WO2013023621A1 - 传输增强下行控制信道的方法、设备和系统 - Google Patents

传输增强下行控制信道的方法、设备和系统 Download PDF

Info

Publication number
WO2013023621A1
WO2013023621A1 PCT/CN2012/080355 CN2012080355W WO2013023621A1 WO 2013023621 A1 WO2013023621 A1 WO 2013023621A1 CN 2012080355 W CN2012080355 W CN 2012080355W WO 2013023621 A1 WO2013023621 A1 WO 2013023621A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource block
pdcch
physical resource
control channel
port
Prior art date
Application number
PCT/CN2012/080355
Other languages
English (en)
French (fr)
Inventor
吴强
钱轶群
李洋
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020157032424A priority Critical patent/KR101685517B1/ko
Priority to RU2014110179/07A priority patent/RU2558717C1/ru
Priority to KR1020147006250A priority patent/KR101570777B1/ko
Priority to EP16163507.3A priority patent/EP3104649B1/en
Priority to EP12823933.2A priority patent/EP2739102B1/en
Priority to JP2014525300A priority patent/JP5938100B2/ja
Publication of WO2013023621A1 publication Critical patent/WO2013023621A1/zh
Priority to US14/182,558 priority patent/US10277372B2/en
Priority to US16/385,252 priority patent/US10903955B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2612Arrangements for wireless medium access control, e.g. by allocating physical layer transmission capacity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention claims to be submitted to the Chinese Patent Office on August 18, 2011, and the application number is 201110237806. 9. The invention is entitled “Method, Equipment and System for Transmission Enhanced Downlink Control Channel” The priority of the Chinese patent application, and the priority of the Chinese patent application filed on March 22, 2012, submitted to the China Patent Office, application number 201210079003. X, the invention titled “Method, Equipment and System for Transmission Enhanced Downlink Control Channel” The entire contents of which are incorporated herein by reference. TECHNICAL FIELD The present invention relates to the field of communications, and in particular, to a method, device, and system for transmitting an enhanced downlink control channel.
  • the downlink multiple access method is usually adopted.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the downlink resources of the system are divided into OFDM (Orthogonal Frequency Division Multiple) symbols in terms of time, and are divided into subcarriers in terms of frequency.
  • a normal downlink subframe includes two slots, each slot has 7 OFDM symbols, and a normal downlink subframe contains 14 or 12 OFDM symbols.
  • the size of the RB Resource Block
  • one RB contains 12 subcarriers in the frequency domain, and is half a subframe duration (one time slot) in the time domain, that is, contains 7 or 6 OFDM symbols.
  • the normal CP (Cyclic Prefix) length symbol is 7 OFDM symbols
  • the extended cyclic prefix length symbol is 6 OFDM symbols).
  • a certain subcarrier within an OFDM symbol is called RE (Resource Element), so one RB contains 84 or 72 REs.
  • a pair of RBs of two slots is called a resource block pair, that is, an RB pair.
  • control channels and traffic channels.
  • service data or control information
  • the fundamental purpose of communication is to transmit service data, and the role of the control channel is to assist in the transmission of service data. Therefore, the design of a communication system preferably minimizes the resources occupied by the control channel.
  • resources used for service data transmission in an OFDMA system are flexibly allocated, that is, to a certain For the UE (User Equipment), the number of RBs occupied by the service data sent to the UE in each subframe, and the starting positions of all the RBs in the entire system are changed, so the service is sent.
  • the data is given to the UE, it is also necessary to tell the UE which RBs it should receive to receive its service data.
  • the modulation and coding mode adopted by the service data sent to the UE by each subframe is also changed, and the UE needs to be told.
  • Information such as RA (Resource Allocation, Resource Allocation) and MC (Modulation and Coding Scheme) is used to assist or control the transmission of service data. Therefore, it is called control information and is transmitted on the control channel.
  • RA Resource Allocation
  • MC Modulation and Coding Scheme
  • the control channel in one subframe can occupy the first 3 OFDM symbols of all RBs of the entire system.
  • a PDCCH Physical Downlink Control CHannel
  • a complete PDCCH consists of one or several CCEs (Control Channel Elements), and one CCE consists of 9 REGs ( Resource Element Group, resource element group), one REG occupies 4 REs.
  • one PDCCH can be composed of 1, 2, 4 or 8 CCEs and is approximately evenly distributed over the time-frequency domain.
  • the demodulation of the PDCCH is based on the CRS (Common Reference Signal).
  • the PDCCH channel may again be referred to as an E-PDCCH (Enhanced PDCCH).
  • some RB pairs are allocated as areas for E-PDCCH control information transmission in the area of the PDSCH (Physical Downlink Shared Channel), where the granularity is in units of one RB pair.
  • the basic unit of one PDCCH is CCE, and one RB pair may be equivalent to multiple CCE resources. Therefore, the basic unit granularity of one RB pair as the E-PDCCH is too large, which causes waste of resources.
  • embodiments of the present invention provide a method, device, and system for transmitting an enhanced downlink control channel.
  • a method for transmitting an enhanced downlink control channel includes:
  • the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, where the E-PDCCH resource Including a plurality of control channel units;
  • the at least one resource block pair is a pre-coded resource block group PRG, and the number of resource block RBs in the PRG is determined by a system bandwidth.
  • a method for receiving an enhanced downlink control channel includes:
  • the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, the E-PDCCH
  • the resource includes a plurality of control channel elements
  • the at least one resource block pair is a pre-coded resource block group PRG, and the number of resource block RBs in the PRG is determined by a system bandwidth.
  • a base station includes:
  • a configuration module configured to preset a multiplexing unit, where the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, where
  • the E-PDCCH resource includes multiple control channel units;
  • a sending module configured to send, by using at least one E-PDCCH corresponding to the at least one user equipment UE, in the at least one control channel unit of the preset multiplexing unit, and the DM RS resource in the preset multiplexing unit Transmitting, by the DM RS corresponding to the at least one UE;
  • the at least one resource block pair is a pre-coded resource block group PRG, and the number of resource block RBs in the PRG is determined by a system bandwidth.
  • a user equipment UE includes:
  • a receiving module configured to receive a signal on a multiplexing unit, where the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, where
  • the E-PDCCH resource includes a plurality of control channel units;
  • a channel estimation module configured to perform channel estimation by using all DM RSs received on the multiplexing unit
  • a demodulation module configured to demodulate the E-PDCCH resource in the multiplexing unit by using the result of the channel estimation Signal, obtain E-PDCCH
  • the at least one resource block pair is a pre-coded resource block group PRG, and the resource block RB in the PRG The number is determined by the system bandwidth.
  • a system for transmitting an enhanced downlink control channel includes the base station and the user equipment UE.
  • a method for transmitting an enhanced downlink control channel includes:
  • the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, where the E-PDCCH resource Include a plurality of control channel units; wherein, an allocation pattern of the control channel unit in the multiplexing unit is bound to a DM RS port;
  • a method for receiving an enhanced downlink control channel includes:
  • the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, the E-PDCCH
  • the resource includes a plurality of control channel units; wherein, the allocation pattern of the control channel unit in the multiplexing unit is bound to the DM RS port;
  • a base station the base station includes:
  • a configuration module configured to preset a multiplexing unit, where the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, where
  • the E-PDCCH resource includes a plurality of control channel units; wherein, the allocation pattern of the control channel unit in the multiplexing unit is bound to the DM RS port;
  • a sending module configured to send, by using at least one E-PDCCH corresponding to the at least one user equipment UE, in the at least one control channel unit of the preset multiplexing unit, and the DM RS resource in the preset multiplexing unit Sending, on the DM RS, the DM RS corresponding to the at least one UE.
  • a user equipment UE where the UE includes:
  • a receiving module configured to receive a signal on a multiplexing unit, where the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, where
  • the E-PDCCH resource includes a plurality of control channel units; wherein, the control channel unit in the multiplexing unit Binding pattern and DM RS port binding;
  • a channel estimation module configured to perform channel estimation by using all DM RSs received on the multiplexing unit
  • a demodulation module configured to demodulate the E-PDCCH resource in the multiplexing unit by using the result of the channel estimation Signal, get E-PDCCH.
  • a method for transmitting an enhanced downlink control channel includes:
  • Determining at least two physical resource block pairs in a physical resource block pair group the at least two physical resource block pairs being used for transmitting an enhanced downlink control channel E-PDCCH and demodulating the E-PDCCH Pilot
  • the E-PDCCH and DMRS on the at least two physical resource block pairs are precoded using the same precoding matrix.
  • a method for receiving an enhanced downlink control channel includes:
  • the enhanced downlink control channel E-PDCCH transmitted by the user equipment in at least two physical resource blocks of the pair of physical resource block pairs to the receiving base station and the demodulation pilot DRMS for demodulating the E-PDCCH;
  • the user equipment pre-codes the E-PDCCH and the DRMS of the at least two physical resource block pairs according to the base station by using the same precoding matrix, and performs channel estimation on the DMRSs of the at least two physical resource block pairs;
  • the user equipment detects the E-PDCCH at a predetermined position of the at least two physical resource block pairs according to a channel estimation result.
  • a base station includes:
  • a resource determining unit configured to determine, in one physical resource block pair group, at least two physical resource block pairs, where the at least two physical resource block pairs are used to send an enhanced downlink control channel E-PDCCH and used to demodulate the a pilot DMRS for demodulation of the E-PDCCH;
  • a precoding unit configured to precode the E-PDCCH and the DMRS on the at least two physical resource block pairs determined by the resource determining unit by using the same precoding matrix.
  • a user equipment includes:
  • a receiving unit configured to: at least two physical resource blocks in a physical resource block pair group, an enhanced downlink control channel E-PDCCH transmitted by the receiving base station, and a demodulation pilot DRMS for demodulating the E-PDCCH;
  • a channel estimation unit configured to precode the E-PDCCH and the DRMS of the at least two physical resource block pairs according to the base station by using the same precoding matrix, and receive the at least two physicals received by the receiving unit Channel estimation of the DMRS of the resource block pair;
  • a detecting unit configured to detect the E-PDCCH at a predetermined position of the at least two physical resource block pairs according to a channel estimation result obtained by the channel estimation unit.
  • the method, device, and system for transmitting an enhanced downlink control channel by dividing a plurality of control channel units for a multiplexing unit, and transmitting at least one E-PDCCH corresponding to at least one UE, for each UE,
  • the granularity of the enhanced downlink control channel is the control channel unit. Compared with the granularity of one RB pair in the prior art, the granularity is reduced, the resources are saved, the downlink control channel is enhanced, and more control channels can be provided for the UE.
  • FIG. 1 is a flowchart of a method for transmitting an enhanced downlink control channel according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for receiving an enhanced downlink control channel according to an embodiment of the present invention
  • FIG. 3 is another flowchart of a method for transmitting an enhanced downlink control channel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of dividing a control channel unit in a multiplexing unit according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an RB in-band DM RS resource under normal CP length
  • FIG. 6 is another schematic diagram of an RB in-line DM RS resource for a normal CP length
  • FIG. 7 is a schematic diagram of time division multiplexing of two UEs according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of two UE frequency division multiplexing according to an embodiment of the present invention.
  • 9a and 9b are schematic diagrams of time-frequency multiplexing of two UEs according to an embodiment of the present invention.
  • FIG. 10a, FIG. 10b and FIG. 10c are schematic diagrams of time-frequency multiplexing of four UEs according to an embodiment of the present invention
  • FIG. 10d is a schematic diagram of an allocation pattern of control channel elements in a multiplexing unit
  • 10e is a schematic diagram of a binding relationship between an allocation pattern of a control channel unit and a DMRS port in a multiplexing unit;
  • FIG. 10f is a schematic diagram showing a binding relationship between an allocation pattern of a control channel unit and a DMRS port in another multiplexing unit;
  • FIG. 11 is a structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a UE according to an embodiment of the present invention
  • FIG. 13 is a flowchart of another method for transmitting an enhanced downlink control channel according to an embodiment of the present invention
  • FIG. 14 is a structural diagram of a base station according to an embodiment of the present invention
  • FIG. 15 is a structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 16 is a structural diagram of a system for transmitting an enhanced downlink control channel according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the objects, technical solutions, and advantages of the present invention more comprehensible, the embodiments of the present invention will be further described in detail with reference to the accompanying drawings.
  • an embodiment of the present invention provides a method for transmitting an enhanced downlink control channel, including: 101: Presetting a multiplexing unit, the multiplexing unit includes at least one resource block pair, and the at least one resource The block includes an E-PDCCH resource and a DM RS resource, where the E-PDCCH resource includes a plurality of control channel elements;
  • the at least one resource block pair is a PRG (Precoding Resource Block Groups), and the number of resource blocks RBs in the PRG is determined by a system bandwidth.
  • PRG Precoding Resource Block Groups
  • the number of the multiple control channel units in the multiplex unit may be equal to or different from the number of the UEs, which is not limited in this embodiment of the present invention.
  • the E-PDCCH resources in the multiplexing unit are divided into four control channel units, and are respectively multiplexed with four UEs of UE1, UE2, UE3, and UE4, and each UE is allocated one control channel unit; or UE2 and UE6 share a total of 2 UEs for multiplexing, and each UE is allocated 2 control channel units.
  • the execution body of the sending method may be a base station such as e B (evolutional Node B) or the like.
  • a further embodiment of the present invention provides a method for receiving an enhanced downlink control channel, including: 201: receiving a signal on a multiplexing unit, the multiplexing unit includes at least one resource block pair, and the at least One resource block pair includes an E-PDCCH resource and a DM RS resource, and the E-PDCCH resource includes a plurality of control channel units;
  • the at least one resource block pair is a PRG, and the number of resource blocks RBs in the PRG is determined by a system bandwidth.
  • the execution body of the receiving method may specifically be a UE.
  • each UE has its own E-PDCCH and its own DM RS.
  • the E-PDCCH is transmitted on the E-PDCCH resource
  • the DM RS is transmitted on the DM RS resource.
  • the method for transmitting an enhanced downlink control channel and the method for receiving an enhanced downlink control channel according to an embodiment of the present invention, by dividing a plurality of control channel units for a multiplexing unit, and transmitting at least one E-PDCCH corresponding to at least one UE, For each UE, the granularity of the enhanced downlink control channel is a control channel unit. Compared with the granularity of one RB pair in the prior art, the granularity is reduced, resources are saved, and the downlink control channel is enhanced, which can provide more The control channel is used by the UE. Referring to FIG.
  • another embodiment of the present invention provides a method for transmitting an enhanced downlink control channel, including: 301: A base station presets a multiplexing unit, where the multiplexing unit divides PCCCH resources by at least one resource block RB pair.
  • the CRS resource is composed of resources other than the CSI RS (Channel-State Information Reference Signal) resource, and the multiplex unit is divided into an E-PDCCH resource and a DM RS resource, and the E-PDCCH resource is time-multiplexed. It is divided into multiple control channel units by using, or frequency division multiplexing, or time-frequency division multiplexing.
  • the multiplexing unit includes at least one RB pair, and includes two RB pairs, three RB pairs, or four RB pairs, and the like, which is not specifically limited in this embodiment of the present invention.
  • the result of the multiplexing unit division may be previously configured and stored on the base station side in the form of a multiplexing pattern.
  • a schematic diagram of dividing a plurality of control channel units in a multiplexing unit does not show a DM RS resource, and only a plurality of control channel units in an E-PDCCH resource are taken as an example for description.
  • the two RB pairs are used as one multiplexing unit, and each RB pair includes an E-PDCCH resource and a DM RS resource, where the E-PDCCH resource is divided into four control channel units for multiplexing by two UEs.
  • UE1 occupies 2 control channel units in RB pair 1
  • UE2 occupies 2 control channel units in RB pair 1 and also takes 2 in RB pair 2 Control channel unit.
  • the E-PDCCH resource refers to a resource other than the DM RS resource, and the number of REs included in one RB in-band DM RS resource is not fixed. Therefore, the number of REs included in the E-PDCCH resource is also not The number is fixed by the number of CRS ports configured by the base station and the number of REs included in the DM RS resource.
  • the CRS port refers to a logical port configured by the base station for transmitting the CRS, and the CRS configured by the base station.
  • the number of ports can be 1, 2, or 4.
  • the details are not limited.
  • the DM RS resource can contain 12 REs or 24 REs, which are not limited.
  • the number of REs included in the DM RS resource may be determined according to the number of DM RS ports.
  • the DM RS port refers to the logical port configured by the base station to transmit the DM RS, which can be 2 or 4. For example, if there are two DM RS ports, the DM RS resource contains 12 REs and the DM RS ports have four.
  • the DM RS resources contain 24 REs.
  • Table 1 shows the number of REs that can transmit data in one RB pair configured with different CRS and DMRS port numbers.
  • the first 3 OFDM symbols of a normal subframe are PDCCH
  • there are a total of 12 X 14 168 REs in one RB pair, where PDCCH is occupied.
  • the DM RS occupies 12 REs
  • the CRS outside the PDCCH region occupies 16 REs.
  • the dividing the E-PDCCH resource according to the time division multiplexing means that the plurality of divided control channel units occupy the same carrier in the frequency domain, for example, all of the 12 carriers are included, but occupy different times in the time domain. OFDM symbol.
  • the dividing the E-PDCCH resource according to the frequency division multiplexing means that the plurality of divided control channel units all contain the same OFDM symbol in the time domain, but occupy different carriers in the frequency domain, such as before a control channel unit is occupied. 6 carriers, another control channel unit occupies the last 6 carriers, and so on.
  • the dividing the E-PDCCH resource according to the time-frequency division multiplexing means that the plurality of divided control channel units occupy different carriers in the frequency domain, in the time domain.
  • the occupied OFDM symbols are also different.
  • the base station sends, in the at least one control channel unit of the multiplexing unit, at least one E-PDCCH corresponding to the at least one UE.
  • the at least one UE may be one or multiple.
  • the base station sends two E-PDCCHs corresponding to one UE, one of which is an E-PDCCH for uplink scheduling, and the other is an E-PDCCH for downlink scheduling.
  • the base station sends three E-PDCCHs, which respectively correspond to three UEs; or, the base station sends three E-PDCCHs, two of which correspond to UE1 and the other to UE2.
  • time division multiplexing or frequency division multiplexing, or at least two of the plurality of control channel units in the multiplexing unit may be used.
  • the E-PDCCH of the multiple UEs is transmitted by time-frequency division multiplexing, which is not specifically limited in this embodiment of the present invention.
  • the base station For each of the at least one UE, the base station sends the DM RS of the UE on all DM RS time-frequency resources allocated to the DM RS port of the UE in the multiplexing unit;
  • the base station may allocate a DM RS port to the UE in advance, and when transmitting the DM RS of a certain UE, send the DM RS of the UE on all DM RS time-frequency resources corresponding to the DM RS port allocated by the UE.
  • each of the UEs transmits the DM RS of the UE according to the method.
  • the base station allocates the DM RS port to the port 7 and the port 8 for the UE1 and the UE2, and then sends the DM RS of the UE1 on all the DM RS time-frequency resources of the port 7, and sends the UE2 on all the DM RS time-frequency resources of the port 8.
  • DM RS DM RS.
  • the E-PDCCH of one UE may be carried in one RB pair in the multiplexing unit, or may be carried in multiple RB pairs in the multiplexing unit, or even in all RB pairs, the base station
  • the DM RS of the UE may be transmitted on the DM RS resource in the RB pair carrying the E-PDCCH of the UE, and the DM RS of the UE is not transmitted in the RB pair that does not carry the E-PDCCH of the UE.
  • the multiple DM RS ports may be allocated to the multiple UEs, or the same ones may be allocated to at least two of the multiple UEs.
  • DM RS port when the at least one UE is a plurality of UEs, the multiple DM RS ports may be allocated to the multiple UEs, or the same ones may be allocated to at least two of the multiple UEs.
  • each UE that allocates the same DM RS port may use a different precoding matrix, but the DM RS port of each UE may Interference occurs with each other, and channel estimation is less effective. Or, you can also assign these to the same DM RS port.
  • the UE uses the same precoding matrix for precoding, but cannot use each of the UEs to perform precoding using the optimal precoding matrix, and the optimal beamforming gain cannot be obtained (beamforming gain, therefore, preferably, Multiple UEs are assigned different DM RS ports.
  • the DM RS port is assigned to port 7 (port 7) for UE1, and the DM RS port is assigned to port 8 (port 8) for UE2.
  • different UEs use different DMRS ports, so that when the E-PDCCH is sent to each UE, the base station pre-codes each user with its optimal precoding matrix.
  • FIG. 5 for a schematic diagram of an RB in-line DM RS for a normal CP length. It shows the location of DM RS port 7 and port 8 in the time-frequency domain.
  • the RB pair contains DM RS resources with 12 REs, and supports DM RS, DM RS port 7 and port 8 of two ports.
  • FIG 6, another schematic diagram of an RB in-line DM RS for a normal CP length.
  • the RB pair contains DM RS resources with 24 REs, and can support up to 8 ports of DM RS. Where ports 7, 8, 11 and 13 are transmitted on the RE of the DM RS labeled as horizontal stripes, and ports 9, 10, 12 and 14 are transmitted on the RE of the DM RS labeled as vertical stripes.
  • the spreading sequence used by the base station in the precoding process can be as shown in Table 2, and Table 2 is the spreading sequence under the normal CP.
  • Table 2 is the spreading sequence under the normal CP.
  • the spreading code length is 4, and the spreading code is [+1, -1, +1, -1], and then the OFDM symbol in the 5th time domain of the even slot.
  • the even slot is at the DM RS position in the frequency domain of the OFDM symbol in the sixth time domain.
  • the plurality of divided control channel units may be concentrated or alternately distributed.
  • the following is a specific example.
  • FIG. 7 is a schematic diagram of time division multiplexing one RB pair for two UEs.
  • the multiplexing unit includes one RB pair, and multiplexes two UEs, UE1 and UE2, four CRS ports, and the DM RS resource includes 12 REs.
  • Dividing 2 control channel elements in the time domain wherein the first control channel unit occupies 4th, 6th, 8th, 10th, 12th and 14th OFDM symbols in the time domain direction, and the second control channel unit occupies 5th in the time domain direction , 7, 9, 11 and 13 OFDM symbols, belonging to an alternating distribution. Both control channel units occupy 12 carriers in the frequency domain and have the same carrier resources.
  • the first control channel unit is allocated to the UE1, and the second control channel unit is allocated to the UE2 to perform enhancement of the PDCCH. Then, the E-PDCCH signals of the UE1 and the UE2 are alternately transmitted on different OFDM symbols. Further, the DM RS ports of UE1 and UE2 can be configured as different ports, such as port 7 and port 8, respectively.
  • FIG 8 is a schematic diagram of frequency division multiplexing of one RB pair for two UEs.
  • the multiplexing unit includes one RB pair, and multiplexes two UEs, UE1 and UE2, four CRS ports, and the DM RS resource includes 12 REs.
  • the two control channel units are divided in the frequency domain, wherein the first control channel unit occupies the last six carriers in the frequency domain direction, and the second control channel unit occupies the first six carriers in the frequency domain direction, and belongs to a centralized distribution. Both control channel elements occupy 11 identical OFDM symbols in the time domain, with the same time domain resources.
  • the first control channel unit is allocated to the UE1, the second control channel unit is allocated to the UE2, and the PDCCH is enhanced, and the E-PDCCH signals of the UE1 and the UE2 are respectively transmitted on different carriers.
  • the DM RS ports of UE1 and UE2 can be configured as different ports, such as port 7 and port 8, respectively.
  • the first control channel unit may be allocated to the UE2, and the first six frequency domain resources are occupied, and the second control channel unit is allocated to the UE1, and the first six frequency domain resources are occupied. .
  • FIG. 9a and FIG. 9b a schematic diagram of frequency division multiplexing one RB pair for two UEs.
  • the difference from the above two examples is that two control channel units in one RB pair occupy different resources in the time domain, and the resources occupied in the frequency domain are also different and belong to alternate distribution.
  • the two UEs are alternately allocated according to the order of UE1 and UE2 from top to bottom. That is, in the 12 carriers of each column, except for the pilot resources including the CRS resources and the DM RS resources, the remaining carrier resources are alternately occupied by the order of the UE1 and the UE2.
  • FIG. 9a in the vertical frequency domain resource column corresponding to each OFDM symbol, the two UEs are alternately allocated according to the order of UE1 and UE2 from top to bottom. That is, in the 12 carriers of each column, except for the pilot resources including the CRS resources and the DM RS resources, the remaining carrier resources are alternately occupied by the order of the UE1 and the UE2.
  • the frequency domain is from top to bottom, and then the time domain is from left to right, and the UE1 is sequentially allocated after UE1, that is, starting from the 4th OFDM symbol in the figure, according to the 4th to the The order of 14 OFDM symbols, and the resources other than the pilot resources are alternately allocated to UE1 and UE2 in the frequency domain resource column corresponding to each OFDM symbol in order from the top to the bottom.
  • the fourth example is a schematic diagram of frequency division multiplexing of 1 RB pair for 4 UEs.
  • the difference from the above three examples is that 4 UEs are multiplexed, and the DM RS includes 24 REs and 4 ports, and the 4 ports are respectively allocated to 4 UEs, such as ports allocated to UE1, UE2, UE3, and UE4. They are port 7, port 8, port 9, and port 10.
  • FIG. 10a similar to the first example, for time division multiplexing, four control channel units are divided in the time domain, and are alternately allocated according to the order of UE1, UE2, UE3, and UE4, where the first control is allocated to UE1.
  • the channel unit occupies the 4th, 8th, and 12th OFDM symbols in the time domain direction
  • the second control channel unit allocated to the UE2 occupies the 5th, 9th, and 13th OFDM symbols in the time domain direction, and is allocated to the third control channel unit of the UE3.
  • the fourth control channel unit allocated to the UE4 occupy the 7th and 11th OFDM symbols in the time domain direction, which are alternately distributed.
  • the frequency domain resource column in which each OFDM symbol is located is divided into two parts, which are respectively allocated to two UEs, and are allocated to four UEs in groups of two OFDM symbols, specifically, starting from the fourth OFDM symbol, according to From the order of the 4th to 14th OFDM symbols, each of the two adjacent frequency domain resource columns respectively assigns the first column to UE1 and UE2, and the second column is assigned to the order of UE3 and UE4, and then alternates distribution.
  • FIG 10c similar to the multiplexing in Figure 9b, it is time-frequency division multiplexing.
  • the time domain from left to right and from UE1, UE2, UE3 to UE4, starting from the 4th OFDM symbol in the figure, according to the 4th to the
  • the order of 14 OFDM symbols, and the resources other than the pilot resources are alternately allocated to UE1, UE2, UE3, and UE4 in the frequency domain resource column corresponding to each OFDM symbol in the order of the top-to-bottom carrier.
  • multiple RB pairs may be used as one multiplexing unit, and DM RS resources in each RB pair are included on all DM RS resources in the multiplexing unit.
  • the pilot signals of the multiple UEs are transmitted, so that channel estimation can be performed by using the DM RSs on all RB pairs in the multiplexing unit, and the channel estimation performance is improved compared with channel estimation using only one RB pair.
  • the multiplexing unit includes two RB pairs, and each RB is internally divided into four control channel units and allocated to two UEs, each The UEs each occupy 2 control channel units, and the DM RS signals of UE1 and UE2 are transmitted on the DM RS resources of RB pair 1 and RB pair 2.
  • different DM RS ports may be used to separately transmit DM RS signals of UE1 and UE2, for example, UE1 uses DM RS port 7, UE2 uses DM RS port 8, and the like.
  • the number of RB pairs in the PRG is determined by the system bandwidth. See Table 3 for the correspondence between system bandwidth and precoding granularity. table 3
  • the PRG size indicates that, for a UE, the same precoding matrix is precoded in several RB pairs under the corresponding system bandwidth. For example, if the system bandwidth is 25 RBs, then the PRG is 2 RB pairs. In the 25 RBs of the system bandwidth, each of the two RB pairs is precoded using the same precoding matrix, so that the PRG can be Two RB pairs are multiplexed as one multiplexing unit.
  • the multiple control channel units divided in the PRG are multiplexed by multiple UEs, and different UEs occupy different control channel units.
  • the DM RS signal of the UE may be sent on all RB pairs in the PRG as long as the UE transmits the E-PDCCH in the PRG, or only the UE is carried in the PRG.
  • the DM RS signal of the UE is transmitted on the RB pair of the E-PDCCH.
  • a plurality of PRBs can perform joint channel estimation, thereby improving the performance of channel estimation.
  • the number of control channel units divided by one multiplexing unit, and the information of the control channel unit and the DM RS port mapped by the UE may be notified to the UE by the base station, and the signaling notification may be RRC (Radio Resource Control) signaling semi-static notification; or the allocation pattern of the control channel unit in the multiplexing unit and the DM RS port may be bound, and the binding relationship is allocated and configured in the base station and the UE. side. For example, taking FIG. 7 as an example, using the allocation scheme of the pattern, and binding the UE1 to the DM RS port 7 and binding the UE2 to the DM RS port 8, the base station is not required to separately notify the UE.
  • RRC Radio Resource Control
  • the aggregation level of one E-PDCCH may be 1, 2, 4, or 8, that is, one E-PDCCH may be transmitted by 1, 2, 4, or 8 control channel units.
  • the E-PDCCH can be classified into a Localized E-PDCCH and a Distributed E-PDCCH.
  • the distributed E-PDCCH may be sent by using transmit diversity; the centralized E-PDCCH may be sent by using precoding or beam attachment. give away.
  • the centralized E-PDCCH is further discussed.
  • Figure 10d shows an allocation pattern of control channel elements within a multiplexing unit. Only one RB pair in the multiplexing unit is shown in Figure 10d.
  • Each of the RB pairs in the multiplexing unit may include a plurality of control channel elements, e.g., control channel elements eCCE0 ⁇ eCCE3 in the allocation pattern of the control channel elements shown in Figure 10d.
  • 12 subcarriers in one RB pair are divided into 4 sub-carriers, and one portion occupies 3 subcarriers.
  • Each control channel unit occupies 3 subcarriers and occupies k (k is an integer) OFDM symbols in the time domain.
  • the present embodiment is not limited to being divided into four control channel units in one RB pair, and may be divided into multiple control channel units in one RB pair.
  • the allocation pattern of the control channel unit and the DM RS port binding relationship in the multiplexing unit may be: eCCEO is bound to DMRS port 7, eCCEl is bound to DMRS port 8, eCCE2 is bound to DMRS port 9, eCCE3 and DMRS port 10 bindings. If the aggregation level of the E-PDCCH to be transmitted is 1, then the first E-PDCCH may be sent at the eCCEO and the first E-PDCCH corresponding to the DMRS port 7 in the allocation pattern of the control channel unit shown in FIG. 10d. DMRS; transmitting a second E-PDCCH at eCCEl, transmitting a DMRS corresponding to the second E-PDCCH at DMRS port 8; and so on.
  • the aggregation level of one E-PDCCH can be greater than 1, for example, the aggregation level can be 2.
  • the allocation pattern of the control channel unit in the multiplexing unit and the DM RS port binding relationship may be: eCCEO and eCCEl are bound to the DMRS port x, and eCCE2 and eCCE3 are bound to the DMRS port y.
  • the aggregation level of the E-PDCCH to be transmitted is 2
  • the first E-PDCCH may be transmitted in eCCEO and eCCEl, and the first E may be sent in DMRS port x in the allocation pattern of the control channel unit shown in FIG.
  • DMRS corresponding to the PDCCH transmitting the second E-PDCCH in eCCE2 and eCCE3, and transmitting the DMRS corresponding to the second E-PDCCH in the DMRS port y.
  • the DMRS ports x, y can be any one of the DMRS ports 7, 8, 9, and 10, and the port x and the port y can be different.
  • FIG. 10e illustrates a binding pattern of a control channel unit and a DMRS port binding relationship in a multiplexing unit.
  • an RB pair includes four control channel elements, that is, the RB pair n includes the control channel elements eCCE0 to eCCE3, and the S ⁇ RB pair n+1 includes the control channel elements eCCE4 to eCCE7. If the aggregation level of one E-PDDCH is greater than 1, for example, the aggregation level is 4, then it may be necessary to occupy multiple RB pairs.
  • the allocation pattern of the control channel unit and the DM RS port binding relationship in the multiplexing unit may be: eCCEO is bound to DMRS port 7, eCCEl is bound to DMRS port 8, and eCCE2 ⁇ eCCE5 is bound to DMRS port x.
  • the eCCE6 is bound to the DMRS port 9, and the eCCE7 is bound to the DMRS port 10.
  • eCCE0, eCCEl, eCCE6 And eCCE7 can be used to send an E-PDCCH with an aggregation level of 1, and send a DMRS on the corresponding DMRS port 7-10.
  • eCCE2 to eCCE5 can be used to send an E-PDCCH with an aggregation level of 4, and send a DMRS on the corresponding DMRS port X.
  • the DMRS port x can be a DMRS port 7, 8, 9, or 10.
  • the E-PDDCH of the UE3 may be sent in the RB pair n and
  • an E-PDCCH of aggregation level 1 of UE1 is sent on the eCCEO of RB pair n, UE1 uses the DMRS received on DMRS port 7 for channel estimation; and an E-PDCCH of aggregation level 1 of UE2 is RB transmits on eCCEl of n, UE2 uses DMRS received on DMRS port 8 for channel estimation; one E-PDCCH of aggregation level 1 of UE4 is sent on eCCE6 of RB pair n+1, and UE4 uses DMRS port 9
  • the received DMRS performs channel estimation; one E-PDCCH of aggregation level 1 of UE5 is transmitted on eCCE7 of RB pair n+1, and UE5 performs channel estimation by using DMRS received on DMRS port 10.
  • UE3 For UE3, if the DMRS port bound to eCCE2 ⁇ eCCE5 is 7 or 8, UE3 needs to use the DMRS received on DMRS port 7 or 8 for channel estimation, but the DMRS port used by UE3 will be in the nth RB pair. Conflict with the DMRS port of UE1 or UE2. If the DMRS port bound to eCCE2 ⁇ eCCE5 is 9 or 10, the DMRS port used by UE3 will collide with the DMRS port of UE4 or UE5 in the n+1th RB pair.
  • one method is as follows: If the E-PDCCH of the aggregation level 4 of the UE3 uses the port 9, the E-PDCCH with the aggregation level of 1 of other users is not carried on the eCCE6 of the RB pair n+1.
  • FIG. 10f shows a binding pattern of a control channel unit and a DMRS port binding relationship in another multiplexing unit.
  • the binding relationship shown in Figure 10f is different from the binding relationship shown in Figure 10e.
  • eCCE2 ⁇ eCCE3 are bound to DMRS port 9 or 10
  • eCCE4 ⁇ eCCE5 are bound to DMRS port 7 or 8.
  • the E-PDDCH of the UE3 may be transmitted on eCCE2 to eCCE5 of the RB pair n and the RB pair n+1.
  • the DMRS corresponding to eCCE2 to eCCE3 is transmitted using DMRS port 9 or 10
  • the DMRS corresponding to eCCE4 to eCCE5 is transmitted using DMRS port 7 or 8.
  • UE3 does not have a DMRS port collision with other UEs in RB pairs n and n+1.
  • the method for the enhanced downlink control channel can be received according to the method shown in FIG. 2, and the specific process is the same as that in the foregoing embodiment, and details are not described herein again.
  • the foregoing method for transmitting an enhanced downlink control channel by dividing a plurality of control channel units for a multiplexing unit, and transmitting at least one E-PDCCH of at least one UE, for each UE, enhancing a downlink control channel
  • the granularity is the control channel unit, which reduces the granularity compared to the granularity of an RB pair in the prior art.
  • the resource is saved, the enhancement of the downlink control channel is implemented, and more control channels can be provided for the UE.
  • the multiplexing unit may divide multiple control channel units in time division multiplexing, frequency division multiplexing, or time division frequency division multiplexing, and multiple control channel units may be distributed or alternately distributed, and have multiple implementation modes, and flexible application. Convenience.
  • the above embodiment is a scenario in which the E-PDCCH of one UE is transmitted through only one layer.
  • the embodiment of the present invention can also be applied to a scenario in which the E-PDCCH of one UE is transmitted through multiple layers. For example, if UE1 is a two-layer transmission, UE1 needs two pilots of the DM RS port to separately estimate the two-layer channel, and then UE1 can be allocated DM RS port 7 and DM RS port 8, if there are other UEs to be combined with UE1. Use, you can use different DM RS ports for other UEs.
  • another embodiment of the present invention provides a base station, including:
  • the configuration module 1101 is configured to preset a multiplexing unit, where the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, E-
  • the PDCCH resource includes a plurality of control channel units;
  • the sending module 1102 is configured to send at least one E-PDCCH corresponding to the at least one UE in the at least one control channel unit of the preset multiplexing unit, and send the DM RS resource on the preset multiplexing unit.
  • a DM RS corresponding to at least one UE;
  • the at least one resource block pair is a PRG, and the number of resource blocks RBs in the PRG is determined by a system bandwidth.
  • the sending module 1102 can include:
  • a first sending unit configured to perform time division multiplexing, or frequency division multiplexing, or time-frequency division in at least two control channel units of the multiple control channel units when the at least one UE is multiple UEs
  • the E-PDCCH corresponding to the plurality of UEs is transmitted.
  • the sending module 1102 includes:
  • a second sending unit configured to send, for each UE in the at least one UE, all the DM RS time-frequency resources corresponding to the DM RS port allocated to the UE in the preset multiplexing unit, and send the UE DM RS; or, transmitting, on the DM RS resource in the resource block pair of the E-PDCCH carrying the UE, the DM RS of the bearer UE.
  • the configuration module is further configured to: allocate, when the at least one UE is multiple UEs, different DM RS ports, or allocate at least two UEs of the multiple UEs Same DM RS port.
  • the sending module 1102 may include: when the configuration module allocates different DM RS ports to the multiple UEs, the sending module 1102 may include:
  • a third sending unit configured to send the DM RSs of the multiple UEs according to frequency division multiplexing, code division multiplexing, or frequency division and code division multiplexing.
  • the sending module 1102 is further configured to: allocate, by using radio resource control RRC signaling, the multiple UEs.
  • the DM RS port is configured to notify the multiple UEs.
  • the configuration module is further configured to: pre-configure a binding relationship between the DM RS port and the allocation pattern of the multiplexing unit, and the binding relationship is also configured on the UE side.
  • the configuration module 1101 may be configured to: obtain, by using time division multiplexing, or frequency division multiplexing, or time-frequency division multiplexing, the multiple control channel units in the E-PDCCH resource.
  • the multiplexing unit may be composed of at least one resource block pair of PDCCH resources and resources other than CRS resources and CSI RS resources.
  • the number of control channel units divided by one multiplexing unit, and the information of the control channel unit and the DM RS port mapped by the UE may be notified to the UE by the base station, and the signaling may be an RRC message.
  • the semi-static notification is also provided; or the allocation pattern of the control channel unit in the multiplexing unit may be bound to the DM RS port, and the binding relationship is allocated and configured on both sides of the base station and the UE, so that the UE is not separately notified to the UE.
  • the base station in this embodiment may be an eNB or the like, which is not specifically limited in this embodiment of the present invention.
  • the foregoing base station by dividing a plurality of control channel units for a multiplexing unit, and transmitting at least one E-PDCCH of at least one UE, for each UE, the granularity of the enhanced downlink control channel is a control channel unit. Compared with the granularity of an RB pair in the prior art, the granularity is reduced, the resources are saved, the downlink control channel is enhanced, and more control channels can be provided for the UE.
  • the multiplexing unit may divide multiple control channel units in time division multiplexing, frequency division multiplexing, or time division frequency division multiplexing, and multiple control channel units may be distributed or alternately distributed, and have multiple implementation modes, and flexible application. Convenience. Referring to FIG. 12, another embodiment of the present invention provides a user equipment UE, including:
  • the receiving module 1201 is configured to receive a signal on a multiplexing unit, where the multiplexing unit includes at least one resource block pair, and the at least one resource block pair includes an enhanced downlink control channel E-PDCCH resource and a demodulation pilot DM RS resource, where
  • the E-PDCCH resource includes a plurality of control channel units;
  • the channel estimation module 1202 is configured to perform channel estimation by using all the DM RSs received on the multiplexing unit, and the demodulation module 1203 is configured to demodulate the E-PDCCH resource in the multiplexing unit by using the result of the channel estimation. Received signal, obtain E-PDCCH;
  • the at least one resource block pair is a PRG, and the number of resource blocks RBs in the PRG is determined by a system bandwidth.
  • composition and division of the multiplexing unit involved in this embodiment are the same as those in the foregoing method embodiment, and are not described herein again.
  • the UE may obtain the number of control channel units divided by a multiplexing unit, and the information of the control channel unit and the DM RS port mapped by the UE, by receiving signaling sent by the base station, such as RRC signaling; or
  • the allocation pattern of the control channel unit in the multiplexing unit and the DM RS port may be bound in advance, and the binding relationship is allocated and configured on both sides of the base station and the UE, so that the UE is not separately notified to the UE.
  • the UE provided by the embodiment of the present invention performs channel estimation by using all DM RS signals by receiving signals on the multiplexing unit, and demodulates the signals received on the E-PDCCH resources in the multiplexing unit by using the channel estimation result, thereby obtaining The E-PDCCH of the UE.
  • the granularity of the UE enhanced downlink control channel is a control channel unit. Compared with the prior art, the granularity is reduced, resources are saved, and the downlink control channel is enhanced, and more control channels can be provided for the UE.
  • FIG. 13 is a flowchart of another method for transmitting an enhanced downlink control channel according to an embodiment of the present invention. The technical terms in this embodiment can be referred to other embodiments of the present invention.
  • the method for transmitting the enhanced downlink control channel provided in this embodiment includes:
  • the base station determines at least two PRB pairs in a physical resource block (PRB) pair group, where the at least two PRB pairs are used to send an enhanced downlink control channel E-PDCCH and used to demodulate the The pilot DMRS for demodulation of the E-PDCCH.
  • PRB physical resource block
  • the PRB pair group is composed of multiple consecutive PRB pairs; or the PRB pair group is a pre-coded resource block group PRG, and the number of PRBs in the PRG is determined by system bandwidth. Decide.
  • the one E-PDCCH may be one E-PDCCH that is sent to one UE, or one E-PDCCH that is broadcast to multiple UEs.
  • the at least two PRB pairs may be non-contiguous PRB pairs in the PRB pair group, or may be consecutive PRB pairs.
  • the at least two PRB pairs may be the RB pair n and the RB pair n+1 in FIG. 10e or FIG. 10f
  • the E-PDCCH may be, for example, the aggregation level of UE3 transmitted on eCCE2 to eCCE5 is 4. E-PDDCH.
  • the base station determines to send a DRMS port of the DMRS.
  • the port number of the E-PDDCH corresponding to the DMRS port in the RB pair n and the RB pair n+1 may be the same or different.
  • the DMRS for demodulating the E-PDDCH transmitted on eCCE2 ⁇ eCCE3 is transmitted on the DMRS port 9 or 10
  • the DMRS for demodulating the E-PDDCH transmitted on eCCE4 ⁇ eCCE5 is Send on DMRS port 7 or 8.
  • the determining, by the DRMS port for sending the DMRS includes: determining, in each PRB pair of the at least two PRB pairs, one DRMS port; when the E-PDCCH is a two-layer transmission, the determining to send the DRMS port of the DMRS includes: determining, in each PRB pair of the at least two PRB pairs, a first DRMS port and a second DMRS port.
  • the base station pre-codes the E-PDCCH and the DMRS on the at least two PRB pairs by using the same precoding matrix.
  • the UE may perform joint channel estimation on the DMRSs of the at least two PRB pairs.
  • the joint channel estimation may be: after obtaining the DMRS channel on the at least two PRB pairs, when obtaining the channel on the data RE according to the channel of the DMRS, not only the DMRS channel on the PRB pair where the RE is located, but also Consider the channel of the DMRS on the other PRB pair. That is, according to the DMRS channels on the at least two PRB pairs, the channel of each RE in each PRB pair is jointly obtained.
  • the DMRS of the demodulation pilot DRMS port on the at least two PRB pairs is used by using the same precoding matrix.
  • Performing precoding includes: precoding the DMRS of the first DRMS port in each of the PRB pairs using one precoding vector in the precoding matrix; using another precoding vector in the same precoding matrix, The DMRS of the second DRMS port on each PRB pair is precoded.
  • the UE sends the E-PDCCH sent by the base station to the at least two PRB pairs, and is configured to demodulate the
  • the method further includes: the UE determining, on each physical resource block pair of the at least two physical resource block pairs, a DRMS port for receiving the DMRS.
  • the 404 is specifically: the UE receives the DMRS by using the determined DMRS port on each physical resource block pair of the at least two physical resource block pairs.
  • the port number of the DRMS port used by the at least two physical resource blocks to receive the DMRS may be different.
  • the UE determines that a DRMS port for receiving the DMRS on each physical resource block pair in at least two physical resource block pairs includes: A DRMS port for receiving the DMRS is determined on each of the at least two physical resource block pairs.
  • the UE determines that a DRMS port for receiving the DMRS on each physical resource block pair in at least two physical resource block pairs includes: the UE is in at least two A first DMRS port and a second DMRS port for receiving the DMRS are determined on each physical resource block pair in the physical resource block pair.
  • the UE performs precoding on the E-PDCCH and the DRMS of the at least two PRB pairs according to the base station by using the same precoding matrix, and performs channel estimation on the DMRSs of the at least two PRB pairs.
  • the UE may consider that the base station pre-codes the E-PDCCH and the DRMS of the at least two PRB pairs by using the same precoding matrix, that is, the UE considers that the condition for performing joint channel estimation is satisfied, Joint channel estimation is performed on DMRSs of at least two PRB pairs.
  • the UE pre-codes the E-PDCCH and the DRMS of the at least two physical resource block pairs according to the base station by using the same precoding matrix.
  • Performing channel estimation on the DMRSs of the at least two physical resource block pairs includes: the DMRS of the first DRMS port of the at least two physical resource block pairs by the UE according to the base station using one precoding vector of the same precoding matrix Performing precoding to perform joint channel estimation on the DMRS received at the first DMRS port of the at least two physical resource block pairs.
  • the precoding the DMRS of the first DRMS port of the at least two physical resource block pairs by using the one precoding vector of the same precoding matrix by the base station means that the UE considers that the DMRS is satisfied.
  • the UE detects the E-PDCCH at a predetermined position of the at least two PRB pairs according to a channel estimation result.
  • FIG. 14 is a structural diagram of a base station according to an embodiment of the present invention.
  • the base station in this embodiment may implement the method provided in the embodiment corresponding to FIG.
  • the related description in other embodiments is also applicable to the base station in this embodiment.
  • the base station of this embodiment includes:
  • the resource determining unit 141 is configured to determine, in one physical resource block pair group, at least two physical resource block pairs, where the at least two physical resource block pairs are used to send an enhanced downlink control channel E-PDCCH and used for a demodulation Demodulation pilot DMRS for E-PDCCH;
  • the precoding unit 142 is configured to precode the E-PDCCH and the DMRS on the at least two physical resource block pairs determined by the resource determining unit 141 by using the same precoding matrix.
  • the physical resource block pair group is composed of multiple consecutive physical resource block pairs; or the physical resource block pair group is a pre-coded resource block group PRG, and the physical in the PRG The number of resource blocks is determined by the system bandwidth.
  • the base station further includes a port determining unit 143, configured to determine a DRMS port that sends the DMRS, where a port number of the DRMS port on the at least two physical resource block pairs is different.
  • the port determining unit 143 when the E-PDCCH is a single layer transmission, the port determining unit 143 is configured to be in each physical resource block pair of the at least two physical resource block pairs, Determining a DRMS port; when the E-PDCCH is a two-layer transmission, the port determining unit 143 is configured to determine a first DRMS port in each physical resource block pair of the at least two physical resource block pairs And a second DMRS port.
  • the pre-coding unit 142 is configured to use one pre-coding vector in a pre-coding matrix, for each physical resource block. Precoding the DMRS of the first DRMS port in the pair; precoding the DMRS of the second DRMS port on each of the physical resource block pairs using another precoding vector in the same precoding matrix.
  • FIG. 15 is a structural diagram of a user equipment UE according to an embodiment of the present invention.
  • the UE in this embodiment can implement the method provided in the embodiment corresponding to FIG.
  • the related description in other embodiments is also applicable to the base station in this embodiment.
  • the UE of this embodiment includes:
  • the receiving unit 151 is configured to send, by the at least two physical resource blocks in the group of one physical resource block pair, the receiving base station An enhanced downlink control channel E-PDCCH and a demodulation pilot DRMS for demodulating the E-PDCCH;
  • the channel estimation unit 152 is configured to precode the E-PDCCH and the DRMS of the at least two physical resource block pairs according to the base station by using the same precoding matrix, and receive the at least two received by the receiving unit 151.
  • the detecting unit 153 is configured to detect the E-PDCCH at a predetermined position of the at least two physical resource block pairs according to the channel estimation result obtained by the channel estimating unit.
  • the channel estimation unit 152 is configured to precode the E-PDCCH and the DRMS of the at least two physical resource block pairs according to the base station by using the same precoding matrix.
  • the DMRS of the at least two physical resource block pairs received by the receiving unit 151 performs joint channel estimation.
  • the physical resource block pair group is composed of multiple consecutive physical resource block pairs; or the physical resource block pair is a pre-coded resource block group PRG, and resources in the PRG The number of block RBs is determined by the system bandwidth.
  • the UE further includes: a determining unit 154, configured to determine, on each physical resource block pair of the at least two physical resource block pairs, a DRMS port that is used to receive the DMRS;
  • the receiving unit 151 is configured to receive, by using the determined DMRS port, a DMRS on each physical resource block pair of the at least two physical resource block pairs, where the at least two physical resource block pairs are used for receiving the DMRS.
  • the port number of the DRMS port is different.
  • the determining unit 154 when the E-PDCCH is a single layer transmission, the determining unit 154 is configured to determine, on each physical resource block pair, the at least two physical resource block pairs for receiving a DRMS port of the DMRS; when the E-PDCCH is a two-layer transmission, the determining unit 154 is configured to determine, on each physical resource block pair of the at least two physical resource block pairs, to receive the DMRS A first DMRS port and a second DMRS port.
  • the channel estimation unit 152 is configured to use, according to the base station, a precoding vector of the same precoding matrix. Precoding the DMRS of the first DRMS port of the two physical resource block pairs, performing joint channel estimation on the DMRS received at the first DMRS port of the at least two physical resource block pairs; using the same pre-preparation according to the base station Another precoding vector of the coding matrix precoding the DMRS of the second DRMS port of the at least two physical resource block pairs, and performing the DMRS received on the second DMRS port of the at least two physical resource block pairs Joint channel estimation.
  • the at least two physical resource block pairs are two consecutive physical resources.
  • Source block pair Referring to FIG. 16, another embodiment of the present invention provides a system for transmitting downlink control information, including a base station 1301 and a UE 1302, where the base station 1301 may be the base station in any of the foregoing embodiments, and the UE 1302 may be any of the foregoing.
  • the system divides a plurality of control channel units for the multiplexing unit, and sends at least one E-PDCCH corresponding to the at least one UE.
  • the granularity of the enhanced downlink control channel is a control channel unit, and the existing Compared with the granularity of an RB pair, the technology reduces the granularity, saves resources, implements enhancement of the downlink control channel, and provides more control channels for the UE to use.
  • the multiplexing unit may divide multiple control channel units in time division multiplexing, frequency division multiplexing, or time division frequency division multiplexing, and multiple control channel units may be distributed or alternately distributed, and have multiple implementation modes, and flexible application. Convenience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输增强下行控制信道(E-PDCCH)的方法、设备和系统。发送E-PDCCH的方法包括:预设一个复用单元,复用单元包括至少一个资源块对,且该至少一个资源块对包括E-PDCCH资源和解调参考信号(DMRS)资源,E-PDCCH资源包括多个控制信道单元(CCE)(101);在复用单元的至少一个CCE内发送至少一个用户设备(UE)所对应的至少一个E-PDCCH,并且发送所述至少一个UE所对应的DMRS(102)。本发明降低了E-PDCCH的粒度,节省了资源,实现了下行控制信道的增强,从而提供更多的控制信道给UE使用。

Description

传输增强下行控制信道的方法、 设备和系统 本申请要求于 2011年 8月 18日提交中国专利局、 申请号为 201110237806. 9、发明 名称为 "传输增强下行控制信道的方法、 设备和系统"的中国专利申请的优先权, 以及 要求 2012年 3月 22日提交中国专利局、 申请号为 201210079003. X、发明名称为"传输 增强下行控制信道的方法、 设备和系统"的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域 本发明涉及通信领域, 特别涉及一种传输增强下行控制信道的方法、 设备和系统。 背景技术 在 3GPP (3rd Generation Partnership Project,第三代合作伙伴计划) LTE (Long Term Evolution, 长期演进) /LTE-A (LTE-advanced, LTE高级演进) 系统中, 下行多址接入 方式通常采用 OFDMA (Orthogonal Frequency Division Multiple Access, 正交频分复用 多址接入)方式。 系统的下行资源从时间上看被划分成了 OFDM (Orthogonal Frequency Division Multiple, 正交频分复用多址) 符号, 从频率上看被划分成了子载波。
根据 LTE Release 8/9/10标准, 一个正常下行子帧, 包含有两个时隙 (slot), 每个 时隙有 7个 OFDM符号, 一个正常下行子帧共含有 14个或 12个 OFDM符号, 并定义 了 RB (Resource Block, 资源块) 的大小, 一个 RB在频域上包含 12个子载波, 在时域 上为半个子帧时长(一个时隙),即包含 7个或 6个 OFDM符号,其中,正常的 CP( Cyclic Prefix,循环前缀)长度符号为 7个 OFDM符号,扩展的循环前缀长度符号为 6个 OFDM 符号)。 在某个 OFDM符号内的某个子载波称为 RE (Resource Element, 资源元素), 因 此一个 RB包含 84个或 72个 RE。在一个子帧上,两个时隙的一对 RB称之为资源块对, 即 RB对 (RB pair)。
子帧上承载的各种数据, 是在子帧的物理时频资源上划分出各种物理信道来组织映 射的。 各种物理信道大体可分为两类: 控制信道和业务信道。 相应地, 控制信道承载的 数据可称为控制数据 (或控制信息), 业务信道承载的数据可称为业务数据。 其中, 通 信的根本目的是传输业务数据, 而控制信道的作用是为了辅助业务数据的传输, 所以一 个通信系统的设计最好使控制信道占用的资源尽量少。
一般情况下, OFDMA系统中用于业务数据传输的资源是灵活分配的, 即对某个 UE (User Equipment, 用户设备) 来说, 每个子帧发给该 UE的业务数据占用的 RB个 数, 以及这些 RB在整个系统中所有 RB的起始位置等都是变化的, 因此在发送业务数 据给该 UE的时候, 同时需要告诉该 UE, 它应该在哪些 RB去接收给它的业务数据。 同 样, 对某个 UE来说, 每个子帧发给该 UE的业务数据所采用的调制编码方式也是变化 的, 也需要告诉 UE。 像 RA (Resource Allocation, 资源分配)禾 P MCS (Modulation and Coding Scheme, 调制编码方式) 等信息就是为了辅助或控制业务数据传输的, 因此都 被称为控制信息, 在控制信道上传输。
根据 LTE Release 8/9/10标准,一个子帧里控制信道可以占用整个系统所有 RB的前 3个 OFDM符号。以承载调度等控制信息的 PDCCH( Physical Downlink Control CHannel, 物理下行控制信道) 为例, 一个完整的 PDCCH 由一个或几个 CCE ( Control Channel Element, 控制信道元素)组成, 一个 CCE由 9个 REG (Resource Element Group, 资源 元素组)组成, 一个 REG占 4个 RE。根据 LTE Release 8/9/10, 一个 PDCCH可以由 1, 2, 4或 8个 CCE组成, 并且近似均匀的分布在时频域上。 在目前的 LTE Release 8/9/10 中, PDCCH的解调是基于 CRS (Common Reference Signal, 公共参考信号)的。在 LTE Release 11中, 由于一个小区内 UE的数目可能增多, 就需要对 PDCCH信道进行增强, 给 PDCCH分配更多的资源或者提高 PDCCH性能,以适应在一个小区内调度更多的 UE, 增强的 PDCCH信道又可以称为 E-PDCCH (增强的 PDCCH )。
现有技术中在 PDSCH (Physical Downlink Shared Channel, 物理下行共享信道) 的 区域内分出一些 RB对作为 E— PDCCH控制信息发送的区域, 其中, 粒度以 1个 RB对 为单位。 但是, 一个 PDCCH的基本单元是 CCE, 一个 RB对可能相当于多个 CCE的 资源, 因此, 以一个 RB对作为 E-PDCCH的基本单元粒度太大了, 会造成资源的浪费。 发明内容
为了解决现有技术的问题, 本发明实施例提供了一种传输增强下行控制信道的方 法、 设备和系统。
一方面, 一种发送增强下行控制信道的方法, 包括:
预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述至少一个资源块 对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源,所述 E-PDCCH资 源包括多个控制信道单元;
在所述预设的复用单元的至少一个控制信道单元内发送至少一个用户设备 UE所对 应的至少一个 E-PDCCH,并且在所述预设的复用单元的 DM RS资源上发送所述至少一 个 UE所对应的 DM RS;
其中, 所述至少一个资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB 个数由系统带宽决定。
另一方面, 一种接收增强下行控制信道的方法, 包括:
在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且所述至少一个资 源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源,所述 E-PDCCH 资源包括多个控制信道单元;
使用在所述复用单元上接收的所有 DM RS进行信道估计;
用所述信道估计的结果解调所述复用单元中 E-PDCCH 资源上接收的信号, 获取
E-PDCCH;
其中, 所述至少一个资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB 个数由系统带宽决定。
再一方面, 一种基站, 包括:
配置模块, 用于预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述 至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源, 所述 E-PDCCH资源包括多个控制信道单元;
发送模块,用于在所述预设的复用单元的至少一个控制信道单元内发送至少一个用 户设备 UE所对应的至少一个 E-PDCCH, 并且在所述预设的复用单元的 DM RS资源上 发送所述至少一个 UE所对应的 DM RS;
其中, 所述至少一个资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB 个数由系统带宽决定。
又一方面, 一种用户设备 UE, 包括:
接收模块, 用于在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且 所述至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资 源, 所述 E-PDCCH资源包括多个控制信道单元;
信道估计模块, 用于使用在所述复用单元上接收的所有 DM RS进行信道估计; 解调模块, 用于用所述信道估计的结果解调所述复用单元中 E-PDCCH资源上接收 的信号, 获取 E-PDCCH;
其中, 所述至少一个资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB 个数由系统带宽决定。
又一方面, 一种传输增强下行控制信道的系统, 包括所述基站和所述用户设备 UE。 又一方面, 一种发送增强下行控制信道的方法, 所述方法包括:
预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述至少一个资源块 对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源,所述 E-PDCCH资 源包括多个控制信道单元; 其中, 所述复用单元内控制信道单元的分配图案和 DM RS 端口绑定;
在所述预设的复用单元的至少一个控制信道单元内发送至少一个用户设备 UE所对 应的至少一个 E-PDCCH,并且在所述预设的复用单元的 DM RS资源上发送所述至少一 个 UE所对应的 DM RS。
又一方面, 一种接收增强下行控制信道的方法, 所述方法包括:
在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且所述至少一个资 源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源,所述 E-PDCCH 资源包括多个控制信道单元;其中,所述复用单元内控制信道单元的分配图案和 DM RS 端口绑定;
使用在所述复用单元上接收的所有 DM RS进行信道估计;
用所述信道估计的结果解调所述复用单元中 E-PDCCH 资源上接收的信号, 获取 E-PDCCH。
又一方面, 一种基站, 所述基站包括:
配置模块, 用于预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述 至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源, 所述 E-PDCCH资源包括多个控制信道单元; 其中, 所述复用单元内控制信道单元的分 配图案和 DM RS端口绑定;
发送模块,用于在所述预设的复用单元的至少一个控制信道单元内发送至少一个用 户设备 UE所对应的至少一个 E-PDCCH, 并且在所述预设的复用单元的 DM RS资源上 发送所述至少一个 UE所对应的 DM RS。
又一方面, 一种用户设备 UE, 所述 UE包括:
接收模块, 用于在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且 所述至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资 源, 所述 E-PDCCH资源包括多个控制信道单元; 其中, 所述复用单元内控制信道单元 的分配图案和 DM RS端口绑定;
信道估计模块, 用于使用在所述复用单元上接收的所有 DM RS进行信道估计; 解调模块, 用于用所述信道估计的结果解调所述复用单元中 E-PDCCH资源上接收 的信号, 获取 E-PDCCH。
又一方面, 一种发送增强下行控制信道的方法, 所述方法包括:
在一个物理资源块对组中确定至少两个物理资源块对,所述至少两个物理资源块对 用于发送一个增强下行控制信道 E-PDCCH和用于解调所述 E-PDCCH 的解调用导频
DMRS;
使用相同的预编码矩阵对所述至少两个物理资源块对上的所述 E-PDCCH和 DMRS 进行预编码。
又一方面, 一种接收增强下行控制信道的方法, 所述方法包括:
用户设备在一个物理资源块对组中至少两个物理资源块对接收基站发送的增强下 行控制信道 E-PDCCH和用于解调所述 E-PDCCH的解调用导频 DRMS;
所述用户设备按照所述基站使用相同的预编码矩阵对所述至少两个物理资源块对 的 E-PDCCH和 DRMS进行预编码, 对所述至少两个物理资源块对的 DMRS进行信道 估计;
所述用户设备根据信道估计结果,在所述至少两个物理资源块对的预定位置上检测 所述 E-PDCCH。
又一方面, 一种基站, 包括:
资源确定单元, 用于在一个物理资源块对组中确定至少两个物理资源块对, 所述至 少两个物理资源块对用于发送一个增强下行控制信道 E-PDCCH 和用于解调所述 E-PDCCH的解调用导频 DMRS;
预编码单元,用于使用相同的预编码矩阵对所述资源确定单元确定的所述至少两个 物理资源块对上的所述 E-PDCCH和 DMRS进行预编码。
又一方面, 一种用户设备, 包括:
接收单元,用于在一个物理资源块对组中至少两个物理资源块对接收基站发送的增 强下行控制信道 E-PDCCH和用于解调所述 E-PDCCH的解调用导频 DRMS;
信道估计单元,用于按照所述基站使用相同的预编码矩阵对所述至少两个物理资源 块对的 E-PDCCH和 DRMS进行预编码,对所述接收单元接收到的所述至少两个物理资 源块对的 DMRS进行信道估计; 检测单元, 用于根据所述信道估计单元得到的信道估计结果, 在所述至少两个物理 资源块对的预定位置上检测所述 E-PDCCH。
本发明实施例提供的传输增强下行控制信道的方法、 设备和系统, 通过为复用单元 划分多个控制信道单元, 并发送至少一个 UE对应的至少一个 E-PDCCH, 对于每个 UE来 说, 增强下行控制信道的粒度为控制信道单元, 与现有技术一个 RB对的粒度相比, 降 低了粒度, 节省了资源, 实现了下行控制信道的增强, 可以提供更多的控制信道给 UE 使用。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对 于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。
图 1是本发明实施例提供的发送增强下行控制信道的方法一种流程图;
图 2是本发明实施例提供的接收增强下行控制信道的方法流程图;
图 3是本发明实施例提供的发送增强下行控制信道的方法另一种流程图; 图 4是本发明实施例提供的在复用单元内划分控制信道单元的示意图;
图 5是正常的 CP长度下一个 RB对内 DM RS资源的一种示意图;
图 6是为正常的 CP长度下一个 RB对内 DM RS资源的另一种示意图;
图 7是本发明实施例提供的 2个 UE时分复用的示意图;
图 8是本发明实施例提供的 2个 UE频分复用的示意图;
图 9a和图 9b是本发明实施例提供的 2个 UE时频复用的示意图;
图 10a、 图 10b和图 10c是本发明实施例提供的 4个 UE时频复用的示意图; 图 10d是一种复用单元内控制信道单元的分配图案的示意图;
图 10e是一种复用单元内控制信道单元的分配图案与 DMRS端口绑定关系的示意 图;
图 10f是另一种复用单元内控制信道单元的分配图案与 DMRS端口绑定关系的示意 图;
图 11是本发明实施例提供的基站结构图;
图 12是本发明实施例提供的 UE结构图; 图 13是本发明实施例提供的另一种发送增强下行控制信道的方法的流程图; 图 14是本发明实施例提供的一种基站的结构图;
图 15是本发明实施例提供的一种 UE的结构图;
图 16是本发明实施例提供的传输增强下行控制信道的系统结构图。 具体实施方式 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式 作进一步地详细描述。
参见图 1, 本发明一实施例提供了一种发送增强下行控制信道的方法, 包括: 101: 预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述至少一个 资源块包括 E-PDCCH资源和 DM RS资源,所述 E-PDCCH资源包括多个控制信道单元;
102: 在所述预设的复用单元的至少一个控制信道单元内发送至少一个 UE所对应 的至少一个 E-PDCCH,并且在所述预设的复用单元的 DM RS资源上发送所述至少一个 UE所对应的 DM RS;
其中, 所述至少一个资源块对为 PRG (Precoding Resource block Groups, 预编码资 源块组), 该 PRG内的资源块 RB个数由系统带宽决定。
其中,复用单元内的多个控制信道单元的个数与 UE的个数可以相等,也可以不等, 本发明实施例对此不做具体限定。 例如, 复用单元内的 E-PDCCH资源中划分有 4个控 制信道单元, 分别给 UE1、 UE2、 UE3和 UE4共 4个 UE进行复用, 每个 UE分配一个 控制信道单元; 或者也可以给 UE5和 UE6共 2个 UE进行复用, 则每个 UE分配有 2 个控制信道单元。
所述发送方法的执行主体可以是基站, 如 e B (evolutional Node B, 演进的基站) 等。 参见图 2, 本发明又一实施例提供了一种接收增强下行控制信道的方法, 包括: 201: 在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且所述至少 一个资源块对包括 E-PDCCH资源和 DM RS资源,所述 E-PDCCH资源包括多个控制信 道单元;
202: 使用在复用单元上接收的所有 DM RS进行信道估计;
203: 用信道估计的结果解调复用单元中 E-PDCCH 资源上接收的信号, 获取 E-PDCCH; 其中, 所述至少一个资源块对为 PRG, 该 PRG内的资源块 RB个数由系统带宽决 定。
所述接收方法的执行主体具体可以是 UE。
上述两个方法中, 每个 UE都有自己的 E-PDCCH以及自己的 DM RS, E-PDCCH 在 E-PDCCH资源上传输, DM RS在 DM RS资源上传输。
本发明实施例提供的上述发送增强下行控制信道的方法和接收增强下行控制信道 的方法, 通过为复用单元划分多个控制信道单元, 并发送至少一个 UE所对应的至少一 个 E-PDCCH, 对于每个 UE来说, 增强下行控制信道的粒度为控制信道单元, 与现有 技术一个 RB对的粒度相比, 降低了粒度, 节省了资源, 实现了下行控制信道的增强, 可以提供更多的控制信道给 UE使用。 参见图 3, 本发明另一实施例提供了一种发送增强下行控制信道的方法, 包括: 301: 基站预设一个复用单元, 该复用单元由至少一个资源块 RB对内除 PCCCH资 源和 CRS资源和 CSI RS (Channel-State Information Reference Signal, 信道状态信息参 考信号) 资源以外的资源组成, 将该复用单元划分为 E-PDCCH资源和 DM RS资源, 并将 E-PDCCH资源按照时分复用、 或频分复用、 或时频分复用划分为多个控制信道单 元。
其中, 所述复用单元包括至少一个 RB对, 如包括 2个 RB对、 3个 RB对或者 4 个 RB对等等, 本发明实施例对此不做具体限定。 复用单元划分的结果可以以复用图案 (pattern) 的形式预先在基站侧配置且存储。
参见图 4, 为在复用单元内划分多个控制信道单元的示意图, 图中并未画出 DM RS 资源, 仅以 E-PDCCH资源内包括多个控制信道单元为例进行说明。 其中, 将 2个 RB 对作为一个复用单元,每个 RB对内包括 E-PDCCH资源和 DM RS资源,其中, E-PDCCH 资源划分出 4个控制信道单元, 供两个 UE进行复用, 例如, UE1在 RB对 1内占用 2 个控制信道单元, 在 RB对 2内也占用 2个控制信道单元, UE2在 RB对 1内占用 2个 控制信道单元, 在 RB对 2内也占用 2个控制信道单元。
本发明实施例中, E-PDCCH资源是指除 DM RS资源以外的资源, 一个 RB对内 DM RS资源包含的 RE个数是不固定的, 因此, E-PDCCH资源包含的 RE个数也是不 固定的,该个数与基站配置的 CRS端口的个数以及 DM RS资源包含的 RE的个数有关。
本实施例中, CRS端口是指基站配置的用于传输 CRS的逻辑端口,基站配置的 CRS 端口的个数可以为 1个、 2个或 4个, 具体不做限定。 DM RS资源可以包含 12个 RE 或者 24个 RE, 具体不做限定。 其中, DM RS资源包含的 RE个数可以根据 DM RS端 口的个数而定。 DM RS端口是指基站配置的用于传输 DM RS的逻辑端口, 可以为 2个 或 4个。 例如, DM RS端口有 2个, 则 DM RS资源内包含 12个 RE, DM RS端口有 4 个, 则 DM RS资源内包含 24个 RE。
参见表 1, 为 CRS端口、 DM RS资源内 RE个数与一个 RB对内可以发送数据的 RE个数的对应关系。 以一个正常子帧为例, 假设前 3个 OFDM符号为 PDCCH, 则表 1 给出了配置了不同的 CRS和 DMRS端口数目下 1个 RB对内可以发送数据的 RE的个 数。 表 1
Figure imgf000011_0001
例如, CRS端口为 4个, DM RS资源内有 12个 RE,且一个正常子帧的前 3个 OFDM 符号为 PDCCH, 则一个 RB对内总共有 12 X 14=168个 RE, 其中, PDCCH占用前 3个 OFDM符号共 12 X 3=36个 RE, DM RS占用 12个 RE, PDCCH区域外的 CRS占用 16 个 RE, 则该 RB对内可以发送数据的 RE有: 168-36-12-16=104个 RE, 即表 1中第 3 行的记录所示。
本实施例中, 所述按照时分复用划分 E-PDCCH资源是指划分出来的多个控制信道 单元在频域上都占用相同的载波,如都包含 12个载波,但是在时域上占用不同的 OFDM 符号。 所述按照频分复用划分 E-PDCCH资源是指划分出来的多个控制信道单元在时域 上都包含相同的 OFDM符号, 但是在频域上占用不同的载波, 如一个控制信道单元占 用前 6 个载波, 另一个控制信道单元占用后 6 个载波等。 所述按照时频分复用划分 E-PDCCH 资源是指划分出来的多个控制信道单元在频域上占用的载波不同, 在时域上 占用的 OFDM符号也不同。
302: 基站在上述复用单元的至少一个控制信道单元内发送至少一个 UE所对应的 至少一个 E-PDCCH。
其中, 所述至少一个 UE可以为一个, 也可以为多个。 例如, 基站发送一个 UE对 应的两个 E-PDCCH, 其中一个为用于上行调度的 E-PDCCH, 另一个为用于下行调度的 E-PDCCH。 再如, 基站发送 3个 E-PDCCH, 分别对应 3个 UE; 或者, 基站发送 3个 E-PDCCH, 其中两个对应 UE1, 另一个对应 UE2。
具体地, 当所述至少一个 UE为多个 UE时, 可以在所述复用单元内的多个控制信 道单元中的至少两个控制信道单元内按照时分复用、 或频分复用、 或时频分复用发送该 多个 UE的 E-PDCCH, 本发明实施例对此不做具体限定。
303: 对于所述至少一个 UE 中的每个 UE, 基站在所述复用单元内的分配给所述 UE的 DM RS端口对应的全部 DM RS时频资源上, 发送所述 UE的 DM RS;
或者, 在承载 UE的 E-PDCCH的 RB对内的 DM RS资源上发送该承载的 UE的 DM RS。
其中, 基站可以预先给 UE分配好 DM RS端口, 当发送某个 UE的 DM RS时, 就 在为该 UE分配的 DM RS端口对应的全部 DM RS时频资源上发送该 UE的 DM RS。当 基站需要发送多个 UE的 E-PDCCH时,则对其中的每一个 UE都按照该方法发送该 UE 的 DM RS。 例如, 基站分别为 UE1和 UE2分配 DM RS端口为端口 7和端口 8, 则在 端口 7的全部 DM RS时频资源上发送 UE1的 DM RS, 在端口 8的全部 DM RS时频资 源上发送 UE2的 DM RS。
对于复用单元来说, 一个 UE的 E-PDCCH可能承载在复用单元中的一个 RB对内, 也可能承载在复用单元的多个 RB对内, 甚至是所有的 RB对内, 则基站可以在承载有 UE的 E-PDCCH的 RB对内的 DM RS资源上发送该 UE的 DM RS, 而在未承载该 UE 的 E-PDCCH的 RB对内不发送该 UE的 DM RS。
本实施例中, 进一步地, 当所述至少一个 UE为多个 UE时, 还可以为该多个 UE 分配不同的 DM RS端口, 或者为所述多个 UE中的至少两个 UE分配相同的 DM RS端 曰。
如果为所述多个 UE中的至少两个 UE分配相同的 DM RS端口,则可以让这些分配 相同的 DM RS端口的每个 UE都使用不同的预编码矩阵, 但是各个 UE的 DM RS端口 会互相产生干扰, 信道估计的效果较差。 或者, 也可以让这些分配相同 DM RS端口的 UE使用相同的预编码矩阵进行预编码, 但是就不能对每个 UE都使用最优的预编码矩 阵进行预编码, 无法获得最优的波束赋形的增益 (beamforming gain 因此, 优选地, 为该多个 UE分配不同的 DM RS端口。 例如, 两个 UE进行复用, 为 UE1分配 DM RS 端口为端口 7 (port 7), 为 UE2分配 DM RS端口为端口 8 (port 8), 本发明实施例对此 不做具体限定。 不同的 UE 使用不同的 DMRS 端口, 可以使基站在向每个 UE 发送 E-PDCCH时, 对每个用户使用其最优的预编码矩阵进行预编码。
参见图 5, 为正常的 CP长度下一个 RB对内 DM RS的一种示意图。 其中给出了 DM RS端口 7和端口 8在时频域的位置, 该 RB对包含有 12个 RE的 DM RS资源, 共 支持两个端口的 DM RS, DM RS端口 7和端口 8。 参见图 6, 为正常的 CP长度下一个 RB对内 DM RS的另一种示意图。 其中, 该 RB对包含有 24个 RE的 DM RS资源, 最 多可以支持 8个端口的 DM RS。 其中, 端口 7、 8、 11和 13在标注为横条纹的 DM RS 的 RE上发送, 端口 9、 10、 12和 14在标注为竖条纹的 DM RS的 RE上发送。
本实施例中, 基站在预编码的过程中使用的扩频序列可以如表 2所示, 表 2为正常 CP下的扩频序列。例如, DM RS端口为端口 8时, 扩频码长度为 4, 其扩频码为 [+1 ,-1, +1, -1], 则在偶时隙第 5个时域的 OFDM符号上频域的 DM RS位置上, 用 (0) = 1去 乘 DM RS位置上的相应的 DM RS导频; 偶时隙在第 6个时域的 OFDM符号上频域的 DM RS位置上, 用 (1) = -1去乘 DM RS位置上的相应的 DM RS导频; 在奇时隙第 5 个时域的 OFDM符号上频域的 DM RS位置上, 用 i^(0) = 1去乘 DM RS位置上的相应 的 DM RS 导频; 奇时隙在第 6个时域的 OFDM符号上频域的 DM RS位置上, 用 w (l) = -1去乘 DM RS位置上的相应的 DM RS导频。 表 2
Figure imgf000013_0001
Figure imgf000014_0001
通过 DM RS在时频域的位置以及相应的扩频序列, 从而组成了不同的 DM RS 的 端口。
本实施例中, 上述对 E-PDCCH资源进行时分复用、 频分复用或者时频分复用的任 一种划分方式中, 划分出来的多个控制信道单元可以是集中分布或者交替分布, 下面分 别以具体的例子进行说明。
第一个例子, 参见图 7, 为 2个 UE时分复用一个 RB对的示意图。 其中, 复用单 元包含一个 RB对, 为 UE1和 UE2两个 UE进行复用, CRS端口为 4个, DM RS资源 包含 12个 RE。在时域上划分 2个控制信道单元, 其中第一控制信道单元占用时域方向 上第 4、 6、 8、 10、 12和 14个 OFDM符号, 第二控制信道单元占用时域方向上第 5、 7、 9、 11和 13个 OFDM符号, 属于交替分布。 在频域上这两个控制信道单元均占用 12个 载波, 具有相同的载波资源。 将第一控制信道单元分配给 UE1, 将第二控制信道单元分 配给 UE2,进行 PDCCH的增强,则 UE1和 UE2的 E-PDCCH信号交替在不同的 OFDM 符号上发送。进一步地, 可以将 UE1和 UE2的 DM RS端口分别配置为不同的端口, 如 分别为端口 7和端口 8等。
第二个例子, 参见图 8, 为 2个 UE频分复用一个 RB对的示意图。 其中, 复用单 元包含一个 RB对, 为 UE1和 UE2两个 UE进行复用, CRS端口为 4个, DM RS资源 包含 12个 RE。在频域上划分 2个控制信道单元, 其中第一控制信道单元占用频域方向 上后 6个载波, 第二控制信道单元占用频域方向上前 6个载波, 属于集中分布。 在时域 上这两个控制信道单元均占用 11个相同的 OFDM符号, 具有相同的时域资源。 将第一 控制信道单元分配给 UE1, 将第二控制信道单元分配给 UE2, 进行 PDCCH的增强, 则 UE1和 UE2的 E-PDCCH信号分别在不同的载波上发送。进一步地,可以将 UE1和 UE2 的 DM RS端口分别配置为不同的端口, 如分别为端口 7和端口 8等。 当然, 也可以将 第一控制信道单元分配给 UE2,占用后 6个频域资源,将第二控制信道单元分配给 UE1, 占用前 6个频域资源, 本发明实施例对此不做具体限定。
第三个例子, 参见图 9a和图 9b, 为 2个 UE时频分复用一个 RB对的示意图。 与 上述两个例子的区别在于,一个 RB对内的两个控制信道单元在时域上占用的资源不同, 在频域上占用的资源也不同, 且属于交替分布。 其中, 参见图 9a, 在每一个 OFDM符 号对应的纵向频域资源列中, 按照由上至下先 UE1再 UE2的顺序交替分配给两个 UE, 即在每一列的 12个载波中, 除导频资源包括 CRS资源和 DM RS资源以外, 在剩余的 载波资源中都是先 UE1再 UE2的顺序交替占用的。 参见图 9b, 按照先频域从上至下, 再时域从左至右的顺序, 且先 UE1后 UE2的顺序分配, 即从图中第 4个 OFDM符号开 始,按照从第 4个至第 14个 OFDM符号的顺序,且每个 OFDM符号对应的频域资源列 中按照从上至下的载波顺序, 把除导频资源以外的资源交替分配给 UE1和 UE2。
第四个例子, 参见图 10a、 图 10b和图 10c, 为 4个 UE时频分复用 1个 RB对的示 意图。 与上述 3个例子的区别在于, 4个 UE进行复用, DM RS包含 24个 RE和 4个端 口, 该 4个端口分别分配给 4个 UE, 如给 UE1、 UE2、 UE3和 UE4分配的端口分别为 端口 7、 端口 8、 端口 9和端口 10。
其中, 参见图 10a, 与第一个例子类似, 为时分复用, 在时域上划分 4个控制信道 单元, 按照 UE1、 UE2、 UE3和 UE4的顺序交替分配, 其中分配给 UE1的第一控制信 道单元占用时域方向上第 4、 8和 12个 OFDM符号, 分配给 UE2的第二控制信道单元 占用时域方向上第 5、 9和 13个 OFDM符号, 分配给 UE3的第三控制信道单元占用时 域方向上第 6、 10和 14个 OFDM符号,分配给 UE4的第四控制信道单元占用时域方向 上的第 7和 11个 OFDM符号, 属于交替分布。
参见图 10b, 与第二个例子类似, 为时频分复用。 每个 OFDM符号所在的频域资源 列上划分为两个部分, 分别分配给 2个 UE, 以 2个 OFDM符号为一组分配给 4个 UE, 具体地, 从第 4个 OFDM符号开始, 按照从第 4个至第 14个 OFDM符号的顺序, 每两 个相邻的频域资源列分别将其中的第一列分配给 UE1和 UE2,第二列分配给 UE3和 UE4 的顺序, 然后依次交替分配。
参见图 10c, 与图 9b中的复用类似, 为时频分复用。 按照先频域从上至下, 再时域 从左至右的顺序, 且从 UE1、 UE2、 UE3至 UE4的顺序分配, 即从图中第 4个 OFDM 符号开始,按照从第 4个至第 14个 OFDM符号的顺序,且每个 OFDM符号对应的频域 资源列中按照从上至下的载波顺序, 把除导频资源以外的资源交替分配给 UE1、 UE2、 UE3禾口 UE4。
本发明实施例中,为了提高信道估计的性能,可以将多个 RB对作为一个复用单元, 并且, 在该复用单元内的所有 DM RS资源上, 包括每个 RB对内的 DM RS资源上, 发 送该多个 UE的导频信号,从而可以利用复用单元内所有 RB对上的 DM RS进行信道估 计, 与只利用一个 RB对进行信道估计相比, 信道估计的性能得到了提高。 以图 4为例, 复用单元包括 2个 RB对, 每个 RB对内划分 4个控制信道单元, 分配给 2个 UE, 每个 UE各占 2个控制信道单元,则在 RB对 1和 RB对 2的 DM RS资源上都会发送 UE1和 UE2的 DM RS信号。 具体地, 可以使用不同的 DM RS端口来分别发送 UE1和 UE2的 DM RS信号, 如 UE1使用 DM RS端口 7, UE2使用 DM RS端口 8等。
本实施例中, 将 PRG作为一个复用单元进行复用时, PRG内的 RB对个数由系统 带宽决定。 系统带宽与预编码粒度的对应关系可以参见表 3。 表 3
Figure imgf000016_0001
在表 3中, PRG大小表示的是在相应的系统带宽下, 对一个 UE而言, 在几个 RB 对内使用同样的预编码距阵进行预编码。例如, 系统带宽为 25个 RB, 则此时 PRG为 2 个 RB对, 系统带宽的 25个 RB中, 每两个 RB对使用同一个预编码距阵进行预编码, 因此可以将该 PRG内的 2个 RB对作为一个复用单元进行复用。 其中, PRG内划分的 多个控制信道单元供多个 UE复用,不同的 UE占用不同的控制信道单元。对于某个 UE 的 DM RS, 可以只要该 UE在这个 PRG内传送 E-PDCCH, 就在这个 PRG内的所有 RB 对上都发送该 UE的 DM RS信号, 或者在这个 PRG内只有在承载该 UE的 E-PDCCH 的 RB对上发送该 UE的 DM RS信号。 当在 PRG内的每个 PRB上发送 UE的 DM RS 信号时, 可以将多个 PRB进行联合的信道估计, 从而提高信道估计的性能。
在本发明实施例中, 一个复用单元划分的控制信道单元的个数, 以及 UE映射的控 制信道单元和 DM RS端口等信息, 可以由基站通过信令通知给 UE, 该信令通知可以是 RRC (Radio Resource Control, 无线资源控制) 信令半静态通知; 或者也可以将复用单 元内控制信道单元的分配图案和 DM RS端口绑定, 并将该绑定关系分配配置在基站和 UE两侧。 例如, 以图 7为例, 使用该图案的分配方案, 且将 UE1与 DM RS端口 7绑 定, 将 UE2与 DM RS端口 8绑定, 则无需基站再单独通知 UE。
在本实施例的一种可选的实现方式中, 一个 E-PDCCH的聚合级别可以为 1、 2、 4 或 8, 即一个 E-PDCCH可以由 1、 2、 4或 8个控制信道单元传输。 E-PDCCH可以分为 集中式(Localized) E-PDCCH和分布式(Distributed) E-PDCCH。其中,分布式 E-PDCCH 可以使用发送分集的方式发送; 集中式 E-PDCCH可以使用预编码或波束附型的方式发 送。 在本实现方式中, 进一步讨论集中式 E-PDCCH。
请参照图 10d, 图 10d示出了一种复用单元内控制信道单元的分配图案。 图 10d中 仅仅示出了复用单元中的一个 RB对。 所述复用单元中的每个 RB对可以包含多个控制 信道单元, 例如在图 10d 所示出的控制信道单元的分配图案中包含控制信道单元 eCCE0〜eCCE3。 值得指出的是, 在图 10d示出的分配图案中, 一个 RB对对内的 12个 子载波分成 4份, 一份占 3个子载波。 每个控制信道单元占用 3个子载波, 在时域上占 用 k (k为整数) 个 OFDM符号。 但本实施例不限于在一个 RB对内划为 4个控制信道 单元, 在一个 RB对中也可以划分为多个控制信道单元。
所述复用单元内控制信道单元的分配图案和 DM RS端口绑定关系可以是: eCCEO 与 DMRS端口 7绑定, eCCEl与 DMRS端口 8绑定, eCCE2与 DMRS端口 9绑定, eCCE3 与 DMRS端口 10绑定。如果将要发送的 E-PDCCH的聚合级别为 1, 那么可以在图 10d 示出的控制信道单元的分配图案中, 在 eCCEO发送第一 E-PDCCH, 在 DMRS端口 7 发送第一 E-PDCCH对应的 DMRS; 在 eCCEl发送第二 E-PDCCH, 在 DMRS端口 8发 送第二 E-PDCCH对应的 DMRS; 以此类推。
考虑到一个 RB对内的一个 E-PDCCH可以使用同一个端口, 且一个 E-PDCCH的 聚合级别可以大于 1, 例如聚合级别可以为 2。 所述复用单元内控制信道单元的分配图 案和 DM RS端口绑定关系可以是: eCCEO和 eCCEl与 DMRS端口 x绑定, eCCE2和 eCCE3与 DMRS端口 y绑定。 这样, 如果将要发送的 E-PDCCH的聚合级别为 2, 那么 可以在图 10e 示出的控制信道单元的分配图案中, 在 eCCEO 和 eCCEl 发送第一 E-PDCCH, 在 DMRS端口 x发送第一 E-PDCCH对应的 DMRS; 在 eCCE2和 eCCE3 发送第二 E-PDCCH,在 DMRS端口 y发送第二 E-PDCCH对应的 DMRS。其中, DMRS 端口 x, y可以是 DMRS端口 7、 8、 9和 10中的任意一个, 而且端口 x和端口 y可以 不同。
请参照图 10e, 图 10e示出了一种复用单元内控制信道单元的分配图案与 DMRS端 口绑定关系。 仍以一个 RB对中包含 4个控制信道单元为例, 即 RB对 n包含控制信道 单元 eCCE0〜eCCE3, S卩 RB 对 n+1 包含控制信道单元 eCCE4〜eCCE7。 如果一个 E-PDDCH的聚合级别大于 1,例如聚合级别为 4,那么有可能需要占多个 RB对。因此, 所述复用单元内控制信道单元的分配图案和 DM RS端口绑定关系还可以是: eCCEO与 DMRS端口 7绑定, eCCEl与 DMRS端口 8绑定, eCCE2〜eCCE5与 DMRS端口 x绑 定, eCCE6与 DMRS端口 9绑定, eCCE7与 DMRS端口 10绑定。 eCCE0、eCCEl、eCCE6 和 eCCE7可以分别用于发送聚合级别为 1的 E-PDCCH, 并在对应绑定的 DMRS端口 7-10发送 DMRS。 eCCE2〜eCCE5可以用于发送聚合级别为 4的 E-PDCCH, 并在对应 绑定的 DMRS端口 X发送 DMRS。 其中, DMRS端口 x可以是 DMRS端口 7、 8、 9或 10。
举例而言, 当用户 UE3的聚合级别为 4时, UE3的 E-PDDCH可发送在 RB对 n和
RB对 n+1的 eCCE2〜eCCE5上。 另夕卜, UE1的一个聚合级别为 1的 E-PDCCH在 RB 对 n的 eCCEO上发送, UE1使用 DMRS 端口 7上接收到的 DMRS进行信道估计; UE2 的一个聚合级别为 1的 E-PDCCH在 RB对 n的 eCCEl上发送, UE2使用 DMRS 端口 8上接收到的 DMRS进行信道估计; UE4的一个聚合级别为 1的 E-PDCCH在 RB对 n+1 的 eCCE6上发送, UE4使用 DMRS 端口 9上接收到的 DMRS进行信道估计; UE5的 一个聚合级别为 1的 E-PDCCH在 RB对 n+1的 eCCE7上发送, UE5使用 DMRS 端口 10上接收到的 DMRS进行信道估计。对于 UE3, 如果与 eCCE2〜eCCE5绑定的 DMRS 端口为 7或 8, 则 UE3需要使用 DMRS端口 7或 8上接收到的 DMRS进行信道估计, 但是 UE3使用的 DMRS端口会在第 n个 RB对内和 UE1或 UE2的 DMRS端口冲突。 如果与 eCCE2〜eCCE5绑定的 DMRS端口为 9或 10, 则 UE3使用的 DMRS端口会在 第 n+1个 RB对内和 UE4或 UE5的 DMRS端口冲突。
为了避免上述冲突, 一种方法是: UE3的聚合级别 4的 E-PDCCH如果使用端口 9, 而在 RB对 n+1的 eCCE6上不承载其他用户的聚合级别为 1的 E-PDCCH。
请参照图 10f, 图 10f示出了另一种复用单元内控制信道单元的分配图案与 DMRS端 口绑定关系。 图 10f 示出的绑定关系与图 10e所示出的绑定关系不同的是, eCCE2〜 eCCE3与 DMRS端口 9或 10绑定, eCCE4〜eCCE5与 DMRS端口 7或 8绑定。 当用 户 UE3的聚合级别为 4时, UE3的 E-PDDCH可发送在 RB对 n和 RB对 n+1的 eCCE2〜 eCCE5上。 此时, 使用 DMRS端口 9或 10发送 eCCE2〜eCCE3对应的 DMRS, 使用 DMRS端口 7或 8发送 eCCE4〜eCCE5对应的 DMRS。 这样, UE3在 RB对 n和 n+1 中不会与其他 UE发生 DMRS端口冲突。
在图 3所示的发送增强下行控制信道的方法的基础上, 也可以按照图 2所示的方法 进行增强下行控制信道的接收, 具体过程同上述实施例中的描述, 此处不再赘述。
本发明实施例提供的上述发送增强下行控制信道的方法,通过为复用单元划分多个 控制信道单元, 并发送至少一个 UE的至少一个 E-PDCCH, 对于每个 UE来说, 增强下 行控制信道的粒度为控制信道单元, 与现有技术一个 RB对的粒度相比, 降低了粒度, 节省了资源, 实现了下行控制信道的增强, 可以提供更多的控制信道给 UE使用。 对复 用单元可以在时分复用, 或者频分复用, 或者时频分复用划分出多个控制信道单元, 多 个控制信道单元可以集中分布或者交替分布, 有多种实现方式, 应用灵活方便。
以上的实施例为一个 UE的 E-PDCCH只通过一层进行传输的场景, 本发明的实施 例还可以应用于一个 UE的 E-PDCCH通过多层进行传输的场景。比如 UE1 是两层传输, 则 UE1需要两个 DM RS端口的导频分别估计两层的信道, 则可以给 UE1分配 DM RS 端口 7和 DM RS 端口 8, 如果还有其他的 UE要和 UE1复用, 则可以给其他的 UE使 用不同的 DM RS端口。 参见图 11, 本发明另一实施例提供了一种基站, 包括:
配置模块 1101, 用于预设一个复用单元, 该复用单元包括至少一个资源块对, 且该 至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源, E-PDCCH资源包括多个控制信道单元;
发送模块 1102, 用于在预设的复用单元的至少一个控制信道单元内发送至少一个 UE所对应的至少一个 E-PDCCH, 并且在所述预设的复用单元的 DM RS资源上发送该 至少一个 UE所对应的 DM RS;
其中, 所述至少一个资源块对为 PRG, 该 PRG内的资源块 RB个数由系统带宽决 定。
本实施例中, 发送模块 1102可以包括:
第一发送单元, 用于当所述至少一个 UE为多个 UE时, 在多个控制信道单元中的 至少两个控制信道单元内按照时分复用、 或频分复用、 或时频分复用发送该多个 UE对 应的 E-PDCCH。
或者, 发送模块 1102包括:
第二发送单元, 用于对于所述至少一个 UE中的每一个 UE, 在预设的复用单元内 的分配给该 UE的 DM RS端口对应的全部 DM RS时频资源上, 发送该 UE的 DM RS; 或者, 在承载 UE的 E-PDCCH的资源块对内的 DM RS资源上发送该承载的 UE的 DM RS。
本实施例中, 进一步, 配置模块还用于: 当所述至少一个 UE为多个 UE时, 为该 多个 UE分配不同的 DM RS端口, 或者为该多个 UE中的至少两个 UE分配相同的 DM RS端口。 其中, 当配置模块为该多个 UE分配不同的 DM RS端口时, 发送模块 1102可以包 括:
第三发送单元, 用于按照频分复用、 码分复用或频分和码分复用发送该多个 UE的 DM RS。
本实施例中, 当所述至少一个 UE为多个 UE且为该多个 UE分配 DM RS端口时, 发送模块 1102还可以用于:通过无线资源控制 RRC信令将为该多个 UE分配的 DM RS 端口通知给所述多个 UE; 或者, 配置模块还用于: 预先配置 DM RS端口与复用单元的 分配图案的绑定关系, 该绑定关系也配置在 UE侧。
本实施例中, 配置模块 1101可以用于: 在 E-PDCCH资源中按照时分复用、或频分 复用、 或时频分复用划分得到所述多个控制信道单元。
本实施例中,所述复用单元可以由至少一个资源块对内除 PDCCH资源和 CRS资源 和 CSI RS资源以外的资源组成。
本实施例中, 一个复用单元划分的控制信道单元的个数, 以及 UE映射的控制信道 单元和 DM RS端口等信息, 可以由基站通过信令通知给 UE, 该信令通知可以是 RRC 信令半静态通知; 或者也可以将复用单元内控制信道单元的分配图案和 DM RS端口绑 定, 并将该绑定关系分配配置在基站和 UE两侧, 从而无需基站再单独通知 UE。
本实施例中的所述基站可以为 eNB等, 本发明实施例对此不做具体限定。
本发明实施例提供的上述基站, 通过为复用单元划分多个控制信道单元, 并发送至 少一个 UE的至少一个 E-PDCCH,对于每个 UE来说,增强下行控制信道的粒度为控制 信道单元, 与现有技术一个 RB对的粒度相比, 降低了粒度, 节省了资源, 实现了下行 控制信道的增强, 可以提供更多的控制信道给 UE使用。 对复用单元可以在时分复用, 或者频分复用, 或者时频分复用划分出多个控制信道单元, 多个控制信道单元可以集中 分布或者交替分布, 有多种实现方式, 应用灵活方便。 参见图 12, 本发明另一实施例提供了一种用户设备 UE, 包括:
接收模块 1201, 用于在复用单元上接收信号, 该复用单元包括至少一个资源块对, 且该至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资 源, 该 E-PDCCH资源包括多个控制信道单元;
信道估计模块 1202, 用于使用在该复用单元上接收的所有 DM RS进行信道估计; 解调模块 1203,用于用所述信道估计的结果解调该复用单元中 E-PDCCH资源上接 收的信号, 获取 E-PDCCH;
其中, 所述至少一个资源块对为 PRG, 该 PRG内的资源块 RB个数由系统带宽决 定。
本实施例中涉及的复用单元的组成和划分均与上述方法实施例中的描述相同,此处 不再赘述。
本实施例中, UE可以通过接收基站发送的信令, 如 RRC信令, 来获得一个复用单 元划分的控制信道单元的个数, 以及 UE映射的控制信道单元和 DM RS端口等信息; 或者也可以预先将复用单元内控制信道单元的分配图案和 DM RS端口绑定, 并将该绑 定关系分配配置在基站和 UE两侧, 从而无需基站再单独通知 UE。
本发明实施例提供的上述 UE, 通过在复用单元上接收信号, 使用所有 DM RS信号 进行信道估计, 并用该信道估计的结果解调复用单元中 E-PDCCH资源上接收的信号, 从而获取该 UE的 E-PDCCH。 UE增强下行控制信道的粒度为控制信道单元, 与现有技 术相比, 降低了粒度, 节省了资源, 实现了下行控制信道的增强, 可以提供更多的控制 信道给 UE使用。 请参照图 13, 图 13是本发明实施例提供的另一种发送增强下行控制信道的方法的 流程图。 本实施例中的各技术术语可以参考本发明其他实施例。 本实施例提供的发送增 强下行控制信道的方法包括:
401、 基站在一个物理资源块 (Physical Resource Block, PRB) 对组中确定至少两 个 PRB对, 所述至少两个 PRB对用于发送一个增强下行控制信道 E-PDCCH和用于解 调所述 E-PDCCH的解调用导频 DMRS。
在本实施例的一种实现方式中, 所述 PRB对组由多个连续的 PRB对组成; 或者所 述 PRB对组为预编码资源块组 PRG, 所述 PRG内的 PRB个数由系统带宽决定。
在本实施例的一种实现方式中, 所述一个 E-PDCCH可以是发送给一个 UE的一个 E-PDCCH, 也可以是广播给多个 UE的一个 E-PDCCH。
在本实施例的一种实现方式中, 所述至少两个 PRB对可以是在所述 PRB对组中不 连续的 PRB对, 也可以是连续的 PRB对。 例如, 所述至少两个 PRB对可以是图 10e或 者图 10f中的 RB对 n和 RB对 n+1, 所述 E-PDCCH例如可以是在 eCCE2〜eCCE5上 发送的 UE3的聚合级别为 4的 E-PDDCH。
402、 基站确定发送所述 DMRS的 DRMS端口。 所述 E-PDDCH在 RB对 n和 RB对 n+1中所对应的 DMRS端口的端口号可以相同 也可以不同。 例如, 如图 10f所示出的, 用于解调 eCCE2〜eCCE3上传输的 E-PDDCH 的 DMRS在 DMRS端口 9或 10上发送,用于解调 eCCE4〜eCCE5上传输的 E-PDDCH 的 DMRS在 DMRS端口 7或 8上发送。 其他的举例可以参考前述的实施例, 这里不再 赘述。
在本实施例的一种实现方式中, 当所述 E-PDCCH 为单层传输时, 所述确定发送 DMRS的 DRMS端口包括:在所述至少两个 PRB对的每个 PRB对中,确定一个 DRMS 端口; 当所述 E-PDCCH为两层传输时, 所述确定发送 DMRS的 DRMS端口包括: 在 所述至少两个 PRB对的每个 PRB对中, 确定一个第一 DRMS端口和一个第二 DMRS 端口。
403、 基站使用相同的预编码矩阵对所述至少两个 PRB 对上的所述 E-PDCCH和 DMRS进行预编码。
具体而言, 当一个 E-PDCCH在一个 PRB对组中的至少两个 PRB对上传输时, 如 果所述至少两个 PRB对上的所述 E-PDCCH和 DMRS预编码是用相同的预编码矩阵进 行预编码的, 那么 UE可以对所述至少两个 PRB对的 DMRS进行联合信道估计。 所述 联合信道估计可以是: 在所述至少两个 PRB对上得到 DMRS信道后, 在根据 DMRS的 信道得到数据 RE上的信道时,不仅要考虑此 RE所在的 PRB对上的 DMRS信道,还要 考虑其他 PRB对上的 DMRS的信道。 即根据所述至少两个 PRB对上的 DMRS信道, 联合得到每个 PRB对内每个 RE的信道。
在本实施例的一种实现方式中, 当所述 E-PDCCH为两层传输时, 所述使用相同的 预编码矩阵对所述至少两个 PRB对上的解调用导频 DRMS端口的 DMRS进行预编码包 括: 使用预编码矩阵中的一个预编码向量, 对所述每个 PRB对中的第一 DRMS端口的 DMRS 进行预编码; 使用相同的预编码矩阵中的另一个预编码向量, 对所述每个 PRB 对上的第二 DRMS端口的 DMRS进行预编码。
404、 UE在所述至少两个 PRB对接收基站发送的所述 E-PDCCH和用于解调所述
E-PDCCH的所述 DRMS。
可选的, 在 404之前还可以包括: 所述 UE确定在至少两个物理资源块对中每个物 理资源块对上用于接收所述 DMRS的 DRMS端口。此时, 404具体为: 所述 UE在所述 至少两个物理资源块对的每个物理资源块对上使用所述确定的 DMRS端口接收 DMRS。 其中,在所述至少两个物理资源块对接收 DMRS所用的 DRMS端口的端口号可以不同。 进一步的, 当所述 E-PDCCH为单层传输时, 所述 UE确定在至少两个物理资源块 对中每个物理资源块对上用于接收所述 DMRS的 DRMS端口包括: 所述 UE在至少两 个物理资源块对中每个物理资源块对上确定用于接收所述 DMRS的一个 DRMS端口。 当所述 E-PDCCH为两层传输时, 所述 UE确定在至少两个物理资源块对中每个物理资 源块对上用于接收所述 DMRS的 DRMS端口包括: 所述 UE在至少两个物理资源块对 中每个物理资源块对上确定用于接收所述 DMRS 的一个第一 DMRS 端口和一个第二 DMRS端 Π。
405、 所述 UE 按照所述基站使用相同的预编码矩阵对所述至少两个 PRB 对的 E-PDCCH和 DRMS进行预编码, 对所述至少两个 PRB对的 DMRS进行信道估计。
优选的,所述 UE可以认为所述基站使用相同的预编码矩阵对所述至少两个 PRB对 的 E-PDCCH和 DRMS进行预编码, 即 UE认为满足了进行联合信道估计的条件, 对所 述至少两个 PRB对的 DMRS进行联合信道估计。
进一步的, 当所述 E-PDCCH为两层传输时, 所述 UE按照所述基站使用相同的预 编码矩阵对所述至少两个物理资源块对的 E-PDCCH和 DRMS进行预编码,对所述至少 两个物理资源块对的 DMRS进行信道估计包括:所述 UE按照所述基站使用相同的预编 码矩阵的一个预编码向量对所述至少两个物理资源块对的第一 DRMS端口的 DMRS进 行预编码, 对在所述至少两个物理资源块对的第一 DMRS端口接收到的 DMRS进行联 合信道估计。 所述 UE按照所述基站使用相同的预编码矩阵的另一个预编码向量对所述 至少两个物理资源块对的第二 DRMS端口的 DMRS进行预编码, 对在所述至少两个物 理资源块对的第二 DMRS端口接收到的 DMRS进行联合信道估计。
其中, 所述 UE按照所述基站使用相同的预编码矩阵的一个预编码向量对所述至少 两个物理资源块对的第一 DRMS端口的 DMRS进行预编码即是指, 所述 UE认为满足 了对在所述至少两个物理资源块对的第一 DMRS端口接收到的 DMRS进行联合信道估 计的条件。 所述 UE按照所述基站使用相同的预编码矩阵的另一个预编码向量对所述至 少两个物理资源块对的第二 DRMS端口的 DMRS进行预编码即是指, 所述 UE认为满 足了对在所述至少两个物理资源块对的第二 DMRS端口接收到的 DMRS进行联合信道 估计的条件。
406、 所述 UE根据信道估计结果, 在所述至少两个 PRB对的预定位置上检测所述 E-PDCCH。
所述预订位置为所述 E-PDCCH所在的 RE的位置, 所述预订位置对于所述基站和 所述 UE而言都是已知的。 请参照图 14, 图 14是本发明实施例提供的一种基站的结构图。 本实施例的基站可 以实现图 13所对应的实施例提供的方法。 其他实施例中的相关描述也适用于本实施例 中的基站。 本实施例的基站包括:
资源确定单元 141, 用于在一个物理资源块对组中确定至少两个物理资源块对, 所 述至少两个物理资源块对用于发送一个增强下行控制信道 E-PDCCH和用于解调所述 E-PDCCH的解调用导频 DMRS;
预编码单元 142, 用于使用相同的预编码矩阵对所述资源确定单元 141确定的所述 至少两个物理资源块对上的所述 E-PDCCH和 DMRS进行预编码。
在本实施例的一个实现方式中,所述物理资源块对组由多个连续的物理资源块对组 成; 或者所述物理资源块对组为预编码资源块组 PRG, 所述 PRG内的物理资源块个数 由系统带宽决定。
在本实施例的另一个实现方式中, 所述基站还包括端口确定单元 143, 用于确定发 送所述 DMRS的 DRMS端口,所述至少两个物理资源块对上的 DRMS端口的端口号不 同。
在本实施例的另一个实现方式中, 当所述 E-PDCCH为单层传输时, 所述端口确定 单元 143 用于在所述至少两个物理资源块对的每个物理资源块对中, 确定一个 DRMS 端口; 当所述 E-PDCCH为两层传输时, 所述端口确定单元 143用于在所述至少两个物 理资源块对的每个物理资源块对中,确定一个第一 DRMS端口和一个第二 DMRS端口。
在本实施例的另一个实现方式中, 当所述 E-PDCCH为两层传输时, 所述预编码单 元 142 用于使用预编码矩阵中的一个预编码向量, 对所述每个物理资源块对中的第一 DRMS端口的 DMRS进行预编码; 使用相同的预编码矩阵中的另一个预编码向量, 对 所述每个物理资源块对上的第二 DRMS端口的 DMRS进行预编码。
在本实施例的另一个实现方式中,所述至少两个物理资源块对为连续的两个物理资 源块对。 请参照图 15, 图 15是本发明实施例提供的一种用户设备 UE的结构图。 本实施例 的 UE可以实现图 13所对应的实施例提供的方法。 其他实施例中的相关描述也适用于 本实施例中的基站。 本实施例的 UE包括:
接收单元 151, 用于在一个物理资源块对组中至少两个物理资源块对接收基站发送 的增强下行控制信道 E-PDCCH和用于解调所述 E-PDCCH的解调用导频 DRMS;
信道估计单元 152, 用于按照所述基站使用相同的预编码矩阵对所述至少两个物理 资源块对的 E-PDCCH和 DRMS进行预编码,对所述接收单元 151接收到的所述至少两 个物理资源块对的 DMRS进行信道估计;
检测单元 153, 用于根据所述信道估计单元得到的信道估计结果, 在所述至少两个 物理资源块对的预定位置上检测所述 E-PDCCH。
在本实施例的一个实现方式中,所述信道估计单元 152用于按照所述基站使用相同 的预编码矩阵对所述至少两个物理资源块对的 E-PDCCH和 DRMS进行预编码,对所述 接收单元 151接收到的所述至少两个物理资源块对的 DMRS进行联合信道估计。
在本实施例的另一个实现方式中,所述物理资源块对组由多个连续的物理资源块对 组成; 或者所述物理资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB个数 由系统带宽决定。
在本实施例的另一个实现方式中, 所述 UE还包括: 确定单元 154, 用于确定在至 少两个物理资源块对中每个物理资源块对上用于接收所述 DMRS的 DRMS端口; 所述 接收单元 151用于在所述至少两个物理资源块对的每个物理资源块对上使用所述确定的 DMRS端口接收 DMRS;其中,在所述至少两个物理资源块对接收 DMRS所用的 DRMS 端口的端口号不同。
在本实施例的另一个实现方式中, 当所述 E-PDCCH为单层传输时, 所述确定单元 154用于在至少两个物理资源块对中每个物理资源块对上确定用于接收所述 DMRS的一 个 DRMS端口; 当所述 E-PDCCH为两层传输时, 所述确定单元 154用于在至少两个物 理资源块对中每个物理资源块对上确定用于接收所述 DMRS的一个第一 DMRS端口和 一个第二 DMRS端口。
在本实施例的另一个实现方式中, 当所述 E-PDCCH为两层传输时, 所述信道估计 单元 152用于按照所述基站使用相同的预编码矩阵的一个预编码向量对所述至少两个物 理资源块对的第一 DRMS端口的 DMRS进行预编码, 对在所述至少两个物理资源块对 的第一 DMRS端口接收到的 DMRS进行联合信道估计; 按照所述基站使用相同的预编 码矩阵的另一个预编码向量对所述至少两个物理资源块对的第二 DRMS端口的 DMRS 进行预编码, 对在所述至少两个物理资源块对的第二 DMRS端口接收到的 DMRS进行 联合信道估计。
在本实施例的另一个实现方式中,所述至少两个物理资源块对为连续的两个物理资 源块对。 参见图 16,本发明另一实施例提供了一种传输下行控制信息的系统,包括基站 1301 和 UE 1302, 其中, 基站 1301可以为上述任一实施例中的基站, UE 1302可以为上述任 —实施例中的 UE。 所述系统通过为复用单元划分多个控制信道单元, 并发送至少一个 UE所对应的至少一个 E-PDCCH, 对于每个 UE来说, 增强下行控制信道的粒度为控制 信道单元, 与现有技术一个 RB对的粒度相比, 降低了粒度, 节省了资源, 实现了下行 控制信道的增强, 可以提供更多的控制信道给 UE使用。 对复用单元可以在时分复用, 或者频分复用, 或者时频分复用划分出多个控制信道单元, 多个控制信道单元可以集中 分布或者交替分布, 有多种实现方式, 应用灵活方便。 本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来 完成, 也可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读 存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原 则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种发送增强下行控制信道的方法, 其特征在于, 所述方法包括:
预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述至少一个资源块 对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源,所述 E-PDCCH资 源包括多个控制信道单元;
在所述预设的复用单元的至少一个控制信道单元内发送至少一个用户设备 UE所对 应的至少一个 E-PDCCH,并且在所述预设的复用单元的 DM RS资源上发送所述至少一 个 UE所对应的 DM RS;
其中, 所述至少一个资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB 个数由系统带宽决定。
2、 根据权利要求 1所述的方法, 其特征在于, 在所述预设的复用单元的至少一个 控制信道单元内发送至少一个用户设备 UE所对应的至少一个 E-PDCCH, 包括:
当所述至少一个 UE为多个 UE时, 在多个所述控制信道单元中的至少两个控制信 道单元内按照时分复用、或频分复用、或时频分复用发送所述多个 UE对应的 E-PDCCH。
3、 根据权利要求 1所述的方法, 其特征在于, 发送所述至少一个 UE所对应的的 DM RS, 包括:
对于所述至少一个 UE中的每一个 UE,在所述预设的复用单元内的分配给所述 UE 的 DM RS端口对应的全部 DM RS时频资源上, 发送所述 UE的 DM RS;
或者, 在承载 UE的 E-PDCCH的资源块对内的 DM RS资源上发送所述承载的 UE 的 DM RS。
4、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
当所述至少一个 UE为多个 UE时, 为所述多个 UE分配不同的 DM RS端口, 或者 为所述多个 UE中的至少两个 UE分配相同的 DM RS端口。
5、根据权利要求 4所述的方法,其特征在于,当为所述多个 UE分配不同的 DM RS 端口时, 发送所述至少一个 UE所对应的 DM RS, 包括:
按照频分复用、 码分复用或频分和码分复用发送所述多个 UE的 DM RS。
6、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括: 通过无线资源控制 RRC信令将为所述多个 UE分配的 DM RS端口通知给所述多个 UE; 或者,
预先配置 DM RS端口与所述复用单元的分配图案的绑定关系, 所述绑定关系也配 置在 UE侧。
7、 根据权利要求 1至 6中任一项所述的方法, 其特征在于,
所述多个控制信道单元为在所述 E-PDCCH资源中按照时分复用、 或频分复用、 或 时频分复用划分后得到的。
8、 根据权利要求 1至 6中任一项所述的方法, 其特征在于,
所述复用单元由至少一个资源块对内除下行控制信道 PDCCH资源和公共参考信号 CRS资源和信道状态信息参考信号 CSI RS资源以外的资源组成。
9、 一种接收增强下行控制信道的方法, 其特征在于, 所述方法包括:
在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且所述至少一个资 源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源,所述 E-PDCCH 资源包括多个控制信道单元;
使用在所述复用单元上接收的所有 DM RS进行信道估计;
用所述信道估计的结果解调所述复用单元中 E-PDCCH 资源上接收的信号, 获取 E-PDCCH;
其中, 所述至少一个资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB 个数由系统带宽决定。
10、 一种基站, 其特征在于, 所述基站包括:
配置模块, 用于预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述 至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源, 所述 E-PDCCH资源包括多个控制信道单元;
发送模块,用于在所述预设的复用单元的至少一个控制信道单元内发送至少一个用 户设备 UE所对应的至少一个 E-PDCCH, 并且在所述预设的复用单元的 DM RS资源上 发送所述至少一个 UE所对应的 DM RS;
其中, 所述至少一个资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB 个数由系统带宽决定。
11、 根据权利要求 10所述的基站, 其特征在于, 所述发送模块包括:
第一发送单元, 用于当所述至少一个 UE为多个 UE时, 在多个所述控制信道单元 中的至少两个控制信道单元内按照时分复用、 或频分复用、 或时频分复用发送所述多个 UE对应的 E-PDCCH。
12、 根据权利要求 10所述的基站, 其特征在于, 所述发送模块包括:
第二发送单元, 用于对于所述至少一个 UE中的每一个 UE, 在所述预设的复用单 元内的分配给所述 UE的 DM RS端口对应的全部 DM RS时频资源上, 发送所述 UE的 DM RS;或者,在承载 UE的 E-PDCCH的资源块对内的 DM RS资源上发送所述承载的 UE的 DM RS。
13、 根据权利要求 10所述的基站, 其特征在于, 所述配置模块还用于: 当所述至 少一个 UE为多个 UE时, 为所述多个 UE分配不同的 DM RS端口, 或者为所述多个 UE中的至少两个 UE分配相同的 DM RS端口。
14、 根据权利要求 13 所述的基站, 其特征在于, 当所述配置模块为所述多个 UE 分配不同的 DM RS端口时, 所述发送模块包括:
第三发送单元, 用于按照频分复用、 码分复用或频分和码分复用发送所述多个 UE 的 DM RS。
15、 根据权利要求 13所述的基站, 其特征在于, 所述发送模块还用于: 通过无线 资源控制 RRC信令将为所述多个 UE分配的 DM RS端口通知给所述多个 UE;
或者, 所述配置模块还用于: 预先配置 DM RS端口与所述复用单元的分配图案的 绑定关系, 所述绑定关系也配置在 UE侧。
16、根据权利要求 10至 15中任一项所述的基站,其特征在于,所述配置模块用于: 在所述 E-PDCCH资源中按照时分复用、 或频分复用、 或时频分复用划分得到所述多个 控制信道单元。
17、 一种用户设备 UE, 其特征在于, 所述 UE包括:
接收模块, 用于在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且 所述至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资 源, 所述 E-PDCCH资源包括多个控制信道单元;
信道估计模块, 用于使用在所述复用单元上接收的所有 DM RS进行信道估计; 解调模块, 用于用所述信道估计的结果解调所述复用单元中 E-PDCCH资源上接收 的信号, 获取 E-PDCCH;
其中, 所述至少一个资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB 个数由系统带宽决定。
18、 一种传输下行控制信息的系统, 其特征在于, 所述系统包括如权利要求 10至 16任一项所述的基站和如权利要求 17所述的用户设备 UE。
19、 一种发送增强下行控制信道的方法, 其特征在于, 所述方法包括:
预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述至少一个资源块 对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源,所述 E-PDCCH资 源包括多个控制信道单元; 其中, 所述复用单元内控制信道单元的分配图案和 DM RS 端口绑定;
在所述预设的复用单元的至少一个控制信道单元内发送至少一个用户设备 UE所对 应的至少一个 E-PDCCH,并且在所述预设的复用单元的 DM RS资源上发送所述至少一 个 UE所对应的 DM RS。
20、 根据权利要求 19所述的方法, 其特征在于, 在所述预设的复用单元的至少一 个控制信道单元内发送至少一个用户设备 UE所对应的至少一个 E-PDCCH, 包括: 当所述至少一个 UE为多个 UE时, 在多个所述控制信道单元中的至少两个控制信 道单元内按照时分复用、或频分复用、或时频分复用发送所述多个 UE对应的 E-PDCCH。
21、 根据权利要求 19所述的方法, 其特征在于, 发送所述至少一个 UE所对应的 的 DM RS, 包括: 在承载 UE的 E-PDCCH的资源块对内的 DM RS资源上发送所述 UE的 DM RS。
22、 根据权利要求 19至 21中任一项所述的方法, 其特征在于,
所述复用单元由至少一个资源块对内除下行控制信道 PDCCH资源和公共参考信号 CRS资源和信道状态信息参考信号 CSI RS资源以外的资源组成。
23、 一种接收增强下行控制信道的方法, 其特征在于, 所述方法包括:
在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且所述至少一个资 源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源,所述 E-PDCCH 资源包括多个控制信道单元;其中,所述复用单元内控制信道单元的分配图案和 DM RS 端口绑定;
使用在所述复用单元上接收的所有 DM RS进行信道估计;
用所述信道估计的结果解调所述复用单元中 E-PDCCH 资源上接收的信号, 获取 E-PDCCH。
24、 一种基站, 其特征在于, 所述基站包括:
配置模块, 用于预设一个复用单元, 所述复用单元包括至少一个资源块对, 且所述 至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资源, 所述 E-PDCCH资源包括多个控制信道单元; 其中, 所述复用单元内控制信道单元的分 配图案和 DM RS端口绑定;
发送模块,用于在所述预设的复用单元的至少一个控制信道单元内发送至少一个用 户设备 UE所对应的至少一个 E-PDCCH, 并且在所述预设的复用单元的 DM RS资源上 发送所述至少一个 UE所对应的 DM RS。
25、 根据权利要求 24所述的基站, 其特征在于, 所述发送模块包括:
第一发送单元, 用于当所述至少一个 UE为多个 UE时, 在多个所述控制信道单元 中的至少两个控制信道单元内按照时分复用、 或频分复用、 或时频分复用发送所述多个 UE对应的 E-PDCCH。
26、 根据权利要求 24所述的基站, 其特征在于, 所述发送模块包括:
第二发送单元,用于在承载 UE的 E-PDCCH的资源块对内的 DM RS资源上发送所 述 UE的 DM RS。
27、 一种用户设备 UE, 其特征在于, 所述 UE包括:
接收模块, 用于在复用单元上接收信号, 所述复用单元包括至少一个资源块对, 且 所述至少一个资源块对包括增强下行控制信道 E-PDCCH资源和解调用导频 DM RS资 源, 所述 E-PDCCH资源包括多个控制信道单元; 其中, 所述复用单元内控制信道单元 的分配图案和 DM RS端口绑定;
信道估计模块, 用于使用在所述复用单元上接收的所有 DM RS进行信道估计; 解调模块, 用于用所述信道估计的结果解调所述复用单元中 E-PDCCH资源上接收 的信号, 获取 E-PDCCH。
28、 一种发送增强下行控制信道的方法, 其特征在于, 所述方法包括:
在一个物理资源块对组中确定至少两个物理资源块对,所述至少两个物理资源块对 用于发送一个增强下行控制信道 E-PDCCH和用于解调所述 E-PDCCH 的解调用导频 DMRS ;
使用相同的预编码矩阵对所述至少两个物理资源块对上的所述 E-PDCCH和 DMRS 进行预编码。
29、 根据权利要求 28所述的方法, 其特征在于,
所述物理资源块对组由多个连续的物理资源块对组成; 或者
所述物理资源块对组为预编码资源块组 PRG, 所述 PRG内的物理资源块个数由系 统带宽决定。
30、 根据权利要求 28或 29所述的方法, 其特征在于, 所述方法还包括: 确定发送所述 DMRS的 DRMS端口,所述至少两个物理资源块对上的 DRMS端口 的端口号不同。
31、 根据权利要求 30所述的方法, 其特征在于,
当所述 E-PDCCH为单层传输时, 所述确定发送 DMRS的 DRMS端口包括: 在所述至少两个物理资源块对的每个物理资源块对中, 确定一个 DRMS端口; 当所述 E-PDCCH为两层传输时, 所述确定发送 DMRS的 DRMS端口包括: 在所述至少两个物理资源块对的每个物理资源块对中, 确定一个第一 DRMS 端口 和一个第二 DMRS端口。
32、 根据权利要求 31所述的方法, 其特征在于, 当所述 E-PDCCH为两层传输时, 所述使用相同的预编码矩阵对所述至少两个物理资源块对上的所述 DRMS 端口的
DMRS进行预编码包括:
使用预编码矩阵中的一个预编码向量, 对所述每个物理资源块对中的第一 DRMS 端口的 DMRS 进行预编码; 使用相同的预编码矩阵中的另一个预编码向量, 对所述每 个物理资源块对上的第二 DRMS端口的 DMRS进行预编码。
33、 根据权利要求 28至 32中任意一项所述的方法, 其特征在于, 所述至少两个物 理资源块对为连续的两个物理资源块对。
34、 一种接收增强下行控制信道的方法, 其特征在于, 所述方法包括:
用户设备在一个物理资源块对组中至少两个物理资源块对接收基站发送的增强下 行控制信道 E-PDCCH和用于解调所述 E-PDCCH的解调用导频 DRMS;
所述用户设备按照所述基站使用相同的预编码矩阵对所述至少两个物理资源块对 的 E-PDCCH和 DRMS进行预编码, 对所述至少两个物理资源块对的 DMRS进行信道 估计;
所述用户设备根据信道估计结果,在所述至少两个物理资源块对的预定位置上检测 所述 E-PDCCH。
35、 根据权利要求 34所述的方法, 其特征在于, 所述对所述至少两个物理资源块 对的 DMRS进行信道估计包括对所述至少两个物理资源块对的 DMRS进行联合信道估 计。
36、 根据权利要求 35所述的方法, 其特征在于,
所述物理资源块对组由多个连续的物理资源块对组成; 或者
所述物理资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB个数由系统 带宽决定。
37、根据权利要求 34至 36中任意一项所述的方法,其特征在于,所述方法还包括: 所述用户设备确定在至少两个物理资源块对中每个物理资源块对上用于接收所述 DMRS的 DRMS端 Π;
所述用户设备在一个物理资源块对组中至少两个物理资源块对接收基站发送的 DMRS包括:
所述用户设备在所述至少两个物理资源块对的每个物理资源块对上使用所述确定 的 DMRS端口接收 DMRS;
其中,在所述至少两个物理资源块对接收 DMRS所用的 DRMS端口的端口号不同。
38、 根据权利要求 37所述的方法, 其特征在于,
当所述 E-PDCCH为单层传输时, 所述用户设备确定在至少两个物理资源块对中每 个物理资源块对上用于接收所述 DMRS的 DRMS端口包括:
所述用户设备在至少两个物理资源块对中每个物理资源块对上确定用于接收所述 DMRS的一个 DRMS端口;
当所述 E-PDCCH为两层传输时, 所述用户设备确定在至少两个物理资源块对中每 个物理资源块对上用于接收所述 DMRS的 DRMS端口包括:
所述用户设备在至少两个物理资源块对中每个物理资源块对上确定用于接收所述 DMRS的一个第一 DMRS端口和一个第二 DMRS端口。
39、 根据权利要求 38所述的方法, 其特征在于, 当所述 E-PDCCH为两层传输时, 所述用户设备按照所述基站使用相同的预编码矩阵对所述至少两个物理资源块对的 E-PDCCH和 DRMS进行预编码,对所述至少两个物理资源块对的 DMRS进行信道估计 包括:
所述用户设备按照所述基站使用相同的预编码矩阵的一个预编码向量对所述至少 两个物理资源块对的第一 DRMS端口的 DMRS进行预编码, 对在所述至少两个物理资 源块对的第一 DMRS端口接收到的 DMRS进行联合信道估计;
所述用户设备按照所述基站使用相同的预编码矩阵的另一个预编码向量对所述至 少两个物理资源块对的第二 DRMS端口的 DMRS进行预编码, 对在所述至少两个物理 资源块对的第二 DMRS端口接收到的 DMRS进行联合信道估计。
40、 根据权利要求 35至 39中任意一项所述的方法, 其特征在于, 所述至少两个物 理资源块对为连续的两个物理资源块对。
41、 一种基站, 其特征在于, 包括:
资源确定单元, 用于在一个物理资源块对组中确定至少两个物理资源块对, 所述至 少两个物理资源块对用于发送一个增强下行控制信道 E-PDCCH 和用于解调所述 E-PDCCH的解调用导频 DMRS;
预编码单元,用于使用相同的预编码矩阵对所述资源确定单元确定的所述至少两个 物理资源块对上的所述 E-PDCCH和 DMRS进行预编码。
42、 根据权利要求 41所述的基站, 其特征在于,
所述物理资源块对组由多个连续的物理资源块对组成; 或者
所述物理资源块对组为预编码资源块组 PRG, 所述 PRG内的物理资源块个数由系 统带宽决定。
43、 根据权利要求 41或 42所述的基站, 其特征在于, 还包括:
端口确定单元, 用于确定发送所述 DMRS的 DRMS端口, 所述至少两个物理资源 块对上的 DRMS端口的端口号不同。
44、 根据权利要求 43所述的基站, 其特征在于,
当所述 E-PDCCH为单层传输时, 所述端口确定单元用于在所述至少两个物理资源 块对的每个物理资源块对中, 确定一个 DRMS端口;
当所述 E-PDCCH为两层传输时, 所述端口确定单元用于在所述至少两个物理资源 块对的每个物理资源块对中, 确定一个第一 DRMS端口和一个第二 DMRS端口。
45、 根据权利要求 44所述的基站, 其特征在于, 当所述 E-PDCCH为两层传输时, 所述预编码单元用于使用预编码矩阵中的一个预编码向量,对所述每个物理资源块对中 的第一 DRMS端口的 DMRS进行预编码; 使用相同的预编码矩阵中的另一个预编码向 量, 对所述每个物理资源块对上的第二 DRMS端口的 DMRS进行预编码。
46、 根据权利要求 41至 45中任意一项所述的基站, 其特征在于, 所述至少两个物 理资源块对为连续的两个物理资源块对。
47、 一种用户设备, 其特征在于, 包括:
接收单元,用于在一个物理资源块对组中至少两个物理资源块对接收基站发送的增 强下行控制信道 E-PDCCH和用于解调所述 E-PDCCH的解调用导频 DRMS;
信道估计单元,用于按照所述基站使用相同的预编码矩阵对所述至少两个物理资源 块对的 E-PDCCH和 DRMS进行预编码,对所述接收单元接收到的所述至少两个物理资 源块对的 DMRS进行信道估计;
检测单元, 用于根据所述信道估计单元得到的信道估计结果, 在所述至少两个物理 资源块对的预定位置上检测所述 E-PDCCH。
48、 根据权利要求 47所述的用户设备, 其特征在于, 所述信道估计单元用于按照 所述基站使用相同的预编码矩阵对所述至少两个物理资源块对的 E-PDCCH和 DRMS进 行预编码, 对所述接收单元接收到的所述至少两个物理资源块对的 DMRS 进行联合信 道估计。
49、 根据权利要求 48所述的用户设备, 其特征在于,
所述物理资源块对组由多个连续的物理资源块对组成; 或者
所述物理资源块对为预编码资源块组 PRG, 所述 PRG内的资源块 RB个数由系统 带宽决定。
50、 根据权利要求 47至 49中任意一项所述的用户设备, 其特征在于, 还包括: 确定单元,用于确定在至少两个物理资源块对中每个物理资源块对上用于接收所述
DMRS的 DRMS端 Π;
所述接收单元用于在所述至少两个物理资源块对的每个物理资源块对上使用所述 确定的 DMRS端口接收 DMRS; 其中, 在所述至少两个物理资源块对接收 DMRS所用 的 DRMS端口的端口号不同。
51、 根据权利要求 50所述的用户设备, 其特征在于,
当所述 E-PDCCH为单层传输时, 所述确定单元用于在至少两个物理资源块对中每 个物理资源块对上确定用于接收所述 DMRS的一个 DRMS端口;
当所述 E-PDCCH为两层传输时, 所述确定单元用于在至少两个物理资源块对中每 个物理资源块对上确定用于接收所述 DMRS的一个第一 DMRS端口和一个第二 DMRS 端口。
52、根据权利要求 51所述的用户设备, 其特征在于, 当所述 E-PDCCH为两层传输 时,所述信道估计单元用于按照所述基站使用相同的预编码矩阵的一个预编码向量对所 述至少两个物理资源块对的第一 DRMS端口的 DMRS进行预编码, 对在所述至少两个 物理资源块对的第一 DMRS端口接收到的 DMRS进行联合信道估计; 按照所述基站使 用相同的预编码矩阵的另一个预编码向量对所述至少两个物理资源块对的第二 DRMS 端口的 DMRS进行预编码, 对在所述至少两个物理资源块对的第二 DMRS端口接收到 的 DMRS进行联合信道估计。
53、 根据权利要求 47至 52中任意一项所述的用户设备, 其特征在于, 所述至少两 个物理资源块对为连续的两个物理资源块对。
PCT/CN2012/080355 2011-08-18 2012-08-20 传输增强下行控制信道的方法、设备和系统 WO2013023621A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020157032424A KR101685517B1 (ko) 2011-08-18 2012-08-20 강화된 물리 다운링크 제어 채널을 전송하는 방법, 장치 및 시스템
RU2014110179/07A RU2558717C1 (ru) 2011-08-18 2012-08-20 Способ, устройство и система для передачи расширенного канала управления нисходящей линии
KR1020147006250A KR101570777B1 (ko) 2011-08-18 2012-08-20 강화된 물리 다운링크 제어 채널을 전송하는 방법, 장치 및 시스템
EP16163507.3A EP3104649B1 (en) 2011-08-18 2012-08-20 Method, device and system for transmitting extended physical downlink control channel
EP12823933.2A EP2739102B1 (en) 2011-08-18 2012-08-20 Method, device, and system for transmitting extended physical downlink control channel
JP2014525300A JP5938100B2 (ja) 2011-08-18 2012-08-20 拡張下りリンク制御チャネルを伝送するための方法、デバイス、およびシステム
US14/182,558 US10277372B2 (en) 2011-08-18 2014-02-18 Method, device and system for transmitting enhanced downlink control channel
US16/385,252 US10903955B2 (en) 2011-08-18 2019-04-16 Method, device and system for transmitting enhanced downlink control channel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110237806 2011-08-18
CN201110237806.9 2011-08-18
CN201210079003.X 2012-03-22
CN201210079003.XA CN102958183B (zh) 2011-08-18 2012-03-22 传输增强下行控制信道的方法、设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/182,558 Continuation US10277372B2 (en) 2011-08-18 2014-02-18 Method, device and system for transmitting enhanced downlink control channel

Publications (1)

Publication Number Publication Date
WO2013023621A1 true WO2013023621A1 (zh) 2013-02-21

Family

ID=47714779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080355 WO2013023621A1 (zh) 2011-08-18 2012-08-20 传输增强下行控制信道的方法、设备和系统

Country Status (8)

Country Link
US (2) US10277372B2 (zh)
EP (2) EP2739102B1 (zh)
JP (2) JP5938100B2 (zh)
KR (2) KR101570777B1 (zh)
CN (1) CN102958183B (zh)
HU (1) HUE030265T2 (zh)
RU (1) RU2558717C1 (zh)
WO (1) WO2013023621A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519825A (ja) * 2012-05-01 2015-07-09 クゥアルコム・インコーポレイテッドQualcomm I 低コストユーザ機器のための制御およびデータ送信を管理するための方法および装置
US20210068134A1 (en) * 2018-05-11 2021-03-04 Huawei Technologies Co., Ltd. Communications method and apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793141B (zh) * 2011-09-29 2020-03-31 华为技术有限公司 增强的物理下行控制信道e-pdcch的传输方法及设备
RU2596839C2 (ru) * 2011-10-20 2016-09-10 Самсунг Электроникс Ко., Лтд. Способ и устройство для передачи и приема управляющей информации в системе беспроводной связи
CN104104472B (zh) 2013-04-10 2019-05-21 中兴通讯股份有限公司 一种保证预编码后信道连续性的方法、基站和ue
US9313782B2 (en) * 2013-05-08 2016-04-12 Qualcomm Incorporated Enhanced PDSCH operation
JP2016536928A (ja) * 2013-09-25 2016-11-24 エヌイーシー(チャイナ)カンパニー, リミテッドNEC(China)Co.,Ltd. 無線通信システムにおけるアップリンク・データ送信のための方法及び装置
CN104579595A (zh) * 2013-10-16 2015-04-29 中兴通讯股份有限公司 ePHICH的发送和接收方法及系统
US9674710B2 (en) * 2013-12-20 2017-06-06 Qualcomm Incorporated Channel dependent coverage enhancement techniques in LTE
CN105207705A (zh) * 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备
CN107005376B (zh) * 2014-09-15 2020-08-28 诺基亚技术有限公司 用于单载波传输的下行链路控制信道的方法和装置
CN106209330B (zh) * 2015-05-08 2019-06-28 电信科学技术研究院 一种下行数据重复传输方法及设备
US9565481B1 (en) 2015-09-04 2017-02-07 International Business Machines Corporation Event pop-ups for video selection
CN106549741B (zh) * 2015-09-23 2019-10-15 华为技术有限公司 一种Port资源分配方法及装置
WO2017188734A1 (ko) * 2016-04-26 2017-11-02 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
JP6677134B2 (ja) 2016-09-13 2020-04-08 スズキ株式会社 運転支援装置
CN107896388B (zh) * 2016-09-29 2021-12-31 华为技术有限公司 下行控制信道的传输方法、接收网元及发送网元
CN108174445B (zh) * 2016-12-07 2022-02-11 华为技术有限公司 一种上行信息处理的方法及装置
US10779320B2 (en) 2016-12-16 2020-09-15 Qualcomm Incorporated Channel reservation signal with new radio PDCCH waveform
CN108289017B (zh) * 2017-01-09 2022-12-30 中兴通讯股份有限公司 信号接收、发送方法、控制信道的接收、发送方法及装置
BR112019015963A2 (pt) * 2017-02-03 2020-03-24 Ntt Docomo, Inc. Terminal, aparelho de estação base e método de radiocomunicação para um terminal
CN117856996A (zh) 2017-05-04 2024-04-09 华为技术有限公司 通信方法和通信装置
WO2018228699A1 (en) 2017-06-16 2018-12-20 Huawei Technologies Co., Ltd. Control device, network node and methods thereof
CN109842576B (zh) * 2017-10-01 2020-10-09 维沃移动通信有限公司 利用控制资源集的预编码粒度进行信道估计的方法和设备
CN110266459B (zh) 2018-05-11 2020-06-16 华为技术有限公司 一种发送解调参考信号dmrs的方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082600A (zh) * 2009-12-01 2011-06-01 中兴通讯股份有限公司 中继链路下行控制信息配置方法及传输基站、中继站与方法
WO2011085195A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited System and method for control channel interference management and extended pdcch
CN102420685A (zh) * 2011-11-07 2012-04-18 电信科学技术研究院 一种传输控制信息的方法及装置
CN102612094A (zh) * 2012-04-01 2012-07-25 华为技术有限公司 一种控制信令资源单元确定方法、基站及用户设备
WO2012109542A1 (en) * 2011-02-11 2012-08-16 Interdigital Patent Holdings, Inc Systems and methods for an enhanced control channel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2233543C2 (ru) * 1999-04-12 2004-07-27 Самсунг Электроникс Ко., Лтд. Устройство и способ осуществления передачи со стробированием в системе связи мдкр
JP4884722B2 (ja) * 2005-03-31 2012-02-29 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
JP2010245641A (ja) * 2009-04-01 2010-10-28 Sharp Corp 無線システム、基地局装置、移動局装置、通信方法、プログラム
US8797950B2 (en) * 2009-05-27 2014-08-05 Texas Instruments Incorporated Dual-layer beam forming in cellular networks
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
KR101684867B1 (ko) * 2010-04-07 2016-12-09 삼성전자주식회사 공간 다중화 이득을 이용한 제어 정보 송수신 방법
WO2011161907A1 (ja) * 2010-06-21 2011-12-29 パナソニック株式会社 無線通信装置及び無線通信方法
EP2630744B1 (en) * 2010-10-22 2021-03-31 Nokia Solutions and Networks Oy Enhanced inter-network access node scheduling coordination and signaling support for advanced receiver algorithms
US9001756B2 (en) * 2011-04-27 2015-04-07 Texas Instruments Incorporated Physical downlink control channel and physical hybrid automatic repeat request indicator channel enhancements
CN103636151B (zh) 2011-06-30 2017-02-15 Lg电子株式会社 在无线通信系统中分配下行链路控制信道的方法和设备
US8665811B2 (en) * 2011-08-15 2014-03-04 Motorola Mobility Llc Reference signal for a control channel in wireless communication network
US9655087B2 (en) * 2012-08-16 2017-05-16 Kt Corporation Configuration and mapping of uplink control channel resource

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082600A (zh) * 2009-12-01 2011-06-01 中兴通讯股份有限公司 中继链路下行控制信息配置方法及传输基站、中继站与方法
WO2011085195A1 (en) * 2010-01-11 2011-07-14 Research In Motion Limited System and method for control channel interference management and extended pdcch
WO2012109542A1 (en) * 2011-02-11 2012-08-16 Interdigital Patent Holdings, Inc Systems and methods for an enhanced control channel
CN102420685A (zh) * 2011-11-07 2012-04-18 电信科学技术研究院 一种传输控制信息的方法及装置
CN102612094A (zh) * 2012-04-01 2012-07-25 华为技术有限公司 一种控制信令资源单元确定方法、基站及用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "DM-RS Design forE-PDCCH in Rel-11", 3GPP TSG RAN WGL METTING #67, RL-114302, 14 November 2011 (2011-11-14), SAN FRANCISCO, USA, XP050562352 *
See also references of EP2739102A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519825A (ja) * 2012-05-01 2015-07-09 クゥアルコム・インコーポレイテッドQualcomm I 低コストユーザ機器のための制御およびデータ送信を管理するための方法および装置
US10200985B2 (en) 2012-05-01 2019-02-05 Qualcomm Incorporated Methods and apparatus for managing control and data transmissions for low cost user equipments
US20210068134A1 (en) * 2018-05-11 2021-03-04 Huawei Technologies Co., Ltd. Communications method and apparatus

Also Published As

Publication number Publication date
KR20140054209A (ko) 2014-05-08
JP5938100B2 (ja) 2016-06-22
EP2739102A1 (en) 2014-06-04
CN102958183A (zh) 2013-03-06
US10903955B2 (en) 2021-01-26
KR20150134437A (ko) 2015-12-01
EP3104649A1 (en) 2016-12-14
US20140233474A1 (en) 2014-08-21
KR101685517B1 (ko) 2016-12-12
EP2739102A4 (en) 2014-08-06
JP2016178673A (ja) 2016-10-06
JP2014527760A (ja) 2014-10-16
US20190245665A1 (en) 2019-08-08
US10277372B2 (en) 2019-04-30
EP2739102B1 (en) 2016-07-27
EP3104649B1 (en) 2019-07-31
RU2558717C1 (ru) 2015-08-10
JP6357495B2 (ja) 2018-07-11
HUE030265T2 (en) 2017-04-28
KR101570777B1 (ko) 2015-11-20
CN102958183B (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
US10903955B2 (en) Method, device and system for transmitting enhanced downlink control channel
JP7138379B2 (ja) 無線通信システムのharq-ackコードブック生成方法及びこれを用いる装置
EP2761959B1 (en) Wireless communication control channel system and method
CA2853003C (en) Method and apparatus for transmitting and receiving control information in a wireless communication system
JP5814470B2 (ja) 無線通信ネットワークにおける制御チャネルのための基準信号
JP5587824B2 (ja) 無線基地局装置、移動端末装置、無線通信システムおよび無線通信方法
WO2014032544A1 (zh) 一种物理下行共享信道的传输方法及系统
JP5898874B2 (ja) ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
KR20150082237A (ko) Harq 지시 정보를 전송하는 방법 및 장치
WO2014048076A1 (zh) 控制信息发送方法、接收方法和设备
WO2013109088A1 (ko) 무선 통신 시스템에서 개선된 제어 채널 기반 동작 방법 및 장치
WO2013097418A1 (zh) 导频资源分配方法和设备
EP2830249B1 (en) Control signaling demodulation method and terminal
JP2013021416A (ja) 移動通信システム、基地局装置、移動局装置および通信方法
WO2013139271A1 (zh) 控制信令的发送、接收方法、基站和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012823933

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012823933

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147006250

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014110179

Country of ref document: RU

Kind code of ref document: A