WO2013023604A1 - Ldpc code check matrix construction method and device, and encoding method and system - Google Patents

Ldpc code check matrix construction method and device, and encoding method and system Download PDF

Info

Publication number
WO2013023604A1
WO2013023604A1 PCT/CN2012/080188 CN2012080188W WO2013023604A1 WO 2013023604 A1 WO2013023604 A1 WO 2013023604A1 CN 2012080188 W CN2012080188 W CN 2012080188W WO 2013023604 A1 WO2013023604 A1 WO 2013023604A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
column
ldpc code
dimension
row
Prior art date
Application number
PCT/CN2012/080188
Other languages
French (fr)
Chinese (zh)
Inventor
李继龙
白栋
高鹏
申红兵
邢观斌
冯昂
Original Assignee
国家广播电影电视总局广播科学研究院
北京泰美世纪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家广播电影电视总局广播科学研究院, 北京泰美世纪科技有限公司 filed Critical 国家广播电影电视总局广播科学研究院
Publication of WO2013023604A1 publication Critical patent/WO2013023604A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/033Theoretical methods to calculate these checking codes
    • H03M13/036Heuristic code construction methods, i.e. code construction or code search based on using trial-and-error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method, apparatus, and method and system for constructing a low density parity check (LDPC) code check matrix.
  • LDPC low density parity check
  • the LDPC code was first proposed by Gallager and is a linear block code with a very sparse check matrix. That is to say, there are only a very small number of non-"0" elements in the check matrix (for binary codes, non-"0" elements are "1" elements). Further research by Mackay et al. shows that the performance of LDPC codes can approach the Shannon limit under the message passing (MP) iterative decoding algorithm.
  • MP message passing
  • CMMB China Mobile Multimedia Broadcasting
  • the China Mobile Multimedia Broadcasting (CMMB) system uses the channel coding scheme of the LDPC code.
  • the CMMB system realizes large-area broadcast coverage of the world by satellite and terrestrial base stations, and transmits multi-channel audio and video broadcasting services. Users can use the terminal to achieve mobile reception. Due to the limited power of the satellite signal, the synchronous satellite orbit is at an altitude of 36,000 km, and the path loss of the downlink signal is severe, resulting in a small link margin of the receiving terminal. Therefore, it is necessary to design an LDPC code with excellent performance.
  • the actual communication system requires low coding and decoder implementation complexity.
  • the method of computer search can generate LDPC codes with excellent performance randomly or randomly, but due to the randomness of the check matrix, a large amount of memory is required to store them. Since the code length of the LDPC code is long, the implementation of the encoder is very complicated. Since the code length of the LDPC code is long, the implementation of the encoder is very complicated. ⁇ Using mathematical methods to construct the LDPC code, you can add a certain constraint to make the check matrix have a certain structure.
  • the number of "1"s in each row of the check matrix is called the "line” of the row
  • the number of "1"s in each column of the check matrix is called the “column” of the column. If the following conditions are met: all rows of the check matrix have the same row degree and the column degrees of all columns are the same, then the LDPC code is called a regular LDPC code.
  • LDPC code Some research shows that non-ijLDPC ⁇ horse performance is better than see ⁇ (code.
  • One of the important methods to optimize irregular LDPC codes is to optimize the distribution of row and column degrees.
  • the quasi-cyclic LDPC code is widely used because it reduces the complexity of the codec.
  • the design of the quasi-cyclic LDPC code divides the entire check matrix into square sub-arrays. Each sub-array usually becomes a "block", and each sub-array satisfies the definition of the cyclic matrix.
  • the line distribution and the column degree distribution of the LDPC code of the finite code length are approximations to the preference distribution, and the degree distribution of the quasi-cyclic LDPC code often cannot be obtained accurately due to the "blocking" structure of the quasi-cyclic LDPC code. Approximation, which affects the performance of the code set. Summary of the invention
  • the present invention aims to at least solve or alleviate one of the above technical defects, in particular, by using the check matrix construction method of the LDPC code proposed by the present invention, constructing an LDPC code with excellent performance at an arbitrary bit rate, and solving the storage problem of the check matrix. , effectively reduce the implementation complexity of the encoder.
  • an aspect of the present invention provides a method for constructing an LDPC code check matrix, which includes the following steps:
  • Another aspect of the present invention provides an apparatus for constructing an LDPC code check matrix, comprising an excessive base matrix construction unit, an excessive matrix expansion unit, and a check matrix generation unit, wherein:
  • An over-matrix expansion unit for replacing an element in the excess base matrix ⁇ with a matrix of ⁇ X ⁇ dimension, and expanding the excessive base matrix ⁇ to an excessive matrix HB of the MxN dimension;
  • a check matrix generation unit for removing at least one element "1" of at least one KK-dimensional matrix in the over matrix HB to obtain a test matrix H having an optimized row redistribution and/or column redistribution For performing encoding and/or decoding of the LDPC code.
  • Another aspect of the present invention also provides an encoding system for an LDPC code, comprising: an LDPC code check matrix construction apparatus, an encoding matrix storage unit, a check sequence calculation unit, and a codeword sequence generation unit,
  • a check sequence calculation module configured to multiply the input information sequence m by a matrix (Hp-lHm) T to obtain a check sequence p;
  • a codeword sequence generating module is configured to combine the information sequence m and the check sequence p into a codeword sequence c and output.
  • the technical solution proposed by the present invention can construct an LDPC code with excellent performance at an arbitrary code rate. Furthermore, the technical solution proposed by the present invention also solves the storage problem of the check matrix, and effectively reduces the implementation complexity of the encoder.
  • the LDPC code constructed by the technical solution proposed by the present invention can be fully compatible with the physical layer structure of the CMMB system, and can effectively improve the link margin of the system.
  • the technical solution proposed by the present invention also solves the problem of the degree distribution of the quasi-cyclic LDPC code and enhances the performance of the code set.
  • FIG. 3 is a schematic diagram of the expansion of the excess base matrix BT into the excess matrix HT according to the second embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of the apparatus for constructing the LDPC code check matrix according to the first embodiment of the present invention
  • Schematic diagram of the coding system of the LDPC code of the embodiment of the invention
  • Figure 6 is a schematic diagram of simulation of Embodiment 1 of the present invention. detailed description
  • an embodiment of the present invention proposes a construction method of an LDPC code check matrix.
  • constructing an overtone basis matrix BT of an MBxNB dimension of an LDPC code having a code rate R and a code length of N includes the following steps:
  • the structure of the excessive basic matrix BT can be stored in the form of a table, and each row of the table records the position of the ⁇ in each row of the BT.
  • the order of the rows can be arbitrary, and the constructed BT is equivalent.
  • the offset of the cyclic permutation matrix P and the algebraic permutation matrix P may be stored in the form of a table, and each row of the table records the offset of the cyclic permutation matrix corresponding to "1" in each row of the basic matrix BT.
  • the excess matrix HT for some of the ⁇ ⁇ dimension expansion matrices, some of the elements "1" are removed, the degree distribution of the ⁇ is optimized, the target degree distribution is approximated, the check matrix ⁇ is obtained, and then the check is performed.
  • the matrix ⁇ can be used for encoding or decoding of LDPC codes.
  • r consecutive "1"s of row numbers are selected and deleted from the over-matrix HT to obtain a check matrix H, where 0 ⁇ r ⁇ K.
  • r consecutive "1"s of column numbers are selected and deleted from the excess matrix HT to obtain a check matrix H, where 0 ⁇ r ⁇ K.
  • r "1"s are randomly selected and deleted from the excess matrix HT to obtain a check matrix H, where 0 ⁇ r ⁇ K.
  • the structure of the check matrix H can be stored in the form of a base matrix position table and a cyclic permutation matrix offset table, thereby solving the storage problem of the check matrix.
  • an embodiment of the present invention also proposes a method of encoding an LDPC code constructed according to the construction method of the check matrix, which includes the following steps:
  • Hp is a subdimension of ⁇ dimension, calculate ⁇ -1 and Hp-lHm;
  • the code length N is chosen to be 9216, that is, a check matrix H of 4608x9216 dimensions is constructed.
  • the set ⁇ of the common factors of 4608 and 9216 is calculated.
  • the expansion ratio K is chosen to be 256.
  • the dimension of the excessive base matrix BT is 18x36.
  • the row weight distribution of H is
  • ⁇ 15, ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2 ⁇ ⁇ 4/36, 4/36, 1/36, 10/36, 17/36 ⁇ .
  • the offset of each cyclic permutation matrix P is arbitrarily selected.
  • the offset is appropriately adjusted to have an optimized stop set.
  • the cyclic permutation matrix P corresponding to some elements in the basic matrix BT of the excessive matrix HT is adjusted, and successive numbers are selected, and all the elements are set to zero, thereby obtaining the line degree satisfying the optimization.
  • the check matrix H of the distribution of the degree is adjusted, and successive numbers are selected, and all the elements are set to zero, thereby obtaining the line degree satisfying the optimization.
  • each row is the expansion and adjustment parameters of the base matrix ⁇ of the matrix.
  • the triplet (col, shift, adj(16)) indicates that the col column of the row is a cyclic permutation matrix with an offset of shift.
  • Adj(16) represents a four-bit unsigned hexadecimal number with a total of 16 bits, each of which represents the adjustment scheme of P's 16 lines.
  • Definition adj(2) represents a sixteen-bit unsigned binary number whose value is equal to adj(16). When a bit of adj(2) is "1", it means that all 16 lines corresponding to this bit are set to "0", otherwise it will not change. The correspondence is: the ith bit of adj(2), which controls the ixth 16th row to the ixth 16+15th row of the cyclic permutation matrix P.
  • FIG. 2 is a schematic diagram showing the expansion of the excessive basic matrix BT into the excessive matrix HT according to the first embodiment of the present invention.
  • the sub-matrix of the 4608x4608 dimension, Hp is a sub-matrix of 4608x4608 dimensions, and Hp-1 and Hp-lHm are calculated, and the matrix Hp-lHm has a structure of a block cycle;
  • the 1/2 code rate error correction coding has a signal-to-noise ratio (SNR) limit of about 0.2 dB when the bit error rate (BER) reaches 10-4.
  • the 1/2 code rate LDPC code constructed in Embodiment 1 has an SNR of about l.ldB when the BER reaches 10-4, and has excellent performance close to the theoretical limit.
  • the code length N is chosen to be 9216, that is, a check matrix H of 2304x9216 dimensions is constructed.
  • the expansion ratio is chosen to be 256, only partial row redistribution and column redistribution can be adapted.
  • the position of "1" in each row and each column of the base matrix ⁇ of the over matrix ⁇ is arbitrarily selected, but the 9 ⁇ 9-dimensional sub-matrix consisting of the last 9 columns of ⁇ is guaranteed to be full. rank.
  • each cyclic permutation matrix P is arbitrarily chosen.
  • the offset is appropriately adjusted to have an optimized stop set.
  • the cyclic permutation matrix P corresponding to the element part elements in the base matrix BT of the excess matrix HT is adjusted, and consecutive numbers of the rows are selected, and all the elements are set to zero to obtain the row and column satisfying the optimization.
  • the check matrix H of the degree distribution is adjusted, and consecutive numbers of the rows are selected, and all the elements are set to zero to obtain the row and column satisfying the optimization.
  • each row is the expansion and adjustment parameters of the base matrix ⁇ of the matrix.
  • the triplet (col, shift, adj(16)) is represented by the cyclic permutation matrix P replacement of the row col column with the offset being shifted.
  • Adj(16) represents a four-bit unsigned hexadecimal number with a total of 16 bits, each representing a 16-line adjustment scheme for P.
  • Definition adj(2) represents a sixteen-bit unsigned binary number whose value is equal to adj(16). When a bit of adj(2) is " ⁇ ", it means that all 16 lines corresponding to this bit are set to "0", otherwise they are unchanged. The corresponding relationship is: the i-th bit of adj(2), which controls the number of the cyclic permutation matrix P From line 16 to line i x 16+15.
  • FIG. 3 is a schematic diagram showing the expansion of the excessive basic matrix BT into the excessive matrix HT according to the second embodiment of the present invention.
  • Figure 3 is an illustration of the third element adj(16) in the triple (col, shift, adj(16)).
  • an embodiment of the present invention also proposes an apparatus for constructing an LDPC code check matrix.
  • 4 is a schematic structural diagram of an apparatus for constructing an LDPC code check matrix according to an embodiment of the present invention.
  • the apparatus includes an excessive base matrix construction unit 410, an excessive matrix expansion unit 420, and a check matrix generation unit 430, where:
  • the excess matrix expansion unit 420 is configured to replace the elements in the excess basic matrix ⁇ with the matrix of ⁇ X ⁇ dimension, and expand the excessive basic matrix ⁇ into the ⁇ dimension of the excess matrix ⁇ ;
  • the check matrix generating unit 430 is configured to remove at least one element "1" of the matrix of at least one of the ⁇ ⁇ matrix of the over matrix ⁇ , to obtain a check matrix ⁇ , the check matrix ⁇ having an optimized row redistribution and/or column Redistribution, used to encode and/or decode LDPC codes.
  • the excessive base matrix construction unit 410 is configured to construct an excessive base matrix BT of an MBxNB dimension, and select the number of "1"s in each row and each column of the excessive base matrix BT.
  • the row weight and column weight distribution of BT satisfy a predetermined node degree distribution; and under the premise that the row weight and the column weight satisfy a predetermined node degree distribution, the position of "1" in each row and each column in the excessive base matrix BT is selected. , making the sub-matrix of the MBxMB dimension composed of the last MB column of BT full rank.
  • an embodiment of the present invention further provides an LDPC code coding system, including an LDPC code check matrix construction apparatus 510, an encoding matrix storage unit 520, a check sequence calculation unit 530, and a codeword sequence generation.
  • Unit 540 wherein:
  • the matrix ⁇ is expanded into an ⁇ -dimensional over-matrix ⁇ , and at least one element "1" of the matrix of at least one ⁇ X ⁇ dimension in the over-matrix ⁇ is removed to obtain a test matrix ⁇ of the ⁇ dimension;
  • the check sequence calculation module 530 is configured to multiply the input information sequence m by the matrix (Hp-lHm)T to obtain a check sequence p; since Hp-lHm has a structure of a block cycle, matrix multiplication m (Hp-lHm) T can be implemented in a simple manner, such as a shift register, thereby greatly reducing the implementation complexity of the encoder;
  • the codeword sequence generating module 540 is configured to combine the information sequence m and the check sequence p into a codeword sequence c and output.
  • the code rate R is 1/2
  • the code length N is 9216
  • the expansion ratio is 10 ⁇ 7256
  • the code rate R is 3/4
  • the code length ⁇ is 9216
  • the expansion ratio is 10 ⁇ 256
  • ⁇ 9, ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2 ⁇ ⁇ 1/18, 1/9, 2/9, 7/18, 2/9 ⁇ ;
  • ⁇ 9, ⁇ 8, ⁇ 5, ⁇ 4, ⁇ 3, ⁇ 2 ⁇ ⁇ 35/576,1/576,1/9,2/9,7/18,2/9 ⁇ ;
  • the check matrix ⁇ is specifically:
  • Figure 6 is a schematic diagram of simulation of Embodiment 1 of the present invention.
  • the 1/2 code rate LDPC code constructed in Embodiment 1 has an SNR of about l.ldB when the BER reaches 10-4, and has excellent performance close to the theoretical limit.
  • the technical solution proposed by the embodiment of the present invention can construct an LDPC code with excellent performance at an arbitrary code rate.
  • the technical solution proposed by the embodiment of the present invention also solves the storage problem of the check matrix, and effectively reduces the implementation complexity of the encoder.
  • the LDPC code constructed by the technical solution proposed by the embodiment of the present invention can be fully compatible with the physical layer structure of the CMMB system, and can effectively improve the link margin of the system.
  • the technical solution proposed by the present invention also solves the problem of the degree distribution of the quasi-cyclic LDPC code and enhances the performance of the code set.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

Proposed is an LDPC code check matrix construction method, including: constructing an MB × NB-dimension transition basis matrix (BT) of LDPC code which has a production code rate R and code length N, where MB = M/K, NB = N/K, M = N(1 - R), K is the divergence ratio of the transition basis matrix, k∈Φ, and Φ is a set of the common factors of M and N; using a K × K-dimension matrix to replace the elements of the transition basis matrix (BT), and expanding the transition basis matrix (BT) to an M × N-dimension transition matrix (HT); and removing at least one element "1" of at least one K × K-dimension matrix of the transition matrix (HT) to obtain a check matrix (H), wherein the check matrix (H) has an optimized row redistribution and/or column redistribution used for encoding and/or decoding the LDPC code. Also proposed are an LDPC code check matrix construction device, and an encoding method and system.

Description

LDPC码校验矩阵的构造方法、 装置和编码方法及系统 技术领域  Method, device and coding method and system for LDPC code check matrix
本发明涉及无线通信领域,具体而言,本发明涉及低密度奇偶校验 ( LDPC ) 码校验矩阵的构造方法、 装置和编码方法及系统。 背景技术  The present invention relates to the field of wireless communications, and in particular, to a method, apparatus, and method and system for constructing a low density parity check (LDPC) code check matrix. Background technique
香农( Shannon )在著名的 "通信的数学理论" 中, 阐明了在有噪声信道 中实现可靠传输的途径是编码。 他提出了有噪声信道中信息可传输的最大速 率, 即信道容量; 同时也推导出了信息可无错误传输所需的最小信噪比值, 被 称为 Shannon极限。 虽然 Shannon的信道编码理论给出了最佳编码的极限性能, 但并没有给出具体的编码方案。 以此为基础,人们一直致力于寻找性能上接近 Shannon极限的编码方案。  In the famous "Mathematical Theory of Communication", Shannon clarified that the way to achieve reliable transmission in noisy channels is coding. He proposed the maximum rate at which information can be transmitted in a noisy channel, namely the channel capacity. It also derives the minimum signal-to-noise ratio required for error-free transmission of information, known as the Shannon limit. Although Shannon's channel coding theory gives the ultimate performance of optimal coding, it does not give a specific coding scheme. Based on this, people have been working hard to find a coding scheme that is close to the Shannon limit in performance.
LDPC码最早由加拉格尔(Gallager )提出, 是一种校验矩阵非常稀疏的线 性分组码。 也就是说, 其校验矩阵中只有非常少量的非 "0" 元素 (对于二进 制码来说,非 "0"元素即为 "1"元素)。 Mackay等人的进一步研究表明, LDPC 码的性能在消息传递(MP )迭代译码算法下可以接近 Shannon极限。  The LDPC code was first proposed by Gallager and is a linear block code with a very sparse check matrix. That is to say, there are only a very small number of non-"0" elements in the check matrix (for binary codes, non-"0" elements are "1" elements). Further research by Mackay et al. shows that the performance of LDPC codes can approach the Shannon limit under the message passing (MP) iterative decoding algorithm.
目前, LDPC码正被越来越多的应用于各种通信系统中。 中国移动多媒体 广播( CMMB ) 系统就釆用了 LDPC码的信道编码方案。 CMMB系统通过卫星 和地面基站实现天地一体的大面积广播覆盖,传送多路音视频广播业务。用户 可以用终端实现移动接收。 由于卫星信号功率受限, 同步卫星轨道在 36000公 里高空, 下行信号的路径损耗严重, 导致接收终端的链路余量很小。 因此, 需 要设计性能优秀的 LDPC码。 此外, 实际的通信系统还需要低的编、 译码器实 现复杂度。釆用计算机搜索的方法虽然可以随机或者类随机的生成性能优秀的 LDPC码, 但由于校验矩阵的随机性, 需要大量的存储器对其进行存储。 又由 于 LDPC码的码长较长, 编码器的实现非常复杂度。 又由于 LDPC码的码长较 长, 编码器的实现非常复杂度。 釆用数学的方法对 LDPC码进行构造, 则可以 通过附加一定的约束条件, 使其校验矩阵具有一定的结构。  Currently, LDPC codes are being used more and more in various communication systems. The China Mobile Multimedia Broadcasting (CMMB) system uses the channel coding scheme of the LDPC code. The CMMB system realizes large-area broadcast coverage of the world by satellite and terrestrial base stations, and transmits multi-channel audio and video broadcasting services. Users can use the terminal to achieve mobile reception. Due to the limited power of the satellite signal, the synchronous satellite orbit is at an altitude of 36,000 km, and the path loss of the downlink signal is severe, resulting in a small link margin of the receiving terminal. Therefore, it is necessary to design an LDPC code with excellent performance. In addition, the actual communication system requires low coding and decoder implementation complexity. Although the method of computer search can generate LDPC codes with excellent performance randomly or randomly, but due to the randomness of the check matrix, a large amount of memory is required to store them. Since the code length of the LDPC code is long, the implementation of the encoder is very complicated. Since the code length of the LDPC code is long, the implementation of the encoder is very complicated.釆 Using mathematical methods to construct the LDPC code, you can add a certain constraint to make the check matrix have a certain structure.
而且, 校验矩阵的每一行中 "1" 的数目称为该行的 "行度", 校验矩阵的 每一列中 "1" 的数目称为该列的 "列度"。 如果满足以下条件: 其校验矩阵所 有行的行度相同, 所有列的列度也相同, 那么这个 LDPC码称为规则 LDPC码。  Moreover, the number of "1"s in each row of the check matrix is called the "line" of the row, and the number of "1"s in each column of the check matrix is called the "column" of the column. If the following conditions are met: all rows of the check matrix have the same row degree and the column degrees of all columns are the same, then the LDPC code is called a regular LDPC code.
LDPC码。 有研^:表明, 非 ijLDPC^马性能优于见则 ^(码。 优选非规则 LDPC码的重要方法之一是优化行度和列度的分布。 LDPC code. Some research shows that non-ijLDPC^ horse performance is better than see ^ (code. One of the important methods to optimize irregular LDPC codes is to optimize the distribution of row and column degrees.
准循环 LDPC码因为降低了编译码器的复杂度,被广泛应用。为了获得结 构化设计, 准循环 LDPC码将整个校验矩阵分为方型子阵,每个子阵通常成为 一个 "块", 每个子阵满足循环矩阵定义。 通常, 有限码长 LDPC码的行度分 布和列度分布是对于优选度分布的近似, 而由于准循环 LDPC码的 "分块"结 构,使得准循环 LDPC码的度分布往往不能获得较为准确的近似,从而影响了 码集的性能。 发明内容 The quasi-cyclic LDPC code is widely used because it reduces the complexity of the codec. In order to get the knot The design of the quasi-cyclic LDPC code divides the entire check matrix into square sub-arrays. Each sub-array usually becomes a "block", and each sub-array satisfies the definition of the cyclic matrix. Generally, the line distribution and the column degree distribution of the LDPC code of the finite code length are approximations to the preference distribution, and the degree distribution of the quasi-cyclic LDPC code often cannot be obtained accurately due to the "blocking" structure of the quasi-cyclic LDPC code. Approximation, which affects the performance of the code set. Summary of the invention
本发明旨在至少解决或减緩上述技术缺陷之一,特别是通过本发明提出的 LDPC码的校验矩阵构造方法, 构造出任意码率的性能优秀的 LDPC码, 解决 校验矩阵的存储问题, 有效降低编码器的实现复杂度。  The present invention aims to at least solve or alleviate one of the above technical defects, in particular, by using the check matrix construction method of the LDPC code proposed by the present invention, constructing an LDPC code with excellent performance at an arbitrary bit rate, and solving the storage problem of the check matrix. , effectively reduce the implementation complexity of the encoder.
为了达到上述目的, 本发明的一方面提出了一种 LDPC码校验矩阵的构造 方法, 包括以下步骤:  In order to achieve the above object, an aspect of the present invention provides a method for constructing an LDPC code check matrix, which includes the following steps:
构造一个产生码率为 R、 码长为 N的LDPC码的 ΜΒχΝΒ维的过度基础矩阵 BT, 其中 MB=M/K, NB=N/K, M = N ( 1 - R ), K为过度基础矩阵的扩张比, K G Φ, Φ为 M和 N的公因子的集合;  Construct an over-basic matrix BT of ΜΒχΝΒV LDPC codes with a code rate R and a code length of N, where MB=M/K, NB=N/K, M = N ( 1 - R ), K is an excessive basis The expansion ratio of the matrix, KG Φ, Φ is the set of common factors of M and N;
用 K X K维的矩阵替换过度基础矩阵 BT中的元素,将过度基础矩阵 BT扩张 为 MxN维的过度矩阵 HT;  Substituting the elements of the excess basic matrix BT with the matrix of the K X K dimension, expanding the excessive basic matrix BT into the MxN dimensional excess matrix HT;
去除过度矩阵 HT中至少一个 K X K维的矩阵的至少一个元素 " 1" , 以获得 检验矩阵 H, 所述校验矩阵 H具有优化的行重分布和 /或列重分布, 用于进行 LDPC码的编码和 /或译码。  Removing at least one element "1" of the matrix of at least one KXK dimension in the over matrix HT to obtain a test matrix H having an optimized row redistribution and/or column redistribution for performing LDPC codes Encoding and / or decoding.
本发明另一方面提出了一种 LDPC码校验矩阵的构造装置, 包括过度基础 矩阵构造单元、 过度矩阵扩张单元和检验矩阵生成单元, 其中:  Another aspect of the present invention provides an apparatus for constructing an LDPC code check matrix, comprising an excessive base matrix construction unit, an excessive matrix expansion unit, and a check matrix generation unit, wherein:
过度基础矩阵构造单元, 用于构造一个产生码率为 R、 码长为 N的 LDPC 码的 MBxNB维的过度基础矩阵 BT, 其中 MB=M/K, NB=N/K, M = N ( 1 - R ), K为过度基础矩阵的扩张比, Φ为 Μ和 Ν的公因子的集合;  An over-basic matrix construction unit for constructing an over-basic matrix BT of an MBxNB dimension of an LDPC code having a code rate R and a code length N, where MB=M/K, NB=N/K, M=N (1) - R ), K is the expansion ratio of the excess base matrix, and Φ is the set of common factors of Μ and Ν;
过度矩阵扩张单元, 用于用 Κ X Κ维的矩阵替换过度基础矩阵 ΒΤ中的元 素, 将过度基础矩阵 ΒΒ扩张为 MxN维的过度矩阵 HB;  An over-matrix expansion unit for replacing an element in the excess base matrix ΒΤ with a matrix of Κ X Κ dimension, and expanding the excessive base matrix ΒΒ to an excessive matrix HB of the MxN dimension;
检验矩阵生成单元,用于去除过度矩阵 HB中至少一个 K K维的矩阵的至 少一个元素 "1" , 以获得检验矩阵 H, 所述校验矩阵 H具有优化的行重分布和 / 或列重分布, 用于进行 LDPC码的编码和 /或译码。  a check matrix generation unit for removing at least one element "1" of at least one KK-dimensional matrix in the over matrix HB to obtain a test matrix H having an optimized row redistribution and/or column redistribution For performing encoding and/or decoding of the LDPC code.
本发明的另一方面还提出了一种 LDPC码的编码方法, 包括以下步骤: 将校验矩阵 H分为两个子矩阵 H=[HmHp] , 其中 Hm为 Mx(N_M)维的子矩 阵, Hp为 MxM维的子矩阵, 计算 Hp-1和 Hp-lHm, 所述校验矩阵 H通过以下 方式得到:  Another aspect of the present invention also provides an encoding method of an LDPC code, comprising the following steps: dividing a check matrix H into two sub-matrices H=[HmHp], where Hm is a sub-matrix of Mx(N_M) dimensions, Hp For the sub-matrices of the MxM dimension, Hp-1 and Hp-lHm are calculated, and the check matrix H is obtained by:
构造一个产生码率为 R、 码长为 N的LDPC码的 ΜΒχΝΒ维的过度基础矩阵 BT, 其中 MB=M/K, NB=N/K, M = N ( 1 - R ), K为过度基础矩阵的扩张比, ≡Φ, Φ为 Μ和 Ν的公因子的集合; Construct an over-basic matrix of ΜΒχΝΒV LDPC codes with a code rate of R and a code length of N BT, where MB=M/K, NB=N/K, M = N ( 1 - R ), K is the expansion ratio of the excess basic matrix, ≡Φ, Φ is the set of common factors of Μ and Ν;
用 Κ X Κ维的矩阵替换过度基础矩阵 ΒΤ中的元素,将过度基础矩阵 ΒΤ扩张 为 ΜχΝ维的过度矩阵 ΗΤ;  Substituting the elements of the excess base matrix ΒΤ with the matrix of Κ X Κ dimension, expanding the excess base matrix ΒΤ into the 矩阵 dimension of the matrix ΗΤ;
去除过度矩阵 ΗΤ中至少一个 Κ X Κ维的矩阵的至少一个元素 " 1 " , 以获得 检验矩阵 Η , 所述校验矩阵 Η具有优化的行重分布和 /或列重分布, 用于进行 LDPC码的编码和 /或译码。  Removing at least one element "1" of the matrix of at least one ΚX Κ dimension of the over matrix ΗΤ to obtain a test matrix Η having an optimized row weight distribution and/or column redistribution for performing LDPC Encoding and/or decoding of a code.
本发明的另一方面还提出了一种 LDPC码的编码系统, 包括 LDPC码校验 矩阵的构造装置、编码矩阵存储单元、校验序列计算单元以及码字序列生成单 元,  Another aspect of the present invention also provides an encoding system for an LDPC code, comprising: an LDPC code check matrix construction apparatus, an encoding matrix storage unit, a check sequence calculation unit, and a codeword sequence generation unit,
LDPC码校验矩阵的构造装置, 用于构造一个产生码率为 R、 码长为 N的 LDPC码的 MB xNB维的过度基础矩阵 BT, 其中 MB=M/K, NB=N/K, M = N ( 1 - R ), K为过度基础矩阵的扩张比, ΚΕ Φ , Φ为 Μ和 Ν的公因子的集合, 并用 Κ Κ维的矩阵替换过度基础矩阵 ΒΤ中的元素, 将过度基础矩阵 ΒΤ扩张为 ΜχΝ维的过度矩阵 ΗΤ , 去除过度矩阵 ΗΤ中至少一个 Κ X Κ维的矩阵的至少一 个元素 " 1 " , 以获得 ΜχΝ维的检验矩阵 Η;  An apparatus for constructing an LDPC code check matrix, configured to construct an over-basic matrix BT of an MB xNB dimension of an LDPC code having a code rate R and a code length N, where MB=M/K, NB=N/K, M = N ( 1 - R ), K is the expansion ratio of the excess base matrix, ΚΕ Φ , Φ is the set of common factors of Μ and Ν, and replaces the elements in the excess base matrix Κ with the matrix of Κ Κ dimension, and the excessive basic matrix ΒΤ expanding into an over-matrix ΜχΝ of the dimension, removing at least one element "1" of the matrix of at least one ΚX Κ dimension of the over-matrix , to obtain a test matrix ΜχΝ of the dimension;
编码矩阵存储模块, 用于存储编码矩阵的结构, 将由 LDPC码校验矩阵的 构造装置构造的 MxN维的校验矩阵 H分为两个子矩阵 H=[HmHp] , 其中 Hm为 Μχ(Ν-Μ)维的子矩阵, Hp为 ΜχΜ维的子矩阵, 所述编码矩阵存储模块用于存 储矩阵 Hp-lHm的结构, 所述 Hp-lHm具有分块循环的结构, 可以以块为单位 进行存储;  The coding matrix storage module is configured to store the structure of the coding matrix, and divide the check matrix H of the MxN dimension constructed by the construction device of the LDPC code check matrix into two sub-matrices H=[HmHp], where Hm is Μχ(Ν-Μ) a sub-matrix of a dimension, Hp is a sub-matrix of a dimension, the coding matrix storage module is configured to store a structure of a matrix Hp-lHm, and the Hp-lHm has a structure of a block-by-loop, and can be stored in units of blocks;
校验序列计算模块, 用于将输入的信息序列 m与矩阵 (Hp-lHm)T相乘, 得 到校验序列 p;  a check sequence calculation module, configured to multiply the input information sequence m by a matrix (Hp-lHm) T to obtain a check sequence p;
码字序列生成模块, 用于将信息序列 m和校验序列 p组合成码字序列 c并输 出。  A codeword sequence generating module is configured to combine the information sequence m and the check sequence p into a codeword sequence c and output.
本发明提出的技术方案可以构造出任意码率的性能优秀的 LDPC码。此夕卜, 本发明提出的技术方案还解决了校验矩阵的存储问题,有效降低了编码器的实 现复杂度。 本发明提出的技术方案构造的 LDPC码可以与 CMMB系统的物理层 结构完全兼容, 能有效的提高系统的链路余量。  The technical solution proposed by the present invention can construct an LDPC code with excellent performance at an arbitrary code rate. Furthermore, the technical solution proposed by the present invention also solves the storage problem of the check matrix, and effectively reduces the implementation complexity of the encoder. The LDPC code constructed by the technical solution proposed by the present invention can be fully compatible with the physical layer structure of the CMMB system, and can effectively improve the link margin of the system.
而且, 本发明提出的技术方案还解决了准循环 LDPC码的度分布问题, 并 增强了码集的性能。  Moreover, the technical solution proposed by the present invention also solves the problem of the degree distribution of the quasi-cyclic LDPC code and enhances the performance of the code set.
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描 述中变得明显, 或通过本发明的实践了解到。 附图说明 本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描述中 将变得明显和容易理解, 其中: 图 2为本发明 施例 1的过度基础矩阵 BT扩 ^为过度矩阵 HT的示意图; 图 3为本发明实施例 2的过度基础矩阵 BT扩张为过度矩阵 HT的示意图; 图 4为本发明实施例 1的 LDPC码校验矩阵的构造装置结构示意图; 图 5为本发明实施例的 LDPC码的编码系统结构示意图; The additional aspects and advantages of the invention will be set forth in part in the description which follows. DRAWINGS The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of the embodiments in conjunction with the accompanying drawings in which: FIG. FIG. 3 is a schematic diagram of the expansion of the excess base matrix BT into the excess matrix HT according to the second embodiment of the present invention; FIG. 4 is a schematic structural diagram of the apparatus for constructing the LDPC code check matrix according to the first embodiment of the present invention; Schematic diagram of the coding system of the LDPC code of the embodiment of the invention;
图 6为本发明实施例 1的仿真示意图。 具体实施方式  Figure 6 is a schematic diagram of simulation of Embodiment 1 of the present invention. detailed description
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出,其中自 始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元 件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发明, 而不能 解释为对本发明的限制。  The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative of the invention and are not to be construed as limiting.
为了实现本发明之目的, 本发明的实施例提出了一种 LDPC码校验矩阵的 构造方法.  In order to achieve the object of the present invention, an embodiment of the present invention proposes a construction method of an LDPC code check matrix.
如图 1所示, 包括以下步骤:  As shown in Figure 1, the following steps are included:
S101 : 构造一个产生码率为 R、 码长为 N的LDPC码的 ΜΒχΝΒ维的过度基 础矩阵 ΒΤ, 其中 ΜΒ=Μ/Κ, ΝΒ=Ν/Κ, Μ = Ν ( 1 - R ), K为过度基础矩阵的扩 张比, ΚΕ Φ, Φ为 Μ和 Ν的公因子的集合。  S101: Constructing an over-basic matrix ΜΒχΝΒ of a dimension of an LDPC code having a code rate R and a code length N, where ΜΒ=Μ/Κ, ΝΒ=Ν/Κ, Μ = Ν ( 1 - R ), K is The expansion ratio of the excess basic matrix, ΚΕ Φ, Φ is the set of common factors of Μ and Ν.
具体而言, 构造一个产生码率为 R、 码长为 N的LDPC码的 MBxNB维的过 度基础矩阵 BT, 包括以下步骤:  Specifically, constructing an overtone basis matrix BT of an MBxNB dimension of an LDPC code having a code rate R and a code length of N includes the following steps:
构造一个 MB NB维的过度基础矩阵 BT ,选择过度基础矩阵 BT的每一行和 每一列中 "Γ 的数目, 使得 BT的行重和列重分布满足预定的节点度分布; 在行重和列重满足预定的节点度分布的前提下, 选择过度基础矩阵 BT中 每一行和每一列中 "1" 的位置, 使得 BT的后 MB列组成的 MBxMB维的子矩阵 满秩。  Constructing an over-basic matrix BT of MB NB dimension, selecting the number of Γ in each row and each column of the excess base matrix BT, so that the row weight and column redistribution of BT satisfy a predetermined node degree distribution; the row weight and the column weight Under the premise that the predetermined node degree distribution is satisfied, the position of "1" in each row and each column in the excess base matrix BT is selected, so that the sub-matrix of the MBxMB dimension composed of the latter MB columns of BT is full rank.
其中, 过度基础矩阵 BT的结构可以釆用表的形式进行存储, 表的每一行 记录 BT的每一行中 "Γ 的位置。 行的顺序可以任意, 所构造的 BT等价。  The structure of the excessive basic matrix BT can be stored in the form of a table, and each row of the table records the position of the Γ in each row of the BT. The order of the rows can be arbitrary, and the constructed BT is equivalent.
S102: 用 K x K维的矩阵替换过度基础矩阵 BT中的元素, 将过度基础矩阵 BT扩张为 ΜχΝ维的过度矩阵 HT。  S102: Substituting the element in the excess basic matrix BT with the matrix of the K x K dimension, and expanding the excessive basic matrix BT into the excessive matrix HT of the dimension.
在一个实施例中, 对过度基础矩阵 BT进行扩张, 包括以下几个步骤: 将过度基础矩阵 BT中的 "0" 用 KXK维的全 "0" 矩阵 Z替换, 将 BT中的 " 1 " 用 ΚχΚ维的循环置换矩阵 P替换, 其中, P中 " 1 " 的行号 i和列号 j满足 j=(i+k)modK, k为循环置换矩阵的偏移量, mod表示取模运算; 为每一个循环置换矩阵 p选择一个偏移量。 In one embodiment, expanding the excessive base matrix BT includes the following steps: replacing "0" in the excessive base matrix BT with the all-"0" matrix Z of the KXK dimension, and using "1" in the BT ΚχΚV's cyclic permutation matrix P is replaced, where the row number i and the column number j of "1" in P satisfy j=(i+k) modK, k is the offset of the cyclic permutation matrix, and mod represents the modulo operation; Choose an offset for each cyclic permutation matrix p.
在另一个实施例中, 对过度基础矩阵 BT进行扩张, 包括以下几个步骤: 将过度基础矩阵 BT中的 "0" 用 KXK维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 "1"用 ΚχΚ维的代数置换矩阵 Ρ替换,其中, Ρ中 "1"的行号 i和列号 j满足 j=f(i), 其中 f(i)是有限域或环上的置换多项式;  In another embodiment, expanding the excessive base matrix BT includes the following steps: replacing "0" in the excessive base matrix BT with the all-"0" matrix K of the KXK dimension, and "1" in the ΒΤ Substituting the algebraic permutation matrix ΚχΚ of ΚχΚ dimension, where the row number i and the column number j of "1" in Ρ satisfy j=f(i), where f(i) is a permutation polynomial over a finite field or a ring;
为每一个代数置换矩阵 P选择一个偏移量。  Choose an offset for each algebraic permutation matrix P.
其中, 循环置换矩阵 P和代数置换矩阵 P的偏移量可以釆用表的形式进行 存储, 表的每一行记录过度基础矩阵 BT的每一行中 "1" 对应的循环置换矩阵 的偏移量。对同一行的偏移量再加上某一个相同的偏移量 q, 即 k'=(k+q;)modK, 所构造的 HT等价。  The offset of the cyclic permutation matrix P and the algebraic permutation matrix P may be stored in the form of a table, and each row of the table records the offset of the cyclic permutation matrix corresponding to "1" in each row of the basic matrix BT. The offset of the same row is added to the same offset q, that is, k'=(k+q;) modK, and the constructed HT is equivalent.
S103: 去除过度矩阵 HT中至少一个 K K维的矩阵的至少一个元素 " 1" , 以获得检验矩阵 H, 所述校验矩阵 H具有优化的行重分布和 /或列重分布, 用于 进行 LDPC码的编码和 /或译码。  S103: removing at least one element "1" of the matrix of at least one KK dimension in the over matrix HT to obtain a test matrix H having an optimized row weight distribution and/or column redistribution for performing LDPC Encoding and/or decoding of a code.
具体而言, 在过度矩阵 HT中, 针对部分所述 Κ χ Κ维扩展矩阵, 去除其中 的部分元素 "1" , 优化 Η的度分布, 接近目标度分布, 获得校验矩阵 Η, 然后 校验矩阵 Η可以用于 LDPC码的编码或译码。  Specifically, in the excess matrix HT, for some of the Κ χ dimension expansion matrices, some of the elements "1" are removed, the degree distribution of the Η is optimized, the target degree distribution is approximated, the check matrix 获得 is obtained, and then the check is performed. The matrix Η can be used for encoding or decoding of LDPC codes.
在一个实施例中, 对于置换矩阵 Ρ, 选择行号连续的 r个 "1" , 并将其从过 度矩阵 HT中删除, 获得校验矩阵 H, 其中 0<r≤K。  In one embodiment, for the permutation matrix Ρ, r consecutive "1"s of row numbers are selected and deleted from the over-matrix HT to obtain a check matrix H, where 0 < r ≤ K.
在另一种实施例中, 对于置换矩阵 P, 选择列号连续的 r个 "1" , 并将其从 过度矩阵 HT中删除, 获得校验矩阵 H, 其中 0<r≤K。  In another embodiment, for the permutation matrix P, r consecutive "1"s of column numbers are selected and deleted from the excess matrix HT to obtain a check matrix H, where 0 < r ≤ K.
而且, 在在另一种实施例中, 对于置换矩阵 P, 随机选择 r个 "1" , 并将其 从过度矩阵 HT中删除, 获得校验矩阵 H, 其中 0<r≤K。  Moreover, in another embodiment, for the permutation matrix P, r "1"s are randomly selected and deleted from the excess matrix HT to obtain a check matrix H, where 0 < r ≤ K.
这样, 校验矩阵 H的结构可以釆用基础矩阵位置表和循环置换矩阵偏移量 表的形式进行存储, 从而解决了校验矩阵的存储问题。  Thus, the structure of the check matrix H can be stored in the form of a base matrix position table and a cyclic permutation matrix offset table, thereby solving the storage problem of the check matrix.
基于上述分析,本发明的实施例还提出了一种对依据上述校验矩阵的构造 方法构造的 LDPC码进行编码的方法, 包括以下步骤:  Based on the above analysis, an embodiment of the present invention also proposes a method of encoding an LDPC code constructed according to the construction method of the check matrix, which includes the following steps:
将上述的 MxN维的校验矩阵 H分为两个子矩阵11=[1¾111^] , 其中 Hm为 The above-mentioned MxN-dimensional check matrix H is divided into two sub-matrices 11=[13⁄4111^], where Hm is
Μχ(Ν-Μ)维的子矩阵, Hp为 ΜχΜ维的子矩阵, 计算 Ηρ-1和 Hp-lHm; 子(Ν-Μ) dimension submatrix, Hp is a subdimension of ΜχΜ dimension, calculate Ηρ-1 and Hp-lHm;
根据输入的 1χ(Ν-Μ)维的信息序列 m , 计算 ΙχΜ维的校验序列 p=m(Hp-lHm)T;  Calculate the check sequence p=m(Hp-lHm)T of the dimension based on the input information sequence m of the χ(Ν-Μ) dimension;
将信息序列 m和校验序列 p组合成 1 xN维的码字序列 c=[mp]并输出。  The information sequence m and the check sequence p are combined into a 1 x N-dimensional codeword sequence c = [mp] and output.
为了进一步阐述本发明, 下面结合 CMMB系统的物理层结构, 介绍将本 发明应用于 CMMB系统的实施例。  In order to further illustrate the present invention, an embodiment in which the present invention is applied to a CMMB system will be described below in conjunction with the physical layer structure of the CMMB system.
具体实施例 1:  Specific embodiment 1:
构造一个适用于 CMMB系统的码率为 1/2的 LDPC码。 为了与 CMMB系统的物理层结构相兼容, 码长 N选为 9216, 也就是要构造 一个 4608x9216维的校验矩阵 H。 计算 4608和 9216的公因子的集合 Φ , 为了与 CMMB系统中 1/2和 3/4码率的 LDPC码相兼容, 扩张比 K选为 256。 这样, 过度 基础矩阵 BT的维度为 18x36。 Construct an LDPC code with a code rate of 1/2 for the CMMB system. In order to be compatible with the physical layer structure of the CMMB system, the code length N is chosen to be 9216, that is, a check matrix H of 4608x9216 dimensions is constructed. The set Φ of the common factors of 4608 and 9216 is calculated. To be compatible with the 1/2 and 3/4 code rate LDPC codes in the CMMB system, the expansion ratio K is chosen to be 256. Thus, the dimension of the excessive base matrix BT is 18x36.
选择校验矩阵 H的行重分布和列重分布。 优选的, H的行重分布为  Select the row redistribution and column redistribution of the check matrix H. Preferably, the row weight distribution of H is
{λ7,λ8,λ9,λ10}={17/288,223/288,1/18,2/18} , 列重分布为  {λ7, λ8, λ9, λ10}={17/288,223/288,1/18,2/18} , the column redistribution is
{ρ15,ρ14,ρ5,ρ4,ρ3,ρ2}={7/64,1/576,1/9,1/36,5/18,17/36}„ {ρ15,ρ14,ρ5,ρ4,ρ3,ρ2}={7/64,1/576,1/9,1/36,5/18,17/36}„
由于扩张比选择为 256, 只能对于部分行重分布和列重分布进行适配。 经过计算, 定义过度矩阵 ΗΤ的基础矩阵 ΒΤ行重分布为  Since the expansion ratio is chosen to be 256, only partial row redistribution and column redistribution can be adapted. After calculation, define the matrix of the excess matrix ΗΤ 重 重 重 重
{λ7,λ8,λ9,λ10}={1/18,14/18,1/18,2/18}, 列重分布为 {λ7, λ8, λ9, λ10}={1/18,14/18,1/18,2/18}, the column redistribution is
{ρ15,ρ5,ρ4,ρ3,ρ2}={4/36,4/36,1/36,10/36,17/36}。 {ρ15, ρ5, ρ4, ρ3, ρ2} = {4/36, 4/36, 1/36, 10/36, 17/36}.
在满足行重和列重分布的前提下, 任意选择过度矩阵 ΗΤ的基础矩阵 ΒΤ的 每一行和每一列中 " Γ 的位置, 但保证由 ΒΤ的后 18列组成的 18x 18维的子矩 阵满秩。  Under the premise of satisfying the row weight and column weight distribution, arbitrarily select the position of the Γ in each row and each column of the base matrix 过度 of the over matrix ,, but guarantee that the 18×18-dimensional sub-matrix consisting of the last 18 columns of ΒΤ is full Rank.
将过度矩阵 ΗΤ的基础矩阵 ΒΤ中的 "0"用 256x256维的全 "0"矩阵 Ζ替换, 将 ΒΤ中的 "1"用 256x256维的循环置换矩阵 Ρ替换,得到过度矩阵 ΗΤ。 Ρ中 "1" 的行号 i和列号 j满足 j=(i+k)mod256, 其中 k为循环置换矩阵的偏移量。  Replace "0" in the base matrix 过度 of the over matrix 用 with the 256x256-dimensional all "0" matrix ,, and replace the "1" in ΒΤ with the 256x256-dimensional cyclic permutation matrix , to obtain the over matrix ΗΤ. The line number i and the column number j of "1" in Ρ satisfy j=(i+k) mod256, where k is the offset of the cyclic permutation matrix.
其中,任意选择每一个循环置换矩阵 P的偏移量。并对偏移量做适当调整, 具有优化的停止集。  Among them, the offset of each cyclic permutation matrix P is arbitrarily selected. The offset is appropriately adjusted to have an optimized stop set.
然后, 再才艮据计算, 将过度矩阵 HT的基础矩阵 BT中部分元素对应的循环 置换矩阵 P进行调整, 选择连续的数行, 将其中的所有元素都置零, 从而获得 满足优化的行度和列度分布的校验矩阵 H。  Then, according to the calculation, the cyclic permutation matrix P corresponding to some elements in the basic matrix BT of the excessive matrix HT is adjusted, and successive numbers are selected, and all the elements are set to zero, thereby obtaining the line degree satisfying the optimization. And the check matrix H of the distribution of the degree.
更具体地, H的一种优化的设计表示为:  More specifically, an optimized design of H is expressed as:
0:(1,239,0)(4,166,0)(5,247,0)(11,31 ,0)(12,217,0)(14,72,0)(18,192,0)(19,0,0) 1 :(2,251 ,0)(5,153,0)(11 ,159,0χ200)(14,48,0)(15,31,0)(19,0,0)(20,0,0) 0: (1, 239, 0) (4, 166, 0) (5, 247, 0) (11, 31, 0) (12, 217, 0) (14, 72, 0) (18, 192, 0) (19, 0, 0) 1 : (2,251,0)(5,153,0)(11,159,0χ200)(14,48,0)(15,31,0)(19,0,0)(20,0,0)
2:(5,230,0)(6,182,0)(11 ,91,0)(14,62,0)(16,170,0)(20,0,0)(21,0,0) 2: (5,230,0)(6,182,0)(11 ,91,0)(14,62,0)(16,170,0)(20,0,0)(21,0,0)
3 :(2,255,0)(3,196,0)(5,171,0)(7,26,0)(10,1 1,0)(12,71 ,0)(17,51,0)(21,0,0) (22,0,0) 3 :(2,255,0)(3,196,0)(5,171,0)(7,26,0)(10,1 1,0)(12,71 ,0)(17,51,0)(21,0 ,0) (22,0,0)
4:(4,240,0)(5,66,0)(11,0,0)(14,1 18,0)(17,39,0)(22,0,0)(23,0,0)  4: (4,240,0)(5,66,0)(11,0,0)(14,1 18,0)(17,39,0)(22,0,0)(23,0,0)
5:(2,212,0)(3,1 15,0)(5,93,0)(8,210,0)(9,29,0)(14,249,0)(18,39,0)(23,0,0) (24,0,0) 5: (2,212,0)(3,1 15,0)(5,93,0)(8,210,0)(9,29,0)(14,249,0)(18,39,0)(23,0 ,0) (24,0,0)
6:(3,60,0)(5,46,0)(1 1,40,0)(13,180,0)(17,192,0)(24,0,0)(25,0,0)  6:(3,60,0)(5,46,0)(1 1,40,0)(13,180,0)(17,192,0)(24,0,0)(25,0,0)
7:(4,1,0)(10,247,0)(11,142,0)(14,210,0)(16,192,0)(25,0,0)(26,0,0) 7: (4,1,0)(10,247,0)(11,142,0)(14,210,0)(16,192,0)(25,0,0)(26,0,0)
8:(5,66,0)(10,208,0)(11 ,31,0)(14,116,0)(15,20,0)(26,0,0)(27,0,0) 8: (5,66,0)(10,208,0)(11 ,31,0)(14,116,0)(15,20,0)(26,0,0)(27,0,0)
9:(2,47,0)(6,8,0)(10,40,0)(11 ,219,0)(17,148,0)(27,0,0)(28,0,0) 10:(5,248,0)(6,255,0)(11,55,0)(14,56,0)(16,201,0)(28,0,0)(29,0,0) 11:(2,231,0)(5,83,0)(7,38,0)(9,87,0)(14,245,0)(17,194,0)(29,0,0)(30,0,0) 12:(9,249,0)(11,93,0)(13,83,0)(14,20,0)(30,0,0)(31,0,0) 9:(2,47,0)(6,8,0)(10,40,0)(11,219,0)(17,148,0)(27,0,0)(28,0,0) 10: (5, 248, 0) (6, 255, 0) (11, 55, 0) (14, 56, 0) (16, 201, 0) (28, 0, 0) (29, 0, 0) 11: (2, 231, 0)(5,83,0)(7,38,0)(9,87,0)(14,245,0)(17,194,0)(29,0,0)(30,0,0) 12:( 9,249,0)(11,93,0)(13,83,0)(14,20,0)(30,0,0)(31,0,0)
13:(5,39,0)(8,76,0)(11,225,0)(14,185,0)(15,118,0)(31,0,0)(32,0,0) 13:(5,39,0)(8,76,0)(11,225,0)(14,185,0)(15,118,0)(31,0,0)(32,0,0)
14:(5,81,0)(9,182,0)(10,248,0)(11,68,0)(14,23,0)(32,0,0)(33,0,0) 14: (5,81,0)(9,182,0)(10,248,0)(11,68,0)(14,23,0)(32,0,0)(33,0,0)
15:(1,183,0)(5,111,0)(11,230,0)(12,246,0)(14,105,0)(33,0,0)(34,0,0) 15: (1,183,0)(5,111,0)(11,230,0)(12,246,0)(14,105,0)(33,0,0)(34,0,0)
16:(5,87,0)(8,244,0)(9,183,0)(11,139,0)(14,141,0)(34,0,0)(35,0,0) 16:(5,87,0)(8,244,0)(9,183,0)(11,139,0)(14,141,0)(34,0,0)(35,0,0)
17:(5,153,0)(7,238,0)(11,80,0)(13,92,0)(14,75,0)(18,48,0)(35,0,0) 17:(5,153,0)(7,238,0)(11,80,0)(13,92,0)(14,75,0)(18,48,0)(35,0,0)
针对上述设计, 每一行是过度矩阵 ΗΤ的基矩阵 ΒΤ的扩张和调整参数。 三元组 (col,shift,adj(16))表示:该行第 col列以偏移量为 shift的循环置换矩阵 For the above design, each row is the expansion and adjustment parameters of the base matrix 过度 of the matrix. The triplet (col, shift, adj(16)) indicates that the col column of the row is a cyclic permutation matrix with an offset of shift.
P替换。 adj(16)表示一个四位无符号十六进制数, 共有 16个比特, 每一位代表 P 的 16行的调整方案。 定义 adj(2)表示一个十六位无符号二进制数, 其数值等于 adj(16)。 adj(2)的某一位为 "1" 时, 表示该位对应的 16行全部置 "0", 否则不 变。 对应关系为: adj(2)的第 i比特, 控制循环置换矩阵 P的第 ix 16行至第 ix 16+15行。 P replacement. Adj(16) represents a four-bit unsigned hexadecimal number with a total of 16 bits, each of which represents the adjustment scheme of P's 16 lines. Definition adj(2) represents a sixteen-bit unsigned binary number whose value is equal to adj(16). When a bit of adj(2) is "1", it means that all 16 lines corresponding to this bit are set to "0", otherwise it will not change. The correspondence is: the ith bit of adj(2), which controls the ixth 16th row to the ixth 16+15th row of the cyclic permutation matrix P.
例如, adj(16)=0x0001时,第 0行至第 15行所有元素置零。当 adj(16)=0xC000 时, 第 240行至第 255行所有元素置零。 图 2为本发明第一实施例的过度基础矩 阵 BT扩张为过度矩阵 HT的示意图。 图 2是针对三元组(col,shift,adj(16))中第 三个元素 adj(16)的示意。 下步骤:' ' ' ' 一 ' 一 、 、 、、 将上述 4608x9216维的校验矩阵 H分为两个子矩阵 H=[HmHp], 其中 Hm为 For example, when adj(16)=0x0001, all elements on the 0th to 15th lines are set to zero. When adj(16) = 0xC000, all elements on the 240th line to the 255th line are set to zero. Fig. 2 is a schematic diagram showing the expansion of the excessive basic matrix BT into the excessive matrix HT according to the first embodiment of the present invention. Figure 2 is an illustration of the third element adj(16) in the triple (col, shift, adj(16)). The following steps: ' ' ' ' a ' , , , , , and the above-mentioned 4608x9216-dimensional check matrix H is divided into two sub-matrices H=[HmHp], where Hm is
4608x4608维的子矩阵, Hp为 4608x4608维的子矩阵, 计算 Hp-1和 Hp-lHm, 矩阵 Hp-lHm具有分块循环的结构; The sub-matrix of the 4608x4608 dimension, Hp is a sub-matrix of 4608x4608 dimensions, and Hp-1 and Hp-lHm are calculated, and the matrix Hp-lHm has a structure of a block cycle;
根据输入的信息序列 m, 计算校验序列 p=m(Hp-lHm)T;  Calculating a check sequence p=m(Hp-lHm)T according to the input information sequence m;
将信息序列 m和校验序列 p组合成码字序列 c=[mp]并输出。  The information sequence m and the check sequence p are combined into a codeword sequence c=[mp] and output.
根据 Shannon信道编码理论, 应用了本发明的实施例之后, 1/2码率的纠错 编码在误码率(BER)达到 10-4时的信噪比(SNR)极限约为 0.2dB。 实施例 1 中构造的 1/2码率的 LDPC码在 BER达到 10-4时的 SNR约为 l.ldB, 具有接近理 论极限的优秀性能。  According to the Shannon channel coding theory, after applying the embodiment of the present invention, the 1/2 code rate error correction coding has a signal-to-noise ratio (SNR) limit of about 0.2 dB when the bit error rate (BER) reaches 10-4. The 1/2 code rate LDPC code constructed in Embodiment 1 has an SNR of about l.ldB when the BER reaches 10-4, and has excellent performance close to the theoretical limit.
具体实施例 2:  Specific embodiment 2:
构造一个适用于 CMMB系统的码率为 3/4的 LDPC码。  Construct an LDPC code with a code rate of 3/4 for the CMMB system.
为了与 CMMB系统的物理层结构相兼容, 码长 N选为 9216, 也就是要构造 一个 2304x9216维的校验矩阵 H。  In order to be compatible with the physical layer structure of the CMMB system, the code length N is chosen to be 9216, that is, a check matrix H of 2304x9216 dimensions is constructed.
计算 2304和 9216的公因子的集合 Φ, 选择合适的扩张比 ΚΕΦ。 为了与 CMMB系统中 1/2和 3/4码率的 LDPC码相兼容, 扩张比 K选为 256。 这样, 基础 矩阵 BT的维度为 9x36。 Calculate the set Φ of the common factors of 2304 and 9216, and select the appropriate expansion ratio ΚΕΦ. In order to The 1/2 and 3/4 code rate LDPC codes in the CMMB system are compatible, and the expansion ratio is 256. Thus, the dimension of the base matrix BT is 9x36.
选择校验矩阵 H的行重分布和列重分布。  Select the row redistribution and column redistribution of the check matrix H.
优选的, H的行重分布为 {λ16,λ15,λ14}={15/144,1/144,8/9}, 列重分布为 {ρ9,ρ8,ρ5,ρ4,ρ3,ρ2}={35/576,1/576,1/9,2/9,7/18,2/9}„  Preferably, the row weight distribution of H is {λ16, λ15, λ14}={15/144, 1/144, 8/9}, and the column weight distribution is {ρ9, ρ8, ρ5, ρ4, ρ3, ρ2}={ 35/576,1/576,1/9,2/9,7/18,2/9}„
由于扩张比选择为 256, 只能对于部分行重分布和列重分布进行适配。 经 过计算, 定义过度矩阵 ΗΤ的基础矩阵 ΒΤ行重分布为 {λ16,λ14}={1/9,8/9}, 列 重分布为 {ρ9,ρ5,ρ4,ρ3,ρ2}={1/18,1/9,2/9,7/18,2/9}。  Since the expansion ratio is chosen to be 256, only partial row redistribution and column redistribution can be adapted. After calculation, the basic matrix defining the over-matrix ΗΤ is redistributed to {λ16, λ14}={1/9,8/9}, and the column redistribution is {ρ9, ρ5, ρ4, ρ3, ρ2}={1/ 18, 1/9, 2/9, 7/18, 2/9}.
在满足行重和列重分布的前提下, 任意选择过度矩阵 ΗΤ的基础矩阵 ΒΤ的 每一行和每一列中 "1" 的位置, 但保证由 ΒΤ的后 9列组成的 9x9维的子矩阵满 秩。  Under the premise of satisfying the row weight and column weight distribution, the position of "1" in each row and each column of the base matrix 过度 of the over matrix 任意 is arbitrarily selected, but the 9×9-dimensional sub-matrix consisting of the last 9 columns of ΒΤ is guaranteed to be full. rank.
将过度矩阵 ΗΤ的基础矩阵 ΒΤ中的 "0"用 256x256维的全 "0"矩阵 Ζ替换, 将 ΒΤ中的 "1"用 256x256维的循环置换矩阵 Ρ替换,得到过度矩阵 ΗΤ。 Ρ中 "1" 的行号 i和列号 j满足 j=(i+k)mod256, 其中 k为循环置换矩阵的偏移量。  Replace "0" in the base matrix 过度 of the over matrix 用 with the 256x256-dimensional all "0" matrix ,, and replace the "1" in ΒΤ with the 256x256-dimensional cyclic permutation matrix , to obtain the over matrix ΗΤ. The line number i and the column number j of "1" in Ρ satisfy j=(i+k) mod256, where k is the offset of the cyclic permutation matrix.
任意选择每一个循环置换矩阵 P的偏移量。 并对偏移量做适当调整, 具有 优化的停止集。  The offset of each cyclic permutation matrix P is arbitrarily chosen. The offset is appropriately adjusted to have an optimized stop set.
然后, 根据计算, 将过度矩阵 HT的基矩阵 BT中元素部分元素对应的循环 置换矩阵 P进行调整, 选择其中连续的数行, 将其中的所有元素都置零, 获得 满足优化的行度和列度分布的校验矩阵 H。  Then, according to the calculation, the cyclic permutation matrix P corresponding to the element part elements in the base matrix BT of the excess matrix HT is adjusted, and consecutive numbers of the rows are selected, and all the elements are set to zero to obtain the row and column satisfying the optimization. The check matrix H of the degree distribution.
具体地, H的一种优化的设计表示为:  Specifically, an optimized design of H is expressed as:
0:(1,150,0)(2,223,0)(6,246,0)(8,236,0)(10,236,0)(11,78,0)(13,137,0)(17,48,0) 0: (1,150,0)(2,223,0)(6,246,0)(8,236,0)(10,236,0)(11,78,0)(13,137,0)(17,48,0)
(18,23,0)(20,195,0)(23,87,0)(25,194,0)(27,60,0)(28,0,0) (18,23,0)(20,195,0)(23,87,0)(25,194,0)(27,60,0)(28,0,0)
1 :(4,188,0)(8,212,0)(10,202,0)(11,213,0)(13,252,0)(15,150,0)(18,205,0)  1 :(4,188,0)(8,212,0)(10,202,0)(11,213,0)(13,252,0)(15,150,0)(18,205,0)
(20,146,0)(21,234,0)(23,207,0)(25,15,0)(28,0,0)(29,0,0)  (20,146,0)(21,234,0)(23,207,0)(25,15,0)(28,0,0)(29,0,0)
2:(4,243,0)(7,241,0)(9,0,0)(11,254,0)(13,17,0)(16,237,0)(17,254,0)(18,18,0)2:(4,243,0)(7,241,0)(9,0,0)(11,254,0)(13,17,0)(16,237,0)(17,254,0)(18,18,0)
(21,111,0)(23,235,0)(25,25,0)(29,0,0)(30,0,0) (21,111,0)(23,235,0)(25,25,0)(29,0,0)(30,0,0)
3:(2,137,0)(5,243,0)(9,255,0)(11,255,0)(13,210,0)(14,6,0)(18,162,0)(19,243,0) (21,119,0)(23,4,0)(26,5,0)(30,0,0)(31,0,0)  3:(2,137,0)(5,243,0)(9,255,0)(11,255,0)(13,210,0)(14,6,0)(18,162,0)(19,243,0) (21,119,0)( 23,4,0)(26,5,0)(30,0,0)(31,0,0)
4:(4,141,0)(7,252,0)(9,70,0)(13,163,0)(14,4,0)(15,78,0)(17,242,0)(19,106,0) (23,12,0)(24,212,0)(26,20,0)(31,0,0)(32,0,0)  4: (4, 141, 0) (7, 252, 0) (9, 70, 0) (13, 163, 0) (14, 4, 0) (15, 78, 0) (17, 242, 0) (19, 106, 0) (23 ,12,0)(24,212,0)(26,20,0)(31,0,0)(32,0,0)
5:(3,225,0)(6,109,0)(8,154,0)(13,128,0)(14,244,0)(15,170,0)(19,148,0)(20,3,0) (23,85,0)(24,183,0)(27,211,0)(32,0,0)(33,0,0)  5: (3, 225, 0) (6, 109, 0) (8, 154, 0) (13, 128, 0) (14, 244, 0) (15, 170, 0) (19, 148, 0) (20, 3, 0) (23, 85, 0 )(24,183,0)(27,211,0)(32,0,0)(33,0,0)
6:(2,247,0)(3,252,0)(7,246,0)(8,226,0)( l l,251,0)(12,251,0)(13,222,0x400) (15,182,0)(17,186,0)(19,3,0)(22,199,0)(23,199,0)(26,199,0)(33,0,0)(34,0,0) 7:(5,250,0)(6,62,0)(7,150,0)(10,158,0)(12,250,0)(13,90,0)(16,3,0)(19,111,0) (22,207,0)(23,39,0)(25,199,0)(34,0,0)(35,0,0) 6:(2,247,0)(3,252,0)(7,246,0)(8,226,0)( ll,251,0)(12,251,0)(13,222,0x400) (15,182,0)(17,186,0)( 19,3,0)(22,199,0)(23,199,0)(26,199,0)(33,0,0)(34,0,0) 7:(5,250,0)(6,62,0)( 7,150,0)(10,158,0)(12,250,0)(13,90,0)(16,3,0)(19,111,0) (22,207,0)(23,39,0)(25,199,0)(34,0,0)(35,0,0)
8:(1,49,0)(5,229,0)(10,255,0)(12,254,0)(13,227,0)(15,69,0)(16,98,0)(20,70,0) (22,197,0)(23 ,208,0)(24, 199,0)(27, 199,0)(35,0,0)  8: (1,49,0)(5,229,0)(10,255,0)(12,254,0)(13,227,0)(15,69,0)(16,98,0)(20,70,0) (22,197,0)(23,208,0)(24, 199,0)(27, 199,0)(35,0,0)
针对上述设计, 每一行是过度矩阵 ΗΤ的基矩阵 ΒΤ的扩张和调整参数。 三元组 (col,shift,adj(16))表示为该行第 col列以偏移量为 shift的循环置换矩 阵 P替换。 adj(16)表示一个四位无符号十六进制数, 共有 16个比特, 每一位代 表 P的 16行的调整方案。 定义 adj(2)表示一个十六位无符号二进制数, 其数值等 于 adj(16)。 adj(2)的某一位为 "Γ 时, 表示该位对应的 16行全部置 "0" , 否则 不变。 对应关系为: adj(2)的第 i比特, 控制循环置换矩阵 P的第 i x 16行至第 i X 16+15行。  For the above design, each row is the expansion and adjustment parameters of the base matrix 过度 of the matrix. The triplet (col, shift, adj(16)) is represented by the cyclic permutation matrix P replacement of the row col column with the offset being shifted. Adj(16) represents a four-bit unsigned hexadecimal number with a total of 16 bits, each representing a 16-line adjustment scheme for P. Definition adj(2) represents a sixteen-bit unsigned binary number whose value is equal to adj(16). When a bit of adj(2) is "Γ", it means that all 16 lines corresponding to this bit are set to "0", otherwise they are unchanged. The corresponding relationship is: the i-th bit of adj(2), which controls the number of the cyclic permutation matrix P From line 16 to line i x 16+15.
例如, 当 adj(16)=0x0001时, 第 0行至第 15行所有元素置零。 当 adj(16)=0xC000时, 第 240行至第 255行所有元素置零。 图 3为本发明实施例 2的 过度基础矩阵 BT扩张为过度矩阵 HT的示意图。 图 3是针对三元组 ( col,shift,adj(16) ) 中第三个元素 adj(16)的示意。 下步骤: ' ' ' ' 一 ' 一 、 、 、、 将上述 2304x9216维的校验矩阵 H分为两个子矩阵 H=[HmHp], 其中 Hm为 2304x6912维的子矩阵, Hp为 2304x2304维的子矩阵, 计算 Hp-1和 Hp-lHm, 矩阵 Hp-lHm具有分块循环的结构;  For example, when adj(16)=0x0001, all elements on the 0th to 15th lines are set to zero. When adj(16) = 0xC000, all elements from line 240 to line 255 are set to zero. Fig. 3 is a schematic diagram showing the expansion of the excessive basic matrix BT into the excessive matrix HT according to the second embodiment of the present invention. Figure 3 is an illustration of the third element adj(16) in the triple (col, shift, adj(16)). The following steps: ' ' ' ' a ' , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , calculating Hp-1 and Hp-lHm, and the matrix Hp-lHm has a structure of a block cycle;
根据输入的信息序列 m, 计算校验序列 p=m(Hp- lHm)T;  Calculating a check sequence p=m(Hp- lHm)T according to the input information sequence m;
将信息序列 m和校验序列 p组合成码字序列0=[11^] , 并输出。  The information sequence m and the check sequence p are combined into a codeword sequence 0 = [11^] and output.
基于上述分析,本发明的实施例还提出一种 LDPC码校验矩阵的构造装置。 图 4为本发明的实施例的 LDPC码校验矩阵的构造装置结构示意图。  Based on the above analysis, an embodiment of the present invention also proposes an apparatus for constructing an LDPC code check matrix. 4 is a schematic structural diagram of an apparatus for constructing an LDPC code check matrix according to an embodiment of the present invention.
如图 4所示,该装置包括过度基础矩阵构造单元 410、过度矩阵扩张单元 420 和检验矩阵生成单元 430, 其中:  As shown in FIG. 4, the apparatus includes an excessive base matrix construction unit 410, an excessive matrix expansion unit 420, and a check matrix generation unit 430, where:
过度基础矩阵构造单元 410,用于构造一个产生码率为 R、码长为 N的 LDPC 码的 MBxNB维的过度基础矩阵 BT, 其中 MB=M/K, NB=N/K, M = N ( 1 - R ), K为过度基础矩阵的扩张比, Φ为 Μ和 Ν的公因子的集合;  The over-basic matrix construction unit 410 is configured to construct an over-basic matrix BT of an MBxNB dimension of an LDPC code having a code rate R and a code length N, where MB=M/K, NB=N/K, M=N ( 1 - R ), K is the expansion ratio of the excess basic matrix, and Φ is the set of common factors of Μ and Ν;
过度矩阵扩张单元 420 , 用于用 Κ X Κ维的矩阵替换过度基础矩阵 ΒΤ中的 元素, 将过度基础矩阵 ΒΤ扩张为 ΜχΝ维的过度矩阵 ΗΤ;  The excess matrix expansion unit 420 is configured to replace the elements in the excess basic matrix ΒΤ with the matrix of Κ X Κ dimension, and expand the excessive basic matrix ΒΤ into the 矩阵 dimension of the excess matrix ΗΤ;
检验矩阵生成单元 430, 用于去除过度矩阵 ΗΤ中至少一个 Κ Κ维的矩阵 的至少一个元素 "1" , 以获得检验矩阵 Η, 所述校验矩阵 Η具有优化的行重分 布和 /或列重分布, 用于进行 LDPC码的编码和 /或译码。  The check matrix generating unit 430 is configured to remove at least one element "1" of the matrix of at least one of the ΗΤ Κ matrix of the over matrix ΗΤ, to obtain a check matrix Η, the check matrix Η having an optimized row redistribution and/or column Redistribution, used to encode and/or decode LDPC codes.
在一个实施例中, 过度基础矩阵构造单元 410, 用于构造一个 MBxNB维的 过度基础矩阵 BT, 选择过度基础矩阵 BT的每一行和每一列中 "1" 的数目, 使 得 BT的行重和列重分布满足预定的节点度分布; 并在行重和列重满足预定的 节点度分布的前提下,选择过度基础矩阵 BT中每一行和每一列中 "1"的位置, 使得 BT的后 MB列组成的 MBxMB维的子矩阵满秩。 In one embodiment, the excessive base matrix construction unit 410 is configured to construct an excessive base matrix BT of an MBxNB dimension, and select the number of "1"s in each row and each column of the excessive base matrix BT. The row weight and column weight distribution of BT satisfy a predetermined node degree distribution; and under the premise that the row weight and the column weight satisfy a predetermined node degree distribution, the position of "1" in each row and each column in the excessive base matrix BT is selected. , making the sub-matrix of the MBxMB dimension composed of the last MB column of BT full rank.
在一个实施例中,过度矩阵扩张单元 420,用于将过度基础矩阵 BT中的 "0" 用 KXK维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 "1" 用 ΚΧΚ维的循环置换矩阵 Ρ替 换, 其中, Ρ中 "Γ 的行号 i和列号 j满足 j=(i+k)modK, k为循环置换矩阵的偏 移量, mod表示取模运算; 并为每一个循环置换矩阵 P选择一个偏移量。  In one embodiment, the excess matrix expansion unit 420 is configured to replace "0" in the excessive base matrix BT with the all-"0" matrix K of the KXK dimension, and use the "1" in the ΚΧΚ for the cyclic permutation matrix of the dimension ΡReplace, where 行 "" line number i and column number j satisfy j=(i+k) modK, k is the offset of the cyclic permutation matrix, mod represents the modulo operation; and for each cyclic permutation matrix P selects an offset.
在一个实施例中, 过度矩阵扩张单元, 用于将过度基础矩阵 BT中的 "0" 用 KXK维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 "1" 用 ΚΧΚ维的代数置换矩阵 Ρ替 换, 其中, Ρ中 "1" 的行号 i和列号 j满足 j=f(i), 其中 f(i)是有限域或环上的置换 多项式; 并为每一个代数置换矩阵 P选择一个偏移量。  In one embodiment, the over matrix expansion unit is configured to replace "0" in the excessive base matrix BT with the all-zero matrix K of the KXK dimension, and replace the "1" in the ΚΧΚ with the algebraic substitution matrix of the dimension Ρ In place, where the row number i and the column number j of "1" in the 满足 satisfy j=f(i), where f(i) is a permutation polynomial over a finite field or a ring; and select one for each algebra permutation matrix P Offset.
如图 5所示, 本发明的实施例还提出了一种 LDPC码的编码系统, 包括 LDPC码校验矩阵的构造装置 510、 编码矩阵存储单元 520、 校验序列计算单元 530以及码字序列生成单元 540, 其中:  As shown in FIG. 5, an embodiment of the present invention further provides an LDPC code coding system, including an LDPC code check matrix construction apparatus 510, an encoding matrix storage unit 520, a check sequence calculation unit 530, and a codeword sequence generation. Unit 540, wherein:
LDPC码校验矩阵的构造装置 510, 用于构造一个产生码率为 R、 码长为 N 的 LDPC码的 ΜΒχΝΒ维的过度基础矩阵 BT, 其中 ΜΒ=Μ/Κ, ΝΒ=Ν/Κ, Μ = Ν ( 1 - R ), K为过度基础矩阵的扩张比, ΚΕ Φ, Φ为 Μ和 Ν的公因子的集合, 并用 Κ X Κ维的矩阵替换过度基础矩阵 ΒΤ中的元素,将过度基础矩阵 ΒΤ扩张为 ΜχΝ维的过度矩阵 ΗΤ , 去除过度矩阵 ΗΤ中至少一个 Κ X Κ维的矩阵的至少一 个元素 "1" , 以获得 ΜχΝ维的检验矩阵 Η;  An apparatus 510 for constructing an LDPC code check matrix is configured to construct an over-basic matrix BT of a dimension of an LDPC code having a code rate R and a code length N, where ΜΒ=Μ/Κ, ΝΒ=Ν/Κ, Μ = Ν ( 1 - R ), K is the expansion ratio of the excess base matrix, ΚΕ Φ, Φ is the set of common factors of Μ and Ν, and replacing the elements in the excess base matrix Κ with the matrix of Κ X Κ The matrix ΒΤ is expanded into an 过度-dimensional over-matrix ΗΤ, and at least one element "1" of the matrix of at least one ΚX Κ dimension in the over-matrix ΗΤ is removed to obtain a test matrix ΜχΝ of the ΜχΝ dimension;
编码矩阵存储模块 520,用于存储编码矩阵的结构,将由 LDPC码校验矩阵 的构造装置构造的 MxN维的校验矩阵 H分为两个子矩阵11=[1¾111^] , 其中 Hm 为 Μχ(Ν-Μ)维的子矩阵, Hp为 ΜχΜ维的子矩阵, 所述编码矩阵存储模块用于 存储矩阵 Hp-lHm的结构, 所述 Hp-lHm具有分块循环的结构, 可以以块为单 位进行存储;  The coding matrix storage module 520 is configured to store the structure of the coding matrix, and divide the check matrix H of the MxN dimension constructed by the construction device of the LDPC code check matrix into two sub-matrices 11=[13⁄4111^], where Hm is Μχ(Ν - Μ) a sub-matrix of dimensions, Hp is a sub-matrix of the dimension, the coding matrix storage module is used to store the structure of the matrix Hp-lHm, and the Hp-lHm has a structure of a block-loop, which can be performed in units of blocks Storage
校验序列计算模块 530,用于将输入的信息序列 m与矩阵 (Hp-lHm)T相乘, 得到校验序列 p; 由于 Hp-lHm具有分块循环的结构, 矩阵乘法 m(Hp-lHm)T 可以釆用简单的,例如移位寄存器的方式实现,从而大大降低了编码器的实现 复杂度;  The check sequence calculation module 530 is configured to multiply the input information sequence m by the matrix (Hp-lHm)T to obtain a check sequence p; since Hp-lHm has a structure of a block cycle, matrix multiplication m (Hp-lHm) T can be implemented in a simple manner, such as a shift register, thereby greatly reducing the implementation complexity of the encoder;
码字序列生成模块 540, 用于将信息序列 m和校验序列 p组合成码字序列 c 并输出。  The codeword sequence generating module 540 is configured to combine the information sequence m and the check sequence p into a codeword sequence c and output.
作为上述编码装置的一个实施例:  As an embodiment of the above encoding device:
码率 R为 1/2, 码长 N为 9216, 扩张比 10^7256, 过度基础矩阵 BT的行重分 布为 {λ7,λ8,λ9,λ10}={1/18,14/18,1/18,2/18}, 列重分布为  The code rate R is 1/2, the code length N is 9216, the expansion ratio is 10^7256, and the line weight distribution of the excessive base matrix BT is {λ7, λ8, λ9, λ10}={1/18, 14/18, 1/ 18,2/18}, the column is redistributed as
{ρ15,ρ5,ρ4,ρ3,ρ2}={4/36,4/36,1/36,10/36,17/36} ; H的行重分布为 { λ 7, λ 8, λ 9, λ 10}={17/288,223/288,1/18,2/18} , 列重分布 为 { ρ 15, ρ 14, ρ 5, ρ 4, ρ 3, ρ 2}={7/64,1/576,1/9,1/36,5/18,17/36} ; {ρ15, ρ5, ρ4, ρ3, ρ2}={4/36, 4/36, 1/36, 10/36, 17/36}; The row weight distribution of H is { λ 7, λ 8, λ 9, λ 10}={17/288, 223/288, 1/18, 2/18}, and the column weight distribution is { ρ 15, ρ 14, ρ 5, ρ 4, ρ 3, ρ 2}={7/64, 1/576, 1/9, 1/36, 5/18, 17/36};
校验矩阵 Η具体为:  Check matrix Η is specifically:
0:(1,239,0)(4,166,0)(5,247,0)(11,31 ,0)(12,217,0)(14,72,0)(18,192,0)(19,0,0) 1 :(2,251 ,0)(5,153,0)(11 ,159,0χ200)(14,48,0)(15,31,0)(19,0,0)(20,0,0)  0: (1, 239, 0) (4, 166, 0) (5, 247, 0) (11, 31, 0) (12, 217, 0) (14, 72, 0) (18, 192, 0) (19, 0, 0) 1 : (2,251,0)(5,153,0)(11,159,0χ200)(14,48,0)(15,31,0)(19,0,0)(20,0,0)
2:(5,230,0)(6,182,0)(11 ,91,0)(14,62,0)(16,170,0)(20,0,0)(21,0,0) 2: (5,230,0)(6,182,0)(11 ,91,0)(14,62,0)(16,170,0)(20,0,0)(21,0,0)
3 :(2,255,0)(3,196,0)(5,171,0)(7,26,0)(10,1 1,0)(12,71 ,0)(17,51,0)(21,0,0) (22,0,0) 3 :(2,255,0)(3,196,0)(5,171,0)(7,26,0)(10,1 1,0)(12,71 ,0)(17,51,0)(21,0 ,0) (22,0,0)
4:(4,240,0)(5,66,0)(11,0,0)(14,1 18,0)(17,39,0)(22,0,0)(23,0,0)  4: (4,240,0)(5,66,0)(11,0,0)(14,1 18,0)(17,39,0)(22,0,0)(23,0,0)
5:(2,212,0)(3,1 15,0)(5,93,0)(8,210,0)(9,29,0)(14,249,0)(18,39,0)(23,0,0) (24,0,0) 5: (2,212,0)(3,1 15,0)(5,93,0)(8,210,0)(9,29,0)(14,249,0)(18,39,0)(23,0 ,0) (24,0,0)
6:(3,60,0)(5,46,0)(1 1,40,0)(13,180,0)(17,192,0)(24,0,0)(25,0,0)  6:(3,60,0)(5,46,0)(1 1,40,0)(13,180,0)(17,192,0)(24,0,0)(25,0,0)
7:(4,1,0)(10,247,0)(11,142,0)(14,210,0)(16,192,0)(25,0,0)(26,0,0)  7: (4,1,0)(10,247,0)(11,142,0)(14,210,0)(16,192,0)(25,0,0)(26,0,0)
8:(5,66,0)(10,208,0)(11 ,31,0)(14,116,0)(15,20,0)(26,0,0)(27,0,0)  8: (5,66,0)(10,208,0)(11 ,31,0)(14,116,0)(15,20,0)(26,0,0)(27,0,0)
9:(2,47,0)(6,8,0)(10,40,0)(11 ,219,0)(17,148,0)(27,0,0)(28,0,0) 9:(2,47,0)(6,8,0)(10,40,0)(11,219,0)(17,148,0)(27,0,0)(28,0,0)
10:(5,248,0)(6,255,0)(11 ,55,0)(14,56,0)(16,201,0)(28,0,0)(29,0,0) 10: (5, 248, 0) (6, 255, 0) (11, 55, 0) (14, 56, 0) (16, 201, 0) (28, 0, 0) (29, 0, 0)
1 1 :(2,231,0)(5,83,0)(7,38,0)(9,87,0)(14,245,0)(17,194,0)(29,0,0)(30,0,0) 12:(9,249,0)(1 1,93,0)(13,83,0)(14,20,0)(30,0,0)(31,0,0) 1 1 :(2,231,0)(5,83,0)(7,38,0)(9,87,0)(14,245,0)(17,194,0)(29,0,0)(30,0 ,0) 12:(9,249,0)(1 1,93,0)(13,83,0)(14,20,0)(30,0,0)(31,0,0)
13:(5,39,0)(8,76,0)(11,225,0)(14,185,0)(15,1 18,0)(31,0,0)(32,0,0) 13:(5,39,0)(8,76,0)(11,225,0)(14,185,0)(15,1 18,0)(31,0,0)(32,0,0)
14:(5,81 ,0)(9,182,0)(10,248,0)(11 ,68,0)(14,23,0)(32,0,0)(33,0,0) 14: (5,81,0)(9,182,0)(10,248,0)(11 ,68,0)(14,23,0)(32,0,0)(33,0,0)
15:(1,183,0)(5,1 11 ,0)(11 ,230,0)(12,246,0)(14,105,0)(33,0,0)(34,0,0) 15: (1,183,0)(5,1 11 ,0)(11 ,230,0)(12,246,0)(14,105,0)(33,0,0)(34,0,0)
16:(5,87,0)(8,244,0)(9,183,0)(11,139,0)(14,141,0)(34,0,0)(35,0,0) 16:(5,87,0)(8,244,0)(9,183,0)(11,139,0)(14,141,0)(34,0,0)(35,0,0)
17:(5,153,0)(7,238,0)(11 ,80,0)(13,92,0)(14,75,0)(18,48,0)(35,0,0) 17:(5,153,0)(7,238,0)(11 ,80,0)(13,92,0)(14,75,0)(18,48,0)(35,0,0)
作为上述编码装置的另一实施例:  As another embodiment of the above encoding device:
码率 R为 3/4, 所述码长 Ν为 9216, 扩张比 10^256, 过度基础矩阵 ΒΤ的行 重分布为 {λ16,λ14}={1/9,8/9}, 列重分布为  The code rate R is 3/4, the code length Ν is 9216, the expansion ratio is 10^256, and the line weight distribution of the excessive base matrix ΒΤ is {λ16, λ14}={1/9, 8/9}, column redistribution For
{ρ9,ρ5,ρ4,ρ3,ρ2}={1/18,1/9,2/9,7/18,2/9} ; {ρ9, ρ5, ρ4, ρ3, ρ2} = {1/18, 1/9, 2/9, 7/18, 2/9};
Η的行重分布为 {λ16,λ15,λ14}={15/144,1/144,8/9} , 列重分布为  The row weight distribution of Η is {λ16, λ15, λ14}={15/144,1/144,8/9}, and the column redistribution is
{ρ9,ρ8,ρ5,ρ4,ρ3,ρ2}={35/576,1/576,1/9,2/9,7/18,2/9} ; {ρ9,ρ8,ρ5,ρ4,ρ3,ρ2}={35/576,1/576,1/9,2/9,7/18,2/9} ;
所述校验矩阵 Η具体为:  The check matrix Η is specifically:
0:(1,150,0)(2,223,0)(6,246,0)(8,236,0)(10,236,0)(11 ,78,0)(13,137,0)(17,48,0) (18,23,0)(20,195,0)(23,87,0)(25,194,0)(27,60,0)(28,0,0)  0: (1,150,0)(2,223,0)(6,246,0)(8,236,0)(10,236,0)(11 ,78,0)(13,137,0)(17,48,0) (18,23 ,0)(20,195,0)(23,87,0)(25,194,0)(27,60,0)(28,0,0)
1 :(4,188,0)(8,212,0)(10,202,0)(11 ,213,0)(13,252,0)(15,150,0)(18,205,0) (20,146,0)(21 ,234,0)(23,207,0)(25,15,0)(28,0,0)(29,0,0) 1 :(4,188,0)(8,212,0)(10,202,0)(11 ,213,0)(13,252,0)(15,150,0)(18,205,0) (20,146,0)(21,234,0 )(23,207,0)(25,15,0)(28,0,0)(29,0,0)
2:(4,243,0)(7,241 ,0)(9,0,0)(1 1,254,0)(13,17,0)(16,237,0)(17,254,0)(18,18,0) (21,111,0)(23,235,0)(25,25,0)(29,0,0)(30,0,0) 2:(4,243,0)(7,241,0)(9,0,0)(1 1,254,0)(13,17,0)(16,237,0)(17,254,0)(18,18,0) (21,111,0)(23,235,0)(25,25,0)(29,0,0)(30,0,0)
3:(2,137,0)(5,243,0)(9,255,0)(11,255,0)(13,210,0)(14,6,0)(18,162,0)(19,243,0) (21,119,0)(23,4,0)(26,5,0)(30,0,0)(31,0,0)  3:(2,137,0)(5,243,0)(9,255,0)(11,255,0)(13,210,0)(14,6,0)(18,162,0)(19,243,0) (21,119,0)( 23,4,0)(26,5,0)(30,0,0)(31,0,0)
4:(4,141,0)(7,252,0)(9,70,0)(13,163,0)(14,4,0)(15,78,0)(17,242,0)(19,106,0) (23,12,0)(24,212,0)(26,20,0)(31,0,0)(32,0,0)  4: (4, 141, 0) (7, 252, 0) (9, 70, 0) (13, 163, 0) (14, 4, 0) (15, 78, 0) (17, 242, 0) (19, 106, 0) (23 ,12,0)(24,212,0)(26,20,0)(31,0,0)(32,0,0)
5:(3,225,0)(6,109,0)(8,154,0)(13,128,0)(14,244,0)(15,170,0)(19,148,0)(20,3,0) (23,85,0)(24,183,0)(27,211,0)(32,0,0)(33,0,0)  5: (3, 225, 0) (6, 109, 0) (8, 154, 0) (13, 128, 0) (14, 244, 0) (15, 170, 0) (19, 148, 0) (20, 3, 0) (23, 85, 0 )(24,183,0)(27,211,0)(32,0,0)(33,0,0)
6:(2,247,0)(3,252,0)(7,246,0)(8,226,0)(l l,251,0)(12,251,0)(13,222,0x400) (15,182,0)(17,186,0)(19,3,0)(22,199,0)(23,199,0)(26,199,0)(33,0,0)(34,0,0) 7:(5,250,0)(6,62,0)(7,150,0)(10,158,0)(12,250,0)(13,90,0)(16,3,0)(19,111,0) (22,207,0)(23,39,0)(25,199,0)(34,0,0)(35,0,0)  6:(2,247,0)(3,252,0)(7,246,0)(8,226,0)(ll,251,0)(12,251,0)(13,222,0x400) (15,182,0)(17,186,0)( 19,3,0)(22,199,0)(23,199,0)(26,199,0)(33,0,0)(34,0,0) 7:(5,250,0)(6,62,0)( 7,150,0)(10,158,0)(12,250,0)(13,90,0)(16,3,0)(19,111,0) (22,207,0)(23,39,0)(25,199,0) (34,0,0)(35,0,0)
8:(1,49,0)(5,229,0)(10,255,0)(12,254,0)(13,227,0)(15,69,0)(16,98,0)(20,70,0) (22,197,0)(23 ,208,0)(24, 199,0)(27, 199,0)(35,0,0)。  8: (1,49,0)(5,229,0)(10,255,0)(12,254,0)(13,227,0)(15,69,0)(16,98,0)(20,70,0) (22,197,0)(23,208,0)(24, 199,0)(27, 199,0)(35,0,0).
图 6为本发明实施例 1的仿真示意图。从图 6中可以看出, 实施例 1中构造的 1/2码率的 LDPC码在 BER达到 10-4时的 SNR约为 l.ldB, 具有接近理论极限的 优秀性能。  Figure 6 is a schematic diagram of simulation of Embodiment 1 of the present invention. As can be seen from Fig. 6, the 1/2 code rate LDPC code constructed in Embodiment 1 has an SNR of about l.ldB when the BER reaches 10-4, and has excellent performance close to the theoretical limit.
本发明的实施例提出的技术方案可以构造出任意码率的性能优秀的 LDPC 码。 此外, 本发明的实施例提出的技术方案还解决了校验矩阵的存储问题, 有 效降低了编码器的实现复杂度。 本发明的实施例提出的技术方案构造的 LDPC 码可以与 CMMB系统的物理层结构完全兼容, 能有效的提高系统的链路余量。 而且, 本发明提出的技术方案还解决了准循环 LDPC码的度分布问题, 并增强 了码集的性能。  The technical solution proposed by the embodiment of the present invention can construct an LDPC code with excellent performance at an arbitrary code rate. In addition, the technical solution proposed by the embodiment of the present invention also solves the storage problem of the check matrix, and effectively reduces the implementation complexity of the encoder. The LDPC code constructed by the technical solution proposed by the embodiment of the present invention can be fully compatible with the physical layer structure of the CMMB system, and can effectively improve the link margin of the system. Moreover, the technical solution proposed by the present invention also solves the problem of the degree distribution of the quasi-cyclic LDPC code and enhances the performance of the code set.
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步 骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机 可读存储介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组合。  A person skilled in the art can understand that all or part of the steps carried by the method of the foregoing embodiment can be completed by a program to instruct related hardware, and the program can be stored in a computer readable storage medium. , including one or a combination of the steps of the method embodiments.
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块 中。 上述集成的模块既可以釆用硬件的形式实现,也可以釆用软件功能模块的 形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品 销售或使用时, 也可以存储在一个计算机可读取存储介质中。  In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module. The above integrated modules can be implemented in the form of hardware or in the form of software functional modules. The integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。  The above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。  The above is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. It should be considered as the scope of protection of the present invention.

Claims

权 利 要 求 Rights request
1、 一种 LDPC码校验矩阵的构造方法, 其特征在于, 包括以下步骤: 构造一个产生码率为 R、 码长为 N的 LDPC码的 ΜΒχΝΒ维的过度基 础矩阵 BT, 其中 MB=M/K, NB=N/K, M = N ( 1 - R ), K为过度基础矩阵 的扩张比, ΚΕ Φ, Φ为 Μ和 Ν的公因子的集合;  A method for constructing an LDPC code check matrix, comprising the steps of: constructing a 基础-dimensional over-basic matrix BT of an LDPC code having a code rate R and a code length N, wherein MB=M/ K, NB=N/K, M = N ( 1 - R ), K is the expansion ratio of the excess basic matrix, ΚΕ Φ, Φ is the set of common factors of Μ and Ν;
用 ΚχΚ维的矩阵替换过度基础矩阵 ΒΤ中的元素,将过度基础矩阵 ΒΤ 扩张为 ΜχΝ维的过度矩阵 ΗΤ;  Substituting the elements of the over-basic matrix ΒΤ with the matrix of ΚχΚ dimension, expanding the over-basic matrix ΒΤ into the 矩阵-dimensional over-matrix ΗΤ;
去除过度矩阵 ΗΤ中至少一个 Κ χ Κ维的矩阵的至少一个元素 " 1" , 以 获得检验矩阵 Η, 所述校验矩阵 Η具有优化的行重分布和 /或列重分布, 用 于进行 LDPC码的编码和 /或译码。  Removing at least one element "1" of at least one matrix of the ΗΤ Κ dimension of the over matrix 以获得 to obtain a test matrix Η having an optimized row weight distribution and/or column redistribution for performing LDPC Encoding and/or decoding of a code.
2、 如权利要求 1所述的 LDPC码校验矩阵的构造方法, 其特征在于, 构造一个产生码率为 R、 码长为 N的 LDPC码的 ΜΒχΝΒ维的过度基础矩 阵 BT包括以下步骤:  2. The method of constructing an LDPC code check matrix according to claim 1, wherein constructing an over-based base matrix BT that generates a LDPC code having a code rate R and a code length of N comprises the following steps:
构造一个 MB NB维的过度基础矩阵 BT , 选择过度基础矩阵 BT的每 一行和每一列中 " 1 " 的数目, 使得 BT的行重和列重分布满足预定的节点 度分布;  Constructing an over-basic matrix BT of MB NB dimension, selecting the number of "1"s in each row and each column of the excessive base matrix BT, so that the row weight and column redistribution of BT satisfy a predetermined node degree distribution;
在行重和列重满足预定的节点度分布的前提下,选择过度基础矩阵 BT 中每一行和每一列中 " 1 " 的位置, 使得 BT的后 MB列组成的 MBxMB维 的子矩阵满秩。  Under the premise that the row weight and the column weight satisfy the predetermined node degree distribution, the position of "1" in each row and each column in the excessive base matrix BT is selected, so that the sub-matrix of the MBxMB dimension composed of the latter MB columns of BT is full rank.
3、 如权利要求 2所述的 LDPC码校验矩阵的构造方法, 其特征在于, 将过度基础矩阵 BT扩张为 MxN维的过度矩阵 HT包括以下步骤:  3. The method of constructing an LDPC code check matrix according to claim 2, wherein expanding the excessive base matrix BT into an MxN-dimensional over-matrix HT comprises the following steps:
将过度基础矩阵 BT 中的 "0" 用 KxK维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 " 1" 用 ΚΧΚ维的循环置换矩阵 Ρ替换, 其中, Ρ中 " 1 " 的行号 i 和列号 j满足 j=(i+k)modk, k为循环置换矩阵的偏移量, mod表示取模运  Replace "0" in the excess base matrix BT with the all-zero matrix K of the KxK dimension, and replace "1" in the ΚΧΚ with the cyclic permutation matrix ΚΧΚ of the dimension, where the line number of "1" in the i And column number j satisfies j=(i+k)modk, k is the offset of the cyclic permutation matrix, and mod represents the modulo transport
" 为每一个循环置换矩阵 P选择一个偏移量。 "Select an offset for each cyclic permutation matrix P.
4、 如权利要求 2所述的 LDPC码校验矩阵的构造方法, 其特征在于, 将过度基础矩阵 BT扩张为 MxN维的校验矩阵 HT包括以下步骤:  4. The method for constructing an LDPC code check matrix according to claim 2, wherein the expanding the excess base matrix BT into the MxN-dimensional check matrix HT comprises the following steps:
将过度基础矩阵 BT 中的 "0" 用 KxK维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 " 1" 用 ΚΧΚ维的代数置换矩阵 Ρ替换, 其中, Ρ中 " 1 " 的行号 i 和列号 j满足 j=f(i), 其中 f(i)是有限域或环上的置换多项式;  Replace "0" in the excess base matrix BT with the all-zero matrix K of the KxK dimension, and replace "1" in the ΒΤ with the algebraic permutation matrix ΚΧΚ of the dimension, where the line number of "1" in the i And column number j satisfies j=f(i), where f(i) is a permutation polynomial over a finite field or a ring;
为每一个代数置换矩阵 P选择一个偏移量。  Choose an offset for each algebraic permutation matrix P.
5、 如权利要求 3或 4之一所述的 LDPC码校验矩阵的构造方法, 其特 征在于, 所述过度基础矩阵 BT的结构或所述矩阵 P的偏移量釆用表的形 式进行存储, 表的每一行记录 BT的每一行中 " 1 " 的位置或者表的每一行 记录过度基础矩阵 BT的每一行中 "1" 对应的循环置换矩阵的偏移量。The method for constructing an LDPC code check matrix according to any one of claims 3 or 4, wherein the structure of the excessive base matrix BT or the offset of the matrix P is stored in the form of a table. Each row of the table records the position of "1" in each row of the BT or each row of the table The offset of the cyclic permutation matrix corresponding to "1" in each row of the excess base matrix BT is recorded.
6、 如权利要求 3或 4之一所述的 LDPC码校验矩阵的构造方法, 其特 征在于,去除过度矩阵 HT中至少一个 Kx K维的矩阵的至少一个元素" 1", 以获得检验矩阵 H包括以下步骤: The method for constructing an LDPC code check matrix according to any one of claims 3 or 4, wherein at least one element "1" of the matrix of at least one Kx K-dimensional in the over matrix HT is removed to obtain a check matrix. H includes the following steps:
对于 P, 选择行号连续的 r个 "1", 并将其从过度矩阵 HT中删除,, 获得校验矩阵 H, 其中 0<r≤K; 或  For P, select r consecutive "1"s of line numbers and remove them from the excess matrix HT to obtain the check matrix H, where 0 < r ≤ K; or
对于 P, 选择列号连续的 r个 "1", 并将其从过度矩阵 HT中删除, 获 得校验矩阵 H, 其中 0<r≤K; 或  For P, select r consecutive "1"s of column numbers and remove them from the excess matrix HT to obtain the check matrix H, where 0 < r ≤ K; or
对于 P, 随机选择 r个 "1", 并将其从过度矩阵 HT中删除, 获得校验 矩阵 H, 其中 0<r≤K。  For P, r "1"s are randomly selected and removed from the excess matrix HT to obtain a check matrix H, where 0 < r ≤ K.
7、 如权利要求 1所述的 LDPC码校验矩阵的构造方法, 其特征在于, 所述码率 R为 1/2, 所述码长 N为 9216, 所述扩张比 K为 256, 所述过度 基础矩阵 BT 的行重分布为 {λ7,λ8,λ9,λ10}={1/18, 14/18, 1/18,2/18}, 列重分 布为 {ρ15,ρ5,ρ4,ρ3,ρ2}={4/36,4/36,1/36,10/36,17/36}; Η的行重分布为 { λ 7, λ 8, λ 9, λ 10}={17/288,223/288,1/18,2/18}, 列重分布为 { ρ 15, ρ 14, ρ 5, ρ 4, ρ 3, ρ 2}={7/64,1/576,1/9,1/36,5/18, 17/36}。  The method for constructing an LDPC code check matrix according to claim 1, wherein the code rate R is 1/2, the code length N is 9216, and the expansion ratio K is 256. The line weight distribution of the excessive base matrix BT is {λ7, λ8, λ9, λ10}={1/18, 14/18, 1/18, 2/18}, and the column weight distribution is {ρ15, ρ5, ρ4, ρ3, Ρ2}={4/36,4/36,1/36,10/36,17/36}; the line weight distribution of Η is { λ 7, λ 8, λ 9, λ 10}={17/288,223/ 288, 1/18, 2/18}, the column weight distribution is { ρ 15, ρ 14, ρ 5, ρ 4, ρ 3, ρ 2}={7/64,1/576,1/9,1/ 36, 5/18, 17/36}.
8、 如权利要求 7所述的 LDPC码校验矩阵的构造方法, 其特征在于, 所述校验矩阵 H具体为:  The method for constructing an LDPC code check matrix according to claim 7, wherein the check matrix H is specifically:
0:(1,239,0)(4,166,0)(5,247,0)(11,31,0)(12,217,0)(14,72,0)(18,192,0)(19,0,0) 1:(2,251,0)(5,153,0)(11,159,0χ200)(14,48,0)(15,31,0)(19,0,0)(20,0,0)  0: (1, 239, 0) (4, 166, 0) (5, 247, 0) (11, 31, 0) (12, 217, 0) (14, 72, 0) (18, 192, 0) (19, 0, 0) 1: (2,251,0)(5,153,0)(11,159,0χ200)(14,48,0)(15,31,0)(19,0,0)(20,0,0)
2:(5,230,0)(6,182,0)(11,91,0)(14,62,0)(16,170,0)(20,0,0)(21,0,0) 2: (5,230,0)(6,182,0)(11,91,0)(14,62,0)(16,170,0)(20,0,0)(21,0,0)
3:(2,255,0)(3,196,0)(5,171,0)(7,26,0)(10,11,0)(12,71,0)(17,51,0)(21,0,0)(22,0,3: (2, 255, 0) (3, 196, 0) (5, 171, 0) (7, 26, 0) (10, 11, 0) (12, 71, 0) (17, 51, 0) (21, 0, 0) (22,0,
0) 0)
4:(4,240,0)(5,66,0)(11,0,0)(14,118,0)(17,39,0)(22,0,0)(23,0,0)  4: (4,240,0)(5,66,0)(11,0,0)(14,118,0)(17,39,0)(22,0,0)(23,0,0)
5:(2,212,0)(3,115,0)(5,93,0)(8,210,0)(9,29,0)(14,249,0)(18,39,0)(23,0,0) 5: (2,212,0)(3,115,0)(5,93,0)(8,210,0)(9,29,0)(14,249,0)(18,39,0)(23,0,0)
(24,0,0) (24,0,0)
6:(3,60,0)(5,46,0)(11,40,0)(13,180,0)(17,192,0)(24,0,0)(25,0,0)  6: (3,60,0)(5,46,0)(11,40,0)(13,180,0)(17,192,0)(24,0,0)(25,0,0)
7:(4,1,0)(10,247,0)(11,142,0)(14,210,0)(16,192,0)(25,0,0)(26,0,0)  7: (4,1,0)(10,247,0)(11,142,0)(14,210,0)(16,192,0)(25,0,0)(26,0,0)
8:(5,66,0)(10,208,0)(11,31,0)(14,116,0)(15,20,0)(26,0,0)(27,0,0)  8: (5,66,0)(10,208,0)(11,31,0)(14,116,0)(15,20,0)(26,0,0)(27,0,0)
9:(2,47,0)(6,8,0)(10,40,0)(11,219,0)(17,148,0)(27,0,0)(28,0,0) 9: (2,47,0)(6,8,0)(10,40,0)(11,219,0)(17,148,0)(27,0,0)(28,0,0)
10:(5,248,0)(6,255,0)(11,55,0)(14,56,0)(16,201,0)(28,0,0)(29,0,0) 10:(5,248,0)(6,255,0)(11,55,0)(14,56,0)(16,201,0)(28,0,0)(29,0,0)
11:(2,231,0)(5,83,0)(7,38,0)(9,87,0)(14,245,0)(17,194,0)(29,0,0)(30,0,0) 11:(2,231,0)(5,83,0)(7,38,0)(9,87,0)(14,245,0)(17,194,0)(29,0,0)(30,0, 0)
12:(9,249,0)(11,93,0)(13,83,0)(14,20,0)(30,0,0)(31,0,0) 12: (9, 249, 0) (11, 93, 0) (13, 83, 0) (14, 20, 0) (30, 0, 0) (31, 0, 0)
13:(5,39,0)(8,76,0)(11,225,0)(14,185,0)(15,118,0)(31,0,0)(32,0,0) 13:(5,39,0)(8,76,0)(11,225,0)(14,185,0)(15,118,0)(31,0,0)(32,0,0)
14:(5,81,0)(9,182,0)(10,248,0)(11,68,0)(14,23,0)(32,0,0)(33,0,0) 15:(1,183,0)(5,111,0)(11,230,0)(12,246,0)(14,105,0)(33,0,0)(34,0,0)14: (5,81,0)(9,182,0)(10,248,0)(11,68,0)(14,23,0)(32,0,0)(33,0,0) 15: (1,183,0)(5,111,0)(11,230,0)(12,246,0)(14,105,0)(33,0,0)(34,0,0)
16:(5,87,0)(8,244,0)(9,183,0)(11,139,0)(14,141,0)(34,0,0)(35,0,0) 16:(5,87,0)(8,244,0)(9,183,0)(11,139,0)(14,141,0)(34,0,0)(35,0,0)
17:(5,153,0)(7,238,0)(11,80,0)(13,92,0)(14,75,0)(18,48,0)(35,0,0);  17: (5, 153, 0) (7, 238, 0) (11, 80, 0) (13, 92, 0) (14, 75, 0) (18, 48, 0) (35, 0, 0);
其中三元组 (col,shift,adj(16))表示为该行第 col列以偏移量为 shift的循 环置换矩阵 P替换。  The ternary group (col, shift, adj(16)) is represented by the cyclic permutation matrix P of the row col column with the offset being shifted.
9、 如权利要求 1所述的 LDPC码校验矩阵的构造方法, 其特征在于, 所述码率 R为 3/4, 所述码长 N为 9216, 所述扩张比 K为 256, 所述 过度基础矩阵 BT 的行重分布为 {λ16,λ14}={1/9,8/9} , 列重分布为 {ρ9,ρ5,ρ4,ρ3,ρ2}={1/18, 1/9,2/9,7/18,2/9} ;  The method for constructing an LDPC code check matrix according to claim 1, wherein the code rate R is 3/4, the code length N is 9216, and the expansion ratio K is 256. The line weight distribution of the excessive base matrix BT is {λ16, λ14}={1/9,8/9}, and the column weight distribution is {ρ9, ρ5, ρ4, ρ3, ρ2}={1/18, 1/9, 2/9, 7/18, 2/9};
Η 的行重分布为 {λ16,λ15,λ14}={15/144,1/144,8/9} , 列重分布为 The row weight distribution of Η is {λ16, λ15, λ14}={15/144,1/144,8/9}, and the column redistribution is
{ρ9,ρ8,ρ5,ρ4,ρ3,ρ2}={35/576,1/576,1/9,2/9,7/18,2/9}„ {ρ9,ρ8,ρ5,ρ4,ρ3,ρ2}={35/576,1/576,1/9,2/9,7/18,2/9}„
10、 如权利要求 9所述的 LDPC码校验矩阵的构造方法, 其特征在于, 所述校验矩阵 H具体为:  The method for constructing an LDPC code check matrix according to claim 9, wherein the check matrix H is specifically:
0:(1,150,0)(2,223,0)(6,246,0)(8,236,0)(10,236,0)(11,78,0)(13,137,0)(17,48,0) (18,23,0)(20,195,0)(23,87,0)(25,194,0)(27,60,0)(28,0,0)  0: (1,150,0)(2,223,0)(6,246,0)(8,236,0)(10,236,0)(11,78,0)(13,137,0)(17,48,0) (18,23 ,0)(20,195,0)(23,87,0)(25,194,0)(27,60,0)(28,0,0)
1 :(4,188,0)(8,212,0)(10,202,0)(11,213,0)(13,252,0)(15,150,0)(18,205,0)  1 :(4,188,0)(8,212,0)(10,202,0)(11,213,0)(13,252,0)(15,150,0)(18,205,0)
(20,146,0)(21,234,0)(23,207,0)(25,15,0)(28,0,0)(29,0,0)  (20,146,0)(21,234,0)(23,207,0)(25,15,0)(28,0,0)(29,0,0)
2:(4,243,0)(7,241,0)(9,0,0)(11,254,0)(13,17,0)(16,237,0)(17,254,0)(18,18,0) 2:(4,243,0)(7,241,0)(9,0,0)(11,254,0)(13,17,0)(16,237,0)(17,254,0)(18,18,0)
(21,111,0)(23,235,0)(25,25,0)(29,0,0)(30,0,0) (21,111,0)(23,235,0)(25,25,0)(29,0,0)(30,0,0)
3:(2,137,0)(5,243,0)(9,255,0)(11,255,0)(13,210,0)(14,6,0)(18,162,0)(19,243,0)3:(2,137,0)(5,243,0)(9,255,0)(11,255,0)(13,210,0)(14,6,0)(18,162,0)(19,243,0)
(21,119,0)(23,4,0)(26,5,0)(30,0,0)(31,0,0) (21,119,0)(23,4,0)(26,5,0)(30,0,0)(31,0,0)
4:(4,141,0)(7,252,0)(9,70,0)(13,163,0)(14,4,0)(15,78,0)(17,242,0)(19,106,0) (23,12,0)(24,212,0)(26,20,0)(31,0,0)(32,0,0)  4: (4, 141, 0) (7, 252, 0) (9, 70, 0) (13, 163, 0) (14, 4, 0) (15, 78, 0) (17, 242, 0) (19, 106, 0) (23 ,12,0)(24,212,0)(26,20,0)(31,0,0)(32,0,0)
5:(3,225,0)(6,109,0)(8,154,0)(13,128,0)(14,244,0)(15,170,0)(19,148,0)(20,3,0) (23,85,0)(24,183,0)(27,211,0)(32,0,0)(33,0,0)  5: (3, 225, 0) (6, 109, 0) (8, 154, 0) (13, 128, 0) (14, 244, 0) (15, 170, 0) (19, 148, 0) (20, 3, 0) (23, 85, 0 )(24,183,0)(27,211,0)(32,0,0)(33,0,0)
6:(2,247,0)(3,252,0)(7,246,0)(8,226,0)(l l,251,0)(12,251,0)(13,222,0x400) 6:(2,247,0)(3,252,0)(7,246,0)(8,226,0)(l l,251,0)(12,251,0)(13,222,0x400)
(15,182,0)(17,186,0)(19,3,0)(22,199,0)(23,199,0)(26,199,0)(33,0,0)(34,0,0)(15,182,0)(17,186,0)(19,3,0)(22,199,0)(23,199,0)(26,199,0)(33,0,0)(34,0,0)
7:(5,250,0)(6,62,0)(7,150,0)(10,158,0)(12,250,0)(13,90,0)(16,3,0)(19,111,0)7: (5,250,0)(6,62,0)(7,150,0)(10,158,0)(12,250,0)(13,90,0)(16,3,0)(19,111,0)
(22,207,0)(23,39,0)(25,199,0)(34,0,0)(35,0,0) (22,207,0)(23,39,0)(25,199,0)(34,0,0)(35,0,0)
8:(1,49,0)(5,229,0)(10,255,0)(12,254,0)(13,227,0)(15,69,0)(16,98,0)(20,70,0)8: (1,49,0)(5,229,0)(10,255,0)(12,254,0)(13,227,0)(15,69,0)(16,98,0)(20,70,0)
(22,197,0)(23,208,0)(24,199,0)(27,199,0)(35,0,0); (22,197,0)(23,208,0)(24,199,0)(27,199,0)(35,0,0);
其中三元组 (col,shift,adj(16))表示为该行第 col列以偏移量为 shift的循 环置换矩阵 P替换。  The ternary group (col, shift, adj(16)) is represented by the cyclic permutation matrix P of the row col column with the offset being shifted.
11、 一种 LDPC码校验矩阵的构造装置, 其特征在于, 包括过度基础 矩阵构造单元、 过度矩阵扩张单元和检验矩阵生成单元, 其中: 过度基础矩阵构造单元, 用于构造一个产生码率为 R、 码长为 N 的 LDPC码的 MBxNB维的过度基础矩阵 BT, 其中 MB=M/K, NB=N/K, M = N ( 1 - R ), K为过度基础矩阵的扩张比, ΚΕ Φ, Φ为 Μ和 Ν的公因子 的集合; 11. An apparatus for constructing an LDPC code check matrix, comprising: an excessive base matrix construction unit, an excessive matrix expansion unit, and a check matrix generation unit, wherein: An over-basic matrix construction unit for constructing an over-basic matrix BT of an MBxNB dimension of an LDPC code having a code rate R and a code length N, where MB=M/K, NB=N/K, M=N (1) - R ), K is the expansion ratio of the excess basic matrix, ΚΕ Φ, Φ is the set of common factors of Μ and Ν;
过度矩阵扩张单元, 用于用 ΚχΚ维的矩阵替换过度基础矩阵 ΒΤ中的 元素, 将过度基础矩阵 ΒΤ扩张为 ΜχΝ维的过度矩阵 ΗΤ;  An over-matrix expansion unit for replacing elements in the excess base matrix ΒΤ with a matrix of dimensions, and expanding the excessive base matrix ΒΤ into an excessive matrix of ΜχΝ dimensions;
检验矩阵生成单元,用于去除过度矩阵 ΗΤ中至少一个 Κ X Κ维的矩阵 的至少一个元素 " 1" , 以获得检验矩阵 Η, 所述校验矩阵 Η具有优化的行 重分布和 /或列重分布, 用于进行 LDPC码的编码和 /或译码。  a check matrix generating unit for removing at least one element "1" of the matrix of at least one ΚX Κ dimension of the over matrix ΗΤ to obtain a check matrix Η having an optimized row redistribution and/or column Redistribution, used to encode and/or decode LDPC codes.
12、如权利要求 11所述的 LDPC码校验矩阵的构造装置,其特征在于, 过度基础矩阵构造单元,用于构造一个 MB NB维的过度基础矩阵 BT , 选择过度基础矩阵 BT的每一行和每一列中 " 1" 的数目, 使得 BT的行重 和列重分布满足预定的节点度分布; 并在行重和列重满足预定的节点度分 布的前提下, 选择过度基础矩阵 BT中每一行和每一列中 " 1 " 的位置, 使 得 BT的后 MB列组成的 MBxMB维的子矩阵满秩。  12. The apparatus for constructing an LDPC code check matrix according to claim 11, wherein the excessive base matrix construction unit is configured to construct an excessive base matrix BT of MB NB dimensions, and select each row of the excessive base matrix BT and The number of "1"s in each column is such that the row weight and the column weight distribution of the BT satisfy the predetermined node degree distribution; and each row in the excessive base matrix BT is selected on the premise that the row weight and the column weight satisfy the predetermined node degree distribution. And the position of "1" in each column, so that the sub-matrix of the MBxMB dimension composed of the last MB column of BT is full rank.
13、如权利要求 12所述的 LDPC码校验矩阵的构造装置,其特征在于, 所述过度矩阵扩张单元, 用于将过度基础矩阵 BT 中的 "0" 用 KxK 维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 " 1" 用 ΚχΚ维的循环置换矩阵 Ρ替 换, 其中, Ρ中 " 1" 的行号 i和列号 j满足 j=(i+k)modK, k为循环置换矩 阵的偏移量, mod表示取模运算; 并用于为每一个循环置换矩阵 P选择一 个偏移量。  The apparatus for constructing an LDPC code check matrix according to claim 12, wherein said excessive matrix expansion unit is configured to use "0" in the excess base matrix BT with an all-zero matrix of KxK dimensions ΖReplace, replace "1" in ΒΤ with the cyclic permutation matrix ΚχΚ of ΚχΚ dimension, where the line number i and column number j of "1" in Ρ satisfy j=(i+k) modK, k is a cyclic permutation matrix The offset, mod represents the modulo operation; and is used to select an offset for each cyclic permutation matrix P.
14、如权利要求 12所述的 LDPC码校验矩阵的构造装置,其特征在于, 所述过度矩阵扩张单元, 用于将过度基础矩阵 BT 中的 "0" 用 ΚχΚ 维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 " 1" 用 ΚχΚ维的代数置换矩阵 Ρ替 换, 其中, Ρ中 " 的行号 i和列号 j满足 j=f(i), 其中 f(i)是有限域或环 上的置换多项式; 并为每一个代数置换矩阵 P选择一个偏移量。  The apparatus for constructing an LDPC code check matrix according to claim 12, wherein the excessive matrix expansion unit is configured to use "0" in the excess base matrix BT for the all-zero matrix of the dimension ΖReplace, replace "1" in ΒΤ with the algebraic permutation matrix ΚχΚ of ΚχΚ, where "the row number i and the column number j of Ρ satisfy j=f(i), where f(i) is a finite field or a permutation polynomial over the ring; and an offset is selected for each algebraic permutation matrix P.
15、 一种 LDPC码的编码方法, 其特征在于, 包括以下步骤: 将校验矩阵 H分为两个子矩阵 H=[HmHp] ,其中 Hm为 Mx(N-M)维的 子矩阵, Hp为 MxM维的子矩阵, 计算 Hp-1和 Hp-lHm, 所述校验矩阵 H通过以下方式得到:  15. An encoding method for an LDPC code, comprising the steps of: dividing a check matrix H into two sub-matrices H=[HmHp], wherein Hm is a sub-matrix of Mx(NM) dimensions, and Hp is an MxM dimension. Submatrices, Hp-1 and Hp-1Hm are calculated, and the check matrix H is obtained by:
构造一个产生码率为 R、码长为 N的 LDPC码的 ΜΒχΝΒ维的过度基础 矩阵 Βτ, 其中 MB=M/K, NB=N/K, M = N ( 1 - R ) , K为过度基础矩阵的 扩张比, ΚΕ Φ, Φ为 Μ和 Ν的公因子的集合; Configured to generate a code rate R, the code length N of the LDPC code Μ Β χΝ Β dimension over the base matrix Β τ, where M B = M / K, N B = N / K, M = N (1 - R ), K is the expansion ratio of the excess basic matrix, ΚΕ Φ, Φ is the set of common factors of Μ and Ν;
用 Κ χ Κ 维的矩阵替换过度基础矩阵 Βτ中的元素, 将过度基础矩阵 Βτ扩张为 ΜχΝ维的过度矩阵 Ητ; 去除过度矩阵 Ητ中至少一个 K X K维的矩阵的至少一个元素 " 1 " 以 获得检验矩阵 H; Alternatively excessive base matrix with Κ χ Κ Beta-dimensional matrix of elements [tau], the excessive expansion of the base matrix Β τ ΜχΝ excessive dimensional matrix Η τ; At least one element of the matrix is removed over at least a KXK Η τ matrix dimension "1" to obtain a check matrix H;
根据输入的 1 χ(Ν- M)维的信息序列 m , 计算 Ι χΜ 维的校验序列 p=m(Hp- 1 Hm)T;  Calculating the check sequence pΙm(Hp-1 Hm)T of the Ι χΜ dimension according to the input information sequence m of the χ(Ν-M) dimension;
将信息序列 m和校验序列 p组合成 1 xN维的码字序列 c=[mp]并输出。 The information sequence m and the check sequence p are combined into a 1 x N-dimensional codeword sequence c = [mp] and output.
16、 如权利要求 15所述的 LDPC码的编码方法, 其特征在于, 构造一 个产生码率为 R、 码长为 N的 LDPC码的 ΜΒχΝΒ维的过度基础矩阵 BT 包括以下步骤: The LDPC code encoding method according to claim 15, wherein constructing an over-basic matrix BT of the LDPC code of the LDPC code having a code rate R and a code length of N comprises the following steps:
构造一个 MB NB维的过度基础矩阵 BT , 选择过度基础矩阵 BT的每 一行和每一列中 " 的数目, 使得 BT的行重和列重分布满足预定的节点 度分布;  Constructing an over-basic matrix BT of MB NB dimensions, selecting the number of "one row and each column of the excessive base matrix BT" such that the row weight and the column redistribution of the BT satisfy a predetermined node degree distribution;
在行重和列重满足预定的节点度分布的前提下,选择过度基础矩阵 BT 中每一行和每一列中 " 1 " 的位置, 使得 BT的后 MB列组成的 MBxMB维 的子矩阵满秩。  Under the premise that the row weight and the column weight satisfy the predetermined node degree distribution, the position of "1" in each row and each column in the excessive base matrix BT is selected, so that the sub-matrix of the MBxMB dimension composed of the latter MB columns of BT is full rank.
17、 如权利要求 16所述的 LDPC码的编码方法, 其特征在于, 将过度 基础矩阵 BT扩张为 ΜχΝ维的过度矩阵 HT包括以下步骤:  The LDPC code encoding method according to claim 16, wherein the expanding the excessive base matrix BT into the 过度-dimensional over-matrix HT comprises the following steps:
将过度基础矩阵 BT 中的 "0" 用 ΚχΚ维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 " 1 " 用 ΚΧΚ维的循环置换矩阵 Ρ替换, 其中, Ρ中 " 1 " 的行号 i 和列号 j满足 j=(i+k)modK, k为循环置换矩阵的偏移量, mod表示取模运 算;  Replace "0" in the excess base matrix BT with the all-zero matrix ΚχΚ of the dimension, and replace "1" in the ΚΧΚ with the cyclic permutation matrix ΚΧΚ of the dimension, where the line number of "1" in the i And column number j satisfies j=(i+k) modK, k is the offset of the cyclic permutation matrix, and mod represents the modulo operation;
为每一个循环置换矩阵 P选择一个偏移量。  Select an offset for each cyclic permutation matrix P.
18、 如权利要求 16所述的 LDPC码的编码方法, 其特征在于, 将过度 基础矩阵 BT扩张为 ΜχΝ维的校验矩阵 HT包括以下步骤:  18. The method of encoding an LDPC code according to claim 16, wherein the expanding the excess base matrix BT to the parity check matrix HT comprises the following steps:
将过度基础矩阵 BT 中的 "0" 用 ΚχΚ维的全 "0" 矩阵 Ζ替换, 将 ΒΤ中的 " 1 " 用 ΚχΚ维的代数置换矩阵 Ρ替换, 其中, Ρ中 " 1 " 的行号 i 和列号 j满足 j=f(i) , 其中 f(i)是有限域或环上的置换多项式;  Replace "0" in the excess base matrix BT with the all-zero matrix ΚχΚ of the dimension, and replace "1" in the ΚχΚ with the algebraic permutation matrix ΚχΚ of the dimension, where the line number of "1" in the i And the column number j satisfies j=f(i) , where f(i) is a permutation polynomial over a finite field or a ring;
为每一个代数置换矩阵 p选择一个偏移量。  Choose an offset for each algebraic permutation matrix p.
19、 如权利要求 15所述的 LDPC码的编码方法, 其特征在于, 所述码 率 R为 1/2 , 所述码长 N为 9216, 所述扩张比 K为 256 , 所述过度基础矩 阵 BT 的行重分布为 {λ7,λ8,λ9,λ10}={ 1/18, 14/18,1/18,2/18} , 列重分布为 {ρ15,ρ5,ρ4,ρ3,ρ2}={4/36,4/36,1/36,10/36,17/36} ; Η 的行重分布为 { λ 7, λ 8, λ 9, λ 10}={ 17/288,223/288, 1/18,2/18} , 列重分布为 { ρ 15, ρ 14, ρ 5, ρ 4, ρ 3, ρ 2} = {7/64,1/576,1/9,1/36,5/18,17/36}。  The LDPC code encoding method according to claim 15, wherein the code rate R is 1/2, the code length N is 9216, and the expansion ratio K is 256, the excessive basic matrix The line weight distribution of BT is {λ7, λ8, λ9, λ10}={ 1/18, 14/18, 1/18, 2/18}, and the column weight distribution is {ρ15, ρ5, ρ4, ρ3, ρ2}= {4/36,4/36,1/36,10/36,17/36}; 行's row weight distribution is { λ 7, λ 8, λ 9, λ 10}={ 17/288,223/288, 1 /18,2/18} , the column weight distribution is { ρ 15, ρ 14, ρ 5, ρ 4, ρ 3, ρ 2} = {7/64,1/576,1/9,1/36,5 /18,17/36}.
20、 如权利要求 19所述的 LDPC码的编码方法, 其特征在于, 所述校验 矩阵 H具体为: 0:(1,239,0)(4,166,0)(5,247,0)(11,31,0)(12,217,0)(14,72,0)(18,192,0)(19,0,0) 1 :(2,251,0)(5,153,0)(11,159,0χ200)(14,48,0)(15,31,0)(19,0,0)(20,0,0) The LDPC code encoding method according to claim 19, wherein the check matrix H is specifically: 0: (1,239,0)(4,166,0)(5,247,0)(11,31,0)(12,217,0)(14,72,0)(18,192,0)(19,0,0) 1 : (2,251,0)(5,153,0)(11,159,0χ200)(14,48,0)(15,31,0)(19,0,0)(20,0,0)
2:(5,230,0)(6,182,0)(11,91,0)(14,62,0)(16,170,0)(20,0,0)(21,0,0) 2: (5,230,0)(6,182,0)(11,91,0)(14,62,0)(16,170,0)(20,0,0)(21,0,0)
3:(2,255,0)(3,196,0)(5,171,0)(7,26,0)(10,11,0)(12,71,0)(17,51,0)(21,0,0) (22,0,0) 3: (2, 255, 0) (3, 196, 0) (5, 171, 0) (7, 26, 0) (10, 11, 0) (12, 71, 0) (17, 51, 0) (21, 0, 0) (22,0,0)
4:(4,240,0)(5,66,0)(11,0,0)(14,118,0)(17,39,0)(22,0,0)(23,0,0)  4: (4,240,0)(5,66,0)(11,0,0)(14,118,0)(17,39,0)(22,0,0)(23,0,0)
5:(2,212,0)(3,115,0)(5,93,0)(8,210,0)(9,29,0)(14,249,0)(18,39,0)(23,0,0) 5: (2,212,0)(3,115,0)(5,93,0)(8,210,0)(9,29,0)(14,249,0)(18,39,0)(23,0,0)
(24,0,0) (24,0,0)
6:(3,60,0)(5,46,0)(11,40,0)(13,180,0)(17,192,0)(24,0,0)(25,0,0)  6: (3,60,0)(5,46,0)(11,40,0)(13,180,0)(17,192,0)(24,0,0)(25,0,0)
7:(4,1,0)(10,247,0)(11,142,0)(14,210,0)(16,192,0)(25,0,0)(26,0,0) 7: (4,1,0)(10,247,0)(11,142,0)(14,210,0)(16,192,0)(25,0,0)(26,0,0)
8:(5,66,0)(10,208,0)(11,31,0)(14,116,0)(15,20,0)(26,0,0)(27,0,0) 8: (5,66,0)(10,208,0)(11,31,0)(14,116,0)(15,20,0)(26,0,0)(27,0,0)
9:(2,47,0)(6,8,0)(10,40,0)(11,219,0)(17,148,0)(27,0,0)(28,0,0) 9: (2,47,0)(6,8,0)(10,40,0)(11,219,0)(17,148,0)(27,0,0)(28,0,0)
10:(5,248,0)(6,255,0)(11,55,0)(14,56,0)(16,201,0)(28,0,0)(29,0,0) 10:(5,248,0)(6,255,0)(11,55,0)(14,56,0)(16,201,0)(28,0,0)(29,0,0)
11 :(2,231,0)(5,83,0)(7,38,0)(9,87,0)(14,245,0)(17,194,0)(29,0,0)(30,0,0) 12:(9,249,0)(11,93,0)(13,83,0)(14,20,0)(30,0,0)(31,0,0) 11 :(2,231,0)(5,83,0)(7,38,0)(9,87,0)(14,245,0)(17,194,0)(29,0,0)(30,0, 0) 12: (9, 249, 0) (11, 93, 0) (13, 83, 0) (14, 20, 0) (30, 0, 0) (31, 0, 0)
13:(5,39,0)(8,76,0)(11,225,0)(14,185,0)(15,118,0)(31,0,0)(32,0,0)  13:(5,39,0)(8,76,0)(11,225,0)(14,185,0)(15,118,0)(31,0,0)(32,0,0)
14:(5,81,0)(9,182,0)(10,248,0)(11,68,0)(14,23,0)(32,0,0)(33,0,0) 14: (5,81,0)(9,182,0)(10,248,0)(11,68,0)(14,23,0)(32,0,0)(33,0,0)
15:(1,183,0)(5,111,0)(11,230,0)(12,246,0)(14,105,0)(33,0,0)(34,0,0) 15: (1,183,0)(5,111,0)(11,230,0)(12,246,0)(14,105,0)(33,0,0)(34,0,0)
16:(5,87,0)(8,244,0)(9,183,0)(11,139,0)(14,141,0)(34,0,0)(35,0,0) 16:(5,87,0)(8,244,0)(9,183,0)(11,139,0)(14,141,0)(34,0,0)(35,0,0)
17:(5,153,0)(7,238,0)(11,80,0)(13,92,0)(14,75,0)(18,48,0)(35,0,0); 17: (5, 153, 0) (7, 238, 0) (11, 80, 0) (13, 92, 0) (14, 75, 0) (18, 48, 0) (35, 0, 0);
其中三元组 (col,shift,adj(16))表示为该行第 col列以偏移量为 shift的循环 置换矩阵 P替换。  The ternary group (col, shift, adj(16)) is represented by the cyclic permutation matrix P of the row col column with the offset being shifted.
21、 如权利要求 15所述的 LDPC码校验矩阵的构造方法, 其特征在于, 所述码率 R为 3/4, 所述码长 N为 9216, 所述扩张比 K为 256, 所述过度基础 矩阵 BT的行重分布为 {λ16,λ14}={1/9,8/9}, 列重分布为 {ρ9,ρ5,ρ4,ρ3,ρ2} = {1/18,1/9,2/9,7/18,2/9} ; Η的行重分布为  The method for constructing an LDPC code check matrix according to claim 15, wherein the code rate R is 3/4, the code length N is 9216, and the expansion ratio K is 256. The line weight distribution of the excessive base matrix BT is {λ16, λ14}={1/9,8/9}, and the column weight distribution is {ρ9, ρ5, ρ4, ρ3, ρ2} = {1/18, 1/9, 2/9,7/18,2/9} ;
{λ16,λ15,λ14}={15/144,1/144,8/9} , 列重分布为 {λ16, λ15, λ14}={15/144,1/144,8/9} , the column redistribution is
{ρ9,ρ8,ρ5,ρ4,ρ3,ρ2}={35/576,1/576,1/9,2/9,7/18,2/9}„ {ρ9,ρ8,ρ5,ρ4,ρ3,ρ2}={35/576,1/576,1/9,2/9,7/18,2/9}„
22、 如权利要求 21所述的 LDPC码校验矩阵的构造方法, 其特征在于, 所述校验矩阵 H具体为:  The method for constructing an LDPC code check matrix according to claim 21, wherein the check matrix H is specifically:
0:(1,150,0)(2,223,0)(6,246,0)(8,236,0)(10,236,0)(11,78,0)(13,137,0)(17,48,0) (18,23,0)(20,195,0)(23,87,0)(25,194,0)(27,60,0)(28,0,0)  0: (1,150,0)(2,223,0)(6,246,0)(8,236,0)(10,236,0)(11,78,0)(13,137,0)(17,48,0) (18,23 ,0)(20,195,0)(23,87,0)(25,194,0)(27,60,0)(28,0,0)
1 :(4,188,0)(8,212,0)(10,202,0)(11,213,0)(13,252,0)(15,150,0)(18,205,0) (20,146,0)(21,234,0)(23,207,0)(25,15,0)(28,0,0)(29,0,0) 1 :(4,188,0)(8,212,0)(10,202,0)(11,213,0)(13,252,0)(15,150,0)(18,205,0) (20,146,0)(21,234,0)(23,207, 0)(25,15,0)(28,0,0)(29,0,0)
2:(4,243,0)(7,241,0)(9,0,0)(11,254,0)(13,17,0)(16,237,0)(17,254,0)(18,18,0) (21 ,1 11,0)(23,235,0)(25,25,0)(29,0,0)(30,0,0) 2:(4,243,0)(7,241,0)(9,0,0)(11,254,0)(13,17,0)(16,237,0)(17,254,0)(18,18,0) (21,1 11,0)(23,235,0)(25,25,0)(29,0,0)(30,0,0)
3 :(2,137,0)(5,243,0)(9,255,0)(11,255,0)(13,210,0)(14,6,0)(18,162,0)(19,243,0) (21 ,1 19,0)(23,4,0)(26,5,0)(30,0,0)(31,0,0)  3 :(2,137,0)(5,243,0)(9,255,0)(11,255,0)(13,210,0)(14,6,0)(18,162,0)(19,243,0) (21,1 19, 0)(23,4,0)(26,5,0)(30,0,0)(31,0,0)
4:(4,141 ,0)(7,252,0)(9,70,0)(13,163,0)(14,4,0)(15,78,0)(17,242,0)(19,106,0) (23,12,0)(24,212,0)(26,20,0)(31 ,0,0)(32,0,0)  4: (4, 141, 0) (7, 252, 0) (9, 70, 0) (13, 163, 0) (14, 4, 0) (15, 78, 0) (17, 242, 0) (19, 106, 0) (23 ,12,0)(24,212,0)(26,20,0)(31 ,0,0)(32,0,0)
5:(3,225,0)(6,109,0)(8,154,0)(13,128,0)(14,244,0)(15,170,0)(19,148,0)(20,3,0) (23,85,0)(24,183,0)(27,21 1,0)(32,0,0)(33,0,0)  5: (3, 225, 0) (6, 109, 0) (8, 154, 0) (13, 128, 0) (14, 244, 0) (15, 170, 0) (19, 148, 0) (20, 3, 0) (23, 85, 0 )(24,183,0)(27,21 1,0)(32,0,0)(33,0,0)
6:(2,247,0)(3,252,0)(7,246,0)(8,226,0)(l l,251 ,0)(12,251 ,0)(13,222,0x400) (15,182,0)(17,186,0)(19,3,0)(22,199,0)(23,199,0)(26,199,0)(33,0,0)(34,0,0) 7:(5,250,0)(6,62,0)(7,150,0)(10,158,0)(12,250,0)(13,90,0)(16,3,0)(19,111 ,0) (22,207,0)(23,39,0)(25,199,0)(34,0,0)(35,0,0)  6:(2,247,0)(3,252,0)(7,246,0)(8,226,0)(ll,251,0)(12,251,0)(13,222,0x400) (15,182,0)(17,186,0)( 19,3,0)(22,199,0)(23,199,0)(26,199,0)(33,0,0)(34,0,0) 7:(5,250,0)(6,62,0)( 7,150,0)(10,158,0)(12,250,0)(13,90,0)(16,3,0)(19,111 ,0) (22,207,0)(23,39,0)(25,199,0) (34,0,0)(35,0,0)
8:(1,49,0)(5,229,0)(10,255,0)(12,254,0)(13,227,0)(15,69,0)(16,98,0)(20,70,0) (22,197,0)(23 ,208,0)(24, 199,0)(27, 199,0)(35,0,0);  8: (1,49,0)(5,229,0)(10,255,0)(12,254,0)(13,227,0)(15,69,0)(16,98,0)(20,70,0) (22,197,0)(23,208,0)(24, 199,0)(27, 199,0)(35,0,0);
其中三元组 (col,shift,adj(16))表示为该行第 col列以偏移量为 shift的循 环置换矩阵 P替换。  The ternary group (col, shift, adj(16)) is represented by the cyclic permutation matrix P of the row col column with the offset being shifted.
PCT/CN2012/080188 2011-08-17 2012-08-15 Ldpc code check matrix construction method and device, and encoding method and system WO2013023604A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110238045.9A CN102957435B (en) 2011-08-17 2011-08-17 The building method of LDPC check matrix, device and coded method and system
CN201110238045.9 2011-08-17

Publications (1)

Publication Number Publication Date
WO2013023604A1 true WO2013023604A1 (en) 2013-02-21

Family

ID=47714769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080188 WO2013023604A1 (en) 2011-08-17 2012-08-15 Ldpc code check matrix construction method and device, and encoding method and system

Country Status (2)

Country Link
CN (1) CN102957435B (en)
WO (1) WO2013023604A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825622A (en) * 2014-02-25 2014-05-28 盐城师范学院 Low complexity quasi-cyclic LDPC code designing method based on mask operation
CN104410426B (en) * 2014-09-18 2017-10-13 北京航空航天大学 A kind of building method of Non-Binary LDPC Coded and coding method
CN104393876B (en) * 2014-11-04 2018-08-17 北京航空航天大学 Parity matrix and coding method and encoder and interpretation method and decoder
CN108347299B (en) * 2017-01-25 2021-02-05 华为技术有限公司 Data transmission method and device
CN107612658B (en) * 2017-10-19 2020-07-17 北京科技大学 Efficient coding modulation and decoding method based on B-type structure lattice code
CN114978194A (en) * 2022-05-17 2022-08-30 华侨大学 Structure optimization method and device of original pattern LDPC code suitable for lossy source coding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753149A (en) * 2008-12-10 2010-06-23 国家广播电影电视总局广播科学研究院 Method for constructing quasi-cyclic low-density parity-check code (QC-LDPC code)
CN102025441A (en) * 2009-09-11 2011-04-20 北京泰美世纪科技有限公司 Method for constructing low density parity check (LDPC) code check matrix, and method and device for encoding LDPC code

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753149A (en) * 2008-12-10 2010-06-23 国家广播电影电视总局广播科学研究院 Method for constructing quasi-cyclic low-density parity-check code (QC-LDPC code)
CN102025441A (en) * 2009-09-11 2011-04-20 北京泰美世纪科技有限公司 Method for constructing low density parity check (LDPC) code check matrix, and method and device for encoding LDPC code

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU BINBIN ET AL.: "Recursive construction of low-density parity-check (LDPC) codes.", JOURNAL OF TSINGHUA UNIVERSITY(SCIENCE AND TECHNOLOGY)., vol. 47, no. 10, October 2007 (2007-10-01), pages 1638 - 1641 *

Also Published As

Publication number Publication date
CN102957435A (en) 2013-03-06
CN102957435B (en) 2017-03-15

Similar Documents

Publication Publication Date Title
WO2011029362A1 (en) Configuration method of ldpc code check matrix and encoding method and encoding apparatus based on the configuration method
US11677421B2 (en) Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 7/15 and quadrature phase shift keying, and bit interleaving method using same
CA2883547C (en) Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 4/15 and 256-symbol mapping, and bit interleaving method using same
WO2013023604A1 (en) Ldpc code check matrix construction method and device, and encoding method and system
KR102229233B1 (en) Structured LDPC encoding and decoding method and apparatus
KR102546123B1 (en) Bicm reception device and method corresponding to 16-symbol mapping and low density parity check codeword with 64800 length, 2/15 rate
CA2988762C (en) Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 3/15 and 64-symbol mapping, and bit interleaving method using same
CN100588144C (en) Channel coding and interleaving in mobile media broadcast, and decoding and deleaving method
CA2882457C (en) Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 5/15 and 64-symbol mapping, and bit interleaving method using same
CA2989593C (en) Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 4/15 and 16-symbol mapping, and bit interleaving method using same
KR102546122B1 (en) Bicm reception device and method corresponding to 64-symbol mapping and low density parity check codeword with 64800 length, 2/15 rate
TW200835168A (en) Overlapping sub-matrix based LDPC (Low Density Parity Check) decoder
JP2011125063A (en) Transmission system
CA2989542A1 (en) Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 3/15 and quadrature phase shift keying, and bit interleaving method using same
KR102546120B1 (en) Bicm reception device and method corresponding to 4096-symbol mapping and low density parity check codeword with 64800 length, 2/15 rate
KR102536693B1 (en) Bicm receiving device for 256-symbol mapping and low density parity check codeword with 64800 length, 4/15 rate, and method using the same
CA2988856A1 (en) Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 2/15 and 16-symbol mapping, and bit interleaving method using same
CA2989545C (en) Bit interleaver for low-density parity check codeword having length of 16200 and code rate of 2/15 and 256-symbol mapping, and bit interleaving method using same
KR102329573B1 (en) Transmitter and signal processing method thereof
KR101772008B1 (en) Method and apparatus for transmitting and receiving in communication/broadcasting system
JP2008035094A (en) Encoding device and decoding device
CN105471444A (en) Coding method for LDPC codes
CN105471442A (en) Coding method for LDPC codes
Tan et al. A general and optimal framework to achieve the entire rate region for Slepian–Wolf coding
KR102554678B1 (en) Bicm reception device and method corresponding to 4096-symbol mapping and low density parity check codeword with 64800 length, 5/15 rate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12824215

Country of ref document: EP

Kind code of ref document: A1