WO2013023599A1 - 分层业务流的发送和接收方法及装置 - Google Patents

分层业务流的发送和接收方法及装置 Download PDF

Info

Publication number
WO2013023599A1
WO2013023599A1 PCT/CN2012/080182 CN2012080182W WO2013023599A1 WO 2013023599 A1 WO2013023599 A1 WO 2013023599A1 CN 2012080182 W CN2012080182 W CN 2012080182W WO 2013023599 A1 WO2013023599 A1 WO 2013023599A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
symbol
output
layered
bit
Prior art date
Application number
PCT/CN2012/080182
Other languages
English (en)
French (fr)
Inventor
邢观斌
陶涛
雷文
李继龙
冯昂
白栋
Original Assignee
北京泰美世纪科技有限公司
国家广播电影电视总局广播科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京泰美世纪科技有限公司, 国家广播电影电视总局广播科学研究院 filed Critical 北京泰美世纪科技有限公司
Publication of WO2013023599A1 publication Critical patent/WO2013023599A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/42Arrangements for resource management
    • H04H20/423Transmitter side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • the present invention relates to a signal transmitting and receiving method and apparatus, and more particularly to a method and apparatus for transmitting and receiving a layered traffic stream in a digital audio broadcasting system. Background technique
  • Hierarchical modulation is to first divide the source data stream into several layers, and each layer is mapped to different layers of the signal constellation according to different priorities. Different layers of the constellation map have different receiving sensitivities due to different minimum distances between symbols. Therefore, on the receiving side, receivers with better receiving conditions can demodulate source data of multiple layers to obtain better quality of service. The poorer receiver can only solve less layers of data, or even just the base layer.
  • Hierarchical modulation has been widely used in multimedia broadcast and communication standards such as DVB-T, MediaFLO and UMB.
  • An aspect of the present invention provides a method for sending a layered service flow, including:
  • Another aspect of the present invention provides a method for receiving a layered service flow, including: extracting a load symbol according to a system frame structure and a frequency word template to generate a modulation signal existing in a constellation space;
  • a further aspect of the present invention provides a device for transmitting a layered service flow, including: a pseudo-random sequence scrambler, configured to separately scramble the multi-layer data streams to obtain a plurality of information bit streams corresponding to the multi-layer data streams;
  • a forward error correction encoder configured to search for a corresponding coded codeword in the codeword set according to the plurality of information bitstreams output by the pseudorandom sequence scrambler, and generate a plurality of coded bitstreams correspondingly;
  • An interleaver configured to reorder the plurality of encoded bitstreams output by the forward error correction encoder according to a predetermined rule, and correspondingly obtain a plurality of interleaved bitstreams
  • a mapper configured to map the plurality of interleaved bitstreams output by the interleaver, and obtain a plurality of modulation symbols correspondingly;
  • a multiplexer configured to multiplex the plurality of modulation symbols output by the mapper in a same constellation space according to a power loading manner to obtain a layered modulation symbol
  • a transmitter configured to send the layered modulation symbol output by the multiplexer.
  • a further aspect of the present invention provides a receiving apparatus for layered traffic, comprising: a signal detector, configured to extract a load symbol according to a system frame structure and a frequency template, to generate a modulated signal existing in a constellation space;
  • a hierarchical demapper for demodulating a first layer symbol in the modulated signal output by the signal detector to obtain a first layer demodulation symbol
  • a deinterleaver configured to deinterlace the first layer demodulation symbols output by the layered demapper to obtain a first layer deinterleaved bit stream
  • a forward error correction decoder configured to search for a maximum likelihood probability or a maximum a posteriori probability decoding in a message transmission manner according to the first layer deinterleaved bit stream output by the deinterleaver to obtain a first layer decoding bit Flow
  • a descrambler configured to descramble the first layer decoded bit stream output by the forward error correction decoder to obtain first layer service data.
  • a method and apparatus for transmitting and receiving a layered service stream of the present invention has the following advantages:
  • the invention effectively improves the spatial spectrum utilization rate of the broadcasting system, provides the user with as much program content as possible without significantly reducing the basic service quality, and solves the service popularization and service in the digital audio broadcasting system.
  • the invention can be widely applied to various digital audio broadcasting fields such as satellite audio broadcasting, terrestrial wireless audio broadcasting, and ground handheld audio broadcasting.
  • FIG. 1 is a data processing flowchart of a method for transmitting a layered service flow according to an embodiment of the present invention
  • FIG. 2a is a system frame structure based on a method and apparatus for transmitting and receiving a layered service flow according to an embodiment of the present invention
  • 2b is a structural diagram of a subframe on which a method and apparatus for transmitting and receiving a layered service flow according to an embodiment of the present invention are based;
  • FIG. 3 is a flowchart of a method for transmitting a layered service flow according to an embodiment of the present invention
  • FIG. 4 is a linear feedback shift register for generating a scrambling code
  • FIG. 5 is a schematic diagram of layered modulation according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for receiving a layered service flow according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a device for transmitting a layered service flow according to an embodiment of the present invention.
  • FIG. 14 is an implementation of the present invention.
  • FIG. 15 is a schematic diagram of a device for receiving a layered service flow according to another embodiment of the present invention;
  • FIG. 16 is a schematic diagram of another embodiment of the present invention. Schematic representation of a receiving device for layered traffic
  • FIG. 1 is a flowchart of a method for transmitting a layered service flow according to an embodiment of the present invention
  • FIG. 2 is a method and an apparatus for transmitting and receiving a layered service flow according to an embodiment of the present invention.
  • FIG. 2b is a subframe structure diagram based on the method and device for transmitting and receiving a layered service flow according to an embodiment of the present invention.
  • the method and device for layered service flow sending and receiving according to embodiments of the present invention are based on a digital audio broadcasting system of Ccoded Orthogonal Frequency Division Multiplexing (COFDM), and the frame structure of the system is composed of super frames, frames, and sub-frames.
  • COFDM Ccoded Orthogonal Frequency Division Multiplexing
  • the frame and the OFDM symbol are composed of 4 layers.
  • each superframe is divided into 4 frames, each frame is divided into 4 subframes, each subframe is divided into 57 OFDM symbols, and each symbol has a total of 242 effective carriers.
  • the first OFDM symbol of each subframe is used as a beacon for system synchronization and demodulation preprocessing, and the other 56 OFDM symbols include payload, discrete pilot, continual pilot, and virtual subcarrier.
  • each superframe is divided into 4 frames, each frame is divided into 4 subframes, each subframe is divided into 112 OFDM symbols, and each symbol has 122 effective carriers.
  • the first OFDM symbol of each subframe acts as a beacon, and the other 111 OFDM symbols contain load, discrete pilot, continuous pilot, and virtual Quasi subcarrier.
  • each superframe is divided into 4 frames, each frame is divided into 4 subframes, each subframe is divided into 62 OFDM symbols, and each symbol has a total of 242 effective carriers.
  • the first OFDM symbol of each subframe is used as a beacon, and the other 61 OFDM symbols include a payload, a scattered pilot, a continuous pilot, and a virtual subcarrier.
  • Each OFDM symbol is prefixed by a guard interval to reduce interference between OFDM symbols.
  • the OFDM signal consists of up to 8 subbands with a nominal bandwidth of 100 kHz.
  • the frequency pattern specifies the number of subbands, as well as the locations of the effective subbands and the virtual subbands.
  • all subcarriers in the upper half subband or the lower half subband of some valid subbands are virtual subcarriers.
  • each OFDM symbol includes effective subcarriers composed of contiguous pilots, discrete pilots, and data subcarriers (when the subcarriers of the upper half subband and the lower half subband are not all virtual subcarriers) Time), or / 2 by continuous
  • the subcarriers except the virtual subcarrier, the contiguous pilot subcarrier, and the scattered pilot subcarrier in the OFDM symbol are data subcarriers, and the data subcarriers are placed with service description information symbols and service data symbols.
  • the superframe length is 2560 ms, and each superframe is composed of four physical layer signal frames of length 640 ms.
  • Each physical layer signal frame includes four subframes of length 160 ms, and each subframe includes one beacon and one OFDM. symbol.
  • Each physical layer signal frame carries data for one logical frame.
  • Logical frame structure and physical layer The signal frame structure is shown in Figure 1.
  • the structure of the sub-frame is shown in Figure 2.
  • FIG. 3 is a flowchart of a method for sending a layered service flow according to an embodiment of the present invention. The method comprises the following steps:
  • Step S11 Perform scrambling and forward error correction coding on the multi-layer data stream, respectively, to obtain a plurality of coded bit streams corresponding to the multi-layer data stream, where the priorities of the multi-layer data streams are different.
  • the data stream of each layer (the input data byte stream is followed according to
  • the MSB prior mode is scrambled by a binary pseudo-random sequence PW, respectively.
  • the PW is generated by a linear feedback shift register, as shown in Figure 4, which corresponds to a generator polynomial of: x 12 + x u + x 8 + x 6 +l.
  • the initial value of the shift register is 000000000001, and the linear feedback shift register is reset at the beginning of each logical frame.
  • the scrambling code is implemented by modulo-2 adding the input bit information sequence to the binary pseudo-random sequence, as shown in equation (1):
  • the scrambled data is encoded by the LDPC forward error correction code to obtain an encoded bit stream with a codeword length of 9216 bits.
  • the coding configuration is shown in Table 2.
  • Step S12 Perform bit interleaving and constellation mapping on the plurality of encoded bit streams, and obtain a plurality of modulation symbols correspondingly.
  • the encoded bitstream is reordered according to a predetermined rule, and the interleaved bitstream is correspondingly obtained.
  • the interleaved bit stream of each layer of traffic is constelled in the form of QPSK and 16QAM.
  • Figure 5 shows the two-layer priority layered modulation based on 16QAM.
  • 16QAM can load 4 information bits, and the left two bits (MSB) actually represent a QPSK constellation. Its constellation point distance is greater than 16QAM, which has better protection for information, so the first two bits are used.
  • Carry high-priority data such as FM sound quality data streams.
  • the latter two bits are used to load low priority data, such as CD quality data streams. In this way, users with good reception conditions can receive CD-quality services, while users with poor reception can only receive FM-quality broadcasts.
  • Step S13 The plurality of modulation symbols are multiplexed in the same constellation space according to a power loading manner to obtain a layered modulation symbol.
  • the multiplexer after each layer is separately modulated, the multiplexer multiplexes the symbols into a constellation space according to each layer of power loading.
  • a data stream with a higher priority level corresponds to a high power value
  • a data stream with a lower priority level corresponds to a low power value.
  • Figure 6, Figure 7, and Figure 8 show the results of layered modulation after two layers of QPSK modulation.
  • the layered modulation at this time is equivalent to the traditional 16QAM modulation.
  • Figure 7 and Figure 8 show the constellation diagrams for the power distribution modes of "1 2 3 , ⁇ ⁇ and " ⁇ 5 , " ⁇ 1 .
  • Figure 9 show the hierarchical modulation constellation of one QPSK and one 16QAM.
  • the low priority 16QAM can also be multiplexed by two QPSKs, thus obtaining a layered modulation scheme of three layers.
  • step S14 specifically includes:
  • the frequency domain signal is converted into time domain sampling by frequency-time domain transform; the time domain sampling is transmitted in the time domain.
  • FIG. 11 is a flowchart of a method for receiving a layered service flow according to an embodiment of the present invention. The method comprises the following steps:
  • Step S21 Extract a load symbol according to a specified frame position of the system frame structure and the frequency template, and generate a modulation signal existing in the constellation space;
  • Step S22 Demodulate the first layer symbol in the modulated signal to obtain a first layer demodulation symbol
  • Step S23 Deinterleaving and decoding the first layer demodulation symbol to obtain a first layer decoding bit
  • Step S24 Perform bit descrambling on the first layer decoded bit to obtain a first layer service data stream.
  • Step S25 modulating the first layer demodulation signal, or encoding and modulating the first layer decoding bit to obtain a reconstructed first layer modulation symbol;
  • Step S26 Subtracting the reconstructed first layer modulation symbol from the modulation symbol to obtain modulation symbols of other layers;
  • Step S27 Demodulate the second layer symbol in the modulation symbols of the other layer to obtain a second layer demodulation symbol
  • Step S28 Deinterleaving and decoding the second layer demodulation symbol to obtain a second layer decoding bit
  • Step S29 Perform bit descrambling on the second layer decoded bit to obtain a second layer service data stream.
  • the high priority symbol is detected first, and the low priority symbol is regarded as interference. Therefore, the higher the power value corresponding to the high priority, the higher the signal to noise ratio during demodulation. The bit error rate performance of one layer will be better.
  • the service data stream of the layer is obtained by deinterleaving, decoding and solving.
  • the demodulated symbol is remodulated and fed back to the front end, and the effect of the first layer is subtracted from the received symbol.
  • FIG. 13 is a schematic diagram of a device for sending a layered service flow according to an embodiment of the present invention.
  • the device 120 includes:
  • the pseudo random sequence scrambler 121 is configured to separately scramble the multi-layer data streams to obtain a plurality of information bit streams corresponding to the multi-layer data stream;
  • a forward error correction (FEC) encoder 122 configured to search for a corresponding coded codeword in the codeword set according to the plurality of information bitstreams output by the pseudorandom sequence scrambler, and generate a plurality of coded bits correspondingly Flow
  • the interleaver 123 is configured to reorder the plurality of encoded bitstreams output by the forward error correction encoder according to a predetermined rule, and correspondingly obtain a plurality of interleaved bitstreams;
  • a mapper 124 configured to map the plurality of interleaved bitstreams output by the interleaver, corresponding to obtaining a plurality of modulation symbols
  • the multiplexer 125 is configured to multiplex the plurality of modulation symbols output by the mapper in a same constellation space according to a power loading manner to obtain a layered modulation symbol;
  • the transmitter 126 is configured to send the layered modulation symbol output by the multiplexer.
  • the first layer is a high-priority data stream
  • the other layer is a low-priority data stream.
  • the transmitter 126 includes:
  • a frequency domain signal generator configured to multiplex the layered modulation symbols output by the multiplexer with discrete pilots and continuous pilots to obtain a frequency domain signal of an orthogonal multiplexing structure
  • a frequency-time domain converter configured to perform time-domain sampling by frequency-time-domain transforming the frequency domain signal output by the frequency domain signal generator.
  • the coding manner of the forward error correction coding is a cyclic code, a convolutional code, or an LDPC code;
  • the method of interleaving is a bit-level interleaving method; For BPSK, QPSK or 16QAM.
  • FIG. 14 is a schematic diagram of a device for receiving a layered service flow according to an embodiment of the present invention.
  • the device 130 includes:
  • the signal detector 131 is configured to extract a load symbol according to a system frame structure and a frequency template specified position, and generate a modulation signal existing in the constellation space;
  • the hierarchical demapper 132 is configured to demodulate the first layer of the modulated signal output by the signal detector 131 to obtain a first layer demodulation symbol;
  • a deinterleaver 133 configured to deinterleave the first layer demodulation symbols output by the layered demapper 132 to obtain a first layer deinterleaved bit stream;
  • a forward error correction decoder 134 configured to search for a maximum likelihood probability or a maximum a posteriori probability decoding in a message transmission manner according to the first layer deinterleaved bit stream output by the deinterleaver 133, to obtain a first a layer of decoded bit stream;
  • the descrambler 135 is configured to descramble the first layer decoded bit stream output by the forward error correction decoder 134 to obtain first layer service data.
  • FIG. 15 is a schematic diagram of a receiving device for layered service flow according to another embodiment of the present invention.
  • the apparatus 130 further includes:
  • a mapper 142 configured to modulate the first layer demodulation signal output by the layered demapper 132 to obtain a reconstructed first layer modulation symbol
  • a subtracter 141 configured to subtract the reconstructed first layer modulation symbol fed back by the mapper 142 from the modulation symbol output by the signal detector 131 to obtain modulation symbols of other layers;
  • a hierarchical demapper 152 configured to demodulate a second layer symbol in the modulation symbols of the other layer output by the subtractor 141 to obtain a second layer demodulation symbol
  • a deinterleaver 153 configured to deinterleave the second layer demodulation symbols output by the layered demapper 152 to obtain a second layer deinterleaved bit stream;
  • a forward error correction decoder 154 configured to search for a maximum likelihood probability or a maximum a posteriori probability decoding in a message transmission manner according to the second layer deinterleaved bit stream output by the deinterleaver 153, to obtain a second layer Decoding the bit stream;
  • the descrambler 155 is configured to descramble the second layer decoded bit stream output by the forward error correction decoder 154 to obtain second layer service data.
  • FIG. 16 is a schematic diagram of a receiving device for layered service flow according to another embodiment of the present invention.
  • the difference between this embodiment and the embodiment corresponding to FIG. 14 is that the apparatus 130 further includes:
  • the encoder 144 is configured to encode the first layer decoded bit stream output by the forward error correction decoder 134 to obtain a reconstructed first layer coded bit stream;
  • An interleaver 143 configured to interleave the reconstructed first layer coded bit stream output by the encoder 144 to obtain a reconstructed first layer interleaved bit stream;
  • a mapper 142 configured to map the reconstructed first layer interleaved bit stream constellation output by the interleaver 143 to obtain a reconstructed first layer modulation symbol
  • a subtracter 141 configured to subtract the reconstructed first layer modulation symbol fed back by the mapper 142 from the modulation symbol output by the signal detector 131 to obtain modulation symbols of other layers;
  • the layered demapper 152 is further configured to demodulate the second layer symbol of the modulation symbols of the other layer output by the subtracter 141 to obtain a second layer demodulation symbol;
  • a deinterleaver 153 configured to deinterleave the second layer demodulation symbols output by the layered demapper 152 to obtain a second layer deinterleaved bit stream;
  • a forward error correction decoder 154 configured to deinterleave according to the second layer output by the deinterleaver 153 a bit stream, searching for a maximum likelihood probability or a maximum a posteriori probability decoding in a message passing manner to obtain a second layer decoded bit stream;
  • the descrambler 155 is configured to descramble the second layer decoded bit stream output by the forward error correction decoder 154 to obtain second layer service data.
  • the first layer symbol in the load symbol corresponds to a high priority data stream
  • the other layer symbol corresponds to a low priority data stream
  • hierarchical demappers 132 and 152 may be a hierarchical demapper
  • deinterleavers 133 and 153 may be one deinterleaver
  • forward error correction decoders 134 and 154 may be A forward error correction decoder
  • descramblers 135 and 155 can be a descrambler.
  • the method and apparatus for transmitting and receiving a layered service flow proposed by the present invention.
  • the utility model has the following advantages: According to the characteristics of different user channel fading in the digital audio broadcasting system, a method for transmitting a layered service flow and a transmitting and receiving device are proposed, which effectively improves the spatial spectrum utilization rate of the broadcasting system, Under the premise of significantly reducing the basic service quality, the user is provided with as much program content as possible, which solves the problem of coexistence of service popularization and service differentiation in the digital audio broadcasting system.
  • the present invention can be widely applied to various digital audio broadcasting fields such as satellite audio broadcasting, terrestrial wireless audio broadcasting, and terrestrial handheld audio broadcasting.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种分层业务流的发送和接收方法及装置,包括:对多层数据流分别进行扰码和前向纠错编码,获得与所述多层数据流对应的多个编码比特流,所述多层数据流的优先级不同;对所述多个编码比特流进行比特交织和星座映射,对应获得多个调制符号;将所述多个调制符号按照功率加载方式复用在同一个星座空间内,获得分层调制符号;发送所述分层调制符号;本发明的分层业务流的发送和接收方法及装置提高了广播系统的空间频谱利用率,在不明显降低基本服务质量的前提下,为用户提供尽可能多的节目内容,解决了数字音频广播系统中服务大众化与服务差异化共存的问题。

Description

分层业务流的发送和接收方法及装置 技术领域
本发明涉及信号发送和接收方法以及装置,特别涉及一种数字音频广播系 统中分层业务流的发送和接收方法及装置。 背景技术
分层调制是首先将源数据流分为若干层,各层按照不同的优先级, 分别映 射到信号星座图的不同层。星座图的不同层由于符号间的最小距离不同而对应 不同的接收灵敏度, 因此在接收侧, 对于有较好接收条件的接收机可以解调出 多个层的源数据从而得到更好的服务质量,而状况较差的接收机只能够解出较 少层的数据,甚至仅仅是基本层。分层调制已被广泛应用在 DVB-T, MediaFLO 和 UMB等多媒体广播和通信标准中。
然而, 在数字音频广播系统中, 还需要考虑将物理层支持的分层调制和 DRA信源编码的分层编码相结合, 适度地实现业务的自动升 /降级, 保证用户 在恶劣的信道环境下可以保证基本的服务需求和音频质量,而在信道环境较好 的时候可以解调额外的高层比特信息, 实现增强业务和改善的音频效果。 发明内容
本发明的目的是提供一种分层业务流的发送和接收方法及装置。
本发明的一个方面提供了一种分层业务流的发送方法, 包括:
对多层数据流分别进行扰码和前向纠错编码,获得与所述多层数据流对应 的多个编码比特流, 所述多层数据流的优先级不同;
对所述多个编码比特流进行比特交织和星座映射, 对应获得多个调制符 号;
将所述多个调制符号按照功率加载方式复用在同一个星座空间内,获得分 层调制符号;
发送所述分层调制符号。
本发明的另一个方面提供了一种分层业务流的接收方法, 包括: 根据系统帧结构和频语模板规定位置提取负载符号,生成存在于星座空间 内的调制信号;
将所述调制信号中的第一层符号进行解调, 获得第一层解调符号; 将所述第一层解调符号进行解交织和解码, 获得第一层解码比特; 对所述第一层解码比特进行比特解扰, 获得第一层业务数据流。
本发明的又一个方面提供了一种分层业务流的发送装置, 包括: 伪随机序列扰码器, 用于对多层数据流分别进行扰码, 获得与所述多层数 据流对应的多个信息比特流;
前向纠错编码器,用于根据所述伪随机序列扰码器输出的所述多个信息比 特流, 搜索出码字集合中对应的编码码字, 对应生成多个编码比特流;
交织器,用于根据预定规则对所述前向纠错编码器输出的多个编码比特流 重新排序, 对应获得多个交织比特流;
映射器, 用于将所述交织器输出的所述多个交织比特流进行映射,对应获 得多个调制符号;
复用器,用于将所述映射器输出的所述多个调制符号按照功率加载方式复 用在同一个星座空间内, 获得分层调制符号;
发送器, 用于发送所述复用器输出的所述分层调制符号。
本发明的再一个方面提供了一种分层业务流的接收装置, 包括: 信号检测器, 用于按照系统帧结构和频率模板规定位置提取负载符号, 生 成存在于星座空间内的调制信号;
分层解映射器,用于将所述信号检测器输出的所述调制信号中的第一层符 号进行解调, 获得第一层解调符号;
解交织器,用于将所述分层解映射器输出的所述第一层解调符号进行解交 织, 获得第一层解交织比特流;
前向纠错解码器, 用于根据所述解交织器输出的所述第一层解交织比特 流, 以消息传递方式搜索出最大似然概率或者最大后验概率解码, 获得第一层 解码比特流;
解扰器, 用于对所述前向纠错解码器输出的所述第一层解码比特流解扰, 获得第一层业务数据。
本发明的分层业务流的发送和接收方法以及装置。 具有以下优点: 本发明有效的提高了广播系统的空间频谱利用率,在不明显降低基本服务 质量的前提下, 为用户提供尽可能多的节目内容, 解决了数字音频广播系统中 服务大众化与服务差异化共存的问题。 本发明可以广泛应用于卫星音频广播、 地面无线音频广播、 地面手持音频广播等各数字音频广播领域。 附图说明
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描述中 将变得明显和容易理解, 其中:
图 1是本发明实施例提供的分层业务流的发送方法的数据处理流程图; 图 2a是本发明实施例提供的分层业务流的发送和接收方法及装置所基于 的系统帧结构; 图 2b是本发明实施例提供的分层业务流的发送和接收方法及装置所基于 的子帧结构图;
图 3是本发明一个实施例提供的一种分层业务流的发送方法的流程图; 图 4为产生扰码的线性反馈移位寄存器;
图 5为本发明实施例提供的分层调制示意图;
图 6为分层 16QAM星座映射图, αχ - 2 αγ = 1 .
·>
图 7为分层 16QAM星座映射图, αχ - 3 «2 = 1 .
·>
图 8为分层 16QAM星座映射图, αχ - 5 «2 = 1 .
·>
图 9为分层 64QAM星座映射图, αχ - 4 «2 = 1 .
·>
图 10为分层 64QAM星座映射图, αχ = 5 «2 = 1 .
·>
图 11为分层 64QAM星座映射图, αχ = 7 «2 = 1 .
·>
图 12是本发明一个实施例提供的一种分层业务流的接收方法的流程图 图 13是本发明一个实施例提供的一种分层业务流的发送装置的示意图 图 14是本发明一个实施例提供的一种分层业务流的接收装置的示意图 图 15是本发明另一个实施例提供的一种分层业务流的接收装置的示意图; 图 16 是本发明又一个实施例提供的一种分层业务流的接收装置的示意
具体实施方式
下面结合附图对本发明的分层业务流的发送和接收方法及装置的优选实 施例进行详细说明。
请参照图 1和图 2, 图 1是本发明实施例提供的分层业务流的发送方法的处 理流程图,图 2a是本发明实施例提供的分层业务流的发送和接收方法及装置所 基于的系统帧结构,图 2b是本发明实施例提供的分层业务流的发送和接收方法 及装置所基于的子帧结构图。
本发明实施例提供的分层业务流发送和接收方法及装置基于编码正交频 分复用( Ccoded Orthogonal Frequency Division Multiplexing, COFDM )的数字 音频广播系统, 该系统帧结构由超帧、 帧、 子帧和 OFDM符号 4层组成。
在传输模式 1中, 每个超帧分为 4个帧, 每个帧分为 4个子帧, 每个子帧分 为 57个 OFDM符号, 每个符号共有 242个有效载波。 每个子帧的第一个 OFDM 符号作为信标用于系统同步和解调预处理, 另外 56个 OFDM符号则包含负载、 离散导频、 连续导频和虚拟子载波。
在传输模式 2中, 每个超帧分为 4个帧, 每个帧分为 4个子帧, 每个子帧分 为 112个 OFDM符号, 每个符号共有 122个有效载波。 每个子帧的第一个 OFDM 符号作为信标, 另外 111个 OFDM符号则包含负载、 离散导频、 连续导频和虚 拟子载波。
在传输模式 3中, 每个超帧分为 4个帧, 每个帧分为 4个子帧, 每个子帧分 为 62个 OFDM符号, 每个符号共有 242个有效载波。 其中, 每个子帧的第一个 OFDM符号作为信标, 另外 61个 OFDM符号则包含负载、 离散导频、 连续导频 和虚拟子载波。每个 OFDM符号都由保护间隔作为前缀以减少 OFDM符号间干 扰。 传输模式 1和传输模式 3的子载波间隔相同, 但是保护间隔长度不同, 传输 模式 2的子载波间隔是前述两种模式的两倍。 定义单位时间 T = 1/816000秒, 子 载波间隔、 符号间隔、 保户间隔等系统参数如表 1所示:
表 1: 传输模式系统参数
Figure imgf000006_0001
其中 Τ = 1/816000秒。
OFDM信号由最多 8个名义带宽为 100kHz的子带组成。 频语模式规定了子 带的数量, 以及有效子带和虚子带的位置。 部分频语模式中, 某些有效子带的 上半子带或下半子带中全部子载波为虚子载波。 在一个有效子带内, 每个 OFDM符号包含 个由连续导频、 离散导频和数据子载波构成的有效子载波 (当其上半子带及下半子带的子载波均不全为虚子载波时), 或 / 2个由连续 导频、 离散导频和数据子载波构成的有效子载波(当其上半子带或下半子带的 子载波全为虚子载波时)。 对各频语模式, OFDM符号中除虚子载波、 连续导 频子载波和离散导频子载波外的子载波为数据子载波,数据子载波放置业务描 述信息符号和业务数据符号。
超帧长度为 2560ms, 每个超帧由 4个长度为 640ms的物理层信号帧组成, 每个物理层信号帧包括 4个长度为 160ms的子帧,每个子帧包括 1个信标和 个 OFDM符号。 每个物理层信号帧承载一个逻辑帧的数据。 逻辑帧结构和物理层 信号帧结构见图 1 , 子帧的结构图见图 2。
请参照图 3,图 3是本发明一个实施例提供的一种分层业务流的发送方法的 流程图。 该方法包括如下步骤:
步骤 Sll、 对多层数据流分别进行扰码和前向纠错编码, 获得与所述多层 数据流对应的多个编码比特流, 所述多层数据流的优先级不同。
在本实施例的一种实现方式中,每层的数据流(输入的数据字节流均按照
MSB在前的方式 )分别由一个二进制伪随机序列 P W进行加扰。 P W由线性反 馈移位寄存器产生, 如图 4所示, 其对应生成多项式为: x12 + xu + x8 + x6 +l。 移 位寄存器的初始值为 000000000001 ,在每个逻辑帧的起始位置重置线性反馈移 位寄存器。
扰码通过将输入比特信息序列与二进制伪随机序列进行模 2加法实现, 见 式(1 ):
; F( ) = X ( )㊉ (!)
式中:
X ^一一加扰前信息比特
Y^一一加扰后比特
扰码后的数据采用 LDPC的前向纠错码进行编码, 获得编码比特流, 码字 长度为 9216比特, 其编码配置见表 2。
LDPC编码配置
Figure imgf000007_0001
由输入信息比特 ^ ^,…, -^和校验比特^^ ^,^…,^^-^组成
LDPC的输出码字 "^^, ,…, ^二 。,^!,…"^,^),^,…/^^— J , 其中校验比特 p = { p。, Α, ·· ·, p92l5_K }由校验矩阵 Η求解如下方程得出: H x c = 0 (2)
式中:
0—— ( 9216-K )行 1列的全 0列矢量
Η—— LDPC奇偶校验矩阵。
步骤 S12、 对所述多个编码比特流进行比特交织和星座映射, 对应获得多 个调制符号。
在本实施例的一种实现方式中, 根据预定规则对该编码比特流重新排序, 对应获得交织比特流。
各层业务的交织比特流以 QPSK和 16QAM的方式进行星座映射, 图 5显示 了基于 16QAM的两层优先级分层调制。 16QAM可以负载 4个信息比特, 左边 两个比特(MSB ) 实际上代表了一个 QPSK的星座图, 它的星座点距离要大于 16QAM, 对信息有更好的保护性, 因此用前两个比特来承载高优先级的数据, 比如说, FM音质的数据流。 而用后两个比特负载低优先级的数据, 比如, CD 音质的数据流。 这样, 接收条件好的用户可以收到 CD音质的服务, 而接受条 件差的用户只能收到 FM音质的广播。
步骤 S13、 将所述多个调制符号按照功率加载方式复用在同一个星座空间 内, 获得分层调制符号。
在本实施例的一种实现方式中,在各层单独的进行调制后, 复用器会按照 各层功率加载方式将这些符号复用在一个星座空间内。一般的, 需要优先级高 的数据流对应高功率值, 低优先级的数据流对应低功率值。
图 6、 图 7和图 8给出了两层 QPSK调制后的分层调制结果。 图 6高优先级的 幅度增益为 αι = 2 , 低优先级的幅度增益为 ^ ^, 这时的分层调制等效于传统 的 16QAM调制。 图 7和图 8给出了 "1二3,^ ^和" ^ 5,"^1两种功率分配方式的 星座图。
图 9、 图 10和图 11给出了一路 QPSK和一路 16QAM的分层调制星座图。 图 9 中, 《1 = 4,《2 = 1所对应的星座图与传统64(^ ^1相同, 图 10和图 11所示为
二^^ ^和"^ 5,^ ^两种情况。 与前述两路 QPSK复用相比, 这时第二层的 数据量更大, 但是可靠性更差, 只有当用户处于非常好的接收位置, 才可能解 出低优先级的 16QAM信号。值得注意,低优先级的 16QAM也可以由两路 QPSK 复用得到, 因此得到 3层的分层调制方式。
和^也可以筒化为一个参数",定义为携带高优先级比特的星座点最小 距离与携带低优先级比特的星座点最小距离之间的比值。 在 16QAM中, « = («1 -1)/«2 ?64QAM中, 例如, 图 6、 图 7和图 8分别对应了 « = 1 , « = 2和《 = 4的 16QAM星座图; 图 9、 图 10和图 11分别对应了《 = 1 , « = 2 和《 = 4的 64QAM星座图。 步骤 S14、 发送所述分层调制符号。
在本实施例的一种实现方式中, 步骤 S14具体包括:
根据系统帧结构,将所述分层调制符号与离散导频和连续导频复接, 获得 正交复用结构的频域信号;
利用频 -时域变换, 将所述频域信号经过频 -时域变换后转化为时域采样; 在时域发送所述时域采样。
请参照图 12,图 11是本发明一个实施例提供的一种分层业务流的接收方法 的流程图。 该方法包括如下步骤:
步骤 S21、 根据系统帧结构和频语模板规定位置提取负载符号, 生成存在 于星座空间内的调制信号;
步骤 S22、 将所述调制信号中的第一层符号进行解调, 获得第一层解调符 号;
步骤 S23、 将所述第一层解调符号进行解交织和解码, 获得第一层解码比 特;
步骤 S24、对所述第一层解码比特进行比特解扰,获得第一层业务数据流。 步骤 S25、 将所述第一层解调信号调制, 或者将所述第一层解码比特编码 和调制, 获得重建的第一层调制符号;
步骤 S26、 在所述调制符号中减去所述重建的第一层调制符号, 得到其他 层的调制符号;
步骤 S27、 将所述其他层的调制符号中的第二层符号进行解调, 获得第二 层解调符号;
步骤 S28、 将所述第二层解调符号进行解交织和解码, 获得第二层解码比 特;
步骤 S29、对所述第二层解码比特进行比特解扰,获得第二层业务数据流。 在本实施例中, 首先检测出高优先级的符号, 这时低优先级的符号被看成 干扰, 所以, 高优先级对应的功率值越高, 解调时的信噪比越高, 第一层的误 码率性能就会越好。 第一层信号检测后, 一方面通过解交织、 解码和解 4尤得到 该层的业务数据流。 另一方面, 解调符号被重新调制又反馈至前端, 并从接收 符号减去第一层的影响。 至此, ^没第一层的反馈信号完全无误, 可以用解码 符号反馈来逼近此假设, 那么第二层符号不会再受到第一层的干扰, 形成更加 准确的解码符号。但是,由于总功率要求归一化, 当第一层的功率分配值越高, 第二层的功率分配值就会越少,所以第二层的误码率性能就会越差。也就是说, 两层的功率值相差越大, 两层业务流的服务质量相差的就会越大。 当用户处于 接收条件较差的位置, 可以只解出第一层数据流; 当用户处于接收条件较好的 位置, 可以在解出第一层的基础上, 再解出第二层数据, 提高频谱利用率, 获 得更好的服务内容和服务质量。
请参照图 13 ,图 13是本发明一个实施例提供的一种分层业务流的发送装置 的示意图。 该装置 120包括:
伪随机序列扰码器 121 , 用于对多层数据流分别进行扰码, 获得与所述多 层数据流对应的多个信息比特流;
前向纠错(FEC )编码器 122, 用于根据所述伪随机序列扰码器输出的所 述多个信息比特流,搜索出码字集合中对应的编码码字,对应生成多个编码比 特流;
交织器 123, 用于根据预定规则对所述前向纠错编码器输出的多个编码比 特流重新排序, 对应获得多个交织比特流;
映射器 124, 用于将所述交织器输出的所述多个交织比特流进行映射, 对 应获得多个调制符号;
复用器 125, 用于将所述映射器输出的所述多个调制符号按照功率加载方 式复用在同一个星座空间内, 获得分层调制符号;
发送器 126, 用于发送所述复用器输出的所述分层调制符号。
在本实施例的一种实现方式中,在所述多层数据流中, 第一层为高优先级 的数据流, 其他层为低优先级的数据流。
在本实施例的另一种实现方式中, 所述发送器 126包括:
频域信号生成器,用于将所述复用器输出的所述分层调制符号与离散导频 和连续导频复接, 获得正交复用结构的频域信号;
频-时域变换器, 用于将所述频域信号生成器输出的所述频域信号经过频- 时域变换后得到时域采样。
在本实施例的又一种实现方式中, 所述前向纠错编码的编码方式为循环 码、 卷积码、 或者 LDPC码; 所述交织的方法为比特级交织方法; 所述映射的 方法为 BPSK、 QPSK或者 16QAM。
请参照图 14,图 14是本发明一个实施例提供的一种分层业务流的接收装置 的示意图。 该装置 130包括:
信号检测器 131 ,用于按照系统帧结构和频率模板规定位置提取负载符号, 生成存在于星座空间内的调制信号;
分层解映射器 132,用于将所述信号检测器 131输出的所述调制信号中的第 一层符号进行解调, 获得第一层解调符号;
解交织器 133 ,用于将所述分层解映射器 132输出的所述第一层解调符号进 行解交织, 获得第一层解交织比特流;
前向纠错解码器 134,用于根据所述解交织器 133输出的所述第一层解交织 比特流, 以消息传递方式搜索出最大似然概率或者最大后验概率解码, 获得第 一层解码比特流;
解扰器 135 ,用于对所述前向纠错解码器 134输出的所述第一层解码比特流 解扰, 获得第一层业务数据。
请参照图 15 ,图 15是本发明另一个实施例提供的一种分层业务流的接收装 置的示意图。 本实施例与图 14所对应的实施例的区别在于, 该装置 130进一步 包括:
映射器 142, 用于将所述分层解映射器 132输出的所述第一层解调信号调 制, 获得重建的第一层调制符号;
减法器 141 ,用于在所述信号检测器 131输出的所述调制符号中减去所述映 射器 142反馈的所述重建的第一层调制符号, 得到其他层的调制符号;
分层解映射器 152,用于将所述减法器 141输出的所述其他层的调制符号中 的第二层符号进行解调, 获得第二层解调符号;
解交织器 153 ,用于将所述分层解映射器 152输出的所述第二层解调符号进 行解交织, 获得第二层解交织比特流;
前向纠错解码器 154,用于根据所述解交织器 153输出的所述第二层解交织 比特流, 以消息传递方式搜索出最大似然概率或者最大后验概率解码, 获得第 二层解码比特流;
解扰器 155 ,用于对所述前向纠错解码器 154输出的所述第二层解码比特流 解扰, 获得第二层业务数据。
请参照图 16,图 16是本发明又一个实施例提供的一种分层业务流的接收装 置的示意图。 本实施例与图 14所对应的实施例的区别在于, 该装置 130进一步 包括:
编码器 144,用于对所述前向纠错解码器 134输出的第一层解码比特流进行 编码, 获得重建的第一层编码比特流;
交织器 143 ,用于对所述编码器 144输出的重建的第一层编码比特流进行交 织, 获得重建的第一层交织比特流;
映射器 142,用于将所述交织器 143输出的所述重建的第一层交织比特流星 座映射, 获得重建的第一层调制符号;
减法器 141 ,用于在所述信号检测器 131输出的所述调制符号中减去所述映 射器 142反馈的所述重建的第一层调制符号, 得到其他层的调制符号;
分层解映射器 152,还用于将所述减法器 141输出的所述其他层的调制符号 中的第二层符号进行解调, 获得第二层解调符号;
解交织器 153 ,用于将所述分层解映射器 152输出的所述第二层解调符号进 行解交织, 获得第二层解交织比特流;
前向纠错解码器 154,用于根据所述解交织器 153输出的所述第二层解交织 比特流, 以消息传递方式搜索出最大似然概率或者最大后验概率解码, 获得第 二层解码比特流;
解扰器 155 ,用于对所述前向纠错解码器 154输出的所述第二层解码比特流 解扰, 获得第二层业务数据。
在本实施例的一种实现方式中,所述负载符号中的第一层符号对应高优先 级的数据流, 所述其他层符号对应低优先级的数据流
应当理解, 由于功能的相似性, 分层解映射器 132与 152可以为一个分层解 映射器, 解交织器 133与 153可以为一个解交织器, 前向纠错解码器 134与 154 可以为一个前向纠错解码器, 解扰器 135与 155可以为一个解扰器。
本发明提出的分层业务流的发送和接收方法以及装置。 具有以下优点: 针对数字音频广播系统中, 不同用户信道衰落不同的特点,提出了一种传 送分层业务流的方法及发送和接收装置,有效的提高了广播系统的空间频谱利 用率,在不明显降低基本服务质量的前提下,为用户提供尽可能多的节目内容, 解决了数字音频广播系统中服务大众化与服务差异化共存的问题。本发明可以 广泛应用于卫星音频广播、地面无线音频广播、地面手持音频广播等各数字音 频广播领域。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或 部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种 计算机可读存储介质中, 该程序在执行时, 包括方法实施例的步骤之一或其组 合。
此外, 在本发明各个实施例中的各功能单元可以集成在一个处理模块中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块 中。 上述集成的模块既可以采用硬件的形式实现, 也可以采用软件功能模块的 形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品 销售或使用时, 也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种分层业务流的发送方法, 其特征在于, 包括:
对多层数据流分别进行扰码和前向纠错编码,获得与所述多层数据流对应 的多个编码比特流, 所述多层数据流的优先级不同;
对所述多个编码比特流进行交织和星座映射, 对应获得多个调制符号; 将所述多个调制符号按照功率加载方式复用在同一个星座空间内,获得分 层调制符号;
发送所述分层调制符号。
2、 根据权利要求 1所述的方法, 其特征在于, 在所述多层数据流中, 第一 层为高优先级的数据流, 其他层为低优先级的数据流。
3、 根据权利要求 1所述的方法, 其特征在于, 所述发送所述分层调制符号 具体包括:
根据系统帧结构,将所述分层调制符号与离散导频和连续导频复接, 获得 正交复用结构的频域信号;
利用频 -时域变换, 将所述频域信号经过频 -时域变换后转化为时域采样; 在时域发送所述时域采样。
4、 根据权利要求 1所述的方法, 其特征在于,
所述前向纠错编码的编码方式为循环码、 卷积码、 或者 LDPC码; 所述交织的方法为比特级交织方法;
所述映射的方法为 BPSK、 QPSK或者 16QAM。
5、 一种分层业务流的接收方法, 其特征在于, 包括:
根据系统帧结构和频语模板规定位置提取负载符号,生成存在于星座空间 内的调制信号;
将所述调制信号中的第一层符号进行解调, 获得第一层解调符号; 将所述第一层解调符号进行解交织和解码, 获得第一层解码比特; 对所述第一层解码比特进行比特解扰, 获得第一层业务数据流。
6、 根据权利要求 5所述的方法, 其特征在于, 所述方法还包括: 将所述第一层解调信号调制, 或者将所述第一层解码比特编码和调制, 获 得重建的第一层调制符号;
在所述调制符号中减去所述重建的第一层调制符号,得到其他层的调制符 号;
将所述其他层的调制符号中的第二层符号进行解调, 获得第二层解调符 号;
将所述第二层解调符号进行解交织和解码, 获得第二层解码比特; 对所述第二层解码比特进行比特解扰, 获得第二层业务数据流。
7、 根据权利要求 6所述的方法, 其特征在于, 所述方法还包括: 所述负载 符号中的第一层符号对应高优先级的数据流,所述其他层符号对应低优先级的 数据流。
8、 根据权利要求 5或 6所述的方法, 其特征在于,
用包括频域分集和时域分集在内的分集方法对负载进行信号检测; 所述解调的方法为包括解调反馈或者解码反馈的解调算法。
9、 一种分层业务流的发送装置, 其特征在于, 包括:
伪随机序列扰码器, 用于对多层数据流分别进行扰码, 获得与所述多层数 据流对应的多个信息比特流;
前向纠错编码器,用于根据所述伪随机序列扰码器输出的所述多个信息比 特流, 搜索出码字集合中对应的编码码字, 对应生成多个编码比特流;
交织器,用于根据预定规则对所述前向纠错编码器输出的多个编码比特流 重新排序, 对应获得多个交织比特流;
映射器, 用于将所述交织器输出的所述多个交织比特流进行映射,对应获 得多个调制符号;
复用器,用于将所述映射器输出的所述多个调制符号按照功率加载方式复 用在同一个星座空间内, 获得分层调制符号;
发送器, 用于发送所述复用器输出的所述分层调制符号。
10、 根据权利要求 9所述的装置, 其特征在于, 在所述多层数据流中, 第 一层为高优先级的数据流, 其他层为低优先级的数据流。
11、 根据权利要求 9所述的装置, 其特征在于, 所述发送器包括: 频域信号生成器,用于将所述复用器输出的所述分层调制符号与离散导频 和连续导频复接, 获得正交复用结构的频域信号;
频-时域变换器, 用于将所述频域信号生成器输出的所述频域信号经过频- 时域变换后得到时域采样。
12、 根据权利要求 9所述的装置, 其特征在于,
所述前向纠错编码的编码方式为循环码、 卷积码、 或者 LDPC码; 所述交织的方法为比特级交织方法;
所述映射的方法为 BPSK、 QPSK或者 16QAM。
13、 一种分层业务流的接收装置, 其特征在于, 包括:
信号检测器, 用于按照系统帧结构和频率模板规定位置提取负载符号, 生 成存在于星座空间内的调制信号;
分层解映射器,用于将所述信号检测器输出的所述调制信号中的第一层符 号进行解调, 获得第一层解调符号;
解交织器,用于将所述分层解映射器输出的所述第一层解调符号进行解交 织, 获得第一层解交织比特流;
前向纠错解码器, 用于根据所述解交织器输出的所述第一层解交织比特 流, 以消息传递方式搜索出最大似然概率或者最大后验概率解码, 获得第一层 解码比特流;
解扰器, 用于对所述前向纠错解码器输出的所述第一层解码比特流解扰, 获得第一层业务数据。
14、 根据权利要求 13所述的装置, 其特征在于, 所述装置还包括: 映射器, 用于将所述分层解映射器输出的所述第一层解调信号调制, 获得 重建的第一层调制符号; 和
减法器,用于在所述信号检测器输出的所述调制符号中减去所述映射器反 馈的所述重建的第一层调制符号, 得到其他层的调制符号;
所述分层解映射器,还用于将所述减法器输出的所述其他层的调制符号中 的第二层符号进行解调, 获得第二层解调符号;
所述解交织器,还用于将所述分层解映射器输出的所述第二层解调符号进 行解交织, 获得第二层解交织比特流;
所述前向纠错解码器,还用于根据所述解交织器输出的所述第二层解交织 比特流, 以消息传递方式搜索出最大似然概率或者最大后验概率解码, 获得第 二层解码比特流;
所述解扰器,还用于对所述前向纠错解码器输出的所述第二层解码比特流 解扰, 获得第二层业务数据。
15、 根据权利要求 13所述的装置, 其特征在于, 所述装置还包括: 编码器, 用于对所述前向纠错解码器输出的第一层解码比特流进行编码, 获得重建的第一层编码比特流;
交织器, 用于对所述编码器输出的重建的第一层编码比特流进行交织, 获 得重建的第一层交织比特流;
映射器, 用于将所述交织器输出的所述重建的第一层交织比特流星座映 射, 获得重建的第一层调制符号; 和
减法器,用于在所述信号检测器输出的所述调制符号中减去所述映射器反 馈的所述重建的第一层调制符号, 得到其他层的调制符号;
所述分层解映射器,还用于将所述减法器输出的所述其他层的调制符号中 的第二层符号进行解调, 获得第二层解调符号;
所述解交织器,用于将所述分层解映射器输出的所述第二层解调符号进行 解交织, 获得第二层解交织比特流;
所述前向纠错解码器,用于根据所述解交织器输出的所述第二层解交织比 特流, 以消息传递方式搜索出最大似然概率或者最大后验概率解码, 获得第二 层解码比特流;
所述解扰器,用于对所述前向纠错解码器输出的所述第二层解码比特流解 扰, 获得第二层业务数据。
16、 根据权利要求 13所述的装置, 其特征在于, 所述负载符号中的第一 层符号对应高优先级的数据流, 所述其他层符号对应低优先级的数据流。
PCT/CN2012/080182 2011-08-17 2012-08-15 分层业务流的发送和接收方法及装置 WO2013023599A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102402208A CN102957498A (zh) 2011-08-17 2011-08-17 分层业务流的发送和接收方法及装置
CN201110240220.8 2011-08-17

Publications (1)

Publication Number Publication Date
WO2013023599A1 true WO2013023599A1 (zh) 2013-02-21

Family

ID=47714765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080182 WO2013023599A1 (zh) 2011-08-17 2012-08-15 分层业务流的发送和接收方法及装置

Country Status (2)

Country Link
CN (1) CN102957498A (zh)
WO (1) WO2013023599A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029529A1 (en) * 2017-08-09 2019-02-14 Huawei Technologies Co., Ltd. VIRTUAL RESEARCH TABLE FOR PROBABILISTIC CONSTELLATION SHAPING

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426630B (zh) * 2013-08-30 2018-04-03 中国科学院上海高等研究院 一种比特交织编码调制方法及系统
US9584334B2 (en) * 2014-01-28 2017-02-28 Futurewei Technologies, Inc. System and method for video multicasting
KR102318257B1 (ko) * 2014-02-25 2021-10-28 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 신호 멀티플렉싱 장치 및 신호 멀티플렉싱 방법
MX2018008368A (es) * 2014-05-09 2022-01-27 Electronics & Telecommunications Res Inst Aparato de multiplexion de señal usando multiplexion por division en capas y metodo de multiplexion de señal.
CN111224915B (zh) * 2014-05-14 2021-12-03 华为技术有限公司 一种信号传输方法及装置
KR102366988B1 (ko) * 2014-07-03 2022-02-25 한국전자통신연구원 레이어드 디비전 멀티플렉싱을 이용한 신호 멀티플렉싱 장치 및 신호 멀티플렉싱 방법
US11296823B2 (en) * 2017-05-30 2022-04-05 Qualcomm Incorporated Priority based mapping of encoded bits to symbols
CN109218792A (zh) * 2017-06-29 2019-01-15 上海数字电视国家工程研究中心有限公司 解复用方法
CN113709463B (zh) * 2020-05-20 2023-06-02 华为技术有限公司 数据传输方法及装置
CN114338307A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 一种解码方法、接收设备以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519178A (ja) * 2001-03-13 2004-06-24 松下電器産業株式会社 変調タイプのブラインド検出方法およびそのシステム
CN1513240A (zh) * 2001-06-05 2004-07-14 北方电讯网络有限公司 自适应编码和调制
CN1984111A (zh) * 2006-05-11 2007-06-20 华为技术有限公司 一种ofdm系统中控制信息的传输方法及应用
CN101022446A (zh) * 2006-11-08 2007-08-22 鲍东山 在t-mmb系统中应用分层调制技术的方法
CN101188474A (zh) * 2006-11-24 2008-05-28 株式会社Ntt都科摩 发送机以及发送方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519178A (ja) * 2001-03-13 2004-06-24 松下電器産業株式会社 変調タイプのブラインド検出方法およびそのシステム
CN1513240A (zh) * 2001-06-05 2004-07-14 北方电讯网络有限公司 自适应编码和调制
CN1984111A (zh) * 2006-05-11 2007-06-20 华为技术有限公司 一种ofdm系统中控制信息的传输方法及应用
CN101022446A (zh) * 2006-11-08 2007-08-22 鲍东山 在t-mmb系统中应用分层调制技术的方法
CN101188474A (zh) * 2006-11-24 2008-05-28 株式会社Ntt都科摩 发送机以及发送方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019029529A1 (en) * 2017-08-09 2019-02-14 Huawei Technologies Co., Ltd. VIRTUAL RESEARCH TABLE FOR PROBABILISTIC CONSTELLATION SHAPING
US10601629B2 (en) 2017-08-09 2020-03-24 Futurewei Technologies, Inc. Virtual lookup table for probabilistic constellation shaping
CN110959262A (zh) * 2017-08-09 2020-04-03 华为技术有限公司 用于概率星座整形的虚拟查找表
CN110959262B (zh) * 2017-08-09 2021-02-26 华为技术有限公司 用于概率星座整形的虚拟查找表

Also Published As

Publication number Publication date
CN102957498A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2013023599A1 (zh) 分层业务流的发送和接收方法及装置
US10153872B2 (en) Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
US10637507B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US9686113B2 (en) Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
US9882731B2 (en) Broadcasting signal transmitter/receiver and broadcasting signal transmission/reception method
TWI513221B (zh) 在提供增量冗餘的廣播系統中廣播資料的發射器及傳輸方法
KR101028974B1 (ko) 계층 변조를 통해 계층 데이터 및 비-계층 데이터를 송신하는 방법 및 장치
US9544174B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US20060248563A1 (en) Method and apparatus for supporting a priority data transmission in a transmitter of a digital audio broadcasting system
US9391725B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US10057101B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
JP2008527927A (ja) 階層化された変調システムにおいてデータを復号する方法および装置
KR20070035409A (ko) 고품질 비디오 서비스를 위한 디지털 멀티미디어 방송송/수신 장치
US20150003538A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
EP2988510A1 (en) Broadcast signal transmitting device, broadcast signal receiving device, broadcast signal transmitting method and broadcast signal receiving method
US10158510B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2013023600A1 (zh) 数字音频广播系统中业务描述信息的发送接收方法及装置
US10237590B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2013023616A1 (zh) 数字音频广播系统中系统信息的发送接收方法及装置
TWI508504B (zh) 在使用增量冗餘之廣播系統中接收資料的接收器及接收方法
Agarwal Digital Audio Broadcast: Modulation, Transmission & Performance Analysis
Shah et al. A Review on Terrestrial Multimedia Communication using OFDM Technology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823292

Country of ref document: EP

Kind code of ref document: A1