WO2013022028A1 - Semiconductor integrated circuit, communication device, communication system, and communication method - Google Patents

Semiconductor integrated circuit, communication device, communication system, and communication method Download PDF

Info

Publication number
WO2013022028A1
WO2013022028A1 PCT/JP2012/070215 JP2012070215W WO2013022028A1 WO 2013022028 A1 WO2013022028 A1 WO 2013022028A1 JP 2012070215 W JP2012070215 W JP 2012070215W WO 2013022028 A1 WO2013022028 A1 WO 2013022028A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
communication
communication device
integrated circuit
semiconductor integrated
Prior art date
Application number
PCT/JP2012/070215
Other languages
French (fr)
Japanese (ja)
Inventor
山本真佐史
Original Assignee
株式会社メガチップス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガチップス filed Critical 株式会社メガチップス
Publication of WO2013022028A1 publication Critical patent/WO2013022028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols

Definitions

  • the present invention relates to a semiconductor integrated circuit, a communication device, a communication system, and a communication method.
  • Patent Document 1 discloses a communication system including a plurality of communication devices.
  • each communication device has a wired communication unit such as power line communication and a wireless communication unit such as a wireless LAN.
  • Each communication device can communicate with other communication devices by both wired communication and wireless communication.
  • the first communication device transmits the same data to the second communication device by both wired communication and wireless communication. .
  • communication reliability can be improved by communicating the same data using a plurality of communication paths.
  • the first communication device transmits the same data to the second communication device by both wired communication and wireless communication. That is, complete data is communicated between the communication devices by wired communication and wireless communication. Accordingly, there is a problem that the confidentiality of communication is not sufficient because communication data is illegally intercepted by a third party in either one of wired communication and wireless communication because complete data is acquired.
  • the present invention has been made to solve such a problem, and can improve the secrecy of communication between communication devices that can communicate via a plurality of communication paths, a semiconductor integrated circuit, a communication device,
  • An object of the present invention is to obtain a communication system and a communication method.
  • a semiconductor integrated circuit is a semiconductor integrated circuit mounted on the communication device in a communication system in which a communication device communicates with another communication device via a plurality of communication paths. From the first communication unit that communicates with the other communication device via the first communication channel, the second communication unit that communicates with the other communication device via the second communication channel, and the communication device A data control unit that controls transmission data to be transmitted to the other communication device, and the data control unit processes the transmission data to associate the first data with the first data.
  • a data processing unit that generates second data to be transmitted, the first data is transmitted from the first communication unit to the other communication device, and the second data is transmitted from the second communication unit to the other communication device. Allocate data for transmission to other communication devices It is characterized in that it has a data distribution unit to separate the.
  • the data processing unit generates first data and second data related to the first data by processing the transmission data.
  • the data distribution unit transmits the first data from the first communication unit to the other communication device via the first communication path, and the second data is transmitted from the second communication unit to the second communication.
  • the data is distributed so as to be transmitted to other communication devices via the path.
  • the transmission data is divided into the first data and the second data, and the first The first data is transmitted via the second communication path, and the second data is transmitted via the second communication path.
  • a semiconductor integrated circuit is a semiconductor integrated circuit mounted on the other communication device in a communication system in which a communication device and another communication device communicate via a plurality of communication paths.
  • a first communication unit that communicates with the communication device via a first communication channel
  • a second communication unit that communicates with the communication device via a second communication channel
  • a data control unit that controls received data, wherein the first communication unit receives first data from the communication device, and the second communication unit receives second data from the communication device.
  • the data control unit receives the first data and the second data associated with each other, the data association unit associates the first data with the second data, and the first data associated with the data association unit. Based on the data of 2, before It is characterized in that it has a data processing unit for restoring the transmission data transmitted from the communication device to said another communication apparatus.
  • the first communication unit receives the first data from the communication device, and the second communication unit receives the second data from the communication device.
  • the data association unit associates the first data and the second data associated with each other.
  • the data processing unit restores the transmission data transmitted from the communication device to the other communication device based on the first data and the second data associated with each other by the data association unit.
  • the transmission data is divided into the first data and the second data, and the first The first data is transmitted via the second communication path, and the second data is transmitted via the second communication path.
  • the semiconductor integrated circuit according to the third aspect of the present invention is the semiconductor integrated circuit according to the first or second aspect, in particular, the first data is an encryption generated by encrypting the transmission data. Including the data, and the second data includes an encryption key used for decrypting the encrypted data.
  • the first data includes encrypted data generated by encrypting the transmission data
  • the second data is an encryption used for decrypting the encrypted data. Includes key.
  • the semiconductor integrated circuit according to the fourth aspect of the present invention is particularly the semiconductor integrated circuit according to the first or second aspect, wherein the first data is a predetermined division process and rearrangement process for the transmission data.
  • the second data includes information related to the procedure of the division process and the rearrangement process.
  • the first data includes a plurality of divided data obtained by performing predetermined division processing and rearrangement processing on transmission data, and the second data is divided. It includes information on the procedure of processing and rearrangement processing. In this way, it is possible to improve the confidentiality of communication by transmitting a plurality of pieces of divided data and information related to the procedure of the division process and the rearrangement process via different communication paths.
  • the semiconductor integrated circuit according to the fifth aspect of the present invention is particularly the semiconductor integrated circuit according to the first or second aspect, wherein the first data is a predetermined division process and rearrangement process for the transmission data. Including a first group of divided data among the plurality of divided data, and the second data includes a second group of divided data among the plurality of divided data. is there.
  • the first data is the first group of divided data among the plurality of divided data obtained by performing predetermined division processing and rearrangement processing on the transmission data.
  • the second data includes the second group of divided data among the plurality of divided data.
  • the semiconductor integrated circuit according to the sixth aspect of the present invention is particularly the semiconductor integrated circuit according to the first or second aspect, wherein the first data is a predetermined division process and rearrangement process for the transmission data.
  • the second group of divided data is included.
  • the first data includes the first group of divided data of the plurality of divided data obtained by performing predetermined division processing and rearrangement processing on the transmission data.
  • the second data includes the second group of divided data among the plurality of divided data.
  • the semiconductor integrated circuit according to a seventh aspect of the present invention is the semiconductor integrated circuit according to the first or second aspect, in particular, the first data extracted is data of a specific bit in the transmission data. It includes a first group of bit data, and the second data includes a second group of bit data obtained by extracting data of other specific bits of the transmission data.
  • the first data includes the first group of bit data obtained by extracting specific bits of the transmission data
  • the second data includes the transmission data.
  • a second group of bit data obtained by extracting data of other specific bits is included.
  • the semiconductor integrated circuit according to the eighth aspect of the present invention is particularly the semiconductor integrated circuit according to the first or second aspect, wherein the first data is data of a specific bit in the transmission data.
  • the first data includes a first group of bit data obtained by extracting data of a specific bit of the transmission data, and information regarding a bit extraction procedure
  • the second data includes a second group of bit data obtained by extracting data of other specific bits of the transmission data.
  • the semiconductor integrated circuit according to a ninth aspect of the present invention is the semiconductor integrated circuit according to any one of the first to eighth aspects, in particular, the transmission data includes the first communication path and the second communication. The first data and the second data are distributed based on the effective traffic on the road.
  • the transmission data is distributed to the first data and the second data based on the effective communication amount of the first communication path and the second communication path.
  • the semiconductor integrated circuit according to a tenth aspect of the present invention is the semiconductor integrated circuit according to any one of the first to eighth aspects, in particular, the first data is an error correction code of the second data.
  • the second data includes an error correction code of the first data.
  • the first data includes the error correction code of the second data
  • the second data includes the error correction code of the first data.
  • the semiconductor integrated circuit according to the eleventh aspect of the present invention is the semiconductor integrated circuit according to any one of the first to eighth aspects, in particular, the communication success rate of the first communication path is the second communication path.
  • the communication success rate is higher, an error correction code having an error correction capability higher than that of the error correction code added to the first data is added to the second data.
  • the semiconductor integrated circuit of the eleventh aspect when the communication success rate of the first communication path is higher than the communication success rate of the second communication path, the second data is added to the first data.
  • An error correction code having a higher error correction capability than the error correction code is added. In this way, it is possible to improve the reliability of communication by adding a correction code having a high error correction capability to the second data transmitted via the second communication channel having a low communication success rate. It becomes.
  • the semiconductor integrated circuit according to a twelfth aspect of the present invention is the semiconductor integrated circuit according to any one of the first to eighth aspects, in particular, the first data includes the transmission data, and the second data The data includes an error correction code of the transmission data.
  • the first data includes transmission data
  • the second data includes an error correction code for transmission data.
  • a communication device includes the semiconductor integrated circuit according to the first aspect.
  • the communication device it is possible to improve the confidentiality of communication by including the semiconductor integrated circuit according to the first aspect.
  • a communication device includes the semiconductor integrated circuit according to the second aspect.
  • the communication device it is possible to improve the confidentiality of communication by including the semiconductor integrated circuit according to the second aspect.
  • a communication system includes the communication device according to the thirteenth aspect and the communication device according to the fourteenth aspect.
  • the communication confidentiality can be improved by including the communication apparatus according to the thirteenth aspect and the communication apparatus according to the fourteenth aspect.
  • a communication method is a communication method in a communication system in which a first communication device and a second communication device communicate with each other via a plurality of communication paths.
  • the first data and the second data related to the first data are processed by processing transmission data to be transmitted from the first communication device to the second communication device.
  • the first data is transmitted to the other communication device via the first communication channel, and the second data is transmitted to the second communication channel.
  • D associating the first data and the second data associated with each other in the second communication device, and (E) the step associated with the step (D). Restoring the transmission data based on the first data and the second data.
  • the first communication device generates first data and second data related to the first data by processing the transmission data.
  • the first communication device transmits the first data to the second communication device via the first communication channel, and the second data passes to the second communication device via the second communication channel. Sort data to be sent.
  • the second communication device receives the first data via the first communication path and receives the second data via the second communication path. Further, the second communication device associates the first data and the second data associated with each other, and restores the transmission data based on the associated first data and second data.
  • the transmission data is divided into the first data and the second data, and the first The first data is transmitted via the second communication path, and the second data is transmitted via the second communication path.
  • FIG. 1 is a diagram showing a simplified overall configuration of a communication system 1 according to an embodiment of the present invention.
  • the communication system 1 is a system constructed in a user's house, for example, and includes a plurality of communication devices. In the example shown in FIG. 1, only four communication devices 2 and 3A to 3C are representatively shown for simplification of explanation.
  • the communication devices 3A to 3C are connected to the communication device 2 via an arbitrary wired communication path 4 such as a power line, a wired LAN, or a coaxial line. Accordingly, the communication devices 3A to 3C can perform wired communication with the communication device 2 via the wired communication path 4.
  • the communication devices 2 and 3A to 3C have an arbitrary wireless communication function such as a wireless LAN or short-range wireless communication.
  • the communication devices 3A to 3C can perform wireless communication with the communication device 2 via the wireless communication path, as indicated by broken lines in FIG.
  • the communication speed of the wireless communication path is higher than the communication speed of the wired communication path 4.
  • the communication devices 3A to 3C measure, for example, the power consumption of each home appliance, and transmit data including the measurement results to the communication device 2.
  • the communication devices 3A to 3C are collectively referred to as “communication device 3” unless otherwise distinguished.
  • the communication device 2 receives data transmitted from the plurality of communication devices 3. Then, by performing statistical processing based on the received data, the power usage situation in the user's house is analyzed, and the analysis result is displayed on the monitor and provided to the user.
  • FIG. 2 is a diagram showing a simplified configuration of the semiconductor integrated circuit 10 mounted on the communication device 3.
  • the semiconductor integrated circuit 10 includes a CPU 11, a data control unit 12, a wireless communication unit 13, and a wired communication unit 14.
  • the data control unit 12 includes a data processing unit 21 and a data distribution unit 22.
  • the CPU 11 generates transmission data D0 to be transmitted from the communication device 3 to the communication device 2.
  • the data processing unit 21 processes the transmission data D0 input from the CPU 11 to generate data D1 and data D2 related to the data D1, and unique identification information for the data D1 and D2 related to each other Is granted. Details of the data D1 and D2 will be described later.
  • the data distribution unit 22 distributes the data D1 and D2 so that the data D1 is transmitted from the wireless communication unit 13 and the data D2 is transmitted from the wired communication unit 14.
  • the wireless communication unit 13 transmits the data D1 input from the data distribution unit 22 to the communication device 2 via the wireless communication path.
  • the wired communication unit 14 transmits the data D ⁇ b> 2 input from the data distribution unit 22 to the communication device 2 via the wired communication path 4.
  • FIG. 3 is a diagram showing a simplified configuration of the semiconductor integrated circuit 30 mounted on the communication device 2.
  • the semiconductor integrated circuit 30 includes a CPU 31, a data control unit 32, a wireless communication unit 33, and a wired communication unit 34.
  • the data control unit 32 includes a data processing unit 41 and a data association unit 42.
  • the wireless communication unit 33 receives the data D1 transmitted from the communication device 3.
  • the wired communication unit 34 receives the data D2 transmitted from the communication device 3.
  • the data association unit 42 associates the data D1 and the data D2 that are related to each other out of the plurality of data input from the wireless communication unit 33 and the wired communication unit 34 based on the identification information given to each data.
  • the data processing unit 41 restores the transmission data D0 based on the data D1 and D2 input from the data association unit 42, and inputs the restored transmission data D0 to the CPU 31.
  • FIG. 4 is a diagram illustrating a first example of data D1 and D2 generation processing by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates encrypted data by encrypting the transmission data D0 using a predetermined encryption key DX.
  • the data processing unit 21 generates data D1 including encrypted data, and generates data D2 including the encryption key DX.
  • Data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be transmitted at different timings. When the transmission timing is different, for example, data D1 related to a certain data D0 and data D2 related to the next data D0 are transmitted at the same transmission timing.
  • the encryption key DX may be different for each predetermined number (one or a plurality) of transmission data D0, or may be different for each predetermined period.
  • the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). Further, the data processing unit 41 restores the transmission data D0 before being encrypted by decrypting the encrypted data included in the data D1 using the encryption key DX included in the data D2.
  • FIG. 5 is a diagram illustrating a second example of the generation processing of the data D1 and D2 by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates a plurality of pieces of divided data D1A to D1H by dividing the transmission data D0 into arbitrary byte lengths.
  • the data processing unit 21 arbitrarily rearranges the divided data D1A to D1H to generate data D1 including the rearranged divided data D1A to D1H.
  • the data processing unit 21 creates processing procedure information DY indicating the byte length of each of the divided data D1A to D1H and the rearranged arrangement order, and generates data D2 including the processing procedure information DY.
  • data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedures of the division process and the rearrangement process may be different for each predetermined number (one or a plurality) of transmission data D0, or may be different for each predetermined period.
  • the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). Further, the data processing unit 41 restores the original transmission data D0 by rearranging the divided data D1A to D1H included in the data D1 in the original arrangement order based on the processing procedure information DY included in the data D2. .
  • FIG. 6 is a diagram illustrating a third example of the generation processing of the data D1 and D2 by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates a plurality of divided data D1A to D1H by dividing the transmission data D0 for each predetermined byte length defined in advance.
  • the data processing unit 21 rearranges predetermined division data defined in advance among the division data D1A to D1H in a predetermined order and arranges the plurality of division data (FIG. 6).
  • data D1 including divided data D1E, D1G, D1B, D1H) is generated.
  • the data processing unit 21 rearranges predetermined division data defined in advance among the division data D1A to D1H in a predetermined order, and arranges a plurality of pieces of division data (FIG. 6).
  • data D2 including divided data D1A, D1F, D1D, and D1C) is generated.
  • data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing.
  • the processing procedures of the dividing process and the rearranging process may be different for each predetermined number (one or a plurality) of transmission data D0 according to a predetermined rule, or may be different for each predetermined period.
  • the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0).
  • the data processing unit 41 restores the original transmission data D0 by rearranging the divided data D1A to D1H included in the data D1 and D2 in the original arrangement order according to a predetermined processing procedure defined in advance.
  • FIG. 7 is a diagram illustrating a fourth example of the data D1 and D2 generation processing by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates a plurality of pieces of divided data D1A to D1H by dividing the transmission data D0 into arbitrary byte lengths.
  • the data processing unit 21 rearranges and arranges arbitrary divided data among the divided data D1A to D1H in an arbitrary order, thereby arranging a plurality of divided data (the divided data D1E, D1G, Data D1 including D1B, D1H) is generated.
  • the data processing unit 21 rearranges and arranges arbitrary divided data among the divided data D1A to D1H in an arbitrary order, thereby arranging a plurality of divided data (the divided data D1A, D1F, D1D in the example of FIG. 7). , D1C). Further, the data processing unit 21 creates processing procedure information DY indicating the byte length of each of the divided data D1A to D1H and the arrangement order of the divided data after rearrangement in the data D1 and D2, and the processing procedure information DY is generated. Include in data D1. As in the first example, data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedures of the division process and the rearrangement process may be different for each predetermined number (one or a plurality) of transmission data D0, or may be different for each predetermined period.
  • the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0).
  • the data processing unit 41 rearranges the original transmission data D0 by rearranging the divided data D1A to D1H included in the data D1 and D2 in the original arrangement order based on the processing procedure information DY included in the data D1. Restore.
  • FIG. 8 is a diagram illustrating a fifth example of the generation processing of the data D1 and D2 by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 extracts predetermined specific bit data D1P (for example, odd-bit data) from the transmission data D0, thereby generating data D1 including the specific bit data D1P.
  • the data processing unit 21 extracts specific bit data D1Q (for example, even-bit data) defined in advance from the transmission data D0, thereby generating data D2 including the specific bit data D1Q.
  • data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedure of the bit data extraction processing may be different for each predetermined number (one or a plurality) of transmission data D0 according to a predetermined rule, or may be different for each predetermined period.
  • the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). Further, the data processing unit 41 restores the original transmission data D0 by combining the bit data D1P and D1Q included in the data D1 and D2 according to a predetermined processing procedure defined in advance.
  • FIG. 9 is a diagram illustrating a sixth example of the generation processing of the data D1 and D2 by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates bit data D1P including the bit data D1P by extracting bit data D1P related to an arbitrary bit from the transmission data D0.
  • the data processing unit 21 extracts the bit data D1Q related to the remaining bits from the transmission data D0, thereby generating data D2 including the bit data D1Q.
  • the data processing unit 21 creates processing procedure information DZ indicating the extraction procedure of bit data in the data D1 and D2, and includes the processing procedure information DZ in the data D1.
  • data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedure of the bit data extraction processing may be different for each predetermined number (one or a plurality) of transmission data D0, or may be different for each predetermined period.
  • the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0).
  • the data processing unit 41 reconstructs the original transmission data D0 by combining the bit data D1P and D1Q included in the data D1 and D2 based on the processing procedure information DZ included in the data D1.
  • first to sixth examples can be applied in any combination. For example, by changing and applying the first to sixth examples every transmission data, every predetermined period, every time a command is input from the communication device 2, or at random, the confidentiality of communication Can be further improved.
  • the example in which the transmission data D0 is divided into the data D1 and D2 mainly from the viewpoint of improving the confidentiality of communication has been described.
  • a method for improving reliability will be described.
  • FIG. 10 is a diagram illustrating a seventh example of the generation processing of the data D1 and D2 by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates a plurality of divided data D1A to D1F by dividing the transmission data D0 for each predetermined byte length defined in advance.
  • the data processing unit 21 determines the effective communication amount (for example, an index determined based on the communication success rate and the communication speed) within the most recent predetermined period related to the wireless communication from the wireless communication unit 13, and the wired communication unit 14.
  • the effective communication amount for example, an index determined based on the communication success rate and the communication speed
  • the ratio of the divided data to be distributed to the data D1 and D2 among the divided data D1A to D1F is determined. For example, when the effective communication amount of wireless communication is twice the effective communication amount of wired communication, the ratio of the divided data allocated to the data D1 is set to twice the ratio of the divided data allocated to the data D2. In the example of FIG. 10, the divided data D1A, D1C, D1D, and D1F are distributed to the data D1, and the divided data D1B and D1E are distributed to the data D2.
  • data D2 transmitted by wired communication with a low communication success rate includes two pieces of divided data D1B and D1E, respectively.
  • FIG. 11 is a diagram illustrating an eighth example of the generation processing of the data D1 and D2 by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates a plurality of divided data D1A to D1F by dividing the transmission data D0 for each predetermined byte length defined in advance.
  • the data processing unit 21 generates error correction codes EA to EF for detecting and correcting communication errors related to the divided data D1A to D1F.
  • the data processing unit 21 includes the divided data D1A, D1C, and D1E in the data D1, and includes the error correction codes EA, EC, and EE in the data D2.
  • the data processing unit 21 includes the divided data D1B, D1D, and D1F in the data D2, and includes the error correction codes EB, ED, and EF in the data D1.
  • the divided data D1A ⁇ the error correction code EB ⁇ the divided data D1C ⁇ the error correction code ED ⁇ the divided data D1E ⁇ the error correction code EF is arranged, and in the data D2, the error correction code EA ⁇
  • the divided data D1B, the error correction code EC, the divided data D1D, the error correction code EE, and the divided data D1F are arranged in this order.
  • FIG. 12 is a diagram illustrating a ninth example of the generation processing of the data D1 and D2 by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates a plurality of divided data D1A to D1F by dividing the transmission data D0 for each predetermined byte length defined in advance.
  • the data processing unit 21 includes the divided data D1A, D1C, and D1E in the data D1, and includes the divided data D1B, D1D, and D1F in the data D2.
  • the data processing unit 21 performs error correction codes EAn, ECn, EEn (for example, error for 1-bit correction) with low error correction capability for the divided data D1A, D1C, D1E transmitted by wireless communication with a high communication success rate. Correction code) is generated, and these error correction codes EAn, ECn, EEn are included in the data D1.
  • error correction codes EBh, EDh, and EFh for example, error correction codes for 8-bit correction
  • the divided data D1A ⁇ the error correction code EAn ⁇ the divided data D1C ⁇ the error correction code ECn ⁇ the divided data D1E ⁇ the error correction code EEn are arranged in this order, and in the data D2, the divided data D1B ⁇ the error.
  • the correction code EBh, the divided data D1D, the error correction code EDh, the divided data D1F, and the error correction code EFh are arranged in this order.
  • FIG. 13 is a diagram illustrating a tenth example of data D1 and D2 generation processing by the data processing unit 21.
  • the data processing unit 21 inputs transmission data D0 from the CPU 11.
  • the data processing unit 21 generates a plurality of divided data D1A to D1F by dividing the transmission data D0 for each predetermined byte length defined in advance.
  • the data processing unit 21 generates error correction codes EA to EF for detecting and correcting communication errors related to the divided data D1A to D1F.
  • the data processing unit 21 includes the divided data D1A to D1F in the data D1 and includes the error correction codes EA to EF in the data D2.
  • the tenth example is effective when the effective communication amount of wired communication is extremely lower than the effective communication amount of wireless communication.
  • data distribution can be adjusted according to the effective communication amount of wireless communication and wired communication. For example, when the difference in effective communication amount is large, part of the error correction codes EA to EF may be included in the data D1. Alternatively, when the difference in effective communication amount is small, a part of the divided data D1A to D1F may be included in the data D2.
  • the seventh to tenth examples can be applied in any combination, and the reliability of communication can be further improved by combining a plurality of examples.
  • the data processing unit 21 processes the transmission data D0, whereby the data D1 (first data) and the data D2 (second data) related to the data D1 are processed. Data). Further, the data distribution unit 22 transmits the data D1 from the wireless communication unit 13 (first communication unit) to the communication device 2 via the wireless communication path, and the data D2 is transmitted to the wired communication unit 14 (second communication unit). The data D1 and D2 are distributed so as to be transmitted to the communication device 2 via the wired communication path 4.
  • the transmission data D0 is divided into the data D1 and the data D2, and the data is transmitted via the wireless communication path.
  • D1 is transmitted, and data D2 is transmitted via the wired communication path 4.
  • the wireless communication unit 33 receives the data D1 from the communication device 3, and the wired communication unit 34 (second communication unit) Data D2 is received from the communication device 3.
  • the data association unit 42 associates data D1 and data D2 that are related to each other.
  • the data processing unit 41 restores the transmission data D0 transmitted from the communication device 3 to the communication device 2 based on the data D1 and the data D2 associated by the data association unit 42.
  • the transmission data D0 is divided into the data D1 and the data D2, and the data is transmitted via the wireless communication path.
  • D1 is transmitted, and data D2 is transmitted via the wired communication path 4.
  • the data D1 includes encrypted data generated by encrypting the transmission data D0, and the data D2 is an encryption key used for decrypting the encrypted data. Includes DX.
  • the data D1 includes a plurality of divided data D1A to D1H obtained by performing predetermined division processing and rearrangement processing on the transmission data D0. , Including process procedure information DY regarding the procedure of the division process and the rearrangement process. In this way, by transmitting the divided data D1A to D1H and the processing procedure information DY via different communication paths, it is possible to improve the confidentiality of communication.
  • the data D1 is a first group of a plurality of pieces of divided data D1A to D1H obtained by performing predetermined division processing and rearrangement processing on the transmission data D0.
  • the data D2 includes the second group of divided data among the plurality of divided data D1A to D1H.
  • the data D1 is a first group of a plurality of divided data D1A to D1H obtained by performing predetermined division processing and rearrangement processing on the transmission data D0.
  • the divided data and the processing procedure information DY, and the data D2 includes the second group of divided data among the plurality of divided data D1A to D1H.
  • the data D1 includes a first group of bit data obtained by extracting data of a specific bit from the transmission data D0, and the data D2 includes the transmission data D0.
  • a second group of bit data obtained by extracting data of other specific bits is included.
  • the data D1 includes the first group of bit data obtained by extracting data of a specific bit from the transmission data D0, and the processing procedure information DZ.
  • D2 includes a second group of bit data obtained by extracting data of other specific bits from the transmission data D0.
  • the transmission data D0 is distributed into data D1 and data D2 based on the effective communication amount of the wireless communication path and the wired communication path 4.
  • the transmission data D0 is distributed into data D1 and data D2 based on the effective communication amount of the wireless communication path and the wired communication path 4.
  • the data D1 includes the error correction code of the data D2, and the data D2 includes the error correction code of the data D1.
  • the error correction code it becomes possible to improve the reliability of communication.
  • the error correction code of the data D1 in the data D2 and including the error correction code of the data D2 in the data D1 it is possible to improve the confidentiality of communication.
  • the data D2 when the communication success rate of the wireless communication path is higher than the communication success rate of the wired communication path 4, the data D2 has an error correction code added to the data D1. In addition, an error correction code having a high error correction capability is added. As described above, it is possible to improve the reliability of communication by adding a correction code having a high error correction capability to the data D2 transmitted via the wired communication path 4 having a low communication success rate.
  • the data D1 includes transmission data
  • the data D2 includes an error correction code of the transmission data.
  • the error correction code it is possible to improve the reliability of communication.

Abstract

Provided is a semiconductor integrated circuit with which it is possible to improve communication confidentiality among communication devices that can communicate via a plurality of communication paths. A semiconductor integrated circuit (10) is provided with: a wireless communication unit (13) for communicating with a communication device (2) via a wireless communication path; a wired communication unit (14) for communicating with the communication device (2) via a wired communication path (4); and a data control unit (12) for controlling transmission data (D0) to be transmitted from a communication device (3) to the communication device (2). The data control unit (12) comprises: a data processing unit (21) which processes the transmission data (D0) to thereby generate first data (D1) and second data (D2) relating to the first data (D1); and a data allocation unit (22) for allocating the data (D1, D2) in such a way that the first data (D1) is transmitted from the wireless communication unit (13) to the communication device (2) and the second data (D2) is transmitted from the wired communication unit (14) to the communication device (2).

Description

半導体集積回路、通信装置、通信システム、及び通信方法Semiconductor integrated circuit, communication apparatus, communication system, and communication method
 本発明は、半導体集積回路、通信装置、通信システム、及び通信方法に関する。 The present invention relates to a semiconductor integrated circuit, a communication device, a communication system, and a communication method.
 下記特許文献1には、複数の通信装置を備える通信システムが開示されている。当該通信システムにおいて、各通信装置は、電力線通信等の有線通信部と、無線LAN等の無線通信部とをそれぞれ有している。各通信装置は、有線通信及び無線通信の双方によって、他の通信装置と通信が可能である。第1の通信装置から第2の通信装置にデータを送信する場合には、第1の通信装置は、有線通信及び無線通信の双方によって、同一のデータを第2の通信装置に向けて送信する。このように、同一のデータを複数の通信路を用いて通信することにより、通信の信頼性を向上することができる。 The following Patent Document 1 discloses a communication system including a plurality of communication devices. In the communication system, each communication device has a wired communication unit such as power line communication and a wireless communication unit such as a wireless LAN. Each communication device can communicate with other communication devices by both wired communication and wireless communication. When transmitting data from the first communication device to the second communication device, the first communication device transmits the same data to the second communication device by both wired communication and wireless communication. . In this way, communication reliability can be improved by communicating the same data using a plurality of communication paths.
特開2010-28572号公報JP 2010-28572 A
 しかしながら上記特許文献1に開示された通信システムによると、第1の通信装置は、有線通信及び無線通信の双方によって、同一のデータを第2の通信装置に向けて送信する。つまり、有線通信及び無線通信の各々によって、完全なデータが通信装置間でそれぞれ通信される。従って、有線通信及び無線通信のいずれか一方において第三者によって通信内容が不正に傍受された場合には、完全なデータが取得されてしまうため、通信の秘匿性が十分でないという問題がある。 However, according to the communication system disclosed in Patent Document 1, the first communication device transmits the same data to the second communication device by both wired communication and wireless communication. That is, complete data is communicated between the communication devices by wired communication and wireless communication. Accordingly, there is a problem that the confidentiality of communication is not sufficient because communication data is illegally intercepted by a third party in either one of wired communication and wireless communication because complete data is acquired.
 本発明はかかる問題を解決するために成されたものであり、複数の通信路を介して通信可能な通信装置間における通信の秘匿性を向上することが可能な、半導体集積回路、通信装置、通信システム、及び通信方法を得ることを目的とするものである。 The present invention has been made to solve such a problem, and can improve the secrecy of communication between communication devices that can communicate via a plurality of communication paths, a semiconductor integrated circuit, a communication device, An object of the present invention is to obtain a communication system and a communication method.
 本発明の第1の態様に係る半導体集積回路は、通信装置と他の通信装置とが複数の通信路を介して通信する通信システムにおいて、前記通信装置に実装される半導体集積回路であって、第1の通信路を介して前記他の通信装置と通信する第1の通信部と、第2の通信路を介して前記他の通信装置と通信する第2の通信部と、前記通信装置から前記他の通信装置に送信すべき送信データを制御するデータ制御部と、を備え、前記データ制御部は、前記送信データを処理することにより、第1のデータと、当該第1のデータに関連する第2のデータとを生成するデータ処理部と、前記第1のデータが前記第1の通信部から前記他の通信装置に送信され、前記第2のデータが前記第2の通信部から前記他の通信装置に送信されるよう、データを振り分けるデータ振分部と、を有することを特徴とするものである。 A semiconductor integrated circuit according to a first aspect of the present invention is a semiconductor integrated circuit mounted on the communication device in a communication system in which a communication device communicates with another communication device via a plurality of communication paths. From the first communication unit that communicates with the other communication device via the first communication channel, the second communication unit that communicates with the other communication device via the second communication channel, and the communication device A data control unit that controls transmission data to be transmitted to the other communication device, and the data control unit processes the transmission data to associate the first data with the first data. A data processing unit that generates second data to be transmitted, the first data is transmitted from the first communication unit to the other communication device, and the second data is transmitted from the second communication unit to the other communication device. Allocate data for transmission to other communication devices It is characterized in that it has a data distribution unit to separate the.
 第1の態様に係る半導体集積回路によれば、データ処理部は、送信データを処理することにより、第1のデータと、当該第1のデータに関連する第2のデータとを生成する。また、データ振分部は、第1のデータが第1の通信部から第1の通信路を介して他の通信装置に送信され、第2のデータが第2の通信部から第2の通信路を介して他の通信装置に送信されるよう、データを振り分ける。このように、第1の通信路及び第2の通信路の一方又は双方に完全な送信データを送信するのではなく、送信データを第1のデータと第2のデータとに振り分けて、第1の通信路を介して第1のデータを送信し、第2の通信路を介して第2のデータを送信する。その結果、第1のデータ及び第2のデータの一方のみを取得しても完全な送信データを復元できないため、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit according to the first aspect, the data processing unit generates first data and second data related to the first data by processing the transmission data. In addition, the data distribution unit transmits the first data from the first communication unit to the other communication device via the first communication path, and the second data is transmitted from the second communication unit to the second communication. The data is distributed so as to be transmitted to other communication devices via the path. Thus, instead of transmitting complete transmission data to one or both of the first communication path and the second communication path, the transmission data is divided into the first data and the second data, and the first The first data is transmitted via the second communication path, and the second data is transmitted via the second communication path. As a result, even if only one of the first data and the second data is acquired, complete transmission data cannot be restored, so that the confidentiality of communication can be improved.
 本発明の第2の態様に係る半導体集積回路は、通信装置と他の通信装置とが複数の通信路を介して通信する通信システムにおいて、前記他の通信装置に実装される半導体集積回路であって、第1の通信路を介して前記通信装置と通信する第1の通信部と、第2の通信路を介して前記通信装置と通信する第2の通信部と、前記通信装置から受信した受信データを制御するデータ制御部と、を備え、前記第1の通信部は、第1のデータを前記通信装置から受信し、前記第2の通信部は、第2のデータを前記通信装置から受信し、前記データ制御部は、互いに関連する前記第1のデータと前記第2のデータとを対応付けるデータ対応付け部と、前記データ対応付け部によって対応付けられた前記第1のデータと前記第2のデータとに基づいて、前記通信装置から前記他の通信装置に送信された送信データを復元するデータ処理部と、を有することを特徴とするものである。 A semiconductor integrated circuit according to a second aspect of the present invention is a semiconductor integrated circuit mounted on the other communication device in a communication system in which a communication device and another communication device communicate via a plurality of communication paths. Received from the communication device, a first communication unit that communicates with the communication device via a first communication channel, a second communication unit that communicates with the communication device via a second communication channel, and A data control unit that controls received data, wherein the first communication unit receives first data from the communication device, and the second communication unit receives second data from the communication device. The data control unit receives the first data and the second data associated with each other, the data association unit associates the first data with the second data, and the first data associated with the data association unit. Based on the data of 2, before It is characterized in that it has a data processing unit for restoring the transmission data transmitted from the communication device to said another communication apparatus.
 第2の態様に係る半導体集積回路によれば、第1の通信部は第1のデータを通信装置から受信し、第2の通信部は第2のデータを通信装置から受信する。また、データ対応付け部は、互いに関連する第1のデータと第2のデータとを対応付ける。そして、データ処理部は、データ対応付け部によって対応付けられた第1のデータと第2のデータとに基づいて、通信装置から他の通信装置に送信された送信データを復元する。このように、第1の通信路及び第2の通信路の一方又は双方に完全な送信データを送信するのではなく、送信データを第1のデータと第2のデータとに振り分けて、第1の通信路を介して第1のデータを送信し、第2の通信路を介して第2のデータを送信する。その結果、第1のデータ及び第2のデータの一方のみを取得しても完全な送信データを復元できないため、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit according to the second aspect, the first communication unit receives the first data from the communication device, and the second communication unit receives the second data from the communication device. The data association unit associates the first data and the second data associated with each other. The data processing unit restores the transmission data transmitted from the communication device to the other communication device based on the first data and the second data associated with each other by the data association unit. Thus, instead of transmitting complete transmission data to one or both of the first communication path and the second communication path, the transmission data is divided into the first data and the second data, and the first The first data is transmitted via the second communication path, and the second data is transmitted via the second communication path. As a result, even if only one of the first data and the second data is acquired, complete transmission data cannot be restored, so that the confidentiality of communication can be improved.
 本発明の第3の態様に係る半導体集積回路は、第1又は第2の態様に係る半導体集積回路において特に、前記第1のデータは、前記送信データを暗号化することによって生成された暗号化データを含み、前記第2のデータは、前記暗号化データの復号に用いる暗号鍵を含むことを特徴とするものである。 The semiconductor integrated circuit according to the third aspect of the present invention is the semiconductor integrated circuit according to the first or second aspect, in particular, the first data is an encryption generated by encrypting the transmission data. Including the data, and the second data includes an encryption key used for decrypting the encrypted data.
 第3の態様に係る半導体集積回路によれば、第1のデータは、送信データを暗号化することによって生成された暗号化データを含み、第2のデータは、暗号化データの復号に用いる暗号鍵を含む。このように、暗号化データと暗号鍵とを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit of the third aspect, the first data includes encrypted data generated by encrypting the transmission data, and the second data is an encryption used for decrypting the encrypted data. Includes key. Thus, by transmitting the encrypted data and the encryption key via different communication paths, it is possible to improve the confidentiality of communication.
 本発明の第4の態様に係る半導体集積回路は、第1又は第2の態様に係る半導体集積回路において特に、前記第1のデータは、前記送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データを含み、前記第2のデータは、前記分割処理及び前記並び替え処理の手順に関する情報を含むことを特徴とするものである。 The semiconductor integrated circuit according to the fourth aspect of the present invention is particularly the semiconductor integrated circuit according to the first or second aspect, wherein the first data is a predetermined division process and rearrangement process for the transmission data. The second data includes information related to the procedure of the division process and the rearrangement process.
 第4の態様に係る半導体集積回路によれば、第1のデータは、送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データを含み、第2のデータは、分割処理及び並び替え処理の手順に関する情報を含む。このように、複数の分割データと、分割処理及び並び替え処理の手順に関する情報とを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit of the fourth aspect, the first data includes a plurality of divided data obtained by performing predetermined division processing and rearrangement processing on transmission data, and the second data is divided. It includes information on the procedure of processing and rearrangement processing. In this way, it is possible to improve the confidentiality of communication by transmitting a plurality of pieces of divided data and information related to the procedure of the division process and the rearrangement process via different communication paths.
 本発明の第5の態様に係る半導体集積回路は、第1又は第2の態様に係る半導体集積回路において特に、前記第1のデータは、前記送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データのうちの第1群の分割データを含み、前記第2のデータは、前記複数の分割データのうちの第2群の分割データを含むことを特徴とするものである。 The semiconductor integrated circuit according to the fifth aspect of the present invention is particularly the semiconductor integrated circuit according to the first or second aspect, wherein the first data is a predetermined division process and rearrangement process for the transmission data. Including a first group of divided data among the plurality of divided data, and the second data includes a second group of divided data among the plurality of divided data. is there.
 第5の態様に係る半導体集積回路によれば、第1のデータは、送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データのうちの第1群の分割データを含み、第2のデータは、複数の分割データのうちの第2群の分割データを含む。このように、第1群の分割データと第2群の分割データとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit of the fifth aspect, the first data is the first group of divided data among the plurality of divided data obtained by performing predetermined division processing and rearrangement processing on the transmission data. The second data includes the second group of divided data among the plurality of divided data. Thus, by transmitting the first group of divided data and the second group of divided data via different communication paths, it is possible to improve the confidentiality of communication.
 本発明の第6の態様に係る半導体集積回路は、第1又は第2の態様に係る半導体集積回路において特に、前記第1のデータは、前記送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データのうちの第1群の分割データと、前記分割処理及び前記並び替え処理の手順に関する情報とを含み、前記第2のデータは、前記複数の分割データのうちの第2群の分割データを含むことを特徴とするものである。 The semiconductor integrated circuit according to the sixth aspect of the present invention is particularly the semiconductor integrated circuit according to the first or second aspect, wherein the first data is a predetermined division process and rearrangement process for the transmission data. The divided data of the first group of the plurality of divided data that has been performed and information related to the procedure of the dividing process and the rearranging process, and the second data includes the divided data of the plurality of divided data The second group of divided data is included.
 第6の態様に係る半導体集積回路によれば、第1のデータは、送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データのうちの第1群の分割データと、分割処理及び並び替え処理の手順に関する情報とを含み、第2のデータは、複数の分割データのうちの第2群の分割データを含む。このように、第1群の分割データ並びに分割処理及び並び替え処理の手順に関する情報と、第2群の分割データとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit of the sixth aspect, the first data includes the first group of divided data of the plurality of divided data obtained by performing predetermined division processing and rearrangement processing on the transmission data. The second data includes the second group of divided data among the plurality of divided data. Thus, the confidentiality of communication is improved by transmitting the divided data of the first group and the information regarding the procedure of the dividing process and the rearranging process and the divided data of the second group through different communication paths. Is possible.
 本発明の第7の態様に係る半導体集積回路は、第1又は第2の態様に係る半導体集積回路において特に、前記第1のデータは、前記送信データのうちの特定のビットのデータを抽出した第1群のビットデータを含み、前記第2のデータは、前記送信データのうちの他の特定のビットのデータを抽出した第2群のビットデータを含むことを特徴とするものである。 The semiconductor integrated circuit according to a seventh aspect of the present invention is the semiconductor integrated circuit according to the first or second aspect, in particular, the first data extracted is data of a specific bit in the transmission data. It includes a first group of bit data, and the second data includes a second group of bit data obtained by extracting data of other specific bits of the transmission data.
 第7の態様に係る半導体集積回路によれば、第1のデータは、送信データのうちの特定のビットのデータを抽出した第1群のビットデータを含み、第2のデータは、送信データのうちの他の特定のビットのデータを抽出した第2群のビットデータを含む。このように、第1群のビットデータと第2群のビットデータとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit of the seventh aspect, the first data includes the first group of bit data obtained by extracting specific bits of the transmission data, and the second data includes the transmission data. A second group of bit data obtained by extracting data of other specific bits is included. Thus, by transmitting the first group of bit data and the second group of bit data via different communication paths, it is possible to improve the confidentiality of communication.
 本発明の第8の態様に係る半導体集積回路は、第1又は第2の態様に係る半導体集積回路において特に、前記第1のデータは、前記送信データのうちの特定のビットのデータを抽出した第1群のビットデータと、ビット抽出の手順に関する情報とを含み、前記第2のデータは、前記送信データのうちの他の特定のビットのデータを抽出した第2群のビットデータを含むことを特徴とするものである。 The semiconductor integrated circuit according to the eighth aspect of the present invention is particularly the semiconductor integrated circuit according to the first or second aspect, wherein the first data is data of a specific bit in the transmission data. A first group of bit data and information regarding a bit extraction procedure; and the second data includes a second group of bit data obtained by extracting data of other specific bits of the transmission data. It is characterized by.
 第8の態様に係る半導体集積回路によれば、第1のデータは、送信データのうちの特定のビットのデータを抽出した第1群のビットデータと、ビット抽出の手順に関する情報とを含み、第2のデータは、送信データのうちの他の特定のビットのデータを抽出した第2群のビットデータを含む。このように、第1群のビットデータ及びビット抽出の手順に関する情報と、第2群のビットデータとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit of the eighth aspect, the first data includes a first group of bit data obtained by extracting data of a specific bit of the transmission data, and information regarding a bit extraction procedure, The second data includes a second group of bit data obtained by extracting data of other specific bits of the transmission data. As described above, by transmitting the first group of bit data and the bit extraction procedure information and the second group of bit data via different communication paths, it is possible to improve the confidentiality of communication. .
 本発明の第9の態様に係る半導体集積回路は、第1~第8のいずれか一つの態様に係る半導体集積回路において特に、前記送信データは、前記第1の通信路及び前記第2の通信路の実効通信量に基づいて、前記第1のデータと前記第2のデータとに振り分けられることを特徴とするものである。 The semiconductor integrated circuit according to a ninth aspect of the present invention is the semiconductor integrated circuit according to any one of the first to eighth aspects, in particular, the transmission data includes the first communication path and the second communication. The first data and the second data are distributed based on the effective traffic on the road.
 第9の態様に係る半導体集積回路によれば、送信データは、第1の通信路及び第2の通信路の実効通信量に基づいて、第1のデータと第2のデータとに振り分けられる。その結果、実効通信量の高い通信路に多くのデータを振り分けることにより、通信の信頼性を向上することが可能となる。 According to the semiconductor integrated circuit of the ninth aspect, the transmission data is distributed to the first data and the second data based on the effective communication amount of the first communication path and the second communication path. As a result, it is possible to improve communication reliability by allocating a large amount of data to a communication path with a high effective communication amount.
 本発明の第10の態様に係る半導体集積回路は、第1~第8のいずれか一つの態様に係る半導体集積回路において特に、前記第1のデータは、前記第2のデータのエラー訂正コードを含み、前記第2のデータは、前記第1のデータのエラー訂正コードを含むことを特徴とするものである。 The semiconductor integrated circuit according to a tenth aspect of the present invention is the semiconductor integrated circuit according to any one of the first to eighth aspects, in particular, the first data is an error correction code of the second data. In addition, the second data includes an error correction code of the first data.
 第10の態様に係る半導体集積回路によれば、第1のデータは第2のデータのエラー訂正コードを含み、第2のデータは第1のデータのエラー訂正コードを含む。このように、エラー訂正コードを送信することにより、通信の信頼性を向上することが可能となる。また、第1のデータのエラー訂正コードを第2のデータに含め、第2のデータのエラー訂正コードを第1のデータに含めることにより、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit of the tenth aspect, the first data includes the error correction code of the second data, and the second data includes the error correction code of the first data. Thus, by transmitting the error correction code, it becomes possible to improve the reliability of communication. Also, by including the error correction code of the first data in the second data and including the error correction code of the second data in the first data, it is possible to improve the confidentiality of communication.
 本発明の第11の態様に係る半導体集積回路は、第1~第8のいずれか一つの態様に係る半導体集積回路において特に、前記第1の通信路の通信成功率が前記第2の通信路の通信成功率より高い場合、前記第2のデータには、前記第1のデータに付加されるエラー訂正コードよりもエラー訂正能力の高いエラー訂正コードが付加されることを特徴とするものである。 The semiconductor integrated circuit according to the eleventh aspect of the present invention is the semiconductor integrated circuit according to any one of the first to eighth aspects, in particular, the communication success rate of the first communication path is the second communication path. When the communication success rate is higher, an error correction code having an error correction capability higher than that of the error correction code added to the first data is added to the second data. .
 第11の態様に係る半導体集積回路によれば、第1の通信路の通信成功率が第2の通信路の通信成功率より高い場合、第2のデータには、第1のデータに付加されるエラー訂正コードよりもエラー訂正能力の高いエラー訂正コードが付加される。このように、通信成功率の低い第2の通信路を介して送信される第2のデータには、エラー訂正能力の高い訂正コードを付加することにより、通信の信頼性を向上することが可能となる。 According to the semiconductor integrated circuit of the eleventh aspect, when the communication success rate of the first communication path is higher than the communication success rate of the second communication path, the second data is added to the first data. An error correction code having a higher error correction capability than the error correction code is added. In this way, it is possible to improve the reliability of communication by adding a correction code having a high error correction capability to the second data transmitted via the second communication channel having a low communication success rate. It becomes.
 本発明の第12の態様に係る半導体集積回路は、第1~第8のいずれか一つの態様に係る半導体集積回路において特に、前記第1のデータは、前記送信データを含み、前記第2のデータは、前記送信データのエラー訂正コードを含むことを特徴とするものである。 The semiconductor integrated circuit according to a twelfth aspect of the present invention is the semiconductor integrated circuit according to any one of the first to eighth aspects, in particular, the first data includes the transmission data, and the second data The data includes an error correction code of the transmission data.
 第12の態様に係る半導体集積回路によれば、第1のデータは送信データを含み、第2のデータは送信データのエラー訂正コードを含む。このように、エラー訂正コードを送信することにより、通信の信頼性を向上することが可能となる。また、送信データとエラー訂正コードとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit of the twelfth aspect, the first data includes transmission data, and the second data includes an error correction code for transmission data. Thus, by transmitting the error correction code, it becomes possible to improve the reliability of communication. Moreover, it is possible to improve the confidentiality of communication by transmitting the transmission data and the error correction code via different communication paths.
 本発明の第13の態様に係る通信装置は、第1の態様に係る半導体集積回路を備えることを特徴とするものである。 A communication device according to a thirteenth aspect of the present invention includes the semiconductor integrated circuit according to the first aspect.
 第13の態様に係る通信装置によれば、第1の態様に係る半導体集積回路を備えることにより、通信の秘匿性を向上することが可能となる。 According to the communication device according to the thirteenth aspect, it is possible to improve the confidentiality of communication by including the semiconductor integrated circuit according to the first aspect.
 本発明の第14の態様に係る通信装置は、第2の態様に係る半導体集積回路を備えることを特徴とするものである。 A communication device according to a fourteenth aspect of the present invention includes the semiconductor integrated circuit according to the second aspect.
 第14の態様に係る通信装置によれば、第2の態様に係る半導体集積回路を備えることにより、通信の秘匿性を向上することが可能となる。 According to the communication device according to the fourteenth aspect, it is possible to improve the confidentiality of communication by including the semiconductor integrated circuit according to the second aspect.
 本発明の第15の態様に係る通信システムは、第13の態様に係る通信装置と、第14の態様に係る通信装置とを備えることを特徴とするものである。 A communication system according to a fifteenth aspect of the present invention includes the communication device according to the thirteenth aspect and the communication device according to the fourteenth aspect.
 第15の態様に係る通信システムによれば、第13の態様に係る通信装置と、第14の態様に係る通信装置とを備えることにより、通信の秘匿性を向上することが可能となる。 According to the communication system according to the fifteenth aspect, the communication confidentiality can be improved by including the communication apparatus according to the thirteenth aspect and the communication apparatus according to the fourteenth aspect.
 本発明の第16の態様に係る通信方法は、第1の通信装置と第2の通信装置とが複数の通信路を介して通信する通信システムにおける通信方法であって、(A)前記第1の通信装置において、前記第1の通信装置から前記第2の通信装置に送信すべき送信データを処理することにより、第1のデータと、当該第1のデータに関連する第2のデータとを生成するステップと、(B)前記第1の通信装置において、前記第1のデータが第1の通信路を介して前記他の通信装置に送信され、前記第2のデータが第2の通信路を介して前記第2の通信装置に送信されるよう、データを振り分けるステップと、(C)前記第2の通信装置において、前記第1の通信路を介して前記第1のデータを受信し、前記第2の通信路を介して前記第2のデータを受信するステップと、(D)前記第2の通信装置において、互いに関連する前記第1のデータと前記第2のデータとを対応付けるステップと、(E)前記ステップ(D)によって対応付けられた前記第1のデータと前記第2のデータとに基づいて、前記送信データを復元するステップと、を備えることを特徴とするものである。 A communication method according to a sixteenth aspect of the present invention is a communication method in a communication system in which a first communication device and a second communication device communicate with each other via a plurality of communication paths. In the communication device, the first data and the second data related to the first data are processed by processing transmission data to be transmitted from the first communication device to the second communication device. And (B) in the first communication device, the first data is transmitted to the other communication device via the first communication channel, and the second data is transmitted to the second communication channel. And (C) receiving the first data via the first communication path in the second communication device, and distributing the data to be transmitted to the second communication device via The second data is transmitted through the second communication path. And (D) associating the first data and the second data associated with each other in the second communication device, and (E) the step associated with the step (D). Restoring the transmission data based on the first data and the second data.
 第16の態様に係る通信方法によれば、第1の通信装置は、送信データを処理することにより、第1のデータと、当該第1のデータに関連する第2のデータとを生成する。また、第1の通信装置は、第1のデータが第1の通信路を介して第2の通信装置に送信され、第2のデータが第2の通信路を介して第2の通信装置に送信されるよう、データを振り分ける。第2の通信装置は、第1のデータを第1の通信路を介して受信し、第2のデータを第2の通信路を介して受信する。また、第2の通信装置は、互いに関連する第1のデータと第2のデータとを対応付け、対応付けられた第1のデータと第2のデータとに基づいて送信データを復元する。このように、第1の通信路及び第2の通信路の一方又は双方に完全な送信データを送信するのではなく、送信データを第1のデータと第2のデータとに振り分けて、第1の通信路を介して第1のデータを送信し、第2の通信路を介して第2のデータを送信する。その結果、第1のデータ及び第2のデータの一方のみを取得しても完全な送信データを復元できないため、通信の秘匿性を向上することが可能となる。 According to the communication method according to the sixteenth aspect, the first communication device generates first data and second data related to the first data by processing the transmission data. In addition, the first communication device transmits the first data to the second communication device via the first communication channel, and the second data passes to the second communication device via the second communication channel. Sort data to be sent. The second communication device receives the first data via the first communication path and receives the second data via the second communication path. Further, the second communication device associates the first data and the second data associated with each other, and restores the transmission data based on the associated first data and second data. Thus, instead of transmitting complete transmission data to one or both of the first communication path and the second communication path, the transmission data is divided into the first data and the second data, and the first The first data is transmitted via the second communication path, and the second data is transmitted via the second communication path. As a result, even if only one of the first data and the second data is acquired, complete transmission data cannot be restored, so that the confidentiality of communication can be improved.
 本発明によれば、複数の通信路を介して通信可能な通信装置間における通信の秘匿性を向上することが可能となる。 According to the present invention, it is possible to improve the confidentiality of communication between communication apparatuses that can communicate via a plurality of communication paths.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
本発明の実施の形態に係る通信システムの全体構成を簡略化して示す図である。It is a figure which simplifies and shows the whole structure of the communication system which concerns on embodiment of this invention. 通信装置に実装されている半導体集積回路の構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the semiconductor integrated circuit mounted in the communication apparatus. 通信装置に実装されている半導体集積回路の構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the semiconductor integrated circuit mounted in the communication apparatus. データ処理部によるデータの生成処理の第1の例を示す図である。It is a figure which shows the 1st example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第2の例を示す図である。It is a figure which shows the 2nd example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第3の例を示す図である。It is a figure which shows the 3rd example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第4の例を示す図である。It is a figure which shows the 4th example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第5の例を示す図である。It is a figure which shows the 5th example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第6の例を示す図である。It is a figure which shows the 6th example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第7の例を示す図である。It is a figure which shows the 7th example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第8の例を示す図である。It is a figure which shows the 8th example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第9の例を示す図である。It is a figure which shows the 9th example of the production | generation process of the data by a data processor. データ処理部によるデータの生成処理の第10の例を示す図である。It is a figure which shows the 10th example of the production | generation process of the data by a data processor.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、異なる図面において同一の符号を付した要素は、同一又は相応する要素を示すものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the element which attached | subjected the same code | symbol in different drawing shall show the same or corresponding element.
 図1は、本発明の実施の形態に係る通信システム1の全体構成を簡略化して示す図である。通信システム1は、例えばユーザの住宅内に構築されたシステムであり、複数の通信装置を備えて構成されている。図1に示した例では、説明の簡略化のため、代表的に4つの通信装置2,3A~3Cのみを示している。通信装置3A~3Cは、電力線、有線LAN、又は同軸線等の任意の有線通信路4を介して、通信装置2に接続されている。これにより通信装置3A~3Cは、有線通信路4を介して通信装置2と有線通信を行うことが可能である。また、通信装置2,3A~3Cは、無線LAN又は短距離無線通信等の任意の無線通信機能を備えている。これにより通信装置3A~3Cは、図1中に破線で示すように、無線通信路を介して通信装置2と無線通信を行うことが可能である。なお、本実施の形態の例において、無線通信路の通信速度は有線通信路4の通信速度よりも大きい。 FIG. 1 is a diagram showing a simplified overall configuration of a communication system 1 according to an embodiment of the present invention. The communication system 1 is a system constructed in a user's house, for example, and includes a plurality of communication devices. In the example shown in FIG. 1, only four communication devices 2 and 3A to 3C are representatively shown for simplification of explanation. The communication devices 3A to 3C are connected to the communication device 2 via an arbitrary wired communication path 4 such as a power line, a wired LAN, or a coaxial line. Accordingly, the communication devices 3A to 3C can perform wired communication with the communication device 2 via the wired communication path 4. The communication devices 2 and 3A to 3C have an arbitrary wireless communication function such as a wireless LAN or short-range wireless communication. As a result, the communication devices 3A to 3C can perform wireless communication with the communication device 2 via the wireless communication path, as indicated by broken lines in FIG. In the example of the present embodiment, the communication speed of the wireless communication path is higher than the communication speed of the wired communication path 4.
 通信装置3A~3Cは、例えば家電機器の消費電力量をそれぞれ測定し、その測定結果を含むデータを通信装置2に送信する。以下の説明において通信装置3A~3Cを特に区別しない場合は、「通信装置3」と総称する。通信装置2は、複数の通信装置3から送信されたデータを受信する。そして、受信したデータに基づいて統計処理を行うことにより、ユーザの住宅における電力使用状況を分析し、その分析結果をモニタに表示すること等によってユーザに提供する。 The communication devices 3A to 3C measure, for example, the power consumption of each home appliance, and transmit data including the measurement results to the communication device 2. In the following description, the communication devices 3A to 3C are collectively referred to as “communication device 3” unless otherwise distinguished. The communication device 2 receives data transmitted from the plurality of communication devices 3. Then, by performing statistical processing based on the received data, the power usage situation in the user's house is analyzed, and the analysis result is displayed on the monitor and provided to the user.
 図2は、通信装置3に実装されている半導体集積回路10の構成を簡略化して示す図である。図2に示すように半導体集積回路10は、CPU11、データ制御部12、無線通信部13、及び有線通信部14を備えて構成されている。データ制御部12は、データ処理部21及びデータ振分部22を有している。 FIG. 2 is a diagram showing a simplified configuration of the semiconductor integrated circuit 10 mounted on the communication device 3. As shown in FIG. 2, the semiconductor integrated circuit 10 includes a CPU 11, a data control unit 12, a wireless communication unit 13, and a wired communication unit 14. The data control unit 12 includes a data processing unit 21 and a data distribution unit 22.
 CPU11は、通信装置3から通信装置2に送信すべき送信データD0を生成する。データ処理部21は、CPU11から入力された送信データD0を処理することにより、データD1と、データD1に関連するデータD2とを生成し、互いに関連するデータD1,D2に対して固有の識別情報を付与する。データD1,D2の詳細については後述する。データ振分部22は、データD1が無線通信部13から送信され、データD2が有線通信部14から送信されるよう、データD1,D2を振り分ける。無線通信部13は、データ振分部22から入力されたデータD1を、無線通信路を介して通信装置2に送信する。有線通信部14は、データ振分部22から入力されたデータD2を、有線通信路4を介して通信装置2に送信する。 The CPU 11 generates transmission data D0 to be transmitted from the communication device 3 to the communication device 2. The data processing unit 21 processes the transmission data D0 input from the CPU 11 to generate data D1 and data D2 related to the data D1, and unique identification information for the data D1 and D2 related to each other Is granted. Details of the data D1 and D2 will be described later. The data distribution unit 22 distributes the data D1 and D2 so that the data D1 is transmitted from the wireless communication unit 13 and the data D2 is transmitted from the wired communication unit 14. The wireless communication unit 13 transmits the data D1 input from the data distribution unit 22 to the communication device 2 via the wireless communication path. The wired communication unit 14 transmits the data D <b> 2 input from the data distribution unit 22 to the communication device 2 via the wired communication path 4.
 図3は、通信装置2に実装されている半導体集積回路30の構成を簡略化して示す図である。図3に示すように半導体集積回路30は、CPU31、データ制御部32、無線通信部33、及び有線通信部34を備えて構成されている。データ制御部32は、データ処理部41及びデータ対応付け部42を有している。 FIG. 3 is a diagram showing a simplified configuration of the semiconductor integrated circuit 30 mounted on the communication device 2. As shown in FIG. 3, the semiconductor integrated circuit 30 includes a CPU 31, a data control unit 32, a wireless communication unit 33, and a wired communication unit 34. The data control unit 32 includes a data processing unit 41 and a data association unit 42.
 無線通信部33は、通信装置3から送信されたデータD1を受信する。有線通信部34は、通信装置3から送信されたデータD2を受信する。データ対応付け部42は、各データに付与されている識別情報に基づいて、無線通信部33及び有線通信部34から入力された複数のデータのうち、互いに関連するデータD1とデータD2とを対応付ける。データ処理部41は、データ対応付け部42から入力されたデータD1,D2に基づいて送信データD0を復元し、その復元した送信データD0をCPU31に入力する。 The wireless communication unit 33 receives the data D1 transmitted from the communication device 3. The wired communication unit 34 receives the data D2 transmitted from the communication device 3. The data association unit 42 associates the data D1 and the data D2 that are related to each other out of the plurality of data input from the wireless communication unit 33 and the wired communication unit 34 based on the identification information given to each data. . The data processing unit 41 restores the transmission data D0 based on the data D1 and D2 input from the data association unit 42, and inputs the restored transmission data D0 to the CPU 31.
 図4は、データ処理部21によるデータD1,D2の生成処理の第1の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、所定の暗号鍵DXを用いて送信データD0を暗号化することにより、暗号化データを生成する。次にデータ処理部21は、暗号化データを含むデータD1を生成し、暗号鍵DXを含むデータD2を生成する。ある送信データD0に関するデータD1とデータD2とは、同じ送信タイミングで通信装置3から通信装置2に送信してもよいし、送信タイミングを異ならせてもよい。送信タイミングを異ならせる場合には、例えば、あるデータD0に関するデータD1と次のデータD0に関するデータD2とを同じ送信タイミングで送信する。また、暗号鍵DXは、所定数(一又は複数)の送信データD0毎に異ならせてもよいし、所定期間毎に異ならせてもよい。 FIG. 4 is a diagram illustrating a first example of data D1 and D2 generation processing by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates encrypted data by encrypting the transmission data D0 using a predetermined encryption key DX. Next, the data processing unit 21 generates data D1 including encrypted data, and generates data D2 including the encryption key DX. Data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be transmitted at different timings. When the transmission timing is different, for example, data D1 related to a certain data D0 and data D2 related to the next data D0 are transmitted at the same transmission timing. Also, the encryption key DX may be different for each predetermined number (one or a plurality) of transmission data D0, or may be different for each predetermined period.
 図3を参照して、データ対応付け部42は、互いに関連するデータD1,D2(つまり同一の送信データD0に関して生成されたデータD1,D2)を対応付ける。また、データ処理部41は、データD2に含まれる暗号鍵DXを用いて、データD1に含まれる暗号化データを復号することにより、暗号化される前の送信データD0を復元する。 3, the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). Further, the data processing unit 41 restores the transmission data D0 before being encrypted by decrypting the encrypted data included in the data D1 using the encryption key DX included in the data D2.
 図5は、データ処理部21によるデータD1,D2の生成処理の第2の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、送信データD0を任意のバイト長毎に分割することにより、複数の分割データD1A~D1Hを生成する。次に、データ処理部21は、分割データD1A~D1Hを任意に並び替えることにより、並び替え後の分割データD1A~D1Hを含むデータD1を生成する。また、データ処理部21は、各分割データD1A~D1Hのバイト長と並び替え後の配列順序とを示す処理手順情報DYを作成し、その処理手順情報DYを含むデータD2を生成する。第1の例と同様に、ある送信データD0に関するデータD1とデータD2とは、同じ送信タイミングで通信装置3から通信装置2に送信してもよいし、送信タイミングを異ならせてもよい。また、分割処理及び並び替え処理の処理手順は、所定数(一又は複数)の送信データD0毎に異ならせてもよいし、所定期間毎に異ならせてもよい。 FIG. 5 is a diagram illustrating a second example of the generation processing of the data D1 and D2 by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates a plurality of pieces of divided data D1A to D1H by dividing the transmission data D0 into arbitrary byte lengths. Next, the data processing unit 21 arbitrarily rearranges the divided data D1A to D1H to generate data D1 including the rearranged divided data D1A to D1H. Further, the data processing unit 21 creates processing procedure information DY indicating the byte length of each of the divided data D1A to D1H and the rearranged arrangement order, and generates data D2 including the processing procedure information DY. As in the first example, data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedures of the division process and the rearrangement process may be different for each predetermined number (one or a plurality) of transmission data D0, or may be different for each predetermined period.
 図3を参照して、データ対応付け部42は、互いに関連するデータD1,D2(つまり同一の送信データD0に関して生成されたデータD1,D2)を対応付ける。また、データ処理部41は、データD2に含まれる処理手順情報DYに基づいて、データD1に含まれる分割データD1A~D1Hを元の配列順序に並び替えることにより、元の送信データD0を復元する。 3, the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). Further, the data processing unit 41 restores the original transmission data D0 by rearranging the divided data D1A to D1H included in the data D1 in the original arrangement order based on the processing procedure information DY included in the data D2. .
 図6は、データ処理部21によるデータD1,D2の生成処理の第3の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、予め規定された所定のバイト長毎に送信データD0を分割することにより、複数の分割データD1A~D1Hを生成する。次に、データ処理部21は、分割データD1A~D1Hのうち、予め規定された所定の分割データを、予め規定された所定の順序に並び替えて配列することにより、複数の分割データ(図6の例では分割データD1E,D1G,D1B,D1H)を含むデータD1を生成する。また、データ処理部21は、分割データD1A~D1Hのうち、予め規定された所定の分割データを、予め規定された所定の順序に並び替えて配列することにより、複数の分割データ(図6の例では分割データD1A,D1F,D1D,D1C)を含むデータD2を生成する。第1の例と同様に、ある送信データD0に関するデータD1とデータD2とは、同じ送信タイミングで通信装置3から通信装置2に送信してもよいし、送信タイミングを異ならせてもよい。また、分割処理及び並び替え処理の処理手順は、予め規定された規則に従って、所定数(一又は複数)の送信データD0毎に異ならせてもよいし、所定期間毎に異ならせてもよい。 FIG. 6 is a diagram illustrating a third example of the generation processing of the data D1 and D2 by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates a plurality of divided data D1A to D1H by dividing the transmission data D0 for each predetermined byte length defined in advance. Next, the data processing unit 21 rearranges predetermined division data defined in advance among the division data D1A to D1H in a predetermined order and arranges the plurality of division data (FIG. 6). In this example, data D1 including divided data D1E, D1G, D1B, D1H) is generated. In addition, the data processing unit 21 rearranges predetermined division data defined in advance among the division data D1A to D1H in a predetermined order, and arranges a plurality of pieces of division data (FIG. 6). In the example, data D2 including divided data D1A, D1F, D1D, and D1C) is generated. As in the first example, data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedures of the dividing process and the rearranging process may be different for each predetermined number (one or a plurality) of transmission data D0 according to a predetermined rule, or may be different for each predetermined period.
 図3を参照して、データ対応付け部42は、互いに関連するデータD1,D2(つまり同一の送信データD0に関して生成されたデータD1,D2)を対応付ける。また、データ処理部41は、予め規定された所定の処理手順に従って、データD1,D2に含まれる分割データD1A~D1Hを元の配列順序に並び替えることにより、元の送信データD0を復元する。 3, the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). In addition, the data processing unit 41 restores the original transmission data D0 by rearranging the divided data D1A to D1H included in the data D1 and D2 in the original arrangement order according to a predetermined processing procedure defined in advance.
 図7は、データ処理部21によるデータD1,D2の生成処理の第4の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、送信データD0を任意のバイト長毎に分割することにより、複数の分割データD1A~D1Hを生成する。次に、データ処理部21は、分割データD1A~D1Hのうち、任意の分割データを任意の順序に並び替えて配列することにより、複数の分割データ(図7の例では分割データD1E,D1G,D1B,D1H)を含むデータD1を生成する。また、データ処理部21は、分割データD1A~D1Hのうち、任意の分割データを任意の順序に並び替えて配列することにより、複数の分割データ(図7の例では分割データD1A,D1F,D1D,D1C)を含むデータD2を生成する。また、データ処理部21は、各分割データD1A~D1Hのバイト長と、データD1,D2における並び替え後の分割データの配列順序とを示す処理手順情報DYを作成し、その処理手順情報DYをデータD1内に含める。第1の例と同様に、ある送信データD0に関するデータD1とデータD2とは、同じ送信タイミングで通信装置3から通信装置2に送信してもよいし、送信タイミングを異ならせてもよい。また、分割処理及び並び替え処理の処理手順は、所定数(一又は複数)の送信データD0毎に異ならせてもよいし、所定期間毎に異ならせてもよい。 FIG. 7 is a diagram illustrating a fourth example of the data D1 and D2 generation processing by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates a plurality of pieces of divided data D1A to D1H by dividing the transmission data D0 into arbitrary byte lengths. Next, the data processing unit 21 rearranges and arranges arbitrary divided data among the divided data D1A to D1H in an arbitrary order, thereby arranging a plurality of divided data (the divided data D1E, D1G, Data D1 including D1B, D1H) is generated. Further, the data processing unit 21 rearranges and arranges arbitrary divided data among the divided data D1A to D1H in an arbitrary order, thereby arranging a plurality of divided data (the divided data D1A, D1F, D1D in the example of FIG. 7). , D1C). Further, the data processing unit 21 creates processing procedure information DY indicating the byte length of each of the divided data D1A to D1H and the arrangement order of the divided data after rearrangement in the data D1 and D2, and the processing procedure information DY is generated. Include in data D1. As in the first example, data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedures of the division process and the rearrangement process may be different for each predetermined number (one or a plurality) of transmission data D0, or may be different for each predetermined period.
 図3を参照して、データ対応付け部42は、互いに関連するデータD1,D2(つまり同一の送信データD0に関して生成されたデータD1,D2)を対応付ける。また、データ処理部41は、データD1に含まれる処理手順情報DYに基づいて、データD1,D2に含まれる分割データD1A~D1Hを元の配列順序に並び替えることにより、元の送信データD0を復元する。 3, the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). The data processing unit 41 rearranges the original transmission data D0 by rearranging the divided data D1A to D1H included in the data D1 and D2 in the original arrangement order based on the processing procedure information DY included in the data D1. Restore.
 図8は、データ処理部21によるデータD1,D2の生成処理の第5の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、送信データD0のうち、予め規定された特定のビットデータD1P(例えば奇数ビットのデータ)を抽出することにより、当該特定のビットデータD1Pを含むデータD1を生成する。また、データ処理部21は、送信データD0のうち、予め規定された特定のビットデータD1Q(例えば偶数ビットのデータ)を抽出することにより、当該特定のビットデータD1Qを含むデータD2を生成する。第1の例と同様に、ある送信データD0に関するデータD1とデータD2とは、同じ送信タイミングで通信装置3から通信装置2に送信してもよいし、送信タイミングを異ならせてもよい。また、ビットデータの抽出処理の処理手順は、予め規定された規則に従って、所定数(一又は複数)の送信データD0毎に異ならせてもよいし、所定期間毎に異ならせてもよい。 FIG. 8 is a diagram illustrating a fifth example of the generation processing of the data D1 and D2 by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 extracts predetermined specific bit data D1P (for example, odd-bit data) from the transmission data D0, thereby generating data D1 including the specific bit data D1P. Further, the data processing unit 21 extracts specific bit data D1Q (for example, even-bit data) defined in advance from the transmission data D0, thereby generating data D2 including the specific bit data D1Q. As in the first example, data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedure of the bit data extraction processing may be different for each predetermined number (one or a plurality) of transmission data D0 according to a predetermined rule, or may be different for each predetermined period.
 図3を参照して、データ対応付け部42は、互いに関連するデータD1,D2(つまり同一の送信データD0に関して生成されたデータD1,D2)を対応付ける。また、データ処理部41は、予め規定された所定の処理手順に従って、データD1,D2に含まれるビットデータD1P,D1Qを結合することにより、元の送信データD0を復元する。 3, the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). Further, the data processing unit 41 restores the original transmission data D0 by combining the bit data D1P and D1Q included in the data D1 and D2 according to a predetermined processing procedure defined in advance.
 図9は、データ処理部21によるデータD1,D2の生成処理の第6の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、送信データD0のうち、任意のビットに関するビットデータD1Pを抽出することにより、当該ビットデータD1Pを含むデータD1を生成する。また、データ処理部21は、送信データD0のうち、残余のビットに関するビットデータD1Qを抽出することにより、当該ビットデータD1Qを含むデータD2を生成する。また、データ処理部21は、データD1,D2におけるビットデータの抽出手順を示す処理手順情報DZを作成し、その処理手順情報DZをデータD1内に含める。第1の例と同様に、ある送信データD0に関するデータD1とデータD2とは、同じ送信タイミングで通信装置3から通信装置2に送信してもよいし、送信タイミングを異ならせてもよい。また、ビットデータの抽出処理の処理手順は、所定数(一又は複数)の送信データD0毎に異ならせてもよいし、所定期間毎に異ならせてもよい。 FIG. 9 is a diagram illustrating a sixth example of the generation processing of the data D1 and D2 by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates bit data D1P including the bit data D1P by extracting bit data D1P related to an arbitrary bit from the transmission data D0. Further, the data processing unit 21 extracts the bit data D1Q related to the remaining bits from the transmission data D0, thereby generating data D2 including the bit data D1Q. Further, the data processing unit 21 creates processing procedure information DZ indicating the extraction procedure of bit data in the data D1 and D2, and includes the processing procedure information DZ in the data D1. As in the first example, data D1 and data D2 related to certain transmission data D0 may be transmitted from the communication device 3 to the communication device 2 at the same transmission timing, or may be different in transmission timing. Further, the processing procedure of the bit data extraction processing may be different for each predetermined number (one or a plurality) of transmission data D0, or may be different for each predetermined period.
 図3を参照して、データ対応付け部42は、互いに関連するデータD1,D2(つまり同一の送信データD0に関して生成されたデータD1,D2)を対応付ける。また、データ処理部41は、データD1に含まれる処理手順情報DZに基づいて、データD1,D2に含まれるビットデータD1P,D1Qを結合することにより、元の送信データD0を復元する。 3, the data association unit 42 associates data D1 and D2 that are related to each other (that is, data D1 and D2 generated with respect to the same transmission data D0). In addition, the data processing unit 41 reconstructs the original transmission data D0 by combining the bit data D1P and D1Q included in the data D1 and D2 based on the processing procedure information DZ included in the data D1.
 なお、上記第1~第6の例は、任意に組み合わせて適用することが可能である。例えば、送信データ毎に、あるいは所定期間毎に、あるいは通信装置2からコマンドが入力される毎に、あるいはランダムに、第1~第6の例を変更して適用することにより、通信の秘匿性をさらに向上することができる。 Note that the first to sixth examples can be applied in any combination. For example, by changing and applying the first to sixth examples every transmission data, every predetermined period, every time a command is input from the communication device 2, or at random, the confidentiality of communication Can be further improved.
 上記第1~第6の例では、主に通信の秘匿性を向上する観点から送信データD0をデータD1,D2に分割する例について述べたが、以下、第1~第6の例において通信の信頼性を向上するための手法について説明する。 In the first to sixth examples, the example in which the transmission data D0 is divided into the data D1 and D2 mainly from the viewpoint of improving the confidentiality of communication has been described. A method for improving reliability will be described.
 図10は、データ処理部21によるデータD1,D2の生成処理の第7の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、予め規定された所定のバイト長毎に送信データD0を分割することにより、複数の分割データD1A~D1Fを生成する。次に、データ処理部21は、無線通信部13からの無線通信に関する直近所定期間内の実効通信量(例えば通信成功率及び通信速度に基づいて決定される指標)と、有線通信部14からの有線通信に関する直近所定期間内の実効通信量とに基づいて、分割データD1A~D1FのうちデータD1,D2に振り分ける分割データの割合を決定する。例えば、無線通信の実効通信量が有線通信の実効通信量の2倍である場合には、データD1に振り分ける分割データの割合をデータD2に振り分ける分割データの割合の2倍に設定する。図10の例では、分割データD1A,D1C,D1D,D1FがデータD1に振り分けられ、分割データD1B,D1EがデータD2に振り分けられている。また、実効通信量が低い側の通信路を介した通信においては、各通信路に関する実効通信量の差に応じて、同一の分割データが複数回繰り返して送信される。図10の例では、通信成功率の低い有線通信によって送信されるデータD2には、分割データD1B,D1Eがそれぞれ2個ずつ含まれている。 FIG. 10 is a diagram illustrating a seventh example of the generation processing of the data D1 and D2 by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates a plurality of divided data D1A to D1F by dividing the transmission data D0 for each predetermined byte length defined in advance. Next, the data processing unit 21 determines the effective communication amount (for example, an index determined based on the communication success rate and the communication speed) within the most recent predetermined period related to the wireless communication from the wireless communication unit 13, and the wired communication unit 14. Based on the effective communication amount in the most recent predetermined period related to wired communication, the ratio of the divided data to be distributed to the data D1 and D2 among the divided data D1A to D1F is determined. For example, when the effective communication amount of wireless communication is twice the effective communication amount of wired communication, the ratio of the divided data allocated to the data D1 is set to twice the ratio of the divided data allocated to the data D2. In the example of FIG. 10, the divided data D1A, D1C, D1D, and D1F are distributed to the data D1, and the divided data D1B and D1E are distributed to the data D2. Further, in communication via a communication channel with a lower effective communication amount, the same divided data is repeatedly transmitted a plurality of times according to the difference in effective communication amount for each communication channel. In the example of FIG. 10, data D2 transmitted by wired communication with a low communication success rate includes two pieces of divided data D1B and D1E, respectively.
 図11は、データ処理部21によるデータD1,D2の生成処理の第8の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、予め規定された所定のバイト長毎に送信データD0を分割することにより、複数の分割データD1A~D1Fを生成する。また、データ処理部21は、各分割データD1A~D1Fに関する通信エラーの検出及び訂正を行うためのエラー訂正コードEA~EFを生成する。次に、データ処理部21は、分割データD1A,D1C,D1EをデータD1に含めるとともに、エラー訂正コードEA,EC,EEをデータD2に含める。また、データ処理部21は、分割データD1B,D1D,D1FをデータD2に含めるとともに、エラー訂正コードEB,ED,EFをデータD1に含める。図11の例では、データD1においては分割データD1A→エラー訂正コードEB→分割データD1C→エラー訂正コードED→分割データD1E→エラー訂正コードEFの順に配列され、データD2においてはエラー訂正コードEA→分割データD1B→エラー訂正コードEC→分割データD1D→エラー訂正コードEE→分割データD1Fの順に配列されている。 FIG. 11 is a diagram illustrating an eighth example of the generation processing of the data D1 and D2 by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates a plurality of divided data D1A to D1F by dividing the transmission data D0 for each predetermined byte length defined in advance. In addition, the data processing unit 21 generates error correction codes EA to EF for detecting and correcting communication errors related to the divided data D1A to D1F. Next, the data processing unit 21 includes the divided data D1A, D1C, and D1E in the data D1, and includes the error correction codes EA, EC, and EE in the data D2. Further, the data processing unit 21 includes the divided data D1B, D1D, and D1F in the data D2, and includes the error correction codes EB, ED, and EF in the data D1. In the example of FIG. 11, in the data D1, the divided data D1A → the error correction code EB → the divided data D1C → the error correction code ED → the divided data D1E → the error correction code EF is arranged, and in the data D2, the error correction code EA → The divided data D1B, the error correction code EC, the divided data D1D, the error correction code EE, and the divided data D1F are arranged in this order.
 図12は、データ処理部21によるデータD1,D2の生成処理の第9の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、予め規定された所定のバイト長毎に送信データD0を分割することにより、複数の分割データD1A~D1Fを生成する。データ処理部21は、分割データD1A,D1C,D1EをデータD1に含めるとともに、分割データD1B,D1D,D1FをデータD2に含める。また、データ処理部21は、通信成功率の高い無線通信によって送信される分割データD1A,D1C,D1Eに関しては、エラー訂正能力の低いエラー訂正コードEAn,ECn,EEn(例えば1ビット訂正用のエラー訂正コード)を生成し、これらのエラー訂正コードEAn,ECn,EEnをデータD1に含める。一方、通信成功率の低い有線通信によって送信される分割データD1B,D1D,D1Fに関しては、エラー訂正能力の高いエラー訂正コードEBh,EDh,EFh(例えば8ビット訂正用のエラー訂正コード)を生成し、これらのエラー訂正コードEBh,EDh,EFhをデータD2に含める。図12の例では、データD1においては分割データD1A→エラー訂正コードEAn→分割データD1C→エラー訂正コードECn→分割データD1E→エラー訂正コードEEnの順に配列され、データD2においては分割データD1B→エラー訂正コードEBh→分割データD1D→エラー訂正コードEDh→分割データD1F→エラー訂正コードEFhの順に配列されている。 FIG. 12 is a diagram illustrating a ninth example of the generation processing of the data D1 and D2 by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates a plurality of divided data D1A to D1F by dividing the transmission data D0 for each predetermined byte length defined in advance. The data processing unit 21 includes the divided data D1A, D1C, and D1E in the data D1, and includes the divided data D1B, D1D, and D1F in the data D2. Further, the data processing unit 21 performs error correction codes EAn, ECn, EEn (for example, error for 1-bit correction) with low error correction capability for the divided data D1A, D1C, D1E transmitted by wireless communication with a high communication success rate. Correction code) is generated, and these error correction codes EAn, ECn, EEn are included in the data D1. On the other hand, for the divided data D1B, D1D, and D1F transmitted by wired communication with a low communication success rate, error correction codes EBh, EDh, and EFh (for example, error correction codes for 8-bit correction) with high error correction capability are generated. These error correction codes EBh, EDh, and EFh are included in the data D2. In the example of FIG. 12, in the data D1, the divided data D1A → the error correction code EAn → the divided data D1C → the error correction code ECn → the divided data D1E → the error correction code EEn are arranged in this order, and in the data D2, the divided data D1B → the error. The correction code EBh, the divided data D1D, the error correction code EDh, the divided data D1F, and the error correction code EFh are arranged in this order.
 図13は、データ処理部21によるデータD1,D2の生成処理の第10の例を示す図である。まずデータ処理部21は、送信データD0をCPU11から入力する。次にデータ処理部21は、予め規定された所定のバイト長毎に送信データD0を分割することにより、複数の分割データD1A~D1Fを生成する。また、データ処理部21は、各分割データD1A~D1Fに関する通信エラーの検出及び訂正を行うためのエラー訂正コードEA~EFを生成する。次に、データ処理部21は、分割データD1A~D1FをデータD1に含めるとともに、エラー訂正コードEA~EFをデータD2に含める。エラー訂正コードのデータ量は分割データのデータ量よりも十分に小さいため、第10の例は有線通信の実効通信量が無線通信の実効通信量より極端に低い場合等に有効である。なお、無線通信及び有線通信の各実効通信量に応じて、データの振り分けを調整することもできる。例えば、実効通信量の差が大きい場合には、エラー訂正コードEA~EFの一部をデータD1に含めてもよい。あるいは、実効通信量の差が小さい場合には、分割データD1A~D1Fの一部をデータD2に含めてもよい。 FIG. 13 is a diagram illustrating a tenth example of data D1 and D2 generation processing by the data processing unit 21. First, the data processing unit 21 inputs transmission data D0 from the CPU 11. Next, the data processing unit 21 generates a plurality of divided data D1A to D1F by dividing the transmission data D0 for each predetermined byte length defined in advance. In addition, the data processing unit 21 generates error correction codes EA to EF for detecting and correcting communication errors related to the divided data D1A to D1F. Next, the data processing unit 21 includes the divided data D1A to D1F in the data D1 and includes the error correction codes EA to EF in the data D2. Since the data amount of the error correction code is sufficiently smaller than the data amount of the divided data, the tenth example is effective when the effective communication amount of wired communication is extremely lower than the effective communication amount of wireless communication. Note that data distribution can be adjusted according to the effective communication amount of wireless communication and wired communication. For example, when the difference in effective communication amount is large, part of the error correction codes EA to EF may be included in the data D1. Alternatively, when the difference in effective communication amount is small, a part of the divided data D1A to D1F may be included in the data D2.
 なお、上記第7~第10の例は、任意に組み合わせて適用することが可能であり、複数の例を組み合わせることによって、通信の信頼性をさらに向上することができる。 Note that the seventh to tenth examples can be applied in any combination, and the reliability of communication can be further improved by combining a plurality of examples.
 本実施の形態に係る半導体集積回路10によれば、データ処理部21は、送信データD0を処理することにより、データD1(第1のデータ)と、データD1に関連するデータD2(第2のデータ)とを生成する。また、データ振分部22は、データD1が無線通信部13(第1の通信部)から無線通信路を介して通信装置2に送信され、データD2が有線通信部14(第2の通信部)から有線通信路4を介して通信装置2に送信されるよう、データD1,D2を振り分ける。このように、無線通信路及び有線通信路4の一方又は双方に完全な送信データD0を送信するのではなく、送信データD0をデータD1とデータD2とに振り分けて、無線通信路を介してデータD1を送信し、有線通信路4を介してデータD2を送信する。その結果、データD1及びデータD2の一方のみを取得しても完全な送信データD0を復元できないため、通信の秘匿性を向上することが可能となる。 According to the semiconductor integrated circuit 10 according to the present embodiment, the data processing unit 21 processes the transmission data D0, whereby the data D1 (first data) and the data D2 (second data) related to the data D1 are processed. Data). Further, the data distribution unit 22 transmits the data D1 from the wireless communication unit 13 (first communication unit) to the communication device 2 via the wireless communication path, and the data D2 is transmitted to the wired communication unit 14 (second communication unit). The data D1 and D2 are distributed so as to be transmitted to the communication device 2 via the wired communication path 4. As described above, instead of transmitting the complete transmission data D0 to one or both of the wireless communication path and the wired communication path 4, the transmission data D0 is divided into the data D1 and the data D2, and the data is transmitted via the wireless communication path. D1 is transmitted, and data D2 is transmitted via the wired communication path 4. As a result, even if only one of the data D1 and the data D2 is acquired, the complete transmission data D0 cannot be restored, so that the confidentiality of communication can be improved.
 また、本実施の形態に係る半導体集積回路30によれば、無線通信部33(第1の通信部)はデータD1を通信装置3から受信し、有線通信部34(第2の通信部)はデータD2を通信装置3から受信する。また、データ対応付け部42は、互いに関連するデータD1とデータD2とを対応付ける。そして、データ処理部41は、データ対応付け部42によって対応付けられたデータD1とデータD2とに基づいて、通信装置3から通信装置2に送信された送信データD0を復元する。このように、無線通信路及び有線通信路4の一方又は双方に完全な送信データD0を送信するのではなく、送信データD0をデータD1とデータD2とに振り分けて、無線通信路を介してデータD1を送信し、有線通信路4を介してデータD2を送信する。その結果、データD1及びデータD2の一方のみを取得しても完全な送信データD0を復元できないため、通信の秘匿性を向上することが可能となる。 Further, according to the semiconductor integrated circuit 30 according to the present embodiment, the wireless communication unit 33 (first communication unit) receives the data D1 from the communication device 3, and the wired communication unit 34 (second communication unit) Data D2 is received from the communication device 3. The data association unit 42 associates data D1 and data D2 that are related to each other. Then, the data processing unit 41 restores the transmission data D0 transmitted from the communication device 3 to the communication device 2 based on the data D1 and the data D2 associated by the data association unit 42. As described above, instead of transmitting the complete transmission data D0 to one or both of the wireless communication path and the wired communication path 4, the transmission data D0 is divided into the data D1 and the data D2, and the data is transmitted via the wireless communication path. D1 is transmitted, and data D2 is transmitted via the wired communication path 4. As a result, even if only one of the data D1 and the data D2 is acquired, the complete transmission data D0 cannot be restored, so that the confidentiality of communication can be improved.
 また、図4に示した第1の例によれば、データD1は、送信データD0を暗号化することによって生成された暗号化データを含み、データD2は、暗号化データの復号に用いる暗号鍵DXを含む。このように、暗号化データと暗号鍵DXとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 Further, according to the first example shown in FIG. 4, the data D1 includes encrypted data generated by encrypting the transmission data D0, and the data D2 is an encryption key used for decrypting the encrypted data. Includes DX. Thus, by transmitting the encrypted data and the encryption key DX via different communication paths, it is possible to improve the confidentiality of communication.
 また、図5に示した第2の例によれば、データD1は、送信データD0に対して所定の分割処理及び並び替え処理が行われた複数の分割データD1A~D1Hを含み、データD2は、分割処理及び並び替え処理の手順に関する処理手順情報DYを含む。このように、分割データD1A~D1Hと処理手順情報DYとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 Further, according to the second example shown in FIG. 5, the data D1 includes a plurality of divided data D1A to D1H obtained by performing predetermined division processing and rearrangement processing on the transmission data D0. , Including process procedure information DY regarding the procedure of the division process and the rearrangement process. In this way, by transmitting the divided data D1A to D1H and the processing procedure information DY via different communication paths, it is possible to improve the confidentiality of communication.
 また、図6に示した第3の例によれば、データD1は、送信データD0に対して所定の分割処理及び並び替え処理が行われた複数の分割データD1A~D1Hのうちの第1群の分割データを含み、データD2は、複数の分割データD1A~D1Hのうちの第2群の分割データを含む。このように、第1群の分割データと第2群の分割データとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 Further, according to the third example shown in FIG. 6, the data D1 is a first group of a plurality of pieces of divided data D1A to D1H obtained by performing predetermined division processing and rearrangement processing on the transmission data D0. The data D2 includes the second group of divided data among the plurality of divided data D1A to D1H. Thus, by transmitting the first group of divided data and the second group of divided data via different communication paths, it is possible to improve the confidentiality of communication.
 また、図7に示した第4の例によれば、データD1は、送信データD0に対して所定の分割処理及び並び替え処理が行われた複数の分割データD1A~D1Hのうちの第1群の分割データと、処理手順情報DYとを含み、データD2は、複数の分割データD1A~D1Hのうちの第2群の分割データを含む。このように、第1群の分割データ及び処理手順情報DYと、第2群の分割データとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 Further, according to the fourth example shown in FIG. 7, the data D1 is a first group of a plurality of divided data D1A to D1H obtained by performing predetermined division processing and rearrangement processing on the transmission data D0. The divided data and the processing procedure information DY, and the data D2 includes the second group of divided data among the plurality of divided data D1A to D1H. As described above, by transmitting the first group of divided data and the processing procedure information DY and the second group of divided data via different communication paths, it is possible to improve the confidentiality of communication.
 また、図8に示した第5の例によれば、データD1は、送信データD0のうちの特定のビットのデータを抽出した第1群のビットデータを含み、データD2は、送信データD0のうちの他の特定のビットのデータを抽出した第2群のビットデータを含む。このように、第1群のビットデータと第2群のビットデータとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 Further, according to the fifth example shown in FIG. 8, the data D1 includes a first group of bit data obtained by extracting data of a specific bit from the transmission data D0, and the data D2 includes the transmission data D0. A second group of bit data obtained by extracting data of other specific bits is included. Thus, by transmitting the first group of bit data and the second group of bit data via different communication paths, it is possible to improve the confidentiality of communication.
 また、図9に示した第6の例によれば、データD1は、送信データD0のうちの特定のビットのデータを抽出した第1群のビットデータと、処理手順情報DZとを含み、データD2は、送信データD0のうちの他の特定のビットのデータを抽出した第2群のビットデータを含む。このように、第1群のビットデータ及び処理手順情報DZと、第2群のビットデータとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 Further, according to the sixth example shown in FIG. 9, the data D1 includes the first group of bit data obtained by extracting data of a specific bit from the transmission data D0, and the processing procedure information DZ. D2 includes a second group of bit data obtained by extracting data of other specific bits from the transmission data D0. As described above, by transmitting the first group of bit data and the processing procedure information DZ and the second group of bit data via different communication paths, it is possible to improve the confidentiality of communication.
 また、図10に示した第7の例によれば、送信データD0は、無線通信路及び有線通信路4の実効通信量に基づいて、データD1とデータD2とに振り分けられる。その結果、実効通信量の高い通信路に多くのデータを振り分けることにより、通信の信頼性を向上することが可能となる。 Further, according to the seventh example shown in FIG. 10, the transmission data D0 is distributed into data D1 and data D2 based on the effective communication amount of the wireless communication path and the wired communication path 4. As a result, it is possible to improve communication reliability by allocating a large amount of data to a communication path with a high effective communication amount.
 また、図11に示した第8の例によれば、データD1はデータD2のエラー訂正コードを含み、データD2はデータD1のエラー訂正コードを含む。このように、エラー訂正コードを送信することにより、通信の信頼性を向上することが可能となる。また、データD1のエラー訂正コードをデータD2に含め、データD2のエラー訂正コードをデータD1に含めることにより、通信の秘匿性を向上することが可能となる。 Further, according to the eighth example shown in FIG. 11, the data D1 includes the error correction code of the data D2, and the data D2 includes the error correction code of the data D1. Thus, by transmitting the error correction code, it becomes possible to improve the reliability of communication. Further, by including the error correction code of the data D1 in the data D2 and including the error correction code of the data D2 in the data D1, it is possible to improve the confidentiality of communication.
 また、図12に示した第9の例によれば、無線通信路の通信成功率が有線通信路4の通信成功率より高い場合、データD2には、データD1に付加されるエラー訂正コードよりもエラー訂正能力の高いエラー訂正コードが付加される。このように、通信成功率の低い有線通信路4を介して送信されるデータD2には、エラー訂正能力の高い訂正コードを付加することにより、通信の信頼性を向上することが可能となる。 Further, according to the ninth example shown in FIG. 12, when the communication success rate of the wireless communication path is higher than the communication success rate of the wired communication path 4, the data D2 has an error correction code added to the data D1. In addition, an error correction code having a high error correction capability is added. As described above, it is possible to improve the reliability of communication by adding a correction code having a high error correction capability to the data D2 transmitted via the wired communication path 4 having a low communication success rate.
 また、図13に示した第10の例によれば、データD1は送信データを含み、データD2は送信データのエラー訂正コードを含む。このように、エラー訂正コードを送信することにより、通信の信頼性を向上することが可能となる。また、送信データとエラー訂正コードとを異なる通信路を介して送信することにより、通信の秘匿性を向上することが可能となる。 Further, according to the tenth example shown in FIG. 13, the data D1 includes transmission data, and the data D2 includes an error correction code of the transmission data. Thus, by transmitting the error correction code, it is possible to improve the reliability of communication. Moreover, it is possible to improve the confidentiality of communication by transmitting the transmission data and the error correction code via different communication paths.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示的であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 1 通信システム
 2,3A~3C 通信装置
 10,30 半導体集積回路
 12,32 データ制御部
 13,33 無線通信部
 14,34 有線通信部
 21,41 データ処理部
 22 データ振分部
 42 データ対応付け部
 
 
DESCRIPTION OF SYMBOLS 1 Communication system 2,3A- 3C Communication apparatus 10,30 Semiconductor integrated circuit 12,32 Data control part 13,33 Wireless communication part 14,34 Wired communication part 21,41 Data processing part 22 Data distribution part 42 Data matching part

Claims (16)

  1.  通信装置と他の通信装置とが複数の通信路を介して通信する通信システムにおいて、前記通信装置に実装される半導体集積回路であって、
     第1の通信路を介して前記他の通信装置と通信する第1の通信部と、
     第2の通信路を介して前記他の通信装置と通信する第2の通信部と、
     前記通信装置から前記他の通信装置に送信すべき送信データを制御するデータ制御部と、
    を備え、
     前記データ制御部は、
     前記送信データを処理することにより、第1のデータと、当該第1のデータに関連する第2のデータとを生成するデータ処理部と、
     前記第1のデータが前記第1の通信部から前記他の通信装置に送信され、前記第2のデータが前記第2の通信部から前記他の通信装置に送信されるよう、データを振り分けるデータ振分部と、
    を有する、半導体集積回路。
    In a communication system in which a communication device and another communication device communicate via a plurality of communication paths, a semiconductor integrated circuit mounted on the communication device,
    A first communication unit that communicates with the other communication device via a first communication path;
    A second communication unit that communicates with the other communication device via a second communication path;
    A data control unit that controls transmission data to be transmitted from the communication device to the other communication device;
    With
    The data control unit
    A data processing unit that generates first data and second data related to the first data by processing the transmission data;
    Data for distributing data so that the first data is transmitted from the first communication unit to the other communication device, and the second data is transmitted from the second communication unit to the other communication device. A distribution section;
    A semiconductor integrated circuit.
  2.  通信装置と他の通信装置とが複数の通信路を介して通信する通信システムにおいて、前記他の通信装置に実装される半導体集積回路であって、
     第1の通信路を介して前記通信装置と通信する第1の通信部と、
     第2の通信路を介して前記通信装置と通信する第2の通信部と、
     前記通信装置から受信した受信データを制御するデータ制御部と、
    を備え、
     前記第1の通信部は、第1のデータを前記通信装置から受信し、
     前記第2の通信部は、第2のデータを前記通信装置から受信し、
     前記データ制御部は、
     互いに関連する前記第1のデータと前記第2のデータとを対応付けるデータ対応付け部と、
     前記データ対応付け部によって対応付けられた前記第1のデータと前記第2のデータとに基づいて、前記通信装置から前記他の通信装置に送信された送信データを復元するデータ処理部と、
    を有する、半導体集積回路。
    In a communication system in which a communication device communicates with another communication device via a plurality of communication paths, a semiconductor integrated circuit mounted on the other communication device,
    A first communication unit that communicates with the communication device via a first communication path;
    A second communication unit that communicates with the communication device via a second communication path;
    A data control unit for controlling received data received from the communication device;
    With
    The first communication unit receives first data from the communication device,
    The second communication unit receives second data from the communication device,
    The data control unit
    A data association unit that associates the first data and the second data associated with each other;
    A data processing unit for restoring transmission data transmitted from the communication device to the other communication device based on the first data and the second data associated by the data association unit;
    A semiconductor integrated circuit.
  3.  前記第1のデータは、前記送信データを暗号化することによって生成された暗号化データを含み、
     前記第2のデータは、前記暗号化データの復号に用いる暗号鍵を含む、請求項1又は2に記載の半導体集積回路。
    The first data includes encrypted data generated by encrypting the transmission data,
    The semiconductor integrated circuit according to claim 1, wherein the second data includes an encryption key used for decrypting the encrypted data.
  4.  前記第1のデータは、前記送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データを含み、
     前記第2のデータは、前記分割処理及び前記並び替え処理の手順に関する情報を含む、請求項1又は2に記載の半導体集積回路。
    The first data includes a plurality of divided data obtained by performing predetermined division processing and rearrangement processing on the transmission data,
    3. The semiconductor integrated circuit according to claim 1, wherein the second data includes information relating to a procedure of the division process and the rearrangement process.
  5.  前記第1のデータは、前記送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データのうちの第1群の分割データを含み、
     前記第2のデータは、前記複数の分割データのうちの第2群の分割データを含む、請求項1又は2に記載の半導体集積回路。
    The first data includes a first group of divided data among a plurality of divided data obtained by performing predetermined division processing and rearrangement processing on the transmission data;
    The semiconductor integrated circuit according to claim 1, wherein the second data includes a second group of divided data among the plurality of divided data.
  6.  前記第1のデータは、前記送信データに対して所定の分割処理及び並び替え処理が行われた複数の分割データのうちの第1群の分割データと、前記分割処理及び前記並び替え処理の手順に関する情報とを含み、
     前記第2のデータは、前記複数の分割データのうちの第2群の分割データを含む、請求項1又は2に記載の半導体集積回路。
    The first data includes a first group of divided data among a plurality of pieces of divided data obtained by performing predetermined division processing and rearrangement processing on the transmission data, and a procedure of the division processing and rearrangement processing. And information about
    The semiconductor integrated circuit according to claim 1, wherein the second data includes a second group of divided data among the plurality of divided data.
  7.  前記第1のデータは、前記送信データのうちの特定のビットのデータを抽出した第1群のビットデータを含み、
     前記第2のデータは、前記送信データのうちの他の特定のビットのデータを抽出した第2群のビットデータを含む、請求項1又は2に記載の半導体集積回路。
    The first data includes a first group of bit data obtained by extracting data of specific bits of the transmission data,
    The semiconductor integrated circuit according to claim 1, wherein the second data includes a second group of bit data obtained by extracting data of other specific bits of the transmission data.
  8.  前記第1のデータは、前記送信データのうちの特定のビットのデータを抽出した第1群のビットデータと、ビット抽出の手順に関する情報とを含み、
     前記第2のデータは、前記送信データのうちの他の特定のビットのデータを抽出した第2群のビットデータを含む、請求項1又は2に記載の半導体集積回路。
    The first data includes a first group of bit data obtained by extracting data of specific bits of the transmission data, and information regarding a bit extraction procedure,
    The semiconductor integrated circuit according to claim 1, wherein the second data includes a second group of bit data obtained by extracting data of other specific bits of the transmission data.
  9.  前記送信データは、前記第1の通信路及び前記第2の通信路の実効通信量に基づいて、前記第1のデータと前記第2のデータとに振り分けられる、請求項1~8のいずれか一つに記載の半導体集積回路。 9. The transmission data according to claim 1, wherein the transmission data is distributed to the first data and the second data based on an effective communication amount of the first communication path and the second communication path. The semiconductor integrated circuit according to one.
  10.  前記第1のデータは、前記第2のデータのエラー訂正コードを含み、
     前記第2のデータは、前記第1のデータのエラー訂正コードを含む、請求項1~8のいずれか一つに記載の半導体集積回路。
    The first data includes an error correction code of the second data,
    The semiconductor integrated circuit according to any one of claims 1 to 8, wherein the second data includes an error correction code of the first data.
  11.  前記第1の通信路の通信成功率が前記第2の通信路の通信成功率より高い場合、前記第2のデータには、前記第1のデータに付加されるエラー訂正コードよりもエラー訂正能力の高いエラー訂正コードが付加される、請求項1~8のいずれか一つに記載の半導体集積回路。 When the communication success rate of the first communication path is higher than the communication success rate of the second communication path, the second data has an error correction capability higher than an error correction code added to the first data. 9. The semiconductor integrated circuit according to claim 1, wherein a high error correction code is added.
  12.  前記第1のデータは、前記送信データを含み、
     前記第2のデータは、前記送信データのエラー訂正コードを含む、請求項1~8のいずれか一つに記載の半導体集積回路。
    The first data includes the transmission data,
    The semiconductor integrated circuit according to any one of claims 1 to 8, wherein the second data includes an error correction code of the transmission data.
  13.  請求項1に記載の半導体集積回路を備える、通信装置。 A communication apparatus comprising the semiconductor integrated circuit according to claim 1.
  14.  請求項2に記載の半導体集積回路を備える、通信装置。 A communication device comprising the semiconductor integrated circuit according to claim 2.
  15.  請求項13に記載の通信装置と、請求項14に記載の通信装置とを備える、通信システム。 A communication system comprising the communication device according to claim 13 and the communication device according to claim 14.
  16.  第1の通信装置と第2の通信装置とが複数の通信路を介して通信する通信システムにおける通信方法であって、
     (A)前記第1の通信装置において、前記第1の通信装置から前記第2の通信装置に送信すべき送信データを処理することにより、第1のデータと、当該第1のデータに関連する第2のデータとを生成するステップと、
     (B)前記第1の通信装置において、前記第1のデータが第1の通信路を介して前記他の通信装置に送信され、前記第2のデータが第2の通信路を介して前記第2の通信装置に送信されるよう、データを振り分けるステップと、
     (C)前記第2の通信装置において、前記第1の通信路を介して前記第1のデータを受信し、前記第2の通信路を介して前記第2のデータを受信するステップと、
     (D)前記第2の通信装置において、互いに関連する前記第1のデータと前記第2のデータとを対応付けるステップと、
     (E)前記ステップ(D)によって対応付けられた前記第1のデータと前記第2のデータとに基づいて、前記送信データを復元するステップと、
    を備える、通信方法。
     
    A communication method in a communication system in which a first communication device and a second communication device communicate via a plurality of communication paths,
    (A) In the first communication device, by processing transmission data to be transmitted from the first communication device to the second communication device, the first data and the first data are related. Generating second data; and
    (B) In the first communication device, the first data is transmitted to the other communication device via a first communication path, and the second data is transmitted to the other communication device via a second communication path. Distributing the data to be transmitted to the two communication devices;
    (C) In the second communication device, receiving the first data via the first communication path and receiving the second data via the second communication path;
    (D) in the second communication device, associating the first data and the second data associated with each other;
    (E) restoring the transmission data based on the first data and the second data associated in the step (D);
    A communication method comprising:
PCT/JP2012/070215 2011-08-10 2012-08-08 Semiconductor integrated circuit, communication device, communication system, and communication method WO2013022028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011175326A JP5890122B2 (en) 2011-08-10 2011-08-10 Semiconductor integrated circuit, communication apparatus, communication system, and communication method
JP2011-175326 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013022028A1 true WO2013022028A1 (en) 2013-02-14

Family

ID=47668534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070215 WO2013022028A1 (en) 2011-08-10 2012-08-08 Semiconductor integrated circuit, communication device, communication system, and communication method

Country Status (2)

Country Link
JP (1) JP5890122B2 (en)
WO (1) WO2013022028A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168981A (en) * 2016-03-15 2017-09-21 Necプラットフォームズ株式会社 Communication device and communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115162A (en) * 1998-10-08 2000-04-21 Kodo Ido Tsushin Security Gijutsu Kenkyusho:Kk Secure communication equipment and storage device
WO2001056244A1 (en) * 2000-01-26 2001-08-02 Sony Corporation Data transmission system
JP2003143191A (en) * 2001-11-07 2003-05-16 Oki Electric Ind Co Ltd Parallel transmitters, parallel receivers and parallel transmission system
JP2004350044A (en) * 2003-05-22 2004-12-09 Tdk Corp Transmitter, receiver, communication system, and communication method
JP2006352357A (en) * 2005-06-14 2006-12-28 Fujitsu Ltd Communication control unit and communication control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2798534B2 (en) * 1991-10-01 1998-09-17 日本電気株式会社 Multi-link control method
JPH09233124A (en) * 1996-02-27 1997-09-05 Mitsubishi Electric Corp Packet communication system
JPH1168735A (en) * 1997-08-20 1999-03-09 Oki Data:Kk Protecting method for communication data, transmitter and receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115162A (en) * 1998-10-08 2000-04-21 Kodo Ido Tsushin Security Gijutsu Kenkyusho:Kk Secure communication equipment and storage device
WO2001056244A1 (en) * 2000-01-26 2001-08-02 Sony Corporation Data transmission system
JP2003143191A (en) * 2001-11-07 2003-05-16 Oki Electric Ind Co Ltd Parallel transmitters, parallel receivers and parallel transmission system
JP2004350044A (en) * 2003-05-22 2004-12-09 Tdk Corp Transmitter, receiver, communication system, and communication method
JP2006352357A (en) * 2005-06-14 2006-12-28 Fujitsu Ltd Communication control unit and communication control method

Also Published As

Publication number Publication date
JP5890122B2 (en) 2016-03-22
JP2013038719A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
US9055035B2 (en) Medical device with secure data transmission
US8041032B2 (en) Symmetric key encryption system with synchronously updating expanded key
CN105530263B (en) A kind of extra lightweight RFID mutual authentication methods based on tag ID
CN103905187B (en) A kind of network service encryption method based on content
KR102079626B1 (en) System for hiding information using lightweight mutual authentication based on biometric in mobile environment, method thereof and computer recordable medium storing program to perform the method
GB2541950A (en) Methods for verifying data integrity
CN102195776A (en) Method and system for processing information in a safety communication system
WO2003019842A3 (en) Stream cipher, hash, and pseudo-random number generator
CN101738516A (en) Electronic electric energy meter and data secure transmission method thereof
KR102169369B1 (en) Countermeasure method of first-order side-channel attack on lightweight block cipher and apparatus using the same
US20180054304A1 (en) Communication device, communication method, and communication system
CN103716166A (en) Self-adaptation hybrid encryption method and device and encryption communication system
TWI615731B (en) Method of bus protection with improved key entropy and electronic device using the same
CN102394746B (en) Data transmission method of weighing system based on digital sensor
TWI700915B (en) A mixing double encryption and decryption system
CN104618380A (en) Secret key update method suitable for internet of things
CN105307164A (en) Authentication method for wearable device
CN1820449B (en) Method for encoded data transmission via a communication network
US10237251B2 (en) Communication device and system, data processing method and method for securely exchanging data
JP5890122B2 (en) Semiconductor integrated circuit, communication apparatus, communication system, and communication method
CN102624892A (en) Method for preventing plug-in client from simulating hyper text transmission protocol (HTTP) request
JP2006191509A (en) Communication system, and communication method
CN102662483A (en) A method for cloud computing business intelligent terminal users to safely input information
CN104717053B (en) Data deciphering circuit and method
CN101267295A (en) Method and system for processing information in safety communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC OF 140514

122 Ep: pct application non-entry in european phase

Ref document number: 12822599

Country of ref document: EP

Kind code of ref document: A1