属蒸着膜や金属酸化物の蒸着膜)を設けて構成することができる。 In addition, when providing moisture resistance by providing a metal-containing layer on a polymer substrate, the backsheet of the present invention has a multi-layer structure including a plate-like polymer substrate and a metal thin plate or a metal layer as a functional layer. can do. The metal thin plate may be configured by providing foil plate-like aluminum (for example, aluminum foil). In addition, the metal layer may be configured by providing a water vapor barrier layer (for example, a metal vapor deposition film or a metal oxide vapor deposition film) formed by vapor deposition (for example, chemical vapor deposition) of a metal and / or a metal compound. it can.
(金属含有層)
 金属としては、成膜したときに水分透過が抑えられ、好ましくは40℃、相対湿度90%における水蒸気透過率が0.005g/m/day以下であるものから選択される。金属の例としては、防湿性の点で、Si、Al、In、Sn、Zn、Ti、Cu、Ce、Ta等からなる群より選ばれる1以上が挙げられる。また、金属化合物としては、例えば、酸化アルミニウム(Al)等のアルミニウム酸化物、酸化ケイ素(SiO、SiO等のSiO)等のケイ素酸化物、酸化インジウム(InO)等が挙げられる。
 水蒸気透過率は、より好ましくは0.001g/m/day以下である。
(Metal-containing layer)
The metal is selected from those which can suppress moisture permeation at the time of film formation and have a water vapor transmission rate of 0.005 g / m 2 / day or less at 40 ° C. and 90% relative humidity. Examples of the metal include one or more selected from the group consisting of Si, Al, In, Sn, Zn, Ti, Cu, Ce, Ta and the like in terms of moisture resistance. Examples of the metal compound include aluminum oxide such as aluminum oxide (Al 2 O 3 ), silicon oxide such as silicon oxide (SiO x such as SiO and SiO 2 ), indium oxide (InO 2 ), and the like. It is done.
The water vapor transmission rate is more preferably 0.001 g / m 2 / day or less.
 金属含有層の形成方法としては、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマCVD法などの気相成膜法が適している。具体的には、特許第3400324号、特開2002-322561号、特開2002-361774号等の公報に記載の形成方法を採用することができる。 As a method for forming the metal-containing layer, for example, a vapor deposition method such as a sputtering method, a vacuum deposition method, an ion plating method, or a plasma CVD method is suitable. Specifically, the forming methods described in Japanese Patent Nos. 3434344, 2002-322561, 2002-361774, and the like can be employed.
 貼り合わせによる場合、金属含有層は、例えば所望の機能を持つフィルム(又はシート)を接着剤で接着させることにより設けられる。接着剤は、特に制限されるものではなく、例えば、主剤に硬化剤を混合して得られる接着剤(例:主剤であるLX660(K)(DIC(株)製)に硬化剤としてKW75(DIC(株)製)を混合した2液熱硬化型のウレタン系接着剤)等を用いることができる。 In the case of bonding, the metal-containing layer is provided, for example, by adhering a film (or sheet) having a desired function with an adhesive. The adhesive is not particularly limited. For example, an adhesive obtained by mixing a curing agent with a main agent (eg, LX660 (K) (manufactured by DIC Corporation) as a main agent is used as a curing agent with KW75 (DIC). A two-component thermosetting urethane adhesive) and the like mixed with (made by Co., Ltd.) can be used.
 貼合形成する金属含有層の厚みは、貼り合わせられるポリマー基材の厚みにも依存するため、特に制限されるものではなく、着色や防湿等の程度により適宜選択されるものである。例えば、気相成膜される金属含有層の厚みは、その水蒸気に対する防湿性の点で、10nm以上500nmが好ましい。 The thickness of the metal-containing layer to be bonded is also not particularly limited because it depends on the thickness of the polymer base material to be bonded, and is appropriately selected depending on the degree of coloring, moisture resistance, and the like. For example, the thickness of the metal-containing layer formed by vapor deposition is preferably 10 nm or more and 500 nm from the viewpoint of moisture resistance against water vapor.
 貼り合わせによる場合も、本発明におけるポリマー基材には、更に、絶縁性、帯電防止性、寸法安定性などの他の機能を付与することができる。この場合、上記のように、ポリマー基材中又は着色層や金属含有層中に例えば帯電防止剤等を併用するほか、本発明における着色層や金属含有層とは別に、例えば着色層や金属含有層の上に更に帯電防止剤等を含有する層が重層されてもよい。 Also in the case of bonding, the polymer base material in the present invention can be further imparted with other functions such as insulation, antistatic properties, and dimensional stability. In this case, as described above, in addition to the use of, for example, an antistatic agent in the polymer base material or the colored layer or the metal-containing layer, in addition to the colored layer or the metal-containing layer in the present invention, for example, the colored layer or the metal-containing layer. A layer containing an antistatic agent or the like may be further laminated on the layer.
 本発明のバックシートの1つの例は、ポリマー基材側からみて、水蒸気バリア層(金属含有層)/反射層(白色層)又は意匠性層(黒色層)(いずれも着色層)の重層構造を有する構成である。 One example of the backsheet of the present invention is a multilayer structure of a water vapor barrier layer (metal-containing layer) / reflective layer (white layer) or a design layer (black layer) (both colored layers) as seen from the polymer substrate side. It is the structure which has.
-ポリマー基材-
 本発明のバックシートは、ポリマー基材を設けて構成されている。
 ポリマー基材を形成するポリマー成分としては、ポリエステル、ポリプロピレンやポリエチレンなどのポリオレフィン、ポリフェニレンエーテル、ポリスチレン、又はポリフッ化ビニルなどのフッ素系ポリマー等が挙げられる。これらの中では、ポリエステル、ポリフェニレンエーテル、シンジオタクチックポリスチレンが好ましく、コストや機械強度などの点から、ポリエステルが好ましい。
-Polymer substrate-
The back sheet of the present invention is configured by providing a polymer substrate.
Examples of the polymer component forming the polymer substrate include polyesters, polyolefins such as polypropylene and polyethylene, polyphenylene ethers, polystyrenes, and fluorine-based polymers such as polyvinyl fluoride. Among these, polyester, polyphenylene ether, and syndiotactic polystyrene are preferable, and polyester is preferable from the viewpoint of cost and mechanical strength.
 ポリマー基材(支持基材)に用いられるポリエステルとしては、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とから合成される線状飽和ポリエステルである。かかるポリエステルの具体例としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレートなどを挙げることができる。このうち、力学的物性やコストのバランスの点で、ポリエチレンテレフタレート又はポリエチレン-2,6-ナフタレートが特に好ましい。 The polyester used for the polymer substrate (support substrate) is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof. Specific examples of such polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate and the like. Of these, polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable from the viewpoint of balance between mechanical properties and cost.
 ポリエステルは、単独重合体であってもよいし、共重合体であってもよい。更に、ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。 The polyester may be a homopolymer or a copolymer. Further, polyester may be blended with a small amount of other types of resins such as polyimide.
 本発明におけるポリエステルを重合する際には、カルボキシル基含量を所定の範囲以下に抑える観点から、アンチモン(Sb)系、ゲルマニウム(Ge)系、チタン(Ti)系の化合物を触媒として用いることが好ましく、中でも特にTi系化合物が好ましい。Ti系化合物を用いる場合、Ti系化合物をTi元素換算値が1ppm以上30ppm以下、より好ましくは3ppm以上15ppm以下の範囲となるように触媒として用いることにより重合する態様が好ましい。Ti系化合物の使用量がTi元素換算で前記範囲内であると、ポリエステルに存在する末端カルボキシル基を下記範囲に調整することが可能であり、ポリマー基材の耐加水分解性を低く保つことができる。 When polymerizing the polyester in the present invention, it is preferable to use an antimony (Sb) -based, germanium (Ge) -based, or titanium (Ti) -based compound as a catalyst from the viewpoint of keeping the carboxyl group content below a predetermined range. Of these, Ti compounds are particularly preferred. In the case of using a Ti-based compound, an embodiment is preferred in which the Ti-based compound is polymerized by using it as a catalyst so that the Ti element conversion value is in the range of 1 ppm to 30 ppm, more preferably 3 ppm to 15 ppm. If the amount of Ti compound used is within the above range in terms of Ti element, it is possible to adjust the terminal carboxyl group present in the polyester to the following range, and to keep the hydrolysis resistance of the polymer substrate low. it can.
 Ti系化合物を用いたポリエステルの合成には、例えば、特公平8-301198号公報、特許第2543624号、特許第3335683号、特許第3717380号、特許第3897756号、特許第3962226号、特許第3979866号、特許第3996871号、特許第4000867号、特許第4053837号、特許第4127119号、特許第4134710号、特許第4159154号、特許第4269704号、特許第4313538号等に記載の方法を適用できる。 Examples of the synthesis of polyester using a Ti compound include Japanese Patent Publication No. 8-301198, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 3897756, Japanese Patent No. 396226, and Japanese Patent No. 39786666. No. 3, Patent No. 3,996,871, Patent No. 40000867, Patent No. 4053837, Patent No. 4,127,119, Patent No. 4,134,710, Patent No. 4,159,154, Patent No. 4,269,704, Patent No. 4,313,538 and the like can be applied.
 ポリエステル中のカルボキシル基含量は、55当量/t(トン;以下同様)以下が好ましく、より好ましくは35当量/t以下である。カルボキシル基含量の下限は、ポリエステルに形成される層(例えば着色層)との間の接着性を保持する点で、2当量/tが望ましい。カルボキシル基含量が55当量/t以下であると、耐加水分解性を保持し、湿熱経時したときの強度低下を小さく抑制することができる。
 ここで、「カルボキシル基含量」は、ポリエステルがその分子構造の末端に有するカルボンキシ基(-COOH)の量を意味する。なお、「当量/t」は、1トンあたりのモル当量を表す。
 ポリエステル中のカルボキシル基含量は、重合触媒種、製膜条件(製膜温度や時間)により調整することが可能である。
 本明細書におけるカルボキシル基含量は、H. A. Pohl, Anal. Chem. 26 (1954) p.2145に記載の方法にしたがって、滴定法にて測定される値である。
The carboxyl group content in the polyester is preferably 55 equivalents / t (tons; the same shall apply hereinafter) or less, more preferably 35 equivalents / t or less. The lower limit of the carboxyl group content is preferably 2 equivalents / t in terms of maintaining adhesion between the layer formed on the polyester (for example, a colored layer). When the carboxyl group content is 55 equivalents / t or less, hydrolysis resistance can be maintained, and a decrease in strength when subjected to wet heat aging can be suppressed to be small.
Here, “carboxyl group content” means the amount of the carboxyl group (—COOH) that the polyester has at the end of its molecular structure. “Equivalent / t” represents a molar equivalent per ton.
The carboxyl group content in the polyester can be adjusted by the polymerization catalyst species and the film forming conditions (film forming temperature and time).
The carboxyl group content in this specification is a value measured by a titration method according to the method described in H. A. Pohl, Anal. Chem. 26 (1954) p.2145.
 本発明におけるポリエステルは、重合後に固相重合されていることが好ましい。これにより、好ましいカルボキシル基含量を達成することができる。固相重合は、連続法(タワーの中に樹脂を充満させ、これを加熱しながらゆっくり所定の時間滞流させた後、送り出す方法)でもよいし、バッチ法(容器の中に樹脂を投入し、所定の時間加熱する方法)でもよい。具体的には、固相重合には、特許第2621563号、特許第3121876号、特許第3136774号、特許第3603585号、特許第3616522号、特許第3617340号、特許第3680523号、特許第3717392号、特許第4167159号等に記載の方法を適用することができる。 The polyester in the present invention is preferably solid-phase polymerized after polymerization. Thereby, a preferable carboxyl group content can be achieved. Solid-phase polymerization may be a continuous method (a method in which a tower is filled with a resin, which is slowly heated for a predetermined time and then sent out), or a batch method (a resin is charged into a container). , A method of heating for a predetermined time). Specifically, for solid phase polymerization, Japanese Patent No. 2621563, Japanese Patent No. 3121876, Japanese Patent No. 3136774, Japanese Patent No. 3603585, Japanese Patent No. 3616522, Japanese Patent No. 3617340, Japanese Patent No. 3680523, Japanese Patent No. 3717392 are disclosed. The method described in Japanese Patent No. 4167159 can be applied.
 固相重合の温度は、170℃以上240℃以下が好ましく、より好ましくは180℃以上230℃以下であり、さらに好ましくは190℃以上220℃以下である。また、固相重合時間は、5時間以上100時間以下が好ましく、より好ましくは10時間以上75時間以下であり、さらに好ましくは15時間以上50時間以下である。固相重合は、真空中あるいは窒素雰囲気下で行なうことが好ましい。 The temperature of the solid phase polymerization is preferably 170 ° C. or higher and 240 ° C. or lower, more preferably 180 ° C. or higher and 230 ° C. or lower, and further preferably 190 ° C. or higher and 220 ° C. or lower. The solid phase polymerization time is preferably 5 hours to 100 hours, more preferably 10 hours to 75 hours, and still more preferably 15 hours to 50 hours. The solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
 ポリエステルをポリマー成分とするポリエステル基材は、例えば、上記のポリエステルをフィルム状に溶融押出を行なった後、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムをTg~(Tg+60)℃で長手方向に1回もしくは2回以上合計の倍率が3倍~6倍になるよう延伸し、その後Tg~(Tg+60)℃で幅方向に倍率が3~5倍になるように延伸した2軸延伸フィルムであることが好ましい。
 さらに、必要に応じて180~230℃で1~60秒間の熱処理を行なったものでもよい。
The polyester base material containing polyester as a polymer component is obtained by, for example, melt-extruding the above polyester into a film and then cooling and solidifying it with a casting drum to form an unstretched film. The unstretched film is Tg to (Tg + 60) ° C. The biaxially stretched so that the total magnification is 3 to 6 times in the longitudinal direction once or twice, and then stretched so that the magnification is 3 to 5 times in the width direction at Tg to (Tg + 60) ° C. A stretched film is preferred.
Further, heat treatment may be performed at 180 to 230 ° C. for 1 to 60 seconds as necessary.
 具体的には、以下のようにして、PETフィルムを成形することができる。
 固相重合することを経た後のポリエステルを溶融混練し、口金(押出ダイ)から押出すこと(溶融押出)により、PETフィルムを成形することが好ましい。
Specifically, a PET film can be formed as follows.
It is preferable to form a PET film by melt-kneading the polyester after undergoing solid-phase polymerization and extruding it from a die (extrusion die) (melt extrusion).
 本発明の製造方法では、溶融押出する際において、PET樹脂を、押出し機を用いて溶融することができる。
 溶融押出では、押出機に投入された原料樹脂をシリンダ内で溶融混練し、樹脂をシート状に溶融押出す。押出機による溶融混練は、溶融樹脂を押し出すためのスクリュを備えた従来公知の押出機(好ましくは二軸スクリュを備えた二軸押出機)を用い、所望とする樹脂(好ましくはポリエステル樹脂)を得るために必要な条件を設定して行なえる。押出機は、一般にスクリュの数により単軸と多軸とに大別される。多軸の押出機としては、二軸押出機(二軸スクリュ押出機)が好適である。また、押出機は、小型ないし大型のいずれの装置でもよい。熱分解による末端COOHの発生をより抑制できる点で、押出し機内を窒素置換して行なうのがより好ましい。
 溶融温度は、250℃~320℃が好ましく、260℃~310℃がより好ましく、270℃~300℃がさらに好ましい。
In the production method of the present invention, the PET resin can be melted using an extruder during melt extrusion.
In melt extrusion, a raw material resin charged in an extruder is melt-kneaded in a cylinder, and the resin is melt-extruded into a sheet shape. The melt kneading by an extruder uses a conventionally known extruder (preferably a twin screw extruder having a biaxial screw) provided with a screw for extruding a molten resin, and a desired resin (preferably a polyester resin). You can set the necessary conditions to obtain. Generally, an extruder is roughly classified into a single axis and a multi-axis depending on the number of screws. As the multi-screw extruder, a twin-screw extruder (a twin-screw extruder) is suitable. Further, the extruder may be any device of small to large size. More preferably, the inside of the extruder is replaced with nitrogen from the viewpoint that generation of terminal COOH due to thermal decomposition can be further suppressed.
The melting temperature is preferably 250 ° C to 320 ° C, more preferably 260 ° C to 310 ° C, and further preferably 270 ° C to 300 ° C.
 溶融されたPET樹脂の溶融樹脂(メルト)は、ギアポンプ、濾過器等を通して、押出ダイからシート状に押出して製膜されることが好ましい。このとき、単層で押出してもよいし、多層で押出してもよい。溶融押出しされたメルトは、支持体上で冷却され、固化されてシート状に成形されることが好ましい。支持体としては、特に制限はなく、通常の溶融製膜に用いられる冷却ロールを用いることができる。 It is preferable that the molten resin (melt) of the PET resin is formed into a sheet by extruding it from an extrusion die through a gear pump, a filter or the like. At this time, it may be extruded as a single layer or may be extruded as a multilayer. The melt-extruded melt is preferably cooled on a support, solidified and formed into a sheet. There is no restriction | limiting in particular as a support body, The cooling roll used for normal melt film forming can be used.
 製膜では、溶融押出の際に溶融押出された樹脂を冷却し、樹脂シートを製膜することができる。製膜では、例えば、溶融体(メルト)を、ギアポンプ、フィルタを通した後、ダイから冷却(チル)ロールに押し出す。これを冷却固化することで、未延伸シートが得られる。なお、溶融体(メルト)は、静電印加法を用いて冷却ロールに密着させることができる。 In film formation, a resin sheet can be formed by cooling the resin melt-extruded during melt extrusion. In film formation, for example, a melt (melt) is passed through a gear pump and a filter, and then extruded from a die onto a cooling (chill) roll. By cooling and solidifying this, an unstretched sheet is obtained. In addition, a melt (melt) can be stuck to a cooling roll using an electrostatic application method.
 冷却ロール自体の温度は、10℃~80℃が好ましく、より好ましくは15℃~70℃、さらに好ましくは20℃~60℃である。さらに、溶融樹脂(メルト)と冷却ロールとの間で密着性を高め、冷却効率を上げる観点からは、冷却ロールにメルトが接触する前に静電気を印加しておくことが好ましい。 The temperature of the cooling roll itself is preferably 10 ° C. to 80 ° C., more preferably 15 ° C. to 70 ° C., and further preferably 20 ° C. to 60 ° C. Further, from the viewpoint of improving the adhesion between the molten resin (melt) and the cooling roll and increasing the cooling efficiency, it is preferable to apply static electricity before the melt contacts the cooling roll.
 帯状に吐出された溶融樹脂(メルト)の固化後(延伸前)の厚みは、2600μm~6000μmの範囲であることで、その後の延伸を経て、厚み260μm~400μmのポリエステルフィルムを得ることができる。メルトの固化後の厚みは、3100μm~6000μmの範囲が好ましく、より好ましくは3300μm~5000μmであり、さらに好ましくは3500μm~4500μmの範囲である。固化後延伸前の厚みが6000μm以下であることで、メルト押出し中に皺が発生し難く、ムラの発生が抑えられる。また、固化後延伸前の厚みが2600μm以上であることが、メルトの腰が弱いために発生するチルロール(固化するための冷却ロール)への密着むらを抑制し、フィルムのむら低減の観点から好ましい。 The thickness of the molten resin (melt) discharged in a band after solidification (before stretching) is in the range of 2600 μm to 6000 μm, and a polyester film having a thickness of 260 μm to 400 μm can be obtained through subsequent stretching. The thickness of the melt after solidification is preferably in the range of 3100 μm to 6000 μm, more preferably in the range of 3300 μm to 5000 μm, and still more preferably in the range of 3500 μm to 4500 μm. When the thickness after solidification and before stretching is 6000 μm or less, wrinkles are unlikely to occur during melt extrusion, and unevenness is suppressed. Moreover, it is preferable that the thickness before stretching after solidification is 2600 μm or more suppresses uneven adhesion to the chill roll (cooling roll for solidification) generated due to weak melt, and is preferable from the viewpoint of reducing unevenness of the film.
 本発明の製造方法では、上記の製膜の後に、作製された押出フィルム(未延伸フィルム)を延伸することを含んでいてもよい。本発明の製造方法では、基材は、機械強度の点から2軸延伸したものであることが好ましい。 The production method of the present invention may include stretching the produced extruded film (unstretched film) after the film formation. In the production method of the present invention, the substrate is preferably biaxially stretched from the viewpoint of mechanical strength.
 本発明の製造方法では、延伸として、下塗り層を形成することの前後に、第1の延伸をすることと第2の延伸をすることとの2つの延伸過程を有する態様が好ましい。
 第1の延伸では、製膜された樹脂シートを第1の方向に延伸する。第1の方向は、シート長手方向(MD)又は該方向に直交するシート幅方向(TD)のいずれでもよいが、第1の延伸では、MDに延伸(いわゆる縦延伸)されることが好ましい。
 また、後述のように下塗り層を形成することを経た後、さらに第2の延伸が設けられる。この第2の延伸では、下塗り層が塗布形成された樹脂シートを、第1の方向と直交する第2の方向に延伸する。第2の方向は、シート長手方向(MD)又は該方向に直交するシート幅方向(TD)のいずれでもよいが、第2の延伸ではTDに延伸(いわゆる横延伸)されることが好ましい。
In the production method of the present invention, as the stretching, an embodiment having two stretching processes of first stretching and second stretching before and after forming the undercoat layer is preferable.
In the first stretching, the formed resin sheet is stretched in the first direction. The first direction may be either the sheet longitudinal direction (MD) or the sheet width direction (TD) orthogonal to the direction, but in the first stretching, it is preferably stretched to MD (so-called longitudinal stretching).
Further, after forming an undercoat layer as described later, a second stretching is further provided. In this second stretching, the resin sheet on which the undercoat layer is applied is stretched in a second direction orthogonal to the first direction. The second direction may be either the sheet longitudinal direction (MD) or the sheet width direction (TD) orthogonal to the direction, but in the second stretching, it is preferably stretched to TD (so-called lateral stretching).
 第1の延伸をすることと第2の延伸をすることとの間には、第1の方向に延伸された樹脂シートの少なくとも一方面に下塗り層を塗布形成することが設けられる。
 樹脂層の形成では、上記のように、下塗り層用塗布液をポリマー基材に塗布することにより下塗り層を好適に形成することができる。下塗り層形成用の塗布液を塗布するための塗布法や塗布液の調製に用いる溶媒等については、既述の通りである。
Between the first stretching and the second stretching, an undercoat layer is applied and formed on at least one surface of the resin sheet stretched in the first direction.
In the formation of the resin layer, as described above, the undercoat layer can be suitably formed by applying the undercoat layer coating solution to the polymer substrate. The coating method for applying the coating liquid for forming the undercoat layer, the solvent used for the preparation of the coating liquid, and the like are as described above.
 このように、第1の延伸をすることを経た樹脂シートに下塗り層を形成した後、更に第2の延伸を経ることで、下塗り層と樹脂シートとの間の密着性を向上させることができる。
 本発明においては、上記のように、延伸を2方向に行なうことで、ポリエステル分子が二軸配向された二軸延伸フィルムが形成されることが好ましい。機械強度の点から、2軸延伸したものであることが好ましい。
Thus, after forming the undercoat layer on the resin sheet that has undergone the first stretching, the adhesion between the undercoat layer and the resin sheet can be improved by further performing the second stretching. .
In the present invention, as described above, it is preferable to form a biaxially stretched film in which polyester molecules are biaxially oriented by stretching in two directions. From the viewpoint of mechanical strength, it is preferably biaxially stretched.
 ポリマー基材(特にポリエステル基材)の厚みは、25~300μm程度が好ましい。厚みは、25μm以上であると力学強度が良好であり、300μm以下であるとコスト及び耐加水分解性の点で有利である。
 特にポリエステル基材は、厚みが増すに伴なって耐加水分解性が悪化し、長期使用時の耐久性が低下する傾向にあり、本発明においては、厚みが120μm以上300μm以下であって、かつポリエステル中のカルボキシル基含量が2~35当量/tである場合に、より湿熱耐久性の向上効果が奏される。
The thickness of the polymer substrate (particularly the polyester substrate) is preferably about 25 to 300 μm. When the thickness is 25 μm or more, the mechanical strength is good, and when the thickness is 300 μm or less, it is advantageous in terms of cost and hydrolysis resistance.
In particular, the polyester base material has a tendency that the hydrolysis resistance deteriorates as the thickness increases, and the durability during long-term use tends to decrease. In the present invention, the thickness is 120 μm or more and 300 μm or less, and When the carboxyl group content in the polyester is 2 to 35 equivalents / t, the wet heat durability can be further improved.
 本発明では、ポリマー樹脂中に着色剤として無機粒子又は有機粒子(以下、総じて「微粒子」ともいう。)を混合することができる。これにより、光の反射率(白色度)を向上させ太陽電池の発電効率を上げたり、意匠性を付与することができる。 In the present invention, inorganic particles or organic particles (hereinafter also collectively referred to as “fine particles”) can be mixed as a colorant in the polymer resin. Thereby, the reflectance (whiteness) of light can be improved and the electric power generation efficiency of a solar cell can be raised, or designability can be provided.
 微粒子の平均粒径は、0.1~10μmが好ましく、より好ましくは0.1~5μmであり、さらに好ましくは0.15~1μmである。微粒子の含有量は、ポリマー全質量に対して、0~50質量%が好ましく、1~10質量%がより好ましく、さらに好ましくは2~5質量%である。微粒子の平均粒径が0.1~10μmであると、ポリマー基材の白色度を50以上としやすい。また、微粒子の含有量が1質量%以上であると、白色度を50以上としやすい。微粒子の含有量が50質量%以下であると、ポリマー基材の重量が大きくなり過ぎず、加工などでの取り扱いにより優れる。なお、ここでいう平均粒径、含有量は、ポリマー基材が多層構造の場合、各層の平均値を指す。即ち、平均粒径は、(各層の粒子径の平均値)×(各層の厚み/全層の厚み)を層ごとに算出し、総和としたものを指し、含有量は、(各層の粒子含有量の平均値)×(各層の厚み/全層の厚み)を層ごとに算出し、総和としたものを指す。 The average particle size of the fine particles is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, and still more preferably 0.15 to 1 μm. The content of the fine particles is preferably 0 to 50% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 5% by mass with respect to the total mass of the polymer. When the average particle size of the fine particles is 0.1 to 10 μm, the whiteness of the polymer substrate tends to be 50 or more. Further, when the content of the fine particles is 1% by mass or more, the whiteness is easily set to 50 or more. When the content of the fine particles is 50% by mass or less, the weight of the polymer substrate does not become too large, and it is excellent in handling in processing or the like. In addition, the average particle diameter and content here refer to the average value of each layer when the polymer substrate has a multilayer structure. That is, the average particle diameter is calculated by (average value of particle diameter of each layer) × (thickness of each layer / thickness of all layers) for each layer, and the sum is obtained. (Average value of quantity) × (thickness of each layer / thickness of all layers) is calculated for each layer and indicates the sum total.
 なお、微粒子の平均粒径は、電顕法により求められる。具体的には、以下の方法による。
 微粒子を走査型電子顕微鏡で観察し、粒子の大きさに応じて適宜倍率を変え、写真撮影したものを拡大コピーする。次いで、ランダムに選んだ少なくとも200個以上の微粒子について、各粒子の外周をトレースする。画像解析装置にてこれらのトレース像から粒子の円相当径を測定する。その測定値の平均値を平均粒径とする。
The average particle size of the fine particles is obtained by an electron microscope method. Specifically, the following method is used.
The fine particles are observed with a scanning electron microscope, and the magnification is appropriately changed according to the size of the particles. Next, the outer circumference of each particle is traced for at least 200 fine particles selected at random. The equivalent circle diameter of the particles is measured from these trace images with an image analyzer. The average value of the measured values is defined as the average particle size.
 微粒子は、無機粒子又は有機粒子いずれでもよく、両者を併用してもよい。これにより、光の反射率を向上させ太陽電池の発電効率を向上させることができる。好適に使用される無機粒子としては、例えば、湿式及び乾式シリカ、コロイダルシリカ、炭酸カルシウム、珪酸アルミ、リン酸カルシウム、アルミナ、炭酸マグネシウム、炭酸亜鉛、酸化チタン、酸化亜鉛(亜鉛華)、酸化アンチモン、酸化セリウム、酸化ジルコニウム、酸化錫、酸化ランタン、酸化マグネシウム、炭酸バリウム、炭酸亜鉛、塩基性炭酸鉛(鉛白)、硫酸バリウム、硫酸カルシウム、硫酸鉛、硫化亜鉛、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウム及びフッ化カルシウム等を挙げることができる。特に二酸化チタン、硫酸バリウムが好ましい。なお、酸化チタンはアナターゼ型、ルチル型の何れでもよい。また、微粒子表面にアルミナやシリカ等を用いて無機処理を施してもよいし、シリコン系あるいはアルコール系等を用いて有機処理を施してもよい。 The fine particles may be either inorganic particles or organic particles, or a combination of both. Thereby, the reflectance of light can be improved and the power generation efficiency of a solar cell can be improved. Suitable inorganic particles include, for example, wet and dry silica, colloidal silica, calcium carbonate, aluminum silicate, calcium phosphate, alumina, magnesium carbonate, zinc carbonate, titanium oxide, zinc oxide (zinc white), antimony oxide, and oxidation. Cerium, zirconium oxide, tin oxide, lanthanum oxide, magnesium oxide, barium carbonate, zinc carbonate, basic lead carbonate (lead white), barium sulfate, calcium sulfate, lead sulfate, zinc sulfide, mica, titanium mica, talc, clay, Examples include kaolin, lithium fluoride, and calcium fluoride. In particular, titanium dioxide and barium sulfate are preferable. The titanium oxide may be either anatase type or rutile type. In addition, the surface of the fine particles may be subjected to an inorganic treatment using alumina, silica, or the like, or may be subjected to an organic treatment using a silicon or alcohol system.
 これらの粒子の中でも、二酸化チタンが好ましい。ポリマー基材がこれを含有することにより、ポリマー基材は光照射下でも優れた耐久性を奏することができる。具体的には、63℃、50%Rh、照射強度100mW/cmで100時間UV照射した場合、破断伸び保持率が好ましくは35%以上、より好ましくは40%以上であり得る。本発明におけるポリマー基材は、光分解や劣化が抑制されるため、屋外で用いられる太陽電池の裏面保護膜としてより好適である。 Among these particles, titanium dioxide is preferable. When the polymer substrate contains this, the polymer substrate can exhibit excellent durability even under light irradiation. Specifically, when UV irradiation is performed at 63 ° C., 50% Rh, irradiation intensity of 100 mW / cm 2 for 100 hours, the elongation at break is preferably 35% or more, more preferably 40% or more. The polymer base material in the present invention is more suitable as a back surface protective film for solar cells used outdoors because photolysis and deterioration are suppressed.
 二酸化チタンには、ルチル型結晶構造を有するものとアナターゼ型結晶構造を有するものが存在する。本発明におけるポリマー基材にルチル型二酸化チタンを主体とする微粒子を添加することが好ましい。アナターゼ型は、紫外線の分光反射率が非常に大きいのに対し、ルチル型は紫外線の吸収率が大きい(分光反射率が小さい)という特性を有している。本発明者は、二酸化チタンの結晶形態におけるこうした分光特性の違いに着目し、ルチル型二酸化チタンの紫外線吸収性能を利用することで、太陽電池裏面保護用バックシートにおいて、耐光性を向上させることができる。これにより、他の紫外線吸収剤を実質的に添加しなくても、光照射下でのフィルム耐久性に優れる。そのため、紫外線吸収剤のブリードアウトによる汚染や密着性の低下のような問題が生じにくい。 Titanium dioxide includes those having a rutile crystal structure and those having an anatase crystal structure. It is preferable to add fine particles mainly composed of rutile-type titanium dioxide to the polymer substrate in the present invention. The anatase type has a characteristic that the spectral reflectance of ultraviolet rays is very large, whereas the rutile type has a characteristic that the absorption rate of ultraviolet rays is large (spectral reflectance is small). The present inventor pays attention to the difference in spectral characteristics in the crystal form of titanium dioxide, and can improve the light resistance in the backsheet for protecting the back surface of the solar cell by utilizing the ultraviolet absorption performance of rutile titanium dioxide. it can. Thereby, even if other ultraviolet absorbers are not substantially added, the film durability under light irradiation is excellent. For this reason, problems such as contamination due to bleeding out of the ultraviolet absorber and a decrease in adhesion are unlikely to occur.
 なお、上記の通り、本発明における二酸化チタン粒子はルチル型二酸化チタンを主体とするものであるが、ここでの「ルチル型二酸化チタンを主体とする」とは、全二酸化チタン粒子中のルチル型二酸化チタン量が50質量%を超えていることを意味する。また、全二酸化チタン粒子中のアナターゼ型二酸化チタン量が10質量%以下であることが好ましく、より好ましくは5質量%以下、特に好ましくは0質量%以下である。アナターゼ型二酸化チタンの含有量が上記上限値以下であると、全二酸化チタン粒子中に占めるルチル型二酸化チタン量を確保することができ、紫外線吸収性能を良好に保てる。アナターゼ型二酸化チタンは光触媒作用が強いため、この作用を考慮して耐光性の低下を抑制することができる。ルチル型二酸化チタンとアナターゼ型二酸化チタンとは、X線構造回折や分光吸収特性により区別することができる。 In addition, as described above, the titanium dioxide particles in the present invention are mainly composed of rutile type titanium dioxide. Here, “mainly composed of rutile type titanium dioxide” means “rutile type in all titanium dioxide particles”. It means that the amount of titanium dioxide exceeds 50% by mass. Further, the amount of anatase-type titanium dioxide in all titanium dioxide particles is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 0% by mass or less. When the content of the anatase type titanium dioxide is not more than the above upper limit value, the amount of rutile type titanium dioxide in the total titanium dioxide particles can be secured, and the ultraviolet absorption performance can be kept good. Since anatase-type titanium dioxide has a strong photocatalytic action, it is possible to suppress a decrease in light resistance in consideration of this action. Rutile titanium dioxide and anatase titanium dioxide can be distinguished by X-ray structure diffraction and spectral absorption characteristics.
 ルチル型二酸化チタン微粒子の表面は、アルミナやシリカ等の無機処理が施されてもよいし、シリコン系あるいはアルコール系等の有機処理が施されてもよい。ルチル型二酸化チタンをポリエステル組成物に配合する前に、精製プロセスを用いて、粒径調整、粗大粒子除去を行なってもよい。精製プロセスの工業的手段としては、例えばジェットミル、ボールミル等の粉砕手段、例えば乾式もしくは湿式の遠心分離等の分級手段を適用することができる。 The surface of the rutile titanium dioxide fine particles may be subjected to inorganic treatment such as alumina or silica, or may be subjected to organic treatment such as silicon or alcohol. Before blending rutile titanium dioxide into the polyester composition, the particle size may be adjusted and coarse particles may be removed using a purification process. As industrial means of the purification process, for example, pulverizing means such as a jet mill and a ball mill, for example, classification means such as dry or wet centrifugation can be applied.
 ポリマー基材に含有し得る有機粒子は、製膜中の熱に耐えるものが好ましい。例えば架橋型樹脂からなる微粒子、具体的な例としてジビニルベンゼンで架橋したポリスチレンからなる微粒子等が挙げられる。微粒子のサイズや添加量は、無機粒子の場合と同様である。 The organic particles that can be contained in the polymer substrate are preferably those that can withstand the heat during film formation. For example, fine particles made of a cross-linked resin, specific examples include fine particles made of polystyrene cross-linked with divinylbenzene. The size and amount of fine particles are the same as in the case of inorganic particles.
 ポリマー基材中へ微粒子を添加する方法は、従来から公知の各種の方法を用いることができる。その代表的な方法を以下に挙げる。
 (1)ポリマー基材を構成するポリマーがポリエステルの場合、ポリエチレンテレフタレート等のポリエステル合成時のエステル交換反応もしくはエステル化反応終了前に微粒子を添加、もしくは重縮合反応開始前に微粒子を添加する方法。
 (2)ポリマー基材を構成するポリマーがポリエステルの場合、ポリエチレンテレフタレート等のポリエステルに微粒子を添加し、溶融混練する方法。
 (3)上記(1)、(2)の方法において、微粒子を多量に添加したマスターペレット(又はマスターバッチ(MB)ともいう。)を製造し、これらと微粒子を含有しないポリエチレンテレフタレート等のポリエステルとを混練して、所定量の微粒子を含有させる方法。
 (4)上記(3)のマスターペレットをそのまま使用する方法。
 この中では、事前にポリエステル樹脂と微粒子を押出機で混合しておくマスターバッチ法(MB法:上記(3))が好ましい。また、事前に乾燥させていないポリマー(例えばポリエステル樹脂)と微粒子を押出機に投入し、水分や空気などを脱気しながらMBを作製する方法を採用することもできる。さらに、好ましくは、事前に少しでも乾燥したポリエステル樹脂を用いてMBを作製することにより、ポリエステルの酸価上昇が抑えられる。このような方法としては、脱気しながら押出する方法や、十分乾燥したポリエステル樹脂により脱気をせずに押出する方法などが挙げられる。
Various conventionally known methods can be used for adding fine particles into the polymer substrate. The typical method is listed below.
(1) A method in which, when the polymer constituting the polymer substrate is polyester, fine particles are added before the end of the ester exchange reaction or esterification reaction at the time of polyester synthesis such as polyethylene terephthalate, or the fine particles are added before the start of the polycondensation reaction.
(2) When the polymer constituting the polymer substrate is polyester, fine particles are added to polyester such as polyethylene terephthalate and melt kneaded.
(3) In the above methods (1) and (2), master pellets (or master batch (MB)) to which a large amount of fine particles are added are produced, and these and polyesters such as polyethylene terephthalate that do not contain fine particles; In which a predetermined amount of fine particles are contained.
(4) A method of using the master pellet of the above (3) as it is.
In this, the masterbatch method (MB method: said (3)) which mixes polyester resin and microparticles | fine-particles with an extruder beforehand is preferable. In addition, a method can be employed in which MB is prepared while degassing moisture, air, and the like by putting polymer (for example, polyester resin) and fine particles that have not been dried in advance into an extruder. Furthermore, preferably, the increase in the acid value of the polyester is suppressed by preparing the MB using a polyester resin that has been slightly dried in advance. Examples of such a method include a method of extruding while degassing and a method of extruding without sufficiently degassing with a sufficiently dry polyester resin.
 例えば、MBを作製する場合は投入するポリマー(例えばポリエステル樹脂)は、あらかじめ乾燥により水分率を低減させることが好ましい。乾燥条件としては、好ましくは100~200℃、より好ましくは120~180℃において、1時間以上、より好ましくは3時間以上、さらに好ましくは6時間以上乾燥する。これにより、ポリエステル樹脂の水分量を好ましくは50ppm以下、より好ましくは30ppm以下になるように十分乾燥する。予備混合の方法は、特に限定されず、バッチによる方法でもよいし、単軸もしくは二軸以上の混練押出機によってもよい。脱気しながらMBを作製する場合は、250℃~300℃、好ましくは270℃~280℃の温度でポリエステル樹脂を融解し、予備混練機に一つ、好ましくは2以上の脱気口を設け、0.05MPa以上、より好ましくは0.1MPa以上の連続吸引脱気を行い、混合機内の減圧を維持すること等の方法を採用することが好ましい。 For example, when preparing MB, it is preferable to reduce the moisture content of the polymer (for example, polyester resin) to be input by drying in advance. The drying conditions are preferably 100 to 200 ° C., more preferably 120 to 180 ° C., for 1 hour or longer, more preferably 3 hours or longer, and even more preferably 6 hours or longer. Thereby, it is sufficiently dried so that the moisture content of the polyester resin is preferably 50 ppm or less, more preferably 30 ppm or less. The premixing method is not particularly limited, and may be a batch method or a single-screw or biaxial or more kneading extruder. When making MB while degassing, melt the polyester resin at a temperature of 250 ° C to 300 ° C, preferably 270 ° C to 280 ° C, and provide one, preferably two or more degassing ports in the pre-kneader. It is preferable to adopt a method such as performing continuous suction deaeration of 0.05 MPa or more, more preferably 0.1 MPa or more, and maintaining the reduced pressure in the mixer.
 ポリマー基材は、内部に微細な空洞(ボイド)を多数含有してもよい。これにより、より高い白色度を好適に得ることができる。その場合の見かけ比重は0.7以上1.3以下、好ましくは0.9以上1.3以下、より好ましくは1.05以上1.2以下である。見かけ比重が0.7以上であると、ポリマー基材に腰が備わり太陽電池モジュール作製時の加工が良好に行なえる。見かけ比重が1.3以下であると、ポリマー基材の重量が大き玖なり過ぎないため、太陽電池を軽量化することができる。 The polymer base material may contain many fine cavities (voids) inside. Thereby, higher whiteness can be suitably obtained. In that case, the apparent specific gravity is 0.7 or more and 1.3 or less, preferably 0.9 or more and 1.3 or less, more preferably 1.05 or more and 1.2 or less. When the apparent specific gravity is 0.7 or more, the polymer base material has a waist, and the processing at the time of producing the solar cell module can be performed satisfactorily. When the apparent specific gravity is 1.3 or less, the weight of the polymer base material does not become too large, so that the solar cell can be reduced in weight.
 上記の微細な空洞は、微粒子及び/又は後述のポリマー基材を構成するポリマーに非相溶の熱可塑性樹脂に由来して形成することができる。なお、微粒子もしくはポリマーに非相溶の熱可塑性樹脂に由来する空洞とは、微粒子もしくは熱可塑性樹脂のまわりに空洞が存在することをいい、例えばポリマー基材の電子顕微鏡による断面写真などで確認することができる。 The fine cavities can be formed from fine particles and / or a thermoplastic resin that is incompatible with the polymer constituting the polymer substrate described later. The term “cavity derived from a thermoplastic resin that is incompatible with the fine particles or polymer” means that there are voids around the fine particles or the thermoplastic resin, and is confirmed by, for example, a cross-sectional photograph of the polymer substrate using an electron microscope. be able to.
 空洞形成のためにポリマー基材中に添加し得る樹脂は、ポリマー基材を構成するポリマーと非相溶な樹脂(非相溶樹脂)が好ましい。これにより、光を散乱させ光反射率を上げることができる。好ましい非相溶な樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテンのようなポリオレフィン樹脂、ポリスチレン樹脂、ポリアクリレート樹脂、ポリカーボネート樹脂、ポリアクリロニトリル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン系樹脂、セルロース系樹脂、及びフッ素系樹脂などが好適に挙げられる。これらの非相溶樹脂は、単独重合体であっても共重合体であってもよく、更には2種以上の非相溶樹脂を併用してもよい。これらの中でも、表面張力の小さいポリプロピレンやポリメチルペンテン等のポリオレフィン樹脂やポリスチレン系樹脂が好ましく、さらにはポリメチルペンテンが最も好ましい。該ポリメチルペンテンは相対的にポリエステルとの表面張力差が大きく、かつ融点が高いため、ポリエステル製膜においてポリエステルとの親和性が低くボイド(空洞)を形成し易く、非相溶樹脂として特に好ましいものである。 The resin that can be added to the polymer base material for forming the cavity is preferably a resin that is incompatible with the polymer constituting the polymer base material (incompatible resin). Thereby, light can be scattered and a light reflectance can be raised. Preferred incompatible resins include polyolefin resins such as polyethylene, polypropylene, polybutene, polymethylpentene, polystyrene resins, polyacrylate resins, polycarbonate resins, polyacrylonitrile resins, polyphenylene sulfide resins, polysulfone resins, cellulose resins, And fluorine-based resins are preferred. These incompatible resins may be homopolymers or copolymers, and two or more incompatible resins may be used in combination. Among these, polyolefin resins and polystyrene resins such as polypropylene and polymethylpentene having a low surface tension are preferable, and polymethylpentene is most preferable. Since the polymethylpentene has a relatively large difference in surface tension from the polyester and a high melting point, the polyester film has a low affinity with the polyester and easily forms voids, and is particularly preferable as an incompatible resin. Is.
 ポリマー基材が非相溶樹脂を含有する場合は、その量は、ポリマー基材全体に対して、0~30質量%であり、より好ましくは1~20質量%、さらに好ましくは2~15質量%の範囲である。含有量が30質量%以下であると、ポリマー基材全体の見かけ密度を確保することができ、延伸時にフィルム破れ等が生じ難く、生産性を良好に保てる。
 微粒子を添加する場合、微粒子の平均粒径は0.1~10μmが好ましく、より好ましくは0.1~5μm、さらに好ましくは0.15~1μmの微粒子である。平均粒径が0.1μm以上であると、反射率(白色度)が保たれ、平均粒径が10μm以下であると、ボイドによる力学強度低下を回避することができる。微粒子の含有量は、ポリマー基材全質量に対して、0~50質量%が好ましく、1~10質量%がより好ましく、更に好ましくは2~5質量%である。含有量が50質量%以下であると、反射率(白色度)が良好に保たれ、ボイドによる力学強度低下を回避することができる。好ましい微粒子としては、ポリエステルと親和性の低いものが挙げられ、具体的には硫酸バリウム等が挙げられる。
When the polymer substrate contains an incompatible resin, the amount thereof is 0 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass with respect to the entire polymer substrate. % Range. When the content is 30% by mass or less, the apparent density of the entire polymer base material can be secured, film tearing and the like hardly occur at the time of stretching, and productivity can be kept good.
When fine particles are added, the average particle size of the fine particles is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, and still more preferably 0.15 to 1 μm. When the average particle size is 0.1 μm or more, the reflectance (whiteness) is maintained, and when the average particle size is 10 μm or less, a decrease in mechanical strength due to voids can be avoided. The content of the fine particles is preferably 0 to 50% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 5% by mass with respect to the total mass of the polymer substrate. When the content is 50% by mass or less, the reflectance (whiteness) is kept good, and a decrease in mechanical strength due to voids can be avoided. Preferable fine particles include those having a low affinity with polyester, specifically, barium sulfate and the like.
 白色ポリマー基材、すなわち微粒子含有等により空洞形成されたポリマー基材(例えばポリエステルフィルム)は、単層又は2層以上の多層からなる積層構成であってもよい。積層構成としては、白色度の高い(ボイドや微粒子の多い層)と白色度の低い層(ボイドや微粒子の少ない層)を組み合わせることが好ましい。ボイドや微粒子の多い層で光の反射効率を高くできるが、ボイド、微粒子による力学強度の低下(脆化)が発生し易い。これを補うため、白色度の低い層と組み合わせることが好ましい。このため、白色度の高い層はポリマー基材の外層に用いることが好ましく、ポリマー基材の片面に使用してもよく、ポリマー基材の両面に使用してもよい。また、二酸化チタンを微粒子として用いた高白色層をポリマー基材の外層に用いると、二酸化チタンがUV吸収能を有することからポリマー基材の耐光性向上効果が得られる。 A white polymer base material, that is, a polymer base material (for example, a polyester film) formed by voids by containing fine particles or the like may have a single layer or a laminated structure including two or more layers. As a laminated structure, it is preferable to combine a high whiteness (a layer with a lot of voids and fine particles) and a low whiteness layer (a layer with a small amount of voids and fine particles). Although the light reflection efficiency can be increased in a layer containing a lot of voids and fine particles, the mechanical strength is easily lowered (brittle) due to the voids and fine particles. In order to compensate for this, it is preferable to combine with a layer having low whiteness. For this reason, it is preferable to use a layer with high whiteness for the outer layer of a polymer base material, and may be used for one side of a polymer base material, and may be used for both surfaces of a polymer base material. In addition, when a high white layer using titanium dioxide as fine particles is used as the outer layer of the polymer base material, titanium dioxide has a UV absorbing ability, so that an effect of improving the light resistance of the polymer base material can be obtained.
 白色度の高い層が微粒子を含有している層である場合、微粒子量は5質量%以上50質量%以下が好ましく、より好ましくは6質量%以上20質量%以下である。白色度の高い層が空洞の形成された層である場合、白色度の高い層の見かけ比重は0.7以上1.2以下が好ましく、より好ましくは0.8以上1.1以下である。一方、白色度の低い層が微粒子を含有している層である場合、微粒子量は0質量%以上5質量%未満が好ましく、より好ましくは1質量%以上4質量%以下である。白色度の低い層が空洞の形成された層である場合、白色度の低い層の見かけ比重が0.9以上1.4以下であり、かつ高白色層より高密度のものが好ましく、より好ましくは見かけ比重が1.0以上1.3以下であり、かつ高白色層より高密度のものである。低白色層は、微粒子や空洞を含まないものでも構わない。
 白色ポリマー基材の好ましい積層構成としては、高白色層/低白色層、高白色層/低白色層/高白色層、高白色層/低白色層/高白色層/低白色層、高白色層/低白色層/高白色層/低白色層/高白色層などが挙げられる。
 積層構成における各層の厚み比は、特に限定されるものではないが、各層の厚みは全層厚みの1%以上99%以下が好ましく、より好ましくは2%以上95%以下である。この範囲以内であると、反射効率の向上、耐光(UV)性付与の効果が得られやすい。ポリマー基材の全層の厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、通常20~500μm、好ましくは25~300μmの範囲である。
 積層構成を有するポリマー基材の積層方法は、2台又は3台以上の溶融押出機を用いた、いわゆる共押出法が好ましく用いられる。
When the layer with high whiteness is a layer containing fine particles, the amount of fine particles is preferably 5% by mass or more and 50% by mass or less, more preferably 6% by mass or more and 20% by mass or less. When the layer with high whiteness is a layer in which cavities are formed, the apparent specific gravity of the layer with high whiteness is preferably 0.7 or more and 1.2 or less, more preferably 0.8 or more and 1.1 or less. On the other hand, when the layer with low whiteness is a layer containing fine particles, the amount of fine particles is preferably 0% by mass or more and less than 5% by mass, more preferably 1% by mass or more and 4% by mass or less. When the layer with low whiteness is a layer in which a cavity is formed, the apparent specific gravity of the layer with low whiteness is 0.9 or more and 1.4 or less, and higher density than the high white layer is preferable, and more preferable Has an apparent specific gravity of 1.0 or more and 1.3 or less, and has a higher density than the high white layer. The low white layer may not contain fine particles or cavities.
As a preferable laminated structure of the white polymer base material, high white layer / low white layer, high white layer / low white layer / high white layer, high white layer / low white layer / high white layer / low white layer, high white layer / Low white layer / high white layer / low white layer / high white layer.
The thickness ratio of each layer in the laminated structure is not particularly limited, but the thickness of each layer is preferably 1% or more and 99% or less, more preferably 2% or more and 95% or less of the total layer thickness. Within this range, it is easy to obtain the effects of improving the reflection efficiency and imparting light resistance (UV) resistance. The thickness of all layers of the polymer substrate is not particularly limited as long as it can be formed as a film, but is usually 20 to 500 μm, preferably 25 to 300 μm.
A so-called coextrusion method using two or three or more melt extruders is preferably used as a method for laminating a polymer substrate having a laminated structure.
 白色ポリマー基材の白色度を増すためにチオフェジイル等の蛍光増白剤を用いることも好ましい。好ましい添加量は、白色ポリマー基材の全質量に対して、0.01質量%以上1質量%以下であり、より好ましくは0.05質量%以上0.5質量%以下であり、さらに好ましくは0.1質量%以上0.3質量%以下である。添加量が0.01質量%以上であると、光線反射率向上の効果が得られやすい。また、添加量が1質量%以下であると、押出しでの熱分解による黄変で反射率が低下することを回避できる。このような蛍光増白剤としては、例えばイーストマンコダック社製のOB-1(商品名)等を用いることができる。 In order to increase the whiteness of the white polymer substrate, it is also preferable to use a fluorescent whitening agent such as thiofediyl. A preferable addition amount is 0.01% by mass or more and 1% by mass or less, more preferably 0.05% by mass or more and 0.5% by mass or less, and still more preferably, with respect to the total mass of the white polymer substrate. It is 0.1 mass% or more and 0.3 mass% or less. When the addition amount is 0.01% by mass or more, the effect of improving the light reflectivity is easily obtained. Moreover, it can avoid that a reflectance falls by yellowing by the thermal decomposition by extrusion as the addition amount is 1 mass% or less. As such a fluorescent whitening agent, for example, OB-1 (trade name) manufactured by Eastman Kodak Co., Ltd. can be used.
 白色ポリマー基材は、照度:100mW/cm、温度:60℃、相対湿度:50%RH、照射時間:48時間で紫外線照射した後の黄色み変化量(Δb値)が5未満であることが好ましい。Δb値は、より好ましくは4未満であり、さらに好ましくは3未満である。これにより、太陽光の照射を長時間受けたとしても色変化を少なくできる点で有用である。このような効果は、ポリマー基材を含むバックシートを太陽電池セルに積層した太陽電池モジュールにおいて、特にバックシート側から光照射を受けた際に顕著に現れる。 The white polymer base material has an illuminance of 100 mW / cm 2 , a temperature of 60 ° C., a relative humidity of 50% RH, an irradiation time of 48 hours, and a yellowish change amount (Δb value) after irradiation with ultraviolet rays of less than 5 Is preferred. The Δb value is more preferably less than 4, and still more preferably less than 3. Thereby, even if it receives irradiation of sunlight for a long time, it is useful at the point which can reduce a color change. Such an effect is prominent in a solar battery module in which a back sheet containing a polymer base material is laminated on a solar battery cell, particularly when receiving light irradiation from the back sheet side.
 また、カーボンブラックなどの黒色系の顔料を同様に添加することにより、黒色のポリマー基材を得ることができる。 Also, a black polymer substrate can be obtained by adding a black pigment such as carbon black in the same manner.
(末端封止剤)
 ポリマー基材は、ポリマー樹脂に対して0~10質量%の範囲で末端封止剤を含みあるいは含まない構成とすることができる。末端封止剤の含有量は、0質量%を超10質量%以下の範囲が好ましく、より好ましくは0.2質量%~5質量%、さらに好ましくは0.3質量%~2質量%である。
(End sealant)
The polymer base material can be configured to contain or not contain an end-capping agent in the range of 0 to 10% by mass relative to the polymer resin. The content of the end-capping agent is preferably in the range of more than 0% by mass to 10% by mass, more preferably 0.2% by mass to 5% by mass, and further preferably 0.3% by mass to 2% by mass. .
 ポリエステルなどのポリマーの加水分解は、末端カルボン酸等から生じる水素イオン(H)の触媒効果により加速されるため、耐加水分解性(耐候性)を向上させるには、末端カルボキシル基と反応する末端封止剤を添加することが有効である。従って、末端封止剤の含有量が上記範囲内であると、末端封止材がポリマーに対し可塑剤として作用してポリマー基材の力学強度、耐熱性が低下するのを回避することができる。 Hydrolysis of polymers such as polyester is accelerated by the catalytic effect of hydrogen ions (H + ) generated from terminal carboxylic acids and the like, so that the hydrolysis resistance (weather resistance) is improved by reacting with terminal carboxyl groups. It is effective to add a terminal blocking agent. Therefore, when the content of the end-capping agent is within the above range, it can be avoided that the end-capping material acts as a plasticizer for the polymer to reduce the mechanical strength and heat resistance of the polymer base material. .
 末端封止剤としては、エポキシ化合物、カルボジイミド化合物、オキサゾリン化合物、カーボネート化合物等が挙げられる。中でも、PETと親和性が高く末端封止能の高いカルボジイミド化合物が好ましい。 Examples of the end-capping agent include epoxy compounds, carbodiimide compounds, oxazoline compounds, carbonate compounds, and the like. Among these, a carbodiimide compound having high affinity with PET and high end-capping ability is preferable.
 末端封止剤(特にカルボジイミド化合物)は、高分子量であると、溶融製膜中の揮散を低減できる。分子量は、重量平均分子量で200~10万が好ましく、より好ましくは2000~8万、さらに好ましくは1万~5万である。末端封止剤(特にカルボジイミド化合物)の重量平均分子量が10万以下であると、ポリエステル中に均一分散しやすく、耐候性改良効果が良好に発現する。一方、重量平均分子量が200以上であると、押出し、製膜中に揮散しにくく、耐候性向上効果が得られやすい。 When the end-capping agent (particularly carbodiimide compound) has a high molecular weight, volatilization during melt film formation can be reduced. The molecular weight is preferably 200 to 100,000 in terms of weight average molecular weight, more preferably 2000 to 80,000, and still more preferably 10,000 to 50,000. When the weight average molecular weight of the end-capping agent (particularly carbodiimide compound) is 100,000 or less, it is easy to uniformly disperse in the polyester, and the effect of improving weather resistance is exhibited well. On the other hand, when the weight average molecular weight is 200 or more, it is difficult to volatilize during extrusion and film formation, and an effect of improving weather resistance is easily obtained.
~カルボジイミド系末端封止剤~
 カルボジイミド系末端封止剤は、カルボジイミド基を有するカルボジイミド化合物である。このカルボジイミド化合物は、一官能性カルボジイミドと多官能性カルボジイミドとがある。
 一官能性カルボジイミドとしては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド及びジ-β-ナフチルカルボジイミドなどが挙げられる。特に好ましくは、ジシクロヘキシルカルボジイミドやジイソプロピルカルボジイミドである。
-Carbodiimide end-capping agent-
A carbodiimide type terminal blocker is a carbodiimide compound which has a carbodiimide group. This carbodiimide compound includes a monofunctional carbodiimide and a polyfunctional carbodiimide.
Examples of monofunctional carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide and di-β-naphthylcarbodiimide. Particularly preferred are dicyclohexylcarbodiimide and diisopropylcarbodiimide.
 また、多官能性カルボジイミドとしては、重合度3~15のカルボジイミドが好ましく用いられる。具体的には、1,5-ナフタレンカルボジイミド、4,4’-ジフェニルメタンカルボジイミド、4,4’-ジフェニルジメチルメタンカルボジイミド、1,3-フェニレンカルボジイミド、1,4-フェニレンジイソシアネート、2,4-トリレンカルボジイミド、2,6-トリレンカルボジイミド、2,4-トリレンカルボジイミドと2,6-トリレンカルボジイミドの混合物、ヘキサメチレンカルボジイミド、シクロヘキサン-1,4-カルボジイミド、キシリレンカルボジイミド、イソホロンカルボジイミド、イソホロンカルボジイミド、ジシクロヘキシルメタン-4,4’-カルボジイミド、メチルシクロヘキサンカルボジイミド、テトラメチルキシリレンカルボジイミド、2,6-ジイソプロピルフェニルカルボジイミド及び1,3,5-トリイソプロピルベンゼン-2,4-カルボジイミドなどを例示することができる。 As the polyfunctional carbodiimide, carbodiimide having a polymerization degree of 3 to 15 is preferably used. Specifically, 1,5-naphthalene carbodiimide, 4,4′-diphenylmethane carbodiimide, 4,4′-diphenyldimethylmethane carbodiimide, 1,3-phenylene carbodiimide, 1,4-phenylene diisocyanate, 2,4-tolylene Carbodiimide, 2,6-tolylene carbodiimide, mixture of 2,4-tolylene carbodiimide and 2,6-tolylene carbodiimide, hexamethylene carbodiimide, cyclohexane-1,4-carbodiimide, xylylene carbodiimide, isophorone carbodiimide, isophorone carbodiimide, Dicyclohexylmethane-4,4′-carbodiimide, methylcyclohexanecarbodiimide, tetramethylxylylene carbodiimide, 2,6-diisopropylphenylcarbodiimide and 1 3,5-triisopropyl-2,4-carbodiimide can be exemplified.
 カルボジイミド化合物は、熱分解によりイソシアネート系ガスが発生するため、耐熱性の高いカルボジイミド化合物が好ましい。耐熱性を高めるためには、分子量(重合度)が高いほど好ましく、カルボジイミド化合物の末端が耐熱性の高い構造であることが好ましい。また、カルボジイミド化合物は、一度熱分解を起こすと更なる熱分解を起こし易くなるため、ポリエステル等のポリマーの押出温度をなるべく低温下にするなどの工夫を行なうことが好ましい。 The carbodiimide compound is preferably a carbodiimide compound having high heat resistance because an isocyanate gas is generated by thermal decomposition. In order to improve heat resistance, the higher the molecular weight (degree of polymerization), the better, and the terminal of the carbodiimide compound preferably has a structure with high heat resistance. Further, since the carbodiimide compound is likely to undergo further thermal decomposition once it is thermally decomposed, it is preferable to devise measures such as setting the extrusion temperature of a polymer such as polyester as low as possible.
 末端封止剤として用いるカルボジイミド化合物は、環状構造を有するものが好ましく、例えば特開2011-153209号公報に記載の化合物が挙げられる。これらは、低分子量でも、上記した高分子量のカルボジイミド化合物と同等の効果を発現する。これは、ポリエステル等のポリマーの末端カルボキシル基と環状のカルボジイミドが開環反応し、一方がこのポリエステルと反応、開環した他方が他のポリエステルと反応し高分子量化するため、イソシアネート系ガスが発生することを抑制するためである。 The carbodiimide compound used as the end-capping agent preferably has a cyclic structure, and examples thereof include compounds described in JP2011-153209A. These exhibit the same effects as the above-described high molecular weight carbodiimide compounds even at low molecular weights. This is because the terminal carboxyl group of a polymer such as polyester and a cyclic carbodiimide undergo a ring-opening reaction, one of which reacts with this polyester, and the other of the ring-opening reacts with another polyester to increase the molecular weight, thereby generating an isocyanate gas. It is for suppressing doing.
 環状構造を持つカルボジイミド化合物である末端封止剤は、カルボジイミド基を有し、その第一窒素と第二窒素とが結合基により結合されている環状構造を含む化合物であることが好ましい。さらに、末端封止剤は、芳香環に隣接したカルボジイミド基を少なくとも1個有し、芳香環に隣接したカルボジイミド基の第一窒素と第二窒素とが結合基により結合されている環状構造を含むカルボジイミド(芳香族環状カルボジイミドともいう。)であることがより好ましい。
 芳香族環状カルボジイミドは、環状構造を複数有していてもよい。
 芳香族環状カルボジイミドは分子内に2つ以上のカルボジイミド基の第一窒素と第二窒素とが連結基により結合した環構造を有さない芳香族カルボジイミドであること、すなわち単環であるものも好ましく用いることができる。
The end-capping agent, which is a carbodiimide compound having a cyclic structure, is preferably a compound having a carbodiimide group and a cyclic structure in which the first nitrogen and the second nitrogen are bonded by a bonding group. Further, the terminal blocking agent has a cyclic structure in which at least one carbodiimide group adjacent to the aromatic ring is present, and the first nitrogen and the second nitrogen of the carbodiimide group adjacent to the aromatic ring are bonded to each other by a bonding group. It is more preferably carbodiimide (also referred to as aromatic cyclic carbodiimide).
The aromatic cyclic carbodiimide may have a plurality of cyclic structures.
The aromatic cyclic carbodiimide is preferably an aromatic carbodiimide having no ring structure in which the first nitrogen and the second nitrogen of two or more carbodiimide groups are bonded by a linking group in the molecule, that is, a monocyclic ring. Can be used.
 環状構造は、カルボジイミド基(-N=C=N-)を1個有しその第一窒素と第二窒素とが結合基により結合されている。一つの環状構造中には、1個のカルボジイミド基のみを有するが、例えば、スピロ環など、分子中に複数の環状構造を有する場合にはスピロ原子に結合するそれぞれの環状構造中に1個のカルボジイミド基を有していれば、化合物として複数のカルボジイミド基を有していてよい。環状構造中の原子数は、好ましくは8~50、より好ましくは10~30、さらに好ましくは10~20、特に、10~15が好ましい。 The cyclic structure has one carbodiimide group (—N═C═N—), and the first nitrogen and the second nitrogen are bonded by a bonding group. One cyclic structure has only one carbodiimide group. For example, when there are a plurality of cyclic structures in the molecule, such as a spiro ring, one cyclic structure bonded to a spiro atom is included in each cyclic structure. As long as it has a carbodiimide group, the compound may have a plurality of carbodiimide groups. The number of atoms in the cyclic structure is preferably 8 to 50, more preferably 10 to 30, further preferably 10 to 20, and particularly preferably 10 to 15.
 ここで、環状構造中の原子数とは、環状構造を直接構成する原子の数を意味し、例えば、8員環であれば原子数は8であり、50員環であれば原子数は50である。環状構造中の原子数が8以上であると、環状カルボジイミド化合物の安定性が保たれ、保管、使用に適する。また、反応性の観点からは、環員数の上限値に関して特別の制限はないが、原子数が50以下である環状カルボジイミド化合物は、合成上困難であることによるコスト上昇が抑えられる点で好ましい。かかる観点から、環状構造中の原子数は、10~30が好ましく、10~20がより好ましく、特に好ましくは10~15の範囲が選択される。 Here, the number of atoms in the cyclic structure means the number of atoms directly constituting the cyclic structure. For example, the number of atoms is 8 for an 8-membered ring, and the number of atoms is 50 for a 50-membered ring. It is. When the number of atoms in the cyclic structure is 8 or more, the stability of the cyclic carbodiimide compound is maintained, which is suitable for storage and use. Further, from the viewpoint of reactivity, there is no particular restriction on the upper limit of the number of ring members, but a cyclic carbodiimide compound having 50 or less atoms is preferable in terms of suppressing cost increase due to difficulty in synthesis. From this viewpoint, the number of atoms in the cyclic structure is preferably from 10 to 30, more preferably from 10 to 20, and particularly preferably from 10 to 15.
 環状構造を有するカルボジイミド化合物の具体例として、以下の化合物が挙げられる。但し、本発明は、以下に示す具体例に制限されるものではない。 Specific examples of the carbodiimide compound having a cyclic structure include the following compounds. However, the present invention is not limited to the specific examples shown below.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
~エポキシ系末端封止剤~
 エポキシ系末端封止剤は、エポキシ化合物より選択される。エポキシ化合物の好ましい例としては、グリシジルエステル化合物やグリシジルエーテル化合物などが挙げられる。
-Epoxy end sealant-
The epoxy-based end-capping agent is selected from epoxy compounds. Preferable examples of the epoxy compound include glycidyl ester compounds and glycidyl ether compounds.
 グリシジルエステル化合物の具体例としては、安息香酸グリシジルエステル、t-Bu-安息香酸グリシジルエステル、P-トルイル酸グリシジルエステル、シクロヘキサンカルボン酸グリシジルエステル、ペラルゴン酸グリシジルエステル、ステアリン酸グリシジルエステル、ラウリン酸グリシジルエステル、パルミチン酸グリシジルエステル、ベヘン酸グリシジルエステル、バーサティク酸グリシジルエステル、オレイン酸グリシジルエステル、リノール酸グリシジルエステル、リノレイン酸グリシジルエステル、ベヘノール酸グリシジルエステル、ステアロール酸グリシジルエステル、テレフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、フタル酸ジグリシジルエステル、ナフタレンジカルボン酸ジグリシジルエステル、メチルテレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、シクロヘキサンジカルボン酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、コハク酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、ドデカンジオン酸ジグリシジルエステル、オクタデカンジカルボン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル及びピロメリット酸テトラグリシジルエステルなどが挙げられる。これらは、1種又は2種以上を用いることができる。 Specific examples of glycidyl ester compounds include benzoic acid glycidyl ester, t-Bu-benzoic acid glycidyl ester, P-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, pelargonic acid glycidyl ester, stearic acid glycidyl ester, lauric acid glycidyl ester , Glycidyl palmitate, glycidyl behenate, glycidyl versatate, glycidyl oleate, glycidyl linoleate, glycidyl linolein, glycidyl behenol, glycidyl stearol, diglycidyl terephthalate, isophthalic acid Diglycidyl ester, diglycidyl phthalate, diglycidyl naphthalene dicarboxylate Stell, methyl terephthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, cyclohexanedicarboxylic acid diglycidyl ester, adipic acid diglycidyl ester, succinic acid diglycidyl ester, sebacic acid diglycidyl ester, dodecane Examples thereof include diacid diglycidyl ester, octadecanedicarboxylic acid diglycidyl ester, trimellitic acid triglycidyl ester, and pyromellitic acid tetraglycidyl ester. These can use 1 type (s) or 2 or more types.
 また、グリシジルエーテル化合物の具体例としては、フェニルグリシジルエ-テル、O-フェニルグリシジルエ-テル、1,4-ビス(β,γ-エポキシプロポキシ)ブタン、1,6-ビス(β,γ-エポキシプロポキシ)ヘキサン、1,4-ビス(β,γ-エポキシプロポキシ)ベンゼン、1-(β,γ-エポキシプロポキシ)-2-エトキシエタン、1-(β,γ-エポキシプロポキシ)-2-ベンジルオキシエタン、2,2-ビス-[р-(β,γ-エポキシプロポキシ)フェニル]プロパン及び2,2-ビス-(4-ヒドロキシフェニル)プロパンや2,2-ビス-(4-ヒドロキシフェニル)メタンなどのビスフェノールとエピクロルヒドリンの反応で得られるビスグリシジルポリエーテルなどが挙げられる。これらは、1種又は2種以上を用いることができる。 Specific examples of the glycidyl ether compound include phenyl glycidyl ether, O-phenyl glycidyl ether, 1,4-bis (β, γ-epoxypropoxy) butane, 1,6-bis (β, γ- Epoxypropoxy) hexane, 1,4-bis (β, γ-epoxypropoxy) benzene, 1- (β, γ-epoxypropoxy) -2-ethoxyethane, 1- (β, γ-epoxypropoxy) -2-benzyl Oxyethane, 2,2-bis- [р- (β, γ-epoxypropoxy) phenyl] propane, 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxyphenyl) Examples thereof include bisglycidyl polyether obtained by the reaction of bisphenol such as methane and epichlorohydrin. These can use 1 type (s) or 2 or more types.
~オキサゾリン系末端封止剤~
 オキサゾリン系末端封止剤は、オキサゾリン化合物より選択される。オキサゾリン化合物としては、ビスオキサゾリン化合物が好ましく、具体的には、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(4,4-ジメチル-2-オキサゾリン)、2,2’-ビス(4-エチル-2-オキサゾリン)、2,2’-ビス(4,4’-ジエチル-2-オキサゾリン)、2,2’-ビス(4-プロピル-2-オキサゾリン)、2,2’-ビス(4-ブチル-2-オキサゾリン)、2,2’-ビス(4-ヘキシル-2-オキサゾリン)、2,2’-ビス(4-フェニル-2-オキサゾリン)、2,2’-ビス(4-シクロヘキシル-2-オキサゾリン)、2,2’-ビス(4-ベンジル-2-オキサゾリン)、2,2’-p-フェニレンビス(2-オキサゾリン)、2,2’-m-フェニレンビス(2-オキサゾリン)、2,2’-o-フェニレンビス(2-オキサゾリン)、2,2’-p-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-p-フェニレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4-メチル-2-オキサゾリン)、2,2’-m-フェニレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-エチレンビス(2-オキサゾリン)、2,2’-テトラメチレンビス(2-オキサゾリン)、2,2’-ヘキサメチレンビス(2-オキサゾリン)、2,2’-オクタメチレンビス(2-オキサゾリン)、2,2’-デカメチレンビス(2-オキサゾリン)、2,2’-エチレンビス(4-メチル-2-オキサゾリン)、2,2’-テトラメチレンビス(4,4-ジメチル-2-オキサゾリン)、2,2’-9,9’-ジフェノキシエタンビス(2-オキサゾリン)、2,2’-シクロヘキシレンビス(2-オキサゾリン)及び2,2’-ジフェニレンビス(2-オキサゾリン)等を例示することができる。これらの中では、ポリエステルとの反応性の観点から、2,2’-ビス(2-オキサゾリン)が最も好ましく用いられる。さらに、上記で挙げたビスオキサゾリン化合物は、本発明の目的を達成する限り、一種を単独で用いても、二種以上を併用してもよい。
-Oxazoline-based end-capping agent-
The oxazoline-based end capping agent is selected from oxazoline compounds. As the oxazoline compound, a bisoxazoline compound is preferable. Specifically, 2,2′-bis (2-oxazoline), 2,2′-bis (4-methyl-2-oxazoline), 2,2′-bis (4,4-dimethyl-2-oxazoline), 2,2′-bis (4-ethyl-2-oxazoline), 2,2′-bis (4,4′-diethyl-2-oxazoline), 2,2 '-Bis (4-propyl-2-oxazoline), 2,2'-bis (4-butyl-2-oxazoline), 2,2'-bis (4-hexyl-2-oxazoline), 2,2'- Bis (4-phenyl-2-oxazoline), 2,2′-bis (4-cyclohexyl-2-oxazoline), 2,2′-bis (4-benzyl-2-oxazoline), 2,2′-p- Phenylenebis (2-oxazoline), 2,2'-m- Enylene bis (2-oxazoline), 2,2'-o-phenylene bis (2-oxazoline), 2,2'-p-phenylene bis (4-methyl-2-oxazoline), 2,2'-p-phenylene bis (4,4-dimethyl-2-oxazoline), 2,2'-m-phenylenebis (4-methyl-2-oxazoline), 2,2'-m-phenylenebis (4,4-dimethyl-2-oxazoline) ), 2,2′-ethylenebis (2-oxazoline), 2,2′-tetramethylenebis (2-oxazoline), 2,2′-hexamethylenebis (2-oxazoline), 2,2′-octamethylene Bis (2-oxazoline), 2,2′-decamethylene bis (2-oxazoline), 2,2′-ethylenebis (4-methyl-2-oxazoline), 2,2′-tetramethylene bis (4,4 -The Methyl-2-oxazoline), 2,2′-9,9′-diphenoxyethanebis (2-oxazoline), 2,2′-cyclohexylenebis (2-oxazoline) and 2,2′-diphenylenebis ( 2-oxazoline) and the like. Of these, 2,2′-bis (2-oxazoline) is most preferably used from the viewpoint of reactivity with polyester. Furthermore, the bisoxazoline compounds listed above may be used alone or in combination of two or more as long as the object of the present invention is achieved.
 このような末端封止剤は、ポリマー基材を構成するポリマー中に練り込む等の方法により導入することができる。すなわち、末端封止剤とポリマー分子とを直接接触させて反応させることにより、上記効果が得られる。末端封止剤をPET上の塗布層に添加しても、ポリエステル等のポリマーと末端封止剤は反応しない。 Such an end-capping agent can be introduced by a method such as kneading into a polymer constituting the polymer substrate. That is, the said effect is acquired by making a terminal blocker and a polymer molecule contact directly, and making it react. Even when the end-capping agent is added to the coating layer on PET, a polymer such as polyester does not react with the end-capping agent.
 ポリマー基材の表面は、必要に応じてコロナ処理、火炎処理、グロー放電処理のような表面処理を行なってもよい。これらの表面処理を施すことで、湿熱環境下に曝された場合の接着性をさらに高めることができる。中でも特に、コロナ処理、グロー放電処理を行なうことで、より優れた接着性の向上効果が得られる。
 これらの表面処理は、ポリマー基材(例えばポリエステル基材)表面にカルボキシル基や水酸基が増加することにより接着性が高められるが、架橋剤(特にカルボキシル基と反応性の高いオキサゾリン系もしくはカルボジイミド系の架橋剤)を併用した場合により強力な接着性が得られる。これは、コロナ処理、グロー放電処理による場合により顕著である。
The surface of the polymer substrate may be subjected to a surface treatment such as a corona treatment, a flame treatment, or a glow discharge treatment as necessary. By applying these surface treatments, it is possible to further improve the adhesiveness when exposed to a humid heat environment. In particular, by performing corona treatment and glow discharge treatment, a more excellent adhesive improvement effect can be obtained.
These surface treatments can increase adhesion by increasing carboxyl groups and hydroxyl groups on the surface of polymer substrates (for example, polyester substrates). However, crosslinking agents (especially oxazoline or carbodiimide compounds that are highly reactive with carboxyl groups) can be used. When the crosslinking agent is used in combination, stronger adhesiveness can be obtained. This is more remarkable in the case of corona treatment and glow discharge treatment.
 コロナ放電処理は、通常誘導体を被膜した金属ロール(誘電体ロール)と絶縁された電極間に高周波、高電圧を印加して、電極間の空気の絶縁破壊を生じさせることにより、電極間の空気をイオン化させて、電極間にコロナ放電を発生させる。そして、このコロナ放電の間を、ポリマー基材を通過させることにより行なう。
 ある実施形態において、コロナ放電処理の条件は、電極と誘電体ロ-ルのギャップクリアランス1~3mm、周波数1~100kHz、印加エネルギー0.2~5kV・A・分/m程度であることが好ましい。
Corona discharge treatment is usually performed by applying high frequency and high voltage between a metal roll (dielectric roll) coated with a derivative and an insulated electrode to cause dielectric breakdown of the air between the electrodes. Is ionized to generate a corona discharge between the electrodes. And it performs by passing a polymer base material between this corona discharge.
In one embodiment, the conditions for the corona discharge treatment are that the gap clearance between the electrode and the dielectric roll is 1 to 3 mm, the frequency is 1 to 100 kHz, and the applied energy is about 0.2 to 5 kV · A · min / m 2. preferable.
 グロー放電処理は、真空プラズマ処理又はグロー放電処理とも呼ばれる方法で、低圧雰囲気の気体(プラズマガス)中での放電によりプラズマを発生させ、基材表面を処理する方法である。ここで用いる低圧プラズマは、プラズマガスの圧力が低い条件で生成する非平衡プラズマである。この低圧プラズマ雰囲気内に被処理フィルムを置くことにより、グロー放電処理を実施し得る。
 グロー放電処理において、プラズマを発生させる方法としては、直流グロー放電、高周波放電、マイクロ波放電等が挙げられる。放電に用いる電源は直流でも交流でもよい。交流を用いる場合は30Hz~20MHz程度の範囲が好ましい。交流を用いる場合には、50Hz又は60Hzの商用の周波数を用いてもよいし、10Hz~50kHz程度の高周波を用いてもよい。また、13.56MHzの高周波を用いる方法も好ましい。
 グロー放電処理で用いるプラズマガスとしては、酸素ガス、窒素ガス、水蒸気ガス、アルゴンガス、ヘリウムガス等の無機ガスが挙げられ、特に、酸素ガス、又は酸素ガスとアルゴンガスとの混合ガスが好ましい。具体的には、酸素ガスとアルゴンガスとの混合ガスを使用することが望ましい。酸素ガスとアルゴンガスを用いる場合、両者の比率としては、分圧比で酸素ガス:アルゴンガス=100:0~30:70位、より好ましくは、90:10~70:30位が好ましい。また、特に気体を処理容器に導入せず、リークにより処理容器にはいる大気や被処理物から出る水蒸気などの気体をプラズマガスとして用いる方法も好ましい。
 プラズマガスの圧力としては、非平衡プラズマ条件が達成される低圧が必要である。具体的なプラズマガスの圧力としては、0.005~10Torr、より好ましくは0.008~3Torr程度の範囲が好ましい。プラズマガスの圧力が0.005Torr以上であると、良好な接着性改良効果が得られ、逆に10Torr以下であることで電流増大による放電の不安定化を防ぐことができる。
The glow discharge treatment is a method called vacuum plasma treatment or glow discharge treatment, in which plasma is generated by discharge in a gas (plasma gas) in a low-pressure atmosphere to treat the substrate surface. The low-pressure plasma used here is non-equilibrium plasma generated under a condition where the pressure of the plasma gas is low. Glow discharge treatment can be performed by placing a film to be treated in this low-pressure plasma atmosphere.
In the glow discharge treatment, methods for generating plasma include direct current glow discharge, high frequency discharge, microwave discharge, and the like. The power source used for discharging may be direct current or alternating current. When alternating current is used, a range of about 30 Hz to 20 MHz is preferable. When alternating current is used, a commercial frequency of 50 Hz or 60 Hz may be used, or a high frequency of about 10 Hz to 50 kHz may be used. A method using a high frequency of 13.56 MHz is also preferable.
Examples of the plasma gas used in the glow discharge treatment include inorganic gases such as oxygen gas, nitrogen gas, water vapor gas, argon gas, and helium gas, and oxygen gas or a mixed gas of oxygen gas and argon gas is particularly preferable. Specifically, it is desirable to use a mixed gas of oxygen gas and argon gas. When oxygen gas and argon gas are used, the ratio of the two is preferably about oxygen gas: argon gas = 100: 0 to 30:70, more preferably 90:10 to 70:30, as a partial pressure ratio. In addition, a method is also preferable in which a gas such as the air entering the processing container due to a leak or water vapor coming out of the object to be processed is used as the plasma gas without introducing the gas into the processing container.
As the pressure of the plasma gas, a low pressure at which non-equilibrium plasma conditions are achieved is necessary. The specific plasma gas pressure is preferably in the range of 0.005 to 10 Torr, more preferably about 0.008 to 3 Torr. When the pressure of the plasma gas is 0.005 Torr or more, a good adhesive improvement effect is obtained. Conversely, when the pressure is 10 Torr or less, discharge instability due to an increase in current can be prevented.
 プラズマ出力としては、処理容器の形状や大きさ、電極の形状などにより一概にはいえないが、100~2500W程度が好ましく、500~1500W程度がより好ましい。
 グロー放電処理の処理時間は、0.05~100秒が好ましく、0.5~30秒程度がより好ましい。処理時間が0.05秒以上であると、良好な接着性改良効果が得られ、逆に処理時間が100秒以下であると、被処理フィルムの変形や着色等を防ぐことができる。
 グロー放電処理の放電処理強度は、プラズマ出力と処理時間によるが、0.01~10kV・A・分/mの範囲が好ましく、0.1~7kV・A・分/mがより好ましい。
 放電処理強度が0.01kV・A・分/m以上であることで、良好な接着性改良効果が得られる。また、放電処理強度が10kV・A・分/m以下であることで、被処理フィルムの変形や着色等を避けることができる。
The plasma output cannot be generally specified depending on the shape and size of the processing vessel, the shape of the electrode, and the like, but is preferably about 100 to 2500 W, and more preferably about 500 to 1500 W.
The treatment time for the glow discharge treatment is preferably 0.05 to 100 seconds, more preferably about 0.5 to 30 seconds. When the treatment time is 0.05 seconds or longer, a good effect of improving adhesiveness can be obtained. Conversely, when the treatment time is 100 seconds or less, deformation or coloring of the film to be treated can be prevented.
The discharge treatment intensity of the glow discharge treatment is preferably in the range of 0.01 to 10 kV · A · min / m 2 , more preferably 0.1 to 7 kV · A · min / m 2 , depending on the plasma output and the treatment time.
When the discharge treatment strength is 0.01 kV · A · min / m 2 or more, a good adhesion improving effect can be obtained. Moreover, a deformation | transformation, coloring, etc. of a to-be-processed film can be avoided because discharge processing intensity | strength is 10 kV * A * min / m < 2 > or less.
 グロー放電処理では、あらかじめポリマー基材を加熱しておくことも好ましい。この方法により、加熱を行わなかった場合に比べ、短時間で良好な接着性が得られる。加熱の温度は40℃~被処理フィルムの軟化温度+20℃の範囲が好ましく、70℃~被処理フィルムの軟化温度の範囲がより好ましい。加熱温度を40℃以上とすることで充分な接着性の改良効果が得られる。また、加熱温度を被処理フィルムの軟化温度以下とすることで処理中に良好なフィルムの取り扱い性が確保できる。真空中で被処理フィルムの温度を上げる具体的方法としては、赤外線ヒーターによる加熱、熱ロールに接触させることによる加熱などが挙げられる。 In the glow discharge treatment, it is also preferable to heat the polymer substrate in advance. By this method, better adhesiveness can be obtained in a shorter time than when heating is not performed. The heating temperature is preferably in the range of 40 ° C. to the softening temperature of the film to be treated + 20 ° C., more preferably in the range of 70 ° C. to the softening temperature of the film to be processed. By setting the heating temperature to 40 ° C. or higher, a sufficient adhesive improvement effect can be obtained. Moreover, the handleability of a favorable film can be ensured during a process by making heating temperature below into the softening temperature of a to-be-processed film. Specific methods for raising the temperature of the film to be treated in vacuum include heating with an infrared heater, heating by contacting with a hot roll, and the like.
(複合ポリマー層)
 本発明における複合ポリマー層は、ポリマー基材に直接又は他の層を介して設けられる層であり、塗布法により形成された塗布層であるのが好ましい。この複合ポリマー層は、分子中に以下に示す一般式(1)で表される(ポリ)シロキサン構造単位を有する特定の複合ポリマーを用いて構成されている。本発明における複合ポリマー層は、複合ポリマーを含むことで、長期に亘る耐湿熱性に優れると共に、ポリマー基材との接着性、及びさらに他の隣接層が設けられるときには該他の隣接層間における接着性に優れる。複合ポリマー層は、適用する用途や場合に応じて、更に他の成分を用いて構成することができる。
(Composite polymer layer)
The composite polymer layer in the present invention is a layer provided directly or via another layer on the polymer substrate, and is preferably a coating layer formed by a coating method. This composite polymer layer is configured using a specific composite polymer having a (poly) siloxane structural unit represented by the following general formula (1) in the molecule. The composite polymer layer in the present invention is excellent in moisture and heat resistance over a long period of time by including the composite polymer, and also has adhesion to the polymer substrate and adhesion between the other adjacent layers when another adjacent layer is provided. Excellent. The composite polymer layer can be constituted by using other components depending on the application and the case of application.
 本発明における複合ポリマー層は、例えば、外部環境に曝される最外層、つまり太陽光が直接入射するオモテ面と反対側の裏面の最外層(バックシートの太陽電池セルが配された電池側基板が配置されている側の反対側の最表層)として好適に用いられる。また、複合ポリマー層は、例えば、オモテ面側から入射し太陽電池セル(セル構造部分)を素通りした光を再びセルに戻して発電効率を高める反射層として構成されてもよい。この場合、白色顔料等の着色剤を更に用いて構成することができる。
 ポリマー基材上に2層以上の複合ポリマー層を設ける場合、複合ポリマー層/光反射性の複合ポリマー層(白色層)/ポリマー基材の重層構造に構成されてもよい。反射層のバックシート内での接着性、密着性により優れる。
The composite polymer layer in the present invention is, for example, the outermost layer exposed to the external environment, that is, the outermost layer on the back surface opposite to the front surface on which sunlight directly enters (battery side substrate on which the solar cells of the back sheet are arranged) Is preferably used as the outermost layer on the side opposite to the side on which is disposed. In addition, the composite polymer layer may be configured as a reflective layer that increases power generation efficiency by returning light that is incident from the front surface side and passes through the solar cell (cell structure portion) to the cell again. In this case, a colorant such as a white pigment can be further used.
When two or more composite polymer layers are provided on the polymer base material, the composite polymer layer / light reflective composite polymer layer (white layer) / polymer base material multilayer structure may be used. Excellent in adhesion and adhesion within the back sheet of the reflective layer.
-複合ポリマー-
 本発明における複合ポリマー層は、分子中に下記一般式(1)で表される質量割合が15~85質量%の(ポリ)シロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを含む複合ポリマーの少なくとも一種を含有する。この複合ポリマーを含有することにより、支持体であるポリマー基材や層間の接着性、すなわち熱や水分が与えられて劣化しやすい剥離耐性、形状安定性を従来に比べて飛躍的に向上させることができる。
-Composite polymer-
The composite polymer layer in the present invention has a non-siloxane structure having a (poly) siloxane structural unit having a mass ratio of 15 to 85 mass% and a mass ratio of 85 to 15 mass% represented by the following general formula (1) in the molecule. And at least one kind of composite polymer containing units. By containing this composite polymer, the adhesion between the polymer substrate as a support and the interlayer, that is, peeling resistance and shape stability, which are easily deteriorated when given heat and moisture, is dramatically improved compared to conventional products. Can do.
 本発明における複合ポリマーは、(ポリ)シロキサンと少なくとも一種のポリマーとが共重合したブロック共重合体である。(ポリ)シロキサン、及び共重合されるポリマーは、一種単独でもよく、二種以上であってもよい。
 本発明において、「シロキサン構造」とは少なくとも1つのシロキサン結合を含む構造を意味する。「ポリシロキサン構造」とは、複数のシロキサン結合が連続してなる構造を意味する。「(ポリ)シロキサン構造」との語は、シロキサン構造とポリシロキサン構造をその範囲に含み、「ポリマーが分子中にシロキサン構造を有する」及び「ポリマーが分子中に(ポリ)シロキサン構造を有する」の表現は、ポリマーがその分子内にシロキサン構造又はポリシロキサン構造を含むことを意味する。
The composite polymer in the present invention is a block copolymer in which (poly) siloxane and at least one polymer are copolymerized. The (poly) siloxane and the copolymerized polymer may be one kind alone, or two or more kinds.
In the present invention, the “siloxane structure” means a structure containing at least one siloxane bond. The “polysiloxane structure” means a structure in which a plurality of siloxane bonds are continuous. The term “(poly) siloxane structure” includes siloxane structures and polysiloxane structures in its scope, “the polymer has a siloxane structure in the molecule” and “the polymer has a (poly) siloxane structure in the molecule”. This means that the polymer contains a siloxane structure or a polysiloxane structure in its molecule.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(1)において、R及びRは、各々独立に、水素原子、ハロゲン原子、又は1価の有機基を表す。ここで、RとRとは同一でも異なってもよく、複数のR及びRは各々、互いに同一でも異なってもよい。nは、1以上の整数を表す。 In the general formula (1), R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group. Here, R 1 and R 2 may be the same or different, and the plurality of R 1 and R 2 may be the same or different from each other. n represents an integer of 1 or more.
 複合ポリマー中の(ポリ)シロキサンセグメントである「-(Si(R) (R)-O)-」の部分(一般式(1)で表される(ポリ)シロキサン構造単位)において、R及びRは同一でも異なってもよく、水素原子、ハロゲン原子、又は1価の有機基を表す。 In the part of “— (Si (R 1 ) (R 2 ) —O) n —” ((poly) siloxane structural unit represented by the general formula (1)), which is the (poly) siloxane segment in the composite polymer, R 1 and R 2 may be the same or different and each represents a hydrogen atom, a halogen atom, or a monovalent organic group.
 「-(Si(R) (R)-O)-」は、線状、分岐状あるいは環状の構造を有する各種の(ポリ)シロキサンに由来する(ポリ)シロキサンセグメントである。 “— (Si (R 1 ) (R 2 ) —O) n —” is a (poly) siloxane segment derived from various (poly) siloxanes having a linear, branched or cyclic structure.
 R及びRで表されるハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子等を挙げることができる。 Examples of the halogen atom represented by R 1 and R 2 include a fluorine atom, a chlorine atom, and an iodine atom.
 R及びRで表される「1価の有機基」は、Si原子と共有結合可能な基であり、無置換でも置換基を有してもよい。1価の有機基は、例えば、アルキル基(例:メチル基、エチル基など)、アリール基(例:フェニル基など)、アラルキル基(例:ベンジル基、フェニルエチルなど)、アルコキシ基(例:メトキシ基、エトキシ基、プロポキシ基など)、アリールオキシ基(例;フェノキシ基など)、メルカプト基、アミノ基(例:アミノ基、ジエチルアミノ基など)、アミド基等が挙げられる。 The “monovalent organic group” represented by R 1 and R 2 is a group capable of covalent bonding with a Si atom, and may be unsubstituted or have a substituent. The monovalent organic group includes, for example, an alkyl group (eg, methyl group, ethyl group, etc.), an aryl group (eg: phenyl group, etc.), an aralkyl group (eg: benzyl group, phenylethyl etc.), and an alkoxy group (eg: A methoxy group, an ethoxy group, a propoxy group, etc.), an aryloxy group (eg, phenoxy group, etc.), a mercapto group, an amino group (eg, amino group, diethylamino group, etc.), an amide group and the like.
 中でも、ポリマー基材などの隣接材料との接着性及び湿熱環境下での耐久性の点で、R、Rとしては各々独立に、水素原子、塩素原子、臭素原子、無置換の又は置換された炭素数1~4のアルキル基(特にメチル基、エチル基)、無置換の又は置換されたフェニル基、無置換の又は置換されたアルコキシ基(例:メトキシ基、エトキシ基、プロポキシ基などの炭素数1~4のアルコキシ基)、メルカプト基、無置換のアミノ基、アミド基が好ましく、より好ましくは、湿熱環境下での耐久性の点で、無置換の又は置換されたアルコキシ基(好ましくは、炭素数1~4のアルコキシ基)である。 Among them, R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an unsubstituted or substituted, in terms of adhesion to adjacent materials such as a polymer substrate and durability in a wet and heat environment. Alkyl groups having 1 to 4 carbon atoms (particularly methyl and ethyl groups), unsubstituted or substituted phenyl groups, unsubstituted or substituted alkoxy groups (eg, methoxy group, ethoxy group, propoxy group, etc.) An alkoxy group having 1 to 4 carbon atoms), a mercapto group, an unsubstituted amino group, or an amide group, and more preferably an unsubstituted or substituted alkoxy group (from the viewpoint of durability in a humid heat environment) Preferred is an alkoxy group having 1 to 4 carbon atoms.
 nは、1~5000であることが好ましく、1~1000であることがより好ましい。 N is preferably from 1 to 5000, and more preferably from 1 to 1000.
 シリコーンポリマー中における「-(Si(R)(R)-O)-」の部分(一般式(1)で表される(ポリ)シロキサン構造単位)の具体例としては、ジメチルジメトキシシランの加水分解縮合物を含有する加水分解縮合物、ジメチルジメトキシシラン/γ-メタクリロキシトリメトキシシランの加水分解縮合物を含有する加水分解縮合物、ジメチルジメトキシシラン/ビニルトリメトキシシランの加水分解縮合物を含有する加水分解縮合物、ジメチルジメトキシシラン/2-ヒドロキシエチルトリメトキシシランの加水分解縮合物を含有する加水分解縮合物、ジメチルジメトキシシラン/3-グリシドキシプロピルトリエトキシシランの加水分解縮合物を含有する加水分解縮合物、ジメチルジメトキシシラン/ジフェニル/ジメトキシシランγ-メタクリロキシトリメトキシシランの加水分解縮合物を含有する加水分解縮合物等がある。これらの中では、ジメチルジメトキシシラン/γ-メタクリロキシトリメトキシシランの加水分解縮合物を含有する加水分解縮合物、ジメチルジメトキシシラン/ジフェニル/ジメトキシシランγ-メタクリロキシトリメトキシシランの加水分解縮合物を含有する加水分解縮合物等が好ましい。 Specific examples of the portion of “— (Si (R 1 ) (R 2 ) —O) n —” ((poly) siloxane structural unit represented by the general formula (1)) in the silicone polymer include dimethyldimethoxysilane Hydrolysis condensate containing a hydrolysis condensate, dimethyldimethoxysilane / γ-methacryloxytrimethoxysilane hydrolysis condensate, dimethyldimethoxysilane / vinyltrimethoxysilane hydrolysis condensate Hydrolysis condensate containing dimethyldimethoxysilane / 2-hydroxyethyltrimethoxysilane hydrolysis condensate, dimethyldimethoxysilane / 3-glycidoxypropyltriethoxysilane hydrolysis condensate Hydrolysis condensate containing dimethyldimethoxysilane / diphenyl / dimethyl It is hydrolyzed condensate containing Kishishiran γ- methacryloxypropyltrimethoxysilane hydrolyzed condensate of trimethoxysilane. Among these, a hydrolysis condensate containing a hydrolysis condensate of dimethyldimethoxysilane / γ-methacryloxytrimethoxysilane, a hydrolysis condensate of dimethyldimethoxysilane / diphenyl / dimethoxysilane γ-methacryloxytrimethoxysilane, and the like. The hydrolyzed condensate contained is preferred.
 複合ポリマー中における「-(Si(R) (R)-O)-」の部分(一般式(1)で表される(ポリ)シロキサン構造単位)の含有比率は、複合ポリマーの全質量に対して15~85質量%であり、その中でもポリマー基材との接着性及び湿熱環境下での耐久性の点で、20~80質量%の範囲が好ましい。ポリシロキサン部位の比率は、15質量%未満であるとポリマー基材との接着性及び湿熱環境下に曝された際の接着耐久性が劣り、85質量%を超えると液が不安定になる。
 このとき、非シロキサン系構造単位の含有比率は、85~15質量%である。
 このような共重合ポリマーを含有することにより、層強度が向上し、引っ掻きや擦過等による傷の発生を防ぎ、ポリマー基材との接着性、すなわち熱や水分が与えられて劣化しやすい剥離耐性、形状安定性、並びに湿熱環境下での耐久性を、従来に比べて飛躍的に向上させ得る。
 シリコーンポリマーが、(ポリ)シロキサン構造単位と他の構造単位とを有する共重合ポリマーである場合、シリコーンポリマー中における「-(Si(R)(R)-O)-」の部分(一般式(1)で表される(ポリ)シロキサン構造単位)の分子量はポリスチレン換算重量平均分子量で5000~300000程度であり、10000~150000程度が好ましい。
The content ratio of “— (Si (R 1 ) (R 2 ) —O) n —” in the composite polymer (the (poly) siloxane structural unit represented by the general formula (1)) is the total content of the composite polymer. The content is 15 to 85% by mass with respect to the mass, and among them, the range of 20 to 80% by mass is preferable from the viewpoint of adhesion to the polymer substrate and durability in a moist heat environment. When the ratio of the polysiloxane moiety is less than 15% by mass, the adhesion to the polymer substrate and the adhesion durability when exposed to a wet heat environment are inferior, and when it exceeds 85% by mass, the liquid becomes unstable.
At this time, the content ratio of the non-siloxane structural unit is 85 to 15% by mass.
By containing such a copolymer, the layer strength is improved, the occurrence of scratches due to scratching or scratching is prevented, and the adhesion to the polymer substrate, that is, the peeling resistance that is easily deteriorated by being given heat or moisture. In addition, the shape stability and the durability in a humid heat environment can be dramatically improved as compared with the conventional case.
When the silicone polymer is a copolymer having a (poly) siloxane structural unit and another structural unit, a moiety of “— (Si (R 1 ) (R 2 ) —O) n —” in the silicone polymer ( The molecular weight of the (poly) siloxane structural unit represented by the general formula (1) is about 5000 to 300000 in terms of polystyrene-converted weight average molecular weight, and preferably about 10,000 to 150,000.
 また、シロキサン構造単位と共重合している非シロキサン系構造単位(ポリマーに由来の構造部分)は、シロキサン構造を有していないこと以外は特に制限されるものではなく、任意のポリマーに由来のポリマーセグメントのいずれであってもよい。ポリマーセグメントの前駆体である重合体(前駆ポリマー)としては、例えば、ビニル系重合体、ポリエステル系重合体、ポリウレタン系重合体等の各種の重合体等が挙げられる。調製が容易なこと及び耐加水分解性に優れる点から、ビニル系重合体及びポリウレタン系重合体が好ましく、ビニル系重合体が特に好ましい。 Further, the non-siloxane structural unit copolymerized with the siloxane structural unit (the structural portion derived from the polymer) is not particularly limited except that it does not have a siloxane structure, and is derived from any polymer. Any of the polymer segments may be used. Examples of the polymer (precursor polymer) that is a precursor of the polymer segment include various polymers such as a vinyl polymer, a polyester polymer, and a polyurethane polymer. From the viewpoint of easy preparation and excellent hydrolysis resistance, vinyl polymers and polyurethane polymers are preferred, and vinyl polymers are particularly preferred.
 ビニル系重合体の代表的な例としては、アクリル系重合体、カルボン酸ビニルエステル系重合体、芳香族ビニル系重合体、フルオロオレフィン系重合体等の各種の重合体が挙げられる。中でも、設計の自由度の観点から、アクリル系重合体(すなわち非シロキサン系構造単位としてアクリル系構造単位)が特に好ましい。アクリル系重合体を構成するモノマーとしてはアクリル酸のエステル(例:エチルアクリレート、ブチルアクリレート、ヒドロキシエチルアクリレート、2-エチルヘキシルアクリレート等)又はメタクリル酸のエステル(例:メチルメタクリレート、ブチルメタクリレート、ヒドロキシエチルアクリレート、グリシジルメタクリレート、ジメチルアミノエチルメタクリレート等)から成るポリマーを挙げることができる。さらに、モノマーとしてアクリル酸、メタクリル酸、イタコン酸などのカルボン酸、スチレン、アクリロニトリル、酢酸ビニル、アクリルアミド、ジビニルベンゼン等が挙げられ、中でもエチルアクリレート、ブチルアクリレート、ヒドロキシエチルアクリレート、2-エチルヘキシルアクリレートメチルメタクリレート、ブチルメタクリレート、ヒドロキシエチルアクリレート、アクリル酸、メタクリル酸等が好ましい。
 アクリル系重合体の具体例としては、メチルメタクリレート/エチルアクリレート/アクリル酸共重合体、メチルメタクリレート/エチルアクリレート/2-ビドロキシエチルメタアクリレート/メタクリル酸共重合体、メチルメタクリレート/ブチルアクリレート/2-ビドロキシエチルメタアクリレート/メタクリル酸/γ-メタクリロキシトリメトキシシラン共重合体、メチルメタクリレート/エチルアクリレート/グリシジルメタクリレート/アクリル酸共重合体等が挙げられる。
 なお、非シロキサン系構造単位を構成する重合体は、一種単独でもよいし、2種以上の併用であってもよい。さらに、個々のポリマーは、ホモポリマーであっても、コポリマーであってもよい。
 非シロキサン系構造単位を構成するポリマーセグメントの前駆体である重合体の分子量はポリスチレン換算重量平均分子量で5000~300000程度であり、10000~150000程度が好ましい。
Typical examples of the vinyl polymer include various polymers such as an acrylic polymer, a carboxylic acid vinyl ester polymer, an aromatic vinyl polymer, and a fluoroolefin polymer. Among these, an acrylic polymer (that is, an acrylic structural unit as a non-siloxane structural unit) is particularly preferable from the viewpoint of design flexibility. Monomers constituting the acrylic polymer include acrylic acid esters (eg, ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate, etc.) or methacrylic acid esters (eg, methyl methacrylate, butyl methacrylate, hydroxyethyl acrylate). , Glycidyl methacrylate, dimethylaminoethyl methacrylate, etc.). In addition, examples of monomers include carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, styrene, acrylonitrile, vinyl acetate, acrylamide, and divinylbenzene. Among them, ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate methyl methacrylate , Butyl methacrylate, hydroxyethyl acrylate, acrylic acid, methacrylic acid and the like are preferable.
Specific examples of the acrylic polymer include methyl methacrylate / ethyl acrylate / acrylic acid copolymer, methyl methacrylate / ethyl acrylate / 2-hydroxyethyl methacrylate / methacrylic acid copolymer, methyl methacrylate / butyl acrylate / 2- Examples include bidoxyethyl methacrylate / methacrylic acid / γ-methacryloxytrimethoxysilane copolymer, methyl methacrylate / ethyl acrylate / glycidyl methacrylate / acrylic acid copolymer, and the like.
In addition, the polymer which comprises a non-siloxane type structural unit may be single 1 type, and 2 or more types of combined use may be sufficient as it. Furthermore, the individual polymers may be homopolymers or copolymers.
The molecular weight of the polymer, which is a precursor of the polymer segment constituting the non-siloxane structural unit, is about 5000 to 300000 in terms of polystyrene-equivalent weight average molecular weight, and preferably about 10,000 to 150,000.
 また、非シロキサン系構造単位をなす前駆ポリマーは、酸基及び中和された酸基の少なくとも1つ並びに/又は加水分解性シリル基を含有するものが好ましい。このような前駆ポリマーのうち、ビニル系重合体は、例えば、(a)酸基を含むビニル系単量体と加水分解性シリル基及び/又はシラノール基を含むビニル系単量体とを、これらと共重合可能な単量体と共重合させる方法、(2)予め調製した水酸基並びに加水分解性シリル基及び/又はシラノール基を含むビニル系重合体にポリカルボン酸無水物を反応させる方法、(3)予め調製した酸無水基並びに加水分解性シリル基及び/又はシラノール基を含むビニル系重合体を、活性水素を有する化合物(水、アルコール、アミン等)と反応させる方法などの各種方法を利用して調製することができる。 In addition, the precursor polymer forming the non-siloxane structural unit is preferably one containing at least one of an acid group and a neutralized acid group and / or a hydrolyzable silyl group. Among such precursor polymers, the vinyl polymer includes, for example, (a) a vinyl monomer containing an acid group and a vinyl monomer containing a hydrolyzable silyl group and / or a silanol group. (2) a method of reacting a polycarboxylic acid anhydride with a vinyl polymer containing a previously prepared hydroxyl group and hydrolyzable silyl group and / or silanol group, 3) Utilizing various methods such as a method in which a vinyl polymer containing an acid anhydride group and a hydrolyzable silyl group and / or silanol group prepared in advance is reacted with a compound having active hydrogen (water, alcohol, amine, etc.). Can be prepared.
 このような前駆ポリマーは、例えば、特開2009-52011号公報の段落番号0021~0078に記載の方法を利用して製造、入手することができる。 Such a precursor polymer can be produced and obtained using, for example, the method described in paragraph Nos. 0021 to 0078 of JP-A-2009-52011.
 本発明における複合ポリマー層は、バインダーとして、複合ポリマーを単独で用いてもよいし、他のポリマーと併用してもよい。他のポリマーを併用する場合、本発明における複合ポリマーの比率は、全バインダーの30質量%以上が好ましく、より好ましくは60質量%以上である。複合ポリマーの比率が30質量%以上であることにより、ポリマー基材との接着性及び湿熱環境下での耐久性により優れる。 In the composite polymer layer in the present invention, the composite polymer may be used alone as a binder, or may be used in combination with other polymers. When other polymers are used in combination, the ratio of the composite polymer in the present invention is preferably 30% by mass or more, more preferably 60% by mass or more of the total binder. When the ratio of the composite polymer is 30% by mass or more, the adhesiveness with the polymer base material and the durability under a moist heat environment are more excellent.
 複合ポリマーの分子量は、5000~300000程度であり、10000~150000程度が好ましい。 The molecular weight of the composite polymer is about 5000 to 300,000, preferably about 10,000 to 150,000.
 複合ポリマーの調製には、(i)前駆ポリマーと、一般式(1)〔-(Si(R) (R)-O)-〕の構造を有する(ポリ)シロキサンとを反応させる方法、(ii)前駆ポリマーの存在下に、R及び/又はRが加水分解性基である「-(Si(R) (R)-O)-」の構造を有するシラン化合物を加水分解縮合させる方法、等の方法を利用することができる。
 (ii)の方法で用いられるシラン化合物としては、各種シラン化合物が挙げられるが、アルコキシシラン化合物が特に好ましい。
For the preparation of the composite polymer, (i) a method of reacting a precursor polymer with (poly) siloxane having a structure of the general formula (1) [— (Si (R 1 ) (R 2 ) —O) n —] (Ii) a silane compound having a structure of “— (Si (R 1 ) (R 2 ) —O) n —” in which R 1 and / or R 2 is a hydrolyzable group in the presence of a precursor polymer Methods such as hydrolytic condensation can be used.
Examples of the silane compound used in the method (ii) include various silane compounds, and an alkoxysilane compound is particularly preferable.
 (i)の方法により複合ポリマーを調製する場合、例えば、前駆ポリマーとポリシロキサンの混合物に、必要に応じて水と触媒を加え、20~150℃程度の温度で30分~30時間程度(好ましくは50~130℃で1~20時間)反応させることにより調製することができる。触媒としては、酸性化合物、塩基性化合物、金属含有化合物等の各種のシラノール縮合触媒を添加することができる。
 また、(ii)の方法により複合ポリマーを調製する場合、例えば、前駆ポリマーとアルコキシシラン化合物の混合物に、水とシラノール縮合触媒を添加して、20~150℃程度の温度で30分~30時間程度(好ましくは50~130℃で1~20時間)加水分解縮合を行なうことにより調製することができる。
When preparing the composite polymer by the method (i), for example, water and a catalyst are added to the mixture of the precursor polymer and polysiloxane as necessary, and the temperature is about 20 to 150 ° C. for about 30 minutes to 30 hours (preferably Can be prepared by reacting at 50 to 130 ° C. for 1 to 20 hours. As a catalyst, various silanol condensation catalysts, such as an acidic compound, a basic compound, and a metal containing compound, can be added.
In the case of preparing a composite polymer by the method (ii), for example, water and a silanol condensation catalyst are added to a mixture of a precursor polymer and an alkoxysilane compound, and the temperature is about 20 to 150 ° C. for 30 minutes to 30 hours. It can be prepared by hydrolytic condensation to a degree (preferably at 50 to 130 ° C. for 1 to 20 hours).
 複合ポリマーの好ましい例としては、(ポリ)シロキサン構造単位がジメチルジメトキシシラン/γ-メタクリロキシトリメトキシシランの加水分解縮合物を含有する加水分解縮合物、ジメチルジメトキシシラン/ジフェニル/ジメトキシシランγ-メタクリロキシトリメトキシシランの加水分解縮合物のいずれかからなり、(ポリ)シロキサン構造単位と共重合するポリマー構造部分がエチルアクリレート、ブチルアクリレート、ヒドロキシエチルアクリレート、2-エチルヘキシルアクリレートメチルメタクリレート、メチルメタクリレート、ブチルメタクリレート、ヒドロキシエチルアクリレート、アクリル酸、メタクリル酸から選ばれるモノマー成分からなるアクリルポリマーである複合ポリマーが挙げられ、より好ましい例としては(ポリ)シロキサン構造単位がジメチルジメトキシシラン/γ-メタクリロキシトリメトキシシランの加水分解縮合物を含有する加水分解縮合物とメチルメタクリレート、エチルアクリレート、アクリル酸、メタクリル酸から選ばれるモノマー成分からなるアクリルポリマーである複合ポリマーが挙げられる。 Preferred examples of the composite polymer include a hydrolysis condensate in which the (poly) siloxane structural unit contains a hydrolysis condensate of dimethyldimethoxysilane / γ-methacryloxytrimethoxysilane, dimethyldimethoxysilane / diphenyl / dimethoxysilane γ-methacrylate. It consists of one of the hydrolyzed condensates of loxytrimethoxysilane, and the polymer structure part copolymerized with the (poly) siloxane structural unit is ethyl acrylate, butyl acrylate, hydroxyethyl acrylate, 2-ethylhexyl acrylate methyl methacrylate, methyl methacrylate, butyl A composite polymer, which is an acrylic polymer composed of a monomer component selected from methacrylate, hydroxyethyl acrylate, acrylic acid, and methacrylic acid, can be mentioned as a more preferred example. (Poly) siloxane structural unit comprises a hydrolysis condensate containing a hydrolysis condensate of dimethyldimethoxysilane / γ-methacryloxytrimethoxysilane and a monomer component selected from methyl methacrylate, ethyl acrylate, acrylic acid and methacrylic acid The composite polymer which is an acrylic polymer is mentioned.
 また、(ポリ)シロキサン構造を有するポリマーは、上市されている市販品を用いてもよく、例えば、DIC(株)製のセラネートシリーズ(例えば、セラネートWSA1070、同WSA1060等)、旭化成ケミカルズ(株)製のH7600シリーズ(H7650,H7630,H7620等)、JSR(株)製の無機・アクリル複合エマルジョンなどを使用することができる。 Commercially available products may be used as the polymer having a (poly) siloxane structure. For example, DIC Corporation's Ceranate series (for example, Ceranate WSA1070, WSA1060, etc.), Asahi Kasei Chemicals Corporation H7600 series (H7650, H7630, H7620, etc.) manufactured by JSR Co., Ltd., inorganic / acrylic composite emulsion manufactured by JSR Corporation, and the like can be used.
 (ポリ)シロキサン構造を有するポリマーの複合ポリマー層中における含有比率としては、0.2g/m超15g/m以下の範囲とする。ポリマーの含有比率が0.2g/m以下であると、ポリマーの比率が少な過ぎ、外力を受けて発生する傷が抑えられない。また、ポリマーの含有比率が15g/mを超えると、ポリマーの比率が多過ぎて、複合ポリマー層の硬化が不十分となる。
 上記範囲の中では、複合ポリマー層の表面強度の観点から、0.5g/m~10.0g/mの範囲が好ましく、1.0g/m~5.0g/mの範囲がより好ましい。
The content ratio of the polymer having a (poly) siloxane structure in the composite polymer layer is in the range of more than 0.2 g / m 2 and 15 g / m 2 or less. When the content ratio of the polymer is 0.2 g / m 2 or less, the ratio of the polymer is too small, and scratches generated due to external force cannot be suppressed. On the other hand, when the polymer content ratio exceeds 15 g / m 2 , the polymer ratio is too high, and the composite polymer layer is not sufficiently cured.
Among the above range, from the viewpoint of the surface strength of the composite polymer layer, the range of 0.5g / m 2 ~ 10.0g / m 2 is preferably in the range of 1.0g / m 2 ~ 5.0g / m 2 More preferred.
-架橋剤-
 本発明においては、複合ポリマー層が、複合ポリマー間を架橋する架橋剤由来の構造部分を有していることが好ましい。つまり、複合ポリマー層は、複合ポリマー間を架橋しうる架橋剤を用いて構成することができる。架橋剤で架橋されることにより、湿熱経時後の接着性、具体的には湿熱環境下に曝された場合のポリマー基材に対する接着、及び層間の接着をより向上させることができる。
-Crosslinking agent-
In the present invention, the composite polymer layer preferably has a structural portion derived from a cross-linking agent that cross-links between the composite polymers. That is, the composite polymer layer can be formed using a cross-linking agent that can cross-link between the composite polymers. By crosslinking with a crosslinking agent, adhesion after wet heat aging, specifically adhesion to a polymer substrate when exposed to a wet heat environment, and adhesion between layers can be further improved.
 架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。架橋剤の中でも、カルボジイミド系化合物やオキサゾリン系化合物などの架橋剤が好ましい。 Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among the crosslinking agents, crosslinking agents such as carbodiimide compounds and oxazoline compounds are preferable.
 オキサゾリン系架橋剤の具体例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2、2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド等が挙げられる。さらに、これらの化合物の(共)重合体も好ましく用いられる。
 また、オキサゾリン基を有する化合物として、エポクロスK2010E、同K2020E、同K2030E、同WS-500、同WS-700(いずれも日本触媒化学工業(株)製)等も利用できる。
Specific examples of the oxazoline-based crosslinking agent include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline. 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2,2′-bis- (2-oxazoline), 2,2′-methylene-bis- ( 2-oxazoline), 2,2'-ethylene-bis- (2-oxazoline), 2,2'-trimethylene-bis- (2-oxazoline), 2,2'-tetramethylene-bis- (2-oxazoline) 2,2'-hexamethylene-bis- (2-oxazoline), 2,2'-octamethylene-bis- (2-oxazoline), 2,2'-ethylene-bis- (4,4'-di Til-2-oxazoline), 2,2'-p-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene-bis- (2-oxazoline), 2,2'-m-phenylene- Examples thereof include bis- (4,4′-dimethyl-2-oxazoline), bis- (2-oxazolinylcyclohexane) sulfide, and bis- (2-oxazolinyl norbornane) sulfide. Furthermore, (co) polymers of these compounds are also preferably used.
Further, as a compound having an oxazoline group, Epocros K2010E, K2020E, K2030E, WS-500, WS-700 (all manufactured by Nippon Shokubai Chemical Co., Ltd.) and the like can be used.
 カルボジイミド系架橋剤の具体例としては、ジシクロヘキシルメタンカルボジイミド、テトラメチルキシリレンカルボジイミド、ジシクロヘキシルメタンカルボジイミド等を挙げることができる。また、特開2009-235278号公報に記載のカルボジイミド化合物も好ましい。具体的には、カルボジイミド系架橋剤として、カルボジライトSV-02、カルボジライトV-02、カルボジライトV-02-L2、カルボジライトV-04、カルボジライトE-01、カルボジライトE-02(いずれも日清紡ケミカル(株)製)等の市販品も利用できる。 Specific examples of the carbodiimide-based crosslinking agent include dicyclohexylmethane carbodiimide, tetramethylxylylene carbodiimide, and dicyclohexylmethane carbodiimide. A carbodiimide compound described in JP-A-2009-235278 is also preferable. Specifically, carbodiimide-based crosslinking agents such as Carbodilite SV-02, Carbodilite V-02, Carbodilite V-02-L2, Carbodilite V-04, Carbodilite E-01, Carbodilite E-02 (all Nisshinbo Chemical Co., Ltd.) (Commercially available) can also be used.
 また、複合ポリマー層中における、架橋剤由来の構造部分の複合ポリマーに対する質量割合としては、1~30質量%が好ましく、より好ましくは5~20質量%である。架橋剤の含有割合は、1質量%以上であると、複合ポリマー層の強度、及び湿熱経時後の接着性に優れ、30質量%以下であると、塗布液のポットライフを長く保てる。 In the composite polymer layer, the mass ratio of the structural part derived from the crosslinking agent to the composite polymer is preferably 1 to 30% by mass, more preferably 5 to 20% by mass. When the content of the crosslinking agent is 1% by mass or more, the strength of the composite polymer layer and the adhesiveness after wet heat aging are excellent, and when it is 30% by mass or less, the pot life of the coating solution can be kept long.
 本発明のバックシートにおいては、複合ポリマー層は、該層が上記のように複合ポリマーを含むことで、ポリマー基材に対する接着が良化し、層間の接着性が良化する。さらに、湿熱環境下での劣化耐性(接着耐久性)に優れている。このことから、ポリマー基材から最も離れた位置に配された最外層として設けられることも好ましい。具体的には、例えば、太陽電池素子を備えた電池側基板と対向する側(オモテ側)とは反対側(裏側)に配置されるバック層などである。 In the backsheet of the present invention, the composite polymer layer contains the composite polymer as described above, so that the adhesion to the polymer substrate is improved and the adhesion between the layers is improved. Furthermore, it is excellent in deterioration resistance (adhesion durability) in a humid heat environment. For this reason, it is also preferable to be provided as the outermost layer disposed at the position farthest from the polymer substrate. Specifically, for example, there is a back layer disposed on the opposite side (back side) to the side (front side) facing the battery side substrate including the solar cell element.
 複合ポリマー層は、1層のみ設けられてもよいし、複数の複合ポリマー層が形成されてもよい。
 複合ポリマー層の1層の厚みとしては、通常は0.3μm~22μmが好ましく、0.5μm~15μmがより好ましく、0.8μm~12μmの範囲が更に好ましく、1.0μm~8μmの範囲が特に好ましく、2~6μmの範囲が最も好ましい。複合ポリマー層の厚みが0.3μm以上、更には0.8μm以上であることで、湿熱環境下に曝されたときに複合ポリマー層表面から内部に水分が浸透し難く、複合ポリマー層とポリマー基材との界面に水分が到達し難くなることで接着性が顕著に改善される。また、複合ポリマー層の厚みが22μm以下、更には12μm以下であると、複合ポリマー層自身が脆弱になり難く、湿熱環境下に暴露したときに複合ポリマー層の破壊が生じにくくなることで接着性が改善される。
Only one composite polymer layer may be provided, or a plurality of composite polymer layers may be formed.
The thickness of one layer of the composite polymer layer is usually preferably from 0.3 μm to 22 μm, more preferably from 0.5 μm to 15 μm, still more preferably from 0.8 μm to 12 μm, particularly preferably from 1.0 μm to 8 μm. A range of 2 to 6 μm is most preferable. When the composite polymer layer has a thickness of 0.3 μm or more, more preferably 0.8 μm or more, it is difficult for moisture to penetrate from the surface of the composite polymer layer when exposed to a humid heat environment. Adhesiveness is remarkably improved by making it difficult for moisture to reach the interface with the material. Moreover, when the thickness of the composite polymer layer is 22 μm or less, and further 12 μm or less, the composite polymer layer itself is difficult to become brittle, and the composite polymer layer is less likely to be destroyed when exposed to a humid heat environment. Is improved.
 本発明における複合ポリマー層は、複合ポリマーと、複合ポリマーのポリマー分子間が架橋剤で架橋された架橋構造を有し、該架橋剤由来の構造部分の複合ポリマーに対する比率が1~30質量%であって、複合ポリマー層の厚みが0.8μm~12μmである場合が特に湿熱経時後の接着性に対する向上効果に優れる。 The composite polymer layer in the present invention has a cross-linked structure in which the composite polymer and the polymer molecules of the composite polymer are cross-linked with a cross-linking agent, and the ratio of the structural portion derived from the cross-linking agent to the composite polymer is 1 to 30% by mass. In the case where the composite polymer layer has a thickness of 0.8 μm to 12 μm, the effect of improving the adhesion after wet heat aging is particularly excellent.
~バック層~
 本発明における複合ポリマー層をバック層として構成する場合、複合ポリマーに加え、必要に応じて、さらに各種添加剤などの他の成分を含んで構成されてもよい。電池側基板(=太陽光が入射する側の透明性の基板(ガラス基板等)/太陽電池素子を含む素子構造部分)/太陽電池用バックシートの積層構造を有する太陽電池において、バック層は支持基材をなすポリマー基材の電池側基板と対向する側と反対側に配される裏面保護層であり、1層構造でもよいし、2層以上を積層した構造であってもよい。複合ポリマーを含むことで、ポリマー基材に対する接着や、バック層が2層以上からなる場合の層間における接着が良化するとともに、更には湿熱環境下での劣化耐性が得られる。そのため、本発明における複合ポリマー層であるバック層が、ポリマー基材から最も離れた最外層として配置された形態が好ましい。
~ Back layer ~
When the composite polymer layer in the present invention is configured as a back layer, it may be configured to include other components such as various additives as necessary in addition to the composite polymer. In a solar cell having a laminated structure of a battery-side substrate (= transparent substrate on which sunlight is incident (glass substrate, etc.) / Element structure part including a solar cell element) / solar cell backsheet, the back layer is supported. It is a back surface protective layer disposed on the opposite side of the polymer base material that forms the base material and facing the battery side substrate, and may have a single-layer structure or a structure in which two or more layers are laminated. By including the composite polymer, adhesion to the polymer substrate and adhesion between layers in the case where the back layer is composed of two or more layers are improved, and further, resistance to deterioration in a humid heat environment is obtained. Therefore, a form in which the back layer, which is the composite polymer layer in the present invention, is disposed as the outermost layer farthest from the polymer substrate is preferable.
 バック層を2層以上設ける場合は、両方のバック層が複合ポリマー、又は複合ポリマーと架橋剤との双方を含む複合ポリマー層であってもよく、一方のみのバック層が複合ポリマー、又は複合ポリマーと架橋剤との双方を含む複合ポリマー層であってもよい。
 中でも、湿熱環境下における接着耐久性を改善する観点から、少なくとも、ポリマー基材と接するバック層(第1のバック層)が複合ポリマー、又は複合ポリマーと架橋剤との双方を含む複合ポリマー層で構成されていることが好ましい。なお、この場合、ポリマー基材上の第1のバック層の更に上に設けられる第2のバック層は、一般式(1)で表される(ポリ)シロキサン構造単位と非ポリシロキサン構造単位を含有する複合ポリマーを含まなくてもよいが、その場合は樹脂単独の空隙のない均一膜を形成してポリマーと顔料との間の空隙からの水分侵入を防ぎ、湿熱環境下での接着性を高める観点から、ポリシロキサンの単独重合体をも含まないことが好ましい。
When two or more back layers are provided, both back layers may be a composite polymer or a composite polymer layer containing both the composite polymer and a crosslinking agent, and only one back layer is a composite polymer or a composite polymer. And a composite polymer layer containing both a crosslinking agent and a crosslinking agent.
Among them, from the viewpoint of improving the adhesion durability in a wet heat environment, at least the back layer in contact with the polymer substrate (first back layer) is a composite polymer or a composite polymer layer containing both the composite polymer and a crosslinking agent. It is preferable to be configured. In this case, the second back layer provided further above the first back layer on the polymer substrate includes a (poly) siloxane structural unit and a non-polysiloxane structural unit represented by the general formula (1). It does not need to contain the composite polymer, but in that case, a uniform film without voids of the resin alone is formed to prevent moisture intrusion from the voids between the polymer and the pigment, and adhesion under wet heat environment is improved. From the viewpoint of enhancing, it is preferable not to contain a polysiloxane homopolymer.
 バック層中に含むことができる他の成分については、後述するように、界面活性剤、フィラー等が挙げられる。また、着色層に用いられる顔料を含んでもよい。これらの他の成分及び顔料の詳細、好ましい態様については、後述する。 As other components that can be contained in the back layer, surfactants, fillers and the like can be mentioned as described later. Moreover, you may include the pigment used for a colored layer. Details of these other components and pigments and preferred embodiments will be described later.
~着色層~
 本発明における複合ポリマー層を着色層(好ましくは反射層)として構成する場合、複合ポリマーに加え、さらに顔料を含有することができる。着色層は、必要に応じて、さらに各種添加剤などの他の成分を含んで構成されてもよい。
 複合ポリマー層が着色層に構成される場合、顔料の少なくとも一種を含有することができる。顔料としては、既述のポリマー基材を構成する機能性層に用いることができる顔料と同様のものを使用することができ、顔料の種類や平均粒径などの詳細及び好ましい態様も同様である。顔料の着色層中における含有量は、2.5~8.5g/mの範囲が好ましく、4.5~8.0g/mの範囲がより好ましい。顔料の含有量が2.5g/m以上であると、必要な着色が得られ、反射率や装飾性を効果的に与えることができる。顔料の含有量が8.5g/m以下であると、着色層の面状を良好に維持しやすく、膜強度により優れる。
-Colored layer-
When the composite polymer layer in the present invention is configured as a colored layer (preferably a reflective layer), it can further contain a pigment in addition to the composite polymer. The colored layer may further include other components such as various additives as necessary.
When a composite polymer layer is comprised in a colored layer, it can contain at least 1 type of a pigment. As the pigment, the same pigments that can be used for the functional layer constituting the polymer substrate described above can be used, and the details and preferred embodiments such as the type and average particle diameter of the pigment are also the same. . The content in the colored layer of the pigment is 2.5 preferably in the range of ~ 8.5 g / m 2, and more preferably a range of 4.5 ~ 8.0g / m 2. When the pigment content is 2.5 g / m 2 or more, necessary coloring can be obtained, and reflectance and decorative properties can be effectively provided. When the pigment content is 8.5 g / m 2 or less, the surface state of the colored layer is easily maintained, and the film strength is excellent.
 複合ポリマー層を着色層として構成する場合、バインダー成分(複合ポリマーを含む)の含有量は、顔料に対して、15~200質量%の範囲が好ましく、17~100質量%の範囲がより好ましい。バインダーの含有量は、15質量%以上であると、着色層の強度が充分に得られ、また200質量%以下であると、反射率や装飾性を良好に保つことができる。 When the composite polymer layer is configured as a colored layer, the content of the binder component (including the composite polymer) is preferably in the range of 15 to 200% by mass, more preferably in the range of 17 to 100% by mass with respect to the pigment. When the content of the binder is 15% by mass or more, the strength of the colored layer is sufficiently obtained, and when it is 200% by mass or less, the reflectance and the decorativeness can be kept good.
-添加剤-
 本発明の複合ポリマー層には、必要に応じて、界面活性剤、フィラー等を添加してもよい。界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤を用いることができる。界面活性剤を添加する場合の添加量は、0.1~15mg/mが好ましく、より好ましくは0.5~5mg/mである。界面活性剤の添加量は、0.1mg/m以上であると、ハジキの発生を抑えて良好な層形成が得られ、15mg/m以下であると、接着を良好に行なうことができる。
-Additive-
If necessary, a surfactant, a filler and the like may be added to the composite polymer layer of the present invention. As the surfactant, a known surfactant such as an anionic or nonionic surfactant can be used. When the surfactant is added, the addition amount is preferably 0.1 to 15 mg / m 2 , more preferably 0.5 to 5 mg / m 2 . When the addition amount of the surfactant is 0.1 mg / m 2 or more, it is possible to suppress the occurrence of repelling and to form a favorable layer, and when it is 15 mg / m 2 or less, the adhesion can be favorably performed. .
 本発明における複合ポリマー層には、更に、フィラーを添加してもよい。フィラーの添加量は、複合ポリマー層のバインダー当たり20質量%以下が好ましく、より好ましくは15質量%以下である。フィラーの添加量が20質量%以下であると、複合ポリマー層の面状がより良好に保てる。 A filler may be further added to the composite polymer layer in the present invention. The addition amount of the filler is preferably 20% by mass or less, more preferably 15% by mass or less per binder of the composite polymer layer. When the added amount of the filler is 20% by mass or less, the planar shape of the composite polymer layer can be kept better.
(下塗り層)
 本発明の太陽電池用バックシートには、ポリマー基材と複合ポリマー層との間に下塗り層を設けてもよい。下塗り層の厚みは、厚み2μm以下の範囲が好ましく、より好ましくは0.05μm~2μmであり、更に好ましくは0.1μm~1.5μmである。厚みが2μm以下であると、面状を良好に保つことができる。また、厚みが0.05μm以上であることにより、必要な接着性を確保しやすい。
(Undercoat layer)
In the solar cell backsheet of the present invention, an undercoat layer may be provided between the polymer substrate and the composite polymer layer. The thickness of the undercoat layer is preferably in the range of 2 μm or less, more preferably 0.05 μm to 2 μm, and still more preferably 0.1 μm to 1.5 μm. When the thickness is 2 μm or less, the planar shape can be kept good. Moreover, it is easy to ensure required adhesiveness because thickness is 0.05 micrometer or more.
 下塗り層は、ポリオレフィン樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂から選ばれる1種類以上のポリマーを含有する層であるのが好ましい。 The undercoat layer is preferably a layer containing one or more kinds of polymers selected from polyolefin resins, acrylic resins, polyester resins, and polyurethane resins.
 ポリオレフィン樹脂としては、例えば、変性ポリオレフィン共重合体が好ましい。ポリオレフィン樹脂としては、上市されている市販品を用いてもよく、例えば、アローベース(登録商標)SE-1013N、アローベース(登録商標)SD-1010、アローベース(登録商標)TC-4010、アローベース(登録商標)TD-4010(ともにユニチカ(株)製)、ハイテックS3148、ハイテックS3121、ハイテックS8512(ともに東邦化学(株)製)、ケミパール(登録商標)S-120、ケミパール(登録商標)S-75N、ケミパール(登録商標)V100、ケミパール(登録商標)EV210H(ともに三井化学(株)製)などを挙げることができる。その中でも、本発明では、低密度ポリエチレン、アクリル酸エステル、無水マレイン酸の三元共重合体である、アローベース(登録商標)SE-1013N(ユニチカ(株)製)を用いることが好ましい。 As the polyolefin resin, for example, a modified polyolefin copolymer is preferable. As the polyolefin resin, commercially available products may be used. For example, Arrow Base (registered trademark) SE-1013N, Arrow Base (registered trademark) SD-1010, Arrow Base (registered trademark) TC-4010, Arrow Base (registered trademark) TD-4010 (both manufactured by Unitika Ltd.), Hitech S3148, Hitech S3121, Hitech S8512 (both manufactured by Toho Chemical Co., Ltd.), Chemipearl (registered trademark) S-120, Chemipearl (registered trademark) S -75N, Chemipearl (registered trademark) V100, Chemipearl (registered trademark) EV210H (both manufactured by Mitsui Chemicals, Inc.), and the like. Among them, in the present invention, it is preferable to use Arrow Base (registered trademark) SE-1013N (manufactured by Unitika Ltd.), which is a terpolymer of low-density polyethylene, acrylic acid ester, and maleic anhydride.
 アクリル樹脂としては、例えば、ホリメチルメタクリレート、ポリエチルアクリレート等を含有するポリマー等が好ましい。アクリル樹脂としては、上市されている市販品を用いてもよく、例えば、AS-563A(商品名;ダイセルフアインケム(株)製)を好ましく用いることができる。 As the acrylic resin, for example, a polymer containing polymethyl methacrylate, polyethyl acrylate, or the like is preferable. As the acrylic resin, a commercially available product may be used. For example, AS-563A (trade name; manufactured by Die Self Einchem Co., Ltd.) can be preferably used.
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)等が好ましい。ポリエステル樹脂としては、上市されている市販品を用いてもよく、例えば、バイロナール(登録商標)MD-1245(東洋紡(株)製)を好ましく用いることができる。
 また、ポリウレタン樹脂としては、例えば、カーボネート系ウレタン樹脂が好ましく、例えば、スーパーフレックス(登録商標)460(第一工業製薬(株)製)を好ましく用いることができる。
As the polyester resin, for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN) and the like are preferable. As the polyester resin, a commercially available product may be used. For example, Vylonal (registered trademark) MD-1245 (manufactured by Toyobo Co., Ltd.) can be preferably used.
Moreover, as a polyurethane resin, carbonate type urethane resin is preferable, for example, for example, Superflex (registered trademark) 460 (Daiichi Kogyo Seiyaku Co., Ltd. product) can be used preferably.
 これらの中でも、ポリマー基材及び白色層との接着性を確保する観点から、ポリオレフィン樹脂を用いることが好ましい。また、これらのポリマーは、一種単独で用いても2種以上を併用してもよい。2種以上を併用する場合は、アクリル樹脂とポリオレフィン樹脂の組み合わせが好ましい。 Among these, it is preferable to use a polyolefin resin from the viewpoint of securing adhesiveness with the polymer substrate and the white layer. Moreover, these polymers may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types together, the combination of an acrylic resin and polyolefin resin is preferable.
 下塗り層は、架橋剤を含有すると、下塗り層の耐久性を向上することができる点でより好ましい。架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。その中でも、本発明におけるポリマー基材は、下塗り層における架橋剤がオキサゾリン系架橋剤であることが好ましい。オキサゾリン系架橋剤は、オキサゾリン基を有する架橋剤であり、例えば、エポクロス(登録商標)K2010E、エポクロス(登録商標)K2020E、エポクロス(登録商標)K2030E、エポクロス(登録商標)WS-500、エポクロス(登録商標)WS-700(いずれも日本触媒化学工業(株)製)等を利用することができる。 It is more preferable that the undercoat layer contains a crosslinking agent in that the durability of the undercoat layer can be improved. Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among them, in the polymer base material in the present invention, the crosslinking agent in the undercoat layer is preferably an oxazoline-based crosslinking agent. The oxazoline-based crosslinking agent is a crosslinking agent having an oxazoline group. For example, Epocross (registered trademark) K2010E, Epocross (registered trademark) K2020E, Epocross (registered trademark) K2030E, Epocross (registered trademark) WS-500, Epocross (registered). (Trademark) WS-700 (all manufactured by Nippon Shokubai Chemical Industry Co., Ltd.) can be used.
 架橋剤の添加量は、下塗り層を構成するバインダーに対して0.5質量%以上30質量%以下が好ましく、より好ましくは5質量%以上20質量%以下であり、特に好ましくは5質量%以上15質量%未満である。特に、架橋剤の添加量が0.5質量%以上であると、下塗り層の強度及び接着性を保持しながら、充分な架橋効果が得られる。また、架橋剤の添加量が30質量%以下であると、塗布液のポットライフを長く保て、15質量%未満であると塗布面状をより改良できる。 The addition amount of the crosslinking agent is preferably 0.5% by mass or more and 30% by mass or less, more preferably 5% by mass or more and 20% by mass or less, and particularly preferably 5% by mass or more with respect to the binder constituting the undercoat layer. It is less than 15% by mass. In particular, when the addition amount of the crosslinking agent is 0.5% by mass or more, a sufficient crosslinking effect can be obtained while maintaining the strength and adhesiveness of the undercoat layer. Further, when the addition amount of the crosslinking agent is 30% by mass or less, the pot life of the coating solution can be kept long, and when it is less than 15% by mass, the coated surface state can be further improved.
 下塗り層は、アニオン系やノニオン系等の界面活性剤を含有することが好ましい。下塗り層に用いることができる界面活性剤の範囲は、白色層に用いることができる界面活性剤の範囲と同様である。中でも、ノニオン系界面活性剤が好ましい。
 界面活性剤を含有する場合、その含有量は0.1~10mg/mが好ましく、より好ましくは0.5~3mg/mである。界面活性剤の含有量は、0.1mg/m以上であると、ハジキの発生を抑えて良好な層形成が得られ、10mg/m以下であると、ポリマー基材と白色層との接着を良好に行なうことができる。
The undercoat layer preferably contains an anionic or nonionic surfactant. The range of the surfactant that can be used for the undercoat layer is the same as the range of the surfactant that can be used for the white layer. Among these, nonionic surfactants are preferable.
When a surfactant is contained, its content is preferably 0.1 to 10 mg / m 2 , more preferably 0.5 to 3 mg / m 2 . The content of the surfactant is, if it is 0.1 mg / m 2 or more, good layer formation by suppressing the occurrence of cissing can be obtained, if it is 10 mg / m 2 or less, the polymer substrate and the white layer Adhesion can be performed satisfactorily.
 下塗り層を塗布形成する方法としては、公知のコーティング方法が適宜採択される。コーティング方法としては、例えば、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクタコーター、スプレーあるいは刷毛を用いたコーティング方法等の方法がいずれも適用可能である。また、下塗り層の形成は、ポリマー基材を下塗り層形成用の調整液に浸漬して行なってもよい。また、コストの観点からは、下塗り層形成用の調整液を、ポリマー基材を構成する樹脂シートの製造過程内において樹脂シートにコーティングする、いわゆるインラインコート法により塗布する態様によって、下塗り層が形成された樹脂フィルムが製造される態様が好ましい。
 具体的には、例えば、原料樹脂を溶融混練して樹脂を溶融押出し、溶融押出された樹脂を(例えば静電密着法等を併用しつつ冷却ドラム上にキャストすることで)冷却し樹脂シートを製膜することと、樹脂シートを第1の方向(例えばシート長手方向(MD:Machine Direction;以下同様)に延伸して第1の延伸をすることと、一方向に延伸された樹脂シートの少なくとも一方面に下塗り層を塗布形成することと、下塗り層が塗布形成された樹脂シートを、第1の方向と直交する第2の方向(例えば長手方向と直交する幅方向(TD:Transverse Direction;以下同様)に延伸して第2の延伸をすることとを有する方法などにより、下塗り層を有する樹脂フィルムは好適に製造される。
 また、コーティング時の乾燥、熱処理の条件は、塗布の厚み、装置の条件にもよるが、コーティング後直ちに直角方向の延伸に送入し、延伸する際の予熱ゾーンあるいは延伸ゾーンで乾燥させることが好ましい。このような場合、乾燥、熱処理は、通常50℃~250℃程度で行なわれる。
 なお、下塗り層が形成されるポリマー基材の表面には、コロナ放電処理や他の表面活性化処理が施されてもよい。
As a method for applying and forming the undercoat layer, a known coating method is appropriately adopted. As the coating method, for example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, a coating method using a spray or a brush can be applied. The undercoat layer may be formed by immersing the polymer base material in an adjustment liquid for forming the undercoat layer. Further, from the viewpoint of cost, the undercoat layer is formed by applying the adjustment liquid for forming the undercoat layer on the resin sheet in the process of manufacturing the resin sheet constituting the polymer base material, by applying the so-called in-line coating method. The aspect in which the made resin film is manufactured is preferable.
Specifically, for example, the raw material resin is melt-kneaded, the resin is melt-extruded, the melt-extruded resin is cooled (for example, by casting on a cooling drum while using an electrostatic contact method), and the resin sheet is cooled. Forming a film, stretching a resin sheet in a first direction (for example, a sheet longitudinal direction (MD: Machine Direction)), and performing a first stretching, and at least a resin sheet stretched in one direction Applying and forming an undercoat layer on one surface, and applying a resin sheet on which the undercoat layer is applied to a second direction orthogonal to the first direction (for example, a width direction orthogonal to the longitudinal direction (TD: Transverse Direction; hereinafter) Similarly, a resin film having an undercoat layer is suitably produced by a method having a second stretching and a second stretching.
In addition, the conditions for drying and heat treatment during coating depend on the thickness of the coating and the conditions of the apparatus, but immediately after coating, the film is sent to stretching in the perpendicular direction and dried in the preheating zone or stretching zone when stretching. preferable. In such a case, drying and heat treatment are usually performed at about 50 ° C. to 250 ° C.
The surface of the polymer substrate on which the undercoat layer is formed may be subjected to corona discharge treatment or other surface activation treatment.
 上記の溶融押出すること、製膜すること、第1の延伸をすること、及び第2の延伸をすること、及び樹脂層を形成することの詳細については、既述の通りである。 Details of the melt extrusion, film formation, first stretching, second stretching, and formation of the resin layer are as described above.
 下塗り層形成用の塗布液中の固形分濃度は、30質量%以下であることが好ましく、特に好ましくは10質量%以下である。固形分濃度の下限は1質量%が好ましく、さらに好ましくは3質量%、特に好ましくは5質量%である。固形分濃度が上記範囲にあることで、面状が良好な下塗り層を形成することができる。 The solid content concentration in the coating solution for forming the undercoat layer is preferably 30% by mass or less, and particularly preferably 10% by mass or less. The lower limit of the solid content concentration is preferably 1% by mass, more preferably 3% by mass, and particularly preferably 5% by mass. When the solid content concentration is in the above range, an undercoat layer having a good surface shape can be formed.
 また、ポリマー基材の第1のポリマー層が設けられている側とは反対側に、着色層を設けることができる。 Also, a colored layer can be provided on the side of the polymer substrate opposite to the side on which the first polymer layer is provided.
~物性~
 着色層に顔料として白色顔料を添加して反射層とする場合、着色層が設けられている側の表面における550nmの光反射率は、75%以上であることが好ましい。なお、光反射率とは、表面から入射した光が反射層で反射して再び該表面から出射した光量の入射光量に対する比率である。ここでは、代表波長光として、波長550nmの光が用いられる。
 光反射率が75%以上であると、セルを素通りして内部に入射した光を効果的にセルに戻すことができ、発電効率の向上効果が大きい。着色剤の含有量を2.5~30g/mの範囲で制御することにより、光反射率を75%以上に調整することができる。
~ Physical properties ~
When a white pigment is added as a pigment to the colored layer to form a reflective layer, the light reflectance at 550 nm on the surface on which the colored layer is provided is preferably 75% or more. The light reflectivity is the ratio of the amount of light incident from the surface reflected by the reflective layer and emitted from the surface again to the amount of incident light. Here, light having a wavelength of 550 nm is used as the representative wavelength light.
When the light reflectance is 75% or more, the light that passes through the cell and enters the cell can be effectively returned to the cell, and the effect of improving the power generation efficiency is great. The light reflectance can be adjusted to 75% or more by controlling the content of the colorant in the range of 2.5 to 30 g / m 2 .
(他の機能層)
 本発明の太陽電池用バックシートは、ポリマー基材と複合ポリマー層以外に他の機能層を有していてもよい。他の機能層として、易接着性層が設けられてもよい。
(Other functional layers)
The solar cell backsheet of the present invention may have other functional layers in addition to the polymer substrate and the composite polymer layer. As another functional layer, an easily adhesive layer may be provided.
[フッ素含有樹脂層]
 本発明における複合ポリマー層の上には、さらに他の機能性層として、フッ素ポリマーを含有するフッ素含有樹脂層を設けて構成されてもよい。
 フッ素含有樹脂層に用いられるフッ素ポリマーとしては、-(CFX-CX)-で表される繰り返し単位を有するポリマーであれば特に制限はない(但し、X、X、Xは水素原子、フッ素原子、塩素原子又は炭素数1から3のパーフルオロアルキル基を示す。)。
[Fluorine-containing resin layer]
On the composite polymer layer in the present invention, a fluorine-containing resin layer containing a fluoropolymer may be provided as still another functional layer.
The fluoropolymer used in the fluorine-containing resin layer is not particularly limited as long as it is a polymer having a repeating unit represented by-(CFX 1 -CX 2 X 3 )-(however, X 1 , X 2 , X 3 Represents a hydrogen atom, a fluorine atom, a chlorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms.
 フッ素ポリマーの例としては、ポリテトラフルオロエチレン(以降、PTFEと表す場合がある。)、ポリフッ化ビニル(以降、PVFと表す場合がある。)、ポリフッ化ビニリデン(以降、PVDFと表す場合がある。)、ポリ塩化3フッ化エチレン(以降、PCTFEと表す場合がある)、ポリテトラフルオロプロピレン(以降、HFPと表す場合がある。)などがある。 Examples of fluoropolymers include polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), polyvinyl fluoride (hereinafter sometimes referred to as PVF), and polyvinylidene fluoride (hereinafter referred to as PVDF). ), Polychloroethylene trifluoride (hereinafter sometimes referred to as PCTFE), polytetrafluoropropylene (hereinafter sometimes referred to as HFP), and the like.
 フッ素ポリマーは、単独のモノマーを重合したホモポリマーでもよいし、2種類以上を共重合したものでもよい。この例として、テトラフルオロエチレンとテトラフルオロプロピレンを共重合したコポリマー(P(TFE/HFP)と略記)、テトラフルオロエチレンとフッ化ビニリデンを共重合したコポリマー(P(TFE/VDF)と略記)等を挙げることができる。 The fluoropolymer may be a homopolymer obtained by polymerizing a single monomer or may be a copolymer obtained by copolymerizing two or more kinds. Examples thereof include a copolymer of tetrafluoroethylene and tetrafluoropropylene (abbreviated as P (TFE / HFP)), a copolymer of tetrafluoroethylene and vinylidene fluoride (abbreviated as P (TFE / VDF)), etc. Can be mentioned.
 さらに、フッ素含有樹脂層に用いるポリマーとしては、-(CFX-CX)-で表されるフッ化炭素系モノマーと、それ以外のモノマー(非フッ素含有モノマー)とを共重合したポリマーでもよい。フッ化炭素系モノマーの具体例としては、4フッ化エチレン、塩化3フッ化エチレン、フッ化ビニリデン、フッ化ビニル、ヘキサフロロプロピレン、フッ素含有アルキルビニルエーテル(例:パーフロロエチルビニルエーテル)、フッ素含有エステル等(パーフロロブチルメタクリレート等)がある。非フッ素含有モノマーの具体例としてはエチレン、アルキルビニルエーテル(例:エチルビニルエーテル、シクロヘキシルビニルエーテル)、カルボン酸(例:アクリル酸、メタクリル酸、ヒドロキシブチメビニルエーテル等)がある。フッ素ポリマーがフッ化炭素系モノマーと非フッ素含有モノマーとの)とを共重合したポリマーである場合、フッ素ポリマーの全質量に対するフッ素含有モノマーの含有量は30質量%~98質量%が好ましく、より好ましくは40~80質量%である。フッ素含有モノマーの割合が30質量%以上であると十分な耐久性を得うる。また重合の安定性の観点からは98質量%以下であることが好ましい。
 フッ化炭素系モノマーと非フッ素含有モノマーとの)とを共重合したポリマーの例としてテトラフルオロエチレンとエチレンとを共重合してなる共重合体(P(TFE/E)と略記)、テトラフルオロエチレンとプロピレンとを共重合してなる共重合体(P(TFE/P)と略記)、テトラフルオロエチレンとビニルエーテルとを共重合してなる共重合体(P(TFE/VE)と略記)、テトラフルオロエチレンとパーフロロビニルエーテルとを共重合してなる共重合体(P(TFE/FVE)と略記)、クロロトリフルオロエチレンとビニルエーテルとを共重合してなる共重合体(P(CTFE/VE)と略記)、クロロトリフルオロエチレンとパーフロロビニルエーテルとを共重合してなる共重合体(P(CTFE/FVE)と略記)、テトラフルオロエチレンとエチレンとアクリル酸とを共重合してなる共重合体、ヘキサフルオロプロピレンとテトラフルオロエチレンとを共重合してなる共重合体、ヘキサフルオロプロピレンとテトラフルオロエチレンとエチレンとを共重合してなる共重合体、クロロトリフルオロエチレンとパーフロロエチルビニルエーテルとを共重合してなる共重合体、クロロトリフルオロエチレンとパーフロロエチルビニルエーテルとメタクリル酸とを共重合してなる共重合体、クロロトリフルオロエチレンとエチルビニルエーテルとを共重合してなる共重合体、クロロトリフルオロエチレンとエチルビニルエーテルとメタクリル酸とを共重合してなる共重合体、フッ化ビニリデンとメチルメタクリレートとメタクリル酸とを共重合してなる共重合体、フッ化ビニルとエチルアクリレートとアクリル酸とを共重合してなる共重合体、等を挙げることができる。
 この中で、クロロトリフルオロエチレンとパーフロロエチルビニルエーテルとを共重合してなる共重合体、クロロトリフルオロエチレンとパーフロロエチルビニルエーテルとメタクリル酸とを共重合してなる共重合体、クロロトリフルオロエチレンとエチルビニルエーテルとを共重合してなる共重合体、クロロトリフルオロエチレンとエチルビニルエーテルとメタクリル酸とを共重合してなる共重合体、フッ化ビニリデンとメチルメタクリレートと/メタクリル酸とを共重合してなる共重合体、及びフッ化ビニルとエチルアクリレートとアクリル酸とを共重合してなる共重合体が好ましい。
 中でも、クロロトリフルオロエチレンとエチルビニルエーテルとを共重合してなる共重合体、及びクロロトリフルオロエチレンとエチルビニルエーテルとメタクリル酸とを共重合してなる共重合体がさらに好ましい。
 上記フッ素系ポリマーとしては、市販されているものも使用し得る。市販品の具体例としては、ルミフロン(登録商標)LF200(旭硝子株式会社製)、ゼッフル(登録商標)GK570(ダイキン工業株式会社製)、オブリガードSW0011F(商品名、AGCコーテック株式会社製)等がある。
 フッ素系ポリマーの分子量は、ポリスチレン換算重量平均分子量で2000~1000000程度であり得、3000~300000程度が好ましい。
Furthermore, as a polymer used for the fluorine-containing resin layer, a polymer obtained by copolymerizing a fluorocarbon monomer represented by-(CFX 1 -CX 2 X 3 )-and another monomer (non-fluorine-containing monomer) is used. But you can. Specific examples of fluorocarbon monomers include ethylene tetrafluoride, ethylene trifluoride, vinylidene fluoride, vinyl fluoride, hexafluoropropylene, fluorine-containing alkyl vinyl ethers (eg, perfluoroethyl vinyl ether), fluorine-containing esters. Etc. (perfluorobutyl methacrylate, etc.). Specific examples of the non-fluorine-containing monomer include ethylene, alkyl vinyl ether (eg, ethyl vinyl ether, cyclohexyl vinyl ether), and carboxylic acid (eg, acrylic acid, methacrylic acid, hydroxybutyme vinyl ether, etc.). When the fluoropolymer is a polymer obtained by copolymerizing a fluorocarbon monomer and a non-fluorine-containing monomer), the content of the fluorine-containing monomer with respect to the total mass of the fluoropolymer is preferably 30% by mass to 98% by mass, The amount is preferably 40 to 80% by mass. Sufficient durability can be obtained when the proportion of the fluorine-containing monomer is 30% by mass or more. Further, from the viewpoint of polymerization stability, it is preferably 98% by mass or less.
As an example of a polymer obtained by copolymerizing a fluorocarbon monomer and a non-fluorine-containing monomer, a copolymer obtained by copolymerizing tetrafluoroethylene and ethylene (abbreviated as P (TFE / E)), tetrafluoro A copolymer obtained by copolymerizing ethylene and propylene (abbreviated as P (TFE / P)), a copolymer obtained by copolymerizing tetrafluoroethylene and vinyl ether (abbreviated as P (TFE / VE)), A copolymer obtained by copolymerizing tetrafluoroethylene and perfluorovinyl ether (abbreviated as P (TFE / FVE)), and a copolymer obtained by copolymerizing chlorotrifluoroethylene and vinyl ether (P (CTFE / VE). Abbreviation)), a copolymer obtained by copolymerizing chlorotrifluoroethylene and perfluorovinyl ether (abbreviated as P (CTFE / FVE)), Copolymer made by copolymerizing trifluoroethylene, ethylene and acrylic acid, Copolymer made by copolymerizing hexafluoropropylene and tetrafluoroethylene, Copolymerized hexafluoropropylene, tetrafluoroethylene and ethylene A copolymer formed by copolymerizing chlorotrifluoroethylene and perfluoroethyl vinyl ether, a copolymer formed by copolymerizing chlorotrifluoroethylene, perfluoroethyl vinyl ether and methacrylic acid, A copolymer obtained by copolymerizing chlorotrifluoroethylene and ethyl vinyl ether, a copolymer obtained by copolymerizing chlorotrifluoroethylene, ethyl vinyl ether and methacrylic acid, vinylidene fluoride, methyl methacrylate and methacrylic acid. A copolymer obtained by copolymerization, Copolymerizing a Kka vinyl and ethyl acrylate and acrylic acid comprising a copolymer, and the like.
Among them, a copolymer obtained by copolymerizing chlorotrifluoroethylene and perfluoroethyl vinyl ether, a copolymer obtained by copolymerizing chlorotrifluoroethylene, perfluoroethyl vinyl ether and methacrylic acid, chlorotrifluoro Copolymer made by copolymerizing ethylene and ethyl vinyl ether, Copolymer made by copolymerizing chlorotrifluoroethylene, ethyl vinyl ether and methacrylic acid, Copolymerized vinylidene fluoride, methyl methacrylate and methacrylic acid And a copolymer obtained by copolymerizing vinyl fluoride, ethyl acrylate and acrylic acid.
Among these, a copolymer obtained by copolymerizing chlorotrifluoroethylene and ethyl vinyl ether and a copolymer obtained by copolymerizing chlorotrifluoroethylene, ethyl vinyl ether and methacrylic acid are more preferable.
As the fluorine-based polymer, a commercially available one can be used. Specific examples of commercially available products include Lumiflon (registered trademark) LF200 (manufactured by Asahi Glass Co., Ltd.), Zeffle (registered trademark) GK570 (manufactured by Daikin Industries, Ltd.), Obligard SW0011F (trade name, manufactured by AGC Co-Tech Co., Ltd.) and the like. is there.
The molecular weight of the fluorine-based polymer can be about 2,000 to 1,000,000 in terms of polystyrene equivalent weight average molecular weight, and preferably about 3,000 to 300,000.
 フッ素ポリマーとしてはポリマーを有機溶剤に溶解して用いられ得るものでも、ポリマー微粒子を水に分散して用いられ得るものでもよい。環境負荷が小さい点からは後者が好ましい。フッ素ポリマーの水分散物については、例えば特開2003-231722号公報、特開2002-20409号公報、特開平9-194538号公報等に記載されている。 The fluoropolymer may be used by dissolving the polymer in an organic solvent, or may be used by dispersing polymer fine particles in water. The latter is preferable from the viewpoint of low environmental load. For example, water dispersions of fluoropolymers are described in, for example, JP-A Nos. 2003-231722, 2002-20409, and No. 9-194538.
[易接着性層]
 本発明のバックシートには、ポリマー基材の上にさらに易接着性層が設けられていてもよい。易接着性層は、バックシートを電池側基板(電池本体)の太陽電池素子(以下、発電素子ともいう)を封止する封止材と強固に接着するための層である。
[Adhesive layer]
In the back sheet of the present invention, an easy adhesion layer may be further provided on the polymer substrate. The easy-adhesion layer is a layer for firmly bonding the back sheet to a sealing material for sealing a solar cell element (hereinafter also referred to as a power generation element) of the battery side substrate (battery body).
 易接着性層は、バインダー、無機微粒子を用いて構成することができ、必要に応じて、さらに添加剤などの他の成分を含んで構成されてもよい。易接着性層は、電池側基板の発電素子を封止するエチレン-ビニルアセテート(EVA;エチレン-酢酸ビニル共重合体)系封止材に対して、10N/cm以上(好ましくは20N/cm以上)の接着力を有するように構成されていることが好ましい。接着力が10N/cm以上であると、接着性を維持し得る湿熱耐性が得られやすい。 The easy-adhesion layer can be constituted using a binder and inorganic fine particles, and may further comprise other components such as additives as necessary. The easy-adhesion layer is 10 N / cm or more (preferably 20 N / cm or more) with respect to an ethylene-vinyl acetate (EVA: ethylene-vinyl acetate copolymer) -based sealing material that seals the power generation element of the battery side substrate. It is preferable that it is comprised so that it may have the adhesive force of (). When the adhesive force is 10 N / cm or more, it is easy to obtain wet heat resistance capable of maintaining adhesiveness.
 なお、接着力は、易接着性層中のバインダー及び無機微粒子の量を調節する方法、バックシートの封止材と接着する面にコロナ処理を施す方法などにより調整が可能である。 The adhesive strength can be adjusted by adjusting the amount of the binder and inorganic fine particles in the easy-adhesive layer, or applying a corona treatment to the surface of the back sheet that is bonded to the sealing material.
-バインダー-
 易接着性層は、バインダーの少なくとも一種を含有することができる。
 易接着性層に好適なバインダーとしては、例えば、ポリエステル、ポリウレタン、アクリル樹脂、ポリオレフィン等が挙げられ、中でも耐久性の観点から、アクリル樹脂、ポリオレフィンが好ましい。また、アクリル樹脂として、アクリルとシリコーンとの複合樹脂も好ましい。
-binder-
The easy-adhesion layer can contain at least one binder.
Examples of the binder suitable for the easy-adhesive layer include polyester, polyurethane, acrylic resin, polyolefin, and the like. Among these, acrylic resin and polyolefin are preferable from the viewpoint of durability. As the acrylic resin, a composite resin of acrylic and silicone is also preferable.
 好ましいバインダーの例としては、ポリオレフィンの具体例としてケミパールS-120、S-75N(ともに三井化学(株)製)、アクリル樹脂の具体例としてジュリマーET-410、SEK-301(ともに日本純薬(株)製)、アクリルとシリコーンとの複合樹脂の具体例としてセラネートWSA1060、WSA1070(ともにDIC(株)製)とH7620、H7630、H7650(ともに旭化成ケミカルズ(株)製)などを挙げることができる。 Examples of preferred binders include Chemipearl S-120 and S-75N (both manufactured by Mitsui Chemicals, Inc.) as specific examples of polyolefins, and Jurimer ET-410 and SEK-301 (both Nippon Pure Chemicals, Inc.) as specific examples of acrylic resins. As a specific example of a composite resin of acrylic and silicone, Ceranate WSA1060, WSA1070 (both manufactured by DIC Corporation) and H7620, H7630, H7650 (both manufactured by Asahi Kasei Chemicals Corporation) and the like can be given.
 バインダーの易接着性層中における含有量は、0.05~5g/mの範囲とすることが好ましい。中でも、0.08~3g/mの範囲がより好ましい。バインダーの含有量は、0.05g/m以上であると所望とする接着力が得られやすく、5g/m以下であるとより良好な面状が得られる。 The content of the binder in the easy-adhesive layer is preferably in the range of 0.05 to 5 g / m 2 . In particular, the range of 0.08 to 3 g / m 2 is more preferable. The content of the binder, 0.05 g / m 2 or more is desired as easy adhesion obtained to that, better surface state is obtained when the is 5 g / m 2 or less.
-微粒子-
 易接着性層は、無機微粒子の少なくとも一種を含有することができる。
 無機微粒子としては、例えば、シリカ、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム、酸化錫等が挙げられる。中でも、湿熱雰囲気に曝されたときの接着性の低下が小さい点で、酸化錫、シリカの微粒子が好ましい。
-Fine particles-
The easily adhesive layer can contain at least one kind of inorganic fine particles.
Examples of the inorganic fine particles include silica, calcium carbonate, magnesium oxide, magnesium carbonate, and tin oxide. Among these, fine particles of tin oxide and silica are preferable in that the decrease in adhesiveness when exposed to a humid heat atmosphere is small.
 無機微粒子の粒径は、体積平均粒径で10~700nm程度が好ましく、より好ましくは20~300nm程度である。粒径がこの範囲内であると、より良好な易接着性を得ることができる。粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。 The particle size of the inorganic fine particles is preferably about 10 to 700 nm, more preferably about 20 to 300 nm in terms of volume average particle size. When the particle size is within this range, better easy adhesion can be obtained. The particle size is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
 無機微粒子の形状には、特に制限はなく、球形、不定形、針状形等のいずれのものを用いることができる。 The shape of the inorganic fine particles is not particularly limited, and any shape such as a spherical shape, an irregular shape, or a needle shape can be used.
 無機微粒子の含有量は、易接着性層中のバインダーに対して、5~400質量%の範囲とする。無機微粒子の含有量は、5質量%未満であると、湿熱雰囲気に曝されたときに良好な接着性が保持できず、400質量%を超えると、易接着性層の面状が悪化する。
 中でも、無機微粒子の含有量は、50~300質量%の範囲が好ましい。
The content of the inorganic fine particles is in the range of 5 to 400% by mass with respect to the binder in the easy-adhesive layer. When the content of the inorganic fine particles is less than 5% by mass, good adhesiveness cannot be maintained when exposed to a wet and heat atmosphere, and when it exceeds 400% by mass, the surface state of the easily adhesive layer is deteriorated.
In particular, the content of inorganic fine particles is preferably in the range of 50 to 300% by mass.
-架橋剤-
 易接着性層には、架橋剤の少なくとも一種を含有することができる。
 易接着性層に好適な架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。中でも、湿熱経時後の接着性を確保する観点から、オキサゾリン系架橋剤が特に好ましい。オキサゾリン系架橋剤の具体例については、既述の複合ポリマー層の項で説明した具体例と同様のものが挙げられる。
-Crosslinking agent-
The easily adhesive layer can contain at least one crosslinking agent.
Examples of the crosslinking agent suitable for the easily adhesive layer include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among these, an oxazoline-based cross-linking agent is particularly preferable from the viewpoint of ensuring adhesiveness after wet heat aging. Specific examples of the oxazoline-based crosslinking agent include the same specific examples as described in the above-mentioned section of the composite polymer layer.
 架橋剤の易接着性層中における含有量としては、易接着性層中のバインダーに対して、5~50質量%が好ましく、中でもより好ましくは20~40質量%である。架橋剤の含有量は、5質量%以上であると、良好な架橋効果が得られ、着色層の強度や接着性を保持することができ、50質量%以下であると、塗布液のポットライフを長く保つことができる。 The content of the crosslinking agent in the easy-adhesive layer is preferably 5 to 50% by mass, more preferably 20 to 40% by mass, based on the binder in the easy-adhesive layer. When the content of the crosslinking agent is 5% by mass or more, a good crosslinking effect can be obtained, and the strength and adhesiveness of the colored layer can be maintained. When the content is 50% by mass or less, the pot life of the coating liquid Can be kept long.
-添加剤-
 本発明における易接着性層には、必要に応じて、更に、ポリスチレン、ポリメチルメタクリレート、シリカ等の公知のマット剤、アニオン系やノニオン系などの公知の界面活性剤などを添加してもよい。
-Additive-
If necessary, the easily adhesive layer in the present invention may further contain a known matting agent such as polystyrene, polymethylmethacrylate, or silica, or a known surfactant such as anionic or nonionic. .
~易接着性層の形成方法~
 易接着性層の形成は、易接着性を有するポリマーシートを基材に貼合する方法や、塗布による方法が挙げられる。中でも、塗布による方法は、簡便であると共に、均一性で薄膜での形成が可能である点で好ましい。塗布方法としては、例えば、グラビアコーターやバーコーターなどの公知の塗布法を利用することができる。塗布液の調製に用いる塗布溶媒は、水でもよいし、トルエンやメチルエチルケトン等の有機溶媒でもよい。塗布溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
-Method of forming easy-adhesive layer-
The easy-adhesive layer can be formed by a method in which a polymer sheet having easy adhesive properties is bonded to a substrate, or a method by coating. Especially, the method by application | coating is preferable at the point which is easy and can form in a thin film with uniformity. As a coating method, for example, a known coating method such as a gravure coater or a bar coater can be used. The coating solvent used for preparing the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone. A coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
 易接着性層の厚みには、特に制限はないが、通常は0.05~8μmが好ましく、より好ましくは0.1~5μmの範囲である。易接着性層の厚みは、0.05μm以上であると必要な易接着性を好適に得ることができ、8μm以下であると面状がより良好になる。
また、本発明の易接着性層は、着色層の効果を低減させないために、透明であることが必要である。
The thickness of the easy-adhesion layer is not particularly limited, but is usually preferably 0.05 to 8 μm, more preferably 0.1 to 5 μm. When the thickness of the easy-adhesion layer is 0.05 μm or more, necessary easy adhesion can be suitably obtained, and when it is 8 μm or less, the surface shape becomes better.
In addition, the easily adhesive layer of the present invention needs to be transparent so as not to reduce the effect of the colored layer.
~物性~
 また、本発明の太陽電池用バックシートは、120℃、100%RHの雰囲気下に48時間保存した後の層間接着力が、保存前の層間接着力に対して、75%以上であることが好ましい。本発明の太陽電池用バックシートは、既述の通り、所定の複合ポリマー層を有することにより前記保存後にも保存前の75%以上の接着力が得られる。これにより、作製された太陽電池モジュールは、バックシートの剥がれやそれに伴なう発電性能の低下が抑制され、長期耐久性がより向上する。
~ Physical properties ~
In addition, the back sheet for solar cell of the present invention has an interlayer adhesion after storage for 48 hours in an atmosphere of 120 ° C. and 100% RH of 75% or more with respect to the interlayer adhesion before storage. preferable. As described above, the solar cell backsheet of the present invention has a predetermined composite polymer layer, so that an adhesive strength of 75% or more before storage can be obtained even after the storage. Thereby, as for the produced solar cell module, peeling of a backsheet and the fall of the power generation performance accompanying it are suppressed, and long-term durability improves more.
<太陽電池用バックシートの製造>
 本発明の太陽電池用バックシートは、上記のように、ポリマー基材の上に本発明における複合ポリマー層と、着色層、金属含有層、必要に応じて易接着性層を形成することができる方法であればいずれの方法により作製されてもよい。本発明においては、金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層をポリマー基材上に形成することと、分子中に既述の一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを有する複合ポリマー及び好ましくは架橋剤を含有する塗布液(及び必要に応じて易接着性層用塗布液等)を塗布し、少なくとも1層の複合ポリマー層をポリマー基材上に形成することとを設けて作製する方法(本発明の太陽電池用バックシートの製造方法)により好適に作製することができる。
 なお、複合ポリマー層用塗布液は、既述のように少なくとも複合ポリマーを含有する塗布液であり、さらにカルボジイミド系化合物及びオキサゾリン系化合物から選ばれる架橋剤を含有することが好ましい。ポリマー基材、及び各塗布液を構成する複合ポリマー、架橋剤、着色剤、金属及び金属化合物、並びに他の成分などの詳細については、太陽電池用バックシートの項にて既述した通りである。
<Manufacture of solar cell backsheet>
As described above, the solar cell backsheet of the present invention can form a composite polymer layer, a colored layer, a metal-containing layer, and, if necessary, an easily adhesive layer on the polymer substrate. Any method can be used. In the present invention, a metal-containing layer containing a component selected from the group consisting of metals and metal compounds is formed on the polymer substrate, and the mass ratio represented by the general formula (1) described above in the molecule A coating solution containing a composite polymer having a siloxane structural unit of 15 to 85% by mass and a non-siloxane structural unit having a mass ratio of 85 to 15% by mass, and preferably a cross-linking agent (and an easily adhesive layer if necessary) For example, a method for producing a back sheet for a solar cell of the present invention), and forming at least one composite polymer layer on a polymer substrate. be able to.
The coating solution for the composite polymer layer is a coating solution containing at least the composite polymer as described above, and preferably further contains a crosslinking agent selected from carbodiimide compounds and oxazoline compounds. The details of the polymer substrate and the composite polymer, crosslinking agent, colorant, metal and metal compound, and other components constituting each coating liquid are as described in the section of the solar cell backsheet. .
 好適な塗布法も既述の通りであり、例えば、グラビアコータやロールコータ、バーコータを利用した塗布方法を適用することができる。また、本発明における塗布では、ポリマー基材の表面に直にあるいは厚み2μm以下の下塗り層を介して、複合ポリマー層用塗布液を塗布し、ポリマー基材上に複合ポリマー層(例えば着色層(好ましくは反射層)やバック層)を形成することができる。 A suitable coating method is also as described above. For example, a coating method using a gravure coater, a roll coater, or a bar coater can be applied. In the coating according to the present invention, a coating solution for a composite polymer layer is applied directly on the surface of the polymer substrate or through an undercoat layer having a thickness of 2 μm or less, and a composite polymer layer (for example, a colored layer ( Preferably, a reflective layer) and a back layer) can be formed.
 複合ポリマー層の形成は、ポリマーシートをポリマー基材に貼合する方法、ポリマー基材形成時に複合ポリマー層を共押出しする方法、塗布による方法等により行なえる。中でも、塗布による方法は、簡便であると共に、均一性で薄膜での形成が可能である点で好ましく、有機溶媒が水に混合した水系の混合溶媒でもよい。塗布による場合、塗布方法としては、例えば、グラビアコータ、ロールコータ、バーコータなどを用いた公知の塗布方法を利用することができる。 The formation of the composite polymer layer can be performed by a method of bonding a polymer sheet to a polymer substrate, a method of co-extruding the composite polymer layer when forming the polymer substrate, a method by coating, or the like. Among them, the method by coating is preferable because it is simple and uniform and can be formed as a thin film, and may be an aqueous mixed solvent in which an organic solvent is mixed with water. In the case of coating, as a coating method, for example, a known coating method using a gravure coater, a roll coater, a bar coater or the like can be used.
 塗布液は、塗布溶媒として水を用いた水系でもよいし、トルエンやメチルエチルケトン等の有機溶媒を用いた溶剤系でもよい。中でも、環境負荷の観点から、水を溶媒とすることが好ましい。塗布溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。 The coating solution may be an aqueous system using water as an application solvent, or a solvent system using an organic solvent such as toluene or methyl ethyl ketone. Among these, from the viewpoint of environmental burden, it is preferable to use water as a solvent. A coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
 複合ポリマー層用塗布液としては、これに含まれる溶媒中の50質量%以上、好ましくは60質量%以上が水である水系塗布液であることが好ましい。水系塗布液は、環境負荷の点で好ましく、また水の割合が60質量%以上であることにより、環境負荷が特に小さくなる点で有利である。複合ポリマー層用塗布液中の水の割合は、環境負荷の観点からは、さらに多い方が望ましく、水が全溶媒の90質量%以上含まれる場合がより好ましい。 The coating solution for the composite polymer layer is preferably an aqueous coating solution in which 50% by mass or more, preferably 60% by mass or more, of the solvent contained therein is water. The aqueous coating solution is preferable in terms of environmental load, and is advantageous in that the environmental load is particularly reduced when the ratio of water is 60% by mass or more. The proportion of water in the coating solution for the composite polymer layer is preferably larger from the viewpoint of environmental load, and more preferably 90% by mass or more of water in the total solvent.
 塗布後は、所望の条件で乾燥することが設けられてもよい。 After application, drying may be provided under desired conditions.
<太陽電池モジュール>
 本発明の太陽電池モジュールは、既述の本発明の太陽電池用バックシート、又は既述の太陽電池用バックシートの製造方法により製造された太陽電池用バックシートを設けて構成されている。本発明の好ましい形態として、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子を、太陽光が入射する透明性のフロント基板と既述の本発明の太陽電池用バックシートとの間に配置し、該フロント基板とバックシートとの間で太陽電池素子をエチレン-ビニルアセテート系等の封止材で封止、接着して構成されている。すなわち、フロント基板とバックシートとの間に、太陽電池素子及び太陽電池素子を封止する封止材を有するセル構造部分が設けられている。
<Solar cell module>
The solar cell module of the present invention is configured by providing the solar cell backsheet of the present invention described above or the solar cell backsheet manufactured by the method of manufacturing the solar cell backsheet described above. As a preferred embodiment of the present invention, a solar cell element that converts light energy of sunlight into electrical energy is disposed between a transparent front substrate on which sunlight is incident and the above-described solar cell backsheet of the present invention. The solar cell element is sealed and bonded with a sealing material such as ethylene-vinyl acetate between the front substrate and the back sheet. That is, a cell structure portion having a solar cell element and a sealing material for sealing the solar cell element is provided between the front substrate and the back sheet.
 太陽電池モジュール、太陽電池セル、バックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。 Components other than solar cell modules, solar cells, and backsheets are described in detail in, for example, “Solar Power Generation System Constituent Materials” (supervised by Eiichi Sugimoto, Industrial Research Committee, Inc., issued in 2008).
 透明性の基板は、太陽光が透過し得る光透過性を有していればよく、光を透過する基材から適宜選択することができる。発電効率の観点からは、光の透過率が高いものほど好ましく、このような基板として、例えば、ガラス基板、アクリル樹脂などの透明樹脂などを好適に用いることができる。 The transparent substrate only needs to have a light-transmitting property through which sunlight can be transmitted, and can be appropriately selected from base materials that transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better. For such a substrate, for example, a glass substrate, a transparent resin such as an acrylic resin, or the like can be suitably used.
 太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。 Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as a group VI compound semiconductor can be applied.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Unless otherwise specified, “part” is based on mass.
-ポリマー基材の作製-
(1)ポリエチレンテレフタレート支持体(PET)の作製
[1]-エステル化-
 高純度テレフタル酸(三井化学(株)製)100kgとエチレングリコール(日本触媒化学工業(株)製)45kgのスラリーを、予めビス(ヒドロキシエチル)テレフタレート約123kgが仕込まれ、温度250℃、圧力1.2×10Paに保持されたエステル化反応槽に、4時間かけて順次供給し、供給終了後もさらに1時間かけてエステル化反応を行なった。その後、得られたエステル化反応生成物123kgを重縮合反応槽に移送した。
-Fabrication of polymer substrate-
(1) Production of polyethylene terephthalate support (PET) [1] -Esterification-
A slurry of 100 kg of high-purity terephthalic acid (manufactured by Mitsui Chemicals) and 45 kg of ethylene glycol (manufactured by Nippon Shokubai Kagaku Kogyo Co., Ltd.) is charged with about 123 kg of bis (hydroxyethyl) terephthalate in advance, at a temperature of 250 ° C. and a pressure of 1 . The esterification reaction tank maintained at 2 × 10 5 Pa was sequentially supplied over 4 hours, and the esterification reaction was performed over an additional hour after the completion of the supply. Thereafter, 123 kg of the obtained esterification reaction product was transferred to a polycondensation reaction tank.
[2]-ポリマーペレットの作製-
 引き続いて、エステル化反応生成物が移送された重縮合反応槽に、エチレングリコールを、得られるポリマーに対して0.3質量%添加した。5分間撹拌した後、酢酸コバルト及び酢酸マンガンのエチレングリコール溶液を、得られるポリマー中においてコバルト元素換算値、マンガン元素換算値がそれぞれ30ppm、15ppmとなるように加えた。更に5分間撹拌した後、チタンアルコキシド化合物の2質量%エチレングリコール溶液を、得られるポリマー中においてチタン元素換算値が5ppmとなるように添加した。その5分後、ジエチルホスホノ酢酸エチルの10質量%エチレングリコール溶液を、得られるポリマー中においてリン元素換算値が5ppmとなるように添加した。その後、低重合体を30rpmで攪拌しながら、反応系を250℃から285℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージし、常圧に戻し、重縮合反応を停止した。そして、冷水にストランド状に吐出し、直ちにカッティングしてポリマーのペレット(直径約3mm、長さ約7mm)を作製した。なお、減圧開始から所定の撹拌トルク到達までの時間は3時間であった。
 但し、チタンアルコキシド化合物には、特開2005-340616号公報の段落番号[0083]の実施例1で合成しているチタンアルコキシド化合物(Ti含有量=4.44質量%)を用いた。
[2]-Production of polymer pellets-
Subsequently, 0.3% by mass of ethylene glycol was added to the polycondensation reaction tank to which the esterification reaction product had been transferred, based on the resulting polymer. After stirring for 5 minutes, an ethylene glycol solution of cobalt acetate and manganese acetate was added in the resulting polymer so that the cobalt element equivalent value and the manganese element equivalent value were 30 ppm and 15 ppm, respectively. After further stirring for 5 minutes, a 2% by mass ethylene glycol solution of a titanium alkoxide compound was added so that the titanium element equivalent value was 5 ppm in the obtained polymer. Five minutes later, a 10% by mass ethylene glycol solution of ethyl diethylphosphonoacetate was added so that the phosphorus element equivalent value was 5 ppm in the resulting polymer. Thereafter, while stirring the low polymer at 30 rpm, the reaction system was gradually heated from 250 ° C. to 285 ° C. and the pressure was reduced to 40 Pa. The time to reach the final temperature and final pressure was both 60 minutes. When the predetermined stirring torque was reached, the reaction system was purged with nitrogen, returned to normal pressure, and the polycondensation reaction was stopped. And it discharged to cold water in the shape of a strand, and it cut immediately, and produced the polymer pellet (about 3 mm in diameter, about 7 mm in length). The time from the start of decompression to the arrival of the predetermined stirring torque was 3 hours.
However, as the titanium alkoxide compound, the titanium alkoxide compound (Ti content = 4.44 mass%) synthesized in Example 1 of paragraph No. [0083] of JP-A-2005-340616 was used.
[3]-フィルム状ポリマー基材の作製-
 以上のようにして得られたペレットを、280℃で溶融して金属ドラムの上にキャストし、厚さ約3mmの未延伸PETシートを作製した。その後、この未延伸PETシートを90℃で縦方向に3倍に延伸し、更に120℃で横方向に3.3倍に延伸した。このようにして、厚み300μmの2軸延伸ポリエチレンテレフタレート支持体(PET)を得た。得られたPETのカルボキシル基含量は、38当量/tであった。
[3]-Production of film-like polymer substrate-
The pellets obtained as described above were melted at 280 ° C. and cast on a metal drum to produce an unstretched PET sheet having a thickness of about 3 mm. Thereafter, the unstretched PET sheet was stretched 3 times in the longitudinal direction at 90 ° C., and further stretched 3.3 times in the lateral direction at 120 ° C. Thus, a biaxially stretched polyethylene terephthalate support (PET) having a thickness of 300 μm was obtained. The carboxyl group content of the obtained PET was 38 equivalent / t.
 なお、得られたペレットについて、H. A. Pohl, Anal. Chem. 26 (1954) 2145に記載の方法にしたがって、滴定法にて末端COOH基量を測定した。具体的には、ペレットをベンジルアルコールに205℃で溶解し、フェノールレッド指示薬を加え、水酸化ナトリウムの水/メタノール/ベンジルアルコール溶液で滴定し、その適定量から末端カルボン酸基量(当量/t;=末端COOH量)を算出した。 In addition, about the obtained pellet, the amount of terminal COOH groups was measured by the titration method according to the method described in H. A. Pohl, Anal. Chem. 26 (1954) 2145. Specifically, the pellet was dissolved in benzyl alcohol at 205 ° C., a phenol red indicator was added, titrated with a water / methanol / benzyl alcohol solution of sodium hydroxide, and the amount of terminal carboxylic acid groups (equivalent / t ; = Terminal COOH amount) was calculated.
(2)ポリフェニレンエーテル支持体(PPE)の作製
 ポリフェニレンエーテル系樹脂組成物(ノリルN300、SABICイノベーションプラスチックス(株)製)を用い、押出キャスト法(シリンダー温度:270~300℃)にて溶融押出してシート状に成形し、厚み240μmのシートを作製した。その後、テンター装置を使用して乾燥機(機内温度:180℃)中にてシートに熱処理を施した。このようにして、ポリフェニレンエーテル支持体(PPE)を作製した。
(2) Production of polyphenylene ether support (PPE) Using a polyphenylene ether resin composition (Noryl N300, manufactured by SABIC Innovation Plastics Co., Ltd.), melt extrusion using an extrusion casting method (cylinder temperature: 270 to 300 ° C.). To form a sheet having a thickness of 240 μm. Thereafter, the sheet was heat-treated in a drier (in-machine temperature: 180 ° C.) using a tenter device. In this way, a polyphenylene ether support (PPE) was produced.
(3)シンジオタクチックポリスチレン支持体(SPP)の作製
 シンジオタクチックポリスチレン樹脂(ザレック 30A、出光石油化学(株)製)90部に、ポリスチレン-ポリブタジエン-ポリスチレントリブロック共重合体(SBS)の水素添加物(タフテック1052、旭化成工業(株)製)10部を添加し、マスターペレットを作製した。これを用い、押出キャスト法(シリンダー温度:270~300℃)にて溶融押出してシート状に成形し、厚み50μmのシートを作製した。その後、テンター装置を使用して乾燥機(機内温度:180℃)中にてシートに熱処理を施した。このようにして、シンジオタクチックポリスチレン支持体(SPP)を作製した。
(3) Production of Syndiotactic Polystyrene Support (SPP) Hydrogen of polystyrene-polybutadiene-polystyrene triblock copolymer (SBS) was added to 90 parts of syndiotactic polystyrene resin (Zarek 30A, manufactured by Idemitsu Petrochemical Co., Ltd.). 10 parts of an additive (Tuftec 1052 manufactured by Asahi Kasei Kogyo Co., Ltd.) was added to prepare a master pellet. Using this, it was melt-extruded by extrusion casting (cylinder temperature: 270 to 300 ° C.) and formed into a sheet to produce a sheet having a thickness of 50 μm. Thereafter, the sheet was heat-treated in a drier (in-machine temperature: 180 ° C.) using a tenter device. In this way, a syndiotactic polystyrene support (SPP) was produced.
(4)白色ポリフッ化ビニル支持体(白色PVF)の作製
 ポリフッ化ビニル、ジメチルホルムアミド、ポリエチレングリコール、及び二酸化チタンを混合し、110℃に加熱しながら攪拌して均一な溶液とした。この溶液を、あらかじめ80℃に加熱しておいたオーブン中で、ガラス板上に0.1mmのキャスト厚になるように流延した後、直ちに30℃の水中に投入し、白色のポリフッ化ビニル支持体(白色PVF)を作製した。
(4) Production of white polyvinyl fluoride support (white PVF) Polyvinyl fluoride, dimethylformamide, polyethylene glycol, and titanium dioxide were mixed and stirred while heating to 110 ° C. to obtain a uniform solution. This solution was cast on a glass plate to a cast thickness of 0.1 mm in an oven preheated to 80 ° C., and then immediately poured into water at 30 ° C. to obtain white polyvinyl fluoride. A support (white PVF) was prepared.
-ポリマーの合成-
(合成例-1):複合ポリマー水分散物P-1の合成
 撹拌装置、滴下ロートを備え、窒素ガス置換した反応容器に、プロピレングリコールモノ-n-プロピルエーテル(PNP)81部、イソプロピルアルコール(IPA)360部、フェニルトリメトキシシラン(PTMS)110部、及びジメチルジメトキシシラン(DMDMS)71部を仕込み、窒素ガス雰囲気下に撹拌しながら80℃に昇温した。
 次いで、この反応容器内に同温度で、メチルメタクリレート(MMA)260部、n-ブチルメタクリレート(BMA)200部、n-ブチルアクリレート(BA)110部、アクリル酸(AA)30部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTMS)19部、tert-ブチルパーオキシ-2-エチルヘキサノエート31.5部(TBPO)、及びPNP部31.5部からなる混合物を4時間かけて滴下した。その後、同温度で2.5時間加熱撹拌を行ない、重量平均分子量が29,300の、カルボキシル基と加水分解性シリル基を含むアクリル系ポリマーの溶液を得た。
 次いで、これに脱イオン水54.8部を加え、16時間加熱撹拌を継続してアルコキシシランを加水分解し、さらにアクリル系ポリマーと縮合させることにより、不揮発分(NV)=56.3質量%、溶液酸価=22.3mgKOH/gの、カルボキシル基含有アクリル系ポリマーに由来する部位とポリシロキサン部位とを有する複合ポリマーの溶液を得た。
 次に、この溶液に同温度で、撹拌しながらトリエチルアミン42部を添加して10分間撹拌を行なった。これにより、含有されるカルボキシル基の100%が中和された。
 その後、同温度で脱イオン水1250.0部を1.5時間かけて滴下して転相乳化させた後、50℃に昇温して30分間撹拌を行なった。次いで、内温40℃で3.5時間をかけて、有機溶剤とともに水の一部分を減圧下除去した。こうして固形分濃度が42質量%、平均粒子径が110nmの、カルボキシル基含有アクリル系ポリマーに由来する部位とポリシロキサン部位とを含む複合ポリマー水分散物P-1を得た。
 水分散物P-1の複合ポリマーは、ポリシロキサン部位が約25%であり、アクリル系ポリマー部分が約75%であった。
-Polymer synthesis-
(Synthesis Example 1): Synthesis of Composite Polymer Water Dispersion P-1 A reaction vessel equipped with a stirrer and a dropping funnel and purged with nitrogen gas was charged with 81 parts of propylene glycol mono-n-propyl ether (PNP), isopropyl alcohol ( IPA) 360 parts, phenyltrimethoxysilane (PTMS) 110 parts, and dimethyldimethoxysilane (DMDMS) 71 parts were charged, and the temperature was raised to 80 ° C. with stirring in a nitrogen gas atmosphere.
Then, at the same temperature in this reaction vessel, 260 parts of methyl methacrylate (MMA), 200 parts of n-butyl methacrylate (BMA), 110 parts of n-butyl acrylate (BA), 30 parts of acrylic acid (AA), 3-methacryloyl A mixture of 19 parts of oxypropyltrimethoxysilane (MPTMS), 31.5 parts of tert-butylperoxy-2-ethylhexanoate (TBPO), and 31.5 parts of PNP part was added dropwise over 4 hours. Thereafter, the mixture was heated and stirred at the same temperature for 2.5 hours to obtain an acrylic polymer solution having a weight average molecular weight of 29,300 and containing a carboxyl group and a hydrolyzable silyl group.
Next, 54.8 parts of deionized water was added thereto, and heating and stirring were continued for 16 hours to hydrolyze the alkoxysilane and further condense with an acrylic polymer, so that the nonvolatile content (NV) = 56.3 mass%. A solution of a composite polymer having a site derived from a carboxyl group-containing acrylic polymer and a polysiloxane site, with a solution acid value = 22.3 mgKOH / g, was obtained.
Next, 42 parts of triethylamine was added to this solution while stirring at the same temperature, and stirring was performed for 10 minutes. Thereby, 100% of the contained carboxyl groups were neutralized.
Thereafter, 1250.0 parts of deionized water was added dropwise at the same temperature over 1.5 hours for phase inversion emulsification, and then the mixture was heated to 50 ° C. and stirred for 30 minutes. Next, a part of water was removed under reduced pressure together with the organic solvent over 3.5 hours at an internal temperature of 40 ° C. In this way, a composite polymer aqueous dispersion P-1 having a solid content concentration of 42% by mass and an average particle size of 110 nm and containing a part derived from a carboxyl group-containing acrylic polymer and a polysiloxane part was obtained.
The composite polymer of the aqueous dispersion P-1 had about 25% polysiloxane sites and about 75% acrylic polymer portions.
(合成例-2):複合ポリマー水分散物P-2の合成
 複合ポリマー水分散物P-1の合成(合成例-1)において、用いるモノマー量を下記量に変更したこと以外は、合成例-1と同様にして、複合ポリマー水分散物P-2を合成した。すなわち、
 用いるモノマーの比率は、フェニルトリメトキシシラン(PTMS):210部、ジメチルジメトキシシラン(DMDMS):166部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTMS):24部、メチルメタクリレート(MMA):200部、n-ブチルメタクリレート(BMA):100部、n-ブチルアクリレート(BA)70部、アクリル酸(AA)30部とした。
 水分散物P-2の複合ポリマーは、ポリシロキサン部位が約50%であり、アクリル系ポリマー部分が約50%であった。
(Synthesis Example 2): Synthesis of Composite Polymer Water Dispersion P-2 Synthesis Example, except that the amount of monomer used in the synthesis of Composite Polymer Water Dispersion P-1 (Synthesis Example 1) was changed to the following amount: In the same manner as in Example 1, a composite polymer aqueous dispersion P-2 was synthesized. That is,
The ratio of the monomers used is as follows: phenyltrimethoxysilane (PTMS): 210 parts, dimethyldimethoxysilane (DMDMS): 166 parts, 3-methacryloyloxypropyltrimethoxysilane (MPTMS): 24 parts, methyl methacrylate (MMA): 200 parts N-butyl methacrylate (BMA): 100 parts, n-butyl acrylate (BA) 70 parts, acrylic acid (AA) 30 parts.
The composite polymer of the aqueous dispersion P-2 had about 50% of the polysiloxane portion and about 50% of the acrylic polymer portion.
(合成例-3):複合ポリマー水分散物P-3の合成
 複合ポリマー水分散物P-1の合成(合成例-1)において、用いるモノマー量を下記量に変更したこと以外は、合成例-1と同様にして、複合ポリマー水分散物P-3を合成した。すなわち、
 用いるモノマーの比率は、フェニルトリメトキシシラン(PTMS):320部、ジメチルジメトキシシラン(DMDMS):244部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTMS):36部、メチルメタクリレート(MMA):90部、n-ブチルメタクリレート(BMA):60部、n-ブチルアクリレート(BA):20部、アクリル酸(AA):30部とした。
 水分散物P-3の複合ポリマーは、ポリシロキサン部位が約75%であり、アクリル系ポリマー部分が約25%であった。
(Synthesis Example 3): Synthesis of Composite Polymer Water Dispersion P-3 Synthesis Example, except that the amount of monomer used in the synthesis of Composite Polymer Water Dispersion P-1 (Synthesis Example 1) was changed to the following amount: In the same manner as in Example 1, a composite polymer aqueous dispersion P-3 was synthesized. That is,
The ratio of the monomers used is as follows: phenyltrimethoxysilane (PTMS): 320 parts, dimethyldimethoxysilane (DMDMS): 244 parts, 3-methacryloyloxypropyltrimethoxysilane (MPTMS): 36 parts, methyl methacrylate (MMA): 90 parts N-butyl methacrylate (BMA): 60 parts, n-butyl acrylate (BA): 20 parts, and acrylic acid (AA): 30 parts.
The composite polymer of the aqueous dispersion P-3 had about 75% polysiloxane sites and about 25% acrylic polymer portions.
(合成例-4):複合ポリマー水分散物P-4の合成
 複合ポリマー水分散物P-1の合成(合成例-1)において、用いるモノマー量を下記量に変更したこと以外は、合成例-1と同様にして、複合ポリマー水分散物P-4を合成した。すなわち、
 用いるモノマーの比率は、フェニルトリメトキシシラン(PTMS):60部、ジメチルジメトキシシラン(DMDMS):25部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTMS):15部、メチルメタクリレート(MMA):300部、n-ブチルメタクリレート(BMA):220部、n-ブチルアクリレート(BA):150部、アクリル酸(AA):30部とした。
 水分散物P-4の複合ポリマーは、ポリシロキサン部位が約13%であり、アクリル系ポリマー部分が約87%であった。
(Synthesis Example 4): Synthesis of Composite Polymer Aqueous Dispersion P-4 Synthesis Example except that the amount of monomers used in the synthesis of Synthetic Polymer Water Dispersion P-1 (Synthesis Example 1) was changed to the following amount: In the same manner as in Example 1, a composite polymer aqueous dispersion P-4 was synthesized. That is,
The proportions of the monomers used were as follows: phenyltrimethoxysilane (PTMS): 60 parts, dimethyldimethoxysilane (DMDMS): 25 parts, 3-methacryloyloxypropyltrimethoxysilane (MPTMS): 15 parts, methyl methacrylate (MMA): 300 parts N-butyl methacrylate (BMA): 220 parts, n-butyl acrylate (BA): 150 parts, and acrylic acid (AA): 30 parts.
The composite polymer of the aqueous dispersion P-4 had about 13% polysiloxane sites and about 87% acrylic polymer portions.
(合成例-5):複合ポリマー水分散物P-5の合成
 複合ポリマー水分散物P-1の合成(合成例-1)において、用いるモノマー量を下記量に変更したこと以外は、合成例-1と同様にして、複合ポリマー水分散物P-5を合成した。すなわち、
 用いるモノマーの比率は、フェニルトリメトキシシラン(PTMS):336部、ジメチルジメトキシシラン(DMDMS):320部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTMS):40部、メチルメタクリレート(MMA):44部、n-ブチルメタクリレート(BMA):30部、n-ブチルアクリレート(BA):10部、アクリル酸(AA):20部とした。
 水分散物P-5の複合ポリマーは、ポリシロキサン部位が約87%であり、アクリル系ポリマー部分が約87%であった。なお、この水分散物は、合成後に少量の凝集が発生しており、水分散物P-1~P-4に比べて、安定性が若干劣っていた。
(Synthesis Example-5): Synthesis of Composite Polymer Water Dispersion P-5 Synthesis Example, except that the amount of monomer used in the synthesis of Composite Polymer Water Dispersion P-1 (Synthesis Example 1) was changed to the following amount: In the same manner as in Example 1, a composite polymer aqueous dispersion P-5 was synthesized. That is,
The ratio of the monomers used is as follows: phenyltrimethoxysilane (PTMS): 336 parts, dimethyldimethoxysilane (DMDMS): 320 parts, 3-methacryloyloxypropyltrimethoxysilane (MPTMS): 40 parts, methyl methacrylate (MMA): 44 parts N-butyl methacrylate (BMA): 30 parts, n-butyl acrylate (BA): 10 parts, and acrylic acid (AA): 20 parts.
The composite polymer of the aqueous dispersion P-5 had about 87% of the polysiloxane portion and about 87% of the acrylic polymer portion. This aqueous dispersion had a small amount of aggregation after synthesis and was slightly inferior in stability to the aqueous dispersions P-1 to P-4.
(実施例1)
-ポリマー層の形成-
(1)ポリマー層形成用塗布液の調製
 下記組成中の各成分を混合し、ポリマー層形成用塗布液を調製した。
 <塗布液の組成>
・シリコーン系バインダー ・・・362.3部
 (既述の複合ポリマー水分散物P-1、固形分量:40質量%に調整)
・カルボジイミド化合物(架橋剤) ・・・36.2部
 (カルボジライトV-02-L2、日清紡績(株)製、固形分:40質量%)
・界面活性剤 ・・・24.2部
 (ナロアクティーCL95、三洋化成工業(株)製、固形分:1質量%)
・滑剤(ポリエチレンワックス) ・・・3.6部
 (ケミパールW950、三井化学(株)製、固形分:40質量%)
・マット剤(ポリメチルメタクリレート粒子) ・・・1.1部
 (MP-1000(平均粒子径:0.4μm)、綜研化学(株)製)
・蒸留水 ・・・572.6部
(Example 1)
-Formation of polymer layer-
(1) Preparation of coating solution for forming polymer layer Each component in the following composition was mixed to prepare a coating solution for forming a polymer layer.
<Composition of coating solution>
Silicone binder: 362.3 parts (Previously described composite polymer aqueous dispersion P-1, solid content: adjusted to 40% by mass)
Carbodiimide compound (crosslinking agent) 36.2 parts (Carbodilite V-02-L2, manufactured by Nisshinbo Industries, Ltd., solid content: 40% by mass)
・ Surfactant ... 24.2 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content: 1% by mass)
・ Lubricant (polyethylene wax) ... 3.6 parts (Chemical Pearl W950, manufactured by Mitsui Chemicals, solid content: 40% by mass)
Matting agent (polymethylmethacrylate particles) ... 1.1 parts (MP-1000 (average particle size: 0.4 μm), manufactured by Soken Chemical Co., Ltd.)
・ Distilled water: 572.6 parts
(2)ポリマー層の形成
 ポリマー基材としてPETを用い、PETの一方の面にポリマー層形成用塗布液を、バインダー塗布量が2.0g/mになるように塗布し、180℃で1分間乾燥させて、耐候性層として乾燥厚みが約2μmのポリマー層を形成した。
(2) Formation of polymer layer Using PET as a polymer base material, a coating solution for forming a polymer layer is applied on one surface of PET so that a binder coating amount is 2.0 g / m 2 , and 1 at 180 ° C. After drying for a minute, a polymer layer having a dry thickness of about 2 μm was formed as a weather-resistant layer.
-機能性層の形成-
 次に、PET(ポリマー基材)の耐候性層が形成されていない側の面に、厚さ50μmの白色のポリエチレンテレフタレート(ルミラーE20、東レ(株)製;白色PET)を以下に示す条件で貼合し、機能性層(光反射層)を形成した。
-Formation of functional layer-
Next, white polyethylene terephthalate (Lumirror E20, manufactured by Toray Industries, Inc .; white PET) having a thickness of 50 μm is formed on the surface of the PET (polymer substrate) where the weather-resistant layer is not formed under the following conditions. The functional layer (light reflection layer) was formed by pasting.
 接着剤として、LX660(K)(DIC(株)製;主剤)にKW75(DIC(株)製;硬化剤)10部を混合した2液熱硬化型ウレタン系接着剤を用いた。PETの耐候性層が形成されていない側の面に接着剤を塗布し、その上に白色PETを重ね、真空ラミネータ(真空ラミネート機、日清紡(株)製)でホットプレスして接着した。接着は、80℃で3分間の真空引きの後、2分間加圧することにより行なった。接着後の接着剤層の厚みは、約5μmであった。その後、得られたサンプルを40℃で4日間保持して反応を完了させ、バックシートとした。 As the adhesive, a two-component thermosetting urethane adhesive obtained by mixing 10 parts of KW75 (manufactured by DIC Corporation; curing agent) with LX660 (K) (manufactured by DIC Corporation; main agent) was used. An adhesive was applied to the side of the PET where the weather-resistant layer was not formed, and white PET was layered thereon, and hot-pressed with a vacuum laminator (vacuum laminator, manufactured by Nisshinbo Co., Ltd.) for adhesion. Adhesion was performed by applying pressure for 2 minutes after evacuation at 80 ° C. for 3 minutes. The thickness of the adhesive layer after bonding was about 5 μm. Thereafter, the obtained sample was held at 40 ° C. for 4 days to complete the reaction, thereby obtaining a back sheet.
-評価1-
 得られたバックシートについて、耐候性層の接着性及び反射率の評価を行なった。評価結果を下記表1に示す。
-Evaluation 1
About the obtained back sheet, the adhesiveness and reflectance of the weather-resistant layer were evaluated. The evaluation results are shown in Table 1 below.
(1)接着性(密着)
 得られたバックシートを25℃、60%RHの雰囲気で24時間調湿した。その後、バックシートのポリマー層の表面にカミソリを用いて3mm間隔で縦横それぞれ6本ずつの傷をつけた。その上に、幅20mmのマイラーテープを貼って、180°方向にすばやく剥離した。このとき、剥離は、120℃、100%RHの湿熱条件下に90時間経時する前後のバックシートについて行なった。剥離後、バックシートから剥がれたマス目の数をカウントし、以下の評価基準にしたがって評価した。なお、実用上許容されるのは、ランク3~5に分類されるものである。下記表1において、湿熱経時前を「フレッシュ」、湿熱経時後を「湿熱経時」として表す。
 <評価基準>
5:全く剥離が起こらなかった。
4:剥離したマス目はゼロであるが、キズ部分が僅かに剥離していた。
3:剥離したマス目が1マス未満であった。
2:剥離したマス目が1マス以上5マス未満であった。
1:剥離したマス目が5マス以上であった。
(1) Adhesiveness (adhesion)
The obtained back sheet was conditioned for 24 hours in an atmosphere of 25 ° C. and 60% RH. After that, the surface of the polymer layer of the backsheet was scratched with 6 razors in the longitudinal and lateral directions at intervals of 3 mm using a razor. On top of that, a 20 mm wide Mylar tape was applied and quickly peeled off in the 180 ° direction. At this time, peeling was performed on the backsheet before and after aging for 90 hours under a wet heat condition of 120 ° C. and 100% RH. After peeling, the number of squares peeled off from the back sheet was counted and evaluated according to the following evaluation criteria. Note that what is practically acceptable is classified into ranks 3 to 5. In Table 1 below, the time before wet heat aging is expressed as “fresh”, and the time after wet heat aging is expressed as “humid heat aging”.
<Evaluation criteria>
5: No peeling occurred.
4: Although the squares which peeled were zero, the crack part had peeled slightly.
3: The square which peeled was less than 1 square.
2: The square which peeled was 1 square or more and less than 5 squares.
1: The square which peeled was 5 squares or more.
(2)反射率
 得られたバックシートについて、分光光度計(ΜV-3100、島津製作所(株)製)を用い、反射スペクトルを測定した。ベースラインは、硫酸バリウム粉体を押し固めたリファレンス板を用いて設定した。得られたスペクトルから、波長550nmにおける反射率をそのバックシートの代表反射率とした。
(2) Reflectance The reflection spectrum of the obtained back sheet was measured using a spectrophotometer (Sakai V-3100, manufactured by Shimadzu Corporation). The baseline was set using a reference plate in which barium sulfate powder was pressed and hardened. From the obtained spectrum, the reflectance at a wavelength of 550 nm was taken as the representative reflectance of the backsheet.
(実施例2~3)
 実施例1において、耐候性層形成用塗布液の調製に用いた複合ポリマー水分散物P-1(シリコーン系バインダー)を、下記表1に示すように、複合ポリマー水分散物P-2又はP-3(いずれも固形分量を40質量%に調整)に代えたこと以外は、実施例1と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表1に示す。
(Examples 2 to 3)
In Example 1, the composite polymer aqueous dispersion P-1 (silicone-based binder) used for the preparation of the coating solution for forming the weather resistant layer was combined with the composite polymer aqueous dispersion P-2 or P as shown in Table 1 below. A backsheet was prepared and evaluated in the same manner as in Example 1 except that it was changed to -3 (both were adjusted to a solid content of 40% by mass). The evaluation results are shown in Table 1 below.
(比較例1~2)
 実施例1において、耐候性層形成用塗布液の調製に用いた複合ポリマー水分散物P-1(シリコーン系バインダー)を、下記表1に示すように、複合ポリマー水分散物P-4又はP-5(いずれも固形分量を40質量%に調整)に代えたこと以外は、実施例1と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表1に示す。
(Comparative Examples 1 and 2)
In Example 1, the composite polymer aqueous dispersion P-1 (silicone-based binder) used for the preparation of the coating solution for forming the weathering layer was combined with the composite polymer aqueous dispersion P-4 or P as shown in Table 1 below. A backsheet was prepared and evaluated in the same manner as in Example 1 except that it was changed to −5 (both solid contents were adjusted to 40% by mass). The evaluation results are shown in Table 1 below.
(比較例3)
 実施例1において、耐候性層形成用塗布液の塗布により形成した耐候性層を厚さ50μmのETFEフィルム(ネオフロンEF-0050、ダイキン工業(株)製)に代え、PETの一方の面に下記条件にてコロナ処理を施した後、実施例1における機能性層の形成方法と同様の方法でETFEフィルムを貼り合わせるようにしたこと以外は、実施例1と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表1に示す。
 <コロナ処理>
 ・装置:ピラー社製ソリッドステートコロナ処理機6KVAモデル
 ・電極と誘電体ロールとのギャップクリアランス:1.6mm
 ・処理周波数:9.6kHz
 ・処理速度:10m/分
 ・処理強度:0.75kV・A・分/m
(Comparative Example 3)
In Example 1, the weathering layer formed by applying the coating solution for forming the weathering layer was replaced with an ETFE film having a thickness of 50 μm (neoflon EF-0050, manufactured by Daikin Industries, Ltd.). After the corona treatment was performed under the conditions, a back sheet was prepared in the same manner as in Example 1 except that the ETFE film was bonded in the same manner as the method for forming the functional layer in Example 1. The same evaluation was performed. The evaluation results are shown in Table 1 below.
<Corona treatment>
・ Equipment: Solid state corona treatment machine 6KVA model made by Pillar Co. ・ Gap clearance between electrode and dielectric roll: 1.6 mm
・ Processing frequency: 9.6 kHz
Processing speed: 10 m / min Processing intensity: 0.75 kV / A / min / m 2
(実施例4)
 実施例1において、耐候性層にも白色を付与するため、以下に示すように、PETの一方の面にポリマー層形成用塗布液を塗布する前に、該PETの一方の面に下記の白色樹脂層形成用塗布液を塗布し、乾燥させて白色樹脂層を形成することで、ポリマー層と白色樹脂層の2層からなる耐候性層を形成したこと以外は、実施例1と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表1に示す。
(Example 4)
In Example 1, in order to impart white color to the weather resistant layer, as shown below, before applying the coating liquid for forming a polymer layer on one surface of PET, the following white color is applied to one surface of the PET: A resin layer forming coating solution was applied and dried to form a white resin layer, thereby forming a weather resistant layer consisting of two layers, a polymer layer and a white resin layer, in the same manner as in Example 1. A back sheet was prepared and subjected to the same evaluation. The evaluation results are shown in Table 1 below.
-耐候性層の形成-
(1)白色樹脂層の形成
-二酸化チタン分散物の調製-
 下記組成中の各成分を混合し、その混合物をダイノミル型分散機により1時間、分散処理を施して、二酸化チタン分散物を調製した。
 <二酸化チタン分散物の組成>
・二酸化チタン(体積平均粒子径=0.28μm) ・・・40質量%
 (タイペークCR95、石原産業(株)製、固形分:100質量%)
・ポリビニルアルコール水溶液(固形分:10質量%)・・・20質量%
 (PVA-105、(株)クラレ製)
・界面活性剤                  ・・・0.5質量%
(デモールEP、花王(株)製、固形分:25質量%)
・蒸留水                    ・・・39.5質量%
-Formation of weathering layer-
(1) Formation of white resin layer-Preparation of titanium dioxide dispersion-
Each component in the following composition was mixed, and the mixture was subjected to a dispersion treatment with a dynomill type dispersing machine for 1 hour to prepare a titanium dioxide dispersion.
<Composition of titanium dioxide dispersion>
・ Titanium dioxide (volume average particle size = 0.28 μm) ・ ・ ・ 40% by mass
(Taipeke CR95, manufactured by Ishihara Sangyo Co., Ltd., solid content: 100% by mass)
-Polyvinyl alcohol aqueous solution (solid content: 10% by mass) ... 20% by mass
(PVA-105, manufactured by Kuraray Co., Ltd.)
・ Surfactant: 0.5% by mass
(Demol EP, manufactured by Kao Corporation, solid content: 25% by mass)
・ Distilled water ... 39.5 mass%
-白色樹脂層の形成-
 下記組成中の成分を混合し、白色樹脂層形成用塗布液を調製した。得られた白色樹脂層形成用塗布液を、PETの一方の面にバインダー塗布量が4.7g/m、二酸化チタン塗布量が5.6g/mとなるように塗布し、170℃で2分間乾燥して乾燥厚み5.7μmの白色樹脂層を形成した。
 <白色樹脂層形成用塗布液の組成>
・既述の二酸化チタン分散液 ・・・298.5部
・ポリオレフィンバインダー ・・・568.7部
 (アローベースSE-1013N、ユニチカ(株)製、濃度20質量%)
・ノニオン界面活性剤 ・・・23.4部
 (ナロアクティーCL95、三洋化成工業(株)製、濃度1質量%)
・オキサゾリン系架橋剤 ・・・58.4部
 (エポクロスWS-700、日本触媒(株)製、濃度25質量%)
・蒸留水 ・・・51.0部
-Formation of white resin layer-
Components in the following composition were mixed to prepare a coating solution for forming a white resin layer. The obtained white resin layer-forming coating solution was applied on one surface of PET so that the binder coating amount was 4.7 g / m 2 and the titanium dioxide coating amount was 5.6 g / m 2. It was dried for 2 minutes to form a white resin layer having a dry thickness of 5.7 μm.
<Composition of coating solution for white resin layer formation>
-Titanium dioxide dispersion described above ... 298.5 parts-Polyolefin binder ... 568.7 parts (Arrowbase SE-1013N, manufactured by Unitika Ltd., concentration 20 mass%)
Nonionic surfactant: 23.4 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, Ltd., concentration 1% by mass)
・ Oxazoline-based crosslinking agent: 58.4 parts (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., concentration: 25% by mass)
・ Distilled water: 51.0 parts
(2)ポリマー層の形成
 続いて、PETの一方の面に形成された白色樹脂層の上に、実施例1で調製したポリマー層形成用塗布液を、バインダー塗布量が2.0g/mになるように塗布し、180℃で1分間乾燥させて、乾燥厚みが約2μmのポリマー層を形成した。
(2) Formation of polymer layer Subsequently, on the white resin layer formed on one surface of PET, the polymer layer forming coating solution prepared in Example 1 was applied at a binder coating amount of 2.0 g / m 2. And dried at 180 ° C. for 1 minute to form a polymer layer having a dry thickness of about 2 μm.
(実施例5)
 実施例4において、機能性層の形成に用いた厚さ50μmの白色PET(ルミラーE20、東レ(株)製)を用いず、PETの耐候性層が形成されていない側の面に、実施例4の白色樹脂層形成用塗布液を、バインダー塗布量が4.7g/m、二酸化チタン塗布量が5.6g/mとなるように塗布し、170℃で2分間乾燥して乾燥厚み5.7μmの白色樹脂層を形成して機能性層としたこと以外は、実施例1と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表1に示す。
(Example 5)
In Example 4, the white PET (Lumirror E20, manufactured by Toray Industries, Inc.) having a thickness of 50 μm used for forming the functional layer was not used, and the surface on the side where the PET weathering layer was not formed was used. The white resin layer forming coating solution No. 4 was applied so that the binder coating amount was 4.7 g / m 2 and the titanium dioxide coating amount was 5.6 g / m 2, and dried at 170 ° C. for 2 minutes to dry thickness. A backsheet was prepared and evaluated in the same manner as in Example 1 except that a functional resin layer was formed by forming a 5.7 μm white resin layer. The evaluation results are shown in Table 1 below.
(実施例6)
 実施例5において、ポリマー基材として用いた既述のPETを、以下のように作製した下塗り層付PETに代えたこと以外は、実施例1と同様に太陽電池用ポリマーシートを作製した。
 <下塗り層付PET>
 既述の「(1)ポリエチレンテレフタレート支持体(PET)の作製」において、作製した未延伸PETシートをMD方向に3.4倍に延伸した後、このPETシートの耐光性層側に、下記の下塗り層塗布液を塗布し、その後さらにTD方向に4.5倍に延伸した。このとき、下塗り層の厚みは、0.1μmであった。
 <下塗り層塗布液の組成>
・ポリオレフィンバインダー ・・・24.12部
 (アローベースSE-1013N、ユニチカ(株)製、濃度:20質量%)
・オキサゾリン系架橋剤 ・・・3.90部
 (エポクロスWS-700、日本触媒(株)製、濃度:25質量%)
・フッ素系界面活性剤 ・・・0.19部
 (ナトリウム=ビス(3,3,4,4,5,5,6,6-ノナフルオロ)=2-スルホナイトオキシスクシナート、三協化学(株)製、濃度:1質量%)
・蒸留水 ・・・71.80部
(Example 6)
In Example 5, a polymer sheet for a solar cell was produced in the same manner as in Example 1 except that the above-described PET used as the polymer substrate was replaced with a PET with an undercoat layer produced as follows.
<PET with undercoat>
In the above-mentioned “(1) Production of polyethylene terephthalate support (PET)”, the produced unstretched PET sheet was stretched 3.4 times in the MD direction, and then the light-resistant layer side of this PET sheet was The undercoat layer coating solution was applied, and then further stretched 4.5 times in the TD direction. At this time, the thickness of the undercoat layer was 0.1 μm.
<Composition of undercoat layer coating solution>
Polyolefin binder: 24.12 parts (Arrow Base SE-1013N, manufactured by Unitika Ltd., concentration: 20% by mass)
・ Oxazoline-based crosslinking agent: 3.90 parts (Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., concentration: 25% by mass)
・ Fluorine-based surfactant: 0.19 parts (sodium bis (3,3,4,4,5,5,6,6-nonafluoro) = 2-sulfonite oxysuccinate, Sankyo Chemical ( Co., Ltd., concentration: 1% by mass)
・ Distilled water: 71.80 parts
(実施例7)
 実施例5において、ポリマー基材として用いたPETの合成及びポリマー基材の作製方法を以下に示す方法に代えたこと以外は、実施例5と同様にして、太陽電池用ポリマーシートを作製した。
(Example 7)
In Example 5, a polymer sheet for a solar cell was produced in the same manner as in Example 5 except that the synthesis of PET used as the polymer substrate and the method for producing the polymer substrate were changed to the following methods.
 <ポリエチレンテレフタレートの合成>
 エステル交換反応容器にジメチルテレフタレートを100質量部、エチレングリコールを61質量部、酢酸マグネシウム四水塩を0.06質量部仕込み、150℃に加熱して溶融し撹拌した。反応容器内温度をゆっくりと235℃まで昇温しながら反応を進め、生成するメタノールを反応容器外へ留出させた。メタノールの留出が終了したらトリメチルリン酸を0.02質量部添加した。トリメチルリン酸を添加した後、三酸化アンチモンを0.03質量部添加し、反応物を重合装置に移行した。ついで重合装置内の温度を235℃から290℃まで90分かけて昇温し、同時に装置内の圧力を大気圧から100Paまで90分かけて減圧した。重合装置内容物の撹拌トルクが所定の値に達したら装置内を窒素ガスで大気圧に戻して重合を終了した。重合装置下部のバルブを開いて重合装置内部を窒素ガスで加圧し、重合の完了したポリエチレンテレフタレートをストランド状にして水中に吐出した。ストランドはカッターによってチップ化した。このようにして固有粘度IV=0.58、酸価(AV)=12のPETを得た。これをPET-Aとした。
<Synthesis of polyethylene terephthalate>
A transesterification reaction vessel was charged with 100 parts by mass of dimethyl terephthalate, 61 parts by mass of ethylene glycol, and 0.06 parts by mass of magnesium acetate tetrahydrate, heated to 150 ° C., melted and stirred. The reaction was advanced while the temperature in the reaction vessel was slowly raised to 235 ° C., and the produced methanol was distilled out of the reaction vessel. When the distillation of methanol was completed, 0.02 parts by mass of trimethyl phosphoric acid was added. After adding trimethyl phosphoric acid, 0.03 parts by mass of antimony trioxide was added, and the reaction product was transferred to a polymerization apparatus. Subsequently, the temperature in the polymerization apparatus was raised from 235 ° C. to 290 ° C. over 90 minutes, and at the same time, the pressure in the apparatus was reduced from atmospheric pressure to 100 Pa over 90 minutes. When the stirring torque of the contents of the polymerization apparatus reached a predetermined value, the inside of the apparatus was returned to atmospheric pressure with nitrogen gas to complete the polymerization. The valve | bulb of the polymerization apparatus lower part was opened, the inside of the polymerization apparatus was pressurized with nitrogen gas, and the polyethylene terephthalate which superposed | polymerized was made into strand shape, and was discharged in water. The strand was chipped with a cutter. Thus, PET having an intrinsic viscosity IV = 0.58 and an acid value (AV) = 12 was obtained. This was designated as PET-A.
 <ポリエステルの固相重合>
 PET-Aを150~160℃で3時間予備乾燥した後、100トール、窒素ガス雰囲気下、205℃で25時間固相重合を行いPET-Bを得た。
<Polyester solid-state polymerization>
PET-A was pre-dried at 150 to 160 ° C. for 3 hours and then subjected to solid phase polymerization at 205 ° C. for 25 hours in an atmosphere of 100 torr and nitrogen gas to obtain PET-B.
 <ポリエステルと末端封止剤を含むマスターペレットの製造>
 PET-Bを90質量部と、末端封止剤として下記のカルボジイミド系化合物A10質量部とを混合した。この混合物を2軸混練機に供給して280℃で溶融混練し、ストランド状に水中吐出した後、カッターで裁断してチップ化した。これをPET-Cとした。
<Manufacture of master pellets containing polyester and end-capping agent>
90 parts by mass of PET-B and 10 parts by mass of the following carbodiimide compound A as a terminal blocking agent were mixed. This mixture was supplied to a biaxial kneader, melted and kneaded at 280 ° C., discharged into water in a strand shape, and then cut into a chip by a cutter. This was designated as PET-C.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 <ポリエステルフィルムの製膜>
 PET-BとPET-Cとを180℃で3時間乾燥させた後、末端封止材がポリマー樹脂に対して1質量%となるように混合しの押出し機に投入し280℃で混練した。この後、ギアポンプ、濾過器を通した後、Tダイから静電印加をかけた25℃の冷却ドラム上に押出し、冷却固化し未延伸シートを得た。その後、該未延伸ポリマー基材を、90℃で縦方向に3.4倍に延伸し、更に120℃で横方向に4.5倍に二軸延伸し、200℃で30秒熱固定した後、190℃で10秒熱緩和し、厚み240μmのポリエチレンテレフタレートフィルム(PETフィルム)であるポリマー基材を作製した。
<Film formation of polyester film>
PET-B and PET-C were dried at 180 ° C. for 3 hours, then charged into an extruder for mixing so that the end-capping material was 1% by mass with respect to the polymer resin, and kneaded at 280 ° C. Then, after passing through a gear pump and a filter, it was extruded onto a cooling drum of 25 ° C. to which electrostatic application was applied from a T die, and cooled and solidified to obtain an unstretched sheet. Thereafter, the unstretched polymer substrate was stretched 3.4 times in the machine direction at 90 ° C., biaxially stretched 4.5 times in the transverse direction at 120 ° C., and heat-set at 200 ° C. for 30 seconds. The polymer substrate which is a polyethylene terephthalate film (PET film) having a thickness of 240 μm was prepared by relaxing the heat at 190 ° C. for 10 seconds.
(実施例8)
 実施例5において、PETフィルムを以下で示すグロー放電処理を行なったこと以外は、実施例5と同様にして、太陽電池用ポリマーシートを作製した。
 <グロー放電処理>
 ポリエチレンテレフタレートフィルムは、事前に加熱ローラーを用いて145℃に加熱した後、処理雰囲気圧力:0.2Torr、放電周波数:30kHz、出力:5000w、理強度:4.2kV・A・分/mにて表面処理を行なった。
(Example 8)
In Example 5, a polymer sheet for a solar cell was produced in the same manner as in Example 5 except that the PET film was subjected to the glow discharge treatment described below.
<Glow discharge treatment>
The polyethylene terephthalate film is heated to 145 ° C. using a heating roller in advance, and then the processing atmosphere pressure is 0.2 Torr, the discharge frequency is 30 kHz, the output is 5000 w, the physical strength is 4.2 kV · A · min / m 2 . The surface treatment was performed.
(比較例4)
 比較例3において、ETFEフィルムを既述の白色PVFに代えて耐候性層とすると共に、白色PETを既述の白色PVFに代えて、この白色PVFを、PET(ポリマー基材)の白色PVFが貼合されない面に比較例3と同様の条件にてコロナ処理を施した後、実施例1における機能性層の形成方法と同様の方法で貼合し、機能性層(光反射層)を形成したこと以外は、比較例3と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表1に示す。
(Comparative Example 4)
In Comparative Example 3, the ETFE film was replaced with the white PVF described above as a weather-resistant layer, and the white PETF was replaced with the white PVF described above. After the corona treatment is performed on the surface that is not bonded under the same conditions as in Comparative Example 3, the functional layer (light reflecting layer) is formed by bonding in the same manner as the method for forming the functional layer in Example 1. Except for the above, a back sheet was produced in the same manner as in Comparative Example 3, and the same evaluation was performed. The evaluation results are shown in Table 1 below.
(実施例9~10)
 実施例1において、ポリマー基材として用いたPETをPPE又はSPPに代え、ポリマー基材の両面に比較例3と同様の条件にてコロナ処理を施したこと以外は、実施例1と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表1に示す。
(Examples 9 to 10)
In Example 1, the PET used as the polymer base material was replaced with PPE or SPP, and both sides of the polymer base material were treated in the same manner as in Example 1 except that the corona treatment was performed under the same conditions as in Comparative Example 3. A back sheet was prepared and evaluated in the same manner. The evaluation results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 表1に示すように、実施例1~3では、比較例1~3に比べて、湿熱経時による耐候性層の接着性の変化が小さく抑えられており、いずれも良好な接着性を示した。また、機能性層に白色を付与したことで良好な反射性が得られており、いずれの耐候性層も反射率に対する影響はみられなかった。 As shown in Table 1, in Examples 1 to 3, the change in the adhesion of the weather resistant layer due to aging with wet heat was suppressed to a small level as compared with Comparative Examples 1 to 3, and all showed good adhesion. . Moreover, favorable reflectivity was obtained by giving white to the functional layer, and no influence on the reflectance was observed in any of the weather resistant layers.
 また、表1に示すように、塗布により層形成を行なう実施例4~8では、バックシートとして典型的な貼合により形成される比較例4と比較して、耐候性層の接着性が著しく良化した。また、実施例4~8では、反射率も比較例4より高い値が得られた。
 ポリマー基材を変更した実施例9~10においても、実施例1とほぼ同様の結果が得られており、耐候性層の接着性は比較例1~3に比べて良好であった。
Further, as shown in Table 1, in Examples 4 to 8 in which layers are formed by coating, the adhesion of the weather resistant layer is remarkably higher than that of Comparative Example 4 formed by typical bonding as a back sheet. It improved. In Examples 4 to 8, the reflectance was higher than that in Comparative Example 4.
In Examples 9 to 10 in which the polymer substrate was changed, almost the same results as in Example 1 were obtained, and the adhesion of the weather resistant layer was better than those in Comparative Examples 1 to 3.
(実施例11)
 実施例1において、機能性層(光反射層)として設けた白色PETを、厚さ50μmの黒色のポリエチレンテレフタレート(ルミラーX20、東レ(株)製;黒色PET)に代え、意匠性を高めた機能性層を形成したこと以外は、実施例1と同様にして、バックシートを作製し、接着性の評価を行なった。また、下記の方法により、光学濃度(O.D.)を評価した。評価結果は、下記表2に示す。
(Example 11)
In Example 1, the white PET provided as the functional layer (light reflecting layer) is replaced with black polyethylene terephthalate (Lumorer X20, manufactured by Toray Industries, Inc .; black PET) having a thickness of 50 μm, and the design has been improved. A back sheet was prepared in the same manner as in Example 1 except that the adhesive layer was formed, and the adhesion was evaluated. The optical density (OD) was evaluated by the following method. The evaluation results are shown in Table 2 below.
-評価2-
(3)光学濃度
 得られたバックシートについて、マクベス光学濃度計により、可視光域(380-700nm)での光学濃度(O.D.)を測定した。
-Evaluation 2-
(3) Optical Density The optical density (OD) in the visible light region (380-700 nm) was measured with a Macbeth optical densitometer on the obtained backsheet.
(実施例12)
 実施例1において、機能性層(光反射層)として設けた白色PETを用いず、PETの耐候性層が形成されていない側の面に、下記組成の黒色樹脂層形成用塗布液を、バインダー塗布量が1.45g/mになるように塗布し、160℃で1分間乾燥させて乾燥厚み1.3μmの黒色樹脂層を形成して機能性層としたこと以外は、実施例1と同様にして、バックシートを作製した。また、実施例1、10と同様にして、接着性、光学濃度(O.D.)の評価を行なった。評価結果は、下記表2に示す。
Example 12
In Example 1, white PET provided as a functional layer (light reflecting layer) was not used, and a black resin layer-forming coating solution having the following composition was applied to the surface on which the PET weather-resistant layer was not formed. Example 1 except that the coating amount was 1.45 g / m 2 and dried at 160 ° C. for 1 minute to form a black resin layer having a dry thickness of 1.3 μm to form a functional layer. Similarly, a back sheet was produced. Further, in the same manner as in Examples 1 and 10, the adhesiveness and optical density (OD) were evaluated. The evaluation results are shown in Table 2 below.
-黒色樹脂層形成用塗布液の調製-
 下記組成中の成分を混合し、黒色樹脂層形成用塗布液を調製した。
 <黒色樹脂層形成用塗布液の組成>
・カーボンブラック水分散液 ・・・159.0部
 (大日精化(株)製 MF-5630ブラック 固形分31.5%)
・アクリル樹脂水性分散体A ・・・333.0部
 (固形分:30質量%)
・オキサゾリン化合物 ・・・100.0部
 (日本触媒(株)製、エポクロスWS700、固形分25質量%)
・界面活性剤 ・・・100.0部
 (三洋化成工業(株)製、ナロアクティーCL-95の1質量%水溶液)
・蒸留水 ・・・全体が1000部になるように添加
-Preparation of coating solution for black resin layer formation-
Components in the following composition were mixed to prepare a coating solution for forming a black resin layer.
<Composition of coating solution for forming black resin layer>
-Carbon black aqueous dispersion: 159.0 parts (manufactured by Dainichi Seika Co., Ltd. MF-5630 black, solid content: 31.5%)
-Acrylic resin aqueous dispersion A: 333.0 parts (solid content: 30% by mass)
-Oxazoline compound: 100.0 parts (Nippon Shokubai Co., Ltd., Epocros WS700, solid content: 25% by mass)
・ Surfactant: 100.0 parts (manufactured by Sanyo Chemical Industries, Ltd., 1% by mass aqueous solution of NAROACTY CL-95)
・ Distilled water: Add so that the total is 1000 parts
(比較例5)
 実施例11において、ポリマー層形成用塗布液を塗布して形成したポリマー層を、耐加水分解PETに代え、PET(ポリマー基材)の一方の面に比較例3と同様の条件にてコロナ処理を施して耐加水分解PETを貼合し、耐候性層としたこと以外は、実施例11と同様にして、バックシートを作製した。また、実施例11と同様にして、接着性、光学濃度(O.D.)の評価を行なった。評価結果は、下記表2に示す。
(Comparative Example 5)
In Example 11, the polymer layer formed by applying the coating solution for forming the polymer layer was replaced with hydrolysis-resistant PET, and corona treatment was performed on one surface of PET (polymer substrate) under the same conditions as in Comparative Example 3. A back sheet was prepared in the same manner as in Example 11 except that hydrolysis resistant PET was applied to form a weather resistant layer. Further, in the same manner as in Example 11, the adhesiveness and optical density (OD) were evaluated. The evaluation results are shown in Table 2 below.
 なお、耐加水分解PETとして、下記のポリエチレンテレフタレート支持体を用いた。すなわち、
 実施例1の「(1)ポリエチレンテレフタレート支持体(PET)の作製」と同様にして、上記の[1]~[2]を行なってペレットを得た後、このペレットを、40Paに保たれた真空容器中、220℃の温度で30時間保持して、固相重合を行なった。そして、固相重合を経た後のペレットを、280℃で溶融して金属ドラムの上にキャストし、厚さ約3mmの未延伸ベースを作製した。その後、90℃で縦方向に3倍に延伸し、更に120℃で横方向に3.3倍に延伸し、厚み300μmの2軸延伸ポリエチレンテレフタレート支持体とした。得られた2軸延伸ポリエチレンテレフタレート支持体のカルボキシル基含量は、30当量/tであった。
The following polyethylene terephthalate support was used as hydrolysis resistant PET. That is,
In the same manner as in “(1) Production of polyethylene terephthalate support (PET)” in Example 1, the above [1] to [2] were carried out to obtain pellets, which were then maintained at 40 Pa. Solid-state polymerization was performed in a vacuum vessel at a temperature of 220 ° C. for 30 hours. And the pellet after passing through solid phase polymerization was melted at 280 ° C. and cast on a metal drum to produce an unstretched base having a thickness of about 3 mm. Thereafter, the film was stretched 3 times in the longitudinal direction at 90 ° C., and further stretched 3.3 times in the transverse direction at 120 ° C. to obtain a biaxially stretched polyethylene terephthalate support having a thickness of 300 μm. The carboxyl group content of the obtained biaxially stretched polyethylene terephthalate support was 30 equivalent / t.
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000008

 
(実施例13)
 実施例1において、機能性層として設けた白色PETをSiO蒸着フィルムに代え、PET(ポリマー基材)の耐候性層が形成されていない側の面に比較例3と同様の条件にてコロナ処理を施してSiO蒸着フィルムを貼合し、機能性層としたこと以外は、実施例1と同様にして、バックシートを作製し、接着性の評価を行なった。また、下記の方法により、水蒸気透過率を評価した。評価結果は、下記表3に示す。
 なお、SiO蒸着フィルムには、特開2006-297737号公報の段落0081~0082に記載の方法により、厚み100μmのPETフィルム上に酸化ケイ素(SiO)層が形成されたフィルム(水蒸気透過率0.005g/m/day以下)を用いた。
(Example 13)
In Example 1, white PET provided as a functional layer is replaced with a SiO vapor deposition film, and a corona treatment is performed under the same conditions as in Comparative Example 3 on the side of the PET (polymer substrate) on which the weathering layer is not formed. A back sheet was prepared and evaluated for adhesiveness in the same manner as in Example 1 except that a SiO vapor deposition film was applied to form a functional layer. Further, the water vapor transmission rate was evaluated by the following method. The evaluation results are shown in Table 3 below.
In addition, the SiO vapor deposition film is a film in which a silicon oxide (SiO) layer is formed on a PET film having a thickness of 100 μm by a method described in paragraphs 0081 to 0082 of JP-A-2006-297737 (water vapor transmission rate: 0. 0). 005 g / m 2 / day or less) was used.
-評価3-
(4)水蒸気透過率
 バックシートを直径10cmに切り出した後、湿度1%のオートドライデシケーター内で3日間以上調湿した。その後、水蒸気透過率測定装置Model 7001(Illinois社製)を用いて、バックシートの水蒸気透過率を測定した。
-Evaluation 3-
(4) Water vapor transmission rate After the back sheet was cut into a diameter of 10 cm, the moisture was conditioned for 3 days or more in an auto dry desiccator with a humidity of 1%. Thereafter, the water vapor transmission rate of the back sheet was measured using a water vapor transmission rate measuring device Model 7001 (manufactured by Illinois).
(実施例14~15、比較例6~7)
 実施例13において、耐候性層形成用塗布液の調製に用いた複合ポリマー水分散物P-1(シリコーン系バインダー)を、下記表3に示すように、複合ポリマー水分散物P-2~P-5(いずれも固形分量を40質量%に調整)に代えたこと以外は、実施例13と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表3に示す。
(Examples 14 to 15, Comparative Examples 6 to 7)
In Example 13, the composite polymer aqueous dispersion P-1 (silicone-based binder) used for the preparation of the coating solution for forming the weather resistant layer was combined with the composite polymer aqueous dispersions P-2 to P as shown in Table 3 below. A backsheet was prepared and evaluated in the same manner as in Example 13 except that it was changed to −5 (both solid content was adjusted to 40% by mass). The evaluation results are shown in Table 3 below.
(比較例8)
 実施例13において、耐候性層形成用塗布液の塗布により形成した耐候性層を、厚さ50μmのETFEフィルム(ネオフロンEF-0050、ダイキン工業(株)製)に代え、PETの一方の面に比較例3と同様の条件にてコロナ処理を施した後、実施例1における機能性層の形成方法と同様の方法でETFEフィルムを貼り合わせるようにしたこと以外は、実施例13と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表3に示す。
(Comparative Example 8)
In Example 13, the weathering layer formed by coating the coating solution for forming the weathering layer was replaced with an ETFE film having a thickness of 50 μm (neoflon EF-0050, manufactured by Daikin Industries, Ltd.) on one side of the PET. After performing corona treatment under the same conditions as in Comparative Example 3, the same method as in Example 13 was applied except that the ETFE film was bonded in the same manner as the method for forming the functional layer in Example 1. A back sheet was prepared and subjected to the same evaluation. The evaluation results are shown in Table 3 below.
(実施例16~17)
 実施例13において、機能性層として設けたSiO蒸着フィルムを、酸化アルミニウム(Al)蒸着フィルム、又は厚み30μmのアルミニウム箔(Al箔)に代えたこと以外は、実施例13と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表3に示す。
 なお、Al蒸着フィルムには、特開2006-297737号公報の段落0081~0082に記載の方法において、ターゲットをSiからAlに代えて、厚み100μmのPETフィルム上に酸化アルミニウム(Al)が形成されたフィルム(水蒸気透過率0.005g/m/day以下)を用いた。
(Examples 16 to 17)
In Example 13, the SiO vapor deposition film provided as the functional layer was replaced with an aluminum oxide (Al 2 O 3 ) vapor deposition film or an aluminum foil (Al foil) with a thickness of 30 μm, and was the same as in Example 13. A back sheet was prepared and evaluated in the same manner. The evaluation results are shown in Table 3 below.
For the Al deposited film, aluminum oxide (Al 2 O 3 ) is formed on a PET film having a thickness of 100 μm by replacing the target from Si to Al in the method described in paragraphs 0081 to 0082 of JP-A-2006-297737. Was used (water vapor permeability of 0.005 g / m 2 / day or less).
(実施例18)
 実施例13において、防湿性に加えて光反射性を付与するため、SiO蒸着フィルム上にさらに厚さ50μmの白色のポリエチレンテレフタレート(ルミラーE20、東レ(株)製;白色PET)を貼り合わせ、2層からなる機能性層を形成したこと以外は、実施例13と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表3に示す。
(Example 18)
In Example 13, in order to provide light reflectivity in addition to moisture resistance, white polyethylene terephthalate (Lumirror E20, manufactured by Toray Industries, Inc .; white PET) having a thickness of 50 μm was further laminated on the SiO vapor-deposited film. A backsheet was produced and evaluated in the same manner as in Example 13 except that a functional layer composed of layers was formed. The evaluation results are shown in Table 3 below.
(実施例19)
 実施例13において、PETの一方の面において、実施例4と同様にして白色樹脂層形成用塗布液を塗布し、乾燥させて白色樹脂層を形成し、この白色樹脂層上にさらにポリマー層形成用塗布液を塗布し、乾燥させてポリマー層を形成することで、2層からなる耐候性層を設けると共に、PETの他方の面に形成されたSiO蒸着フィルム上に、さらに実施例4と同様の白色樹脂層形成用塗布液を塗布し、乾燥させて白色樹脂層を形成することで、2層からなる機能性層を設けたこと以外は、実施例13と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表3に示す。
(Example 19)
In Example 13, on one surface of PET, a white resin layer-forming coating solution was applied in the same manner as in Example 4 and dried to form a white resin layer. A polymer layer was further formed on the white resin layer. A coating layer is applied and dried to form a polymer layer, thereby providing a two-layer weather-resistant layer, and further on the SiO vapor deposition film formed on the other surface of PET, as in Example 4. A back sheet was prepared in the same manner as in Example 13 except that a white resin layer was formed by applying a white resin layer forming coating solution and drying to form a white resin layer. The same evaluation was performed. The evaluation results are shown in Table 3 below.
(比較例9)
 比較例8において、ETFEフィルムを白色PVFに代えて耐候性層とすると共に、SiO蒸着フィルム上に、さらに白色PVFを貼り合わせたこと以外は、比較例8と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表3に示す。
 なお、SiO蒸着フィルム上への白色PVFの貼合には、接着剤として、LX660(K)(DIC(株)製;主剤)にKW75(DIC(株)製;硬化剤)10部を混合した2液熱硬化型ウレタン系接着剤を用いた。
(Comparative Example 9)
In Comparative Example 8, a back sheet was produced in the same manner as in Comparative Example 8, except that the ETFE film was replaced with white PVF to form a weather resistant layer, and white PVF was further bonded onto the SiO vapor-deposited film. The same evaluation was performed. The evaluation results are shown in Table 3 below.
In addition, 10 parts of KW75 (made by DIC Corporation; hardening | curing agent) were mixed with LX660 (K) (made by DIC Corporation; main agent) as an adhesive agent for bonding of white PVF on a SiO vapor deposition film. A two-component thermosetting urethane adhesive was used.
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000009

 
 表3に示すように、実施例13~19では、機能性層に防湿性や光反射性を付与する層を形成したが、この機能性層の付与に依らず、比較例6~9に比べて、湿熱経時による耐候性層の接着性の変化が小さく抑えられており、いずれも良好な接着性を示した。また、実施例における水蒸気透過率は、性能が良好であることが確認され、耐候性層による影響はみられなかった。 As shown in Table 3, in Examples 13 to 19, a layer imparting moisture resistance and light reflectivity was formed on the functional layer, but compared with Comparative Examples 6 to 9 regardless of the provision of the functional layer. Thus, the change in the adhesion of the weather-resistant layer with the passage of time of wet heat was suppressed to a small level, and all showed good adhesion. In addition, it was confirmed that the water vapor permeability in the examples had good performance, and no influence by the weather resistant layer was observed.
(実施例20)
 実施例1において、耐候性層として形成したポリマー層の上に、更に、フッ素含有樹脂層用塗布液を、バインダー塗布量が1.3g/mになるように塗布し、170℃で2分間乾燥させて、乾燥厚みが約1.6μmのフッ素含有樹脂層を形成したこと以外は、実施例1と同様にして、バックシートを作製し、接着性の評価を行なった。評価結果は、下記表4に示す。
(Example 20)
In Example 1, a coating solution for a fluorine-containing resin layer was further applied on the polymer layer formed as the weather resistant layer so that the binder coating amount was 1.3 g / m 2 , and the temperature was 170 ° C. for 2 minutes. A backsheet was prepared and evaluated for adhesiveness in the same manner as in Example 1 except that it was dried to form a fluorine-containing resin layer having a dry thickness of about 1.6 μm. The evaluation results are shown in Table 4 below.
-フッ素含有樹脂層用塗布液の調製-
 下記組成中の成分を混合し、フッ素含有樹脂層用塗布液を調製した。
 <フッ素含有樹脂層用塗布液の組成>
・クロロトリフルオロエチレン-ビニルエーテル共重合体
                    ・・・34.5質量%
 (オブリガート SW0011F、AGCコーテック、固形分:39質量%;フッ素系ポリマー)
・ポリオキシアルキレンアルキルエーテル ・・・1.5質量%
 (ナロアクティーCL-95、三洋化成工業、固形分:1質量%)
・カルボジイミド化合物         ・・・6.2質量%
 (カルボジライト V-02-L2、日清紡、固形分:20質量%)
・シリカゾル              ・・・0.4質量%
 (スノーテックス-ΜP、日産化学工業(株)製、固形分20質量%)
・シランカップリング剤         ・・・7.6質量%
 (TSL8340、モメンティブ・パーフォーマンス・マテリアル社、固形分:1質量%)
・ポリオレフィンワックス分散物     ・・・20.8質量%
 (ケミパールW950、三井化学(株)製、固形分:5質量%)
・蒸留水   ・・・全体で100質量%となるように添加
-Preparation of coating solution for fluorine-containing resin layer-
Components in the following composition were mixed to prepare a coating solution for a fluorine-containing resin layer.
<Composition of coating solution for fluorine-containing resin layer>
・ Chlorotrifluoroethylene-vinyl ether copolymer: 34.5% by mass
(Obligato SW0011F, AGC Co-Tech, solid content: 39% by mass; fluoropolymer)
・ Polyoxyalkylene alkyl ether: 1.5% by mass
(Naroacty CL-95, Sanyo Chemical Industries, solid content: 1% by mass)
・ Carbodiimide compound: 6.2% by mass
(Carbodilite V-02-L2, Nisshinbo, solid content: 20% by mass)
・ Silica sol: 0.4% by mass
(Snowtex-ΜP, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass)
・ Silane coupling agent: 7.6% by mass
(TSL8340, Momentive Performance Material, solid content: 1% by mass)
・ Polyolefin wax dispersion: 20.8% by mass
(Chemical Pearl W950, manufactured by Mitsui Chemicals, solid content: 5% by mass)
・ Distilled water: Added to 100% by mass as a whole
(比較例10)
 実施例1において、複合ポリマー水分散物P-1(シリコーン系バインダー)を用いた耐候性層形成用塗布液を、実施例20のフッ素含有樹脂層用塗布液に代えたこと以外は、実施例1と同様にして、バックシートを作製し、接着性の評価を行なった。評価結果は、下記表4に示す。
(Comparative Example 10)
In Example 1, except that the coating solution for forming a weather-resistant layer using the composite polymer aqueous dispersion P-1 (silicone-based binder) was replaced with the coating solution for a fluorine-containing resin layer in Example 20, the Example In the same manner as in No. 1, a back sheet was prepared and the adhesion was evaluated. The evaluation results are shown in Table 4 below.
(実施例21~22)
 実施例1において、光反射性に加えて帯電防止性又は電池側基板の封止材(EVA)との接着性を付与するため、PETの耐候性層が形成されていない面に設けた白色PET上に、さらに帯電防止フィルム(エスペットフィルムT4100、東洋紡(株)製)、又はエチレンビニルアセテート(EVA)シート(厚み:100μm)を貼り合わせ、2層からなる機能性層を形成したこと以外は、実施例1と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表4に示す。
 なお、帯電防止フィルム又はEVAシートの貼合には、接着剤として、LX660(K)(DIC(株)製;主剤)にKW75(DIC(株)製;硬化剤)10部を混合した2液熱硬化型ウレタン系接着剤を用いた。
(Examples 21 to 22)
In Example 1, in order to provide anti-static property or adhesion to the battery-side substrate sealing material (EVA) in addition to light reflectivity, white PET provided on the surface on which the weathering layer of PET is not formed Besides, an antistatic film (Espet film T4100, manufactured by Toyobo Co., Ltd.) or an ethylene vinyl acetate (EVA) sheet (thickness: 100 μm) is further bonded to form a functional layer consisting of two layers. A back sheet was produced in the same manner as in Example 1, and the same evaluation was performed. The evaluation results are shown in Table 4 below.
In addition, for bonding of an antistatic film or an EVA sheet, two liquids in which 10 parts of KW75 (manufactured by DIC Corporation; curing agent) are mixed with LX660 (K) (manufactured by DIC Corporation; main agent) as an adhesive A thermosetting urethane adhesive was used.
(実施例23)
 実施例9において、ポリマー基材として用いたPPEをSiO蒸着フィルムに代え、
機能性層の形成に用いた厚さ50μmの白色PET(ルミラーE20、東レ(株)製)を用いず、PETの耐候性層が形成されていない側の面に、実施例4の白色樹脂層形成用塗布液を、バインダー塗布量が4.7g/m、二酸化チタン塗布量が5.6g/mとなるように塗布し、170℃で2分間乾燥して乾燥厚み5.7μmの白色樹脂層を形成して機能性層としたこと以外は、実施例9と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表4に示す。
 なお、SiO蒸着フィルムには、特開2006-297737号公報の段落0081~0082に記載の方法により、厚み100μmのPETフィルム上に酸化ケイ素を形成したフィルム(水蒸気透過率0.005g/m/day以下)を用いた。
(Example 23)
In Example 9, the PPE used as the polymer substrate was replaced with a SiO deposited film,
The white resin layer of Example 4 was not used on the surface on which the PET weatherproof layer was not formed without using 50 μm-thick white PET (Lumirror E20, manufactured by Toray Industries, Inc.) used to form the functional layer. The forming coating solution was applied so that the binder coating amount was 4.7 g / m 2 and the titanium dioxide coating amount was 5.6 g / m 2 , dried at 170 ° C. for 2 minutes, and dried to a white thickness of 5.7 μm. A backsheet was prepared and evaluated in the same manner as in Example 9 except that the resin layer was formed into a functional layer. The evaluation results are shown in Table 4 below.
Note that a SiO vapor deposited film was formed by forming a silicon oxide film on a PET film having a thickness of 100 μm (water vapor transmission rate: 0.005 g / m 2 / m) by the method described in paragraphs 0081 to 0082 of JP-A-2006-297737. day or less).
(実施例24)
-ポリマー基材の準備-
 ポリマー基材として、白色顔料を含有する白色のポリエチレンテレフタレート(ルミラーE20、東レ(株)製、厚さ50μm;白色PET)を用意した。
(Example 24)
-Preparation of polymer substrate-
As a polymer substrate, white polyethylene terephthalate containing a white pigment (Lumirror E20, manufactured by Toray Industries, Inc., thickness 50 μm; white PET) was prepared.
-プライマー層の形成-
(1)プライマー層形成用塗布液の調製
 下記組成中の成分を混合し、プライマー層形成用塗布液を調製した。
 <塗布液の組成>
・ポリエステルバインダー ・・・47.7部
 (バイロナールMD-1245、東洋紡(株)製、固形分濃度:30質量%)
・PMMA微粒子 ・・・10.0部
 (MP-1000、綜研化学(株)製、固形分濃度:5質量%) 
・ノニオン界面活性剤 ・・・15.0部
 (ナロアクティーCL95、三洋化成工業(株)製、固形分濃度:1質量%)
・蒸留水 ・・・927.3部
-Formation of primer layer-
(1) Preparation of primer layer forming coating solution Components in the following composition were mixed to prepare a primer layer forming coating solution.
<Composition of coating solution>
・ Polyester binder: 47.7 parts (Vylonal MD-1245, manufactured by Toyobo Co., Ltd., solid content concentration: 30% by mass)
・ PMMA fine particles: 10.0 parts (MP-1000, manufactured by Soken Chemical Co., Ltd., solid content concentration: 5% by mass)
Nonionic surfactant: 15.0 parts (Naroacty CL95, manufactured by Sanyo Chemical Industries, solid content concentration: 1% by mass)
・ Distilled water ... 927.3 parts
(2)プライマー層の形成
 ポリマー基材として用意した白色PETの一方の面に、上記のプライマー層形成用塗布液を、バインダー塗布量が0.12g/mとなるよう塗布し、180℃で2分間乾燥させて、プライマー処理を実施した。
(2) Formation of primer layer The primer layer-forming coating solution is applied to one surface of white PET prepared as a polymer substrate so that the binder coating amount is 0.12 g / m 2. The primer treatment was performed after drying for 2 minutes.
-ポリマー層の形成-
 白色PETのプライマー処理面に、実施例1のポリマー層形成用塗布液を、バインダー塗布量が2.0g/mになるように塗布し、180℃で1分間乾燥させて、耐候性層として乾燥厚みが約2μmのポリマー層を形成した。
 以上のようにして、耐候性層/ポリマー基材の重層構造からなるバックシートを作製し、同様の評価を行なった。評価結果は、下記表4に示す。
-Formation of polymer layer-
On the primer-treated surface of white PET, the polymer layer-forming coating solution of Example 1 was applied so that the binder coating amount was 2.0 g / m 2 and dried at 180 ° C. for 1 minute to form a weather resistant layer. A polymer layer having a dry thickness of about 2 μm was formed.
As described above, a back sheet having a multilayer structure of a weather resistant layer / polymer substrate was produced, and the same evaluation was performed. The evaluation results are shown in Table 4 below.
(実施例25)
 実施例1において、機能性層の形成に用いた厚さ50μmの白色PET(ルミラーE20、東レ(株)製)を用いず、PETの耐候性層が形成されていない側の面に実施例4の白色樹脂層形成用塗布液を、バインダー塗布量が4.7g/m、二酸化チタン塗布量が5.6g/mとなるように塗布し、170℃で2分間乾燥して乾燥厚み5.7μmの白色樹脂層を形成して機能性層としたこと以外は、実施例1と同様にして、バックシートを作製し、同様の評価を行なった。評価結果は、下記表4に示す。
(Example 25)
In Example 1, white PET (Lumirror E20, manufactured by Toray Industries, Inc.) having a thickness of 50 μm used for forming the functional layer was not used, and Example 4 was formed on the surface on which the weathering layer of PET was not formed. The white resin layer-forming coating solution was applied so that the binder coating amount was 4.7 g / m 2 and the titanium dioxide coating amount was 5.6 g / m 2, and dried at 170 ° C. for 2 minutes to obtain a dry thickness of 5 A backsheet was prepared and evaluated in the same manner as in Example 1 except that a white resin layer of .7 μm was formed as a functional layer. The evaluation results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000010

 
Figure JPOXMLDOC01-appb-T000010

 
 表4に示すように、耐候性層にフッ素含有樹脂層が単独で形成された比較例10の形態では、耐候性層の接着性が必ずしも充分でなかった。これに対し、複合ポリマーを含有する複合ポリマー層と共にフッ素含有樹脂層を設けて重層構造とした実施例20の形態では、より良好な接着性が得られた。
 また、実施例21~25に示すように、防湿性や着色以外の機能性を付与した形態や、ポリマー基材として防湿性と光反射性をそなえた着色フィルムを使用した形態、表面処理としてプライマー処理を施した形態などに構成した場合にも、耐候性層の接着性には影響せず、湿熱経時による耐候性層の接着性の変化が小さく抑えられ、いずれも良好な接着性を示した。
As shown in Table 4, in the form of Comparative Example 10 in which the fluorine-containing resin layer was formed alone in the weather resistant layer, the adhesion of the weather resistant layer was not always sufficient. On the other hand, in the form of Example 20 in which a fluorine-containing resin layer was provided together with a composite polymer layer containing a composite polymer to form a multilayer structure, better adhesiveness was obtained.
In addition, as shown in Examples 21 to 25, a form provided with functionality other than moisture resistance and coloring, a form using a colored film having moisture resistance and light reflectivity as a polymer substrate, and a primer as a surface treatment Even when configured in a treated form, the adhesiveness of the weathering layer was not affected, and the change in the adhesiveness of the weathering layer over time with wet heat was suppressed to a small extent, and both showed good adhesiveness. .
(実施例26~50)
 厚さ3mmの強化ガラスと、EVAシート(三井化学ファブロ(株)製のSC50B)と、結晶系太陽電池セル(多結晶3バスバーセル、156mm×156mm、Qセルズ(株)製)と、EVAシート(三井化学ファブロ(株)製のSC50B)と、実施例1~25で作製したバックシートのいずれかとをこの順に重ね合わせ、真空ラミネータ(日清紡(株)製、真空ラミネート機)を用いてホットプレスすることにより、EVAと接着させた。このとき、実施例1~25で作製したバックシートを、その機能性層がEVAシートと接触するように配置した。また、接着方法は、以下の通りである。
 <接着方法>
 真空ラミネータを用いて、128℃で3分間の真空引き後、2分間加圧して仮接着した。その後、ドライオーブンにて150℃で30分間、本接着処理を施した。
 以上のようにして、結晶系の太陽電池モジュールを作製した。
(Examples 26 to 50)
3 mm thick tempered glass, EVA sheet (SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.), crystalline solar cell (polycrystalline 3 bus bar cell, 156 mm × 156 mm, manufactured by Q Cells Co., Ltd.), EVA sheet ( SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd. and any of the backsheets produced in Examples 1 to 25 are superposed in this order and hot-pressed using a vacuum laminator (Nisshinbo Co., Ltd., vacuum laminator). This was adhered to EVA. At this time, the backsheets produced in Examples 1 to 25 were arranged so that the functional layer was in contact with the EVA sheet. Moreover, the adhesion method is as follows.
<Adhesion method>
Using a vacuum laminator, evacuation was performed at 128 ° C. for 3 minutes, followed by pressurization for 2 minutes and temporary adhesion. Thereafter, the main adhesion treatment was performed in a dry oven at 150 ° C. for 30 minutes.
As described above, a crystalline solar cell module was produced.
 作製された太陽電池モジュールの各々について、ソーラーシミュレータにより発電性能を調べたところ、いずれも太陽電池として良好な発電性能を示した。また、これらモジュールを85℃/85%RHの条件で1000時間経時させた後に、湿熱経時前と性能比較をしたところ、いずれも最大取出電力の変化は2%以内であった。 When the power generation performance of each of the produced solar cell modules was examined by a solar simulator, all showed good power generation performance as a solar cell. Moreover, when these modules were aged for 1000 hours under the condition of 85 ° C./85% RH, and the performance was compared with that before the wet heat aging, the change in the maximum extraction power was within 2%.
 日本出願2011-178561の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2011-178561 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (17)

  1.  ポリマー基材と、
     前記ポリマー基材の一方面に、着色剤を含有する着色層と、金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層と、
     前記ポリマー基材の他方面に、分子中に下記一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを有する複合ポリマーを含有する複合ポリマー層と、
     を有する太陽電池用バックシート。
    Figure JPOXMLDOC01-appb-C000001

     〔式中、R及びRは、各々独立に、水素原子、ハロゲン原子、又は1価の有機基を表し、RとRとは同一でも異なってもよい。nは、1以上の整数を表す。複数のR及びRは各々、互いに同一でも異なってもよい。〕
    A polymer substrate;
    On one side of the polymer substrate, a colored layer containing a colorant, and a metal-containing layer containing a component selected from the group consisting of metals and metal compounds,
    On the other side of the polymer substrate, a siloxane structural unit having a mass ratio of 15 to 85 mass% and a non-siloxane structural unit having a mass ratio of 85 to 15 mass% represented by the following general formula (1) in the molecule: A composite polymer layer containing a composite polymer having
    A solar cell backsheet.
    Figure JPOXMLDOC01-appb-C000001

    [Wherein, R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different. n represents an integer of 1 or more. The plurality of R 1 and R 2 may be the same as or different from each other. ]
  2.  着色剤を含むポリマー基材と、
     前記ポリマー基材の一方面に、金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層と、
     前記ポリマー基材の他方面に、分子中に下記一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを有する複合ポリマーを含有する複合ポリマー層と、
     を有する太陽電池用バックシート。
    Figure JPOXMLDOC01-appb-C000002

     〔式中、R及びRは、各々独立に、水素原子、ハロゲン原子、又は1価の有機基を表し、RとRとは同一でも異なってもよい。nは、1以上の整数を表す。複数のR及びRは各々、互いに同一でも異なってもよい。〕
    A polymer substrate comprising a colorant;
    A metal-containing layer containing a component selected from the group consisting of metals and metal compounds on one side of the polymer substrate;
    On the other side of the polymer substrate, a siloxane structural unit having a mass ratio of 15 to 85 mass% and a non-siloxane structural unit having a mass ratio of 85 to 15 mass% represented by the following general formula (1) in the molecule: A composite polymer layer containing a composite polymer having
    A solar cell backsheet.
    Figure JPOXMLDOC01-appb-C000002

    [Wherein, R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group, and R 1 and R 2 may be the same or different. n represents an integer of 1 or more. The plurality of R 1 and R 2 may be the same as or different from each other. ]
  3.  前記着色剤が顔料である請求項1又は請求項2に記載の太陽電池用バックシート。 The solar cell backsheet according to claim 1 or 2, wherein the colorant is a pigment.
  4.  前記着色剤が白色又は黒色の顔料である請求項1~請求項3のいずれか1項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 3, wherein the colorant is a white or black pigment.
  5.  前記着色層が塗布により形成された請求項1、請求項3、又は請求項4に記載の太陽電池用バックシート。 The back sheet for a solar cell according to claim 1, wherein the colored layer is formed by coating.
  6.  前記金属及び金属化合物からなる群より選ばれる成分が、箔板状のアルミニウムである請求項1~請求項5のいずれか1項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 5, wherein the component selected from the group consisting of the metal and the metal compound is aluminum in the form of a foil plate.
  7.  前記金属及び金属化合物からなる群より選ばれる成分が、アルミニウム酸化物又はケイ素酸化物である請求項1~請求項5のいずれか1項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 5, wherein the component selected from the group consisting of the metal and the metal compound is aluminum oxide or silicon oxide.
  8.  前記金属含有層が、気相成膜により形成された請求項1~請求項7のいずれか1項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 7, wherein the metal-containing layer is formed by vapor deposition.
  9.  前記ポリマー基材は、末端封止剤をポリマー全質量に対して0.1質量%~10質量%の範囲で含有する請求項1~請求項8のいずれか1項に記載の太陽電池用バックシート。 The solar cell back according to any one of claims 1 to 8, wherein the polymer base material contains an end-capping agent in a range of 0.1% by mass to 10% by mass with respect to the total mass of the polymer. Sheet.
  10.  前記ポリマー基材は、表面がコロナ処理、火炎処理、及びグロー放電処理からなる群より選択される方法で処理されている請求項1~請求項9のいずれか1項に記載の太陽電池用バックシート。 The solar cell back according to any one of claims 1 to 9, wherein a surface of the polymer substrate is treated by a method selected from the group consisting of corona treatment, flame treatment, and glow discharge treatment. Sheet.
  11.  前記複合ポリマー層は、更に、複合ポリマーを架橋する架橋剤由来の構造部分を含む請求項1~請求項10のいずれか1項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 10, wherein the composite polymer layer further includes a structural portion derived from a crosslinking agent that crosslinks the composite polymer.
  12.  前記架橋剤が、カルボジイミド化合物又はオキサゾリン化合物である請求項11に記載の太陽電池用バックシート。 The solar cell backsheet according to claim 11, wherein the crosslinking agent is a carbodiimide compound or an oxazoline compound.
  13.  前記複合ポリマー層中における、前記複合ポリマーに対する前記架橋剤由来の構造部分の質量比率が1~30質量%である請求項11又は請求項12に記載の太陽電池用バックシート。 The solar cell backsheet according to claim 11 or 12, wherein a mass ratio of the structural portion derived from the crosslinking agent to the composite polymer in the composite polymer layer is 1 to 30% by mass.
  14.  前記非ポリシロキサン系構造単位が、アクリル系構造単位である請求項1~請求項13のいずれか1項に記載の太陽電池用バックシート。 The solar cell backsheet according to any one of claims 1 to 13, wherein the non-polysiloxane structural unit is an acrylic structural unit.
  15.  金属及び金属化合物からなる群より選ばれる成分を含有する金属含有層をポリマー基材上に形成することと、
     分子中に前記一般式(1)で表される質量割合が15~85質量%のシロキサン構造単位と質量割合が85~15質量%の非シロキサン系構造単位とを有する複合ポリマーを含有する複合ポリマー層をポリマー基材上に塗布により形成することと、
     を有する、請求項1~請求項14のいずれか1項に記載の太陽電池用バックシートの製造方法。
    Forming a metal-containing layer containing a component selected from the group consisting of metals and metal compounds on the polymer substrate;
    A composite polymer containing a composite polymer having a siloxane structural unit having a mass ratio of 15 to 85% by mass and a non-siloxane structural unit having a mass ratio of 85 to 15% by mass represented by the general formula (1) in the molecule Forming a layer on a polymer substrate by coating;
    The method for producing a solar cell backsheet according to any one of claims 1 to 14, comprising:
  16.  ポリマー基材を構成するポリマーを含む未延伸の樹脂シートを製膜する製膜ことと、
     前記樹脂シートを第1の方向に延伸する第1の延伸ことと、
     前記第1の方向に延伸された樹脂シートの少なくとも一方面に、塗布により下塗り層を形成する下塗り層形成ことと、
     前記下塗り層が形成された樹脂シートを、前記第1の方向と直交する第2の方向に延伸する第2の延伸ことと、
     を有する請求項15に記載の製造方法。
    Forming a non-stretched resin sheet containing a polymer constituting the polymer substrate; and
    First stretching to stretch the resin sheet in a first direction;
    Forming an undercoat layer by applying an undercoat layer on at least one surface of the resin sheet stretched in the first direction; and
    A second stretching for stretching the resin sheet on which the undercoat layer is formed in a second direction orthogonal to the first direction;
    The manufacturing method of Claim 15 which has these.
  17.  請求項1~請求項14のいずれか1項に記載の太陽電池用バックシート、又は請求項15又は請求項16に記載の太陽電池用バックシートの製造方法により製造された太陽電池用バックシートを備えた太陽電池モジュール。 The solar cell backsheet according to any one of claims 1 to 14, or the solar cell backsheet produced by the method for producing a solar cell backsheet according to claim 15 or 16. Solar cell module provided.
PCT/JP2012/070856 2011-08-17 2012-08-16 Solar cell back sheet, method for manufacturing same, and solar cell module WO2013024892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-178561 2011-08-17
JP2011178561 2011-08-17

Publications (1)

Publication Number Publication Date
WO2013024892A1 true WO2013024892A1 (en) 2013-02-21

Family

ID=47715208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070856 WO2013024892A1 (en) 2011-08-17 2012-08-16 Solar cell back sheet, method for manufacturing same, and solar cell module

Country Status (2)

Country Link
JP (1) JP2013058747A (en)
WO (1) WO2013024892A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016134A (en) * 2013-09-13 2017-01-19 凸版印刷株式会社 Wavelength conversion sheet and backlight unit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015008614A1 (en) * 2013-07-17 2017-03-02 東レフィルム加工株式会社 Back protection sheet for solar cell module
JP6217328B2 (en) * 2013-11-11 2017-10-25 信越化学工業株式会社 UV shielding silicone adhesive sheet for solar cell sealing and solar cell module using the same
JP6215273B2 (en) * 2014-07-31 2017-10-18 富士フイルム株式会社 Protective sheet for solar cell, method for producing the same, and solar cell module
JP2016039207A (en) * 2014-08-06 2016-03-22 大日本印刷株式会社 Solar battery module
CN105576057B (en) * 2014-10-31 2018-06-26 比亚迪股份有限公司 Solar cell module and preparation method thereof
US20160126388A1 (en) 2014-10-31 2016-05-05 Byd Company Limited Solar cell array, solar cell module and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083988A (en) * 2000-09-08 2002-03-22 Dainippon Printing Co Ltd Rear surface protection sheet for solar cell module and solar cell module using the same
JP2009290201A (en) * 2008-04-28 2009-12-10 Asahi Kasei Chemicals Corp Laminate for solar cell back sheet and back sheet comprising the same
JP2011129850A (en) * 2009-12-17 2011-06-30 Dengiken:Kk Back sheet for solar cell, and solar cell module using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734569B2 (en) * 2010-01-18 2015-06-17 富士フイルム株式会社 SOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
JP5750226B2 (en) * 2010-01-18 2015-07-15 富士フイルム株式会社 Film for solar cell backsheet and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083988A (en) * 2000-09-08 2002-03-22 Dainippon Printing Co Ltd Rear surface protection sheet for solar cell module and solar cell module using the same
JP2009290201A (en) * 2008-04-28 2009-12-10 Asahi Kasei Chemicals Corp Laminate for solar cell back sheet and back sheet comprising the same
JP2011129850A (en) * 2009-12-17 2011-06-30 Dengiken:Kk Back sheet for solar cell, and solar cell module using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016134A (en) * 2013-09-13 2017-01-19 凸版印刷株式会社 Wavelength conversion sheet and backlight unit

Also Published As

Publication number Publication date
JP2013058747A (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP5815276B2 (en) POLYMER SHEET FOR SOLAR CELL BACK SHEET, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
TWI541313B (en) Back sheet for solar cell and solar cell module
JP5587230B2 (en) SOLAR CELL BACK SHEET, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE
WO2013024892A1 (en) Solar cell back sheet, method for manufacturing same, and solar cell module
JP5753110B2 (en) Back surface protection sheet for solar cell module and solar cell module
JP5914224B2 (en) Protective sheet for solar cell and manufacturing method thereof, back sheet for solar cell, solar cell module
JP5722287B2 (en) SOLAR CELL BACK SHEET, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JP2013042007A (en) Back sheet for solar cell module and solar cell module
WO2013008945A1 (en) Polymer sheet for solar cells and solar cell module
JP5763021B2 (en) SOLAR CELL POLYMER SHEET, PROCESS FOR PRODUCING THE SAME, AND SOLAR CELL MODULE
JP5735462B2 (en) POLYMER SHEET AND METHOD FOR PRODUCING THE SAME, SOLAR CELL BACK SHEET, AND SOLAR CELL MODULE
JP5650681B2 (en) Solar cell back surface protection sheet and solar cell module
TWI566927B (en) Polymer sheet for solar cell module and method for producing the same, backsheet for solar cell module, and solar cell module
JP2015037171A (en) Protective sheet for solar cell and back sheet for solar cell, and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824411

Country of ref document: EP

Kind code of ref document: A1