WO2013021968A1 - Inspection method and inspection device for flaw in resin molded product - Google Patents

Inspection method and inspection device for flaw in resin molded product Download PDF

Info

Publication number
WO2013021968A1
WO2013021968A1 PCT/JP2012/069977 JP2012069977W WO2013021968A1 WO 2013021968 A1 WO2013021968 A1 WO 2013021968A1 JP 2012069977 W JP2012069977 W JP 2012069977W WO 2013021968 A1 WO2013021968 A1 WO 2013021968A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
flaw
adjustment
resin molded
molded product
Prior art date
Application number
PCT/JP2012/069977
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 小滝
森田 和宏
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Publication of WO2013021968A1 publication Critical patent/WO2013021968A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the present invention relates to an inspection method and an inspection device for a flaw in a resin molded product having a textured surface.
  • Resin molded products used for automobile interior materials such as dashboards are generally subjected to graining.
  • Various effects are brought about by applying a texture to the resin molded product.
  • a texture For example, when a surface of a resin molded product is scratched, it is difficult to distinguish the wrinkles from the scratches even when viewed under natural light, and the scratches are not noticeable. Since the texture can be seen as a pattern and the design is improved, the resin molded product can be placed at a position where it is easily noticeable. Since wrinkles play a role of anti-slip, even when an object is placed on a resin molded product, the object is difficult to move and is stable. As a result of the progress of development, in recent years, there are a wide variety of grain shapes and the choices of users are increasing.
  • a resin molded product for use in automobile interior materials from among a plurality of candidates, the results of various tests and inspections conducted in advance are considered. For example, there is an inspection in which the surface of a resin molded product is scratched, and the ease of scratching and the difficulty of conspicuousness are compared. Specifically, using a metal member or the like having a sharp tip, multiple scratches of different degrees are applied, and light is applied to the periphery of the scratched part, and the appearance and state of the wound are checked with the naked eye or an appearance inspection device. Inspect.
  • a wound detection apparatus including an illumination unit that emits illumination light and an imaging unit that captures a subject illuminated by the illumination unit as a dark field image.
  • an illumination unit that emits illumination light
  • an imaging unit that captures a subject illuminated by the illumination unit as a dark field image.
  • bright field image creation means dark field image creation means
  • display means for displaying bright field images and dark field images
  • display control for controlling to simultaneously display dark field images and bright field images on the display means
  • a defect inspection apparatus characterized in that it has a means (see, for example, Patent Document 2).
  • Patent Document 2 the bright field image and the dark field image of the inspection object are simultaneously displayed on the display device, so that the inspector compares the two images and there is a minute defect that cannot be displayed in the bright field image. It is said that it can be confirmed.
  • the invention described in Patent Document 1 does not consider a subject whose surface has been subjected to graining, and therefore it is difficult to reliably distinguish between a grain and a flaw when a grain is present.
  • the scratches on the resin molded product subjected to the texture processing include gloss scratches, whitening scratches, and the like. In general, whitening scratches can be confirmed mainly in the dark field, and glossy scratches can be confirmed in the bright field. Therefore, even if the texture and the scratch can be distinguished by the invention described in Patent Document 1 for observing the dark field image, it is impossible to distinguish between the gloss scratch and the whitening scratch.
  • an inspection method and an inspection apparatus for accurately inspecting the state of scratches on a resin molded product whose surface has been subjected to embossing have not been developed yet.
  • the present invention has been made in view of the above-described problems, and is used for an interior material of a car by paying attention to the property of light received from a wrinkle and a flaw when a subject is irradiated with light. It is an object of the present invention to provide an inspection method and an inspection apparatus that can objectively and quantitatively evaluate a scratch in a resin molded product.
  • the characteristic configuration of the method for inspecting scratches in the resin molded product according to the present invention for solving the above problems is A method for inspecting a flaw in a resin molded product having a textured surface, With respect to the resin molded product, it is intended to inspect a linear wound having an inclination formed by a load continuously changing along a certain direction, An irradiation step of irradiating the line wound with light; An image acquisition step of acquiring a microscopic image of the flaw; An image processing step for processing the microscope image; A determination step of determining the state of the flaw based on an image processing result; It is to include.
  • the conventional technology cannot accurately and quantitatively inspect the state of scratches on the resin molded product that has been subjected to embossing. This is because it was not assumed that the resin molded product in which the wrinkles exist was inspected. That is, in the prior art, there has been no technical idea for distinguishing between wrinkles and scratches. Even if an attempt is made to inspect a scratch on a resin molded product that has been subjected to embossing, there are various types of injuries, and embossing is an obstacle to distinguish these objectively and quantitatively. Therefore, accurate inspection is difficult.
  • the method for inspecting a flaw in a resin molded product of this configuration is a method for inspecting a flaw in a resin molded product having a textured surface, and a load is continuously applied to the resin molded product along a certain direction.
  • the image acquisition step a bright-field image and a dark-field image of the flaw are acquired
  • the image processing step on the basis of the bright field image and the dark field image, a required adjustment area and an adjustment unnecessary area are set in the microscope image, and the bright field image and the dark field image are set for the adjustment area.
  • Generating a combined composite image selecting the bright field image or the dark field image for the adjustment unnecessary region, binarizing the gradation of the composite image and the image of the adjustment unnecessary region according to the same handling rule,
  • the method for inspecting a scratch in a resin molded product according to the present invention acquires a bright-field image and a dark-field image of the flaw in the image acquisition step.
  • gloss scratches, whitening scratches, and wrinkles can be recognized.
  • areas that require adjustment and areas that do not need to be adjusted are set in the microscope image based on the bright-field and dark-field images, so it is possible to exclude areas that are surely determined when determining the presence or absence of whitening scratches. Thus, a quick and simple test result can be derived.
  • the method for inspecting scratches in the resin molded product according to the present invention For the resin molded product before the line flaw is formed, further execute a preparatory step of acquiring a bright field reference image and a dark field reference image in advance, In the image processing step, it is preferable that the bright field reference image and the dark field reference image are further used when setting the adjustment required area and the adjustment unnecessary area.
  • the method for inspecting a scratch in a resin molded product according to the present invention further performs a preparatory step for acquiring a bright-field reference image and a dark-field reference image in advance for a resin molded product before a linear scar is formed.
  • the embossing can be recognized in the bright field reference image and dark field reference image of the resin molded product that does not exist.
  • the image processing step since the bright field reference image and the dark field reference image are used when setting the adjustment required area and the adjustment unnecessary area, an area that is surely determined when determining the presence or absence of whitening damage, that is, whitening damage In addition, it is possible to accurately exclude areas where it is difficult to misidentify glossy scratches and wrinkles, and a more accurate inspection result can be derived.
  • the adjustment-necessary area is a first adjustment-necessary area in which a comparison result of gradations of the bright field reference image and the bright field image is different from a comparison result of gradations of the dark field reference image and the dark field image. It is preferable to include a region.
  • the adjustment area needs to be compared with the gradation comparison result of the bright field reference image and the bright field image, and the gradation comparison result of the dark field reference image and the dark field image. Since the first adjustment area, which is a different area, is included, it is possible to improve the determination accuracy of whitening scratches that can be confirmed mainly in the dark field, and lead to a clearer inspection result. As a result, it is possible to more objectively and quantitatively evaluate the presence or state of whitening damage.
  • the adjustment-necessary region is a second adjustment-necessary region in which a gradation comparison result between the bright-field reference image and the dark-field reference image is different from a gradation comparison result between the bright-field image and the dark-field image. It is preferable to include a region.
  • the adjustment area needs to be compared with the gradation comparison result of the bright-field reference image and the dark-field reference image, and the gradation comparison result of the bright-field image and the dark-field image. Since the second adjustment area, which is a different area, is included, it is possible to clarify the area in which the line flaw including the glossy flaw and the whitening flaw exists and lead to a more accurate inspection result. As a result, it is possible to more objectively and quantitatively evaluate the presence or state of whitening damage.
  • the adjustment required area is preferably the entire area of the microscope image.
  • the adjustment area is the entire area of the microscope image, so even if it is difficult to distinguish between the adjustment area and the adjustment unnecessary area, the adjustment is made uniformly. By doing so, reliable test results can be derived. As a result, it is possible to objectively and quantitatively evaluate the presence and state of whitening scratches.
  • the method for inspecting a scratch in a resin molded product according to the present invention performs a light adjustment step of adjusting the light irradiated in the irradiation step when the scratch is not confirmed in the determination step. Can be obtained, and an accurate inspection result can be derived. As a result, it is possible to objectively and quantitatively evaluate the presence and state of whitening scratches.
  • the image acquisition step a bright-field image and a dark-field image of the flaw are acquired
  • the image processing step on the basis of the bright field image and the dark field image, a required adjustment area and an adjustment unnecessary area are set in the microscope image, and the bright field image and the dark field image are set for the adjustment area.
  • a difference image is generated by subtracting the composite image from the bright field image or the dark field image, and the bright field image or the dark field image is selected for the adjustment unnecessary region,
  • the gradation of the difference image and the image of the adjustment unnecessary area is binarized according to the same handling rule,
  • the method for inspecting a scratch in a resin molded product according to the present invention acquires a bright-field image and a dark-field image of the flaw in the image acquisition step.
  • gloss scratches, whitening scratches, and wrinkles can be recognized.
  • areas that require adjustment and areas that do not require adjustment are set in the microscopic image based on the bright-field and dark-field images, so it is possible to exclude areas that are surely determined when determining the presence or absence of gloss flaws. Thus, a quick and simple test result can be derived.
  • a difference image is generated by subtracting the composite image from the bright-field image or the dark-field image, and the bright-field image or dark-field for the adjustment-free area. Since the visual field image is selected and the gradation of the difference image and the image of the adjustment unnecessary region is binarized according to the same handling rule, only the glossy flaw is selectively or relatively emphasized.
  • the determination step based on the image processing result obtained in the image processing step, it is possible to objectively and quantitatively evaluate the presence or state of the gloss flaw in order to determine the presence or absence of the gloss flaw that is the state of the line flaw. It becomes possible.
  • the characteristic configuration of the scratch inspection apparatus in the resin molded product according to the present invention is A device for inspecting scratches on a resin molded product having a textured surface, With respect to the resin molded product, it is intended to inspect a linear wound having an inclination formed by a load continuously changing along a certain direction, Irradiating means for irradiating the line wound with light; An image acquisition means for acquiring a microscopic image of the flaw; Image processing means for processing the microscope image; Determining means for determining the state of the flaw based on an image processing result; It is in the point with.
  • the inspection apparatus for scratches in a resin molded product is an inspection apparatus for scratches in a resin molded product whose surface is textured, and a load is continuously applied to the resin molded product along a certain direction. It is intended to inspect graded flaws formed by change, irradiation means for irradiating light to the flaws, image acquisition means for obtaining a microscope image of the flaws, and processing the microscope images Image processing means for determining, and determination means for determining the state of the flaw based on the image processing result; Therefore, it is possible to accurately inspect the presence or state of a line flaw of a resin molded product that has been subjected to embossing, and to digitize the inspection result. As a result, it is possible to objectively and quantitatively evaluate the state of the flaw.
  • FIG. 6 is an enlarged view of an approximately 0.2 mm square region surrounded by a square in each image shown in FIG. 5, and is represented by a gray scale of 256 gradations for each pixel.
  • FIG. 7 is a gradation diagram showing gradation values for each pixel in the 256 gradation gray scale image shown in FIG. 6.
  • 8 (i) and (ii) show the gradation values based on the 256 gradation gray scale images of FIGS. 6 (i) and (ii) and the gradation diagrams of FIGS. 7 (i) and (ii). It is the figure which showed the histogram which took the horizontal axis and took the number of pixels on the vertical axis.
  • FIGS. 9 (iii) and (iv) show the gradation values based on the 256 gradation gray scale images of FIGS. 6 (iii) and (iv) and the gradation diagrams of FIGS. 7 (iii) and (iv). It is the figure which showed the histogram which took the horizontal axis and took the number of pixels on the vertical axis.
  • FIG. 1 is a schematic view of a scratch device used in the inspection method according to the present invention.
  • FIG. 2 is a schematic view of an inspection apparatus according to the present invention.
  • the present invention relates to an inspection method and an inspection device for a flaw in a resin molded product whose surface is textured, and is formed by continuously changing the load along a certain direction with respect to the resin molded product.
  • An inspection target is a line scar (scratch scratch) having an inclination.
  • As the material of the resin molded product polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS), polyacetal (polyacetal) used as automobile interior materials are used.
  • POM polylactic acid resin
  • FIG. 3 shows an example of a resin molded product having a textured surface.
  • (A) is what is called a circular texture which is one of geometric textures
  • (b) is a leather texture
  • (c) is a non-geometric texture called a satin texture.
  • the load changes continuously means that the load continuously increases or decreases. Inclined flaws formed by continuously changing the load are generally formed by increasing the load continuously at a constant rate as described later. Not limited. For example, a case where the load increases gradually or a case where the load increase rate gradually decreases is included. Moreover, it is sufficient that the load is in a tendency to increase or decrease when the entire load application section is viewed, and a section of a constant load may be included in the load application section.
  • the scratch device 5 mainly includes a chip 1 that scratches a sample (resin molded product) S, a head 2 that houses the chip 1 so that it can be inserted and removed, a rail 3 that slides the head 2, and a protruding amount of the chip 1 and the head 2 It is comprised from the control part 4 (for example, computer) which controls the movement distance.
  • a stainless sphere 1a having a diameter of about 1 mm is attached to the tip of the chip 1.
  • the head 2 is slid along the rail 3 while the tip of the chip 1 is in contact with the sample S, and the chip 1 is gradually moved from the head 2. By projecting, the load applied to the chip 1 is gradually increased.
  • the inspector can confirm the distance at which the scratch operation is performed and the load applied to the chip 1 by looking at the graph displayed on the screen of the control unit 4.
  • the load increases approximately linearly from 0 to 50N.
  • the relationship between the scratch distance and the load can be changed according to the state of the sample S, the inspection conditions, and the like. Since the sphere 1a is attached to the tip of the chip 1, the width of the scratch in plan view increases to a size corresponding to the diameter of the sphere 1a as the chip 1 moves, that is, as the load increases. To do. In order to make the width of the scratch in plan view constant, it is possible to use a cylindrical metal member instead of the sphere 1a. In this case, the influence of the change in reflected light due to the increase in the scratch width can be suppressed.
  • the inspection apparatus 100 includes an optical microscope 10 and a calculation unit 20.
  • the optical microscope 10 includes a light source 11 that is an irradiation unit, a half mirror 12 that reflects light from the light source 11 and transmits light transmitted from the sample S, an objective lens 13 that directly observes the sample S, and an image acquisition unit.
  • An imaging unit 14 is provided.
  • the optical microscope 10 further includes a regulator 15 that is a light adjusting unit. The regulator 15 adjusts the intensity of light emitted from the light source 11, the position of the light source 11, the position and number of lenses (not shown), the aperture of the objective lens 13, and the like.
  • the imaging unit 14 includes an imaging element 14a such as a CCD.
  • the imaging device 14a acquires light transmitted from the sample S as a bright field image and a dark field image.
  • the computing unit 20 is usually a computer and includes an image processing unit 21 and a determination unit 22.
  • the image processing unit 21 and the determination unit 22 have the functions of a central processing unit (CPU) of a computer. Further, the image processing means 21 and the determination means 22 may be realized on computer software.
  • ⁇ Inspection method> In the inspection method of the present invention, an irradiation process, an image acquisition process, an image processing process, and a determination process are mainly executed. Furthermore, a preparation process and a light adjustment process can be performed as needed. Hereinafter, each step will be described.
  • the irradiation process is executed using the light source 11 built in the optical microscope 10.
  • the light source 11 include an LED, a sodium lamp, and a halogen lamp.
  • the regulator 15 which is a light adjusting means is operated to focus the light from the light source 11 with a lens (not shown), and the sample S arranged on the stage 16 is irradiated with light through the half mirror 12.
  • the light irradiation angle (incident angle) can be switched in the objective lens 13. As shown in FIG. 2, light having a small irradiation angle is irradiated as linear light, and light having a large irradiation angle is irradiated as annular light.
  • a resin molded product made of polypropylene subjected to the satin finish shown in FIG. 3C is used as the sample S to be irradiated.
  • an irradiation process is performed on the sample S before the line scar is formed ( ⁇ preparation process> described later).
  • the image acquisition process is executed by the imaging unit 14 that is an image acquisition unit connected to the lens barrel 17 of the optical microscope 10.
  • the imaging unit 14 can use a digital camera.
  • the light transmitted from the sample S passes through the objective lens 13 and the half mirror 12 and forms an image on the image sensor 14 a of the image capturing unit 14.
  • the image acquisition process includes: A dark field image of the sample S can be acquired.
  • a bright-field image is obtained for the microscopic image of the sample S before the flaw is formed by the method described in ⁇ Irradiation step> and ⁇ Image acquisition step> as necessary for preparation of the inspection. It is preferable to acquire a dark field image (which is defined as a bright field reference image and a dark field reference image).
  • a dark field image which is defined as a bright field reference image and a dark field reference image.
  • the sample S subjected to the above-described satin finish texture processing is used to scratch the sloped line by changing the load continuously along a certain direction using the scratch device 5.
  • the scratch can be created in a direction perpendicular to the direction in which the wrinkle flows by selecting a portion that is likely to be damaged in the sample S subjected to the wrinkle processing, that is, a portion having a large wrinkle unevenness. preferable.
  • a glossy region is generated in the initial stage.
  • the gloss scratch is a state in which the surface of the object is leveled and there is almost no difference from the peripheral part, but gloss due to reflected light can be confirmed. If the movement of the chip 1 is continued as it is, a microscopic destruction region appears on the surface of the sample S in the middle stage. For example, when the material of the sample S is polypropylene, a scaly scar with a pattern like a periodic wrinkle appears, and when it is polycarbonate, a microcrack appears. Some gloss flaws are also found in the microscopic destruction region, but the gloss gradually decreases. As the microscopic destruction region further progresses, a sudden whitening occurs. This whitened portion is called a whitening wound.
  • the whitening scratches appear as white as a result of the surface of the sample S being roughened by the plastic deformation of the material due to the chip 1 being rubbed against the sample S and the light being diffused.
  • the surface structure of the sample S is broken macroscopically and cutting flaws appear in the later stage. Since the surface of the cutting flaw is greatly roughened, it looks clearly white with the naked eye.
  • a bright-field image and a dark-field image can recognize glossy scratches, whitening scratches, and wrinkles, but the degree of recognition in each image is different. That is, in the bright field image, the reflected light is dominant, so that the gloss flaw is mainly recognized. On the other hand, in the dark field image, diffused light is dominant, and thus whitening scratches are mainly recognized. However, since some reflected light is received, glossy scratches may be recognized. The wrinkles are recognized in the bright field image and the dark field image.
  • the image processing step is executed by the calculation unit 20.
  • the adjustment required area and the adjustment unnecessary area are set in the microscope image acquired by the imaging unit 14.
  • the area that needs to be adjusted is an area that may be affected by the scratch operation that is not clearly affected (in other words, the state has changed substantially from before the scratch operation. A region that may not be) and is at least part of a microscopic image.
  • the adjustment unnecessary area is an area that is reliably affected by the scratch operation and an area that is not reliably affected.
  • the adjustment required area and the adjustment unnecessary area are set based on the bright field image and the dark field image.
  • a bright-field image and a dark-field image are represented by a gray scale of 256 gradations for each pixel, and a numerical value difference of the gradation of each pixel at the corresponding position is taken.
  • a region where the difference value is not substantially zero is determined as a region requiring adjustment, and the other regions are determined as regions that do not require adjustment. “Substantially not zero” can be defined as, for example, when the absolute value of the difference exceeds 20 or when the difference exceeds 10% of 256 gradations.
  • FIG. 4 is an explanatory diagram regarding a setting method of the adjustment required area / adjustment unnecessary area in the second embodiment and the third embodiment.
  • the adjustment area is a first adjustment area in which the gradation comparison result of the bright field reference image and the bright field image is different from the gradation comparison result of the dark field reference image and the dark field image.
  • the gradation comparison result is a result of representing an image with a gray scale of 256 gradations for each pixel and comparing the numerical values of the gradations of the pixels at the corresponding positions. For example, an area where the difference between the numerical values of the gradations of the bright-field reference image and the bright-field image and the numerical value of the gradations of the dark-field reference image and the dark-field image are not substantially the same as the first adjustment area To do.
  • “Substantially the same” can be defined as a case where the error is within ⁇ 10% or a case where the absolute value of the error is within 20 based on the gradation of the bright field image. Specifically, first, a difference (BA) between the bright field reference image (A) and the bright field image (B) is obtained, and the dark field reference image (C) and the dark field image (D) are obtained. Take the difference (DC). Next, a logical operation between the difference (BA) and the difference (DC) is performed. An exclusive OR (XOR) area obtained by this logical operation is determined as the first adjustment area. By setting the first adjustment area, it is possible to improve the accuracy of whitening damage determination that can be confirmed mainly in the dark field.
  • XOR exclusive OR
  • the adjustment required area is a second adjustment area in which the gradation comparison result of the bright field reference image and the dark field reference image is different from the gradation comparison result of the bright field image and the dark field image.
  • the second adjustment area including.
  • an area where the difference between the numerical values of the gradations of the bright-field reference image and the dark-field reference image and the numerical value of the gradations of the bright-field image and the dark-field image are not substantially the same as the second adjustment area To do.
  • the meaning of “substantially the same” is the same as in the second embodiment described above.
  • a difference (CA) between the bright field reference image (A) and the dark field reference image (C) is obtained, and the bright field image (B) and the dark field image (D) are obtained.
  • the difference (DB) is taken.
  • a logical operation between the difference (CA) and the difference (DB) is performed.
  • the exclusive OR (XOR) area obtained by this logical operation is determined as the second adjustment area.
  • the adjustment required area may be an area that includes both the first adjustment area and the second adjustment area described in the second embodiment, the third embodiment, and FIG. In this case, it is possible to clarify the region where the lineage flaws including the gloss flaws and the whitening flaws exist while improving the judgment accuracy of the whitening flaws that can be confirmed mainly in the dark field. Can lead.
  • the adjustment unnecessary area includes the bright field reference image and the bright field image.
  • the comparison result of the gray scale and the comparison result of the dark field reference image and the dark field image are substantially the same, and the comparison result of the bright field reference image and the dark field reference image. This is a region where the gradation comparison results of the bright field image and the dark field image are substantially the same.
  • a logical sum (AND) area obtained by a logical operation is determined as an adjustment unnecessary area.
  • a composite image that combines the bright-field image and the dark-field image is generated for the adjustment required area. Specifically, a gray scale is created by the average value of the gradation of each pixel of the bright field image and the dark field image.
  • the average value may be a general arithmetic average or a weighted average.
  • the adjustment area is the entire area of the microscope image.
  • the difference in the numerical values of the gradations of the bright field image and the dark field image is not substantially the same in all areas
  • the bright field reference image and the bright field image The difference between the numerical values of the gradation and the numerical values of the dark field reference image and the dark field image are not substantially the same in all regions, and the gradations of the bright field reference image and the dark field reference image
  • the adjustment required region is the entire region of the microscope image.
  • the entire area of the microscope image can be regarded as the adjustment area and the inspection can be performed. Even in such a case, an accurate inspection result can be derived by generating a composite image in which the bright field image and the dark field image are combined for the entire region of the microscope image. As a result, it is possible to objectively and quantitatively evaluate the presence and state of whitening scratches.
  • a bright field image or a dark field image is selected.
  • the gradation is substantially the same in the bright-field image and the dark-field image, any image can be selected. Since whitening scratches are mainly recognized in the dark field image, it is preferable to select the dark field image. As a result, whitening scars are selectively or relatively emphasized in the image.
  • the gradation of the composite image and the image of the adjustment unnecessary area is binarized according to the same handling rule. That is, a threshold value in 256 gradations is determined, and when it is larger than the threshold value, it is white, and when it is smaller than the threshold value, it is black.
  • the threshold value is a value that can change depending on the type of grain formed on the sample S, the coloring state of the sample S, the inspection environment, and the like. For example, in a composite image of a region that surely includes whitening flaws, the threshold value is set to 110 in consideration of the pixel value of the portion corresponding to the whitening flaws, and if the pixel value is 110 or more, it is regarded as a whitening flaw and is less than 110 If so, it can be regarded as a glossy flaw or grain.
  • the determination step is executed by the calculation unit 20 and determines the presence or absence of whitening scratches, which are the state of line scars, based on the result of the image processing step. Specifically, a white area in the binarized image is determined as an area where a whitening defect exists. As a result, it is possible to reliably recognize whitening scratches and to objectively and quantitatively evaluate the presence and state of whitening scratches. As a result, it is possible to determine a position where a whitening scratch starts in a linear scratch having a slope formed by the load continuously changing along a certain direction.
  • the light adjustment step includes adjusting light irradiation angle (incident angle), intensity, color tone, wavelength, coherency, and the like.
  • the bright-field image is an image in which gloss flaws are mainly recognized
  • the dark-field image is an image in which whitening flaws and some gloss flaws are recognized
  • the composite image has selective or relative whitening flaws.
  • the image is emphasized. Therefore, in consideration of the characteristics of these images, a difference image is generated by subtracting the composite image from the bright field image or the dark field image.
  • the obtained difference image is an image obtained by subtracting the elements of whitening scratches from a state where glossy scratches and whitening scratches are mixed. For this reason, the difference image results in an image in which gloss flaws are selectively or relatively emphasized. As described above, if the difference image is used, it is possible to reliably recognize the gloss flaw.
  • a bright-field image and a dark-field image of a resin molded product with a line flaw are acquired, and the entire area of the inspection target area (an area of about 0.2 mm square surrounded by a square to be described later) needs to be adjusted. Considering the region, a composite image of both images was created. The bright-field reference image and dark-field reference image regarding the resin molded product before the line flaw is formed are not used.
  • a scratch device in accordance with SCRATCH TESTER (manufactured by Kato Tech Co., Ltd.), ISO19252 (ASTM D7027-05) is applied to a resin molded product made of polypropylene subjected to a satin finish as shown in FIG. 3 (c). Used to create graded scratches by continuously increasing the load along a certain direction. Then, using an inspection device (an image acquisition system equipped with BX51 made by Olympus as an optical microscope), the microscopic image of the resin molded product with a line wound is in the initial stage, middle stage, and late stage of the scratch operation. Three corresponding images were acquired. The three images are shown as three regions surrounded by a rectangle in the entire image of the scratch in FIG.
  • FIGS. 5 (ii) to (iv) show (a) a bright-field image, (b) a dark-field image, and (c) a bright-field image and a dark-field image at each position of the resin molded product with a line scar.
  • a composite image and (d) a binary image of the composite image are shown. The binarized image will be described later.
  • FIGS. 6 (ii) to (iv) show an enlarged area of about 0.2 mm square surrounded by a square in each image shown in FIGS. 5 (ii) to (iv), and a gray scale of 256 gradations for each pixel.
  • FIG. FIG. 5 (iii) shows a region where glossy scratches and whitening scratches coexist, but the area of about 0.2 mm square surrounded by a square contains only glossy scratches for the convenience of data. Wounds are not included.
  • FIGS. 7 (ii) to (iv) are gradation diagrams in which gradation values are described for each pixel in the 256 gradation gray scale image shown in FIG. 1 corresponds to black, and 256 corresponds to white.
  • An appropriate threshold value is determined from the 256 gradation gray scale image of FIG. 6 and the gradation diagram of FIG.
  • the binarized image shown in FIG. 5D was obtained by setting the gradation exceeding 115 where whitening damage was recognized (that is, 116th out of 256 gradations) as a threshold value.
  • (Ii) in FIG. 8 and (iii) to (iv) in FIG. 9 are based on the 256 gradation gray scale image in FIG. 6 and the gradation diagram in FIG. It is the figure which showed the histogram which took the number on the vertical axis
  • This histogram shows the distribution of the numerical values of the gradation in each area of the 0.2 mm square.
  • gradation is shown by selecting three places (initial stage, middle stage, and late stage) of the line scar, but it is preferable to sequentially acquire each image for the entire line wound. As a result of grasping the gradation of the entire flaw, it is possible to objectively determine the position where the whitening flaw starts.
  • FIG. 9 (iii) shows that the histogram of the composite image is shifted to the higher brightness side than FIG. 8 (ii). I understand that. 8 (ii), 9 (iii), and (iv), the maximum value, minimum value, and average value of gradation values for each pixel are also shown.
  • the histogram distribution of the composite image is smaller than the histogram distribution of the bright field image and the dark field image. From this, it was found that when the dark-field image and the bright-field image are synthesized, the gradation of the glossy flaws in each image is averaged and canceled out, so that the glossy flaws are not noticeable in the synthesized image. . That is, the influence of the gloss flaw on the dark field image can be reduced by the bright field image. As a result, whitening scratches are selectively or relatively emphasized in the composite image, and can be reliably recognized.
  • FIG. 5 shows (a) a bright-field image (bright-field reference image), (b) a dark-field image (dark-field reference image), and (c) a bright-field image in a resin-molded product before making a line scar.
  • a composite image of (bright-field reference image) and a dark-field image (dark-field reference image), and (d) a binary image of the composite image are shown.
  • FIG. 6 (i) is an enlarged view of an area of about 0.2 mm square surrounded by a square in each image shown in FIG. 5 (i) and is represented by a gray scale of 256 gradations for each pixel.
  • FIG. 7 (i) is a gradation diagram in which numerical values of gradations are described for each pixel in the 256 gradation gray scale image shown in FIG. 6 (i).
  • FIG. 8 (i) shows the gradation value on the horizontal axis and the number of pixels on the vertical axis based on the 256 gradation gray scale image of FIG. 6 (i) and the gradation diagram of FIG. 7 (i). It is the figure which showed the histogram.
  • the histogram distribution of the composite image was smaller than the histogram distribution of the bright field image.
  • embossing can be reduced by synthesizing the bright field reference image and the dark field reference image.
  • a bright-field reference image and a dark-field reference image are used in addition to a bright-field image and a dark-field image when setting an adjustment-necessary region and an adjustment-unnecessary region. Therefore, it is possible to accurately exclude areas that are reliable in determining the presence or absence of whitening wounds, that is, areas that are difficult to misidentify whitening wounds and wrinkles, and can lead to more accurate inspection results. is expected.
  • the method and apparatus for inspecting scratches in a resin molded product according to the present invention are intended for resin molded products whose surface is textured, and in addition to automobile interior materials, for example, interior materials for buildings, It can also be used for resin molded products used as exterior materials for home appliances.

Abstract

Provided are an inspection method and an inspection device which are capable of objectively and quantitatively evaluating a flaw in a resin molded product used as an interior material or the like of a vehicle. An inspection method and an inspection device for a flaw in a resin molded product subjected to surface texturing. With a linear flaw having a gradient property formed by continuous change of a load in a given direction on a resin molded product as the subject of inspection, the inspection method comprises an irradiation step of irradiating the linear flaw with light, an image acquisition step of acquiring a microscopic image of the linear flaw, an image processing step of processing the microscopic image, and a determination step of determining the state of the linear flaw on the basis of the result of the image processing. The inspection device is provided with an irradiation means (11) for irradiating the linear flaw with light, an image acquisition means (14) for acquiring a microscopic image of the linear flaw, an image processing means (21) for processing the microscopic image, and a determination means (22) for determining the state of the linear flaw on the basis of the result of the processing.

Description

樹脂成型品における傷の検査方法、及び検査装置Method and apparatus for inspecting scratches in resin molded products
 本発明は、表面にシボ加工が施された樹脂成形品における傷の検査方法、及び検査装置に関する。 The present invention relates to an inspection method and an inspection device for a flaw in a resin molded product having a textured surface.
 ダッシュボード等の自動車の内装材に使用される樹脂成型品には、一般的にシボ加工が施される。樹脂成型品にシボ加工を施すことで、様々な効果がもたらされる。例えば、樹脂成型品の表面に傷が付いた場合に、自然光の下で目視しても、シボと傷とは見分け難く、傷が目立たない。シボを模様として捉えることが出来、デザイン性が向上するため、樹脂成型品を目につき易い位置にも配置出来る。シボが滑り止めの役割を担うため、樹脂成型品の上に物体を載せた場合であっても、物体が動き難く安定する。開発が進められた結果、近年では多種多様のシボの形状が存在し、利用者の選択肢が増加している。 Resin molded products used for automobile interior materials such as dashboards are generally subjected to graining. Various effects are brought about by applying a texture to the resin molded product. For example, when a surface of a resin molded product is scratched, it is difficult to distinguish the wrinkles from the scratches even when viewed under natural light, and the scratches are not noticeable. Since the texture can be seen as a pattern and the design is improved, the resin molded product can be placed at a position where it is easily noticeable. Since wrinkles play a role of anti-slip, even when an object is placed on a resin molded product, the object is difficult to move and is stable. As a result of the progress of development, in recent years, there are a wide variety of grain shapes and the choices of users are increasing.
 自動車の内装材等に使用するための樹脂成型品を、複数の候補の中から選択するに当たっては、予め実施された様々な試験や検査等の結果が考慮される。例えば、樹脂成型品の表面に傷を付けて、傷の付き易さや目立ち難さ等を比較する検査がある。具体的には、鋭利な先端を有する金属部材等を使用して程度の異なる複数の傷を付け、傷部分周辺に光を照射しながら、肉眼や外観検査装置によって、傷の見え方や状態等を検査する。しかし、シボ加工が施された樹脂成型品の場合、光を照射すると、傷からの拡散光や反射光だけでなく、シボからの拡散光や反射光も受光するため、シボと傷とを区別し難い。その結果、シボを傷と誤認してしまうおそれがあり、検査の正確度が低くなるという問題があった。 In selecting a resin molded product for use in automobile interior materials from among a plurality of candidates, the results of various tests and inspections conducted in advance are considered. For example, there is an inspection in which the surface of a resin molded product is scratched, and the ease of scratching and the difficulty of conspicuousness are compared. Specifically, using a metal member or the like having a sharp tip, multiple scratches of different degrees are applied, and light is applied to the periphery of the scratched part, and the appearance and state of the wound are checked with the naked eye or an appearance inspection device. Inspect. However, in the case of resin molded products that have been subjected to wrinkle processing, when irradiated with light, not only diffused light and reflected light from scratches but also diffused light and reflected light from wrinkles are received. It is hard to do. As a result, there is a possibility that the wrinkles may be mistaken as scratches, and there is a problem that the accuracy of the inspection is lowered.
 従来、被検体についた異物や傷等を検出するために、照明光を照射する照明手段と、照明手段により照明された被検体を暗視野像として撮像する撮像手段とを備えた傷検出装置があった(例えば、特許文献1を参照)。
 特許文献1によれば、方向依存性のある傷も精度良く短時間に検出出来る、とされている。
2. Description of the Related Art Conventionally, in order to detect a foreign object, a flaw, or the like attached to a subject, a wound detection apparatus including an illumination unit that emits illumination light and an imaging unit that captures a subject illuminated by the illumination unit as a dark field image. (For example, see Patent Document 1).
According to Patent Document 1, it is supposed that a direction-dependent scratch can be detected in a short time with high accuracy.
 また、明視野画像作成手段と、暗視野画像作成手段と、明視野画像及び暗視野画像を表示する表示手段と、暗視野画像及び明視野画像を表示手段に同時に表示するように制御する表示制御手段とを備えたことを特徴とする欠陥検査装置があった(例えば、特許文献2を参照)。
 特許文献2によれば、被検査物の明視野画像と暗視野画像とを表示装置に同時に表示することにより、検査者は両画像を見比べて明視野画像では表示出来ない微小な欠陥が存在することを確認することが出来る、とされている。
Also, bright field image creation means, dark field image creation means, display means for displaying bright field images and dark field images, and display control for controlling to simultaneously display dark field images and bright field images on the display means There has been a defect inspection apparatus characterized in that it has a means (see, for example, Patent Document 2).
According to Patent Document 2, the bright field image and the dark field image of the inspection object are simultaneously displayed on the display device, so that the inspector compares the two images and there is a minute defect that cannot be displayed in the bright field image. It is said that it can be confirmed.
特開2005-127989号公報Japanese Patent Application Laid-Open No. 2005-127989 特開2001-183301号公報JP 2001-183301 A
 ところが、特許文献1に記載の発明では、表面にシボ加工が施された被検体を考慮していないため、シボが存在する場合に、シボと傷とを確実に区別出来るとは言い難い。ここで、シボ加工が施された樹脂成型品に付く傷には、光沢傷、白化傷等が含まれる。一般的に、白化傷は主に暗視野で確認出来、光沢傷は明視野で確認出来る。従って、暗視野像を観察する特許文献1に記載の発明によって、仮にシボと傷とが見分けることが出来るとしても、光沢傷と白化傷とを区別することまでは出来ない。 However, the invention described in Patent Document 1 does not consider a subject whose surface has been subjected to graining, and therefore it is difficult to reliably distinguish between a grain and a flaw when a grain is present. Here, the scratches on the resin molded product subjected to the texture processing include gloss scratches, whitening scratches, and the like. In general, whitening scratches can be confirmed mainly in the dark field, and glossy scratches can be confirmed in the bright field. Therefore, even if the texture and the scratch can be distinguished by the invention described in Patent Document 1 for observing the dark field image, it is impossible to distinguish between the gloss scratch and the whitening scratch.
 特許文献2に記載の発明においても、表面にシボ加工が施された被検体を考慮していないため、シボが存在する場合に、シボと傷とを確実に区別出来るとは言い難い。明視野画像と暗視野画像とを検査者が目視で見比べるため、検査者の能力、及び検査環境等によって結果が変動し、検査の正確度が低いと予想される。 Even in the invention described in Patent Document 2, it is difficult to say that a wrinkle and a flaw can be reliably distinguished when a wrinkle is present because a subject whose surface has been wrinkled is not considered. Since the inspector visually compares the bright field image and the dark field image, the result varies depending on the ability of the inspector, the inspection environment, and the like, and the accuracy of the inspection is expected to be low.
 シボ加工を施した被検体の表面の傷の有無や状態等を機械的に検査することが困難であるため、実情では目視によって検査することがほとんどである。しかし、目視による検査では、結果を数値化することが出来ず、検査者によって結果にバラツキが生じる。例えば、検査する際に、検査者が被検体に対峙する角度を一定にすることは困難である。従って、常に正確な検査結果を導き出すことは出来ない。 Since it is difficult to mechanically inspect the surface of a subject that has undergone embossing, it is difficult to mechanically inspect the surface, and in most cases it is inspected visually. However, in the visual inspection, the result cannot be digitized, and the result varies depending on the inspector. For example, when inspecting, it is difficult to make the angle at which the inspector faces the subject constant. Therefore, it is not always possible to derive an accurate inspection result.
 このように、現状においては、表面にシボ加工が施された樹脂成型品の傷の状態を正確に検査する検査方法及び検査装置は未だ開発されていない。本発明は、上記問題点に鑑みてなされたものであり、被検体に光を照射した場合に、シボと傷とから受ける光の性質に着目することで、車の内装材等に使用される樹脂成型品における傷を客観的及び定量的に評価し得る検査方法、及び検査装置を提供することを目的とする。 Thus, at present, an inspection method and an inspection apparatus for accurately inspecting the state of scratches on a resin molded product whose surface has been subjected to embossing have not been developed yet. The present invention has been made in view of the above-described problems, and is used for an interior material of a car by paying attention to the property of light received from a wrinkle and a flaw when a subject is irradiated with light. It is an object of the present invention to provide an inspection method and an inspection apparatus that can objectively and quantitatively evaluate a scratch in a resin molded product.
 上記課題を解決するための本発明に係る樹脂成型品における傷の検査方法の特徴構成は、
 表面にシボ加工が施された樹脂成形品における傷の検査方法であって、
 前記樹脂成形品に対し、一定方向に沿って荷重が連続的に変化することにより形成された傾斜性を有する線傷を検査対象とするものであり、
 前記線傷に光を照射する照射工程と、
 前記線傷の顕微鏡画像を取得する画像取得工程と、
 前記顕微鏡画像を処理する画像処理工程と、
 画像処理結果に基づいて前記線傷の状態を判定する判定工程と、
を包含することにある。
The characteristic configuration of the method for inspecting scratches in the resin molded product according to the present invention for solving the above problems is
A method for inspecting a flaw in a resin molded product having a textured surface,
With respect to the resin molded product, it is intended to inspect a linear wound having an inclination formed by a load continuously changing along a certain direction,
An irradiation step of irradiating the line wound with light;
An image acquisition step of acquiring a microscopic image of the flaw;
An image processing step for processing the microscope image;
A determination step of determining the state of the flaw based on an image processing result;
It is to include.
 上記課題で説明したように、従来技術では、シボ加工が施された樹脂成型品の傷の状態を正確且つ定量的に検査出来なかった。これは、シボが存在する樹脂成型品を検査することを想定していなかったためである。即ち、従来技術においては、シボと傷とを見分けるという技術思想は見当たらなかった。
 なお、仮に、シボ加工が施された樹脂成形品における傷の検査を試みたとしても、傷には種々の種類が存在し、これらを客観的且つ定量的に判別するにはシボが邪魔になるため、正確な検査は困難である。
 この点、本構成の樹脂成型品における傷の検査方法では、表面にシボ加工が施された樹脂成形品における傷の検査方法であって、樹脂成形品に対し、一定方向に沿って荷重が連続的に変化することにより形成された傾斜性を有する線傷を検査対象とするものであり、線傷に光を照射する照射工程と、線傷の顕微鏡画像を取得する画像取得工程と、顕微鏡画像を処理する画像処理工程と、画像処理結果に基づいて線傷の状態を判定する判定工程と、を包含するため、シボ加工が施された樹脂成型品の線傷の有無や状態等を正確に検査することが可能となり、また検査結果を数値化することが出来る。その結果、客観的且つ定量的に線傷の状態を評価することが可能となる。
As described in the above problem, the conventional technology cannot accurately and quantitatively inspect the state of scratches on the resin molded product that has been subjected to embossing. This is because it was not assumed that the resin molded product in which the wrinkles exist was inspected. That is, in the prior art, there has been no technical idea for distinguishing between wrinkles and scratches.
Even if an attempt is made to inspect a scratch on a resin molded product that has been subjected to embossing, there are various types of injuries, and embossing is an obstacle to distinguish these objectively and quantitatively. Therefore, accurate inspection is difficult.
In this respect, the method for inspecting a flaw in a resin molded product of this configuration is a method for inspecting a flaw in a resin molded product having a textured surface, and a load is continuously applied to the resin molded product along a certain direction. Inspecting a graded wound that is formed by a change in the target, an irradiation process for irradiating the wound with light, an image obtaining process for obtaining a microscope image of the wound, and a microscope image Image processing step, and a determination step of determining the state of the flaw based on the image processing result, so that the presence or absence or state of the flaw of the resin-molded product subjected to the texture processing is accurately determined The inspection can be performed, and the inspection result can be quantified. As a result, it is possible to objectively and quantitatively evaluate the state of the flaw.
 本発明に係る樹脂成型品における傷の検査方法において、
 前記画像取得工程において、前記線傷の明視野画像及び暗視野画像を取得し、
 前記画像処理工程において、前記明視野画像及び前記暗視野画像に基づいて、前記顕微鏡画像に要調整領域及び調整不要領域を設定し、前記要調整領域について前記明視野画像と前記暗視野画像とを合わせた合成画像を生成するとともに、前記調整不要領域について前記明視野画像又は前記暗視野画像を選択し、前記合成画像及び前記調整不要領域の画像の階調を同じ取扱いルールに従って二値化し、
 前記判定工程において、前記画像処理工程で得られた画像処理結果に基づいて、前記線傷の状態である白化傷の有無を判定することが好ましい。
In the method for inspecting scratches in the resin molded product according to the present invention,
In the image acquisition step, a bright-field image and a dark-field image of the flaw are acquired,
In the image processing step, on the basis of the bright field image and the dark field image, a required adjustment area and an adjustment unnecessary area are set in the microscope image, and the bright field image and the dark field image are set for the adjustment area. Generating a combined composite image, selecting the bright field image or the dark field image for the adjustment unnecessary region, binarizing the gradation of the composite image and the image of the adjustment unnecessary region according to the same handling rule,
In the determination step, it is preferable to determine the presence or absence of whitening scratches that are the state of the line wound based on the image processing result obtained in the image processing step.
 本発明に係る樹脂成型品における傷の検査方法は、画像取得工程において、前記線傷の明視野画像及び暗視野画像を取得するため、線傷が存在する樹脂成型品の明視野画像、及び暗視野画像において、光沢傷、白化傷、及びシボを認識することが出来る。画像処理工程において、明視野画像及び暗視野画像に基づいて、顕微鏡画像に要調整領域及び調整不要領域を設定するため、白化傷の有無を判断するに当たって判定が確実な領域を除外することが可能となり、迅速且つ簡便な検査結果を導くことが出来る。要調整領域について明視野画像と暗視野画像とを合わせた合成画像を生成するとともに、調整不要領域について明視野画像又は暗視野画像を選択し、合成画像及び調整不要領域の画像の階調を同じ取扱いルールに従って二値化するため、白化傷のみが選択的又は相対的に強調される。判定工程において、画像処理工程で得られた画像処理結果に基づいて、線傷の状態である白化傷の有無を判定するため、客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。 The method for inspecting a scratch in a resin molded product according to the present invention acquires a bright-field image and a dark-field image of the flaw in the image acquisition step. In the field-of-view image, gloss scratches, whitening scratches, and wrinkles can be recognized. In the image processing step, areas that require adjustment and areas that do not need to be adjusted are set in the microscope image based on the bright-field and dark-field images, so it is possible to exclude areas that are surely determined when determining the presence or absence of whitening scratches. Thus, a quick and simple test result can be derived. Generates a composite image that combines the bright-field image and dark-field image for the adjustment-needed region, and selects the bright-field image or dark-field image for the adjustment-unnecessary region, and has the same gradation in the composite image and the image in the adjustment-unnecessary region Since binarization is performed according to the handling rules, only whitening scratches are selectively or relatively emphasized. In the determination step, based on the image processing result obtained in the image processing step, it is possible to objectively and quantitatively evaluate the presence or state of the whitening wound in order to determine the presence or absence of the whitening wound that is the state of the line wound. It becomes possible.
 本発明に係る樹脂成型品における傷の検査方法において、
 前記線傷が形成される前の樹脂成形品について、明視野参照画像及び暗視野参照画像を予め取得する準備工程をさらに実行し、
 前記画像処理工程において、前記要調整領域及び前記調整不要領域の設定に際し、さらに、前記明視野参照画像及び前記暗視野参照画像を利用することが好ましい。
In the method for inspecting scratches in the resin molded product according to the present invention,
For the resin molded product before the line flaw is formed, further execute a preparatory step of acquiring a bright field reference image and a dark field reference image in advance,
In the image processing step, it is preferable that the bright field reference image and the dark field reference image are further used when setting the adjustment required area and the adjustment unnecessary area.
 本発明に係る樹脂成型品における傷の検査方法は、線傷が形成される前の樹脂成形品について、明視野参照画像及び暗視野参照画像を予め取得する準備工程をさらに実行するため、線傷が存在しない樹脂成型品の明視野参照画像、及び暗視野参照画像において、シボを認識することが出来る。画像処理工程において、要調整領域及び調整不要領域の設定に際し、さらに、明視野参照画像及び暗視野参照画像を利用するため、白化傷の有無を判断するに当たって判定が確実な領域、即ち、白化傷と、光沢傷及びシボとを誤認し難い領域を的確に除外することが可能となり、より正確な検査結果を導くことが出来る。 The method for inspecting a scratch in a resin molded product according to the present invention further performs a preparatory step for acquiring a bright-field reference image and a dark-field reference image in advance for a resin molded product before a linear scar is formed. The embossing can be recognized in the bright field reference image and dark field reference image of the resin molded product that does not exist. In the image processing step, since the bright field reference image and the dark field reference image are used when setting the adjustment required area and the adjustment unnecessary area, an area that is surely determined when determining the presence or absence of whitening damage, that is, whitening damage In addition, it is possible to accurately exclude areas where it is difficult to misidentify glossy scratches and wrinkles, and a more accurate inspection result can be derived.
 本発明に係る樹脂成型品における傷の検査方法において、
 前記要調整領域は、前記明視野参照画像及び前記明視野画像の階調の比較結果と、前記暗視野参照画像及び前記暗視野画像の階調の比較結果とが異なる領域である第一要調整領域を含むことが好ましい。
In the method for inspecting scratches in the resin molded product according to the present invention,
The adjustment-necessary area is a first adjustment-necessary area in which a comparison result of gradations of the bright field reference image and the bright field image is different from a comparison result of gradations of the dark field reference image and the dark field image. It is preferable to include a region.
 本発明に係る樹脂成型品における傷の検査方法は、要調整領域は、明視野参照画像及び明視野画像の階調の比較結果と、暗視野参照画像及び暗視野画像の階調の比較結果とが異なる領域である第一要調整領域を含むため、主に暗視野で確認し得る白化傷の判定精度を向上させ、より明確な検査結果を導くことが出来る。その結果、より客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。 In the method for inspecting a scratch in a resin molded product according to the present invention, the adjustment area needs to be compared with the gradation comparison result of the bright field reference image and the bright field image, and the gradation comparison result of the dark field reference image and the dark field image. Since the first adjustment area, which is a different area, is included, it is possible to improve the determination accuracy of whitening scratches that can be confirmed mainly in the dark field, and lead to a clearer inspection result. As a result, it is possible to more objectively and quantitatively evaluate the presence or state of whitening damage.
 本発明に係る樹脂成型品における傷の検査方法において、
 前記要調整領域は、前記明視野参照画像及び前記暗視野参照画像の階調の比較結果と、前記明視野画像及び前記暗視野画像の階調の比較結果とが異なる領域である第二要調整領域を含むことが好ましい。
In the method for inspecting scratches in the resin molded product according to the present invention,
The adjustment-necessary region is a second adjustment-necessary region in which a gradation comparison result between the bright-field reference image and the dark-field reference image is different from a gradation comparison result between the bright-field image and the dark-field image. It is preferable to include a region.
 本発明に係る樹脂成型品における傷の検査方法は、要調整領域は、明視野参照画像及び暗視野参照画像の階調の比較結果と、明視野画像及び暗視野画像の階調の比較結果とが異なる領域である第二要調整領域を含むため、光沢傷及び白化傷を含む線傷が存在する領域を明確にし、より正確な検査結果を導くことが出来る。その結果、より客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。 In the method for inspecting a scratch in a resin molded product according to the present invention, the adjustment area needs to be compared with the gradation comparison result of the bright-field reference image and the dark-field reference image, and the gradation comparison result of the bright-field image and the dark-field image. Since the second adjustment area, which is a different area, is included, it is possible to clarify the area in which the line flaw including the glossy flaw and the whitening flaw exists and lead to a more accurate inspection result. As a result, it is possible to more objectively and quantitatively evaluate the presence or state of whitening damage.
 本発明に係る樹脂成型品における傷の検査方法において、
 前記要調整領域は、前記顕微鏡画像の全領域であることが好ましい。
In the method for inspecting scratches in the resin molded product according to the present invention,
The adjustment required area is preferably the entire area of the microscope image.
 本発明に係る樹脂成型品における傷の検査方法は、要調整領域は、顕微鏡画像の全領域であるため、要調整領域と調整不要領域とを区別し難い場合であっても、一律に調整を行うことで、確実な検査結果を導くことが出来る。その結果、客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。 In the method for inspecting scratches on the resin molded product according to the present invention, the adjustment area is the entire area of the microscope image, so even if it is difficult to distinguish between the adjustment area and the adjustment unnecessary area, the adjustment is made uniformly. By doing so, reliable test results can be derived. As a result, it is possible to objectively and quantitatively evaluate the presence and state of whitening scratches.
 本発明に係る樹脂成型品における傷の検査方法において、
 前記判定工程で前記線傷が確認されなかった場合、前記照射工程で照射する光を調整する光調整工程を実行することが好ましい。
In the method for inspecting scratches in the resin molded product according to the present invention,
When the said damage is not confirmed by the said determination process, it is preferable to perform the light adjustment process which adjusts the light irradiated at the said irradiation process.
 本発明に係る樹脂成型品における傷の検査方法は、判定工程で線傷が確認されなかった場合、照射工程で照射する光を調整する光調整工程を実行するため、確実に線傷の顕微鏡画像を取得することが可能となり、正確な検査結果を導くことが出来る。その結果、客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。 The method for inspecting a scratch in a resin molded product according to the present invention performs a light adjustment step of adjusting the light irradiated in the irradiation step when the scratch is not confirmed in the determination step. Can be obtained, and an accurate inspection result can be derived. As a result, it is possible to objectively and quantitatively evaluate the presence and state of whitening scratches.
 本発明に係る樹脂成形品における傷の検査方法において、
 前記画像取得工程において、前記線傷の明視野画像及び暗視野画像を取得し、
 前記画像処理工程において、前記明視野画像及び前記暗視野画像に基づいて、前記顕微鏡画像に要調整領域及び調整不要領域を設定し、前記要調整領域について前記明視野画像と前記暗視野画像とを合わせた合成画像を生成後、前記明視野画像又は前記暗視野画像から前記合成画像を差し引いた差分画像を生成するとともに、前記調整不要領域について前記明視野画像又は前記暗視野画像を選択し、前記差分画像及び前記調整不要領域の画像の階調を同じ取扱いルールに従って二値化し、
 前記判定工程において、前記画像処理工程で得られた画像処理結果に基づいて、前記線傷の状態である光沢傷の有無を判定することが好ましい。
In the method for inspecting scratches in the resin molded product according to the present invention,
In the image acquisition step, a bright-field image and a dark-field image of the flaw are acquired,
In the image processing step, on the basis of the bright field image and the dark field image, a required adjustment area and an adjustment unnecessary area are set in the microscope image, and the bright field image and the dark field image are set for the adjustment area. After generating the combined composite image, a difference image is generated by subtracting the composite image from the bright field image or the dark field image, and the bright field image or the dark field image is selected for the adjustment unnecessary region, The gradation of the difference image and the image of the adjustment unnecessary area is binarized according to the same handling rule,
In the determination step, it is preferable to determine the presence or absence of a glossy flaw that is the state of the line flaw based on the image processing result obtained in the image processing step.
 本発明に係る樹脂成形品における傷の検査方法は、画像取得工程において、前記線傷の明視野画像及び暗視野画像を取得するため、線傷が存在する樹脂成型品の明視野画像、及び暗視野画像において、光沢傷、白化傷、及びシボを認識することが出来る。画像処理工程において、明視野画像及び暗視野画像に基づいて、顕微鏡画像に要調整領域及び調整不要領域を設定するため、光沢傷の有無を判断するに当たって判定が確実な領域を除外することが可能となり、迅速且つ簡便な検査結果を導くことが出来る。要調整領域について明視野画像と暗視野画像とを合わせた合成画像を生成後、明視野画像又は暗視野画像から合成画像を差し引いた差分画像を生成するとともに、調整不要領域について明視野画像又は暗視野画像を選択し、差分画像及び調整不要領域の画像の階調を同じ取扱いルールに従って二値化するため、光沢傷のみが選択的又は相対的に強調される。判定工程において、画像処理工程で得られた画像処理結果に基づいて、線傷の状態である光沢傷の有無を判定するため、客観的且つ定量的に光沢傷の有無や状態を評価することが可能となる。 The method for inspecting a scratch in a resin molded product according to the present invention acquires a bright-field image and a dark-field image of the flaw in the image acquisition step. In the field-of-view image, gloss scratches, whitening scratches, and wrinkles can be recognized. In the image processing process, areas that require adjustment and areas that do not require adjustment are set in the microscopic image based on the bright-field and dark-field images, so it is possible to exclude areas that are surely determined when determining the presence or absence of gloss flaws. Thus, a quick and simple test result can be derived. After generating a composite image that combines the bright-field image and the dark-field image for the adjustment-necessary area, a difference image is generated by subtracting the composite image from the bright-field image or the dark-field image, and the bright-field image or dark-field for the adjustment-free area. Since the visual field image is selected and the gradation of the difference image and the image of the adjustment unnecessary region is binarized according to the same handling rule, only the glossy flaw is selectively or relatively emphasized. In the determination step, based on the image processing result obtained in the image processing step, it is possible to objectively and quantitatively evaluate the presence or state of the gloss flaw in order to determine the presence or absence of the gloss flaw that is the state of the line flaw. It becomes possible.
 上記課題を解決するための本発明に係る樹脂成型品における傷の検査装置の特徴構成は、
 表面にシボ加工が施された樹脂成形品における傷の検査装置であって、
 前記樹脂成形品に対し、一定方向に沿って荷重が連続的に変化することにより形成された傾斜性を有する線傷を検査対象とするものであり、
 前記線傷に光を照射する照射手段と、
 前記線傷の顕微鏡画像を取得する画像取得手段と、
 前記顕微鏡画像を処理する画像処理手段と、
 画像処理結果に基づいて前記線傷の状態を判定する判定手段と、
を備えた点にある。
In order to solve the above problems, the characteristic configuration of the scratch inspection apparatus in the resin molded product according to the present invention is
A device for inspecting scratches on a resin molded product having a textured surface,
With respect to the resin molded product, it is intended to inspect a linear wound having an inclination formed by a load continuously changing along a certain direction,
Irradiating means for irradiating the line wound with light;
An image acquisition means for acquiring a microscopic image of the flaw;
Image processing means for processing the microscope image;
Determining means for determining the state of the flaw based on an image processing result;
It is in the point with.
 本発明に係る樹脂成型品における傷の検査装置は、表面にシボ加工が施された樹脂成形品における傷の検査装置であって、樹脂成形品に対し、一定方向に沿って荷重が連続的に変化することにより形成された傾斜性を有する線傷を検査対象とするものであり、線傷に光を照射する照射手段と、線傷の顕微鏡画像を取得する画像取得手段と、顕微鏡画像を処理する画像処理手段と、画像処理結果に基づいて前記線傷の状態を判定する判定手段と、
を備えたため、シボ加工が施された樹脂成型品の線傷の有無や状態等を正確に検査することが可能となり、また検査結果を数値化することが出来る。その結果、客観的且つ定量的に線傷の状態を評価することが可能となる。
The inspection apparatus for scratches in a resin molded product according to the present invention is an inspection apparatus for scratches in a resin molded product whose surface is textured, and a load is continuously applied to the resin molded product along a certain direction. It is intended to inspect graded flaws formed by change, irradiation means for irradiating light to the flaws, image acquisition means for obtaining a microscope image of the flaws, and processing the microscope images Image processing means for determining, and determination means for determining the state of the flaw based on the image processing result;
Therefore, it is possible to accurately inspect the presence or state of a line flaw of a resin molded product that has been subjected to embossing, and to digitize the inspection result. As a result, it is possible to objectively and quantitatively evaluate the state of the flaw.
本発明に係る検査方法で使用されるスクラッチ装置の概略図である。It is the schematic of the scratch apparatus used with the test | inspection method which concerns on this invention. 本発明に係る検査装置の概略図である。It is the schematic of the inspection apparatus which concerns on this invention. (a)円形シボ、(b)皮シボ、(c)梨地シボの各拡大図である。It is each enlarged view of (a) circular grain, (b) leather grain, and (c) pear texture grain. 第二実施形態及び第三実施形態における要調整領域/調整不要領域の設定手法に関する説明図である。It is explanatory drawing regarding the setting method of the adjustment area | region / adjustment unnecessary area | region in 2nd embodiment and 3rd embodiment. (i)線傷を付ける前の樹脂成型品、及び、(ii)光沢傷、(iii)光沢傷と白化傷、(iv)白化傷が付いた樹脂成型品の、(a)明視野画像、(b)暗視野画像、(c)明視野画像と暗視野画像との合成画像、及び(d)合成画像の二値化画像を示した図である。(A) a bright-field image of (i) a resin-molded product before making a flaw, and (ii) a glossy flaw, (iii) a glossy and whitening flaw, and (iv) a resin-molded product with a whitening flaw, It is the figure which showed the binarized image of (b) dark field image, (c) the composite image of a bright field image and a dark field image, and (d) the composite image. 図5で示した各画像において正方形で囲んだ約0.2mm四方の領域を拡大し、ピクセル毎に256階調のグレースケールで表した図である。FIG. 6 is an enlarged view of an approximately 0.2 mm square region surrounded by a square in each image shown in FIG. 5, and is represented by a gray scale of 256 gradations for each pixel. 図6で示した256階調グレースケール画像において、ピクセル毎に階調の数値を記載した階調図である。FIG. 7 is a gradation diagram showing gradation values for each pixel in the 256 gradation gray scale image shown in FIG. 6. 図8(i)、(ii)は、図6(i)、(ii)の256階調グレースケール画像及び図7(i)、(ii)の階調図に基づいて、階調の数値を横軸に取り、ピクセル数を縦軸に取った、ヒストグラムを示した図である。8 (i) and (ii) show the gradation values based on the 256 gradation gray scale images of FIGS. 6 (i) and (ii) and the gradation diagrams of FIGS. 7 (i) and (ii). It is the figure which showed the histogram which took the horizontal axis and took the number of pixels on the vertical axis. 図9(iii)、(iv)は、図6(iii)、(iv)の256階調グレースケール画像及び図7(iii)、(iv)の階調図に基づいて、階調の数値を横軸に取り、ピクセル数を縦軸に取ったヒストグラムを示した図である。FIGS. 9 (iii) and (iv) show the gradation values based on the 256 gradation gray scale images of FIGS. 6 (iii) and (iv) and the gradation diagrams of FIGS. 7 (iii) and (iv). It is the figure which showed the histogram which took the horizontal axis and took the number of pixels on the vertical axis.
 以下、本発明に係る樹脂成型品における傷の検査方法、及び検査装置に関する実施形態を図1乃至図9に基づいて詳述する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments relating to a method for inspecting scratches in a resin molded product and an inspection apparatus according to the present invention will be described in detail below with reference to FIGS. However, the present invention is not intended to be limited to the configurations described in the embodiments and drawings described below.
 図1は、本発明に係る検査方法で使用されるスクラッチ装置の概略図である。図2は、本発明に係る検査装置の概略図である。 FIG. 1 is a schematic view of a scratch device used in the inspection method according to the present invention. FIG. 2 is a schematic view of an inspection apparatus according to the present invention.
 本発明は、表面にシボ加工が施された樹脂成形品における傷の検査方法及び検査装置であって、樹脂成形品に対し、一定方向に沿って荷重が連続的に変化することにより形成された傾斜性を有する線傷(スクラッチ傷)を検査対象とするものである。樹脂成形品の材質としては、自動車の内装材として使用されるポリプロピレン(PP)、ポリカーボネート(PC)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリロニトリル-スチレン共重合体(AS)、ポリアセタール(POM)、ポリ乳酸樹脂(PL)等が挙げられる。表面にシボ加工が施された樹脂成形品の例を図3に示す。(a)は幾何学的シボの一つである円形シボと呼ばれるものであり、(b)は皮シボ、(c)は梨地シボと呼ばれる非幾何学的シボである。「荷重が連続的に変化する」とは、荷重が連続的に増加又は減少することを意図する。荷重が連続的に変化することにより形成される傾斜性を有する線傷は、後述のように一定の割合で荷重が連続的に増加することにより形成されるケースが一般的であるが、これに限られない。例えば、荷重が漸増的に増加する場合や、荷重の増加率が徐々に低減する場合も含まれる。また、荷重付与区間全体を見て、荷重が増加又は減少する傾向であればよく、当該荷重付与区間中に一定荷重の区間が含まれていても構わない。一定方向に沿って荷重を連続的に変化させることにより、深さ、幅、又はその両方が長さ方向に沿って徐々に変化する傾斜性を有する線傷が形成される。また、このような傾斜性を有する線傷は、光を照射した場合、その反射光又は拡散光の明度が徐々に変化することもある。線傷を作成するに当たっては、図1に示すスクラッチ装置を使用し、線傷を検査するに当たっては、図2に示す検査装置を使用する。 The present invention relates to an inspection method and an inspection device for a flaw in a resin molded product whose surface is textured, and is formed by continuously changing the load along a certain direction with respect to the resin molded product. An inspection target is a line scar (scratch scratch) having an inclination. As the material of the resin molded product, polypropylene (PP), polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS), polyacetal (polyacetal) used as automobile interior materials are used. POM) and polylactic acid resin (PL). FIG. 3 shows an example of a resin molded product having a textured surface. (A) is what is called a circular texture which is one of geometric textures, (b) is a leather texture, and (c) is a non-geometric texture called a satin texture. “The load changes continuously” means that the load continuously increases or decreases. Inclined flaws formed by continuously changing the load are generally formed by increasing the load continuously at a constant rate as described later. Not limited. For example, a case where the load increases gradually or a case where the load increase rate gradually decreases is included. Moreover, it is sufficient that the load is in a tendency to increase or decrease when the entire load application section is viewed, and a section of a constant load may be included in the load application section. By continuously changing the load along a certain direction, a flaw having a gradient in which depth, width, or both gradually change along the length direction is formed. In addition, when the line scar having such a gradient is irradiated with light, the brightness of the reflected light or diffused light may gradually change. When creating a line wound, the scratch device shown in FIG. 1 is used, and when inspecting the line wound, an inspection apparatus shown in FIG. 2 is used.
 <スクラッチ装置>
 スクラッチ装置5は、主に、試料(樹脂成形品)Sを引っ掻くチップ1、チップ1を出し入れ可能に収納するヘッド2、ヘッド2をスライド移動させるレール3、並びに、チップ1の突出量及びヘッド2の移動距離を制御する制御部4(例えば、コンピューター)から構成される。チップ1の先端には、直径が約1mmのステンレス製の球体1aが取り付けてある。傾斜性を有する線傷を作成(スクラッチ操作)するには、チップ1の先端を試料Sに接触させながら、ヘッド2をレール3に沿ってスライド移動させ、且つ、チップ1をヘッド2から徐々に突出させることにより、チップ1にかかる荷重を徐々に増加させる。検査者は、制御部4の画面に表示されたグラフを見ることで、スクラッチ操作が行われた距離とチップ1にかかった荷重とを確認することが出来る。本実施形態では、スクラッチ操作が行われた距離が100mmである場合、荷重が0~50Nまで略直線的に増加する。スクラッチ距離と荷重との関係は、試料Sの状態や検査条件等に応じて変更することが出来る。チップ1の先端には球体1aが取り付けてあるため、チップ1の移動に伴って、つまり、荷重が増加するに伴って、平面視における傷の幅は、球体1aの直径に相当するサイズまで増大する。平面視における傷の幅を一定にするために、球体1aに代えて円柱形状の金属部材を用いることも可能である。この場合、傷幅の増大による反射光の変化の影響を抑制することが出来る。
<Scratch device>
The scratch device 5 mainly includes a chip 1 that scratches a sample (resin molded product) S, a head 2 that houses the chip 1 so that it can be inserted and removed, a rail 3 that slides the head 2, and a protruding amount of the chip 1 and the head 2 It is comprised from the control part 4 (for example, computer) which controls the movement distance. A stainless sphere 1a having a diameter of about 1 mm is attached to the tip of the chip 1. In order to create an inclined line wound (scratch operation), the head 2 is slid along the rail 3 while the tip of the chip 1 is in contact with the sample S, and the chip 1 is gradually moved from the head 2. By projecting, the load applied to the chip 1 is gradually increased. The inspector can confirm the distance at which the scratch operation is performed and the load applied to the chip 1 by looking at the graph displayed on the screen of the control unit 4. In this embodiment, when the distance at which the scratch operation is performed is 100 mm, the load increases approximately linearly from 0 to 50N. The relationship between the scratch distance and the load can be changed according to the state of the sample S, the inspection conditions, and the like. Since the sphere 1a is attached to the tip of the chip 1, the width of the scratch in plan view increases to a size corresponding to the diameter of the sphere 1a as the chip 1 moves, that is, as the load increases. To do. In order to make the width of the scratch in plan view constant, it is possible to use a cylindrical metal member instead of the sphere 1a. In this case, the influence of the change in reflected light due to the increase in the scratch width can be suppressed.
 <検査装置>
 検査装置100は、光学顕微鏡10、及び演算部20から構成される。光学顕微鏡10は、照射手段である光源11、光源11からの光を反射し且つ試料Sから伝達される光を透過するハーフミラー12、試料Sを直接観察する対物レンズ13、及び画像取得手段である撮像部14を備えている。光学顕微鏡10は、さらに、光調整手段であるレギュレーター15を備えている。レギュレーター15は、光源11から発する光の強さ、光源11の位置、図示しないレンズの位置及び枚数、対物レンズ13の絞り等を調整する。レギュレーター15を操作することにより、例えば、試料Sに対する光の入射角を0°に調整すると、試料Sからの受光角0°の位置で明視野が得られる。また、試料Sに対する光の入射角を45°に調整すると、試料Sからの受光角0°の位置で暗視野が得られる。ここで、明視野とは試料Sからの反射光を受光した際の視野であり、暗視野とは試料Sからの拡散光を受光した際の視野である。撮像部14には、CCD等の撮像素子14aが備わる。撮像素子14aは、試料Sから伝達される光を明視野画像及び暗視野画像として取得する。演算部20には、通常コンピューターが採用され、画像処理手段21、及び判定手段22を有する。画像処理手段21、及び判定手段22は、コンピューターの中央演算処理ユニット(CPU)がその機能を担う。また、画像処理手段21、及び判定手段22を、コンピューターのソフトウェア上で実現しても構わない。
<Inspection device>
The inspection apparatus 100 includes an optical microscope 10 and a calculation unit 20. The optical microscope 10 includes a light source 11 that is an irradiation unit, a half mirror 12 that reflects light from the light source 11 and transmits light transmitted from the sample S, an objective lens 13 that directly observes the sample S, and an image acquisition unit. An imaging unit 14 is provided. The optical microscope 10 further includes a regulator 15 that is a light adjusting unit. The regulator 15 adjusts the intensity of light emitted from the light source 11, the position of the light source 11, the position and number of lenses (not shown), the aperture of the objective lens 13, and the like. By operating the regulator 15, for example, when the incident angle of light with respect to the sample S is adjusted to 0 °, a bright field is obtained at a position where the light receiving angle from the sample S is 0 °. When the incident angle of light with respect to the sample S is adjusted to 45 °, a dark field can be obtained at a position where the light receiving angle from the sample S is 0 °. Here, the bright field is a field when the reflected light from the sample S is received, and the dark field is a field when the diffused light from the sample S is received. The imaging unit 14 includes an imaging element 14a such as a CCD. The imaging device 14a acquires light transmitted from the sample S as a bright field image and a dark field image. The computing unit 20 is usually a computer and includes an image processing unit 21 and a determination unit 22. The image processing unit 21 and the determination unit 22 have the functions of a central processing unit (CPU) of a computer. Further, the image processing means 21 and the determination means 22 may be realized on computer software.
 <検査方法>
 本発明の検査方法では、主に、照射工程、画像取得工程、画像処理工程、及び判定工程を実行する。さらに必要に応じて、準備工程、及び光調整工程を実行することが出来る。以下、各工程について、夫々説明する。
<Inspection method>
In the inspection method of the present invention, an irradiation process, an image acquisition process, an image processing process, and a determination process are mainly executed. Furthermore, a preparation process and a light adjustment process can be performed as needed. Hereinafter, each step will be described.
 <照射工程>
 照射工程は、光学顕微鏡10に内蔵される光源11を用いて実行される。光源11として、例えば、LED、ナトリウムランプ、ハロゲンランプ等が挙げられる。光調整手段であるレギュレーター15を操作して光源11からの光を図示しないレンズで集束し、ハーフミラー12を介して、ステージ16に配置された試料Sに光を照射する。光の照射角(入射角)は、対物レンズ13において切り替え可能である。図2に示すように、照射角が小さい光は直線状の光として、照射角が大きい光は円環状の光として照射される。本実施形態では、照射対象の試料Sとして、図3(c)に示す梨地シボ加工が施されたポリプロピレン製の樹脂成型品を使用する。初めに、線傷が形成される前の試料Sについて照射工程を実行する(後述の<準備工程>)。
<Irradiation process>
The irradiation process is executed using the light source 11 built in the optical microscope 10. Examples of the light source 11 include an LED, a sodium lamp, and a halogen lamp. The regulator 15 which is a light adjusting means is operated to focus the light from the light source 11 with a lens (not shown), and the sample S arranged on the stage 16 is irradiated with light through the half mirror 12. The light irradiation angle (incident angle) can be switched in the objective lens 13. As shown in FIG. 2, light having a small irradiation angle is irradiated as linear light, and light having a large irradiation angle is irradiated as annular light. In the present embodiment, as the sample S to be irradiated, a resin molded product made of polypropylene subjected to the satin finish shown in FIG. 3C is used. First, an irradiation process is performed on the sample S before the line scar is formed (<preparation process> described later).
 <画像取得工程>
 画像取得工程は、光学顕微鏡10の鏡筒17に接続された画像取得手段である撮像部14で実行される。撮像部14は、デジタルカメラを使用することが出来る。試料Sから伝達される光を、対物レンズ13、ハーフミラー12を経て、撮像部14の撮像素子14aに結像させる。
 先に説明したように、照射工程において、対物レンズ13を操作し、照射光を光軸Lに対して、例えば45°に屈折させて、試料Sの表面に照射した場合、画像取得工程では、試料Sの暗視野画像を取得出来る。一方、照射光を光軸Lに対して0°の照射角で試料Sの表面に照射した場合、画像取得工程では、試料Sの明視野画像を取得出来る。
<Image acquisition process>
The image acquisition process is executed by the imaging unit 14 that is an image acquisition unit connected to the lens barrel 17 of the optical microscope 10. The imaging unit 14 can use a digital camera. The light transmitted from the sample S passes through the objective lens 13 and the half mirror 12 and forms an image on the image sensor 14 a of the image capturing unit 14.
As described above, in the irradiation process, when the objective lens 13 is operated and the irradiation light is refracted, for example, by 45 ° with respect to the optical axis L and irradiated on the surface of the sample S, the image acquisition process includes: A dark field image of the sample S can be acquired. On the other hand, when the irradiation light is irradiated onto the surface of the sample S at an irradiation angle of 0 ° with respect to the optical axis L, a bright field image of the sample S can be acquired in the image acquisition step.
 <準備工程>
 本発明では、検査の準備のため必要に応じて、上述の<照射工程>及び<画像取得工程>で記載した方法によって、線傷が形成される前の試料Sの顕微鏡画像について、明視野画像及び暗視野画像(これを、明視野参照画像及び暗視野参照画像と規定する)を取得しておくことが好ましい。準備工程を行うことにより、線傷が存在しない試料Sの明視野参照画像、及び暗視野参照画像において、シボのみを認識することが出来るため、後の<画像処理工程>において、線傷とシボとをより正確に区別することが可能となる。
<Preparation process>
In the present invention, a bright-field image is obtained for the microscopic image of the sample S before the flaw is formed by the method described in <Irradiation step> and <Image acquisition step> as necessary for preparation of the inspection. It is preferable to acquire a dark field image (which is defined as a bright field reference image and a dark field reference image). By performing the preparatory process, it is possible to recognize only the wrinkles in the bright field reference image and the dark field reference image of the sample S where no flaws exist, so that in the subsequent <image processing step> Can be more accurately distinguished.
 <線傷の作成>
 上述の梨地シボ加工が施された試料Sに対し、スクラッチ装置5を使用して、一定方向に沿って荷重を連続的に変化させることにより傾斜性を有する線傷を付ける。線傷は、シボ加工が施された試料Sにおいて、傷がつき易いと考えられる箇所、即ち、シボの凹凸が大きい箇所を選択し、シボが流れる方向に対して直交する方向に作成することが好ましい。
 シボ加工が施された試料Sに線傷を作成するため、チップ1に荷重をかけながら一定の距離を移動させると、初期段階では光沢領域(光沢傷)が発生する。光沢傷は、物体の表面が均らされた状態であり、周辺部との違いはほとんど無いが、反射光による光沢が確認出来る。そのままチップ1の移動を続けると、中期段階で、試料Sの表面に微視破壊領域が出現する。例えば、試料Sの材質がポリプロピレンの場合は周期的な皺のような模様を伴ったうろこ傷が出現し、ポリカーボネートの場合はマイクロクラックが出現する。微視破壊領域の中には一部光沢傷も見られるが、光沢は徐々に少なくなる。微視破壊領域がさらに進行すると、突然白化した部分が発生する。この白化部分は白化傷と称される。白化傷は、チップ1が試料Sに強く擦れて材料が塑性変形することにより試料Sの表面が荒らされ、光が拡散された結果、白く見えるものである。さらにチップ1の移動を続けると、後期段階で、試料Sの表面組織がマクロに破壊され、切削傷が出現する。切削傷は表面が大きく荒らされているので、肉眼ではっきりと白く見える。
<Creating wounds>
The sample S subjected to the above-described satin finish texture processing is used to scratch the sloped line by changing the load continuously along a certain direction using the scratch device 5. The scratch can be created in a direction perpendicular to the direction in which the wrinkle flows by selecting a portion that is likely to be damaged in the sample S subjected to the wrinkle processing, that is, a portion having a large wrinkle unevenness. preferable.
In order to create a line flaw on the textured sample S, if a certain distance is moved while applying a load to the chip 1, a glossy region (glossy flaw) is generated in the initial stage. The gloss scratch is a state in which the surface of the object is leveled and there is almost no difference from the peripheral part, but gloss due to reflected light can be confirmed. If the movement of the chip 1 is continued as it is, a microscopic destruction region appears on the surface of the sample S in the middle stage. For example, when the material of the sample S is polypropylene, a scaly scar with a pattern like a periodic wrinkle appears, and when it is polycarbonate, a microcrack appears. Some gloss flaws are also found in the microscopic destruction region, but the gloss gradually decreases. As the microscopic destruction region further progresses, a sudden whitening occurs. This whitened portion is called a whitening wound. The whitening scratches appear as white as a result of the surface of the sample S being roughened by the plastic deformation of the material due to the chip 1 being rubbed against the sample S and the light being diffused. When the chip 1 continues to move, the surface structure of the sample S is broken macroscopically and cutting flaws appear in the later stage. Since the surface of the cutting flaw is greatly roughened, it looks clearly white with the naked eye.
 <明視野画像及び暗視野画像の取得>
 線傷が付いた試料Sを光学顕微鏡10のステージ16に配置し、上述の<照射工程>及び<画像取得工程>で記載した方法によって、明視野画像及び暗視野画像を取得する。
 本実施形態では、同一の試料Sについて、線傷が形成される前後の画像を取得しているが、2個の試料Sを用意して、一方の試料Sにのみ線傷を形成し、両方の画像を取得して検査することも可能である。
 明視野画像、及び暗視野画像においては、光沢傷、白化傷、及びシボを認識することが出来るが、夫々の画像において認識される程度が異なる。即ち、明視野画像では、反射光が支配的であるため、主に光沢傷が認識される。一方、暗視野画像では、拡散光が支配的であるため、主に白化傷が認識されるが、一部の反射光を受光するため、光沢傷も認識されることがある。シボは、明視野画像及び暗視野画像において認識される。
<Acquisition of bright field image and dark field image>
The sample S with the line scar is placed on the stage 16 of the optical microscope 10, and a bright field image and a dark field image are acquired by the method described in the above <irradiation step> and <image acquisition step>.
In this embodiment, images before and after the formation of flaws are acquired for the same sample S. However, two samples S are prepared, and flaws are formed only on one sample S, both It is also possible to acquire and inspect the image.
A bright-field image and a dark-field image can recognize glossy scratches, whitening scratches, and wrinkles, but the degree of recognition in each image is different. That is, in the bright field image, the reflected light is dominant, so that the gloss flaw is mainly recognized. On the other hand, in the dark field image, diffused light is dominant, and thus whitening scratches are mainly recognized. However, since some reflected light is received, glossy scratches may be recognized. The wrinkles are recognized in the bright field image and the dark field image.
 <画像処理工程>
 画像処理工程は、演算部20で実行される。画像処理工程では、先ず、撮像部14で取得した顕微鏡画像に要調整領域及び調整不要領域を設定する。
 要調整領域とは、スクラッチ操作による影響を受けている可能性がある領域のうち、明らかに影響を受けているとは言い難い領域(言い換えると、スクラッチ操作前と実質的に状態が変化していないかもしれない領域)を指し、顕微鏡画像の少なくとも一部である。調整不要領域とは、スクラッチ操作による影響を確実に受けている領域、及び確実に受けていない領域である。以下、要調整領域及び調整不要領域の設定ルールについて、実施形態として説明する。
<Image processing process>
The image processing step is executed by the calculation unit 20. In the image processing step, first, the adjustment required area and the adjustment unnecessary area are set in the microscope image acquired by the imaging unit 14.
The area that needs to be adjusted is an area that may be affected by the scratch operation that is not clearly affected (in other words, the state has changed substantially from before the scratch operation. A region that may not be) and is at least part of a microscopic image. The adjustment unnecessary area is an area that is reliably affected by the scratch operation and an area that is not reliably affected. Hereinafter, setting rules for the adjustment required area and the adjustment unnecessary area will be described as embodiments.
 〔第一実施形態〕
 本実施形態において、要調整領域及び調整不要領域は、明視野画像及び暗視野画像に基づいて設定される。例えば、明視野画像及び暗視野画像を夫々ピクセル毎に256階調のグレースケールで表し、対応する位置の各ピクセルの階調の数値の差分を取る。差分の値が実質的にゼロでない領域を、要調整領域として決定し、それ以外の領域を、調整不要領域として決定する。「実質的にゼロでない」とは、例えば、差分の絶対値が20を超える場合、差分が256階調の10%を超える場合等として規定することが出来る。その結果、白化傷の有無を判断するに当たって判定が確実な領域を除外することが可能となり、迅速且つ簡便な検査結果を導くことが出来る。
 次に、明視野参照画像、暗視野参照画像、明視野画像、及び暗視野画像に基づいて、顕微鏡画像に要調整領域及び調整不要領域を設定することも出来る。図4は、第二実施形態及び第三実施形態における要調整領域/調整不要領域の設定手法に関する説明図である。
[First embodiment]
In the present embodiment, the adjustment required area and the adjustment unnecessary area are set based on the bright field image and the dark field image. For example, a bright-field image and a dark-field image are represented by a gray scale of 256 gradations for each pixel, and a numerical value difference of the gradation of each pixel at the corresponding position is taken. A region where the difference value is not substantially zero is determined as a region requiring adjustment, and the other regions are determined as regions that do not require adjustment. “Substantially not zero” can be defined as, for example, when the absolute value of the difference exceeds 20 or when the difference exceeds 10% of 256 gradations. As a result, it is possible to exclude a region that is surely determined in determining the presence or absence of whitening scratches, and a quick and simple inspection result can be derived.
Next, the adjustment required area and the adjustment unnecessary area can be set in the microscope image based on the bright field reference image, the dark field reference image, the bright field image, and the dark field image. FIG. 4 is an explanatory diagram regarding a setting method of the adjustment required area / adjustment unnecessary area in the second embodiment and the third embodiment.
 〔第二実施形態〕
 本実施形態において要調整領域は、明視野参照画像及び明視野画像の階調の比較結果と、暗視野参照画像及び暗視野画像の階調の比較結果とが異なる領域である第一要調整領域を含む。階調の比較結果とは、画像をピクセル毎に256階調のグレースケールで表し、対応する位置の各ピクセルの階調の数値を比較した結果を言う。例えば、明視野参照画像及び明視野画像の階調の数値の差分と、暗視野参照画像及び暗視野画像の階調の数値の差分とが実質的に同一でない領域を、第一要調整領域とする。「実質的に同一」とは、明視野画像の階調を基準として、誤差が±10%以内となる場合や、誤差の絶対値が20以内である場合等として規定することが出来る。具体的な決定方法は、先ず、明視野参照画像(A)と明視野画像(B)との差分(B-A)を取り、暗視野参照画像(C)と暗視野画像(D)との差分(D-C)を取る。次に、差分(B-A)と差分(D-C)との論理演算を行う。この論理演算で得られた排他的論理和(XOR)領域を第一要調整領域として決定する。第一要調整領域を設定することで、主に暗視野で確認し得る白化傷の判定精度を向上させることが出来る。即ち、白化傷の有無を判断するに当たって判定が確実な領域、つまり、白化傷と、光沢傷及びシボとを誤認し難い領域を的確に除外することが可能となり、より正確な検査結果を導くことが出来る。
[Second Embodiment]
In the present embodiment, the adjustment area is a first adjustment area in which the gradation comparison result of the bright field reference image and the bright field image is different from the gradation comparison result of the dark field reference image and the dark field image. including. The gradation comparison result is a result of representing an image with a gray scale of 256 gradations for each pixel and comparing the numerical values of the gradations of the pixels at the corresponding positions. For example, an area where the difference between the numerical values of the gradations of the bright-field reference image and the bright-field image and the numerical value of the gradations of the dark-field reference image and the dark-field image are not substantially the same as the first adjustment area To do. “Substantially the same” can be defined as a case where the error is within ± 10% or a case where the absolute value of the error is within 20 based on the gradation of the bright field image. Specifically, first, a difference (BA) between the bright field reference image (A) and the bright field image (B) is obtained, and the dark field reference image (C) and the dark field image (D) are obtained. Take the difference (DC). Next, a logical operation between the difference (BA) and the difference (DC) is performed. An exclusive OR (XOR) area obtained by this logical operation is determined as the first adjustment area. By setting the first adjustment area, it is possible to improve the accuracy of whitening damage determination that can be confirmed mainly in the dark field. In other words, it is possible to accurately exclude areas that are reliably judged in determining the presence or absence of whitening flaws, that is, areas that are difficult to misidentify whitening flaws, glossy flaws, and wrinkles, leading to more accurate inspection results. I can do it.
 〔第三実施形態〕
 本実施形態において要調整領域は、明視野参照画像及び暗視野参照画像の階調の比較結果と、明視野画像及び暗視野画像の階調の比較結果とが異なる領域である第二要調整領域を含む。例えば、明視野参照画像及び暗視野参照画像の階調の数値の差分と、明視野画像及び暗視野画像の階調の数値の差分とが実質的に同一でない領域を、第二要調整領域とする。「実質的に同一」の意味は、上述の第二実施形態と同様である。具体的な決定方法は、先ず、明視野参照画像(A)と暗視野参照画像(C)との差分(C-A)を取り、明視野画像(B)と暗視野画像(D)との差分(D-B)を取る。次に、差分(C-A)と差分(D-B)との論理演算を行う。この論理演算で得られた排他的論理和(XOR)領域を第二要調整領域として決定する。第二要調整領域を設定することで、光沢傷及び白化傷を含む線傷が存在する領域を明確にすることが出来るので、より正確な検査結果を導くことが出来る。その結果、より客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。
[Third embodiment]
In the present embodiment, the adjustment required area is a second adjustment area in which the gradation comparison result of the bright field reference image and the dark field reference image is different from the gradation comparison result of the bright field image and the dark field image. including. For example, an area where the difference between the numerical values of the gradations of the bright-field reference image and the dark-field reference image and the numerical value of the gradations of the bright-field image and the dark-field image are not substantially the same as the second adjustment area To do. The meaning of “substantially the same” is the same as in the second embodiment described above. Specifically, first, a difference (CA) between the bright field reference image (A) and the dark field reference image (C) is obtained, and the bright field image (B) and the dark field image (D) are obtained. The difference (DB) is taken. Next, a logical operation between the difference (CA) and the difference (DB) is performed. The exclusive OR (XOR) area obtained by this logical operation is determined as the second adjustment area. By setting the second adjustment area, it is possible to clarify the area where the line flaw including the gloss flaw and the whitening flaw is present, so that a more accurate inspection result can be derived. As a result, it is possible to more objectively and quantitatively evaluate the presence or state of whitening damage.
 〔第四実施形態〕
 要調整領域を、第二実施形態、第三実施形態、及び図4で説明した、第一要調整領域と第二要調整領域との双方を含む領域とすることも可能である。この場合、主に暗視野で確認し得る白化傷の判定精度を向上させつつ、光沢傷及び白化傷を含む線傷が存在する領域を明確にすることが出来るので、非常に優れた検査結果を導くことが出来る。
[Fourth embodiment]
The adjustment required area may be an area that includes both the first adjustment area and the second adjustment area described in the second embodiment, the third embodiment, and FIG. In this case, it is possible to clarify the region where the lineage flaws including the gloss flaws and the whitening flaws exist while improving the judgment accuracy of the whitening flaws that can be confirmed mainly in the dark field. Can lead.
 〔調整不要領域の設定〕
 明視野参照画像、暗視野参照画像、明視野画像、及び暗視野画像に基づいて、顕微鏡画像に要調整領域及び調整不要領域を設定する場合、調整不要領域は、明視野参照画像及び明視野画像の階調の比較結果と、暗視野参照画像及び暗視野画像の階調の比較結果とが実質的に同一である領域、及び、明視野参照画像及び暗視野参照画像の階調の比較結果と、明視野画像及び暗視野画像の階調の比較結果とが実質的に同一である領域である。これらの領域は、スクラッチ操作前後で夫々の画像における階調の変化が無く、スクラッチ操作による影響を確実に受けていないケース、又は、スクラッチ操作前後で夫々の画像において実質的に同一の階調の変化を有し、スクラッチ操作による影響を確実に受けているケースであると予想される。従って、これらの領域は調整不要領域である。具体的には、図4に示すように、論理演算で得られた論理和(AND)領域を調整不要領域として決定する。
[Adjustment unnecessary area setting]
When the adjustment required area and the adjustment unnecessary area are set in the microscope image based on the bright field reference image, the dark field reference image, the bright field image, and the dark field image, the adjustment unnecessary area includes the bright field reference image and the bright field image. The comparison result of the gray scale and the comparison result of the dark field reference image and the dark field image are substantially the same, and the comparison result of the bright field reference image and the dark field reference image. This is a region where the gradation comparison results of the bright field image and the dark field image are substantially the same. These areas have no gradation change in each image before and after the scratch operation, and are not reliably affected by the scratch operation, or substantially the same gradation in each image before and after the scratch operation. It is expected that this is a case that has a change and is reliably influenced by the scratch operation. Therefore, these areas are adjustment unnecessary areas. Specifically, as shown in FIG. 4, a logical sum (AND) area obtained by a logical operation is determined as an adjustment unnecessary area.
 このように、顕微鏡画像に要調整領域及び調整不要領域を設定することで、白化傷の有無を判断するに当たって判定が確実な領域である調整不要領域を除外することが可能となり、効率的に検査することが出来る。後述する合成画像の生成等の演算を、画像全体に対してではなく、必要な領域に対してのみ行うため、迅速且つ正確な検査結果を導くことが出来る。
 画像処理工程では、次に、要調整領域について、明視野画像と暗視野画像とを合わせた合成画像を生成する。具体的には、明視野画像及び暗視野画像の各ピクセルの階調の平均値によってグレースケールを作成する。ここで、平均値は、一般的な算術平均であってもよいし、加重平均であってもよい。画像を合成することにより、光沢傷及びシボについて、夫々の画像における階調の差が相殺される効果があるため、合成画像では目立たなくなる。それに伴い、白化傷が合成画像において選択的又は相対的に強調され、確実に認識することが可能となる。
In this way, by setting the adjustment required area and the adjustment unnecessary area in the microscopic image, it is possible to exclude the adjustment unnecessary area which is a reliable area when determining the presence or absence of whitening scratches, and efficiently inspecting. I can do it. Since operations such as generation of a composite image, which will be described later, are performed not on the entire image but only on a necessary area, a quick and accurate inspection result can be derived.
Next, in the image processing step, a composite image that combines the bright-field image and the dark-field image is generated for the adjustment required area. Specifically, a gray scale is created by the average value of the gradation of each pixel of the bright field image and the dark field image. Here, the average value may be a general arithmetic average or a weighted average. By synthesizing the images, there is an effect that the difference in gradation in each image is canceled out for glossy scratches and wrinkles. As a result, whitening scratches are selectively or relatively emphasized in the composite image, and can be reliably recognized.
 要調整領域を、顕微鏡画像の全領域とすることが好ましいケースがある。要調整領域と調整不要領域とを区別し難い場合、例えば、明視野画像及び暗視野画像の階調の数値の差分が全領域において実質的に同一でない場合、明視野参照画像及び明視野画像の階調の数値の差分と、暗視野参照画像及び暗視野画像の階調の数値の差分とが全領域において実質的に同一でない場合、及び、明視野参照画像及び暗視野参照画像の階調の数値の差分と、明視野画像及び暗視野画像の階調の数値の差分とが全領域において実質的に同一でない場合は、要調整領域が、顕微鏡画像の全領域である。要調整領域と調整不要領域とを判別することが手間である場合も、顕微鏡画像の全領域を要調整領域とみなして検査をすることが出来る。このようなケースであっても、顕微鏡画像の全領域について明視野画像と暗視野画像とを合わせた合成画像を生成することで、正確な検査結果を導くことが出来る。その結果、客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。 In some cases, it is preferable that the adjustment area is the entire area of the microscope image. When it is difficult to distinguish between the adjustment required area and the adjustment unnecessary area, for example, when the difference in the numerical values of the gradations of the bright field image and the dark field image is not substantially the same in all areas, the bright field reference image and the bright field image The difference between the numerical values of the gradation and the numerical values of the dark field reference image and the dark field image are not substantially the same in all regions, and the gradations of the bright field reference image and the dark field reference image When the difference between the numerical values and the difference between the numerical values of the gradations of the bright field image and the dark field image are not substantially the same in the entire region, the adjustment required region is the entire region of the microscope image. Even when it is troublesome to discriminate between the adjustment necessary area and the adjustment unnecessary area, the entire area of the microscope image can be regarded as the adjustment area and the inspection can be performed. Even in such a case, an accurate inspection result can be derived by generating a composite image in which the bright field image and the dark field image are combined for the entire region of the microscope image. As a result, it is possible to objectively and quantitatively evaluate the presence and state of whitening scratches.
 調整不要領域については、明視野画像又は暗視野画像を選択する。調整不要領域では、明視野画像及び暗視野画像において、階調が実質的に同一であるため、何れの画像も選択することが出来る。白化傷は主に暗視野画像で認識されるため、暗視野画像を選択することが好ましい。その結果、画像において白化傷が選択的又は相対的に強調される。
 画像処理工程では、最後に、合成画像及び調整不要領域の画像の階調を同じ取扱いルールに従って二値化する。即ち、256階調における閾値を決定し、閾値より大きい場合は白色とし、閾値より小さい場合は黒色とする。閾値は、試料Sに形成されるシボの種類、試料Sの着色状態、検査環境等により、変化し得る値である。例えば、白化傷を確実に含む領域の合成画像において、当該白化傷に対応する部分のピクセル値を考慮して閾値を110に設定し、ピクセル値が110以上であれば白化傷とみなし、110未満であれば光沢傷又はシボであるとみなすことが出来る。
For the adjustment unnecessary region, a bright field image or a dark field image is selected. In the adjustment unnecessary region, since the gradation is substantially the same in the bright-field image and the dark-field image, any image can be selected. Since whitening scratches are mainly recognized in the dark field image, it is preferable to select the dark field image. As a result, whitening scars are selectively or relatively emphasized in the image.
In the image processing step, finally, the gradation of the composite image and the image of the adjustment unnecessary area is binarized according to the same handling rule. That is, a threshold value in 256 gradations is determined, and when it is larger than the threshold value, it is white, and when it is smaller than the threshold value, it is black. The threshold value is a value that can change depending on the type of grain formed on the sample S, the coloring state of the sample S, the inspection environment, and the like. For example, in a composite image of a region that surely includes whitening flaws, the threshold value is set to 110 in consideration of the pixel value of the portion corresponding to the whitening flaws, and if the pixel value is 110 or more, it is regarded as a whitening flaw and is less than 110 If so, it can be regarded as a glossy flaw or grain.
 <判定工程>
 判定工程は、演算部20で実行され、画像処理工程の結果に基づき、線傷の状態である白化傷の有無を判定する。具体的には、二値化した画像のうち白色の領域を、白化傷の存在する領域として判定する。これにより、白化傷を確実に認識することが可能となり、客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。その結果、一定方向に沿って荷重が連続的に変化することにより形成された傾斜性を有する線傷において、白化傷が始まる位置を判定することが出来る。
<Judgment process>
The determination step is executed by the calculation unit 20 and determines the presence or absence of whitening scratches, which are the state of line scars, based on the result of the image processing step. Specifically, a white area in the binarized image is determined as an area where a whitening defect exists. As a result, it is possible to reliably recognize whitening scratches and to objectively and quantitatively evaluate the presence and state of whitening scratches. As a result, it is possible to determine a position where a whitening scratch starts in a linear scratch having a slope formed by the load continuously changing along a certain direction.
 <光調整工程>
 判定工程において、白化傷が確認されなかった場合、レギュレーター15によって、照射工程において照射する光を調整することが可能である(光調整工程)。光調整工程には、光の照射角(入射角)、強度、色調、波長、コヒーレント性等を調整することが含まれる。光調整工程を実行することにより、確実に線傷の顕微鏡画像を取得することが可能となるため、迅速且つ正確な検査結果を導くことが出来る。その結果、客観的且つ定量的に白化傷の有無や状態を評価することが可能となる。
<Light adjustment process>
In the determination step, when no whitening damage is confirmed, it is possible to adjust the light irradiated in the irradiation step by the regulator 15 (light adjustment step). The light adjustment step includes adjusting light irradiation angle (incident angle), intensity, color tone, wavelength, coherency, and the like. By executing the light adjustment step, it is possible to reliably acquire a microscopic image of a flaw, so that a quick and accurate inspection result can be derived. As a result, it is possible to objectively and quantitatively evaluate the presence and state of whitening scratches.
 〔光沢傷検査のための画像処理〕
 上記実施形態では、主に、光沢傷の検査精度を向上させるための画像処理工程について説明したが、本発明では、光沢傷の検査精度を向上させることも原理的に可能である。つまり、光沢傷を強調したい場合は、次の画像処理工程を実行すればよい。先ず、要調整領域について、明視野画像と暗視野画像とを合わせた合成画像を生成する。合成画像は、上記実施形態と同様に、例えば、明視野画像及び暗視野画像の各ピクセルの階調の平均値によってグレースケールを作成して得られる。ここで、明視野画像は、主に光沢傷が認識された画像であり、暗視野画像は白化傷と一部の光沢傷が認識された画像であり、合成画像は白化傷が選択的又は相対的に強調された画像である。そこで、これら各画像の特性を考慮し、明視野画像又は暗視野画像から合成画像を差し引いた差分画像を生成する。得られた差分画像は、光沢傷と白化傷とが混在した状態から白化傷の要素が差し引かれた画像となる。このため、差分画像は、結果的に光沢傷が選択的又は相対的に強調された画像となる。このように、差分画像を用いれば、光沢傷を確実に認識することが可能となる。
[Image processing for inspection of gloss scratches]
In the above-described embodiment, the image processing process for improving the inspection accuracy of glossy scratches has been mainly described. However, in the present invention, it is possible in principle to improve the inspection accuracy of glossy scratches. That is, when it is desired to emphasize the gloss flaw, the next image processing step may be executed. First, a composite image that combines a bright-field image and a dark-field image is generated for a region that needs adjustment. Similar to the above embodiment, the composite image is obtained, for example, by creating a gray scale based on the average value of the gradation of each pixel of the bright field image and the dark field image. Here, the bright-field image is an image in which gloss flaws are mainly recognized, the dark-field image is an image in which whitening flaws and some gloss flaws are recognized, and the composite image has selective or relative whitening flaws. The image is emphasized. Therefore, in consideration of the characteristics of these images, a difference image is generated by subtracting the composite image from the bright field image or the dark field image. The obtained difference image is an image obtained by subtracting the elements of whitening scratches from a state where glossy scratches and whitening scratches are mixed. For this reason, the difference image results in an image in which gloss flaws are selectively or relatively emphasized. As described above, if the difference image is used, it is possible to reliably recognize the gloss flaw.
 次に、本発明の樹脂成型品における傷の検査方法、及び検査装置に関する実施例を説明する。本実施例では、線傷を付けた樹脂成型品の明視野画像と暗視野画像とを取得し、検査対象領域(後述の正方形で囲んだ約0.2mm四方の領域)の全領域を要調整領域とみなし、両画像の合成画像を作成した。線傷が形成される前の樹脂成形品に関する明視野参照画像及び暗視野参照画像は使用していない。 Next, an embodiment relating to a method and an inspection device for scratches in the resin molded product of the present invention will be described. In this example, a bright-field image and a dark-field image of a resin molded product with a line flaw are acquired, and the entire area of the inspection target area (an area of about 0.2 mm square surrounded by a square to be described later) needs to be adjusted. Considering the region, a composite image of both images was created. The bright-field reference image and dark-field reference image regarding the resin molded product before the line flaw is formed are not used.
 具体的には、図3(c)に示す梨地シボ加工が施されたポリプロピレン製の樹脂成型品に、スクラッチ装置(SCRATCH TESTER(カトーテック社製)、ISO19252(ASTM D7027-05)に準拠)を使用して、一定方向に沿って荷重を連続的に増加させることにより傾斜性を有する線傷を作成した。その後、検査装置(光学顕微鏡としてオリンパス社製BX51を備えた画像取得システム)を使用して、線傷を付けた樹脂成型品の顕微鏡画像について、スクラッチ操作の初期段階、中期段階、及び後期段階に相当する任意の3箇所の画像を取得した。3箇所の画像は、図5の傷の全体画像において、長方形で囲んだ3つの領域として示してある。夫々の箇所は、スクラッチ方向の矢印に沿って上流側から、(ii)光沢傷のみ、(iii)光沢傷と白化傷、(iv)白化傷のみ、が夫々確実に形成されている領域から選択した。図5(ii)~(iv)は、線傷が付いた樹脂成型品の各位置における、(a)明視野画像、(b)暗視野画像、(c)明視野画像と暗視野画像との合成画像、及び(d)合成画像の二値化画像を示している。二値化画像については、後述する。 Specifically, a scratch device (in accordance with SCRATCH TESTER (manufactured by Kato Tech Co., Ltd.), ISO19252 (ASTM D7027-05)) is applied to a resin molded product made of polypropylene subjected to a satin finish as shown in FIG. 3 (c). Used to create graded scratches by continuously increasing the load along a certain direction. Then, using an inspection device (an image acquisition system equipped with BX51 made by Olympus as an optical microscope), the microscopic image of the resin molded product with a line wound is in the initial stage, middle stage, and late stage of the scratch operation. Three corresponding images were acquired. The three images are shown as three regions surrounded by a rectangle in the entire image of the scratch in FIG. Each part is selected from an area where (ii) only glossy scratches, (iii) only glossy scratches and whitening scratches, and (iv) only whitening scratches from the upstream side along the scratch direction arrow. did. FIGS. 5 (ii) to (iv) show (a) a bright-field image, (b) a dark-field image, and (c) a bright-field image and a dark-field image at each position of the resin molded product with a line scar. A composite image and (d) a binary image of the composite image are shown. The binarized image will be described later.
 図6(ii)~(iv)は、図5(ii)~(iv)で示した各画像において正方形で囲んだ約0.2mm四方の領域を拡大し、ピクセル毎に256階調のグレースケールで表した図である。なお、図5(iii)は、光沢傷と白化傷とが混在する領域ではあるが、正方形で囲んだ約0.2mm四方の領域には、データの都合上、光沢傷のみが含まれ、白化傷は含まれていない。図7(ii)~(iv)は、図6で示した256階調グレースケール画像において、ピクセル毎に階調の数値を記載した階調図である。1が黒色に相当し、256が白色に相当する。従って、数値が小さい程、明度が下がって黒色に近づき、数値が大きい程、明度が上がって白色に近づく。図6の256階調グレースケール画像、及び図7の階調図から、適切な閾値を決定する。本実施例では、白化傷が認められる115を超える階調(すなわち、256階調のうち116番目)を閾値とし、図5(d)の二値化画像を得た。図8の(ii)及び図9の(iii)~(iv)は、図6の256階調グレースケール画像及び図7の階調図に基づいて、階調の数値を横軸に取り、ピクセル数を縦軸に取ったヒストグラムを示した図である。このヒストグラムは、上記0.2mm四方の各領域における階調の数値の分布を示すものである。
 本発明では、線傷の3箇所(初期段階、中期段階、後期段階)を選択して階調を示しているが、線傷全体について各画像を順次取得することが好ましい。線傷全体の階調を把握する結果、白化傷が始まる位置を客観的に判定することが出来る。
FIGS. 6 (ii) to (iv) show an enlarged area of about 0.2 mm square surrounded by a square in each image shown in FIGS. 5 (ii) to (iv), and a gray scale of 256 gradations for each pixel. FIG. FIG. 5 (iii) shows a region where glossy scratches and whitening scratches coexist, but the area of about 0.2 mm square surrounded by a square contains only glossy scratches for the convenience of data. Wounds are not included. FIGS. 7 (ii) to (iv) are gradation diagrams in which gradation values are described for each pixel in the 256 gradation gray scale image shown in FIG. 1 corresponds to black, and 256 corresponds to white. Therefore, the smaller the value, the lower the brightness and the closer to black, and the higher the value, the lightness increases and approaches white. An appropriate threshold value is determined from the 256 gradation gray scale image of FIG. 6 and the gradation diagram of FIG. In this example, the binarized image shown in FIG. 5D was obtained by setting the gradation exceeding 115 where whitening damage was recognized (that is, 116th out of 256 gradations) as a threshold value. (Ii) in FIG. 8 and (iii) to (iv) in FIG. 9 are based on the 256 gradation gray scale image in FIG. 6 and the gradation diagram in FIG. It is the figure which showed the histogram which took the number on the vertical axis | shaft. This histogram shows the distribution of the numerical values of the gradation in each area of the 0.2 mm square.
In the present invention, gradation is shown by selecting three places (initial stage, middle stage, and late stage) of the line scar, but it is preferable to sequentially acquire each image for the entire line wound. As a result of grasping the gradation of the entire flaw, it is possible to objectively determine the position where the whitening flaw starts.
 図5(d)の二値化画像を見ると、スクラッチ距離が大きくなるにつれて、画像全体に占める白化傷の割合が大きくなることが明らかである。図6及び図7を見ると、白化傷の画像は明度が高く、光沢傷の画像は、白化傷より明度が低いことが分かる。図8(ii)と図9(iii)とを比較すると、同じ光沢傷であっても、図9(iii)は図8(ii)よりも合成画像のヒストグラムは明度が高い側にシフトしていることが分かる。
 図8(ii)、及び図9(iii)、(iv)において、ピクセル毎の階調の数値の最大値、最小値、及び平均値も併記した。図8(ii)、及び図9(iii)においては、明視野画像の平均値と暗視野画像の平均値とは、ほとんど差がないが、図9(iv)の明視野画像の平均値は116、暗視野画像の平均値は143であり、両者の差は27であった。このことから、白化傷がある領域については、明視野画像と暗視野画像との間の階調の差が大きいことが分かる。
From the binary image shown in FIG. 5D, it is clear that as the scratch distance increases, the proportion of whitening scratches in the entire image increases. 6 and 7, it can be seen that the image of the whitening scratch has a high brightness, and the image of the gloss scratch has a lower brightness than the whitening scratch. Comparing FIG. 8 (ii) and FIG. 9 (iii), even if the same scratches are present, FIG. 9 (iii) shows that the histogram of the composite image is shifted to the higher brightness side than FIG. 8 (ii). I understand that.
8 (ii), 9 (iii), and (iv), the maximum value, minimum value, and average value of gradation values for each pixel are also shown. 8 (ii) and 9 (iii), there is almost no difference between the average value of the bright field image and the average value of the dark field image, but the average value of the bright field image of FIG. 9 (iv) is 116, the average value of the dark field image was 143, and the difference between them was 27. From this, it can be seen that in the region with whitening damage, the difference in gradation between the bright field image and the dark field image is large.
 図9(iii)において、明視野画像と暗視野画像とを比較すると、明視野画像で比較的明るい部分が暗視野画像で比較的暗い部分となっており、両者はちょうど反転する関係になることが読み取れる。また、図9(iii)の各画像における最大値及び最小値を比較すると、明視野画像では、最大値=142、最小値=46より、その差は96であり、暗視野画像では、最大値=116、最小値=57より、その差は59である。これに対して、合成画像では、最大値=99、最小値=63より、その差は36である。つまり、合成画像のヒストグラムの分布は、明視野画像及び暗視野画像のヒストグラムの分布より小さい。このことから、暗視野画像と明視野画像とを合成すると、夫々の画像における光沢傷の階調が平均化されて相殺される効果があるため、合成画像では光沢傷が目立たなくなることが分かった。つまり、暗視野画像における光沢傷の影響を、明視野画像によって低減することができる。それに伴い、白化傷が合成画像において選択的又は相対的に強調され、確実に認識することが可能となる。 In FIG. 9 (iii), when comparing a bright field image and a dark field image, a relatively bright part in the bright field image is a relatively dark part in the dark field image, and the two are just reversed. Can be read. Further, when the maximum value and the minimum value in each image of FIG. 9 (iii) are compared, the difference is 96 from the maximum value = 142 and the minimum value = 46 in the bright field image, and the maximum value in the dark field image. = 116, minimum value = 57, the difference is 59. On the other hand, in the composite image, the difference is 36 because the maximum value = 99 and the minimum value = 63. That is, the histogram distribution of the composite image is smaller than the histogram distribution of the bright field image and the dark field image. From this, it was found that when the dark-field image and the bright-field image are synthesized, the gradation of the glossy flaws in each image is averaged and canceled out, so that the glossy flaws are not noticeable in the synthesized image. . That is, the influence of the gloss flaw on the dark field image can be reduced by the bright field image. As a result, whitening scratches are selectively or relatively emphasized in the composite image, and can be reliably recognized.
 <参考例>
 参考として、線傷を付ける前の樹脂成型品の明視野画像と暗視野画像(即ち、明視野参照画像及び暗視野参照画像)とを取得し、両画像を合わせた合成画像を作成した。図5(i)は、線傷を付ける前の樹脂成型品における、(a)明視野画像(明視野参照画像)、(b)暗視野画像(暗視野参照画像)、(c)明視野画像(明視野参照画像)と暗視野画像(暗視野参照画像)との合成画像、及び(d)合成画像の二値化画像を示している。図6(i)は、図5(i)で示した各画像において正方形で囲んだ約0.2mm四方の領域を拡大し、ピクセル毎に256階調のグレースケールで表した図である。図7(i)は、図6(i)で示した256階調グレースケール画像において、ピクセル毎に階調の数値を記載した階調図である。図8(i)は、図6(i)の256階調グレースケール画像及び図7(i)の階調図に基づいて、階調の数値を横軸に取り、ピクセル数を縦軸に取ったヒストグラムを示した図である。
<Reference example>
As a reference, a bright-field image and a dark-field image (that is, a bright-field reference image and a dark-field reference image) of a resin molded product before a line scar was obtained, and a composite image was created by combining both images. FIG. 5 (i) shows (a) a bright-field image (bright-field reference image), (b) a dark-field image (dark-field reference image), and (c) a bright-field image in a resin-molded product before making a line scar. A composite image of (bright-field reference image) and a dark-field image (dark-field reference image), and (d) a binary image of the composite image are shown. FIG. 6 (i) is an enlarged view of an area of about 0.2 mm square surrounded by a square in each image shown in FIG. 5 (i) and is represented by a gray scale of 256 gradations for each pixel. FIG. 7 (i) is a gradation diagram in which numerical values of gradations are described for each pixel in the 256 gradation gray scale image shown in FIG. 6 (i). FIG. 8 (i) shows the gradation value on the horizontal axis and the number of pixels on the vertical axis based on the 256 gradation gray scale image of FIG. 6 (i) and the gradation diagram of FIG. 7 (i). It is the figure which showed the histogram.
 図8(i)、(ii)、及び図9(iii)、(iv)において併記されるピクセル毎の階調の数値の最大値、最小値、及び平均値を比較すると、図8(i)、(ii)、図9(iii)、(iv)となるにつれて、平均値が59、71、82、129と大きくなることが分かる。このことから、スクラッチ距離が大きくなるにつれて、明度が高くなることが明らかである。図8(i)によると、明視野画像では、最大値=110、最小値=36より、その差は74であった。この差は、シボの影響に起因すると考えられる。これに対して、合成画像では、最大値=89、最小値=37より、その差は52であった。合成画像のヒストグラムの分布は、明視野画像のヒストグラムの分布より小さくなった。このように、明視野参照画像と暗視野参照画像とを合成することによって、シボの影響を低減することが可能であることが分かった。シボが施された樹脂成型品における線傷の検査においては、要調整領域及び調整不要領域の設定に際し、明視野画像及び暗視野画像に加えて、明視野参照画像及び暗視野参照画像を利用することで、白化傷の有無を判断するに当たって判定が確実な領域、即ち、白化傷とシボとを誤認し難い領域を的確に除外することが可能となり、より正確な検査結果を導くことが出来ると予想される。 Comparing the maximum value, minimum value, and average value of the gradation values for each pixel shown in FIGS. 8 (i), (ii), and 9 (iii), (iv), FIG. 8 (i) , (Ii) and FIGS. 9 (iii) and (iv), the average values become 59, 71, 82 and 129. From this, it is clear that the brightness increases as the scratch distance increases. According to FIG. 8 (i), in the bright field image, the difference was 74 because the maximum value = 110 and the minimum value = 36. This difference is considered to be due to the effect of embossing. On the other hand, in the composite image, the difference was 52 because the maximum value = 89 and the minimum value = 37. The histogram distribution of the composite image was smaller than the histogram distribution of the bright field image. Thus, it was found that the effect of embossing can be reduced by synthesizing the bright field reference image and the dark field reference image. In the inspection of line flaws in a resin molded product to which wrinkles are applied, a bright-field reference image and a dark-field reference image are used in addition to a bright-field image and a dark-field image when setting an adjustment-necessary region and an adjustment-unnecessary region. Therefore, it is possible to accurately exclude areas that are reliable in determining the presence or absence of whitening wounds, that is, areas that are difficult to misidentify whitening wounds and wrinkles, and can lead to more accurate inspection results. is expected.
 本発明の樹脂成型品における傷の検査方法、及び検査装置は、表面にシボ加工が施された樹脂成形品を対象とするものであり、自動車の内装材の他、例えば、建物の内装材、家電製品の外装材等に使用される樹脂成形品にも利用可能である。 The method and apparatus for inspecting scratches in a resin molded product according to the present invention are intended for resin molded products whose surface is textured, and in addition to automobile interior materials, for example, interior materials for buildings, It can also be used for resin molded products used as exterior materials for home appliances.
 10  光学顕微鏡
 11  光源(照射手段)
 14  撮像部(画像取得手段)
 14a 撮像素子
 15  レギュレーター(光調整手段)
 20  コンピューター(演算部)
 21  画像処理手段
 22  判定手段
 100 検査装置
 S   試料(樹脂成形品)
10 Optical microscope 11 Light source (irradiation means)
14 Imaging unit (image acquisition means)
14a Image sensor 15 Regulator (light adjustment means)
20 Computer (calculation unit)
21 Image processing means 22 Judging means 100 Inspection device S Sample (resin molded product)

Claims (9)

  1.  表面にシボ加工が施された樹脂成形品における傷の検査方法であって、
     前記樹脂成形品に対し、一定方向に沿って荷重が連続的に変化することにより形成された傾斜性を有する線傷を検査対象とするものであり、
     前記線傷に光を照射する照射工程と、
     前記線傷の顕微鏡画像を取得する画像取得工程と、
     前記顕微鏡画像を処理する画像処理工程と、
     画像処理結果に基づいて前記線傷の状態を判定する判定工程と、
    を包含する樹脂成形品における傷の検査方法。
    A method for inspecting a flaw in a resin molded product having a textured surface,
    With respect to the resin molded product, it is intended to inspect a linear wound having an inclination formed by a load continuously changing along a certain direction,
    An irradiation step of irradiating the line wound with light;
    An image acquisition step of acquiring a microscopic image of the flaw;
    An image processing step for processing the microscope image;
    A determination step of determining the state of the flaw based on an image processing result;
    For inspecting flaws in resin molded products including
  2.  前記画像取得工程において、前記線傷の明視野画像及び暗視野画像を取得し、
     前記画像処理工程において、前記明視野画像及び前記暗視野画像に基づいて、前記顕微鏡画像に要調整領域及び調整不要領域を設定し、前記要調整領域について前記明視野画像と前記暗視野画像とを合わせた合成画像を生成するとともに、前記調整不要領域について前記明視野画像又は前記暗視野画像を選択し、前記合成画像及び前記調整不要領域の画像の階調を同じ取扱いルールに従って二値化し、
     前記判定工程において、前記画像処理工程で得られた画像処理結果に基づいて、前記線傷の状態である白化傷の有無を判定する請求項1に記載の樹脂成形品における傷の検査方法。
    In the image acquisition step, a bright-field image and a dark-field image of the flaw are acquired,
    In the image processing step, on the basis of the bright field image and the dark field image, a required adjustment area and an adjustment unnecessary area are set in the microscope image, and the bright field image and the dark field image are set for the adjustment area. Generating a combined composite image, selecting the bright field image or the dark field image for the adjustment unnecessary region, binarizing the gradation of the composite image and the image of the adjustment unnecessary region according to the same handling rule,
    The method for inspecting a flaw in a resin molded product according to claim 1, wherein in the determination step, the presence or absence of a whitening flaw that is the state of the line flaw is determined based on the image processing result obtained in the image processing step.
  3.  前記線傷が形成される前の樹脂成形品について、明視野参照画像及び暗視野参照画像を予め取得する準備工程をさらに実行し、
     前記画像処理工程において、前記要調整領域及び前記調整不要領域の設定に際し、さらに、前記明視野参照画像及び前記暗視野参照画像を利用する請求項2に記載の樹脂成形品における傷の検査方法。
    For the resin molded product before the line flaw is formed, further execute a preparatory step of acquiring a bright field reference image and a dark field reference image in advance,
    The method for inspecting a flaw in a resin molded product according to claim 2, wherein, in the image processing step, the bright field reference image and the dark field reference image are further used in setting the adjustment required area and the adjustment unnecessary area.
  4.  前記要調整領域は、前記明視野参照画像及び前記明視野画像の階調の比較結果と、前記暗視野参照画像及び前記暗視野画像の階調の比較結果とが異なる領域である第一要調整領域を含む請求項3に記載の樹脂成形品における傷の検査方法。 The adjustment-necessary area is a first adjustment-necessary area in which a comparison result of gradations of the bright field reference image and the bright field image is different from a comparison result of gradations of the dark field reference image and the dark field image. The method for inspecting a flaw in a resin molded product according to claim 3 including a region.
  5.  前記要調整領域は、前記明視野参照画像及び前記暗視野参照画像の階調の比較結果と、前記明視野画像及び前記暗視野画像の階調の比較結果とが異なる領域である第二要調整領域を含む請求項3又は4に記載の樹脂成形品における傷の検査方法。 The adjustment-necessary region is a second adjustment-necessary region in which a gradation comparison result between the bright-field reference image and the dark-field reference image is different from a gradation comparison result between the bright-field image and the dark-field image. The inspection method of the crack in the resin molded product according to claim 3 or 4 containing a field.
  6.  前記要調整領域は、前記顕微鏡画像の全領域である請求項2~5の何れか一項に記載の樹脂成形品における傷の検査方法。 The method for inspecting a flaw in a resin molded product according to any one of claims 2 to 5, wherein the adjustment required region is the entire region of the microscope image.
  7.  前記判定工程で前記線傷が確認されなかった場合、前記照射工程で照射する光を調整する光調整工程を実行する請求項1~6の何れか一項に記載の樹脂成形品における傷の検査方法。 The inspection of a flaw in a resin molded product according to any one of claims 1 to 6, wherein when the line flaw is not confirmed in the determination step, a light adjustment step of adjusting light irradiated in the irradiation step is executed. Method.
  8.  前記画像取得工程において、前記線傷の明視野画像及び暗視野画像を取得し、
     前記画像処理工程において、前記明視野画像及び前記暗視野画像に基づいて、前記顕微鏡画像に要調整領域及び調整不要領域を設定し、前記要調整領域について前記明視野画像と前記暗視野画像とを合わせた合成画像を生成後、前記明視野画像又は前記暗視野画像から前記合成画像を差し引いた差分画像を生成するとともに、前記調整不要領域について前記明視野画像又は前記暗視野画像を選択し、前記差分画像及び前記調整不要領域の画像の階調を同じ取扱いルールに従って二値化し、
     前記判定工程において、前記画像処理工程で得られた画像処理結果に基づいて、前記線傷の状態である光沢傷の有無を判定する請求項1に記載の樹脂成形品における傷の検査方法。
    In the image acquisition step, a bright-field image and a dark-field image of the flaw are acquired,
    In the image processing step, on the basis of the bright field image and the dark field image, a required adjustment area and an adjustment unnecessary area are set in the microscope image, and the bright field image and the dark field image are set for the adjustment area. After generating the combined composite image, a difference image is generated by subtracting the composite image from the bright field image or the dark field image, and the bright field image or the dark field image is selected for the adjustment unnecessary region, The gradation of the difference image and the image of the adjustment unnecessary area is binarized according to the same handling rule,
    The method for inspecting a flaw in a resin molded product according to claim 1, wherein in the determination step, the presence or absence of a gloss flaw that is the state of the line flaw is determined based on the image processing result obtained in the image processing step.
  9.  表面にシボ加工が施された樹脂成形品における傷の検査装置であって、
     前記樹脂成形品に対し、一定方向に沿って荷重が連続的に変化することにより形成された傾斜性を有する線傷を検査対象とするものであり、
     前記線傷に光を照射する照射手段と、
     前記線傷の顕微鏡画像を取得する画像取得手段と、
     前記顕微鏡画像を処理する画像処理手段と、
     画像処理結果に基づいて前記線傷の状態を判定する判定手段と、
    を備えた樹脂成形品における傷の検査装置。
    A device for inspecting scratches on a resin molded product having a textured surface,
    With respect to the resin molded product, it is intended to inspect a linear wound having an inclination formed by a load continuously changing along a certain direction,
    Irradiating means for irradiating the line wound with light;
    An image acquisition means for acquiring a microscopic image of the flaw;
    Image processing means for processing the microscope image;
    Determining means for determining the state of the flaw based on an image processing result;
    Inspection device for scratches on resin molded products with
PCT/JP2012/069977 2011-08-10 2012-08-06 Inspection method and inspection device for flaw in resin molded product WO2013021968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-174527 2011-08-10
JP2011174527 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013021968A1 true WO2013021968A1 (en) 2013-02-14

Family

ID=47668475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069977 WO2013021968A1 (en) 2011-08-10 2012-08-06 Inspection method and inspection device for flaw in resin molded product

Country Status (2)

Country Link
JP (1) JPWO2013021968A1 (en)
WO (1) WO2013021968A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462584A (en) * 2017-08-08 2017-12-12 吉林大学 Multiple degrees of freedom adjusting means, digital micro-mirror bad point detection device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961142A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Inspecting device of defect
JPS6288946A (en) * 1985-10-16 1987-04-23 Hitachi Ltd Image extracting method
JPH01169344A (en) * 1987-12-24 1989-07-04 Idemitsu Petrochem Co Ltd Measurement of degree of scrutch whitening
JPH11108637A (en) * 1997-10-03 1999-04-23 Dakku Engineering Kk Quality inspection device
JP2000249660A (en) * 1999-02-26 2000-09-14 Idemitsu Petrochem Co Ltd Apparatus and method for inspection of surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5961142A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Inspecting device of defect
JPS6288946A (en) * 1985-10-16 1987-04-23 Hitachi Ltd Image extracting method
JPH01169344A (en) * 1987-12-24 1989-07-04 Idemitsu Petrochem Co Ltd Measurement of degree of scrutch whitening
JPH11108637A (en) * 1997-10-03 1999-04-23 Dakku Engineering Kk Quality inspection device
JP2000249660A (en) * 1999-02-26 2000-09-14 Idemitsu Petrochem Co Ltd Apparatus and method for inspection of surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462584A (en) * 2017-08-08 2017-12-12 吉林大学 Multiple degrees of freedom adjusting means, digital micro-mirror bad point detection device and method
CN107462584B (en) * 2017-08-08 2019-12-03 吉林大学 Multiple degrees of freedom regulating device, digital micro-mirror bad point detection device and method

Also Published As

Publication number Publication date
JPWO2013021968A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
US8351679B2 (en) Exclusion of recognized parts from inspection of a cylindrical object
KR101832081B1 (en) Surface defect detection method and surface defect detection device
TWI399534B (en) And a defect inspection device for performing defect inspection using image analysis
JP4826750B2 (en) Defect inspection method and defect inspection apparatus using the method
US7105848B2 (en) Dual level out-of-focus light source for amplification of defects on a surface
CA3049408C (en) Apparatus and methods for shot peening evaluation
US5847822A (en) Optical element inspecting apparatus
RU2764644C1 (en) Method for detecting surface defects, device for detecting surface defects, method for producing steel materials, method for steel material quality control, steel materials production plant, method for generating models for determining surface defects and a model for determining surface defects
KR100972425B1 (en) Multiple illumination path system and method for defect detection
JP6078286B2 (en) Appearance inspection apparatus and appearance inspection method
CN111879789A (en) Metal surface defect detection method and system
US20230020684A1 (en) Laser based inclusion detection system and methods
WO2013021968A1 (en) Inspection method and inspection device for flaw in resin molded product
JP2005189113A (en) Surface inspecting device and surface inspection method
JP5557586B2 (en) Surface texture measuring device and surface texture measuring method
JP2004309426A (en) Method and apparatus for evaluating translucent substrate
KR100517868B1 (en) Method for determining and evaluating defects in a sample surface
JP3905741B2 (en) Optical member inspection method
JP2009222676A (en) Linear object detecting apparatus and linear object detecting method used for same
JP7411155B2 (en) Color unevenness inspection device and color unevenness inspection method
KR100484812B1 (en) Inspection method of surface by image sensor and the same apparatus
JP3917431B2 (en) Optical member inspection method
TW200823448A (en) Automated optical inspection system and the method thereof
JP7443162B2 (en) Inspection equipment and inspection method
JP7111370B2 (en) Defect inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822491

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013528020

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822491

Country of ref document: EP

Kind code of ref document: A1