WO2013024618A1 - Long glass fiber manufacturing device, method, and long glass fiber - Google Patents
Long glass fiber manufacturing device, method, and long glass fiber Download PDFInfo
- Publication number
- WO2013024618A1 WO2013024618A1 PCT/JP2012/064418 JP2012064418W WO2013024618A1 WO 2013024618 A1 WO2013024618 A1 WO 2013024618A1 JP 2012064418 W JP2012064418 W JP 2012064418W WO 2013024618 A1 WO2013024618 A1 WO 2013024618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- long
- glass material
- long glass
- rotating bobbin
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/0253—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/03—Drawing means, e.g. drawing drums ; Traction or tensioning devices
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/06—Manufacture of glass fibres or filaments by blasting or blowing molten glass, e.g. for making staple fibres
- C03B37/065—Manufacture of glass fibres or filaments by blasting or blowing molten glass, e.g. for making staple fibres starting from tubes, rods, fibres or filaments
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- the present invention relates to a manufacturing apparatus and method for producing ultrafine glass fibers by electrospinning and an ultrafine glass long fiber, and in particular, an ultrafine glass fiber used for forming a high-frequency circuit board having a low dielectric constant and a low loss. It relates to long quartz glass fibers.
- a composite material of a glass cloth and a resin is used for a printed wiring board, and aluminoborosilicate glass generally called E glass is used.
- E glass aluminoborosilicate glass
- D glass is used when a low dielectric constant and a low loss are required as a high-frequency circuit board.
- quartz glass cloth has been used as a high-frequency circuit board having a frequency exceeding 1 GHz.
- These glass cloths are manufactured by drawing out a plurality of filaments from a glass melt and weaving a yarn obtained by twisting strands made of these filaments.
- the glass cloth produced in this way is difficult to make an extremely small diameter in order to wind up the filament, and it is difficult to make it extremely thin.
- quartz glass cannot be spun from the melt because of its high melt viscosity.
- Patent Document 1 a large number of quartz glass rods are melted simultaneously to draw out filaments and converge them. It is necessary to uniformly heat a large number of quartz glass rods.
- problems such as easy cutting during spinning and unavoidable interruptions, low productivity, and the need for precise control devices, which are extremely expensive. It is a thing.
- Patent Document 2 a method for producing a quartz glass nonwoven fabric at low cost by the melt blow method has been proposed. This method is highly productive and can be produced in large quantities, but since the molten glass is blown away to form filaments, the filaments are broken short and long fibers cannot be obtained.
- the present invention solves such a conventional problem, and a manufacturing apparatus and method for producing ultrafine glass long fibers by an electrospinning method, and ultrafine glass fibers, particularly low dielectric constant and low loss.
- An object of the present invention is to provide an ultrafine silica glass long fiber used for forming a high-frequency circuit board.
- the first aspect of the long glass fiber manufacturing apparatus of the present invention comprises a glass material supply means for supplying a long glass material, and the supplied long glass material.
- a conveying means for conveying at a predetermined speed, a guide electrode means formed of a conductive material and serving as an electrode while performing an action of feeding the conveyed glass material, and melting and softening the sent long glass material DC power supply for applying a DC voltage between the heating means, rotating bobbin means made of a conductive material facing the guide electrode means at a predetermined interval, and between the guide electrode means and the rotating bobbin means Means, A tip portion of the long glass material is fed out from the guide electrode means and melted and softened by the heating means, and a DC voltage is applied between the guide electrode means and the rotating bobbin means, and the guide electrode means A glass filament is drawn from the tip of the long glass material melted and softened by the heating means by an electrostatic force generated between the rotating bobbin means and the rotating bobbin means, and continuously spun onto the rotating
- the second aspect of the glass long fiber production apparatus of the present invention is a glass material supply means for supplying a long glass material, a conveying means for conveying the supplied long glass material at a predetermined speed, A heating electrode means having a guide portion for sending out the conveyed glass material and being formed of a conductive material and serving as an electrode, and melting and softening the elongated glass material being conveyed; and the heating electrode means Rotating bobbin means made of a conductive material facing each other with a predetermined interval, and DC power supply means for applying a DC voltage between the heating electrode means and the rotating bobbin means, The leading end portion of the long glass material is conveyed to the guide portion of the heating electrode means and melted and softened, and a direct current voltage is applied between the heating electrode means and the rotating bobbin means, and the heating electrode means A glass filament is drawn out from the tip of the long glass material melted and softened by the heating electrode means by the electrostatic force generated between the rotating bobbin means and continuously spun onto the rotating bobbin
- the long glass material is a glass rod or glass fiber
- the glass rod has a diameter of 0.1 mm to 2 mm
- the glass fiber has a diameter of 0.1 mm to 0.5 mm. Is preferred.
- the diameter of the glass filament is preferably 0.3 ⁇ m to 5 ⁇ m, and the DC voltage is preferably 5 kV to 100 kV. Quartz glass is preferably used as the long glass material.
- the outer diameter of the long glass fiber is preferably 5 ⁇ m or less. Although there is no special limitation about the lower limit of the outer diameter of the said glass long fiber, it should just be about 0.3 micrometer.
- 1st aspect of the manufacturing method of the glass long fiber of this invention is a manufacturing method of glass long fiber using the manufacturing apparatus of the 1st aspect of this invention, Comprising: A long glass raw material is supplied from the said glass raw material supply means. A glass material supply step for supplying, a glass material transfer step for transferring the supplied long glass material at a predetermined speed by the transfer means, and the long glass material being transferred by the guide electrode means.
- a step of feeding the glass material toward the heating means, and melting and softening the leading end of the long glass material that has been sent out by the heating means, and the guide electrode means and the rotating bobbin means by the DC power supply means A DC voltage is applied between them to generate an electrostatic force, and this electrostatic force pulls the glass filament from the tip of the long glass material and rotates it.
- the bin unit In succession on the bin unit is spun and having a glass filaments spinning step to the long glass fibers, the by.
- the 2nd aspect of the manufacturing method of the glass long fiber of this invention is a manufacturing method of the glass long fiber using the manufacturing apparatus of the 2nd aspect of this invention, Comprising: A long glass raw material is supplied from the said glass raw material supply means. A glass material supply step for supplying, a glass material transfer step for transferring the supplied long glass material at a predetermined speed by the transfer means, and the long shape transferred to the guide portion of the heating electrode means The tip of the glass material is melted and softened by the heating electrode means and a DC voltage is applied between the heating electrode means and the rotating bobbin means by the DC power supply means to generate an electrostatic force. A glass filament spinning step of drawing a glass filament from the tip of a glass-like glass material and continuously spinning it on the rotating bobbin means to form a long glass fiber. And wherein the door.
- the long glass fiber of the present invention is produced by the method for producing a long glass fiber of the present invention, and is characterized by being a long glass fiber having an outer diameter of 5 ⁇ m or less.
- the lower limit of the outer diameter of the long glass fiber of the present invention is not particularly limited, but may be about 0.3 ⁇ m. It is preferable to use a quartz glass filament as the glass filament.
- an ultrafine glass filament can be stably pulled out by an electrostatic force, and the ultrafine glass is obtained by continuously spinning the filament on a rotating bobbin surface.
- Long fibers can be obtained.
- the cut filaments are attracted to the surface of the bobbin by static electricity and spinning can be continued without interruption.
- the glass material has a high melting point such as quartz glass, a long fiber can be easily manufactured even with a material that is difficult to spin from the melt, and a high-frequency circuit board with low dielectric constant and low loss is formed. Therefore, it is possible to provide an ultrafine glass long fiber that is a material for the purpose.
- the long glass fiber of the present invention has an ultrafine diameter, for example, an outer diameter of 5 ⁇ m or less, and can be effectively used as a material for forming a high-frequency circuit board having a low dielectric constant and low loss.
- FIG. 1 is a schematic explanatory view showing one embodiment of the apparatus for producing long glass fibers of the present invention.
- symbol 10 is a manufacturing apparatus of the glass long fiber of this invention.
- the long glass fiber manufacturing apparatus 10 has a glass material supply means 14 such as a bobbin for supplying a long glass material 12.
- Examples of the shape of the long glass material 12 include glass rods and glass fibers.
- the glass rod preferably has a diameter of 0.1 mm to 2 mm, and the glass fiber preferably has a diameter of 0.1 mm to 0.5 mm.
- As the glass material a general glass material such as borosilicate glass can be used, and quartz glass is preferably used.
- Reference numeral 16 denotes a conveying means that performs an operation of conveying the glass material 12 supplied from the glass material supplying means 14 at a predetermined speed.
- a conveying means 16 for example, a feed roll means composed of a pair of rolls installed opposite to each other as shown in FIG. 1 can be adopted.
- the glass material 12 conveyed by the conveying means 16 is further sent out in the conveying direction via the guide electrode means 18.
- the guide electrode means 18 is formed of a conductive material such as graphite and is configured to act as an electrode.
- Numeral 20 is a heating means, and is placed oppositely in the vicinity of the guide electrode means 18.
- Reference numeral 20 denotes a heating means, and the leading end portion of the glass material 12 fed out through the guide electrode means 18 is melted and softened by the heating means 20.
- various heating devices can be applied as will be described later.
- FIG. 1 the configuration in which the oxyhydrogen burner flame 20 b is emitted from the burner 20 a is illustrated. When the burner 20a is applied, the tip of the glass material 12 is melted and softened in the oxyhydrogen burner flame 20b.
- Numeral 22 is a rotating bobbin means, which is formed of a conductive material, for example, a metal material such as stainless steel, and is disposed opposite to the guide electrode means 18 and the heating means 20 with a predetermined interval.
- Reference numeral 23 denotes a rotating bobbin holding means, which rotatably holds the rotating bobbin means 22 via a rotating shaft 32.
- the size of the bobbin in the rotating bobbin means 22 for example, those having a diameter of about 200 mm to 1000 mm and a width of about 300 mm to 2000 mm are preferably used.
- DC power supply means 24 is connected to the guide electrode means 18 and the rotating bobbin means 22 via wiring 25, and applies a high-voltage DC voltage between the guide electrode means 18 and the rotating bobbin means 22. Acts like
- the distal end portion of the long glass material 12 is sent out from the guide electrode means 18 and melted and softened by the heating means 20.
- the heating means 20 is a burner 20a as shown in FIG. 1, the tip of the long glass material 12 is melted and softened by the burner flame 20b.
- a high DC voltage of about 5 kV to 100 kV is applied between the guide electrode means 18 and the rotating bobbin means 22, and electrostatic force generated between the guide electrode means 18 and the rotating bobbin means 22 is applied.
- a glass filament 26 is wound around the rotating bobbin means 22 from the tip of the glass material 12 melted and softened by the heating means 20 as shown in FIG.
- the glass filament 26 to be wound can have a diameter of 5 ⁇ m or less, and an ultrafine glass filament can be wound.
- the rotating bobbin means 22 is wound around the surface of the rotating bobbin means 22 by rotating at a rotational peripheral speed of about 20 to 100 m ⁇ sec and reciprocating in the direction of the rotating shaft 32. It is done.
- the glass filament 26 is preferably coated with a sizing material during or after spinning to maintain strength.
- About 20 to 50 layers of the glass filaments 26 are wound, and the glass filaments 26 arranged in a sheet form can be divided into about 100 to 500 strands to form strands, which can be woven as twisted yarns.
- the outer diameter of the glass filament 26 to be spun can be controlled by adjusting the feeding speed of the glass material 12, the flame temperature, the applied voltage, and the like. By applying a high voltage between a nozzle (not shown) for supplying the sizing material solution and a rotating bobbin, the sizing material can be efficiently applied during spinning.
- a plurality of glass filaments 26 can be spun simultaneously and converged to form a strand, which can be woven as a twisted yarn.
- the glass material 12 may be glass used for printed wiring boards such as E glass and D glass, and borosilicate glass may be used.
- quartz glass is preferably used. Since quartz glass has a high melt viscosity and cannot be spun from a melt, it is effective to apply the apparatus and method of the present invention when producing long glass fibers.
- the conductive material constituting the guide electrode means 18 a metal material such as copper or stainless steel can be used, but graphite is preferable when mixing of metal impurities is not desired.
- the conductive material constituting the rotating bobbin means 22 is not particularly limited, but a metal material such as stainless steel is used.
- the flame 20b radiated from the burner 20a serving as the heating means 20 is stable in the method of heating from the direction orthogonal to the supply direction of the glass material 12 and has excellent controllability, but is parallel to the flame 20b as shown in FIG. Since the spinning speed can be increased and the productivity can be improved by supplying the gas to the gas flow rate, it will be described below. In this case, the electrostatic field is disturbed by the disturbance of the gas flow velocity, and the variation in the diameter of the glass filament 26 tends to increase. Further, since the electric discharge of the flame 20b is likely to cause discharge, it is necessary to set a distance interval so that the rotating bobbin means 22 and the flame 20b are not too close to each other.
- the term “spinning” is used as a term indicating a state in which the tip of a glass material is melted and softened and floated as a glass filament by electrostatic force.
- FIG. 2 is a schematic explanatory view showing another embodiment of the apparatus for producing glass long fibers of the present invention. Differences between the embodiment of FIG. 2 and the embodiment of FIG. 1 are as follows.
- the burner 20 a constituting the heating means 20 is installed in a state that is coincident with or parallel to the supply direction of the glass material 12, and thus the oxyhydrogen burner flame 20 b is supplied to the glass material 12. Radiated in a state that is coincident or parallel to the direction.
- a guide portion 30 which is a through hole through which the glass material 12 can be inserted is opened inside the burner 20a, and the glass filament 26 of the glass material 12 melted and softened by the oxyhydrogen burner flame 20b is shown in FIG. As described above, the flame is radiated from the front end opening of the burner 20a together with the flame in the horizontal direction, spun by electrostatic force, and wound around the rotating bobbin means 22.
- Other constituent members in FIG. 2 are the same as those in FIG. 1 and are denoted by the same reference numerals, and therefore, a repetitive description of those constituent members is omitted.
- FIG. 2 has a configuration in which the guide electrode means 18 and the heating means 20 are separately formed and installed.
- the heating means has both a guide function and an electrode function. It is also possible to adopt a configuration to have.
- FIG. 3 is a schematic explanatory view showing another embodiment of the apparatus for producing glass long fibers of the present invention. Differences between the embodiment of FIG. 3 and the embodiment of FIG. 2 are as follows. In the long glass fiber manufacturing apparatus 10B of FIG. 3, the guide electrode means 18 shown in FIG. 2 is omitted, and instead of the heating means 20 shown in FIG. A heating electrode means 21 is provided. In the example of FIG.
- the burner 21 a that constitutes the heating electrode means 21 is installed in a state that is coincident with or parallel to the supply direction of the long glass material 12, so that the oxyhydrogen burner flame 21 b is formed of the long glass material 12. Radiated in a state that is coincident or parallel to the supply direction.
- a guide portion 30 which is a through hole through which the long glass material 12 can be inserted is opened inside the burner 21a, and the glass filament 26 of the long glass material 12 melted and softened by the oxyhydrogen burner flame 21b. As shown in FIG. 3, it is radiated from the front end opening of the burner 21 a together with the flame in the horizontal direction, spun by electrostatic force, and wound around the rotating bobbin means 22. Further, the DC power source means 24 is connected to the heating electrode means 21 and the rotating bobbin means 22 via wirings 25 respectively, and applies a high-voltage DC voltage between the heating electrode means 21 and the rotating bobbin means 22. Acts like Other configurations are the same as those in FIG. 2 and are denoted by the same reference numerals, and therefore, re-explanation of those components is omitted.
- the leading end portion of the long glass material 12 is conveyed by the conveying means 16, inserted into the guide portion 30 of the heating electrode means 21, and melted and softened by the heating electrode means 21.
- a high-voltage DC voltage is applied between the heating electrode means 21 and the rotating bobbin means 22, and the heating electrode means 21 is generated by an electrostatic force generated between the heating electrode means 21 and the rotating bobbin means 22.
- the glass filament 26 radiated in the horizontal direction from the front end of the long glass material 12 melted and softened by the heat is radiated from the front end opening of the burner 21a together with the flame in the horizontal direction.
- the fiber is spun by electrostatic force and wound around the rotating bobbin means 22 to produce the long glass fiber 28.
- the heating means 20 and the heating electrode means 21 are heated by the oxyhydrogen burner flames 20b and 21b by the burners 20a and 21a.
- heating with a laser beam or an electric furnace may be used.
- laser light a carbon dioxide laser, YAG laser, or the like is used. Since the melted portion has a high viscosity, it is necessary to provide a gas injection nozzle around the melted portion so that the glass filament can be easily blown out. In the case of an electric furnace, the melted portion softens and falls, so spinning is performed downward.
- the electric furnace needs to be treated against discharge, such as grounding the glass melting portion as a negative electrode and the rotating bobbin means as a positive electrode.
- FIG. 4 is a flowchart showing an example of the order of steps in the method for producing a long glass fiber of the present invention.
- the method for producing long glass fibers of the present invention uses the apparatus for producing long glass fibers of the present invention.
- the reference numerals shown in FIGS. 1 to 3 are used for the reference numerals of the respective members.
- the long glass material 12 is prepared in the glass material supply means 14 such as a bobbin (Step 100 in FIG. 4).
- the leading end portion of the long glass material 12 is conveyed to the guide electrode means 18 by the conveying means 16 (step 102 in FIG. 4).
- tip part of the elongate glass raw material 12 is sent out from the said guide electrode means 18 by the conveyance means 16 (step 104 of FIG. 4).
- the tip of the long glass material 12 fed from the guide electrode means is melted and softened by the heating means 20 (step 106 in FIG. 4).
- a high DC voltage is applied between the guide electrode means 18 and the rotating bobbin means 22 to generate an electrostatic force between the guide electrode means 18 and the rotating bobbin means 22 (step of FIG. 4). 108).
- the glass filament 26 is pulled out from the front end portion of the glass material 12 melted and softened by the heating means 20 by the generated electrostatic force and continuously spun on the rotating bobbin means 22 (FIG. 4). Step 110). In this way, the long glass fiber 28 is produced.
- the heating means 20 is installed horizontally, and the long glass material 12 sent from the guide electrode means 18 is Except for the point that it is melted and softened by being guided by the guide portion 30 which is a through hole of the heating means 20, the glass long fiber 28 is manufactured in the same manner as in FIG.
- FIG. 5 is a flowchart showing an example of the order of steps in the method for producing a long glass fiber of the present invention.
- the long glass material 12 is prepared in the glass material supply means 14 such as a bobbin (Step 200 in FIG. 5).
- tip part of the elongate glass raw material 12 is conveyed by the conveyance means 16 to the heating electrode means 21 (step 202 of FIG. 5).
- the tip of the long glass material 12 that has been conveyed is inserted into the guide portion 30 of the heating electrode means 21 and melted and softened by the heating electrode means 21 (step 204 in FIG. 5).
- a high-voltage DC voltage is applied between the heating electrode means 21 and the rotating bobbin means 22 to generate an electrostatic force between the heating electrode means 21 and the rotating bobbin means 22 (step of FIG. 5). 206).
- the glass filament 26 radiated in the horizontal direction from the tip of the long glass material 12 melted and softened by the heating electrode means 21 by the generated electrostatic force is pulled out as shown in FIG. Continuous spinning is performed on the means 22 (step 208 in FIG. 5). In this way, the long glass fiber 28 is produced.
- the case where one long glass material 12 is used is shown as an example. Needless to say, it is preferable to install a plurality of long glass materials 12 and simultaneously draw out a plurality or a plurality of glass filaments to simultaneously spin a plurality of or a plurality of glass long fibers.
- the guide electrode means 18 or the heating electrode means 21 and the rotating bobbin means 22 are shown as being installed opposite to each other in the horizontal direction. Needless to say, they can be installed opposite to each other, and the opposite positions can be set at other angles depending on the installation location.
- Example 1 Quartz glass long fibers are produced using an apparatus similar to the apparatus shown in FIG.
- a long quartz glass fiber having a diameter of 0.3 mm was prepared as a long glass material, and the quartz glass fiber was supplied to the graphite guide electrode means by a conveying means (feed roller).
- the tip of the quartz glass fiber was heated to about 2000 ° C. and melted and softened with an oxyhydrogen burner flame from a burner as a heating means from a direction perpendicular to the feeding direction.
- a rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 m / sec.
- the diameter is about 3 ⁇ m from the tip of the fused quartz glass fiber.
- the filament was drawn out by electrostatic force, and this was wound on the surface of the rotating bobbin to make a long glass fiber (outer diameter: about 3 ⁇ m). 100 strands were converged to form strands, which could be combined into yarns.
- Example 2 A quartz glass long fiber is produced using a carbon dioxide laser as a heating means in the same apparatus as that shown in FIG.
- a long quartz glass fiber having a diameter of 0.2 mm was prepared as a long glass material, and the quartz glass fiber was supplied to the graphite guide electrode means by a conveying means (feed roller). From the direction perpendicular to the feeding direction, the tip of the quartz glass fiber was heated to about 2000 ° C. with a carbon dioxide laser as a heating means to be melted and softened.
- a rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 80 mm / sec.
- Example 3 Using the same apparatus as in Example 1, borosilicate glass long fibers are produced. Instead of the quartz glass fiber of Example 1, a glass fiber having a diameter of 0.3 mm made of borosilicate glass containing 80% SiO 2 and 12% B 2 O 3 was used. The melt was softened by heating to about 1200 ° C. with a hydrogen burner flame. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 mm / sec.
- Quartz glass long fibers are produced using an apparatus similar to the apparatus shown in FIG.
- a long quartz glass fiber having a diameter of 0.3 mm is prepared as a long glass material, and this quartz glass fiber is a metal that is a heating electrode means having a through-hole that is a guide portion in the center by a conveying means (feed roller). It supplied to the through-hole of the burner. Hydrogen and oxygen were supplied to a metal burner, and the tip of the quartz glass fiber was heated to about 2000 ° C. with an oxyhydrogen flame to melt and soften.
- a rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the heating electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 m / sec.
- an electrostatic force is generated between the heating electrode means and the rotating bobbin by applying a high voltage DC voltage of 20 kV between the heating electrode means and the rotating bobbin using this heating electrode means as an electrode, the diameter is about 0 from the tip of the fused quartz glass fiber.
- a 3 ⁇ m filament was pulled out by electrostatic force, and this was wound on the surface of the rotating bobbin to make a long glass fiber (outer diameter: about 0.3 ⁇ m).
- 10, 10A, 10B Glass long fiber manufacturing apparatus, 12: long glass material, 14: glass material supply means, 16: conveying means, 18: guide electrode means, 20: heating means, 20a: burner, 20b: Oxyhydrogen burner flame, 21: heating electrode means, 21a: burner, 21b: oxyhydrogen burner flame, 22: rotating bobbin means, 23: rotating bobbin holding means, 24: DC power supply means, 25: wiring, 26: glass filament, 28: long glass fiber, 30: guide part, 32: rotating shaft.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Nonwoven Fabrics (AREA)
Abstract
A device and method for manufacturing by electrospinning a nonwoven fabric comprising glass filaments having ultrafine diameters (e.g., having diameters 0.3-5μm), and in particular, for manufacturing an ultrathin glass nonwoven fabric (e.g., having a 50μm-1mm thickness) for forming high frequency circuit substrates with a low dielectric constant and low loss, and a glass nonwoven fabric are provided. This glass nonwoven fabric manufacturing device is provided with a glass material supply means for supplying a rectangular glass material, a conveyance means for conveying said supplied rectangular glass material at a prescribed velocity, a guide electrode means which feeds said conveyed rectangular glass material, is formed from a conductive material and is an electrode, a heating means for melting and softening said fed rectangular glass material, a target member which comprises a conductive material arranged at a prescribed interval opposite of said guide electrode means, and a DC power supply means for applying a DC voltage between the guide electrode means and the target member.
Description
本発明はエレクトロスピニング法により極細径のガラス繊維を製造する製造装置及び方法並びに極細径のガラス長繊維に関し、特に、低誘電率、低損失な高周波回路基板を形成するために用いられる極細径の石英ガラス長繊維に関する。
The present invention relates to a manufacturing apparatus and method for producing ultrafine glass fibers by electrospinning and an ultrafine glass long fiber, and in particular, an ultrafine glass fiber used for forming a high-frequency circuit board having a low dielectric constant and a low loss. It relates to long quartz glass fibers.
従来、プリント配線基板にはガラスクロスと樹脂の複合材料が使用されており、一般的にはEガラスと称せられるアルミノホウケイ酸ガラスが用いられている。特に高周波回路基板として低誘電率、低損失が要求される場合にはDガラスが用いられている。さらに周波数が1GHzを超える高周波回路基板として石英ガラスクロスが用いられてきている。
Conventionally, a composite material of a glass cloth and a resin is used for a printed wiring board, and aluminoborosilicate glass generally called E glass is used. In particular, D glass is used when a low dielectric constant and a low loss are required as a high-frequency circuit board. Further, quartz glass cloth has been used as a high-frequency circuit board having a frequency exceeding 1 GHz.
これらのガラスクロスの製造はガラス融液から複数本のフィラメントを引き出し、これを収束させたストランドを撚り合わせたヤーンを紡織することで製造されている。このようにして製造されたガラスクロスはフィラメントを巻き取るために極細径化が困難であり、極肉薄にすることが困難だった。最近では基板の多層化により集積度を高くする目的から極細径ガラス長繊維への要求が強くなってきている。とくに石英ガラスの場合は溶融粘度が高いために融液からの紡糸ができず、特許文献1に示されているように多数本の石英ガラスロッドを同時に溶融してフィラメントを引き出し、これを収束させて製造されており、多数本の石英ガラスロッドを均一に加熱する必要がある。特に、極細径のフィラメントを製造する場合には紡糸の途中で切断しやすくなり、中断せざるを得なくなるなどの問題があって、生産性も低く、精密な制御装置が必要となり、きわめて高価なものになっている。
These glass cloths are manufactured by drawing out a plurality of filaments from a glass melt and weaving a yarn obtained by twisting strands made of these filaments. The glass cloth produced in this way is difficult to make an extremely small diameter in order to wind up the filament, and it is difficult to make it extremely thin. Recently, there is an increasing demand for ultrafine glass long fibers for the purpose of increasing the degree of integration by increasing the number of substrates. In particular, quartz glass cannot be spun from the melt because of its high melt viscosity. As shown in Patent Document 1, a large number of quartz glass rods are melted simultaneously to draw out filaments and converge them. It is necessary to uniformly heat a large number of quartz glass rods. In particular, when manufacturing ultra-fine filaments, there are problems such as easy cutting during spinning and unavoidable interruptions, low productivity, and the need for precise control devices, which are extremely expensive. It is a thing.
そこで、特許文献2に示されているように、メルトブロー法により安価に石英ガラス不織布を製造する方法が提案されている。この方法は生産性も高く大量に製造することが可能であるが、溶融ガラスを吹き飛ばしてフィラメントを形成するために、短くちぎれて、長繊維を得ることができなかった。
Therefore, as shown in Patent Document 2, a method for producing a quartz glass nonwoven fabric at low cost by the melt blow method has been proposed. This method is highly productive and can be produced in large quantities, but since the molten glass is blown away to form filaments, the filaments are broken short and long fibers cannot be obtained.
このような石英ガラス繊維を得る別の方法として、特許文献3や特許文献4のようにアルコキシシランを加水分解して得られたゾル液に電界を作用させて、静電力によって紡糸して不織布を製造する方法が知られている。この方法ではゾル液の粘度によって繊維径が変動することから、安定したゾル液を調製しなければならず、安定した品質のフィラメントを得ることが困難であった。また、紡糸した後に焼結してガラス化する必要があり、焼結後の厚みを一定にすることが困難であった。そもそも、この方法で得られる焼結前のゲル状繊維は強度が弱く、ヤーンなどの長繊維として扱うことができないものであった。
As another method for obtaining such a quartz glass fiber, an electric field is applied to a sol solution obtained by hydrolyzing alkoxysilane as in Patent Documents 3 and 4, and a nonwoven fabric is spun by electrostatic force. Manufacturing methods are known. In this method, since the fiber diameter varies depending on the viscosity of the sol solution, it is necessary to prepare a stable sol solution, and it is difficult to obtain a filament of stable quality. Further, it is necessary to sinter and vitrify after spinning, and it is difficult to make the thickness after sintering constant. In the first place, the gel-like fibers before sintering obtained by this method have low strength and cannot be handled as long fibers such as yarns.
本発明は、このような従来の問題を解決するものであり、エレクトロスピニング法により極細径のガラス長繊維を製造する製造装置及び方法並びに極細径のガラス繊維、特に、低誘電率、低損失な高周波回路基板を形成するために用いられる極細径の石英ガラス長繊維を提供することを目的とする。
The present invention solves such a conventional problem, and a manufacturing apparatus and method for producing ultrafine glass long fibers by an electrospinning method, and ultrafine glass fibers, particularly low dielectric constant and low loss. An object of the present invention is to provide an ultrafine silica glass long fiber used for forming a high-frequency circuit board.
上記の目的を達成するために、本発明のガラス長繊維の製造装置の第1の態様は、長尺状ガラス素材を供給するガラス素材供給手段と、供給されてきた該長尺状ガラス素材を所定速度で搬送する搬送手段と、搬送されてきたガラス素材を送り出す作用を行うとともに導電性材料から形成されかつ電極となるガイド電極手段と、送り出されてきた該長尺状ガラス素材を溶融軟化させる加熱手段と、該ガイド電極手段から所定間隔を介して対向して設置された導電性材料からなる回転ボビン手段と、該ガイド電極手段と該回転ボビン手段との間に直流電圧を印加する直流電源手段とを有し、
前記長尺状ガラス素材の先端部を前記ガイド電極手段から送り出して前記加熱手段によって溶融軟化させて、前記ガイド電極手段と前記回転ボビン手段との間に直流電圧を印加して、該ガイド電極手段と該回転ボビン手段との間に発生した静電力により前記加熱手段によって溶融軟化させられた該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させることができるようにしたことを特徴とする。 In order to achieve the above object, the first aspect of the long glass fiber manufacturing apparatus of the present invention comprises a glass material supply means for supplying a long glass material, and the supplied long glass material. A conveying means for conveying at a predetermined speed, a guide electrode means formed of a conductive material and serving as an electrode while performing an action of feeding the conveyed glass material, and melting and softening the sent long glass material DC power supply for applying a DC voltage between the heating means, rotating bobbin means made of a conductive material facing the guide electrode means at a predetermined interval, and between the guide electrode means and the rotating bobbin means Means,
A tip portion of the long glass material is fed out from the guide electrode means and melted and softened by the heating means, and a DC voltage is applied between the guide electrode means and the rotating bobbin means, and the guide electrode means A glass filament is drawn from the tip of the long glass material melted and softened by the heating means by an electrostatic force generated between the rotating bobbin means and the rotating bobbin means, and continuously spun onto the rotating bobbin means. It is possible to do it.
前記長尺状ガラス素材の先端部を前記ガイド電極手段から送り出して前記加熱手段によって溶融軟化させて、前記ガイド電極手段と前記回転ボビン手段との間に直流電圧を印加して、該ガイド電極手段と該回転ボビン手段との間に発生した静電力により前記加熱手段によって溶融軟化させられた該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させることができるようにしたことを特徴とする。 In order to achieve the above object, the first aspect of the long glass fiber manufacturing apparatus of the present invention comprises a glass material supply means for supplying a long glass material, and the supplied long glass material. A conveying means for conveying at a predetermined speed, a guide electrode means formed of a conductive material and serving as an electrode while performing an action of feeding the conveyed glass material, and melting and softening the sent long glass material DC power supply for applying a DC voltage between the heating means, rotating bobbin means made of a conductive material facing the guide electrode means at a predetermined interval, and between the guide electrode means and the rotating bobbin means Means,
A tip portion of the long glass material is fed out from the guide electrode means and melted and softened by the heating means, and a DC voltage is applied between the guide electrode means and the rotating bobbin means, and the guide electrode means A glass filament is drawn from the tip of the long glass material melted and softened by the heating means by an electrostatic force generated between the rotating bobbin means and the rotating bobbin means, and continuously spun onto the rotating bobbin means. It is possible to do it.
本発明のガラス長繊維の製造装置の第2の態様は、長尺状ガラス素材を供給するガラス素材供給手段と、供給されてきた該長尺状ガラス素材を所定速度で搬送する搬送手段と、搬送されてきたガラス素材を送り出す作用を行うガイド部を有するとともに導電性材料から形成されかつ電極となりかつ搬送されてきた該長尺状ガラス素材を溶融軟化させる加熱電極手段と、該加熱電極手段から所定間隔を介して対向して設置された導電性材料からなる回転ボビン手段と、該加熱電極手段と該回転ボビン手段との間に直流電圧を印加する直流電源手段とを有し、
前記長尺状ガラス素材の先端部を前記加熱電極手段のガイド部に搬送して溶融軟化させ、前記加熱電極手段と前記回転ボビン手段との間に直流電圧を印加して、該加熱電極手段と該回転ボビン手段との間に発生した静電力により前記加熱電極手段によって溶融軟化させられた該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させることができるようにしたことを特徴とする。 The second aspect of the glass long fiber production apparatus of the present invention is a glass material supply means for supplying a long glass material, a conveying means for conveying the supplied long glass material at a predetermined speed, A heating electrode means having a guide portion for sending out the conveyed glass material and being formed of a conductive material and serving as an electrode, and melting and softening the elongated glass material being conveyed; and the heating electrode means Rotating bobbin means made of a conductive material facing each other with a predetermined interval, and DC power supply means for applying a DC voltage between the heating electrode means and the rotating bobbin means,
The leading end portion of the long glass material is conveyed to the guide portion of the heating electrode means and melted and softened, and a direct current voltage is applied between the heating electrode means and the rotating bobbin means, and the heating electrode means A glass filament is drawn out from the tip of the long glass material melted and softened by the heating electrode means by the electrostatic force generated between the rotating bobbin means and continuously spun onto the rotating bobbin means. It is possible to do it.
前記長尺状ガラス素材の先端部を前記加熱電極手段のガイド部に搬送して溶融軟化させ、前記加熱電極手段と前記回転ボビン手段との間に直流電圧を印加して、該加熱電極手段と該回転ボビン手段との間に発生した静電力により前記加熱電極手段によって溶融軟化させられた該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させることができるようにしたことを特徴とする。 The second aspect of the glass long fiber production apparatus of the present invention is a glass material supply means for supplying a long glass material, a conveying means for conveying the supplied long glass material at a predetermined speed, A heating electrode means having a guide portion for sending out the conveyed glass material and being formed of a conductive material and serving as an electrode, and melting and softening the elongated glass material being conveyed; and the heating electrode means Rotating bobbin means made of a conductive material facing each other with a predetermined interval, and DC power supply means for applying a DC voltage between the heating electrode means and the rotating bobbin means,
The leading end portion of the long glass material is conveyed to the guide portion of the heating electrode means and melted and softened, and a direct current voltage is applied between the heating electrode means and the rotating bobbin means, and the heating electrode means A glass filament is drawn out from the tip of the long glass material melted and softened by the heating electrode means by the electrostatic force generated between the rotating bobbin means and continuously spun onto the rotating bobbin means. It is possible to do it.
前記長尺状ガラス素材がガラスロッドまたはガラス繊維であり、前記ガラスロッドの直径が0.1mm~2mmであり、前記ガラス繊維の直径が0.1mm~0.5mmであるように設定するのが好適である。
The long glass material is a glass rod or glass fiber, the glass rod has a diameter of 0.1 mm to 2 mm, and the glass fiber has a diameter of 0.1 mm to 0.5 mm. Is preferred.
前記ガラスフィラメントの直径が0.3μm~5μmであり、また前記直流電圧が5kV~100kVであるのが好ましい。前記長尺状ガラス素材としては石英ガラスが好適に用いられる。前記ガラス長繊維の外径は5μm以下が好ましい。前記ガラス長繊維の外径の下限値については特別の限定はないが、0.3μm程度であればよい。
The diameter of the glass filament is preferably 0.3 μm to 5 μm, and the DC voltage is preferably 5 kV to 100 kV. Quartz glass is preferably used as the long glass material. The outer diameter of the long glass fiber is preferably 5 μm or less. Although there is no special limitation about the lower limit of the outer diameter of the said glass long fiber, it should just be about 0.3 micrometer.
本発明のガラス長繊維の製造方法の第1の態様は、本発明の第1の態様の製造装置を用いるガラス長繊維の製造方法であって、前記ガラス素材供給手段から長尺状ガラス素材を供給するガラス素材供給工程と、供給されてきた該長尺状ガラス素材を前記搬送手段によって所定速度で搬送するガラス素材搬送工程と、搬送されてきた該長尺状ガラス素材を前記ガイド電極手段によって前記加熱手段に向かって送り出すガラス素材送り出し工程と、送り出されてきた該長尺状ガラス素材の先端部を前記加熱手段によって溶融軟化させるとともに前記直流電源手段によって該ガイド電極手段と該回転ボビン手段との間に直流電圧を印加して静電力を生じさせこの静電力により該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させてガラス長繊維とするガラスフィラメント紡糸工程と、を有することを特徴とする。
1st aspect of the manufacturing method of the glass long fiber of this invention is a manufacturing method of glass long fiber using the manufacturing apparatus of the 1st aspect of this invention, Comprising: A long glass raw material is supplied from the said glass raw material supply means. A glass material supply step for supplying, a glass material transfer step for transferring the supplied long glass material at a predetermined speed by the transfer means, and the long glass material being transferred by the guide electrode means. A step of feeding the glass material toward the heating means, and melting and softening the leading end of the long glass material that has been sent out by the heating means, and the guide electrode means and the rotating bobbin means by the DC power supply means A DC voltage is applied between them to generate an electrostatic force, and this electrostatic force pulls the glass filament from the tip of the long glass material and rotates it. In succession on the bin unit is spun and having a glass filaments spinning step to the long glass fibers, the by.
本発明のガラス長繊維の製造方法の第2の態様は、本発明の第2の態様の製造装置を用いるガラス長繊維の製造方法であって、前記ガラス素材供給手段から長尺状ガラス素材を供給するガラス素材供給工程と、供給されてきた該長尺状ガラス素材を前記搬送手段によって所定速度で搬送するガラス素材搬送工程と、前記加熱電極手段のガイド部に搬送されてきた該長尺状ガラス素材の先端部を前記加熱電極手段によって溶融軟化させるとともに前記直流電源手段によって該加熱電極手段と該回転ボビン手段との間に直流電圧を印加して静電力を生じさせこの静電力により該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させてガラス長繊維とするガラスフィラメント紡糸工程と、を有することを特徴とする。
The 2nd aspect of the manufacturing method of the glass long fiber of this invention is a manufacturing method of the glass long fiber using the manufacturing apparatus of the 2nd aspect of this invention, Comprising: A long glass raw material is supplied from the said glass raw material supply means. A glass material supply step for supplying, a glass material transfer step for transferring the supplied long glass material at a predetermined speed by the transfer means, and the long shape transferred to the guide portion of the heating electrode means The tip of the glass material is melted and softened by the heating electrode means and a DC voltage is applied between the heating electrode means and the rotating bobbin means by the DC power supply means to generate an electrostatic force. A glass filament spinning step of drawing a glass filament from the tip of a glass-like glass material and continuously spinning it on the rotating bobbin means to form a long glass fiber. And wherein the door.
本発明のガラス長繊維は、本発明のガラス長繊維の製造方法により製造され、外径が5μm以下のガラス長繊維であることを特徴とする。本発明のガラス長繊維の外径の下限値については特別の限定はないが、0.3μm程度であればよい。前記ガラスフィラメントとして石英ガラスフィラメントを用いるのが好適である。
The long glass fiber of the present invention is produced by the method for producing a long glass fiber of the present invention, and is characterized by being a long glass fiber having an outer diameter of 5 μm or less. The lower limit of the outer diameter of the long glass fiber of the present invention is not particularly limited, but may be about 0.3 μm. It is preferable to use a quartz glass filament as the glass filament.
本発明のガラス長繊維の製造装置及び方法によれば、極細径のガラスフィラメントを静電力で安定して引き出すことができ、これを回転するボビン表面上に連続的に紡糸することで極細径ガラス長繊維を得ることができ、特に、紡糸の途中でフィラメントが切断しても、切断されたフィラメントが静電気でボビン表面に引き寄せられて紡糸を中断することなく、連続的におこなうことができる。また、ガラス材料として石英ガラスのように高融点であるために融液からの紡糸が困難な材料でも容易に長繊維を製造することができ、低誘電率、低損失な高周波回路基板を形成するための材料となる極細径のガラス長繊維を提供することができる。本発明のガラス長繊維は、極細径、例えばその外径が5μm以下であり、低誘電率、低損失な高周波回路基板を形成するための材料として有効に使用することができる。
According to the apparatus and method for producing a long glass fiber of the present invention, an ultrafine glass filament can be stably pulled out by an electrostatic force, and the ultrafine glass is obtained by continuously spinning the filament on a rotating bobbin surface. Long fibers can be obtained. In particular, even if the filaments are cut during spinning, the cut filaments are attracted to the surface of the bobbin by static electricity and spinning can be continued without interruption. In addition, since the glass material has a high melting point such as quartz glass, a long fiber can be easily manufactured even with a material that is difficult to spin from the melt, and a high-frequency circuit board with low dielectric constant and low loss is formed. Therefore, it is possible to provide an ultrafine glass long fiber that is a material for the purpose. The long glass fiber of the present invention has an ultrafine diameter, for example, an outer diameter of 5 μm or less, and can be effectively used as a material for forming a high-frequency circuit board having a low dielectric constant and low loss.
以下に、本発明を実施するための好ましい形態を添付図面に基づいて説明するが、本発明は図示例に限定されるものではなく、本発明の技術思想から逸脱しない限り種々の変形が可能であることはいうまでもない。
Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the illustrated examples, and various modifications can be made without departing from the technical idea of the present invention. Needless to say.
図1は本発明のガラス長繊維の製造装置の一つの実施の形態を示す概略説明図である。図1において、符号10は本発明のガラス長繊維の製造装置である。該ガラス長繊維の製造装置10は、長尺状ガラス素材12を供給するボビン等のガラス素材供給手段14を有している。該長尺状ガラス素材12の形状としてはガラスロッドやガラス繊維を例示することができる。該ガラスロッドとしては直径が0.1mm~2mmのものが、該ガラス繊維としては直径が0.1mm~0.5mmのものが好適に使用される。上記ガラス素材としてはホウケイ酸ガラス等の一般的なガラス素材が使用できるが、石英ガラスが好適に使用される。
FIG. 1 is a schematic explanatory view showing one embodiment of the apparatus for producing long glass fibers of the present invention. In FIG. 1, the code | symbol 10 is a manufacturing apparatus of the glass long fiber of this invention. The long glass fiber manufacturing apparatus 10 has a glass material supply means 14 such as a bobbin for supplying a long glass material 12. Examples of the shape of the long glass material 12 include glass rods and glass fibers. The glass rod preferably has a diameter of 0.1 mm to 2 mm, and the glass fiber preferably has a diameter of 0.1 mm to 0.5 mm. As the glass material, a general glass material such as borosilicate glass can be used, and quartz glass is preferably used.
16は搬送手段で、前記ガラス素材供給手段14から供給されてきたガラス素材12を所定速度で搬送する作用を行う。該搬送手段16としては、例えば図1に示したように相対向して設置された一対のロールからなる送りロール手段を採用することができる。該搬送手段16によって搬送されてきたガラス素材12はガイド電極手段18を介してさらに搬送方向に送り出される。該ガイド電極手段18は黒鉛等の導電性材料から形成され電極として作用するように構成される。
Reference numeral 16 denotes a conveying means that performs an operation of conveying the glass material 12 supplied from the glass material supplying means 14 at a predetermined speed. As the conveying means 16, for example, a feed roll means composed of a pair of rolls installed opposite to each other as shown in FIG. 1 can be adopted. The glass material 12 conveyed by the conveying means 16 is further sent out in the conveying direction via the guide electrode means 18. The guide electrode means 18 is formed of a conductive material such as graphite and is configured to act as an electrode.
20は加熱手段で、該ガイド電極手段18に近接して対向設置されている。20は加熱手段で、該ガイド電極手段18を介して送り出されてきたガラス素材12はその先端部分が加熱手段20によって溶融軟化せしめられる。該加熱手段20としては、後述するように種々の加熱装置を適用することができるが、図1の図示例ではバーナー20aから酸水素バーナー火炎20bを放射する構成を図示した。バーナー20aを適用する場合には、酸水素バーナー火炎20bの中でガラス素材12の先端部が溶融軟化せしめられる。
Numeral 20 is a heating means, and is placed oppositely in the vicinity of the guide electrode means 18. Reference numeral 20 denotes a heating means, and the leading end portion of the glass material 12 fed out through the guide electrode means 18 is melted and softened by the heating means 20. As the heating means 20, various heating devices can be applied as will be described later. In the illustrated example of FIG. 1, the configuration in which the oxyhydrogen burner flame 20 b is emitted from the burner 20 a is illustrated. When the burner 20a is applied, the tip of the glass material 12 is melted and softened in the oxyhydrogen burner flame 20b.
22は回転ボビン手段で、導電性材料、例えばステンレス等の金属材料によって形成され、該ガイド電極手段18及び加熱手段20からそれぞれ所定間隔を介して対向して設置されている。23は回転ボビン保持手段で、回転軸32を介して回転ボビン手段22を回転可能に保持する。該回転ボビン手段22におけるボビンのサイズは、例えば直径200mm~1000mm、巾300mm~2000mm程度のものが好適に使用される。
Numeral 22 is a rotating bobbin means, which is formed of a conductive material, for example, a metal material such as stainless steel, and is disposed opposite to the guide electrode means 18 and the heating means 20 with a predetermined interval. Reference numeral 23 denotes a rotating bobbin holding means, which rotatably holds the rotating bobbin means 22 via a rotating shaft 32. As the size of the bobbin in the rotating bobbin means 22, for example, those having a diameter of about 200 mm to 1000 mm and a width of about 300 mm to 2000 mm are preferably used.
24は直流電源手段で、該ガイド電極手段18と該回転ボビン手段22とにそれぞれ配線25を介して接続されており、該ガイド電極手段18と該回転ボビン手段22の間に高圧直流電圧を印加するように作用する。
DC power supply means 24 is connected to the guide electrode means 18 and the rotating bobbin means 22 via wiring 25, and applies a high-voltage DC voltage between the guide electrode means 18 and the rotating bobbin means 22. Acts like
上記の構成によりその作用を説明する。まず、前記長尺状ガラス素材12の先端部を前記ガイド電極手段18から送り出して前記加熱手段20によって溶融軟化させる。該加熱手段20が図1に示したようなバーナー20aの場合にはそのバーナー火炎20bによって前記長尺状ガラス素材12の先端部が溶融軟化される。
The operation will be described with the above configuration. First, the distal end portion of the long glass material 12 is sent out from the guide electrode means 18 and melted and softened by the heating means 20. When the heating means 20 is a burner 20a as shown in FIG. 1, the tip of the long glass material 12 is melted and softened by the burner flame 20b.
一方、前記ガイド電極手段18と前記回転ボビン手段22との間に5kV~100kV程度の高圧直流電圧を印加して、該ガイド電極手段18と該回転ボビン手段22との間に発生した静電力により前記加熱手段20によって溶融軟化させられたガラス素材12の先端部からガラスフィラメント26を図1に示すように該回転ボビン手段22に巻き取られ、ガラス長繊維28に紡糸される。巻き取られるガラスフィラメント26はその直径が5μm以下とすることができ、極細径のガラスフィラメントを巻き取ることが可能である。このとき回転ボビン手段22は、20~100m・sec程度の回転周速で回転するとともに回転軸32方向に往復移動させるなどして、上記ガラスフィラメント26を該回転ボビン手段22面に均一に巻き取られる。
On the other hand, a high DC voltage of about 5 kV to 100 kV is applied between the guide electrode means 18 and the rotating bobbin means 22, and electrostatic force generated between the guide electrode means 18 and the rotating bobbin means 22 is applied. A glass filament 26 is wound around the rotating bobbin means 22 from the tip of the glass material 12 melted and softened by the heating means 20 as shown in FIG. The glass filament 26 to be wound can have a diameter of 5 μm or less, and an ultrafine glass filament can be wound. At this time, the rotating bobbin means 22 is wound around the surface of the rotating bobbin means 22 by rotating at a rotational peripheral speed of about 20 to 100 m · sec and reciprocating in the direction of the rotating shaft 32. It is done.
前記ガラスフィラメント26は紡糸中あるいはその後にサイジング材を塗布して強度を維持するようにするのがよい。該ガラスフィラメント26を20~50層ほど巻き取り、シート状に配列したガラスフィラメント26は100~500本程度に分割してストランドとして、これを撚り合わせたヤーンとして紡織することもできる。紡糸されるガラスフィラメント26の外径はガラス素材12の送り速度、火炎温度、印加電圧などを調整することで制御することができる。上記したサイジング材溶液を供給するノズル(図示せず)と回転ボビンとの間にも高電圧を印加することで紡糸中に効率良くサイジング材を塗布することもできる。複数本のガラスフィラメント26を同時に紡糸するとともに収束させてストランドとして、これを撚り合わせたヤーンとして紡織することもできる。
The glass filament 26 is preferably coated with a sizing material during or after spinning to maintain strength. About 20 to 50 layers of the glass filaments 26 are wound, and the glass filaments 26 arranged in a sheet form can be divided into about 100 to 500 strands to form strands, which can be woven as twisted yarns. The outer diameter of the glass filament 26 to be spun can be controlled by adjusting the feeding speed of the glass material 12, the flame temperature, the applied voltage, and the like. By applying a high voltage between a nozzle (not shown) for supplying the sizing material solution and a rotating bobbin, the sizing material can be efficiently applied during spinning. A plurality of glass filaments 26 can be spun simultaneously and converged to form a strand, which can be woven as a twisted yarn.
前記ガラス素材12としてはEガラス、Dガラスなどのプリント配線基板に用いられるようなガラスでも良く、またホウケイ酸ガラスを用いることもできるが、とくに石英ガラスが好適に用いられる。石英ガラスは溶融粘度が高いために融液からの紡糸ができないという難点があるため、ガラス長繊維を製造する場合には本発明の装置及び方法を適用するのが有効である。ガイド電極手段18を構成する導電性材料としては銅やステンレスなどの金属材料も使えるが金属不純物の混入を嫌う場合には黒鉛が好ましい。回転ボビン手段22を構成する導電性材料については特に限定されないが、ステンレスなどの金属材料が用いられる。
The glass material 12 may be glass used for printed wiring boards such as E glass and D glass, and borosilicate glass may be used. In particular, quartz glass is preferably used. Since quartz glass has a high melt viscosity and cannot be spun from a melt, it is effective to apply the apparatus and method of the present invention when producing long glass fibers. As the conductive material constituting the guide electrode means 18, a metal material such as copper or stainless steel can be used, but graphite is preferable when mixing of metal impurities is not desired. The conductive material constituting the rotating bobbin means 22 is not particularly limited, but a metal material such as stainless steel is used.
加熱手段20となるバーナー20aから放射される火炎20bはガラス素材12の供給方向に直交する方向から加熱する方法が安定しており制御性に優れるが、図2に示したように火炎20bに平行に供給してガス流速を加えることで、紡糸速度を速めて生産性を高めることができるので、以下に説明する。この場合、ガス流速の乱れによって静電場が乱され、ガラスフィラメント26の径のばらつきが大きくなる傾向になる。また、火炎20bの電気導電性のために放電が生じやすくなることから、回転ボビン手段22と火炎20bとが接近しすぎないように距離間隔を設定する必要がある。なお、本発明における紡糸はガラス素材の先端部が溶融軟化され静電力によってガラスフィラメントとして浮遊する状態を指称する用語として用いている。
The flame 20b radiated from the burner 20a serving as the heating means 20 is stable in the method of heating from the direction orthogonal to the supply direction of the glass material 12 and has excellent controllability, but is parallel to the flame 20b as shown in FIG. Since the spinning speed can be increased and the productivity can be improved by supplying the gas to the gas flow rate, it will be described below. In this case, the electrostatic field is disturbed by the disturbance of the gas flow velocity, and the variation in the diameter of the glass filament 26 tends to increase. Further, since the electric discharge of the flame 20b is likely to cause discharge, it is necessary to set a distance interval so that the rotating bobbin means 22 and the flame 20b are not too close to each other. In the present invention, the term “spinning” is used as a term indicating a state in which the tip of a glass material is melted and softened and floated as a glass filament by electrostatic force.
図2は本発明のガラス長繊維の製造装置の他の実施の形態を示す概略説明図である。図2の実施の形態と図1の実施の形態との相違点は次の通りである。図2のガラス長繊維の製造装置10Aにおいては、加熱手段20を構成するバーナー20aがガラス素材12の供給方向と一致乃至平行した状態で設置され、従って酸水素バーナー火炎20bがガラス素材12の供給方向と一致乃至平行した状態で放射される。
FIG. 2 is a schematic explanatory view showing another embodiment of the apparatus for producing glass long fibers of the present invention. Differences between the embodiment of FIG. 2 and the embodiment of FIG. 1 are as follows. In the long glass fiber manufacturing apparatus 10 </ b> A of FIG. 2, the burner 20 a constituting the heating means 20 is installed in a state that is coincident with or parallel to the supply direction of the glass material 12, and thus the oxyhydrogen burner flame 20 b is supplied to the glass material 12. Radiated in a state that is coincident or parallel to the direction.
該バーナー20aの内部にガラス素材12が挿通可能な貫通孔であるガイド部30が開穿されており、酸水素バーナー火炎20bによって溶融軟化されたガラス素材12のガラスフィラメント26は図2に示したように該バーナー20aの先端開口部から水平方向に火炎と共に放射されて静電力によって紡糸され、回転ボビン手段22に巻き取られる。図2におけるその他の構成部材は図1と同様であり、同一の符号で示してあるので、それらの構成部材についての再度の説明は省略する。
A guide portion 30 which is a through hole through which the glass material 12 can be inserted is opened inside the burner 20a, and the glass filament 26 of the glass material 12 melted and softened by the oxyhydrogen burner flame 20b is shown in FIG. As described above, the flame is radiated from the front end opening of the burner 20a together with the flame in the horizontal direction, spun by electrostatic force, and wound around the rotating bobbin means 22. Other constituent members in FIG. 2 are the same as those in FIG. 1 and are denoted by the same reference numerals, and therefore, a repetitive description of those constituent members is omitted.
図2に示した装置ではガイド電極手段18及び加熱手段20を別体として形成設置した構成を有しているが、図3に示したように加熱手段にガイド機能及び電極機能の両方の機能を持たせる構成を採用することもできる。図3は本発明のガラス長繊維の製造装置の別の実施の形態を示す概略説明図である。図3の実施の形態と図2の実施の形態の相違点は次の通りである。図3のガラス長繊維の製造装置10Bにおいては、図2に示したガイド電極手段18が省略されており、かつ図2に示した加熱手段20の代わりに加熱作用と電極作用を兼ねることのできる加熱電極手段21が設置されている。図3の例では、該加熱電極手段21を構成するバーナー21aが長尺状ガラス素材12の供給方向と一致乃至平行した状態で設置され、従って酸水素バーナー火炎21bが長尺状ガラス素材12の供給方向と一致乃至平行した状態で放射される。
The apparatus shown in FIG. 2 has a configuration in which the guide electrode means 18 and the heating means 20 are separately formed and installed. However, as shown in FIG. 3, the heating means has both a guide function and an electrode function. It is also possible to adopt a configuration to have. FIG. 3 is a schematic explanatory view showing another embodiment of the apparatus for producing glass long fibers of the present invention. Differences between the embodiment of FIG. 3 and the embodiment of FIG. 2 are as follows. In the long glass fiber manufacturing apparatus 10B of FIG. 3, the guide electrode means 18 shown in FIG. 2 is omitted, and instead of the heating means 20 shown in FIG. A heating electrode means 21 is provided. In the example of FIG. 3, the burner 21 a that constitutes the heating electrode means 21 is installed in a state that is coincident with or parallel to the supply direction of the long glass material 12, so that the oxyhydrogen burner flame 21 b is formed of the long glass material 12. Radiated in a state that is coincident or parallel to the supply direction.
該バーナー21aの内部に長尺状ガラス素材12が挿通可能な貫通孔であるガイド部30が開穿されており、酸水素バーナー火炎21bによって溶融軟化された長尺状ガラス素材12のガラスフィラメント26は図3に示したように、該バーナー21aの先端開口部から水平方向に火炎と共に放射されて静電力によって紡糸され、回転ボビン手段22に巻き取られる。また直流電源手段24は、該加熱電極手段21と該回転ボビン手段22とにそれぞれ配線25を介して接続されており、該加熱電極手段21と該回転ボビン手段22の間に高圧直流電圧を印加するように作用する。その他の構成は図2と同様であり、同一の符号によって示してあるので、それらの構成部材についての再度の説明は省略する。
A guide portion 30 which is a through hole through which the long glass material 12 can be inserted is opened inside the burner 21a, and the glass filament 26 of the long glass material 12 melted and softened by the oxyhydrogen burner flame 21b. As shown in FIG. 3, it is radiated from the front end opening of the burner 21 a together with the flame in the horizontal direction, spun by electrostatic force, and wound around the rotating bobbin means 22. Further, the DC power source means 24 is connected to the heating electrode means 21 and the rotating bobbin means 22 via wirings 25 respectively, and applies a high-voltage DC voltage between the heating electrode means 21 and the rotating bobbin means 22. Acts like Other configurations are the same as those in FIG. 2 and are denoted by the same reference numerals, and therefore, re-explanation of those components is omitted.
図3の構成のガラス長繊維の製造装置10Bの作用について説明する。まず、前記長尺状ガラス素材12の先端部を前記搬送手段16によって搬送し、加熱電極手段21のガイド部30内に挿通し前記加熱電極手段21によって溶融軟化させる。一方、前記加熱電極手段21と前記回転ボビン手段22との間に高圧直流電圧を印加して、該加熱電極手段21と該回転ボビン手段22との間に発生した静電力により前記加熱電極手段21によって溶融軟化させられた長尺状ガラス素材12の先端部から水平方向に放射されたガラスフィラメント26は、図3に示したように、該バーナー21aの先端開口部から水平方向に火炎と共に放射されて静電力によって紡糸され、回転ボビン手段22に巻き取られ、ガラス長繊維28が製造される。
The operation of the long glass fiber manufacturing apparatus 10B having the configuration shown in FIG. First, the leading end portion of the long glass material 12 is conveyed by the conveying means 16, inserted into the guide portion 30 of the heating electrode means 21, and melted and softened by the heating electrode means 21. On the other hand, a high-voltage DC voltage is applied between the heating electrode means 21 and the rotating bobbin means 22, and the heating electrode means 21 is generated by an electrostatic force generated between the heating electrode means 21 and the rotating bobbin means 22. As shown in FIG. 3, the glass filament 26 radiated in the horizontal direction from the front end of the long glass material 12 melted and softened by the heat is radiated from the front end opening of the burner 21a together with the flame in the horizontal direction. Then, the fiber is spun by electrostatic force and wound around the rotating bobbin means 22 to produce the long glass fiber 28.
この場合、ガス流速の乱れによって静電場が乱され、フィラメント径のばらつきは大きくなる傾向になる。また、火炎の電気導電性のために放電が生じやすくなることから、回転ボビン手段22の位置と火炎が接近しすぎないような距離、角度を設定する必要がある。
In this case, the electrostatic field is disturbed by the disturbance of the gas flow velocity, and the variation of the filament diameter tends to increase. Further, since electric discharge easily occurs due to the electrical conductivity of the flame, it is necessary to set a distance and an angle so that the position of the rotary bobbin means 22 and the flame are not too close.
図1~図3に示したガラス長繊維の製造装置10,10A及び10Bの図示例においては、加熱手段20及び加熱電極手段21における加熱態様としてはバーナー20a,21aによる酸水素バーナー火炎20b,21bの例を示したが、レーザー光や電気炉による加熱であってもよい。レーザー光の場合には炭酸ガスレーザー、YAGレーザーなどが用いられる。溶融部分の粘度が高いため、溶融部分の周囲にガス噴射ノズルを設けてガラスフィラメントが吹き出し易くする必要がある。電気炉の場合には溶融部分が軟化して落下するために、下方に向けて紡糸する。電気炉内にはアルミナ製の炉心管を設けて、ヒーターとの絶縁を完全におこなう必要がある。電気炉はアースしてガラス溶融部分を負電極、回転ボビン手段を正電極にするなど、放電に対する処置が必要である。
In the illustrated examples of the long glass fiber manufacturing apparatuses 10, 10A and 10B shown in FIGS. 1 to 3, the heating means 20 and the heating electrode means 21 are heated by the oxyhydrogen burner flames 20b and 21b by the burners 20a and 21a. However, heating with a laser beam or an electric furnace may be used. In the case of laser light, a carbon dioxide laser, YAG laser, or the like is used. Since the melted portion has a high viscosity, it is necessary to provide a gas injection nozzle around the melted portion so that the glass filament can be easily blown out. In the case of an electric furnace, the melted portion softens and falls, so spinning is performed downward. It is necessary to provide a furnace core tube made of alumina in the electric furnace to completely insulate it from the heater. The electric furnace needs to be treated against discharge, such as grounding the glass melting portion as a negative electrode and the rotating bobbin means as a positive electrode.
続いて、本発明のガラス長繊維の製造方法について図4及び図5に基づいて説明する。図4は本発明のガラス長繊維の製造方法の工程順の一例を示すフローチャートである。本発明のガラス長繊維の製造方法は本発明のガラス長繊維の製造装置を利用するものである。以下の説明における各部材の符号は図1~図3に示した符号を使用する。
Then, the manufacturing method of the glass long fiber of this invention is demonstrated based on FIG.4 and FIG.5. FIG. 4 is a flowchart showing an example of the order of steps in the method for producing a long glass fiber of the present invention. The method for producing long glass fibers of the present invention uses the apparatus for producing long glass fibers of the present invention. In the following description, the reference numerals shown in FIGS. 1 to 3 are used for the reference numerals of the respective members.
まず、長尺状ガラス素材12をボビン等のガラス素材供給手段14に用意する(図4のステップ100)。次に、長尺状ガラス素材12の先端部を搬送手段16によってガイド電極手段18に搬送する(図4のステップ102)。さらに長尺状ガラス素材12の先端部を搬送手段16によって当該ガイド電極手段18から送り出す(図4のステップ104)。このガイド電極手段から送り出されてきた長尺状ガラス素材12の先端部を前記加熱手段20によって溶融軟化させる(図4のステップ106)。一方、前記ガイド電極手段18と前記回転ボビン手段22との間に高圧直流電圧を印加して、該ガイド電極手段18と該回転ボビン手段22との間に静電力を発生させる(図4のステップ108)。この発生した静電力により前記加熱手段20によって溶融軟化させられたガラス素材12の先端部からガラスフィラメント26を、図1に示したように、引き出し該回転ボビン手段22上で連続紡糸する(図4のステップ110)。このようにしてガラス長繊維28を製造する。
First, the long glass material 12 is prepared in the glass material supply means 14 such as a bobbin (Step 100 in FIG. 4). Next, the leading end portion of the long glass material 12 is conveyed to the guide electrode means 18 by the conveying means 16 (step 102 in FIG. 4). Furthermore, the front-end | tip part of the elongate glass raw material 12 is sent out from the said guide electrode means 18 by the conveyance means 16 (step 104 of FIG. 4). The tip of the long glass material 12 fed from the guide electrode means is melted and softened by the heating means 20 (step 106 in FIG. 4). On the other hand, a high DC voltage is applied between the guide electrode means 18 and the rotating bobbin means 22 to generate an electrostatic force between the guide electrode means 18 and the rotating bobbin means 22 (step of FIG. 4). 108). As shown in FIG. 1, the glass filament 26 is pulled out from the front end portion of the glass material 12 melted and softened by the heating means 20 by the generated electrostatic force and continuously spun on the rotating bobbin means 22 (FIG. 4). Step 110). In this way, the long glass fiber 28 is produced.
図2に示したガラス長繊維の製造装置10Aを用いてガラス長繊維28を製造する場合も加熱手段20が水平に設置され、ガイド電極手段18から送られてきた長尺状ガラス素材12が該加熱手段20の貫通孔であるガイド部30に誘導されて溶融軟化される点を除いては、図1の場合と同様にガラス長繊維28が製造されるので、再度の説明は省略する。
In the case of manufacturing the long glass fiber 28 using the long glass fiber manufacturing apparatus 10A shown in FIG. 2, the heating means 20 is installed horizontally, and the long glass material 12 sent from the guide electrode means 18 is Except for the point that it is melted and softened by being guided by the guide portion 30 which is a through hole of the heating means 20, the glass long fiber 28 is manufactured in the same manner as in FIG.
図3に示したガラス長繊維の製造装置10Bを用いてガラス長繊維28を製造する場合について、図5によって説明する。図5は本発明のガラス長繊維の製造方法の工程順の一例を示すフローチャートである。以下の説明における各部材の符号は図3に示した符号を使用する。
The case where the long glass fiber 28 is manufactured using the long glass fiber manufacturing apparatus 10B shown in FIG. 3 will be described with reference to FIG. FIG. 5 is a flowchart showing an example of the order of steps in the method for producing a long glass fiber of the present invention. In the following description, the reference numerals shown in FIG.
まず、長尺状ガラス素材12をボビン等のガラス素材供給手段14に用意する(図5のステップ200)。次に、長尺状ガラス素材12の先端部を搬送手段16によって加熱電極手段21に搬送する(図5のステップ202)。搬送されてきた長尺状ガラス素材12の先端部を加熱電極手段21のガイド部30内に挿通し前記加熱電極手段21によって溶融軟化させる(図5のステップ204)。一方、前記加熱電極手段21と前記回転ボビン手段22との間に高圧直流電圧を印加して、該加熱電極手段21と該回転ボビン手段22との間に静電力を発生させる(図5のステップ206)。この発生した静電力により前記加熱電極手段21によって溶融軟化させられた長尺状ガラス素材12の先端部から水平方向に放射されたガラスフィラメント26を、図3に示したように、引き出し該回転ボビン手段22上で連続紡糸する(図5のステップ208)。このようにしてガラス長繊維28を製造する。
First, the long glass material 12 is prepared in the glass material supply means 14 such as a bobbin (Step 200 in FIG. 5). Next, the front-end | tip part of the elongate glass raw material 12 is conveyed by the conveyance means 16 to the heating electrode means 21 (step 202 of FIG. 5). The tip of the long glass material 12 that has been conveyed is inserted into the guide portion 30 of the heating electrode means 21 and melted and softened by the heating electrode means 21 (step 204 in FIG. 5). On the other hand, a high-voltage DC voltage is applied between the heating electrode means 21 and the rotating bobbin means 22 to generate an electrostatic force between the heating electrode means 21 and the rotating bobbin means 22 (step of FIG. 5). 206). The glass filament 26 radiated in the horizontal direction from the tip of the long glass material 12 melted and softened by the heating electrode means 21 by the generated electrostatic force is pulled out as shown in FIG. Continuous spinning is performed on the means 22 (step 208 in FIG. 5). In this way, the long glass fiber 28 is produced.
なお、図1~図3に示した実施の形態においては、長尺状ガラス素材12を1本使用した場合について例示して示したが、本発明の実施にあたっては生産効率の点から複数本乃至多数本の長尺状ガラス素材12を設置して同時に複数本乃至多数本のガラスフィラメントを引き出して同時に複数本乃至多数本のガラス長繊維を紡糸するのが好適であることは勿論である。また、図1~図3に示した実施の形態においては、ガイド電極手段18又は加熱電極手段21と回転ボビン手段22は水平方向に相対向して設置された例を示したが、垂直方向に相対向して設置することもできるし、また設置場所に応じてその他の角度で相対向位置を設定できることはいうまでもない。
In the embodiment shown in FIG. 1 to FIG. 3, the case where one long glass material 12 is used is shown as an example. Needless to say, it is preferable to install a plurality of long glass materials 12 and simultaneously draw out a plurality or a plurality of glass filaments to simultaneously spin a plurality of or a plurality of glass long fibers. In the embodiment shown in FIGS. 1 to 3, the guide electrode means 18 or the heating electrode means 21 and the rotating bobbin means 22 are shown as being installed opposite to each other in the horizontal direction. Needless to say, they can be installed opposite to each other, and the opposite positions can be set at other angles depending on the installation location.
以下に本発明の実施例を挙げて説明するが、本発明がこれらの実施例の記載に限定的に解釈されるものでないことは勿論である。
Examples of the present invention will be described below, but the present invention is of course not limited to the description of these examples.
(実施例1)
図1に示した装置と同様の装置を用いて石英ガラス長繊維を製造する。長尺状ガラス素材として直径0.3mmの長尺状石英ガラス繊維を用意し、この石英ガラス繊維を搬送手段(送りローラー)により黒鉛製のガイド電極手段に供給した。この送り方向と直交する方向から加熱手段であるバーナーからの酸水素バーナー火炎で前記石英ガラス繊維の先端部を約2000℃に加熱して溶融軟化させた。上記ガイド電極手段に対向しかつ150mm離間した位置にステンレスよりなる直径200mm巾500mmの回転ボビンを置き、周速60m/secで回転させた。このガイド電極手段を電極として回転ボビンとの間に20kVの高圧直流電圧を印加しガイド電極手段と回転ボビンとの間に静電力を発生させると、溶融した石英ガラス繊維の先端部から直径約3μmのフィラメントが静電力により引き出され、これを回転ボビン表面上に巻き取りガラス長繊維(外径約3μm)とすることができた。これを100本収束させてストランドとし、これを拠り合わせてヤーンとすることができた。 (Example 1)
Quartz glass long fibers are produced using an apparatus similar to the apparatus shown in FIG. A long quartz glass fiber having a diameter of 0.3 mm was prepared as a long glass material, and the quartz glass fiber was supplied to the graphite guide electrode means by a conveying means (feed roller). The tip of the quartz glass fiber was heated to about 2000 ° C. and melted and softened with an oxyhydrogen burner flame from a burner as a heating means from a direction perpendicular to the feeding direction. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 m / sec. When an electrostatic force is generated between the guide electrode means and the rotating bobbin by applying a high-voltage DC voltage of 20 kV between the guide electrode means and the rotating bobbin using the guide electrode means as an electrode, the diameter is about 3 μm from the tip of the fused quartz glass fiber. The filament was drawn out by electrostatic force, and this was wound on the surface of the rotating bobbin to make a long glass fiber (outer diameter: about 3 μm). 100 strands were converged to form strands, which could be combined into yarns.
図1に示した装置と同様の装置を用いて石英ガラス長繊維を製造する。長尺状ガラス素材として直径0.3mmの長尺状石英ガラス繊維を用意し、この石英ガラス繊維を搬送手段(送りローラー)により黒鉛製のガイド電極手段に供給した。この送り方向と直交する方向から加熱手段であるバーナーからの酸水素バーナー火炎で前記石英ガラス繊維の先端部を約2000℃に加熱して溶融軟化させた。上記ガイド電極手段に対向しかつ150mm離間した位置にステンレスよりなる直径200mm巾500mmの回転ボビンを置き、周速60m/secで回転させた。このガイド電極手段を電極として回転ボビンとの間に20kVの高圧直流電圧を印加しガイド電極手段と回転ボビンとの間に静電力を発生させると、溶融した石英ガラス繊維の先端部から直径約3μmのフィラメントが静電力により引き出され、これを回転ボビン表面上に巻き取りガラス長繊維(外径約3μm)とすることができた。これを100本収束させてストランドとし、これを拠り合わせてヤーンとすることができた。 (Example 1)
Quartz glass long fibers are produced using an apparatus similar to the apparatus shown in FIG. A long quartz glass fiber having a diameter of 0.3 mm was prepared as a long glass material, and the quartz glass fiber was supplied to the graphite guide electrode means by a conveying means (feed roller). The tip of the quartz glass fiber was heated to about 2000 ° C. and melted and softened with an oxyhydrogen burner flame from a burner as a heating means from a direction perpendicular to the feeding direction. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 m / sec. When an electrostatic force is generated between the guide electrode means and the rotating bobbin by applying a high-voltage DC voltage of 20 kV between the guide electrode means and the rotating bobbin using the guide electrode means as an electrode, the diameter is about 3 μm from the tip of the fused quartz glass fiber. The filament was drawn out by electrostatic force, and this was wound on the surface of the rotating bobbin to make a long glass fiber (outer diameter: about 3 μm). 100 strands were converged to form strands, which could be combined into yarns.
(実施例2)
図1に示した装置と同様の装置で加熱手段として炭酸ガスレーザーを使用して石英ガラス長繊維を製造する。長尺状ガラス素材として直径0.2mmの長尺状石英ガラス繊維を用意し、この石英ガラス繊維を搬送手段(送りローラー)により黒鉛製のガイド電極手段に供給した。この送り方向と直交する方向から加熱手段である炭酸ガスレーザーで前記石英ガラス繊維の先端部を約2000℃に加熱して溶融軟化させた。上記ガイド電極手段に対向しかつ150mm離間した位置にステンレスよりなる直径200mm巾500mmの回転ボビンを置き、周速80mm/secで回転させた。このガイド電極手段を電極として回転ボビンとの間に30kVの高圧直流電圧を印加しガイド電極手段と回転ボビンとの間に静電力を発生させると、溶融したガラス先端部から直径約0.5μmのフィラメントが静電力により引き出され、これを回転ボビン表面上に巻き取りガラス長繊維(外径約0.5μm)とすることができた。 (Example 2)
A quartz glass long fiber is produced using a carbon dioxide laser as a heating means in the same apparatus as that shown in FIG. A long quartz glass fiber having a diameter of 0.2 mm was prepared as a long glass material, and the quartz glass fiber was supplied to the graphite guide electrode means by a conveying means (feed roller). From the direction perpendicular to the feeding direction, the tip of the quartz glass fiber was heated to about 2000 ° C. with a carbon dioxide laser as a heating means to be melted and softened. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 80 mm / sec. When an electrostatic force is generated between the guide electrode means and the rotating bobbin by applying a high voltage DC voltage of 30 kV between the rotating bobbin using the guide electrode means as an electrode, the diameter of about 0.5 μm from the molten glass tip The filament was pulled out by electrostatic force, and the filament was wound on the surface of the rotating bobbin to be a long glass fiber (outer diameter: about 0.5 μm).
図1に示した装置と同様の装置で加熱手段として炭酸ガスレーザーを使用して石英ガラス長繊維を製造する。長尺状ガラス素材として直径0.2mmの長尺状石英ガラス繊維を用意し、この石英ガラス繊維を搬送手段(送りローラー)により黒鉛製のガイド電極手段に供給した。この送り方向と直交する方向から加熱手段である炭酸ガスレーザーで前記石英ガラス繊維の先端部を約2000℃に加熱して溶融軟化させた。上記ガイド電極手段に対向しかつ150mm離間した位置にステンレスよりなる直径200mm巾500mmの回転ボビンを置き、周速80mm/secで回転させた。このガイド電極手段を電極として回転ボビンとの間に30kVの高圧直流電圧を印加しガイド電極手段と回転ボビンとの間に静電力を発生させると、溶融したガラス先端部から直径約0.5μmのフィラメントが静電力により引き出され、これを回転ボビン表面上に巻き取りガラス長繊維(外径約0.5μm)とすることができた。 (Example 2)
A quartz glass long fiber is produced using a carbon dioxide laser as a heating means in the same apparatus as that shown in FIG. A long quartz glass fiber having a diameter of 0.2 mm was prepared as a long glass material, and the quartz glass fiber was supplied to the graphite guide electrode means by a conveying means (feed roller). From the direction perpendicular to the feeding direction, the tip of the quartz glass fiber was heated to about 2000 ° C. with a carbon dioxide laser as a heating means to be melted and softened. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 80 mm / sec. When an electrostatic force is generated between the guide electrode means and the rotating bobbin by applying a high voltage DC voltage of 30 kV between the rotating bobbin using the guide electrode means as an electrode, the diameter of about 0.5 μm from the molten glass tip The filament was pulled out by electrostatic force, and the filament was wound on the surface of the rotating bobbin to be a long glass fiber (outer diameter: about 0.5 μm).
(実施例3)
実施例1と同様の装置を用いて、ホウケイ酸ガラス長繊維を製造する。実施例1の石英ガラス繊維の替わりにSiO2を80%、B2O3を12%含むホウケイ酸ガラスからなる直径0.3mmのガラス繊維を用い、このガラス繊維の先端部をバーナーからの酸水素バーナー火炎で約1200℃に加熱して溶融軟化させた。上記ガイド電極手段に対向しかつ150mm離間した位置にステンレスよりなる直径200mm巾500mmの回転ボビンを置き、周速60mm/secで回転させた。このガイド電極手段を電極として回転ボビンとの間に20kVの高圧直流電圧を印加しガイド電極手段と回転ボビンとの間に静電力を発生させると、溶融したガラス先端部から直径約5μmのフィラメントが静電力により引き出され、これを回転ボビン表面上に巻き取りガラス長繊維(外径約5μm)とすることができた。 (Example 3)
Using the same apparatus as in Example 1, borosilicate glass long fibers are produced. Instead of the quartz glass fiber of Example 1, a glass fiber having a diameter of 0.3 mm made of borosilicate glass containing 80% SiO 2 and 12% B 2 O 3 was used. The melt was softened by heating to about 1200 ° C. with a hydrogen burner flame. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 mm / sec. When a high voltage DC voltage of 20 kV is applied between the guide electrode means and the rotating bobbin using this guide electrode means as an electrode, an electrostatic force is generated between the guide electrode means and the rotating bobbin, and a filament having a diameter of about 5 μm is formed from the molten glass tip. It was pulled out by an electrostatic force, and this was wound on the surface of the rotating bobbin to make a long glass fiber (outer diameter: about 5 μm).
実施例1と同様の装置を用いて、ホウケイ酸ガラス長繊維を製造する。実施例1の石英ガラス繊維の替わりにSiO2を80%、B2O3を12%含むホウケイ酸ガラスからなる直径0.3mmのガラス繊維を用い、このガラス繊維の先端部をバーナーからの酸水素バーナー火炎で約1200℃に加熱して溶融軟化させた。上記ガイド電極手段に対向しかつ150mm離間した位置にステンレスよりなる直径200mm巾500mmの回転ボビンを置き、周速60mm/secで回転させた。このガイド電極手段を電極として回転ボビンとの間に20kVの高圧直流電圧を印加しガイド電極手段と回転ボビンとの間に静電力を発生させると、溶融したガラス先端部から直径約5μmのフィラメントが静電力により引き出され、これを回転ボビン表面上に巻き取りガラス長繊維(外径約5μm)とすることができた。 (Example 3)
Using the same apparatus as in Example 1, borosilicate glass long fibers are produced. Instead of the quartz glass fiber of Example 1, a glass fiber having a diameter of 0.3 mm made of borosilicate glass containing 80% SiO 2 and 12% B 2 O 3 was used. The melt was softened by heating to about 1200 ° C. with a hydrogen burner flame. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the guide electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 mm / sec. When a high voltage DC voltage of 20 kV is applied between the guide electrode means and the rotating bobbin using this guide electrode means as an electrode, an electrostatic force is generated between the guide electrode means and the rotating bobbin, and a filament having a diameter of about 5 μm is formed from the molten glass tip. It was pulled out by an electrostatic force, and this was wound on the surface of the rotating bobbin to make a long glass fiber (outer diameter: about 5 μm).
(実施例4)
図3に示した装置と同様の装置を用いて石英ガラス長繊維を製造する。長尺状ガラス素材として直径0.3mmの長尺状石英ガラス繊維を用意し、この石英ガラス繊維を搬送手段(送りローラー)により、中心にガイド部である貫通孔を有する加熱電極手段である金属バーナーの貫通孔に供給した。金属バーナーに水素と酸素を供給して酸水素火炎で前記石英ガラス繊維の先端部を約2000℃に加熱して溶融軟化させた。上記加熱電極手段に対向しかつ150mm離間した位置にステンレスよりなる直径200mm巾500mmの回転ボビンを置き、周速60m/secで回転させた。この加熱電極手段を電極として回転ボビンとの間に20kVの高圧直流電圧を印加し加熱電極手段と回転ボビンとの間に静電力を発生させると、溶融した石英ガラス繊維の先端部から直径約0.3μmのフィラメントが静電力により引き出され、これを回転ボビン表面上に巻き取りガラス長繊維(外径約0.3μm)とすることができた。 (Example 4)
Quartz glass long fibers are produced using an apparatus similar to the apparatus shown in FIG. A long quartz glass fiber having a diameter of 0.3 mm is prepared as a long glass material, and this quartz glass fiber is a metal that is a heating electrode means having a through-hole that is a guide portion in the center by a conveying means (feed roller). It supplied to the through-hole of the burner. Hydrogen and oxygen were supplied to a metal burner, and the tip of the quartz glass fiber was heated to about 2000 ° C. with an oxyhydrogen flame to melt and soften. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the heating electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 m / sec. When an electrostatic force is generated between the heating electrode means and the rotating bobbin by applying a high voltage DC voltage of 20 kV between the heating electrode means and the rotating bobbin using this heating electrode means as an electrode, the diameter is about 0 from the tip of the fused quartz glass fiber. A 3 μm filament was pulled out by electrostatic force, and this was wound on the surface of the rotating bobbin to make a long glass fiber (outer diameter: about 0.3 μm).
図3に示した装置と同様の装置を用いて石英ガラス長繊維を製造する。長尺状ガラス素材として直径0.3mmの長尺状石英ガラス繊維を用意し、この石英ガラス繊維を搬送手段(送りローラー)により、中心にガイド部である貫通孔を有する加熱電極手段である金属バーナーの貫通孔に供給した。金属バーナーに水素と酸素を供給して酸水素火炎で前記石英ガラス繊維の先端部を約2000℃に加熱して溶融軟化させた。上記加熱電極手段に対向しかつ150mm離間した位置にステンレスよりなる直径200mm巾500mmの回転ボビンを置き、周速60m/secで回転させた。この加熱電極手段を電極として回転ボビンとの間に20kVの高圧直流電圧を印加し加熱電極手段と回転ボビンとの間に静電力を発生させると、溶融した石英ガラス繊維の先端部から直径約0.3μmのフィラメントが静電力により引き出され、これを回転ボビン表面上に巻き取りガラス長繊維(外径約0.3μm)とすることができた。 (Example 4)
Quartz glass long fibers are produced using an apparatus similar to the apparatus shown in FIG. A long quartz glass fiber having a diameter of 0.3 mm is prepared as a long glass material, and this quartz glass fiber is a metal that is a heating electrode means having a through-hole that is a guide portion in the center by a conveying means (feed roller). It supplied to the through-hole of the burner. Hydrogen and oxygen were supplied to a metal burner, and the tip of the quartz glass fiber was heated to about 2000 ° C. with an oxyhydrogen flame to melt and soften. A rotating bobbin made of stainless steel having a diameter of 200 mm and a width of 500 mm was placed at a position facing the heating electrode means and spaced apart by 150 mm, and rotated at a peripheral speed of 60 m / sec. When an electrostatic force is generated between the heating electrode means and the rotating bobbin by applying a high voltage DC voltage of 20 kV between the heating electrode means and the rotating bobbin using this heating electrode means as an electrode, the diameter is about 0 from the tip of the fused quartz glass fiber. A 3 μm filament was pulled out by electrostatic force, and this was wound on the surface of the rotating bobbin to make a long glass fiber (outer diameter: about 0.3 μm).
10、10A、10B:ガラス長繊維の製造装置、12:長尺状ガラス素材、14:ガラス素材供給手段、16:搬送手段、18:ガイド電極手段、20:加熱手段、20a:バーナー、20b:酸水素バーナー火炎、21:加熱電極手段、21a:バーナー、21b:酸水素バーナー火炎、22:回転ボビン手段、23:回転ボビン保持手段、24:直流電源手段、25:配線、26:ガラスフィラメント、28:ガラス長繊維、30:ガイド部、32:回転軸。
10, 10A, 10B: Glass long fiber manufacturing apparatus, 12: long glass material, 14: glass material supply means, 16: conveying means, 18: guide electrode means, 20: heating means, 20a: burner, 20b: Oxyhydrogen burner flame, 21: heating electrode means, 21a: burner, 21b: oxyhydrogen burner flame, 22: rotating bobbin means, 23: rotating bobbin holding means, 24: DC power supply means, 25: wiring, 26: glass filament, 28: long glass fiber, 30: guide part, 32: rotating shaft.
Claims (12)
- 長尺状ガラス素材を供給するガラス素材供給手段と、供給されてきた該長尺状ガラス素材を所定速度で搬送する搬送手段と、搬送されてきたガラス素材を送り出す作用を行うとともに導電性材料から形成されかつ電極となるガイド電極手段と、送り出されてきた該長尺状ガラス素材を溶融軟化させる加熱手段と、該ガイド電極手段から所定間隔を介して対向して設置された導電性材料からなる回転ボビン手段と、該ガイド電極手段と該回転ボビン手段との間に直流電圧を印加する直流電源手段とを有し、
前記長尺状ガラス素材の先端部を前記ガイド電極手段から送り出して前記加熱手段によって溶融軟化させて、前記ガイド電極手段と前記回転ボビン手段との間に直流電圧を印加して、該ガイド電極手段と該回転ボビン手段との間に発生した静電力により前記加熱手段によって溶融軟化させられた該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させることができるようにしたことを特徴とするガラス長繊維の製造装置。 From the conductive material and the glass material supply means for supplying the long glass material, the conveying means for conveying the supplied long glass material at a predetermined speed, and the action of sending out the conveyed glass material Guide electrode means that is formed and serves as an electrode, heating means for melting and softening the long glass material that has been fed out, and a conductive material that is placed facing the guide electrode means at a predetermined interval A rotating bobbin means, and a DC power supply means for applying a DC voltage between the guide electrode means and the rotating bobbin means,
A tip portion of the long glass material is fed out from the guide electrode means and melted and softened by the heating means, and a DC voltage is applied between the guide electrode means and the rotating bobbin means, and the guide electrode means A glass filament is drawn from the tip of the long glass material melted and softened by the heating means by an electrostatic force generated between the rotating bobbin means and the rotating bobbin means, and continuously spun onto the rotating bobbin means. An apparatus for producing a long glass fiber, characterized in that it can be used. - 長尺状ガラス素材を供給するガラス素材供給手段と、供給されてきた該長尺状ガラス素材を所定速度で搬送する搬送手段と、搬送されてきたガラス素材を送り出す作用を行うガイド部を有するとともに導電性材料から形成されかつ電極となりかつ搬送されてきた該長尺状ガラス素材を溶融軟化させる加熱電極手段と、該加熱電極手段から所定間隔を介して対向して設置された導電性材料からなる回転ボビン手段と、該加熱電極手段と該回転ボビン手段との間に直流電圧を印加する直流電源手段とを有し、
前記長尺状ガラス素材の先端部を前記加熱電極手段のガイド部に搬送して溶融軟化させ、前記加熱電極手段と前記回転ボビン手段との間に直流電圧を印加して、該加熱電極手段と該回転ボビン手段との間に発生した静電力により前記加熱電極手段によって溶融軟化させられた該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させることができるようにしたことを特徴とするガラス長繊維の製造装置。 While having a glass material supply means for supplying a long glass material, a transport means for transporting the supplied long glass material at a predetermined speed, and a guide portion for performing an action of feeding the transported glass material A heating electrode means that melts and softens the long glass material that is formed of a conductive material, becomes an electrode, and has been conveyed, and a conductive material that is placed facing the heating electrode means at a predetermined interval. A rotating bobbin means, and a DC power supply means for applying a DC voltage between the heating electrode means and the rotating bobbin means,
The leading end portion of the long glass material is conveyed to the guide portion of the heating electrode means and melted and softened, and a direct current voltage is applied between the heating electrode means and the rotating bobbin means, and the heating electrode means A glass filament is drawn out from the tip of the long glass material melted and softened by the heating electrode means by the electrostatic force generated between the rotating bobbin means and continuously spun onto the rotating bobbin means. An apparatus for producing a long glass fiber, characterized in that it can be used. - 前記長尺状ガラス素材がガラスロッドまたはガラス繊維であることを特徴とする請求項1又は2記載のガラス長繊維の製造装置。 3. The apparatus for producing long glass fiber according to claim 1 or 2, wherein the long glass material is a glass rod or glass fiber.
- 前記ガラスロッドの直径が0.1mm~2mmであり、前記ガラス繊維の直径が0.1mm~0.5mmであることを特徴とする請求項3記載のガラス長繊維の製造装置。 The apparatus for producing long glass fibers according to claim 3, wherein the glass rod has a diameter of 0.1 mm to 2 mm, and the glass fiber has a diameter of 0.1 mm to 0.5 mm.
- 前記ガラスフィラメントの直径が0.3μm~5μmであることを特徴とする請求項1~4のいずれか1項記載のガラス長繊維の製造装置。 The apparatus for producing a long glass fiber according to any one of claims 1 to 4, wherein the glass filament has a diameter of 0.3 to 5 µm.
- 前記直流電圧が5kV~100kVであることを特徴とする請求項1~5のいずれか1項記載のガラス長繊維の製造装置。 6. The apparatus for producing a long glass fiber according to claim 1, wherein the DC voltage is 5 kV to 100 kV.
- 前記ガラス長繊維の外径が5μm以下であることを特徴とする請求項1~6のいずれか1項記載のガラス長繊維の製造装置。 The apparatus for producing a long glass fiber according to any one of claims 1 to 6, wherein an outer diameter of the long glass fiber is 5 µm or less.
- 前記長尺状ガラス素材が石英ガラスであることを特徴とする請求項1~7のいずれか1項記載のガラス長繊維の製造装置。 The apparatus for producing long glass fibers according to any one of claims 1 to 7, wherein the long glass material is quartz glass.
- 請求項1記載の製造装置を用いるガラス長繊維の製造方法であって、前記ガラス素材供給手段から長尺状ガラス素材を供給するガラス素材供給工程と、供給されてきた該長尺状ガラス素材を前記搬送手段によって所定速度で搬送するガラス素材搬送工程と、搬送されてきた該長尺状ガラス素材を前記ガイド電極手段によって前記加熱手段に向かって送り出すガラス素材送り出し工程と、送り出されてきた該長尺状ガラス素材の先端部を前記加熱手段によって溶融軟化させるとともに前記直流電源手段によって該ガイド電極手段と該回転ボビン手段との間に直流電圧を印加して静電力を生じさせこの静電力により該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させてガラス長繊維とするガラスフィラメント紡糸工程と、を有することを特徴とするガラス長繊維の製造方法。 It is a manufacturing method of the glass long fiber using the manufacturing apparatus of Claim 1, Comprising: The glass material supply process which supplies a elongate glass material from the said glass material supply means, and this elongate glass material supplied A glass material conveying step for conveying at a predetermined speed by the conveying means, a glass material sending step for sending the long glass material that has been conveyed toward the heating means by the guide electrode means, and the length that has been sent out The tip of the glass-like material is melted and softened by the heating means, and a DC voltage is applied between the guide electrode means and the rotating bobbin means by the DC power supply means to generate an electrostatic force. A glass filament is drawn from the tip of a long glass material and continuously spun onto the rotating bobbin means to form a long glass fiber. Method for producing a long glass fiber characterized by having a scan filament spinning step.
- 請求項2記載の製造装置を用いるガラス長繊維の製造方法であって、前記ガラス素材供給手段から長尺状ガラス素材を供給するガラス素材供給工程と、供給されてきた該長尺状ガラス素材を前記搬送手段によって所定速度で搬送するガラス素材搬送工程と、前記加熱電極手段のガイド部に搬送されてきた該長尺状ガラス素材の先端部を前記加熱電極手段によって溶融軟化させるとともに前記直流電源手段によって該加熱電極手段と該回転ボビン手段との間に直流電圧を印加して静電力を生じさせこの静電力により該長尺状ガラス素材の先端部からガラスフィラメントを引き出し該回転ボビン手段上に連続して紡糸させてガラス長繊維とするガラスフィラメント紡糸工程と、を有することを特徴とするガラス長繊維の製造方法。 It is a manufacturing method of the glass long fiber using the manufacturing apparatus of Claim 2, Comprising: The glass raw material supply process which supplies a elongate glass raw material from the said glass raw material supply means, The said elongate glass raw material supplied A glass material conveying step of conveying at a predetermined speed by the conveying means, and a tip portion of the long glass material conveyed to the guide portion of the heating electrode means is melted and softened by the heating electrode means and the DC power supply means A DC voltage is applied between the heating electrode means and the rotating bobbin means to generate an electrostatic force, and this electrostatic force pulls the glass filament from the tip of the long glass material and continuously on the rotating bobbin means. And a glass filament spinning step for spinning the glass filaments to produce glass filaments.
- 請求項9又は10記載の製造方法により製造され、外径が5μm以下のガラス長繊維であることを特徴とするガラス長繊維。 A long glass fiber produced by the production method according to claim 9 or 10, wherein the long glass fiber has an outer diameter of 5 µm or less.
- 前記ガラスフィラメントが石英ガラスフィラメントであることを特徴とする請求項11記載のガラス長繊維。 The long glass fiber according to claim 11, wherein the glass filament is a quartz glass filament.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011179036A JP5839667B2 (en) | 2011-08-18 | 2011-08-18 | Apparatus and method for producing long glass fiber |
JP2011-179036 | 2011-08-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013024618A1 true WO2013024618A1 (en) | 2013-02-21 |
Family
ID=47714947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064418 WO2013024618A1 (en) | 2011-08-18 | 2012-06-05 | Long glass fiber manufacturing device, method, and long glass fiber |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5839667B2 (en) |
TW (1) | TW201323364A (en) |
WO (1) | WO2013024618A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015061809A (en) * | 2013-08-20 | 2015-04-02 | 日本電気硝子株式会社 | Fibrous glass composition manufacturing method, fibrous glass composition manufacturing device, fibrous glass composition, and glass raw material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518956A (en) * | 1974-07-12 | 1976-01-24 | Fujikura Ltd | HIKARITSUSHINYOGARASUFUAIBAANO SEIZOHOHO |
JP2006282401A (en) * | 2005-03-31 | 2006-10-19 | Shinetsu Quartz Prod Co Ltd | Method for producing quartz glass fiber, quartz glass strand, quartz glass yarn and quartz glass cloth |
JP2010007202A (en) * | 2008-06-26 | 2010-01-14 | Mecc Co Ltd | Apparatus for producing nanofiber and method for producing nanofiber using the same |
-
2011
- 2011-08-18 JP JP2011179036A patent/JP5839667B2/en active Active
-
2012
- 2012-06-05 WO PCT/JP2012/064418 patent/WO2013024618A1/en active Application Filing
- 2012-07-26 TW TW101126964A patent/TW201323364A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518956A (en) * | 1974-07-12 | 1976-01-24 | Fujikura Ltd | HIKARITSUSHINYOGARASUFUAIBAANO SEIZOHOHO |
JP2006282401A (en) * | 2005-03-31 | 2006-10-19 | Shinetsu Quartz Prod Co Ltd | Method for producing quartz glass fiber, quartz glass strand, quartz glass yarn and quartz glass cloth |
JP2010007202A (en) * | 2008-06-26 | 2010-01-14 | Mecc Co Ltd | Apparatus for producing nanofiber and method for producing nanofiber using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2013040082A (en) | 2013-02-28 |
JP5839667B2 (en) | 2016-01-06 |
TW201323364A (en) | 2013-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6513319B1 (en) | Method of manufacturing quartz glass filament | |
AU2012235435B2 (en) | Method for manufacturing bio-soluble inorganic fiber | |
JP5255673B2 (en) | Solder plated wire manufacturing method and manufacturing apparatus | |
US20170240450A1 (en) | Induction melter for glass melting and systems and methods for controlling induction-based melters | |
CN103409861A (en) | High-speed preparation device and process of centrifugal electrostatic spinning nanometer twisted yarns | |
JP4393413B2 (en) | Method for producing quartz glass fiber, quartz glass strand, quartz glass yarn and quartz glass cloth | |
JP5662281B2 (en) | Glass nonwoven fabric manufacturing apparatus and method, and glass nonwoven fabric | |
JP5839667B2 (en) | Apparatus and method for producing long glass fiber | |
CN103966679A (en) | Spinning winding device | |
WO2017010180A1 (en) | Carbon nanotube web production method, carbon nanotube aggregate production method, and carbon nanotube web production device | |
CN111278785A (en) | Glass roving, composite material, and method for producing glass roving | |
JP2008019534A (en) | Dry staple fiber web and nonwoven fabric containing quartz glass fiber | |
US3232730A (en) | Method and apparatus for producing fibers | |
JPH1184145A (en) | Heating furnace in drawing device of plastic optical fiber | |
CN210085634U (en) | Ball tangent plane bubble spinning equipment | |
US20050120749A1 (en) | System and process for controllable preparation of glass-coated microwires | |
CN114134580B (en) | Electrostatic spinning superfine fiber bundling system and method | |
US20220274165A1 (en) | Apparatus and method for production and encapsulation of small particles and thin wires | |
CN102201309A (en) | Manufacturing method of field emission device | |
CN116514388A (en) | Wire drawing device and wire drawing method for quartz glass coarse rod | |
JP2000327359A (en) | Production of optical fiber and optical fiber preform storage device | |
CN109594136B (en) | Electrostatic spinning nanofiber yarn forming device and method | |
CN113195106B (en) | Method and apparatus for producing a plurality of encapsulated crystalline particles and method for forming coaxial feed lines | |
US3508892A (en) | Apparatus for forming multifilament strand | |
CN116695266B (en) | Air draft system, device comprising same and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12823845 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12823845 Country of ref document: EP Kind code of ref document: A1 |