WO2013021919A1 - Coolant device, x-ray computer tomography device, and x-ray computer tomography device maintenance method - Google Patents

Coolant device, x-ray computer tomography device, and x-ray computer tomography device maintenance method Download PDF

Info

Publication number
WO2013021919A1
WO2013021919A1 PCT/JP2012/069744 JP2012069744W WO2013021919A1 WO 2013021919 A1 WO2013021919 A1 WO 2013021919A1 JP 2012069744 W JP2012069744 W JP 2012069744W WO 2013021919 A1 WO2013021919 A1 WO 2013021919A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
radiator
housing
base
unit
Prior art date
Application number
PCT/JP2012/069744
Other languages
French (fr)
Japanese (ja)
Inventor
阿武 秀郎
智成 石原
哲也 米澤
春信 福島
千治 田所
仁志 服部
Original Assignee
東芝電子管デバイス株式会社
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012147432A external-priority patent/JP5902054B2/en
Priority claimed from JP2012169319A external-priority patent/JP2013084572A/en
Application filed by 東芝電子管デバイス株式会社, 株式会社 東芝 filed Critical 東芝電子管デバイス株式会社
Priority to CN201280037927.1A priority Critical patent/CN103732145B/en
Publication of WO2013021919A1 publication Critical patent/WO2013021919A1/en
Priority to US14/173,556 priority patent/US9351694B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]

Definitions

  • Embodiments described herein relate generally to a cooling machine, an X-ray computed tomography apparatus, and a maintenance method for the X-ray computed tomography apparatus.
  • a gantry of an X-ray computed tomography apparatus (hereinafter referred to as an X-ray CT apparatus) includes a fixed frame, a rotating pedestal rotatably supported by the fixed frame, and a housing containing the fixed frame and the rotating pedestal. I have.
  • the gantry also includes an X-ray tube device, an X-ray detector, a cooling unit (cooling machine), and the like mounted on a rotating mount.
  • the rotating mount has a ring-shaped frame portion, and an X-ray tube device, an X-ray detector, a cooling unit, and the like are attached to the inner wall of the ring-shaped frame 10. These units are relatively compact but have a large mass and a high pressure on the installation surface, so that particularly strong fixation is required.
  • the frame such as the X-ray tube apparatus and the cooling unit can be used even when the rotating base rotates at a high speed and as a result, a great centrifugal force is applied to the X-ray tube apparatus and the cooling unit. It is possible to maintain strong adhesion to the part.
  • the X-ray tube device and the cooling unit are connected via a circulation path through which a coolant that transmits heat generated by the X-ray tube is circulated.
  • the heat source of the X-ray CT apparatus is an X-ray tube. For this reason, the heat generated by the X-ray tube is transmitted to the cooling liquid, and the high-temperature cooling liquid is sent to the cooling unit.
  • the cooling unit includes a radiator and a fan unit. The coolant cooled by the cooling unit is returned to the X-ray tube again.
  • the heat generated in the X-ray tube eventually heats the air blown by the fan unit. Then, the heated air is trapped inside the casing, increasing the temperature of the internal atmosphere of the casing, and impairing the cooling performance of the cooling unit and the stability of the sensitivity of the X-ray detector.
  • an opening is formed in the frame portion of the rotating gantry, and the air that has passed through the radiator is discharged to the outside of the frame portion through the opening.
  • an exhaust port is formed in the upper portion and an intake port is formed in the lower portion.
  • the air that has passed through the opening of the frame portion can be discharged from the exhaust port of the housing to the outside of the housing, and new air can be taken into the housing from the intake port of the housing. Since the air inside the housing can be replaced, an increase in the temperature of the internal atmosphere of the housing can be suppressed.
  • the above X-ray CT apparatus has the following problems.
  • the air blown to the radiator by the fan unit is the outside air introduced from the intake port of the housing, but generally the outside air contains dust.
  • dust accumulates in the gaps between the fins of the radiator as the usage time elapses, and the air gradually becomes difficult to pass through the radiator.
  • the cooling performance of the cooling unit decreases and the cooling rate of the X-ray tube also decreases. For this reason, overheating occurs in the X-ray tube, and there is a risk that electric discharge frequently occurs in the X-ray tube or the product life of the X-ray tube is shortened.
  • the radiator is attached in close contact with the frame part. For this reason, in the state of a finished product (product), it is difficult to clean the dust accumulated in the gaps between the fins of the radiator. In order to clean the dust accumulated in the gaps between the fins of the radiator, the X-ray tube device connected to the cooling unit must be removed from the frame in addition to the cooling unit, which requires a lot of maintenance work. Become.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a cooling machine, an X-ray computed tomography apparatus, and a maintenance method for the X-ray computed tomography apparatus that can be cleaned without removing the radiator from the rotating mount. It is to provide.
  • FIG. 1 is a perspective view showing an appearance of a gantry of the X-ray CT apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the X-ray CT apparatus taken along line II-II in FIG.
  • FIG. 3 is a front view showing the rotating gantry shown in FIG. 2 and the X-ray tube device, cooling unit, and X-ray detector mounted on the rotating gantry.
  • FIG. 4 is a conceptual configuration diagram showing the X-ray tube device and the cooling unit.
  • FIG. 5 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus shown in FIG.
  • FIG. 6 is a schematic configuration diagram illustrating a separated state of the cooling unit illustrated in FIG. 4.
  • FIG. 5 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus shown in FIG.
  • FIG. 7 is a cross-sectional view showing the X-ray tube apparatus of Example 1 of the X-ray CT apparatus according to the first embodiment.
  • FIG. 8 is a cross-sectional view showing an X-ray tube apparatus of Example 2 of the X-ray CT apparatus according to the first embodiment.
  • FIG. 9 is another sectional view showing the X-ray tube apparatus shown in FIG.
  • FIG. 10 is an enlarged cross-sectional view of a part of the X-ray tube apparatus shown in FIGS.
  • FIG. 11 is a front view showing the rotating gantry of the X-ray CT apparatus according to the second embodiment, and the X-ray tube device, the cooling unit, and the X-ray detector mounted on the rotating gantry.
  • FIG. 12 is a front view showing the rotating gantry of the X-ray CT apparatus according to the third embodiment, and the X-ray tube device, the cooling unit, and the X-ray detector mounted on the rotating gantry.
  • FIG. 13 is a front view showing a rotating gantry of an X-ray CT apparatus according to the fourth embodiment, and an X-ray tube device, a cooling unit, and an X-ray detector mounted on the rotating gantry.
  • FIG. 14 is a front view showing a rotating gantry of an X-ray CT apparatus according to the fifth embodiment, and an X-ray tube device, a cooling unit, and an X-ray detector mounted on the rotating gantry.
  • FIG. 15 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the fifth embodiment, and includes a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, an air basin, and a duct.
  • FIG. 16 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the sixth embodiment, showing a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, an air basin, and a duct.
  • FIG. 17 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the seventh embodiment, and shows a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, and an air basin. is there.
  • FIG. 18 is a cross-sectional view showing a part of the X-ray CT apparatus taken along line XVIII-XVIII in FIG.
  • FIG. 19 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the eighth embodiment, and is a view showing a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, and an air basin. is there.
  • FIG. 18 is a cross-sectional view showing a part of the X-ray CT apparatus taken along line XVIII-XVIII in FIG.
  • FIG. 19 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the eighth embodiment, and is a view showing a frame part, a
  • FIG. 20 is a cross-sectional view showing a part of the X-ray CT apparatus taken along line XX-XX in FIG.
  • FIG. 21 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the ninth embodiment, showing a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, an air basin, and a duct.
  • FIG. 22 is a cross-sectional view showing a part of the X-ray CT apparatus taken along line XXII-XXII in FIG.
  • FIG. 23 is a diagram showing a modification of the X-ray CT apparatus, and is a conceptual configuration diagram showing an X-ray tube apparatus and a cooling unit.
  • FIG. 24 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus shown in FIG.
  • FIG. 25 is a schematic configuration diagram showing a separated state of the cooling unit shown in FIG.
  • FIG. 26 is a diagram showing another modification of the X-ray CT apparatus, and is a schematic configuration diagram showing an air basin, a pressure detector, a pressure control device, and a pressure adjustment mechanism.
  • FIG. 27 is a diagram showing another modification of the X-ray CT apparatus, and is a schematic configuration diagram showing an air basin.
  • FIG. 28 is a front view showing a rotating gantry of a comparative example of the X-ray CT apparatus, and an X-ray tube device, a cooling unit, and an X-ray detector mounted on the rotating gantry.
  • FIG. 29 is a perspective view schematically showing the X-ray CT apparatus according to the embodiment.
  • FIG. 30 is a cross-sectional view schematically showing the structure inside the rotating body in the X-ray CT apparatus shown in FIG.
  • FIG. 31 is a cross-sectional view schematically showing the structure of the cooler according to the tenth embodiment shown in FIG.
  • FIG. 32 is a cross-sectional view schematically showing features of the cooler according to the tenth embodiment shown in FIG.
  • FIG. 33 is a cross-sectional view schematically showing features of the cooler according to the tenth embodiment shown in FIG.
  • FIG. 34 is a cross-sectional view schematically showing features of the cooler according to the tenth embodiment shown in FIG.
  • the cooler is a cooler for cooling an X-ray generator that is mounted on a rotating body and is rotated around a rotation center axis together with the rotating body.
  • the cooler is mounted so as to close a casing having a base fixed to a cooler fixing surface of the rotating body and a vent provided in a portion other than the base of the casing, and the coolant circulates.
  • a radiator unit that is attached to the circulation path and discharges heat of the cooling liquid to the outside; and a fan unit that is housed in the housing and creates a flow of air passing through the radiator unit.
  • the air flow is a flow away from the rotation center axis, and the windward side of the radiator unit is exposed to the outside of the casing.
  • An X-ray computed tomography apparatus houses a housing, a cathode that emits an electron beam, an anode target that emits X-rays when irradiated with the electron beam, and the cathode and the anode target.
  • An X-ray tube device including an X-ray tube housed in the housing, a coolant to which at least part of heat generated by the X-ray tube is transmitted, and the cooling A circulation path through which the liquid circulates, a circulation pump attached to the circulation path to circulate the cooling liquid, a radiator unit attached to the circulation path to release heat of the cooling liquid to the outside, and the radiator unit.
  • a fan unit that creates a flow of passing air; an X-ray detector that detects the X-ray; and a ring-shaped frame portion that rotates about a rotation axis; Comprising a tube unit, a circulation pump, a radiator unit, a rotating gantry of the fan unit and the X-ray detector is mounted, the.
  • the windward side of the radiator unit is exposed to the space on the inner wall side of the frame portion.
  • a maintenance method for an X-ray computed tomography apparatus includes a housing, a cathode that emits an electron beam, an anode target that emits X-rays when irradiated with the electron beam, and the cathode and anode.
  • An X-ray tube device including a vacuum envelope containing a target and housed in the housing; and a coolant to which at least part of heat generated by the X-ray tube is transmitted;
  • An X-ray computed tomography apparatus is prepared in which the windward side of the radiator unit is exposed in the space on the inner wall side of the frame portion.
  • the housing, radiator unit, circulation pump, and bellows mechanism connected to form the circulation path are separated into two systems by two detachable joints. After separation into the two systems, another bellows mechanism is attached to the other system not including the bellows mechanism via the removable joint.
  • the X-ray computed tomography apparatus is an X-ray CT (computerized tomography) apparatus.
  • FIG. 1 is a perspective view showing an appearance of a gantry of the X-ray CT apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the X-ray CT apparatus taken along line II-II in FIG.
  • FIG. 3 is a front view showing the rotating gantry shown in FIG. 2 and the X-ray tube device, cooling unit, and X-ray detector mounted on the rotating gantry.
  • the X-ray CT apparatus 1 includes a housing 2, a base part 4, a fixed base 5, a rotary base 6, a bearing member 8, an X-ray tube device 10, a cooling unit 20, and an X-ray.
  • a detector 40 is provided.
  • casing 2 accommodates many said members.
  • the housing 2 decorates the external appearance of the X-ray CT apparatus 1.
  • the housing 2 includes an exhaust port 2a, an intake port 2b, and an introduction port 2c.
  • the exhaust port 2 a is formed in the upper part of the housing 2.
  • the exhaust port 2a is closed with a mesh-like cover 3 having excellent air permeability.
  • the X-ray CT apparatus 1 further includes a fan unit provided in the housing 2 and facing the cover 3. Thereby, the air in the housing
  • the air inlet 2 b is formed in the lower part of the housing 2.
  • the air inlet 2 b is formed in a gap between the housing 2 and the base portion 4. New air outside the housing 2 can be taken into the housing 2 through the air inlet 2b. From the above, since the air inside the housing 2 can be replaced, an increase in the temperature of the air inside the housing 2 can be suppressed.
  • the inlet 2c is for introducing a subject.
  • the X-ray CT apparatus 1 also includes a bed on which a subject is placed.
  • the fixed mount 5 is fixed to the base part 4.
  • a bearing (rolling bearing, ball / roll bearing) member 8 that functions as a bearing mechanism is provided between the fixed base 5 and the rotary base 6.
  • the rotating gantry 6 is rotatably supported by the fixed gantry 5 via a bearing member 8.
  • the rotating gantry 6 is called a gantry, and can rotate around a rotating shaft (gantry center) a1 of the rotating gantry 6.
  • the X-ray CT apparatus employs, for example, a direct drive motor.
  • the rotary mount 6 has a ring-shaped frame portion 7 located on the outermost periphery.
  • An opening 7 a is formed in the frame portion 7.
  • the size and the number of the openings 7a correspond to the size and the number of fan units 25 described later.
  • the X-ray tube device 10, the cooling unit 20, and the X-ray detector 40 are attached to the rotating mount 6.
  • the X-ray tube device 10 and the cooling unit 20 are attached to the inner wall of the frame portion 7.
  • a high voltage generating power source or the like may be attached to the inner wall of the frame portion 7.
  • the X-ray tube apparatus 10 and the cooling unit 20 are relatively compact and have a large mass and a high pressure on the installation surface, and are thus firmly fixed to the frame portion 7. As a result, even when the rotating gantry 6 rotates at a high speed and, as a result, a great centrifugal force is applied to the X-ray tube apparatus 10 and the cooling unit 20, these can maintain a firm adhesion to the frame portion 7. .
  • the X-ray tube device 10 functions as an X-ray generator and emits X-rays.
  • the X-ray detector 40 faces the X-ray tube device 10 (X-ray tube) with the rotation axis a1 interposed therebetween.
  • the X-ray detector 40 has a plurality of X-ray detection elements arranged in an arc shape, for example.
  • the X-ray CT apparatus may be provided with a plurality of X-ray detectors 40 and arranged.
  • the X-ray detector 40 detects X-rays emitted from the X-ray tube apparatus 10 and transmitted through the subject, and converts the detected X-rays into electrical signals.
  • the X-ray CT apparatus 1 may further include a data collection device that is attached to the rotary base 6 and that amplifies an electric signal output from the X-ray detector 40 and performs AD conversion.
  • the fixed base 5 may be provided with a device for supplying electric power or a control signal to the X-ray tube apparatus 10 and the cooling unit 20. The said apparatus can be given to the X-ray tube apparatus 10 and the cooling unit 20 etc. which are attached to the rotation mount 6 via the slip ring.
  • the rotary mount 6 rotates around the rotation axis a1.
  • the X-ray tube apparatus 10 the cooling unit 20, the X-ray detector 40, and the like rotate integrally around the subject.
  • X-rays are emitted from the X-ray tube device 10.
  • the X-ray passes through the subject and enters the X-ray detector 40, and the X-ray detector 40 detects the intensity of the X-ray.
  • the detection signal detected by the X-ray detector 40 is amplified by, for example, the data acquisition device, converted into a digital detection signal by A / D conversion, and supplied to a computer (not shown).
  • the computer calculates the X-ray absorption rate in the region of interest of the subject based on the digital detection signal, and constructs image data for generating a tomographic image of the subject from the calculation result.
  • the image data is sent to a display device (not shown) and displayed as a tomographic image on the screen.
  • the X-ray tube apparatus 10 and the X-ray detector 40 rotate with the subject interposed therebetween, and so-called projections of X-ray intensity transmitted through all points in the examination section of the subject.
  • Data is acquired from various angles, for example from a range of 360 °. Based on this projection data, a tomographic image is generated by a data reconstruction program programmed in advance.
  • FIG. 4 is a conceptual configuration diagram showing the X-ray tube apparatus 10 and the cooling unit 20.
  • the X-ray tube device 10 includes a housing 12 and an X-ray tube 13 accommodated in the housing 12.
  • the housing 12 (X-ray tube device 10) is independently and directly attached and fixed to the rotating gantry 6 independently.
  • the housing 12 is directly attached to the inner wall of the frame portion 7.
  • the X-ray tube 13 includes a cathode that emits an electron beam, an anode target that emits X-rays when irradiated with the electron beam, and a vacuum envelope that houses the cathode and the anode target.
  • the X-ray CT apparatus 1 has a coolant 9. At least a part of the heat generated by the X-ray tube 13 is transmitted to the coolant 9.
  • the X-ray tube apparatus 10 has a conduit 11a and a conduit 11b.
  • One end of the conduit 11 a is airtightly attached to the coolant inlet 12 i of the housing 12, and the other end is airtightly attached to the socket 72.
  • One end of the conduit 11 b is airtightly attached to the coolant discharge port 12 o of the housing 12, and the other end is airtightly attached to the socket 82.
  • the conduit 11a and the conduit 11b form a part of the circulation path 30 through which the coolant 9 circulates.
  • the coolant 9 is accommodated in the housing 12.
  • the housing 12 forms a part of the circulation path 30 together with the conduit 11a and the conduit 11b. And since the cooling fluid 9 circulates through the heat transfer surface of the X-ray tube 13, it is possible to cool the X-ray tube 13, particularly an anode target described later.
  • the conduit 11a and the X-ray tube 13 are connected directly or indirectly through a joint, or the conduit 11b and the X-ray tube 13 are connected. Connect directly or indirectly through a joint.
  • the inside of the housing 12 and the X-ray tube 13 forms a part of the circulation path 30 together with the conduit 11a and the conduit 11b.
  • the coolant 9 circulates through the heat transfer surface inside the X-ray tube 13, whereby the X-ray tube 13, particularly an anode target described later, can be cooled.
  • the coolant may be accommodated in the housing 12, or conversely. It does not have to be.
  • the coolant stored in the housing 12 may be a different type of coolant from the coolant 9.
  • the inside of the X-ray tube 13 forms a part of the circulation path 30 together with the conduit 11a and the conduit 11b. Thereby, the coolant 9 circulates through the heat transfer surface inside the X-ray tube 13, whereby the X-ray tube 13, particularly an anode target described later, can be cooled.
  • the cooling unit 20 has a conduit 21a, a conduit 21b, a conduit 21c, a conduit 21d, a circulation pump 22, a heat exchanger 23, and an air basin 60 as a bellows mechanism.
  • One end of the conduit 21a is airtightly attached to the plug 81.
  • One end of the conduit 21c is airtightly attached to the plug 71.
  • One end of the conduit 21d is airtightly attached to the conduit 21a.
  • the conduit 21a, the conduit 21b, the conduit 21c, and the conduit 21d form part of the circulation path 30.
  • the circulation pump 22 is independently attached or fixed to the inner wall of the frame portion 7 independently.
  • the circulation pump 22 is directly attached to the inner wall of the frame portion 7.
  • the circulation pump 22 is attached to the circulation path 30.
  • the circulation pump 22 is airtightly attached between the conduit 21a and the conduit 21b.
  • the circulation pump 22 discharges the coolant 9 to the conduit 21b and takes in the coolant 9 from the conduit 21a.
  • the circulation pump 22 can circulate the coolant 9 in the circulation path 30.
  • the heat exchanger 23 is attached to the circulation path 30 and releases the heat of the coolant 9 to the outside.
  • the heat exchanger 23 includes a radiator 24, a fan unit 25, and a duct 26.
  • the radiator 24 is attached to the circulation path 30.
  • the radiator 24 includes a conduit 21b and a plurality of heat radiating pipes (not shown) through which a coolant flows, and a plurality of heat radiating fins (not shown) attached to the heat radiating pipes.
  • the radiator 24 can release the heat of the coolant 9 to the outside.
  • the radiator 24 is a fin tube type structure in which a plurality of fins having a large surface area in contact with air are attached to a tube in which a coolant having a circular or flat cross section flows, and has a substantially panel shape. Yes.
  • the radiator 24 has a front surface that is the windward side of the air flow that passes through the radiator and a back surface that is the leeward side.
  • a gap between adjacent fins becomes an air flow path.
  • flat tubes arranged in a large number at equal intervals and corrugated fins are attached to the gaps, and the tops are attached to the flat side surfaces of the flat tubes, the fins and the flat tubes A gap between the flat side surfaces becomes an air flow path.
  • the fan units 25 are positioned to face the opening 7a and the back surface of the radiator 24, respectively.
  • the distance from the rotation axis a1 to the fan unit 25 is longer than the distance from the rotation axis a1 to the radiator 24.
  • the fan unit 25 can create a flow of air that passes from the front surface to the back surface of the radiator 24.
  • the fan unit 25 can release the air passing through the radiator 24 to the outside of the rotary mount 6 (frame portion 7) through the opening 7a.
  • the heat exchanger 23 can release the heat of the coolant 9 to the outside.
  • the air that has passed through the radiator 24 can be released to the outside of the rotating gantry 6, an increase in the temperature of the air inside the rotating gantry 6 can be suppressed.
  • the duct 26 is located between the radiator 24 and the fan unit 25.
  • the duct 26 surrounds the peripheral edge of the radiator 24 and the peripheral edge of the fan unit 25.
  • the duct 26 can guide the air flow around the radiator 24 to the fan unit 25. Since the air heated by passing through the radiator 24 can be efficiently guided to the fan unit 25, the temperature of the air inside the rotating mount 6 (the region surrounded by the rotating mount 6 and the housing 2) is increased. Can be further suppressed. Thereby, the cooling performance of the heat exchanger 23 and the stability of the sensitivity of the X-ray detector 40 can be maintained in a high state.
  • the cooling unit 20 further includes a housing 50 attached to the rotary mount 6.
  • the housing 50 is attached and fixed to the inner wall of the frame portion 7.
  • the housing 50 is made of sheet metal, for example.
  • the housing 50 is designed to have a mechanical strength that can withstand the centrifugal force applied with the rotation of the rotary mount 6.
  • the radiator 24, the fan unit 25, and the duct 26 are housed in a casing 50 and unitized.
  • the housing 50 is formed so as to open so as to expose the radiator 24 and the fan unit 25 to the outside.
  • the radiator 24, the fan unit 25, and the duct 26 are directly or indirectly attached and fixed to the rotary mount 6.
  • the radiator 24, the fan unit 25, and the duct 26 are indirectly attached to the inner wall of the frame portion 7 via the housing 50.
  • the air basin 60 is directly or indirectly attached to the rotary mount 6.
  • the air basin 60 is directly attached to the frame portion 7 independently of the housing 12, the circulation pump 22, the radiator 24, the fan unit 25, and the like.
  • the air basin 60 is attached to the circulation path 30.
  • the air basin 60 has a case 61 having an opening 61a.
  • the opening 61a is in airtight communication with the conduit 21d.
  • the air basin 60 has a bellows 62 as an elastic diaphragm that divides the inside of the case 61 into a first region 63 and a second region 64 connected to the opening 61a.
  • the case 61 has a vent hole 65 connected to the second region 64. Since the vent hole 65 allows air to enter and exit, the second region 64 is open to the atmosphere.
  • the bellows 62 is liquid-tightly attached to the case 61.
  • the bellows 62 is telescopic.
  • the bellows 62 is formed of rubber.
  • the bellows 62 can absorb a volume change (expansion and contraction of the volume) due to a temperature change of the coolant 9.
  • the bellows 62 is preferably formed of a material that is impermeable to gas.
  • the plug 71 and the socket 72 form a coupler 70 as a detachable joint
  • the plug 81 and the socket 82 form a coupler 80 as a detachable joint.
  • the couplers 70 and 80 can be switched between a connected state (fixed state) in which the plug and the socket are connected and a separated state in which the plug and the socket are separated.
  • the couplers 70 and 80 are connected in an airtight and liquid-tight manner in the connected state.
  • the couplers 70 and 80 are couplers with a shut-off valve.
  • the plugs 71 and 81 and the sockets 72 and 82 can prevent leakage of the liquid (cooling liquid 9) to the outside, and can prevent air from entering the inside.
  • the separated X-ray tube apparatus 10 is configured to hardly absorb the volume change of the coolant 9. Therefore, by forming the conduits 11a and 11b with rubber hoses, the conduits 11a and 11b can have a function of absorbing the volume change of the coolant 9. However, there are cases where the volume change of the coolant 9 cannot be sufficiently absorbed by only the conduits 11a and 11b. In this case, it is preferable to attach an air tray to the X-ray tube apparatus 10 in the separated state.
  • FIG. 5 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus 10 shown in FIG.
  • an air basin 90 as a bellows mechanism is attached to the X-ray tube apparatus 10.
  • the air basin 90 is attached to the X-ray tube apparatus 10 via a plug 83 and a conduit 84 that are airtight and liquid tightly connected to each other.
  • the plug 83 and the socket 82 form a coupler as a detachable joint, and are connected in an airtight and liquid-tight manner in the connected state.
  • the air basin 90 has a case 91 having an opening 91a.
  • the opening 91 a is in airtight communication with the conduit 84.
  • the air basin 90 has a bellows 92 that divides the inside of the case 91 into a first region 93 and a second region 94 connected to the opening 91a.
  • the case 91 has a vent hole 95 connected to the second region 94. Since the ventilation hole 95 allows air to enter and exit, the second region 94 is open to the atmosphere. In addition, the ventilation hole 95 does not need to be formed in the case 91. In this case, the second region 94 is a sealed space.
  • the bellows 92 is attached to the case 91 in a liquid-tight manner.
  • the bellows 92 is telescopic.
  • the bellows 92 is made of rubber.
  • the bellows 92 can absorb a volume change (expansion and contraction of the volume) due to a temperature change of the coolant 9.
  • the bellows 92 is preferably formed of a material that is impermeable to gas.
  • FIG. 6 is a schematic configuration diagram showing a separated state of the cooling unit 20 shown in FIG.
  • the cooling unit 20 in the separated state includes an air tray 60. For this reason, without adding to the cooling unit 20, leakage of the liquid (cooling liquid 9) to the outside in the cooling unit 20 in the separated state can be prevented, and mixing of air into the inside can be prevented.
  • FIG. 7 is a cross-sectional view illustrating the X-ray tube apparatus 10 according to the first embodiment.
  • the X-ray tube apparatus 10 is a rotary anode type X-ray tube apparatus, and the X-ray tube 13 is a rotary anode type X-ray tube.
  • the X-ray tube device 10 includes a stator coil 102 as a coil for generating a magnetic field in addition to the X-ray tube 13.
  • the housing 12 (FIG. 4) houses the X-ray tube 13 and the stator coil 102.
  • the X-ray tube 13 includes a fixed shaft 110 as a fixed body, a tube portion 130, an anode target 150, a rotating body 160, a liquid metal 170 as a lubricant, a cathode 180, and a vacuum envelope 190. I have.
  • the X-ray tube 13 uses a dynamic pressure slide bearing.
  • the fixed shaft 110 extends along the rotation axis a2, is formed in a cylindrical shape with the rotation axis a2 as a central axis, and one end is closed.
  • the fixed shaft 110 has a bearing surface 110 ⁇ / b> S on the side surface that is removed from the one end.
  • the fixed shaft 110 is made of a material such as an Fe (iron) alloy or an Mo (molybdenum) alloy.
  • the inside of the fixed shaft 110 is filled with the coolant 9.
  • the fixed shaft 110 has a flow path through which the coolant 9 flows.
  • the fixed shaft 110 has a discharge port 110b for discharging the coolant 9 to the outside on the other end side.
  • the pipe part 130 is provided inside the fixed shaft 110 and forms a flow path together with the fixed shaft.
  • One end portion of the tube portion 130 extends to the outside of the fixed shaft 110 through an opening 110 a formed at the other end portion of the fixed shaft 110.
  • the tube part 130 is closely fixed to the opening part 110a.
  • the pipe part 130 has an intake port 130 a for taking in the coolant 9 therein and a discharge port 130 b for discharging the coolant 9 into the fixed shaft 110.
  • the intake 130 a is located outside the fixed shaft 110.
  • the discharge port 130b is located at one end of the fixed shaft 110 with a gap.
  • the intake port 130a is connected directly to the conduit 11a or indirectly through a joint, and the discharge port 110b is opened in the housing 12.
  • the intake port 130a is opened in the housing 12, and the discharge port 110b is connected to the conduit 11b directly or indirectly through a joint.
  • the coolant 9 from the outside of the X-ray tube 13 is taken in from the intake port 130a, discharged through the inside of the tube portion 130 into the fixed shaft 110, and between the fixed shaft 110 and the tube portion 130. As a result, the liquid is discharged from the discharge port 110b to the outside of the X-ray tube 13.
  • the anode target 150 has an anode 151 and a target layer 152 provided on a part of the outer surface of the anode.
  • the anode 151 is formed in a disk shape and is provided coaxially with the fixed shaft 110.
  • the anode 151 is made of a material such as an Mo alloy.
  • the anode 151 has a recess 151a in the direction along the rotation axis a2.
  • the recess 151a is formed in a disc shape.
  • One end of the fixed shaft 110 is fitted in the recess 151a.
  • the recess 151 a is formed with a gap at one end of the fixed shaft 110.
  • the target layer 152 is formed in a ring shape from a material such as a W (tungsten) alloy.
  • the surface of the target layer 152 is an electron collision surface.
  • the rotating body 160 is formed in a cylindrical shape having a diameter larger than that of the fixed shaft 110.
  • the rotating body 160 is provided coaxially with the fixed shaft 110 and the anode target 150.
  • the rotating body 160 is formed shorter than the fixed shaft 110.
  • the rotating body 160 is made of a material such as Fe or Mo. More specifically, the rotating body 160 is provided at the cylindrical portion 161, an annular portion 162 formed integrally with the cylindrical portion so as to surround a side surface of one end portion of the cylindrical portion 161, and the other end portion of the cylindrical portion 161. A seal portion 163 and a tube portion 164 are provided.
  • the cylinder portion 161 surrounds the side surface of the fixed shaft 110.
  • the cylindrical portion 161 has a bearing surface 160S facing the bearing surface 110S with a gap on the inner surface.
  • One end portion of the rotating body 160 that is, one end portion of the cylindrical portion 161 and the ring portion 162 are joined to the anode target 150.
  • the rotating body 160 is provided so as to be rotatable together with the anode target 150 around the fixed shaft 110.
  • the seal part 163 is located on the opposite side of the ring part 162 (one end part) with respect to the bearing surface 160S.
  • the seal portion 163 is joined to the other end portion of the cylindrical portion 161.
  • the seal portion 163 is formed in an annular shape, and is provided with a gap around the entire side surface of the fixed shaft 110.
  • the tube portion 164 is joined to the side surface of the tube portion 161 and is fixed to the tube portion 161.
  • the cylinder part 164 is made of, for example, Cu (copper).
  • the liquid metal 170 is filled in a gap between one end of the fixed shaft 110 and the recess 151a and a gap between the fixed shaft 110 (bearing surface 110S) and the cylindrical portion 161 (bearing surface 160S). These gaps are all connected.
  • the liquid metal 170 is a gallium / indium / tin alloy (GaInSn).
  • the clearance (clearance) between the seal portion 163 and the fixed shaft 110 is set to a value that can maintain the rotation of the rotating body 160 and suppress the leakage of the liquid metal 170. From the above, the gap is slight and is 500 ⁇ m or less. For this reason, the seal part 163 functions as a labyrinth seal ring (labyrinth seal ring).
  • the seal portion 163 has a plurality of accommodating portions each formed by recessing the inside in a circular frame shape. In the unlikely event that the liquid metal 170 leaks from the gap, the storage portion stores the leaked liquid metal 170.
  • the cathode 180 is disposed to face the target layer 252 of the anode target 150 with a space therebetween.
  • the cathode 180 has a filament 181 that emits electrons.
  • the vacuum envelope 190 contains the fixed shaft 110, the tube part 130, the anode target 150, the rotating body 160, the liquid metal 170 and the cathode 180.
  • the vacuum envelope 190 has an X-ray transmission window 190a and an opening 190b.
  • the X-ray transmission window 190a faces the target layer 152 in a direction orthogonal to the rotation axis a2.
  • the other end of the fixed shaft 110 is exposed to the outside of the vacuum envelope 190 through the opening 190b.
  • the opening 190b fixes the fixed shaft 110 closely.
  • the cathode 180 is attached to the inner wall of the vacuum envelope 190.
  • the vacuum envelope 190 is sealed. The inside of the vacuum envelope 190 is maintained in a vacuum state.
  • the stator coil 102 is provided so as to surround the outside of the vacuum envelope 190 so as to face the side surface of the rotating body 160, more specifically, the side surface of the cylindrical portion 164.
  • the shape of the stator coil 102 is annular.
  • the operation states of the X-ray tube 13 and the stator coil 102 will be described. Since the stator coil 102 generates a magnetic field applied to the rotating body 160 (particularly the cylindrical portion 164), the rotating body rotates. Thereby, the anode target 150 also rotates. Further, a negative voltage (high voltage) is applied to the cathode 180, and the anode target 150 is set to the ground potential.
  • the cathode 180 emits electrons
  • the electrons are accelerated and collide with the target layer 152. That is, the cathode 180 irradiates the target layer 152 with an electron beam.
  • the target layer 152 emits X-rays when colliding with electrons, and the emitted X-rays are emitted to the outside of the vacuum envelope 190 and thus to the outside of the housing 12 through the X-ray transmission window 190a.
  • the X-ray tube apparatus 10 of Example 1 is formed.
  • FIG. 8 is a cross-sectional view illustrating the X-ray tube apparatus according to the second embodiment.
  • FIG. 9 is another sectional view showing the X-ray tube apparatus shown in FIG.
  • FIG. 10 is an enlarged cross-sectional view of a part of the X-ray tube apparatus shown in FIGS.
  • the X-ray tube device 10 is a fixed anode type X-ray tube device
  • the X-ray tube 13 is a fixed anode type X-ray tube.
  • the X-ray tube 13 includes a vacuum envelope 231.
  • the vacuum envelope 231 includes a vacuum container 232 and an insulating member 250.
  • the insulating member 250 functions as a high voltage insulating member.
  • a cathode 236 is attached to the insulating member 250, and the insulating member 250 forms a part of the vacuum envelope 231.
  • the anode target 235 forms a part of the vacuum envelope 231.
  • the anode target 235 is formed in a bowl shape that opens small outside the vacuum envelope 231 and swells in the vicinity of the target surface 235b.
  • the anode target 235, the cathode 236, the focusing electrode 209, and the acceleration electrode 208 are accommodated in the vacuum envelope 231.
  • a voltage supply wiring is connected to the anode target 235.
  • the anode target 235 and the acceleration electrode 208 are set to the ground potential.
  • the vacuum vessel 232 at a location facing the cathode 236 and the focusing electrode 209 is formed in a cylindrical shape.
  • a negative high voltage is applied to the cathode 236.
  • the adjusted negative high voltage is supplied to the focusing electrode 209.
  • the inside of the vacuum envelope 231 is in a vacuum state.
  • the metal surface portion 234 is provided inside the vacuum vessel 232 including the vacuum side surface of the X-ray emission window 231w, and
  • the X-ray tube 13 includes a tube portion 241 and a ring portion 242.
  • the pipe part 241 is made of metal. One end of the tube part 241 is inserted into the anode target 235.
  • the ring portion 242 is provided in the anode target 235.
  • the ring portion 242 is formed integrally with the tube portion 241 so as to surround the side surface of one end portion of the tube portion 241.
  • the ring portion 242 is provided with a gap in the anode target 235.
  • the other end of the pipe part 241 forms a coolant intake and is connected to the conduit 11a.
  • the opening of the anode target 235 forms a coolant discharge port between the tube portion 241 and the opening. For this reason, the inside of the housing 12 is filled with the coolant 9.
  • the housing 12 has an X-ray emission window 12w facing the X-ray emission window 231w.
  • a deflection unit 270 is accommodated in the housing 12.
  • the deflection unit 270 is a magnetic deflection unit, and is provided outside the vacuum vessel 232 at a position surrounding the electron beam trajectory.
  • the deflecting unit 270 deflects the electron beam emitted from the cathode 236 and moves the focal position on the target surface 235b.
  • the X-ray tube apparatus according to the second embodiment is formed.
  • the X-ray CT apparatus 11 includes the X-ray tube apparatus 10, the cooling unit 20, the X-ray detector 40, and the rotation.
  • a gantry 6 is provided.
  • the cooling unit 20 includes a circulation pump 22, a radiator 24, and a fan unit 25.
  • the rotating gantry 6 has a frame portion 7 to which an X-ray tube device 10, a circulation pump 22, a radiator 24, a fan unit 25, and an X-ray detector 40 are attached.
  • the distance from the rotation axis a1 to the fan unit 25 is longer than the distance from the rotation axis a1 to the radiator 24.
  • the fan unit 25 discharges the air flowing around the radiator 24 to the outside of the rotating mount 6 through the opening 7a.
  • the radiator 24 is not attached in close contact with the frame portion 7.
  • the size of the opening 7 a need not be substantially the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
  • the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
  • FIG. 11 is a front view showing the rotating gantry 6 of the X-ray CT apparatus 1 according to the second embodiment, the X-ray tube device 10 mounted on the rotating gantry 6, the cooling unit 20, and the X-ray detector 40. .
  • the cooling unit 20 does not include the casing 50.
  • the cooling unit 20 includes a mount 27 and a mount 28.
  • the mount 27 and the mount 28 are each formed in a rectangular frame shape.
  • One end of the mount 27 is attached to the inner wall of the frame portion 7.
  • the mount 27 surrounds the opening 7a.
  • One side edge of the mount 28 is attached to the inner wall of the frame portion 7.
  • the circulation pump 22 is located in the mount 28, is attached to the mount 28, and is indirectly attached and fixed to the inner wall of the frame portion 7.
  • the air basin 60 is located between the mount 28 and the rotation axis a1, is mounted on the mount 28, and is indirectly attached and fixed to the inner wall of the frame portion 7.
  • the periphery of the radiator 24 is attached to the other end of the mount 27, and is indirectly attached and fixed to the inner wall of the frame portion 7. Needless to say, the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7.
  • the fan unit 25 is directly attached to the frame portion 7.
  • the fan unit 25 is directly attached and fixed to the opening 7 a of the frame portion 7.
  • the mount 27 is located between the radiator 24 and the fan unit 25, and also functions as a duct that guides the air flow around the radiator 24 to the fan unit 25.
  • the X-ray CT apparatus 1 includes the mount 27. For this reason, the X-ray CT apparatus 1 can be formed without the housing 50 of the first embodiment, which is difficult to design mechanical strength.
  • the X-ray CT apparatus 1 includes a mount 28. Since the air basin 60 can be mounted on the mount 28, the cooling unit 20 can be designed compactly.
  • the size of the opening 7 a is not necessarily the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
  • the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
  • FIG. 12 is a front view showing the rotating gantry 6 of the X-ray CT apparatus 1 according to the third embodiment, the X-ray tube device 10 mounted on the rotating gantry 6, the cooling unit 20, and the X-ray detector 40. .
  • the cooling unit 20 does not include the casing 50.
  • the cooling unit 20 includes a mount 29.
  • the mount 29 is formed integrally with a rectangular frame-shaped peripheral wall portion, a plate-shaped ceiling wall portion, and a pair of plate-shaped side wall portions located between the peripheral wall portion and the ceiling wall portion.
  • the peripheral wall portion of the mount 29 is attached to the inner wall of the frame portion 7.
  • the peripheral wall of the mount 29 surrounds the opening 7a.
  • the circulation pump 22 and the air basin 60 are located between the mount 29 and the rotation axis a1, are placed on the ceiling wall portion of the mount 29, and are indirectly attached and fixed to the inner wall of the frame portion 7.
  • the radiator 24 has a peripheral portion attached to the peripheral wall portion of the mount 29 and is indirectly attached and fixed to the inner wall of the frame portion 7.
  • the pair of side wall portions of the mount 29 have a predetermined height so that the windward side of the radiator 24 is exposed.
  • the pair of side walls of the mount 29 has a predetermined height so that the radiator 24 can be cleaned from the space between the ceiling wall of the mount 29 and the radiator 24.
  • the radiator 24 since air is allowed to enter and leave in the space between the ceiling wall portion of the mount 29 and the radiator 24, the air passing through the space between the ceiling wall portion of the mount 29 and the radiator 24 passes through the radiator 24.
  • the fan unit 25 is directly attached to the frame portion 7.
  • the fan unit 25 is directly attached and fixed to the opening 7 a of the frame portion 7.
  • the peripheral wall portion of the mount 29 is located between the radiator 24 and the fan unit 25, and also functions as a duct for guiding the air flow around the radiator 24 to the fan unit 25.
  • the X-ray CT apparatus 1 includes the mount 29. For this reason, the X-ray CT apparatus 1 can be formed without the housing 50 of the first embodiment, which is difficult to design mechanical strength. Since the circulation pump 22 and the air basin 60 can be mounted on the ceiling wall part of the mount 29, the cooling unit 20 can be designed compactly.
  • the size of the opening 7 a is not necessarily the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
  • the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7.
  • the radiator 24 can be accessed from the space between the ceiling wall of the mount 29 and the radiator 24. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
  • FIG. 13 is a front view showing the rotating gantry 6 of the X-ray CT apparatus 1 according to the fourth embodiment, the X-ray tube device 10 mounted on the rotating gantry 6, the cooling unit 20, and the X-ray detector 40. .
  • the cooling unit 20 does not include the casing 50.
  • the cooling unit 20 includes a mount 28 and a mount 29.
  • the mount 28 is formed in a rectangular frame shape. One side edge of the mount 28 is attached to the inner wall of the frame portion 7.
  • the circulation pump 22 is located in the mount 28, is attached to the mount 28, and is indirectly attached and fixed to the inner wall of the frame portion 7.
  • the air basin 60 is located between the mount 28 and the rotation axis a1, is mounted on the mount 28, and is indirectly attached and fixed to the inner wall of the frame portion 7.
  • the mount 29 is integrally formed with a rectangular frame-shaped peripheral wall portion, a plate-shaped ceiling wall portion, and a pair of plate-shaped side wall portions located between the peripheral wall portion and the ceiling wall portion.
  • the peripheral wall portion of the mount 29 is attached to the inner wall of the frame portion 7.
  • the peripheral wall of the mount 29 surrounds the opening 7a.
  • the X-ray tube device 10 (housing 12) is located between the mount 29 and the rotation axis a1, is placed on the ceiling wall portion of the mount 29, and is indirectly attached and fixed to the inner wall of the frame portion 7. .
  • the radiator 24 has a peripheral portion attached to the peripheral wall portion of the mount 29 and is indirectly attached and fixed to the inner wall of the frame portion 7.
  • the pair of side wall portions of the mount 29 have a predetermined height so that the windward side of the radiator 24 is exposed.
  • the pair of side walls of the mount 29 has a predetermined height so that the radiator 24 can be cleaned from the space between the ceiling wall of the mount 29 and the radiator 24.
  • the radiator 24 since air is allowed to enter and leave in the space between the ceiling wall portion of the mount 29 and the radiator 24, the air passing through the space between the ceiling wall portion of the mount 29 and the radiator 24 passes through the radiator 24.
  • the fan unit 25 is directly attached to the frame portion 7.
  • the fan unit 25 is directly attached and fixed to the opening 7 a of the frame portion 7.
  • the peripheral wall portion of the mount 29 is located between the radiator 24 and the fan unit 25, and also functions as a duct for guiding the air flow around the radiator 24 to the fan unit 25.
  • the X-ray CT apparatus 1 includes the mount 29.
  • the X-ray CT apparatus 1 can be formed without the housing 50 of the first embodiment, which is difficult to design mechanical strength. Since the air basin 60 can be placed on the mount 28 and the X-ray tube device 10 (housing 12) can be placed on the ceiling wall of the mount 29, the cooling unit 20 can be designed to be compact. Can do.
  • the size of the opening 7 a is not necessarily the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
  • the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7.
  • the radiator 24 can be accessed from the space between the ceiling wall of the mount 29 and the radiator 24. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
  • FIG. 14 is a front view showing the rotating gantry 6 of the X-ray CT apparatus 1 according to the fifth embodiment, the X-ray tube device 10 mounted on the rotating gantry 6, the cooling unit 20, and the X-ray detector 40.
  • FIG. 15 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the fifth embodiment.
  • FIG. 7 The frame unit 7, the circulation pump 22, the radiator 24, the fan units 25a and 25b, the mount 28, It is a figure which shows the housing
  • FIG. 7 The frame unit 7, the circulation pump 22, the radiator 24, the fan units 25a and 25b, the mount 28, It is a figure which shows the housing
  • the housing 50 has a bottom wall portion 51 and a lid portion 52, and is attached to a rotating mount.
  • the bottom wall portion 51 faces the inner wall of the frame portion 7.
  • the lid 52 includes a first ventilation port Oa and second ventilation ports Ob1 and Ob2.
  • the lid part 52 has a ceiling wall part 53 and a peripheral wall part 54.
  • the ceiling wall portion 53 includes the first ventilation port Oa and faces the bottom wall portion 51 with an interval.
  • the peripheral wall portion 54 includes the second ventilation ports Ob1 and Ob2, and is formed in a frame shape.
  • the peripheral wall portion 54 is closed at one end by the ceiling wall portion 53 and closed at the other end by the bottom wall portion 51.
  • the second vent Ob1 and the second vent Ob2 face each other in the rotational direction d of the rotary mount 6.
  • the bottom wall portion 51 and the ceiling wall portion 53 are formed in a rectangular plate shape, and the peripheral wall portion 54 is formed in a rectangular frame shape.
  • the housing 50 is formed airtight except for the first ventilation port Oa and the second ventilation ports Ob1 and Ob2.
  • the mount 28, the circulation pump 22 and the air basin 60 are housed in a housing 50.
  • the mount 28 is formed in a rectangular frame shape. One side edge of the mount 28 is attached to the bottom wall 51.
  • the circulation pump 22 is located in the mount 28 and is attached to the mount 28.
  • the rotation axis of the motor of the circulation pump 22 is parallel to the rotation axis a ⁇ b> 1 of the rotary mount 6.
  • the air basin 60 is located between the mount 28 and the rotation axis a1, is mounted on the mount 28, and is indirectly attached to the housing 50.
  • the radiator 24, the fan units 25a and 25b, and the housing 50 are unitized.
  • the radiator 24 is attached to the housing 50 (ceiling wall portion 53).
  • the windward side of the radiator 24 is exposed to the outside of the housing 50 through the first ventilation port Oa.
  • the fan units 25a and 25b are attached to the casing 50 (the peripheral wall portion 54).
  • the fan unit 25a is positioned to face the second ventilation port Ob1.
  • the fan unit 25b is located opposite to the second ventilation port Ob2.
  • the fan units 25 a and 25 b can create a flow of air that passes through the radiator 24.
  • the fan unit 25a takes air into the housing 50 through the first vent Oa and the radiator 24, and releases the air in the housing 50 to the outside of the housing 50 through the second vent Ob1.
  • the fan unit 25b takes the air that has passed through the first ventilation port Oa and flows around the radiator 24 into the housing 50, and releases the air in the housing 50 to the outside of the housing 50 through the second ventilation port Ob2.
  • the frame portion 7 has openings 7 a and 7 b that are out of a position facing the bottom wall portion 51 of the housing 50.
  • One end of the duct 401 surrounds the second ventilation port Ob1, is attached to the peripheral wall portion 54, and communicates with the second ventilation port Ob1.
  • the other end of the duct 401 surrounds the opening 7a, is attached to the frame portion 7, and communicates with the opening 7a.
  • the duct 401 guides the air discharged to the outside of the housing 50 through the second ventilation port Ob1 to the opening 7a and discharges it to the outside of the rotary mount 6 (frame portion 7).
  • One end of the duct 402 surrounds the second ventilation port Ob2, is attached to the peripheral wall portion 54, and communicates with the second ventilation port Ob2.
  • the other end of the duct 402 surrounds the opening 7b, is attached to the frame portion 7, and communicates with the opening 7b.
  • the duct 402 guides the air discharged to the outside of the housing 50 through the second vent Ob2 to the opening 7b and discharges the air to the outside of the rotary mount 6 (frame portion 7).
  • the ducts 401 and 402 are formed integrally with the frame portion 7. In order to enhance the air guiding effect, it is desirable that the duct 401 and the frame portion 7 and the duct 402 and the frame portion 7 are connected in an airtight manner. Similarly, it is desirable that one end of the duct 401 and one end of the duct 402 are airtightly attached to the peripheral wall portion 54, respectively.
  • the fan units 25a and 25b allow the air flowing around the radiator 24 to flow through the second vents Ob1 and Ob2 in the housing 50. It is discharged to the outside, and is released to the outside of the rotary mount 6 through the openings 7a and 7b.
  • the radiator 24 is not attached in close contact with the frame portion 7.
  • the sizes of the openings 7 a and 7 b do not have to be substantially the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
  • the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
  • the radiator 24 is attached to the ceiling wall portion 53, and the fan units 25 a and 25 b are attached to the peripheral wall portion 54. For this reason, the circulation pump 22 and the air basin 60 can be placed on the bottom wall portion 51 without increasing the size of the housing 50. Since the circulation pump 22, the radiator 24, the fan units 25 a and 25 b, and the air tray 60 can be compactly attached to the rotating mount 6, the utilization efficiency of the space on the inner wall side of the frame portion 7 can be increased. Here, even if the circulation pump 22 and the air basin 60 are accommodated in the housing 50, the cooling performance of the heat exchanger 23 is maintained because the air flow around the radiator 24 is hardly adversely affected.
  • the rotation axis of the motor of the circulation pump 22 is parallel to the rotation axis a1 of the rotary mount 6. Since the gyro moment does not act on the rotating shaft of the motor of the circulation pump 22, the product life of the circulation pump 22 can be extended.
  • the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
  • FIG. 16 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the sixth embodiment.
  • the X-ray CT apparatus 1 is formed without a duct 402.
  • the peripheral wall portion 54 does not include the second ventilation port Ob2.
  • the bottom wall portion 51 includes a third ventilation port Oc.
  • the fan unit 25b is attached to the housing 50 (bottom wall portion 51) and is positioned to face the third ventilation port Oc.
  • the opening 7b of the frame portion 7 is opposed to the third ventilation port Oc.
  • the mount 28 is attached to the bottom wall 51 that is removed from the opening 7b.
  • the fan unit 25b takes the air into the casing 50 through the first vent Oa and the radiator 24, and releases the air in the casing 50 to the outside of the rotary base 6 through the third vent Oc and the opening 7b.
  • the third ventilation port Oc and the opening 7b communicate with each other in an airtight manner.
  • the circulation pump 22 and the air basin 60 are mounted on the bottom wall 51 when the area of the bottom wall 51 is sufficient.
  • the third vent Oc may be formed in the bottom wall portion 51, and the fan unit 25b may be attached to the bottom wall portion 51.
  • the circulation pump 22 and the air basin 60 can be placed on the bottom wall portion 51 without increasing the size of the housing 50. Since the circulation pump 22, the radiator 24, the fan units 25 a and 25 b, and the air tray 60 can be compactly attached to the rotating mount 6, the utilization efficiency of the space on the inner wall side of the frame portion 7 can be increased.
  • the same effects as those of the fifth embodiment can be obtained. From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
  • FIG. 17 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the seventh embodiment.
  • 18 is a cross-sectional view showing a part of the X-ray CT apparatus 1 taken along line XVIII-XVIII in FIG.
  • the second vents Ob ⁇ b> 1 and Ob ⁇ b> 2 are opened in a direction parallel to the rotation axis a ⁇ b> 1 of the rotary mount 6.
  • the second vents Ob ⁇ b> 1 and Ob ⁇ b> 2 are formed side by side on one side wall portion of the peripheral wall portion 54.
  • the duct 401 communicates with the second vent Ob1 and the opening 7a.
  • the other duct (402) also communicates with the second vent Ob2 and the opening (7b).
  • the fan units 25a and 25b are axial fans.
  • the rotational axis of the axial fan is parallel to the rotational axis a1 of the rotary mount.
  • the fan units 25a and 25b are axial fans, and the rotational axis of the axial fan is parallel to the rotational axis a1. . Since the gyro moment does not act on the rotating shaft of the motor of the axial fan, the product life of the fan units 25a and 25b can be extended.
  • the same effects as those of the fifth embodiment can be obtained. From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
  • FIG. 19 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the eighth embodiment.
  • FIG. FIG. 20 is a cross-sectional view showing a part of the X-ray CT apparatus 1 taken along line XX-XX in FIG.
  • the bottom wall portion 51 includes third vents Oc1 and Oc2.
  • the heat exchanger 23 further includes fan units 25c and 25d.
  • the fan unit 25c is attached to the housing 50 (bottom wall portion 51) and is positioned to face the third ventilation port Oc1.
  • the fan unit 25d is attached to the housing 50 (bottom wall portion 51) and is positioned to face the third ventilation port Oc2.
  • the frame part 7 further has openings 7c and 7d.
  • the opening 7c of the frame part 7 faces the third ventilation port Oc1.
  • the opening 7d of the frame portion 7 faces the third ventilation port Oc2.
  • the mount 28 is attached to the bottom wall 51 that is out of the openings 7c and 7d.
  • the fan unit 25c takes the air into the casing 50 through the first vent Oa and the radiator 24, and discharges the air in the casing 50 to the outside of the rotary mount 6 through the third vent Oc1 and the opening 7c.
  • the fan unit 25d takes air into the housing 50 through the first ventilation port Oa and the radiator 24, and releases the air in the housing 50 to the outside of the rotating base 6 through the third ventilation port Oc2 and the opening 7d.
  • the third vent Oc1 and the opening 7c, and the third vent Oc2 and the opening 7d are connected in an airtight manner.
  • the circulation pump 22 and the air basin 60 are mounted on the bottom wall 51 when the area of the bottom wall 51 is sufficient.
  • the third vent holes Oc1 and Oc2 may be formed in the bottom wall portion 51, and the fan units 25c and 27d may be attached to the bottom wall portion 51.
  • the circulation pump 22 and the air basin 60 can be placed on the bottom wall portion 51 without increasing the size of the housing 50. Since the circulation pump 22, the radiator 24, the fan units 25 a, 25 b, 25 c, 25 d and the air basin 60 can be compactly attached to the rotary mount 6, the utilization efficiency of the space on the inner wall side of the frame portion 7 can be enhanced. Moreover, the cooling performance of the heat exchanger 23 can be further enhanced.
  • the same effects as those of the seventh embodiment can be obtained. From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
  • FIG. 21 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the ninth embodiment.
  • FIG. 22 is a cross-sectional view showing a part of the X-ray CT apparatus 1 taken along line XXII-XXII in FIG.
  • the second vent hole Ob is formed in the peripheral wall portion 54 instead of the second vent holes Ob ⁇ b> 1 and Ob ⁇ b> 2.
  • One end of the duct 403 surrounds the second ventilation port Ob, is attached to the peripheral wall portion 54, and communicates with the second ventilation port Ob.
  • the other end of the duct 403 surrounds the opening 7a, is attached to the frame part 7, and communicates with the opening 7a.
  • the duct 403 guides the air released to the outside of the housing 50 through the second vent Ob to the opening 7a, and releases it to the outside of the rotating mount 6 (frame portion 7).
  • the duct 403 is formed integrally with the frame portion 7. In order to enhance the cooling performance of the heat exchanger 23, it is desirable that the duct 403 and the peripheral wall portion 54 be connected in an airtight manner.
  • the fan units 25a and 25b are axial fans.
  • the rotational axis of the axial fan is parallel to the rotational axis a1 of the rotary mount.
  • the fan units 25 a and 25 b are attached to the duct 403.
  • the outer wall 404 of the fan unit 25a and the outer wall 405 of the fan unit 25b are formed by a part of the duct 403.
  • the fan units 25a and 25b are respectively attached to the duct 403.
  • the fan units 25a and 25b may not be unitized together with the casing 50, the radiator 24, and the like. In this case, the same effect as that of the seventh embodiment can be obtained.
  • the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
  • FIG. 28 is a front view showing the rotating gantry 6 of the comparative example of the X-ray CT apparatus, and the X-ray tube device 10, the cooling unit 20, and the X-ray detector 40 mounted on the rotating gantry 6.
  • the radiator 24 is located between the opening 7a and the fan unit 25.
  • the radiator 24 is attached in close contact with the frame portion 7.
  • the distance from the rotation axis a1 to the fan unit 25 is shorter than the distance from the rotation axis a1 to the radiator 24.
  • the size of the opening 7 a is almost the same as the size of the radiator 24.
  • the size of the opening 7 a is substantially the same as the size of the radiator 24. There is a need. Since the size of the opening 7a is increased, the mechanical strength of the frame 7 is reduced. In the above case, since it is necessary to reinforce the frame portion 7 by making it wide or thick, it is difficult to reduce the size and weight of the device.
  • the X-ray tube device connected to the cooling unit 20 is further removed when the cooling unit 20 is not removed from the rotating mount 6 or the cooling unit 20 and the X-ray tube device 10 are not separated. Since it is necessary to remove 10 together, it is difficult to reduce the time required for cleaning (maintenance work).
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the air basin 60 only needs to be attached to the circulation path 30, and may be provided separately from the cooling unit 20. As shown in FIG. 23, the air basin 60 may be provided in the X-ray tube apparatus 10. One end of the conduit 11c is airtightly attached to the conduit 11b. The opening 61a of the air basin 60 is in airtight communication with the conduit 11c.
  • FIG. 24 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus 10 shown in FIG.
  • the X-ray tube apparatus 10 in the separated state includes an air basin 60. For this reason, without adding to the X-ray tube apparatus 10, leakage of the liquid (cooling liquid 9) to the outside in the X-ray tube apparatus 10 in the separated state can be prevented, and mixing of air inside is prevented. be able to.
  • the separated cooling unit 20 is configured to hardly absorb the volume change of the coolant 9. Therefore, by forming the conduits 21a, 21b, and 21c with hoses, the conduits 21a, 21b, and 21c can have a function of absorbing the volume change of the coolant 9. However, there are cases where the volume change of the coolant 9 cannot be sufficiently absorbed by the conduits 21a, 21b, and 21c alone. In this case, it is preferable to attach an air tray to the cooling unit 20 in the separated state.
  • FIG. 25 is a schematic configuration diagram showing a separated state of the cooling unit 20 shown in FIG.
  • the cooling unit 20 is provided with an air tray 90 as a bellows mechanism.
  • the air basin 90 is attached to the cooling unit 20 via a socket 85 and a conduit 86 that are connected to each other in an airtight and liquid-tight manner.
  • the plug 81 and the socket 85 form a coupler as a detachable joint, and are connected in an airtight and liquid-tight manner in the connected state.
  • the opening 91 a is in airtight communication with the conduit 86.
  • the X-ray CT apparatus 1 may further include a pressure detector 301, a pressure control device 302, a pressure adjustment mechanism 303, and a conduit 304.
  • the pressure detector 301 (pressure sensor) is airtightly attached to the case 61.
  • the pressure detector 301 detects the pressure (gas pressure) in the second region 64.
  • the pressure detector 301 transmits information on the detected pressure to the pressure control device 302.
  • the pressure control device 302 controls the driving of the pressure adjustment mechanism 303 based on the pressure information.
  • the pressure adjusting mechanism 303 is in airtight communication with the vent hole 65 via a conduit 304. In this example, it goes without saying that the second region 64 is not opened to the atmosphere.
  • the pressure adjustment mechanism 303 can adjust the gas pressure in the second region 64.
  • the gas pressure in the second region 64 can be adjusted to a positive pressure that is higher than the atmospheric pressure.
  • the pressure adjustment mechanism 303 functions as a pressure reduction mechanism, the gas pressure in the second region 64 can be adjusted to a negative pressure that is lower than the atmospheric pressure.
  • the pressure adjustment mechanism 303 reduces the pressure in the second region 64 to a negative pressure in order to increase the heat flow rate. To lower the boiling point of the coolant 9.
  • the pressure adjustment mechanism 303 adjusts the pressure in the second region 64 to atmospheric pressure, raises the boiling point of the coolant 9, and further corrects the pressure in the second region 64. The boiling point of the coolant 9 is further increased by adjusting the pressure.
  • the X-ray CT apparatus 1 preferably includes a temperature detector that detects the temperature of the coolant 9.
  • the temperature detector may detect the temperature of the coolant 9 upstream of the heat transfer surface of the X-ray tube 13.
  • the X-ray CT apparatus 1 may further include another temperature detector, and the other temperature detector may detect the temperature of the coolant 9 on the downstream side of the heat transfer surface of the X-ray tube 13.
  • the second region 64 of the air basin 60 may be sealed without being opened to the atmosphere.
  • the second region 64 is filled with gas, and the pressure is adjusted to a positive pressure. Since the boiling point of the coolant 9 can be raised, the occurrence of burnout can be avoided.
  • an aqueous coolant or insulating oil can be used as the coolant 9.
  • the aqueous coolant include those containing an antifreeze such as glycol water.
  • a centrifugal pump or a gear pump can be used as the circulation pump 22 .
  • the circulation pump 22, the radiator 24, the fan unit 25, and the air basin 60 may be housed in the housing 50 and unitized.
  • the air basin 60 may be directly or indirectly attached to the rotary mount 6 independently of the X-ray tube device 10 (housing 12), the circulation pump 22, the radiator 24, and the fan unit 25.
  • the circulation pump 22, the radiator 24, and the fan unit 25 may be housed in a housing 50 and unitized.
  • the X-ray tube device 10 (housing 12), the circulation pump 22, the radiator 24, the fan unit 25, and the air basin 60 may be directly or indirectly attached to the rotating mount 6 independently of each other.
  • the air basin 60 may be attached to the outer surface of the X-ray tube apparatus 10 (housing 12).
  • the radiator 24 has a flat plate shape and is arranged substantially parallel to the inner wall of the frame portion 7, but can be variously modified.
  • the radiator 24 may have an arbitrary shape, may be stacked, and may be disposed to be inclined with respect to the inner wall of the frame portion 7.
  • the radiator 24 may be attached so as to close a vent hole provided in the peripheral wall portion 54 of the housing 50.
  • the fan unit 25 is directly attached to the opening 7a of the rotating gantry 6 as shown in the second to fourth embodiments to secure mechanical strength.
  • the radiator 24, the air basin 60, and the circulation pump 22 that are attached in communication with the circulation path are preferably attached to dedicated mounts fixed to the rotary mount 6.
  • at least one of the circulation pump 22, the duct 26, and the air basin 90 is housed in a single casing together with the radiator 24, and the casing is used as a rotating base. 6 can be mounted so as to be located immediately above the fan unit.
  • the ducts 401, 402, and 403 may be provided as necessary.
  • the heat exchanger 23 may have a plurality of radiators 24.
  • the plurality of radiators 24 may be stacked. In that sense, the radiator is hereinafter referred to as a radiator unit.
  • the housing 50 may have a shape that can increase the surface area of the radiator unit 24.
  • the housing 50 may have a ceiling wall that includes a vent and protrudes into a roof shape.
  • the ceiling wall is formed in a mountain shape.
  • the radiator unit 24 is housed in the housing 50 so that the windward side is exposed to the outside of the housing 50 through the vent hole.
  • the frame portion 7 is provided with a vent hole, and the air flow that has passed through the radiator unit 24 is discharged to the outside of the rotating mount 6 (on the side opposite to the rotation center axis a1) through this vent hole. Said about the case.
  • the frame portion 7 is not provided with a vent hole, the flow of air passing through the radiator unit 24 and the air discharged from the inside of the cooling unit casing to the outside of the cooling unit casing through the vent holes of the cooling unit casing. If the flow is away from the rotation center axis a1, the heated air will not be trapped inside the X-ray CT apparatus housing 2, so that the temperature of the internal atmosphere of the housing 2 is raised or cooled. It is possible to avoid impairing the cooling performance of the unit and the stability of the sensitivity of the X-ray detector.
  • the embodiment of the present invention is not limited to the above-described X-ray CT apparatus, and can be applied to various X-ray CT apparatuses and other X-ray diagnostic apparatuses.
  • FIG. 29 shows an external appearance of a CT (Computer Tomography) apparatus according to the embodiment
  • FIG. 30 schematically shows an internal structure in the CT apparatus shown in FIG.
  • the CT apparatus includes a gantry 600.
  • the gantry 600 includes a rotating body 505 that is rotated around a rotation center axis 504, a support structure (not shown) that rotatably supports the rotating body 5, and the rotating body.
  • the housing 608 surrounds 505.
  • a cavity 540 into which a bed 620 on which a subject is laid enters is provided as an imaging region. When imaging the subject, the bed 620 is advanced into the cavity 540 and the subject is placed in the imaging region.
  • the rotator 505 is composed of an annular frame, and an X-ray generator 502 having a collimator (not shown) is fixed to the rotator 505 so as to generate X-rays in the form of a fan beam. . Further, an X-ray detector 508 that is arranged to face the X-ray generator 502 through the imaging region of the cavity 540 and detects fan-beam X-rays is also fixed to the rotating body 505. Further, a cooling machine 510 for cooling an X-ray generator 502, which will be described in detail later, is fixed to the rotating body 505.
  • the rotating body 505 is rotated in a state where a bed 620 on which a subject (not shown) is laid has entered the cavity 540, and an X-ray fan beam is generated from the X-ray generator 502.
  • a subject (not shown) is irradiated and transmitted X-rays are detected by an X-ray detector 508.
  • the X-ray fan beam is irradiated from various directions around the subject, and X-rays from various locations in the subject are detected by the X-ray detector 508.
  • a detection signal from the X-ray detector 508 is output to the outside of the rotating body 505 and supplied to an image reconstruction processing unit (not shown), and this output signal is processed by the image reconstruction processing unit, so The transmittance at various locations is calculated, and a tomographic image of the subject is reconstructed.
  • the cooler 510 is connected to the X-ray generator 2 by a pipe 506 that circulates a coolant, and the heat generated in the X-ray generator 502 is given to the coolant and passed through the pipe 506 for exhaust heat. Then, the coolant supplied to the cooler 510 and cooled by the cooler 510 is supplied to the X-ray generator 502 via the pipe 506 for heat absorption.
  • a base 531 is provided on the cooler fixing surface 552 of the cooler mounting portion 551 on the frame of the rotating body 505 on which the cooler 510 is placed and fixed.
  • the base 531 is formed on the frame of the rotating body 505.
  • a plurality of exhaust ports 517A and 517B communicating with the exhaust unit 522 are provided.
  • a plurality of support columns 518A and 518B are erected on the support column fixing surface 532 of the base 531 adjacent to the outer periphery of the base 531, and are connected and fixed to the support column fixing surface 532 with a connecting member such as a screw.
  • a cooler casing cover 511 fixed to the base 531 is provided around the plurality of support columns 518A and 518B, and a space surrounded by the cooler casing cover 511 is defined as an exhaust space. Yes.
  • the cooler 510 includes a plurality of cooling fans 513A and 513B as a plurality of fan units.
  • the cooling fans 513A and 513B are disposed on the exhaust ports 517A and 517B and are disposed so as to be surrounded by the cooler casing cover 511. Further, a radiator unit 512 is fixed over the entire surface of the exhaust space exhausted by the cooling fans 513A and 513B on the side of the rotation center shaft 504 so as to cover the opening of the cooler casing cover 511.
  • the cooler casing 611 includes a cooler casing cover 511, encloses the internal components of the cooler 510, defines the internal space of the cooler 510, defines an exhaust space on the base 531, and the radiator unit 512. Is defined.
  • the support structure 560 is fixed to the support fixing surface 532 of the base 531 via the support columns 518A and 518B to support the radiator unit 512, and the support structure 560 is erected on the support fixing surface 532. It has columns 518A and 518B and a fixing base 520 for attaching and fixing the radiator unit 512. More specifically, the fixed base 520 is fixed to the fixed base fixing surfaces 681A and 681B of the plurality of columns 518A and 518B, and the plurality of radiators 519A and 519B constituting the radiator unit 512 are mounted and fixed on the fixed base 520. ing.
  • the radiators 519A and 519B have flow paths connected to each other in parallel.
  • the fixed base 520 is formed in a frame structure 523A, 523B in which a plurality of radiators 519A, 519B have a triangular roof shape (triangular roof type) such that the top is directed to the rotation center axis 4 side. More specifically, the fixed base 520 is attached to the attachment portions (plate-like members) 521A and 521B and the rear surfaces (surfaces directed to the exhaust space) of the attachment portions 521A and 521B as shown in an enlarged view of the AA cross section. Adjacent cross sections of L-shaped or T-shaped plate-shaped reinforcing members (examples of L-shaped cross sections are shown) 522A and 522B are fixed.
  • each of the mounting portions 521A and 521B forming the fixed base 520 and one end of each of the reinforcing members 522A and 522B are fixed to the fixed base fixing surfaces 681A and 681B on the rotation center axis 504 side of the plurality of columns 518A and 518B with fixing members such as screws.
  • the other ends of the mounting portions 521A and 521B and the other ends of the reinforcing members 522A and 522B are brought into contact with each other so as to form a roof-like (roof-like) top portion, and are fixed by a fixing member such as a screw.
  • the radiators 519A and 519B are mounted and fixed on the fixed base 520 having such a structure, the radiators 519A and 519B are similarly arranged in a roof shape (roof shape). Accordingly, the plurality of radiators 519A, 519B have intake ports 516A, 516B on the front surface on the rotation center axis 4 side, and the intake ports 516A, 516B constitute the intake inlet 516 of the cooler 510.
  • Pumps 514A and 514B shown in FIG. 31 are connected to the radiator unit 512 as circulation pumps.
  • a pipe 506 is connected to the pumps 514A and 514B.
  • the coolant heated by the X-ray generator 502 is supplied to the pumps 514A and 514B via the pipe 506, and is supplied from the pumps 514A and 514B to the radiator unit 512.
  • the radiator unit 512 is composed of a plurality of radiators 519A and 519B whose flow paths are connected in parallel to each other, the coolant is supplied in parallel to the radiators 519A and 519B from the pumps 514A and 514B, respectively. Supplied.
  • the cooling liquid cooled by the radiator unit 512 is merged after passing through the radiators 519A and 519B, and is supplied from the radiator unit 512 to the X-ray generator 502 via the pipe 506.
  • the radiators 519A and 519B are And a heat radiating pipe (not shown) for circulating the coolant and releasing the heat to the surrounding air and a heat radiating fin (not shown) connected to the heat radiating pipe to increase the heat radiating area.
  • the cooling fans 513A and 513B are surrounded by the cooler casing cover 511 and the radiator unit 512, and the intake air flow S from the outside of the cooler 510 through the intake ports 516A and 516B in accordance with the fan operation of the cooling fans 513A and 513B.
  • the intake air flow S that passes through 512 and flows into the exhaust space is exhausted to the outside of the exhaust space as the exhaust flow V through the exhaust part 522 by the cooling fans 513A and 513B. Therefore, in the radiator unit 512, the heated coolant is cooled by the intake air flow S, and heat exchange occurs such that the intake air flow S is heated by the coolant.
  • the heat of the X-ray generator 502 is It is discharged outside the cooler 510.
  • the base 531 is provided with a base first fixing portion 811 for fixing the base 531 to the cooler fixing surface 552 adjacent to one side on the upstream side in the rotation direction R of the rotating body 5 of the base 531.
  • a second base fixing portion 812 for fixing the heat sink to the cooler fixing surface 552 is provided adjacent to one side on the downstream side in the rotation direction R of the rotating body 5 of the base 531.
  • the height H1 of the top portion 612 of the cooler casing 611 from the cooler fixing surface 552 is set to be smaller than the distance D1 between the base first fixing portion 811 and the base second fixing portion 812.
  • the support structure 560 includes a plurality of support columns having a support structure first fixing portion 901 for fixing the support structure 560 to the support fixing surface 532 on the upstream side in the rotation direction R of the rotating body 505 of the support structure 560.
  • a support structure second fixing portion 902 provided on the support structure 560 for fixing the support structure 560 to the support fixing surface 532 is provided on the plurality of supports 518B on the downstream side with respect to the rotation direction R of the rotating body 505 of the support structure 560. Is provided.
  • the height H2 of the top portion 621 of the radiator unit 512 from the support fixing surface 532 is set to be smaller than the distance D2 between the support structure first fixing portion 901 and the support structure second fixing portion 902.
  • the fixed pedestal 520 includes a frame having a fixed pedestal first fixing portion 701 for fixing the fixed pedestal 520 to the fixed pedestal fixing surface 681A of the plurality of columns 518A on the upstream side in the rotation direction R of the rotating body 505 of the fixed pedestal 520.
  • a frame provided in the structure 523A and having a fixed base second fixing portion 702 on the downstream side in the rotation direction R of the rotating body 505 of the fixed base 520, for fixing the fixed base 520 to the fixed base fixing surface 681B of the plurality of columns 518B.
  • the height H3 of the top 621 of the radiator unit 512 from the fixed base fixing surfaces 681A and 681B is set to be smaller than the distance D3 between the fixed base first fixing part 701 and the fixed base second fixing part 702.
  • the centrifugal force F 0 directed in the radial direction of the rotator 505 acts on the cooler 510.
  • the rotating body 505 is rotated at a high speed, and a centrifugal force F 0 of 32 G or more is applied to the radiator unit 512.
  • the centrifugal force F 0 applied to the radiator unit 512 is loaded on a roof-like (roof-type) fixed base 520 that forms the support structure of the radiator unit 512.
  • the fixed base 520 has a plate-like portion of the reinforcing members 522A and 522B in the direction in which the centrifugal force F0 is directed (a portion of one side of the L-shape or T-shape and having a width along the centrifugal force F0). ) Is provided, the fixed base 520 can sufficiently withstand the load of the centrifugal force F0. Since the fixed base 520 is not a simple plate, the deformation of the fixed base 520 is prevented. Is done.
  • the load applied to the fixed base 520 is along the direction of the roof (roof), that is, along the extending direction of the mounting portions (plate members) 521A and 521B, and the fixed portions 701 and 702 of the fixed base 520. Is transmitted to the bases 531 having sufficient rigidity.
  • the cooler 510 is directed in a direction opposite to the rotation direction R of the rotating body 505.
  • the inertial force F1 is applied.
  • the cooler 510 is fixed to the cooler fixing surface 552 and the inertial force F1 acts on the position of the height H11 of the center of mass C1 of the cooler 510 from the cooler fixing surface 552, the inertial force F1 is A moment M1 (multiplication of F1 and H11) is generated with respect to the fixed portion of the cooler 510 (that is, the base first fixed portion 811 and the base second fixed portion 812).
  • the moment M1 generates a pair of reaction forces R1 acting on the base first fixing portion 811 and the base second fixing portion 812, and a moment (a multiplication of R1 and D1) due to a couple consisting of the pair of reaction forces R1.
  • the reaction force R1 acts as a load on a fixing member such as a screw in the fixing portion.
  • the moment M1 works as an action of pulling the cooler 510 away from the cooler fixing surface 552, and may cause damage to fixing members such as screws in the base first fixing portion 811 and the base second fixing portion 812, and should be kept small. .
  • the height H1 of the top portion 612 of the cooler casing 611 from the cooler fixing surface 552 is set to be smaller than the distance D1 between the base first fixing portion 811 and the base second fixing portion 812. Therefore, the height H11 (smaller than H1) of the mass center C1 of the cooler 510 from the cooler fixing surface 552 is also kept small, and the distance between the base first fixing portion 811 and the base second fixing portion 812 is reduced. It is smaller than D1. As a result, the magnitude of R1 of the pair of reaction forces acting on the base first fixing portion 811 and the base second fixing portion 812 is reduced to be smaller than the inertial force F1.
  • a load acting on a fixing member such as a screw of the fixing portion (base first fixing portion 811 and base second fixing portion 812) of the cooler 510 at the time of acceleration of rotation of the rotating body can be suppressed to be small and damage can be prevented. Can do.
  • the support structure 560 and the radiator unit 512 fixed to the support structure 560 include The inertial force F2 directed in the direction opposite to the rotation direction R of the rotating body 505 acts.
  • the support structure 560 is fixed to the support fixing surface 532, and the inertia force F2 acts on the position of the height H21 of the total mass center C2 of the support structure 560 and the radiator unit 512 from the support fixing surface 532. Therefore, the inertial force F2 generates a moment M2 (multiplication of F2 and H21) with respect to the fixed portion (support structure first fixed portion 901 and support structure second fixed portion 902) of the support structure 560.
  • the moment M2 generates a pair of reaction forces R2 acting on the support structure first fixing portion 901 and the support structure second fixing portion 902, and the moment (R2 and the moment due to the couple consisting of the pair of reaction forces R2) D2 multiplication).
  • the reaction force R2 acts as a load on a fixing member such as a screw in the fixing portion.
  • the moment M2 works as an action of pulling the support structure 560 away from the support fixing surface 532, and may cause damage to fixing members such as screws in the support structure first fixing portion 901 and the support structure second fixing portion 902. It is necessary to suppress.
  • the height H2 of the top 621 of the radiator unit 512 from the support fixing surface 532 is set to be smaller than the distance D2 between the support structure first fixing portion 901 and the support structure second fixing portion 902. Therefore, the height H21 (smaller than H2) of the total mass center C2 of the support structure 560 and the radiator unit 512 from the support fixing surface 532 is also kept small, and the support structure first fixing portion 901 and the support unit 901 are supported. It is smaller than the distance D2 between the structure second fixing portions 902. As a result, the magnitude of the pair of reaction forces R2 acting on the support structure first fixing portion 901 and the support structure second fixing portion 902 is smaller than the inertia force F2.
  • a load acting on a fixing member such as a screw of the fixing portion (the supporting structure first fixing portion 901 and the supporting structure second fixing portion 902) of the support structure 560 at the time of acceleration of rotation of the rotating body can be suppressed to be small. Can prevent damage.
  • the rotating body 505 when the rotating body 505 is accelerated and rotated as indicated by the rotation direction R when the rotating body starts rotating, the fixed base 520 and the radiator unit 512 fixed to the fixed base 520 are rotated.
  • Inertial force F3 directed in the direction opposite to the rotation direction R of the body 505 acts.
  • the fixed pedestal 520 is fixed to the fixed pedestal fixing surfaces 681A and 681B, and the inertia force F3 is at the height H31 of the total center of mass C3 of the fixed pedestal 520 and the radiator unit 512 from the fixed pedestal fixing surfaces 681A and 681B.
  • the inertia force F3 generates a moment M3 (multiplication of F3 and H31) with respect to the fixed portion of the fixed base 520 (the fixed base first fixed portion 701 and the fixed base second fixed portion 702).
  • the moment M3 generates a pair of reaction forces R3 acting on the fixed pedestal first fixing portion 701 and the fixed pedestal second fixing portion 702, and a moment (R3 and D3 between the pair of reaction forces R3).
  • the reaction force R3 acts as a load on a fixing member such as a screw in the fixing portion.
  • the moment M3 works as an action of separating the fixed base 520 from the fixed base fixing surfaces 681A and 681B, and may cause damage to fixing members such as screws in the fixed base first fixing portion 701 and the fixing base second fixing portion 702. It is necessary to suppress.
  • the height H3 of the top 621 of the radiator unit 512 from the fixed base fixing surfaces 681A and 681B is smaller than the distance D3 between the fixed base first fixing part 701 and the fixed base second fixing part 702. Therefore, the height H31 (smaller than H3) of the total mass center C3 of the fixed base 520 and the radiator unit 512 from the fixed base fixing surfaces 681A and 681B can be kept small, and the fixed base first fixing portion 701 is fixed. And a distance D3 between the fixed base second fixing portion 702 and the fixed base second fixing portion 702. As a result, the magnitude of the pair of reaction forces R3 acting on the fixed base first fixing part 701 and the fixed base second fixing part 702 is reduced to be smaller than the inertial force F3.
  • the load acting on the fixing member such as the screw of the fixing portion of the fixing base 520 (the fixing base first fixing portion 701 and the fixing base second fixing portion 702) at the time of acceleration of the rotation of the rotating body can be suppressed to be small and damage can be caused. Can be prevented.
  • the power supply of the X-ray generator 502 is provided in the gantry 600 outside the rotating body 505 via a slip ring (not shown) or the like.
  • power supplies (not shown) for the cooling fans 513A and 513B and the pumps 514A and 514B may be provided on the rotating body 505, or the rotating body 505 is similar to the power supply apparatus for the X-ray generator 502. It may be provided in the outside gantry 600.
  • the radiator unit 512 is supported by the support structure having improved rigidity, and thus is not deformed.
  • the possibility of breakage of parts such as a heat radiating tube is reduced, and the resistance to centrifugal force is improved.
  • the centrifugal force can be reliably distributed and supported. Further, it is possible to reduce the weight of a portion of the cooler 510 where a load of components such as the radiator unit 512 does not act, for example, a portion where the centrifugal force such as the cooler housing cover 511 does not act.
  • the base 531 is fixed to the rotating body, even if a load due to the centrifugal force of the pumps 514A, 514B, the cooling fans 513A, 513B, and the power supply device (not shown) is applied, the deformation of the base is reduced. The possibility of part breakage is reduced. As a result, the resistance of the cooler can be improved.
  • the reaction force R1 acting on the fixed portion is reduced to the inertial force F1 or less, the reaction force R2 is reduced to the inertial force F2 or less, the reaction force R3 is reduced to the inertial force F3 or less, and the load acting on the fixing member such as a screw of the fixed portion. Can be kept small and damage can be prevented. As a result, the resistance of the cooler can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • X-Ray Techniques (AREA)

Abstract

A coolant device comprises a casing, a radiator unit which is attached to the casing and to a circulatory path wherethrough a coolant fluid circulates and which externally discharges heat from the coolant fluid, and a fan unit which is housed in the casing and which creates an air flow in the periphery of the radiator unit. The upwind side of the radiator unit is exposed to the outside of the casing.

Description

冷却機、X線コンピュータ断層撮影装置及びX線コンピュータ断層撮影装置の保守方法Cooling machine, X-ray computed tomography apparatus, and maintenance method for X-ray computed tomography apparatus
 本発明の実施形態は、冷却機、X線コンピュータ断層撮影装置及びX線コンピュータ断層撮影装置の保守方法に関する。 Embodiments described herein relate generally to a cooling machine, an X-ray computed tomography apparatus, and a maintenance method for the X-ray computed tomography apparatus.
 X線コンピュータ断層撮影装置(以下、X線CT装置と称する)のガントリーは、固定フレームと、固定フレームに回転可能に支持された回転架台と、固定フレーム及び回転架台を収容した筐体と、を備えている。ガントリーは、回転架台に搭載されたX線管装置、X線検出器及び冷却ユニット(冷却機)なども備えている。 A gantry of an X-ray computed tomography apparatus (hereinafter referred to as an X-ray CT apparatus) includes a fixed frame, a rotating pedestal rotatably supported by the fixed frame, and a housing containing the fixed frame and the rotating pedestal. I have. The gantry also includes an X-ray tube device, an X-ray detector, a cooling unit (cooling machine), and the like mounted on a rotating mount.
 詳しくは、回転架台は、リング状のフレーム部を有し、このリング状フレーム10の内壁に、X線管装置、X線検出器及び冷却ユニットなどが取り付けられている。これらのユニットは、比較的コンパクトでありながら質量が大きく、設置面の圧力が高いため、とりわけ強固な固着が必要とされている。 Specifically, the rotating mount has a ring-shaped frame portion, and an X-ray tube device, an X-ray detector, a cooling unit, and the like are attached to the inner wall of the ring-shaped frame 10. These units are relatively compact but have a large mass and a high pressure on the installation surface, so that particularly strong fixation is required.
 以上のような構造とすることにより、回転架台が高速で回転し、その結果多大な遠心力がX線管装置及び冷却ユニットなどに加わるような場合でも、X線管装置及び冷却ユニットなどのフレーム部に対する強固な固着を維持することができる。 By adopting the structure as described above, the frame such as the X-ray tube apparatus and the cooling unit can be used even when the rotating base rotates at a high speed and as a result, a great centrifugal force is applied to the X-ray tube apparatus and the cooling unit. It is possible to maintain strong adhesion to the part.
 X線管装置及び冷却ユニットは、X線管が発生する熱が伝達される冷却液が循環する循環路を介して接続されている。X線CT装置の発熱源は、X線管である。このため、X線管の発熱は冷却液に伝達され、高温となった冷却液は冷却ユニットに送り込まれる。冷却ユニットは、ラジエータ及びファンユニットを備えている。冷却ユニットで冷却された冷却液は、再びX線管に戻される。 The X-ray tube device and the cooling unit are connected via a circulation path through which a coolant that transmits heat generated by the X-ray tube is circulated. The heat source of the X-ray CT apparatus is an X-ray tube. For this reason, the heat generated by the X-ray tube is transmitted to the cooling liquid, and the high-temperature cooling liquid is sent to the cooling unit. The cooling unit includes a radiator and a fan unit. The coolant cooled by the cooling unit is returned to the X-ray tube again.
 X線管で発生した熱は、結局、ファンユニットにより吹き付けられた空気を加熱することになる。すると、加熱された空気が筐体の内部にこもり、筐体の内部雰囲気の温度を上昇させ、冷却ユニットの冷却性能やX線検出器の感度の安定性を損なうことになってしまう。 The heat generated in the X-ray tube eventually heats the air blown by the fan unit. Then, the heated air is trapped inside the casing, increasing the temperature of the internal atmosphere of the casing, and impairing the cooling performance of the cooling unit and the stability of the sensitivity of the X-ray detector.
 このため、回転架台のフレーム部に開口部を形成し、ラジエータを通過した空気を開口部を通してフレーム部の外側に排出させている。ここで、筐体において、例えば、上部に排気口が形成され、下部に吸気口が形成されている。これにより、フレーム部の開口部を通った空気を、筐体の排気口から筐体外部に排出することができ、筐体の吸気口から筐体内部に新しい空気を取入れることができる。筐体内部の空気を入れ替えることができるため、筐体の内部雰囲気の温度の上昇を抑制することができる。 For this reason, an opening is formed in the frame portion of the rotating gantry, and the air that has passed through the radiator is discharged to the outside of the frame portion through the opening. Here, in the housing, for example, an exhaust port is formed in the upper portion and an intake port is formed in the lower portion. Thereby, the air that has passed through the opening of the frame portion can be discharged from the exhaust port of the housing to the outside of the housing, and new air can be taken into the housing from the intake port of the housing. Since the air inside the housing can be replaced, an increase in the temperature of the internal atmosphere of the housing can be suppressed.
特開平9-56710号公報JP-A-9-56710 特開2001-137224号公報JP 2001-137224 A
 ところで、上記のX線CT装置には以下に述べるような問題がある。 
 ファンユニットによってラジエータに吹き付けられる空気は筐体の吸気口から導入される外気であるが、一般に外気には埃が含まれている。このため、使用時間の経過とともに埃がラジエータのフィンの隙間に堆積し、次第にラジエータを空気が通過し難くなってしまう。ラジエータを通過する空気量が減少すると、冷却ユニットの冷却性能が低下し、X線管の冷却率も低下してしまう。このため、X線管に過熱が生じ、X線管に放電が頻発したり、X線管の製品寿命が短縮したりする恐れがある。
Incidentally, the above X-ray CT apparatus has the following problems.
The air blown to the radiator by the fan unit is the outside air introduced from the intake port of the housing, but generally the outside air contains dust. For this reason, dust accumulates in the gaps between the fins of the radiator as the usage time elapses, and the air gradually becomes difficult to pass through the radiator. When the amount of air passing through the radiator decreases, the cooling performance of the cooling unit decreases and the cooling rate of the X-ray tube also decreases. For this reason, overheating occurs in the X-ray tube, and there is a risk that electric discharge frequently occurs in the X-ray tube or the product life of the X-ray tube is shortened.
 ラジエータは、フレーム部に密着して取り付けられている。このため、完成品(製品)の状態ではラジエータのフィンの隙間に堆積した埃を清掃することが困難である。ラジエータのフィンの隙間に堆積した埃を清掃するためには、冷却ユニットの他、冷却ユニットに連結されたX線管装置もフレーム部から取り外さなければならず、メンテナンス作業に多くの時間が必要となる。 The radiator is attached in close contact with the frame part. For this reason, in the state of a finished product (product), it is difficult to clean the dust accumulated in the gaps between the fins of the radiator. In order to clean the dust accumulated in the gaps between the fins of the radiator, the X-ray tube device connected to the cooling unit must be removed from the frame in addition to the cooling unit, which requires a lot of maintenance work. Become.
 この発明は以上の点に鑑みなされたもので、その目的は、ラジエータを回転架台から取り外すこと無く清掃することができる冷却機、X線コンピュータ断層撮影装置及びX線コンピュータ断層撮影装置の保守方法を提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a cooling machine, an X-ray computed tomography apparatus, and a maintenance method for the X-ray computed tomography apparatus that can be cleaned without removing the radiator from the rotating mount. It is to provide.
図1は、第1の実施形態に係るX線CT装置のガントリーの外観を示す斜視図である。FIG. 1 is a perspective view showing an appearance of a gantry of the X-ray CT apparatus according to the first embodiment. 図2は、図1の線II-IIに沿ったX線CT装置を示す断面図である。FIG. 2 is a cross-sectional view showing the X-ray CT apparatus taken along line II-II in FIG. 図3は、図2に示した回転架台、並びに回転架台に搭載されたX線管装置、冷却ユニット及びX線検出器を示す正面図である。FIG. 3 is a front view showing the rotating gantry shown in FIG. 2 and the X-ray tube device, cooling unit, and X-ray detector mounted on the rotating gantry. 図4は、X線管装置及び冷却ユニット示す概念構成図である。FIG. 4 is a conceptual configuration diagram showing the X-ray tube device and the cooling unit. 図5は、図4に示したX線管装置の分離状態を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus shown in FIG. 図6は、図4に示した冷却ユニットの分離状態を示す概略構成図である。FIG. 6 is a schematic configuration diagram illustrating a separated state of the cooling unit illustrated in FIG. 4. 図7は、上記第1の実施形態に係るX線CT装置の実施例1のX線管装置を示す断面図である。FIG. 7 is a cross-sectional view showing the X-ray tube apparatus of Example 1 of the X-ray CT apparatus according to the first embodiment. 図8は、上記第1の実施形態に係るX線CT装置の実施例2のX線管装置を示す断面図である。FIG. 8 is a cross-sectional view showing an X-ray tube apparatus of Example 2 of the X-ray CT apparatus according to the first embodiment. 図9は、図8に示したX線管装置を示す他の断面図である。FIG. 9 is another sectional view showing the X-ray tube apparatus shown in FIG. 図10は、図8及び図9に示したX線管装置の一部を拡大して示す断面図である。FIG. 10 is an enlarged cross-sectional view of a part of the X-ray tube apparatus shown in FIGS. 図11は、第2の実施形態に係るX線CT装置の回転架台、並びに回転架台に搭載されたX線管装置、冷却ユニット及びX線検出器を示す正面図である。FIG. 11 is a front view showing the rotating gantry of the X-ray CT apparatus according to the second embodiment, and the X-ray tube device, the cooling unit, and the X-ray detector mounted on the rotating gantry. 図12は、第3の実施形態に係るX線CT装置の回転架台、並びに回転架台に搭載されたX線管装置、冷却ユニット及びX線検出器を示す正面図である。FIG. 12 is a front view showing the rotating gantry of the X-ray CT apparatus according to the third embodiment, and the X-ray tube device, the cooling unit, and the X-ray detector mounted on the rotating gantry. 図13は、第4の実施形態に係るX線CT装置の回転架台、並びに回転架台に搭載されたX線管装置、冷却ユニット及びX線検出器を示す正面図である。FIG. 13 is a front view showing a rotating gantry of an X-ray CT apparatus according to the fourth embodiment, and an X-ray tube device, a cooling unit, and an X-ray detector mounted on the rotating gantry. 図14は、第5の実施形態に係るX線CT装置の回転架台、並びに回転架台に搭載されたX線管装置、冷却ユニット及びX線検出器を示す正面図である。FIG. 14 is a front view showing a rotating gantry of an X-ray CT apparatus according to the fifth embodiment, and an X-ray tube device, a cooling unit, and an X-ray detector mounted on the rotating gantry. 図15は、上記第5の実施形態に係るX線CT装置の一部を拡大して示す概略図であり、フレーム部、循環ポンプ、ラジエータ、ファンユニット、マウント、筐体、空盆及びダクトを示す図である。FIG. 15 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the fifth embodiment, and includes a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, an air basin, and a duct. FIG. 図16は、第6の実施形態に係るX線CT装置の一部を拡大して示す概略図であり、フレーム部、循環ポンプ、ラジエータ、ファンユニット、マウント、筐体、空盆及びダクトを示す図である。FIG. 16 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the sixth embodiment, showing a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, an air basin, and a duct. FIG. 図17は、第7の実施形態に係るX線CT装置の一部を拡大して示す概略図であり、フレーム部、循環ポンプ、ラジエータ、ファンユニット、マウント、筐体及び空盆を示す図である。FIG. 17 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the seventh embodiment, and shows a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, and an air basin. is there. 図18は、図17の線XVIII-XVIIIに沿ったX線CT装置の一部を示す断面図である。FIG. 18 is a cross-sectional view showing a part of the X-ray CT apparatus taken along line XVIII-XVIII in FIG. 図19は、第8の実施形態に係るX線CT装置の一部を拡大して示す概略図であり、フレーム部、循環ポンプ、ラジエータ、ファンユニット、マウント、筐体及び空盆を示す図である。FIG. 19 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the eighth embodiment, and is a view showing a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, and an air basin. is there. 図20は、図19の線XX-XXに沿ったX線CT装置の一部を示す断面図である。FIG. 20 is a cross-sectional view showing a part of the X-ray CT apparatus taken along line XX-XX in FIG. 図21は、第9の実施形態に係るX線CT装置の一部を拡大して示す概略図であり、フレーム部、循環ポンプ、ラジエータ、ファンユニット、マウント、筐体、空盆及びダクトを示す図である。FIG. 21 is an enlarged schematic view showing a part of the X-ray CT apparatus according to the ninth embodiment, showing a frame part, a circulation pump, a radiator, a fan unit, a mount, a housing, an air basin, and a duct. FIG. 図22は、図21の線XXII-XXIIに沿ったX線CT装置の一部を示す断面図である。FIG. 22 is a cross-sectional view showing a part of the X-ray CT apparatus taken along line XXII-XXII in FIG. 図23は、上記X線CT装置の変形例を示す図であり、X線管装置及び冷却ユニット示す概念構成図である。FIG. 23 is a diagram showing a modification of the X-ray CT apparatus, and is a conceptual configuration diagram showing an X-ray tube apparatus and a cooling unit. 図24は、図23に示したX線管装置の分離状態を示す概略構成図である。FIG. 24 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus shown in FIG. 図25は、図23に示した冷却ユニットの分離状態を示す概略構成図である。FIG. 25 is a schematic configuration diagram showing a separated state of the cooling unit shown in FIG. 図26は、上記X線CT装置の他の変形例を示す図であり、空盆、圧力検出器、圧力制御装置及び圧力調整機構を示す概略構成図である。FIG. 26 is a diagram showing another modification of the X-ray CT apparatus, and is a schematic configuration diagram showing an air basin, a pressure detector, a pressure control device, and a pressure adjustment mechanism. 図27は、上記X線CT装置の他の変形例を示す図であり、空盆を示す概略構成図である。FIG. 27 is a diagram showing another modification of the X-ray CT apparatus, and is a schematic configuration diagram showing an air basin. 図28は、上記X線CT装置の比較例の回転架台、並びに回転架台に搭載されたX線管装置、冷却ユニット及びX線検出器を示す正面図である。FIG. 28 is a front view showing a rotating gantry of a comparative example of the X-ray CT apparatus, and an X-ray tube device, a cooling unit, and an X-ray detector mounted on the rotating gantry. 図29は、実施形態に係るX線CT装置を概略的に示す斜視図である。FIG. 29 is a perspective view schematically showing the X-ray CT apparatus according to the embodiment. 図30は、図29に示したX線CT装置における回転体内の構造を概略的に示す断面図である。FIG. 30 is a cross-sectional view schematically showing the structure inside the rotating body in the X-ray CT apparatus shown in FIG. 図31は、図30に示した第10の実施形態に係る冷却機の構造を概略的に示す断面図である。FIG. 31 is a cross-sectional view schematically showing the structure of the cooler according to the tenth embodiment shown in FIG. 図32は、図30に示した第10の実施形態に係る冷却機の特徴を概略的に示す断面図である。FIG. 32 is a cross-sectional view schematically showing features of the cooler according to the tenth embodiment shown in FIG. 図33は、図30に示した第10の実施形態に係る冷却機の特徴を概略的に示す断面図である。FIG. 33 is a cross-sectional view schematically showing features of the cooler according to the tenth embodiment shown in FIG. 図34は、図30に示した第10の実施形態に係る冷却機の特徴を概略的に示す断面図である。FIG. 34 is a cross-sectional view schematically showing features of the cooler according to the tenth embodiment shown in FIG.
 一実施形態に係る冷却機は、回転体に搭載され、当該回転体とともに回転中心軸の周りに回転されるX線発生器を冷却する為の冷却機である。前記冷却機は、前記回転体の冷却機固定面に固定されるベースを有する筐体と、前記筐体の前記ベース以外の部分に設けられた通気口を塞ぐように取付けられ冷却液が循環する循環路に取付けられて前記冷却液の熱を外部へ放出させるラジエータユニットと、前記筐体に収納され前記ラジエータユニットを通過する空気の流れを作り出すファンユニットと、を備える。前記空気の流れは前記回転中心軸から遠ざかる流れであるとともに、前記ラジエータユニットの風上側は、筐体の外側に露出していることを特徴とする冷却機。 The cooler according to an embodiment is a cooler for cooling an X-ray generator that is mounted on a rotating body and is rotated around a rotation center axis together with the rotating body. The cooler is mounted so as to close a casing having a base fixed to a cooler fixing surface of the rotating body and a vent provided in a portion other than the base of the casing, and the coolant circulates. A radiator unit that is attached to the circulation path and discharges heat of the cooling liquid to the outside; and a fan unit that is housed in the housing and creates a flow of air passing through the radiator unit. The air flow is a flow away from the rotation center axis, and the windward side of the radiator unit is exposed to the outside of the casing.
 また、一実施形態に係るX線コンピュータ断層撮影装置は、ハウジングと、電子ビームを放出する陰極、前記電子ビームが照射されることによりX線を放出する陽極ターゲット、並びに前記陰極及び陽極ターゲットを収納した真空外囲器を含み、前記ハウジングに収納されたX線管と、を有したX線管装置と、前記X線管が発生する熱の少なくとも一部が伝達される冷却液と、前記冷却液が循環する循環路と、前記循環路に取付けられて前記冷却液を循環させる循環ポンプと、前記循環路に取付けられて前記冷却液の熱を外部へ放出させるラジエータユニットと、前記ラジエータユニットを通過する空気の流れを作りだすファンユニットと、前記X線を検出するX線検出器と、回転軸を中心に回転するリング状のフレーム部を有し、前記X線管装置、循環ポンプ、ラジエータユニット、ファンユニット及びX線検出器が取付けられた回転架台と、を備える。前記ラジエータユニットの風上側は、前記フレーム部の内壁側の空間に露出している。 An X-ray computed tomography apparatus according to an embodiment houses a housing, a cathode that emits an electron beam, an anode target that emits X-rays when irradiated with the electron beam, and the cathode and the anode target. An X-ray tube device including an X-ray tube housed in the housing, a coolant to which at least part of heat generated by the X-ray tube is transmitted, and the cooling A circulation path through which the liquid circulates, a circulation pump attached to the circulation path to circulate the cooling liquid, a radiator unit attached to the circulation path to release heat of the cooling liquid to the outside, and the radiator unit. A fan unit that creates a flow of passing air; an X-ray detector that detects the X-ray; and a ring-shaped frame portion that rotates about a rotation axis; Comprising a tube unit, a circulation pump, a radiator unit, a rotating gantry of the fan unit and the X-ray detector is mounted, the. The windward side of the radiator unit is exposed to the space on the inner wall side of the frame portion.
 また、一実施形態に係るX線コンピュータ断層撮影装置の保守方法は、ハウジングと、電子ビームを放出する陰極、前記電子ビームが照射されることによりX線を放出する陽極ターゲット、並びに前記陰極及び陽極ターゲットを収納した真空外囲器を含み、前記ハウジングに収納されたX線管と、を有したX線管装置と、前記X線管が発生する熱の少なくとも一部が伝達される冷却液と、前記冷却液が循環する循環路と、前記循環路に取付けられて前記冷却液を循環させる循環ポンプと、前記循環路に取付けられて前記冷却液の熱を外部へ放出させるラジエータユニットと、前記ラジエータユニットを通過する空気の流れを作りだすファンユニットと、前記X線を検出するX線検出器と、回転軸を中心に回転するリング状のフレーム部を有し、前記X線管装置、循環ポンプ、ラジエータユニット、ファンユニット及びX線検出器が取付けられた回転架台と、前記循環路に取付けられ、前記冷却液の温度変化による体積変化を吸収するベローズ機構と、を備え、前記ラジエータユニットの風上側は、前記フレーム部の内壁側の空間に露出しているX線コンピュータ断層撮影装置を用意する。前記循環路を形成するように接続された前記ハウジング、ラジエータユニット、循環ポンプ及びベローズ機構を、2個所の着脱自在継手により、2系統に分離する。前記2系統に分離した後に、前記ベローズ機構を含まない方の系統に、他のベローズ機構を前記着脱自在継手を介して取り付ける。 A maintenance method for an X-ray computed tomography apparatus according to an embodiment includes a housing, a cathode that emits an electron beam, an anode target that emits X-rays when irradiated with the electron beam, and the cathode and anode. An X-ray tube device including a vacuum envelope containing a target and housed in the housing; and a coolant to which at least part of heat generated by the X-ray tube is transmitted; A circulation path through which the cooling liquid circulates, a circulation pump attached to the circulation path to circulate the cooling liquid, a radiator unit attached to the circulation path to release heat of the cooling liquid to the outside, It has a fan unit that creates a flow of air that passes through the radiator unit, an X-ray detector that detects the X-rays, and a ring-shaped frame that rotates around the rotation axis. A rotating mount on which the X-ray tube device, a circulation pump, a radiator unit, a fan unit, and an X-ray detector are mounted; and a bellows mechanism that is mounted on the circulation path and absorbs a volume change due to a temperature change of the coolant. An X-ray computed tomography apparatus is prepared in which the windward side of the radiator unit is exposed in the space on the inner wall side of the frame portion. The housing, radiator unit, circulation pump, and bellows mechanism connected to form the circulation path are separated into two systems by two detachable joints. After separation into the two systems, another bellows mechanism is attached to the other system not including the bellows mechanism via the removable joint.
 以下、図面を参照しながら第1の実施形態に係るX線コンピュータ断層撮影装置について詳細に説明する。X線コンピュータ断層撮影装置は、X線CT(computerized tomography)装置である。 Hereinafter, the X-ray computed tomography apparatus according to the first embodiment will be described in detail with reference to the drawings. The X-ray computed tomography apparatus is an X-ray CT (computerized tomography) apparatus.
 図1は、第1の実施形態に係るX線CT装置のガントリーの外観を示す斜視図である。図2は、図1の線II-IIに沿ったX線CT装置を示す断面図である。図3は、図2に示した回転架台、並びに回転架台に搭載されたX線管装置、冷却ユニット及びX線検出器を示す正面図である。 FIG. 1 is a perspective view showing an appearance of a gantry of the X-ray CT apparatus according to the first embodiment. FIG. 2 is a cross-sectional view showing the X-ray CT apparatus taken along line II-II in FIG. FIG. 3 is a front view showing the rotating gantry shown in FIG. 2 and the X-ray tube device, cooling unit, and X-ray detector mounted on the rotating gantry.
 図1乃至図3に示すように、X線CT装置1は、筐体2、土台部4、固定架台5、回転架台6、ベアリング部材8、X線管装置10、冷却ユニット20、及びX線検出器40を備えている。 As shown in FIGS. 1 to 3, the X-ray CT apparatus 1 includes a housing 2, a base part 4, a fixed base 5, a rotary base 6, a bearing member 8, an X-ray tube device 10, a cooling unit 20, and an X-ray. A detector 40 is provided.
 筐体2は、上記の多くの部材を収容している。筐体2は、X線CT装置1の外観を飾っている。筐体2は、排気口2a、吸気口2b及び導入口2cを含んでいる。 
 排気口2aは、筐体2の上部に形成されている。排気口2aは、通気性に優れたメッシュ状のカバー3で塞がれている。なお、図示しないが、X線CT装置1は、筐体2内に設けられカバー3に対向したファンユニットをさらに備えている。これにより、筐体2内の空気を、排気口2aを通して筐体2の外部に排出することができる。
The housing | casing 2 accommodates many said members. The housing 2 decorates the external appearance of the X-ray CT apparatus 1. The housing 2 includes an exhaust port 2a, an intake port 2b, and an introduction port 2c.
The exhaust port 2 a is formed in the upper part of the housing 2. The exhaust port 2a is closed with a mesh-like cover 3 having excellent air permeability. Although not shown, the X-ray CT apparatus 1 further includes a fan unit provided in the housing 2 and facing the cover 3. Thereby, the air in the housing | casing 2 can be discharged | emitted outside the housing | casing 2 through the exhaust port 2a.
 吸気口2bは、筐体2の下部に形成されている。ここでは、吸気口2bは、筐体2と土台部4の間の隙間に形成されている。筐体2の外部の新しい空気を、吸気口2bを通して筐体2の内部に取入れることができる。 
 上記のことから、筐体2の内部の空気を入れ替えることができるため、筐体2の内部の空気の温度の上昇を抑制することができる。 
 導入口2cは、被検体を導入するものである。図示しないが、X線CT装置1は、被検体を載せる寝台も備えている。
The air inlet 2 b is formed in the lower part of the housing 2. Here, the air inlet 2 b is formed in a gap between the housing 2 and the base portion 4. New air outside the housing 2 can be taken into the housing 2 through the air inlet 2b.
From the above, since the air inside the housing 2 can be replaced, an increase in the temperature of the air inside the housing 2 can be suppressed.
The inlet 2c is for introducing a subject. Although not shown, the X-ray CT apparatus 1 also includes a bed on which a subject is placed.
 固定架台5は、土台部4に固定されている。軸受機構として機能するベアリング(転がり軸受け、ボール/ロールベアリング)部材8は、固定架台5及び回転架台6間に設けられている。 The fixed mount 5 is fixed to the base part 4. A bearing (rolling bearing, ball / roll bearing) member 8 that functions as a bearing mechanism is provided between the fixed base 5 and the rotary base 6.
 回転架台6は、ベアリング部材8を介して固定架台5に回転可能に支持されている。回転架台6は、ガントリーと呼ばれ、回転架台6の回転軸(ガントリー中心)a1を中心に回転可能である。回転架台6を高速回転させるために、X線CT装置は、例えばダイレクトドライブモータを採用している。 The rotating gantry 6 is rotatably supported by the fixed gantry 5 via a bearing member 8. The rotating gantry 6 is called a gantry, and can rotate around a rotating shaft (gantry center) a1 of the rotating gantry 6. In order to rotate the rotating gantry 6 at high speed, the X-ray CT apparatus employs, for example, a direct drive motor.
 回転架台6は、最外周に位置したリング状のフレーム部7を有している。フレーム部7には、開口部7aが形成されている。ここでは、開口部7aのサイズ及び個数は、後述するファンユニット25のサイズ及び個数に対応している。 The rotary mount 6 has a ring-shaped frame portion 7 located on the outermost periphery. An opening 7 a is formed in the frame portion 7. Here, the size and the number of the openings 7a correspond to the size and the number of fan units 25 described later.
 X線管装置10、冷却ユニット20及びX線検出器40は、回転架台6に取付けられている。X線管装置10及び冷却ユニット20は、フレーム部7の内壁に取付けられている。図示しないが、高電圧発生電源などもフレーム部7の内壁に取付けられていてもよい。 The X-ray tube device 10, the cooling unit 20, and the X-ray detector 40 are attached to the rotating mount 6. The X-ray tube device 10 and the cooling unit 20 are attached to the inner wall of the frame portion 7. Although not shown, a high voltage generating power source or the like may be attached to the inner wall of the frame portion 7.
 X線管装置10及び冷却ユニット20は、比較的コンパクトでありながら質量が大きく、設置面の圧力が高いため、フレーム部7に強固に固着されている。これにより、回転架台6が高速で回転し、その結果多大な遠心力がX線管装置10及び冷却ユニット20に加わるような場合でも、これらはフレーム部7に対する強固な固着を維持できるものである。 The X-ray tube apparatus 10 and the cooling unit 20 are relatively compact and have a large mass and a high pressure on the installation surface, and are thus firmly fixed to the frame portion 7. As a result, even when the rotating gantry 6 rotates at a high speed and, as a result, a great centrifugal force is applied to the X-ray tube apparatus 10 and the cooling unit 20, these can maintain a firm adhesion to the frame portion 7. .
 X線管装置10は、X線発生器として機能し、X線を放射する。X線検出器40は、回転軸a1を挟んでX線管装置10(X線管)と対向している。X線検出器40は、例えば円弧状に配列された複数のX線検出素子を有している。X線CT装置は、X線検出器40を複数備え、配列させていてもよい。X線検出器40は、X線管装置10から放射され被検体を透過したX線を検出し、検出したX線を電気信号に変換する。 The X-ray tube device 10 functions as an X-ray generator and emits X-rays. The X-ray detector 40 faces the X-ray tube device 10 (X-ray tube) with the rotation axis a1 interposed therebetween. The X-ray detector 40 has a plurality of X-ray detection elements arranged in an arc shape, for example. The X-ray CT apparatus may be provided with a plurality of X-ray detectors 40 and arranged. The X-ray detector 40 detects X-rays emitted from the X-ray tube apparatus 10 and transmitted through the subject, and converts the detected X-rays into electrical signals.
 図示しないが、X線CT装置1は、回転架台6に取付けられ、X線検出器40から出力する電気信号を増幅し、かつAD変換するデータ収集装置をさらに備えていてもよい。また、図示しないが、固定架台5には電力あるいは制御信号などをX線管装置10及び冷却ユニット20などに与えるための機器が設けられていてもよい。上記機器は、スリップリングを介して回転架台6に取付けられているX線管装置10及び冷却ユニット20などに与えることができる。 Although not shown, the X-ray CT apparatus 1 may further include a data collection device that is attached to the rotary base 6 and that amplifies an electric signal output from the X-ray detector 40 and performs AD conversion. Further, although not shown, the fixed base 5 may be provided with a device for supplying electric power or a control signal to the X-ray tube apparatus 10 and the cooling unit 20. The said apparatus can be given to the X-ray tube apparatus 10 and the cooling unit 20 etc. which are attached to the rotation mount 6 via the slip ring.
 X線CT装置1は、動作状態に入ると回転架台6が回転軸a1を中心に回転する。このとき、X線管装置10、冷却ユニット20及びX線検出器40などは、被検体の周囲を一体になって回転する。これと同時に、X線管装置10からX線が放射される。 When the X-ray CT apparatus 1 enters an operating state, the rotary mount 6 rotates around the rotation axis a1. At this time, the X-ray tube apparatus 10, the cooling unit 20, the X-ray detector 40, and the like rotate integrally around the subject. At the same time, X-rays are emitted from the X-ray tube device 10.
 X線は、被検体を透過し、X線検出器40に入射し、X線検出器40においてX線の強度が検出される。X線検出器40で検出された検出信号は、例えば、上記データ収集装置で増幅され、かつA/D変換によってディジタル検出信号に変換され、図示しないコンピュータに供給される。 The X-ray passes through the subject and enters the X-ray detector 40, and the X-ray detector 40 detects the intensity of the X-ray. The detection signal detected by the X-ray detector 40 is amplified by, for example, the data acquisition device, converted into a digital detection signal by A / D conversion, and supplied to a computer (not shown).
 コンピュータは、ディジタル検出信号をもとに、被検体の関心領域におけるX線吸収率を演算し、その演算結果から被検体の断層画像を生成するための画像データを構築する。画像データは、図示しない表示装置などに送られ、画面上に断層画像として表示される。 The computer calculates the X-ray absorption rate in the region of interest of the subject based on the digital detection signal, and constructs image data for generating a tomographic image of the subject from the calculation result. The image data is sent to a display device (not shown) and displayed as a tomographic image on the screen.
 上記のように、X線CT装置1は、X線管装置10及びX線検出器40が被検体を挟んで回転し、被検体の検査断面内のあらゆる点を透過したX線の強弱いわゆる投影データを、いろいろな角度、例えば360°の範囲から獲得する。そして、この投影データをもとに、予めプログラムされたデータ再構成プログラムにより断層画像を生成する。 As described above, in the X-ray CT apparatus 1, the X-ray tube apparatus 10 and the X-ray detector 40 rotate with the subject interposed therebetween, and so-called projections of X-ray intensity transmitted through all points in the examination section of the subject. Data is acquired from various angles, for example from a range of 360 °. Based on this projection data, a tomographic image is generated by a data reconstruction program programmed in advance.
 図4は、X線管装置10及び冷却ユニット20示す概念構成図である。図4では、開口部7a及び後述する熱交換器23の位置関係を強調して示している。 
 図3及び図4に示すように、X線管装置10は、ハウジング12と、ハウジング12に収納されたX線管13と、を有している。ハウジング12(X線管装置10)は、独立して回転架台6に直接又は間接的に取付けられ、固着されている。ここでは、ハウジング12は、フレーム部7の内壁に直接取付けられている。
FIG. 4 is a conceptual configuration diagram showing the X-ray tube apparatus 10 and the cooling unit 20. In FIG. 4, the positional relationship between the opening 7 a and the heat exchanger 23 described later is highlighted.
As shown in FIGS. 3 and 4, the X-ray tube device 10 includes a housing 12 and an X-ray tube 13 accommodated in the housing 12. The housing 12 (X-ray tube device 10) is independently and directly attached and fixed to the rotating gantry 6 independently. Here, the housing 12 is directly attached to the inner wall of the frame portion 7.
 X線管13は、電子ビームを放出する陰極、電子ビームが照射されることによりX線を放出する陽極ターゲット、並びに陰極及び陽極ターゲットを収納した真空外囲器を含んでいる。ここで、X線CT装置1は、冷却液9を有している。冷却液9には、X線管13が発生する熱の少なくとも一部が伝達される。 The X-ray tube 13 includes a cathode that emits an electron beam, an anode target that emits X-rays when irradiated with the electron beam, and a vacuum envelope that houses the cathode and the anode target. Here, the X-ray CT apparatus 1 has a coolant 9. At least a part of the heat generated by the X-ray tube 13 is transmitted to the coolant 9.
 X線管装置10は、導管11a及び導管11bを有している。導管11aは、一端がハウジング12の冷却液取入れ口12iに気密に取付けられ、他端がソケット72に気密に取付けられている。導管11bは、一端がハウジング12の冷却液排出口12oに気密に取付けられ、他端がソケット82に気密に取付けられている。導管11a及び導管11bは、冷却液9が循環する循環路30の一部を形成している。 The X-ray tube apparatus 10 has a conduit 11a and a conduit 11b. One end of the conduit 11 a is airtightly attached to the coolant inlet 12 i of the housing 12, and the other end is airtightly attached to the socket 72. One end of the conduit 11 b is airtightly attached to the coolant discharge port 12 o of the housing 12, and the other end is airtightly attached to the socket 82. The conduit 11a and the conduit 11b form a part of the circulation path 30 through which the coolant 9 circulates.
 熱伝達面がX線管13の外面である場合、ハウジング12内に冷却液9が収容されている。ハウジング12は、導管11a及び導管11bとともに循環路30の一部を形成している。そして、X線管13の熱伝達面を冷却液9が循環することで、X線管13、特に後述する陽極ターゲットを冷却することができる。 When the heat transfer surface is the outer surface of the X-ray tube 13, the coolant 9 is accommodated in the housing 12. The housing 12 forms a part of the circulation path 30 together with the conduit 11a and the conduit 11b. And since the cooling fluid 9 circulates through the heat transfer surface of the X-ray tube 13, it is possible to cool the X-ray tube 13, particularly an anode target described later.
 熱伝達面がX線管13の内部に位置している場合、導管11a及びX線管13を、直接又は継手を介して間接的に連結するか、又は、導管11b及びX線管13を、直接又は継手を介して間接的に連結する。ハウジング12及びX線管13の内部は、導管11a及び導管11bとともに循環路30の一部を形成している。これにより、X線管13の内部の熱伝達面を冷却液9が循環することで、X線管13、特に後述する陽極ターゲットを冷却することができる。 When the heat transfer surface is located inside the X-ray tube 13, the conduit 11a and the X-ray tube 13 are connected directly or indirectly through a joint, or the conduit 11b and the X-ray tube 13 are connected. Connect directly or indirectly through a joint. The inside of the housing 12 and the X-ray tube 13 forms a part of the circulation path 30 together with the conduit 11a and the conduit 11b. Thereby, the coolant 9 circulates through the heat transfer surface inside the X-ray tube 13, whereby the X-ray tube 13, particularly an anode target described later, can be cooled.
 その他、熱伝達面がX線管13の内部に位置し、導管11a及び導管11bをともにX線管13に連結した場合、ハウジング12内に冷却液は収容されていてもよく、逆に収容されていなくともよい。この場合、ハウジング12内に収容される冷却液を冷却液9とは異なる種類の冷却液とすることもできる。X線管13の内部は、導管11a及び導管11bとともに循環路30の一部を形成している。これにより、X線管13の内部の熱伝達面を冷却液9が循環することで、X線管13、特に後述する陽極ターゲットを冷却することができる。 In addition, when the heat transfer surface is located inside the X-ray tube 13 and both the conduit 11a and the conduit 11b are connected to the X-ray tube 13, the coolant may be accommodated in the housing 12, or conversely. It does not have to be. In this case, the coolant stored in the housing 12 may be a different type of coolant from the coolant 9. The inside of the X-ray tube 13 forms a part of the circulation path 30 together with the conduit 11a and the conduit 11b. Thereby, the coolant 9 circulates through the heat transfer surface inside the X-ray tube 13, whereby the X-ray tube 13, particularly an anode target described later, can be cooled.
 冷却ユニット20は、導管21a、導管21b、導管21c、導管21d、循環ポンプ22、熱交換器23及びベローズ機構としての空盆60を有している。導管21aは、一端がプラグ81に気密に取付けられている。導管21cは、一端がプラグ71に気密に取付けられている。導管21dは、一端が導管21aに気密に取付けられている。導管21a、導管21b、導管21c及び導管21dは、循環路30の一部を形成している。 The cooling unit 20 has a conduit 21a, a conduit 21b, a conduit 21c, a conduit 21d, a circulation pump 22, a heat exchanger 23, and an air basin 60 as a bellows mechanism. One end of the conduit 21a is airtightly attached to the plug 81. One end of the conduit 21c is airtightly attached to the plug 71. One end of the conduit 21d is airtightly attached to the conduit 21a. The conduit 21a, the conduit 21b, the conduit 21c, and the conduit 21d form part of the circulation path 30.
 循環ポンプ22は、独立してフレーム部7の内壁に直接又は間接的に取付けられ、固着されている。ここでは、循環ポンプ22は、フレーム部7の内壁に直接取付けられている。循環ポンプ22は、循環路30に取付けられている。ここでは、循環ポンプ22は、導管21a及び導管21b間に気密に取付けられている。循環ポンプ22は、導管21bに冷却液9を吐き出し、導管21aから冷却液9を取り込む。循環ポンプ22は、循環路30において冷却液9を循環させることができる。 The circulation pump 22 is independently attached or fixed to the inner wall of the frame portion 7 independently. Here, the circulation pump 22 is directly attached to the inner wall of the frame portion 7. The circulation pump 22 is attached to the circulation path 30. Here, the circulation pump 22 is airtightly attached between the conduit 21a and the conduit 21b. The circulation pump 22 discharges the coolant 9 to the conduit 21b and takes in the coolant 9 from the conduit 21a. The circulation pump 22 can circulate the coolant 9 in the circulation path 30.
 熱交換器23は、循環路30に取付けられ、冷却液9の熱を外部に放出する。熱交換器23は、ラジエータ24、ファンユニット25及びダクト26を有している。 The heat exchanger 23 is attached to the circulation path 30 and releases the heat of the coolant 9 to the outside. The heat exchanger 23 includes a radiator 24, a fan unit 25, and a duct 26.
 ラジエータ24は、循環路30に取付けられている。ラジエータ24は、導管21b及び導管21c間に接続された図示しない、冷却液が流れる複数の放熱パイプと、放熱パイプに取付けられた図示しない複数の放熱フィンと、を有している。ラジエータ24は、冷却液9の熱を外部へ放出させることができる。詳しくは、ラジエータ24は、断面が円形や扁平形状の冷却液が流れるチューブに、エアに接する表面積を大きくした複数のフィンが取り付けられたフィンチューブ方式の構造であり、概略パネル形状を有している。ラジエータ24は、ラジエータを通過するエアの流れの風上側となる前面と、風下側となる背面を有している。例えば、平板状のフィンがチューブの長手方向に直行するようにチューブに取り付けられている場合には、互いに隣接するフィン間の隙間がエアの流路となる。また、例えば、等間隔に多数配置した扁平チューブと、その隙間に波板状のフィンを各頂部が扁平チューブの各扁平な側面に接合されて取り付けられている場合には、フィンと扁平チューブの扁平な側面との間の隙間がエアの流路となる。 The radiator 24 is attached to the circulation path 30. The radiator 24 includes a conduit 21b and a plurality of heat radiating pipes (not shown) through which a coolant flows, and a plurality of heat radiating fins (not shown) attached to the heat radiating pipes. The radiator 24 can release the heat of the coolant 9 to the outside. Specifically, the radiator 24 is a fin tube type structure in which a plurality of fins having a large surface area in contact with air are attached to a tube in which a coolant having a circular or flat cross section flows, and has a substantially panel shape. Yes. The radiator 24 has a front surface that is the windward side of the air flow that passes through the radiator and a back surface that is the leeward side. For example, when the flat fins are attached to the tube so as to be orthogonal to the longitudinal direction of the tube, a gap between adjacent fins becomes an air flow path. In addition, for example, when flat tubes arranged in a large number at equal intervals and corrugated fins are attached to the gaps, and the tops are attached to the flat side surfaces of the flat tubes, the fins and the flat tubes A gap between the flat side surfaces becomes an air flow path.
 ファンユニット25は、それぞれ開口部7a及びラジエータ24の背面に対向して位置している。回転軸a1からファンユニット25までの距離は、回転軸a1からラジエータ24までの距離より長い。ファンユニット25は、ラジエータ24の前面から背面へと通過する空気の流れを作りだすことができる。ファンユニット25は、ラジエータ24を通過する空気を開口部7aを通して回転架台6(フレーム部7)の外部へと放出させることができる。 The fan units 25 are positioned to face the opening 7a and the back surface of the radiator 24, respectively. The distance from the rotation axis a1 to the fan unit 25 is longer than the distance from the rotation axis a1 to the radiator 24. The fan unit 25 can create a flow of air that passes from the front surface to the back surface of the radiator 24. The fan unit 25 can release the air passing through the radiator 24 to the outside of the rotary mount 6 (frame portion 7) through the opening 7a.
 上記のことから、熱交換器23は、冷却液9の熱を外部へ放出させることができる。また、ラジエータ24を通過した空気を回転架台6の外部へと放出させることができるため、回転架台6の内部の空気の温度の上昇を抑制することができる。 From the above, the heat exchanger 23 can release the heat of the coolant 9 to the outside. In addition, since the air that has passed through the radiator 24 can be released to the outside of the rotating gantry 6, an increase in the temperature of the air inside the rotating gantry 6 can be suppressed.
 ダクト26は、ラジエータ24及びファンユニット25の間に位置している。ダクト26は、ラジエータ24の周縁部及びファンユニット25の周縁部をそれぞれ囲んでいる。ダクト26は、ラジエータ24の周囲の空気の流れをファンユニット25までガイドすることができる。ラジエータ24を通過することにより加熱された空気をファンユニット25まで効率良くガイドすることができるため、回転架台6の内部(回転架台6及び筐体2で囲まれた領域)の空気の温度の上昇を一層、抑制することができる。これにより、熱交換器23の冷却性能や、X線検出器40の感度の安定性を高い状態に維持することができる。 The duct 26 is located between the radiator 24 and the fan unit 25. The duct 26 surrounds the peripheral edge of the radiator 24 and the peripheral edge of the fan unit 25. The duct 26 can guide the air flow around the radiator 24 to the fan unit 25. Since the air heated by passing through the radiator 24 can be efficiently guided to the fan unit 25, the temperature of the air inside the rotating mount 6 (the region surrounded by the rotating mount 6 and the housing 2) is increased. Can be further suppressed. Thereby, the cooling performance of the heat exchanger 23 and the stability of the sensitivity of the X-ray detector 40 can be maintained in a high state.
 冷却ユニット20は、回転架台6に取付けられた筐体50をさらに備えている。筐体50は、フレーム部7の内壁に取付けられ、固着されている。筐体50は、例えば板金で形成されている。筐体50は、回転架台6の回転に伴って加わる遠心力に耐え得る機械的強度を持つように設計されている。 The cooling unit 20 further includes a housing 50 attached to the rotary mount 6. The housing 50 is attached and fixed to the inner wall of the frame portion 7. The housing 50 is made of sheet metal, for example. The housing 50 is designed to have a mechanical strength that can withstand the centrifugal force applied with the rotation of the rotary mount 6.
 ラジエータ24、ファンユニット25及びダクト26は、筐体50に収納され、ユニット化されている。筐体50は、ラジエータ24及びファンユニット25を外部に露出させるよう開口して形成されている。 The radiator 24, the fan unit 25, and the duct 26 are housed in a casing 50 and unitized. The housing 50 is formed so as to open so as to expose the radiator 24 and the fan unit 25 to the outside.
 ラジエータ24、ファンユニット25及びダクト26は、回転架台6に直接又は間接的に取付けられ、固着されている。ここでは、ラジエータ24、ファンユニット25及びダクト26は、筐体50を介してフレーム部7の内壁に間接的に取付けられている。 The radiator 24, the fan unit 25, and the duct 26 are directly or indirectly attached and fixed to the rotary mount 6. Here, the radiator 24, the fan unit 25, and the duct 26 are indirectly attached to the inner wall of the frame portion 7 via the housing 50.
 空盆60は、回転架台6に直接又は間接的に取付けられている。ここでは、空盆60は、ハウジング12、循環ポンプ22、ラジエータ24及びファンユニット25などとは独立して、フレーム部7に直接取付けられている。空盆60は、循環路30に取付けられている。 The air basin 60 is directly or indirectly attached to the rotary mount 6. Here, the air basin 60 is directly attached to the frame portion 7 independently of the housing 12, the circulation pump 22, the radiator 24, the fan unit 25, and the like. The air basin 60 is attached to the circulation path 30.
 空盆60は、開口部61aを有したケース61を有している。開口部61aは、導管21dに気密に連通されている。空盆60は、ケース61内を開口部61aと繋がった第1領域63及び第2領域64に区域する弾性隔膜としてのベローズ62を有している。ケース61には、第2領域64に繋がった通気孔65が形成されている。通気孔65は空気の出入りを許可するため、第2領域64は大気に開放されている。ベローズ62は、ケース61に液密に取付けられている。ベローズ62は伸縮自在である。ここでは、ベローズ62はゴムで形成されている。ベローズ62は、冷却液9の温度変化による体積変化(体積の膨張及び収縮)を吸収することができる。ベローズ62は、ガスに対して不透過性を示す材料で形成することが好ましい。 The air basin 60 has a case 61 having an opening 61a. The opening 61a is in airtight communication with the conduit 21d. The air basin 60 has a bellows 62 as an elastic diaphragm that divides the inside of the case 61 into a first region 63 and a second region 64 connected to the opening 61a. The case 61 has a vent hole 65 connected to the second region 64. Since the vent hole 65 allows air to enter and exit, the second region 64 is open to the atmosphere. The bellows 62 is liquid-tightly attached to the case 61. The bellows 62 is telescopic. Here, the bellows 62 is formed of rubber. The bellows 62 can absorb a volume change (expansion and contraction of the volume) due to a temperature change of the coolant 9. The bellows 62 is preferably formed of a material that is impermeable to gas.
 プラグ71及びソケット72は、着脱自在継手としてのカプラ70を形成し、プラグ81及びソケット82は、着脱自在継手としてのカプラ80を形成している。カプラ70、80は、プラグ及びソケットが連結した連結状態(固定状態)と、プラグ及びソケットが分離した分離状態とに切替え可能である。カプラ70、80は、連結状態において、気密、かつ液密に連結されている。カプラ70、80は、シャットオフバルブ付きのカプラである。カプラ70、80の分離状態において、プラグ71、81及びソケット72、82は、それぞれ、外部への液(冷却液9)漏れを防止することができ、内部への空気の混入を防止することができる構造を採っている。カプラ70、80をそれぞれ分離状態に切替えることにより、2系統に分離することができ、X線管装置10及び冷却ユニット20を分離することができる。 The plug 71 and the socket 72 form a coupler 70 as a detachable joint, and the plug 81 and the socket 82 form a coupler 80 as a detachable joint. The couplers 70 and 80 can be switched between a connected state (fixed state) in which the plug and the socket are connected and a separated state in which the plug and the socket are separated. The couplers 70 and 80 are connected in an airtight and liquid-tight manner in the connected state. The couplers 70 and 80 are couplers with a shut-off valve. In the separated state of the couplers 70 and 80, the plugs 71 and 81 and the sockets 72 and 82 can prevent leakage of the liquid (cooling liquid 9) to the outside, and can prevent air from entering the inside. A structure that can be used. By switching the couplers 70 and 80 to the separated state, the two systems can be separated, and the X-ray tube apparatus 10 and the cooling unit 20 can be separated.
 分離状態のX線管装置10は、冷却液9の体積変化を吸収し難い構成である。そこで、導管11a、11bをゴムホースで形成することにより、導管11a、11bに、冷却液9の体積変化を吸収させる機能を持たせることができる。しかし、導管11a、11bだけでは冷却液9の体積変化を十分に吸収できない場合がある。この場合、分離状態のX線管装置10には空盆を取付けた方が好ましい。 The separated X-ray tube apparatus 10 is configured to hardly absorb the volume change of the coolant 9. Therefore, by forming the conduits 11a and 11b with rubber hoses, the conduits 11a and 11b can have a function of absorbing the volume change of the coolant 9. However, there are cases where the volume change of the coolant 9 cannot be sufficiently absorbed by only the conduits 11a and 11b. In this case, it is preferable to attach an air tray to the X-ray tube apparatus 10 in the separated state.
 図5は、図4に示したX線管装置10の分離状態を示す概略構成図である。 
 図5に示すように、X線管装置10には、ベローズ機構としての空盆90が取付けられている。空盆90は、互いに気密、かつ液密に連結されたプラグ83及び導管84を介してX線管装置10に取付けられている。プラグ83及びソケット82は、着脱自在継手としてのカプラを形成し、連結状態において、気密、かつ液密に連結されている。
FIG. 5 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus 10 shown in FIG.
As shown in FIG. 5, an air basin 90 as a bellows mechanism is attached to the X-ray tube apparatus 10. The air basin 90 is attached to the X-ray tube apparatus 10 via a plug 83 and a conduit 84 that are airtight and liquid tightly connected to each other. The plug 83 and the socket 82 form a coupler as a detachable joint, and are connected in an airtight and liquid-tight manner in the connected state.
 空盆90は、開口部91aを有したケース91を有している。開口部91aは、導管84に気密に連通されている。空盆90は、ケース91内を開口部91aと繋がった第1領域93及び第2領域94に区域するベローズ92を有している。ケース91には、第2領域94に繋がった通気孔95が形成されている。通気孔95は空気の出入りを許可するため、第2領域94は大気に開放されている。なお、ケース91に通気孔95は形成されていなくともよく、この場合、第2領域94は密閉空間となる。 The air basin 90 has a case 91 having an opening 91a. The opening 91 a is in airtight communication with the conduit 84. The air basin 90 has a bellows 92 that divides the inside of the case 91 into a first region 93 and a second region 94 connected to the opening 91a. The case 91 has a vent hole 95 connected to the second region 94. Since the ventilation hole 95 allows air to enter and exit, the second region 94 is open to the atmosphere. In addition, the ventilation hole 95 does not need to be formed in the case 91. In this case, the second region 94 is a sealed space.
 ベローズ92は、ケース91に液密に取付けられている。ベローズ92は伸縮自在である。ここでは、ベローズ92はゴムで形成されている。ベローズ92は、冷却液9の温度変化による体積変化(体積の膨張及び収縮)を吸収することができる。ベローズ92は、ガスに対して不透過性を示す材料で形成することが好ましい。 
 これにより、分離状態(分離した後)のX線管装置10における、外部への液(冷却液9)漏れを防止することができ、内部への空気の混入を防止することができる。
The bellows 92 is attached to the case 91 in a liquid-tight manner. The bellows 92 is telescopic. Here, the bellows 92 is made of rubber. The bellows 92 can absorb a volume change (expansion and contraction of the volume) due to a temperature change of the coolant 9. The bellows 92 is preferably formed of a material that is impermeable to gas.
Thereby, in the X-ray tube apparatus 10 in the separated state (after separation), leakage of liquid (cooling liquid 9) to the outside can be prevented, and mixing of air into the inside can be prevented.
 図6は、図4に示した冷却ユニット20の分離状態を示す概略構成図である。 
 図6に示すように、一方、分離状態の冷却ユニット20は、空盆60を備えている。このため、冷却ユニット20に付加すること無く、分離状態の冷却ユニット20における、外部への液(冷却液9)漏れを防止することができ、内部への空気の混入を防止することができる。
FIG. 6 is a schematic configuration diagram showing a separated state of the cooling unit 20 shown in FIG.
As shown in FIG. 6, on the other hand, the cooling unit 20 in the separated state includes an air tray 60. For this reason, without adding to the cooling unit 20, leakage of the liquid (cooling liquid 9) to the outside in the cooling unit 20 in the separated state can be prevented, and mixing of air into the inside can be prevented.
 ここで、この第1の実施形態に係るX線CT装置のX線管装置10の例として、実施例1及び実施例2のX線管装置について説明する。始めに、実施例1のX線管装置10について説明する。図7は、実施例1のX線管装置10を示す断面図である。 Here, as an example of the X-ray tube apparatus 10 of the X-ray CT apparatus according to the first embodiment, the X-ray tube apparatus of Example 1 and Example 2 will be described. First, the X-ray tube apparatus 10 of Example 1 will be described. FIG. 7 is a cross-sectional view illustrating the X-ray tube apparatus 10 according to the first embodiment.
 図7に示すように、X線管装置10は回転陽極型のX線管装置であり、X線管13は回転陽極型のX線管である。X線管装置10は、X線管13の他、磁界を発生させるコイルとしてのステータコイル102を備えている。図示しないが、ハウジング12(図4)は、X線管13及びステータコイル102を収容している。 As shown in FIG. 7, the X-ray tube apparatus 10 is a rotary anode type X-ray tube apparatus, and the X-ray tube 13 is a rotary anode type X-ray tube. The X-ray tube device 10 includes a stator coil 102 as a coil for generating a magnetic field in addition to the X-ray tube 13. Although not shown, the housing 12 (FIG. 4) houses the X-ray tube 13 and the stator coil 102.
 X線管13は、固定体としての固定シャフト110と、管部130と、陽極ターゲット150と、回転体160と、潤滑剤としての液体金属170と、陰極180と、真空外囲器190とを備えている。X線管13は動圧すべり軸受を使っている。 The X-ray tube 13 includes a fixed shaft 110 as a fixed body, a tube portion 130, an anode target 150, a rotating body 160, a liquid metal 170 as a lubricant, a cathode 180, and a vacuum envelope 190. I have. The X-ray tube 13 uses a dynamic pressure slide bearing.
 固定シャフト110は、回転軸a2に沿って延出して回転軸a2を中心軸として筒状に形成され、一端部が閉塞されている。固定シャフト110は、上記一端部から外れた側面に軸受面110Sを有している。固定シャフト110は、Fe(鉄)合金やMo(モリブデン)合金等の材料で形成されている。固定シャフト110の内部は冷却液9で満たされている。固定シャフト110は、この内部に冷却液9が流れる流路が形成されている。固定シャフト110は、この他端部側に冷却液9を外部に吐出す吐出し口110bを有している。 The fixed shaft 110 extends along the rotation axis a2, is formed in a cylindrical shape with the rotation axis a2 as a central axis, and one end is closed. The fixed shaft 110 has a bearing surface 110 </ b> S on the side surface that is removed from the one end. The fixed shaft 110 is made of a material such as an Fe (iron) alloy or an Mo (molybdenum) alloy. The inside of the fixed shaft 110 is filled with the coolant 9. The fixed shaft 110 has a flow path through which the coolant 9 flows. The fixed shaft 110 has a discharge port 110b for discharging the coolant 9 to the outside on the other end side.
 管部130は、固定シャフト110の内部に設けられ、固定シャフトとともに流路を形成している。管部130の一端部は、固定シャフト110の他端部に形成された開口部110aを通って固定シャフト110の外部に延出している。管部130は、開口部110aに密接に固定されている。 The pipe part 130 is provided inside the fixed shaft 110 and forms a flow path together with the fixed shaft. One end portion of the tube portion 130 extends to the outside of the fixed shaft 110 through an opening 110 a formed at the other end portion of the fixed shaft 110. The tube part 130 is closely fixed to the opening part 110a.
 管部130は、この内部に冷却液9を取り入れる取り入れ口130aと、冷却液9を固定シャフト110の内部に吐出す吐出し口130bとを有している。取り入れ口130aは、固定シャフト110の外部に位置している。吐出し口130bは、固定シャフト110の一端部に隙間を置いて位置している。 The pipe part 130 has an intake port 130 a for taking in the coolant 9 therein and a discharge port 130 b for discharging the coolant 9 into the fixed shaft 110. The intake 130 a is located outside the fixed shaft 110. The discharge port 130b is located at one end of the fixed shaft 110 with a gap.
 取り入れ口130aは導管11aに直接又は継手を介して間接的に連結され、吐出し口110bはハウジング12内に開放されている。又は、取り入れ口130aはハウジング12内に開放され、吐出し口110bは導管11bに直接又は継手を介して間接的に連結されている。 The intake port 130a is connected directly to the conduit 11a or indirectly through a joint, and the discharge port 110b is opened in the housing 12. Alternatively, the intake port 130a is opened in the housing 12, and the discharge port 110b is connected to the conduit 11b directly or indirectly through a joint.
 上記したことから、X線管13外部からの冷却液9は、取り入れ口130aから取り入れられ、管部130内部を通って固定シャフト110の内部に吐出され、固定シャフト110及び管部130の間を通り、吐出し口110bからX線管13外部に吐出される。 From the above, the coolant 9 from the outside of the X-ray tube 13 is taken in from the intake port 130a, discharged through the inside of the tube portion 130 into the fixed shaft 110, and between the fixed shaft 110 and the tube portion 130. As a result, the liquid is discharged from the discharge port 110b to the outside of the X-ray tube 13.
 陽極ターゲット150は、陽極151と、この陽極の外面の一部に設けられたターゲット層152とを有している。陽極151は、円盤状に形成され、固定シャフト110と同軸的に設けられている。陽極151は、Mo合金等の材料で形成されている。陽極151は、回転軸a2に沿った方向に凹部151aを有している。凹部151aは、円盤状に窪めて形成されている。凹部151aには固定シャフト110の一端部が嵌合されている。凹部151aは、固定シャフト110の一端部に隙間を置いて形成されている。ターゲット層152は、W(タングステン)合金等の材料で輪状に形成されている。ターゲット層152の表面は電子衝突面である。 The anode target 150 has an anode 151 and a target layer 152 provided on a part of the outer surface of the anode. The anode 151 is formed in a disk shape and is provided coaxially with the fixed shaft 110. The anode 151 is made of a material such as an Mo alloy. The anode 151 has a recess 151a in the direction along the rotation axis a2. The recess 151a is formed in a disc shape. One end of the fixed shaft 110 is fitted in the recess 151a. The recess 151 a is formed with a gap at one end of the fixed shaft 110. The target layer 152 is formed in a ring shape from a material such as a W (tungsten) alloy. The surface of the target layer 152 is an electron collision surface.
 回転体160は、固定シャフト110より径の大きい筒状に形成されている。回転体160は、固定シャフト110及び陽極ターゲット150と同軸的に設けられている。回転体160は、固定シャフト110より短く形成されている。 The rotating body 160 is formed in a cylindrical shape having a diameter larger than that of the fixed shaft 110. The rotating body 160 is provided coaxially with the fixed shaft 110 and the anode target 150. The rotating body 160 is formed shorter than the fixed shaft 110.
 回転体160は、FeやMo等の材料で形成されている。より詳しくは、回転体160は、筒部161と、筒部161の一端部の側面を囲むように筒部と一体に形成された環部162と、筒部161の他端部に設けられたシール部163と、筒部164とを有している。 The rotating body 160 is made of a material such as Fe or Mo. More specifically, the rotating body 160 is provided at the cylindrical portion 161, an annular portion 162 formed integrally with the cylindrical portion so as to surround a side surface of one end portion of the cylindrical portion 161, and the other end portion of the cylindrical portion 161. A seal portion 163 and a tube portion 164 are provided.
 筒部161は、固定シャフト110の側面を囲んでいる。筒部161は、内面に軸受面110Sに隙間を置いて対向した軸受面160Sを有している。回転体160の一端部、すなわち、筒部161の一端部及び環部162は陽極ターゲット150と接合されている。回転体160は、固定シャフト110を軸に陽極ターゲット150とともに回転可能に設けられている。 The cylinder portion 161 surrounds the side surface of the fixed shaft 110. The cylindrical portion 161 has a bearing surface 160S facing the bearing surface 110S with a gap on the inner surface. One end portion of the rotating body 160, that is, one end portion of the cylindrical portion 161 and the ring portion 162 are joined to the anode target 150. The rotating body 160 is provided so as to be rotatable together with the anode target 150 around the fixed shaft 110.
 シール部163は、軸受面160Sに対して環部162(一端部)の反対側に位置している。シール部163は、筒部161の他端部に接合されている。シール部163は、環状に形成され、固定シャフト110の側面全周に亘って隙間を置いて設けられている。筒部164は、筒部161の側面と接合され、筒部161に固定されている。筒部164は、例えばCu(銅)で形成されている。 The seal part 163 is located on the opposite side of the ring part 162 (one end part) with respect to the bearing surface 160S. The seal portion 163 is joined to the other end portion of the cylindrical portion 161. The seal portion 163 is formed in an annular shape, and is provided with a gap around the entire side surface of the fixed shaft 110. The tube portion 164 is joined to the side surface of the tube portion 161 and is fixed to the tube portion 161. The cylinder part 164 is made of, for example, Cu (copper).
 液体金属170は、固定シャフト110の一端部及び凹部151a間の隙間、並びに固定シャフト110(軸受面110S)及び筒部161(軸受面160S)間の隙間に充填されている。なお、これらの隙間は全て繋がっている。この実施の形態において、液体金属170は、ガリウム・インジウム・錫合金(GaInSn)である。 The liquid metal 170 is filled in a gap between one end of the fixed shaft 110 and the recess 151a and a gap between the fixed shaft 110 (bearing surface 110S) and the cylindrical portion 161 (bearing surface 160S). These gaps are all connected. In this embodiment, the liquid metal 170 is a gallium / indium / tin alloy (GaInSn).
 回転軸a2に直交した方向において、シール部163及び固定シャフト110間の隙間(クリアランス)は、回転体160の回転を維持するとともに液体金属170の漏洩を抑制できる値に設定されている。上記したことから、隙間はわずかであり、500μm以下である。このため、シール部163は、ラビリンスシールリング(labyrinth seal ring)として機能する。 In the direction orthogonal to the rotation axis a2, the clearance (clearance) between the seal portion 163 and the fixed shaft 110 is set to a value that can maintain the rotation of the rotating body 160 and suppress the leakage of the liquid metal 170. From the above, the gap is slight and is 500 μm or less. For this reason, the seal part 163 functions as a labyrinth seal ring (labyrinth seal ring).
 また、シール部163は、内側を円形枠状に窪めてそれぞれ形成された複数の収容部を有している。上記収容部は、万一隙間から液体金属170が漏れた場合、漏れた液体金属170を収容する。 Further, the seal portion 163 has a plurality of accommodating portions each formed by recessing the inside in a circular frame shape. In the unlikely event that the liquid metal 170 leaks from the gap, the storage portion stores the leaked liquid metal 170.
 陰極180は、陽極ターゲット150のターゲット層252に間隔を置いて対向配置されている。陰極180は、電子を放出するフィラメント181を有している。 
 真空外囲器190は、固定シャフト110、管部130、陽極ターゲット150、回転体160、液体金属170及び陰極180を収容している。真空外囲器190は、X線透過窓190a及び開口部190bを有している。X線透過窓190aは、回転軸a2に対して直交した方向にターゲット層152と対向している。固定シャフト110の他端部は、開口部190bを通って真空外囲器190の外部に露出されている。開口部190bは、固定シャフト110を密接に固定している。 
 陰極180は、真空外囲器190の内壁に取付けられている。真空外囲器190は密閉されている。真空外囲器190の内部は真空状態に維持されている。
The cathode 180 is disposed to face the target layer 252 of the anode target 150 with a space therebetween. The cathode 180 has a filament 181 that emits electrons.
The vacuum envelope 190 contains the fixed shaft 110, the tube part 130, the anode target 150, the rotating body 160, the liquid metal 170 and the cathode 180. The vacuum envelope 190 has an X-ray transmission window 190a and an opening 190b. The X-ray transmission window 190a faces the target layer 152 in a direction orthogonal to the rotation axis a2. The other end of the fixed shaft 110 is exposed to the outside of the vacuum envelope 190 through the opening 190b. The opening 190b fixes the fixed shaft 110 closely.
The cathode 180 is attached to the inner wall of the vacuum envelope 190. The vacuum envelope 190 is sealed. The inside of the vacuum envelope 190 is maintained in a vacuum state.
 ステータコイル102は、回転体160の側面、より詳しくは筒部164の側面に対向して真空外囲器190の外側を囲むように設けられている。ステータコイル102の形状は環状である。 The stator coil 102 is provided so as to surround the outside of the vacuum envelope 190 so as to face the side surface of the rotating body 160, more specifically, the side surface of the cylindrical portion 164. The shape of the stator coil 102 is annular.
 ここで、上記X線管13及びステータコイル102の動作状態について説明する。  ステータコイル102は回転体160(特に筒部164)に与える磁界を発生するため、回転体は回転する。これにより、陽極ターゲット150も回転する。また、陰極180に負の電圧(高電圧)が印加され、陽極ターゲット150は接地電位に設定される。 Here, the operation states of the X-ray tube 13 and the stator coil 102 will be described. Since the stator coil 102 generates a magnetic field applied to the rotating body 160 (particularly the cylindrical portion 164), the rotating body rotates. Thereby, the anode target 150 also rotates. Further, a negative voltage (high voltage) is applied to the cathode 180, and the anode target 150 is set to the ground potential.
 これにより、陰極180及び陽極ターゲット150間に電位差が生じる。このため、陰極180が電子を放出すると、この電子は、加速され、ターゲット層152に衝突する。すなわち、陰極180は、ターゲット層152に電子ビームを照射する。これにより、ターゲット層152は、電子と衝突するときにX線を放出し、放出されたX線はX線透過窓190aを介して真空外囲器190外部、ひいてはハウジング12外部に放出される。  上記のように、実施例1のX線管装置10が形成されている。 Thereby, a potential difference is generated between the cathode 180 and the anode target 150. Therefore, when the cathode 180 emits electrons, the electrons are accelerated and collide with the target layer 152. That is, the cathode 180 irradiates the target layer 152 with an electron beam. As a result, the target layer 152 emits X-rays when colliding with electrons, and the emitted X-rays are emitted to the outside of the vacuum envelope 190 and thus to the outside of the housing 12 through the X-ray transmission window 190a. As described above, the X-ray tube apparatus 10 of Example 1 is formed.
 次に、実施例2のX線管装置10について説明する。図8は、実施例2のX線管装置を示す断面図である。図9は、図8に示したX線管装置を示す他の断面図である。図10は、図8及び図9に示したX線管装置の一部を拡大して示す断面図である。 Next, the X-ray tube apparatus 10 of Example 2 will be described. FIG. 8 is a cross-sectional view illustrating the X-ray tube apparatus according to the second embodiment. FIG. 9 is another sectional view showing the X-ray tube apparatus shown in FIG. FIG. 10 is an enlarged cross-sectional view of a part of the X-ray tube apparatus shown in FIGS.
 図8乃至図10に示すように、X線管装置10は固定陽極型のX線管装置であり、X線管13は固定陽極型のX線管である。X線管13は、真空外囲器231を備えている。真空外囲器231は、真空容器232と、絶縁部材250とを備えている。この実施形態において、絶縁部材250は、高電圧絶縁部材として機能している。絶縁部材250には陰極236が取り付けられ、絶縁部材250は、真空外囲器231の一部を形成している。 8 to 10, the X-ray tube device 10 is a fixed anode type X-ray tube device, and the X-ray tube 13 is a fixed anode type X-ray tube. The X-ray tube 13 includes a vacuum envelope 231. The vacuum envelope 231 includes a vacuum container 232 and an insulating member 250. In this embodiment, the insulating member 250 functions as a high voltage insulating member. A cathode 236 is attached to the insulating member 250, and the insulating member 250 forms a part of the vacuum envelope 231.
 陽極ターゲット235は、真空外囲器231の一部を形成している。陽極ターゲット235は、真空外囲器231の外部に小さく開口し、ターゲット面235b近傍で膨らんだ壺形に形成されている。陽極ターゲット235、陰極236、集束電極209及び加速電極208は、真空外囲器231に収納されている。陽極ターゲット235には、電圧供給配線が接続されている。陽極ターゲット235及び加速電極208は接地電位に設定されている。陰極236及び集束電極209と対向した個所の真空容器232は筒状に形成されている。陰極236には、負の高電圧が印加される。集束電極209には、調整された負の高電圧が供給される。真空外囲器231の内部は真空状態である。金属表面部234は、X線放射窓231wの真空側の表面を含む真空容器232の内側に設けられ、接地電位に設定されている。 The anode target 235 forms a part of the vacuum envelope 231. The anode target 235 is formed in a bowl shape that opens small outside the vacuum envelope 231 and swells in the vicinity of the target surface 235b. The anode target 235, the cathode 236, the focusing electrode 209, and the acceleration electrode 208 are accommodated in the vacuum envelope 231. A voltage supply wiring is connected to the anode target 235. The anode target 235 and the acceleration electrode 208 are set to the ground potential. The vacuum vessel 232 at a location facing the cathode 236 and the focusing electrode 209 is formed in a cylindrical shape. A negative high voltage is applied to the cathode 236. The adjusted negative high voltage is supplied to the focusing electrode 209. The inside of the vacuum envelope 231 is in a vacuum state. The metal surface portion 234 is provided inside the vacuum vessel 232 including the vacuum side surface of the X-ray emission window 231w, and is set to the ground potential.
 また、X線管13は、管部241と、環部242とを備えている。管部241は、金属で形成されている。管部241の一端部は、陽極ターゲット235の内部に挿入されている。環部242は、陽極ターゲット235内に設けられている。環部242は、管部241の一端部の側面を囲むように管部241と一体に形成されている。環部242は陽極ターゲット235に隙間を置いて設けられている。管部241の他端部は、冷却液取入れ口を形成し、導管11aに連結されている。陽極ターゲット235の開口は、管部241との間に冷却液排出口を形成している。このため、ハウジング12内は、冷却液9で満たされる。ハウジング12は、X線放射窓231wに対向したX線放射窓12wを有している。 Further, the X-ray tube 13 includes a tube portion 241 and a ring portion 242. The pipe part 241 is made of metal. One end of the tube part 241 is inserted into the anode target 235. The ring portion 242 is provided in the anode target 235. The ring portion 242 is formed integrally with the tube portion 241 so as to surround the side surface of one end portion of the tube portion 241. The ring portion 242 is provided with a gap in the anode target 235. The other end of the pipe part 241 forms a coolant intake and is connected to the conduit 11a. The opening of the anode target 235 forms a coolant discharge port between the tube portion 241 and the opening. For this reason, the inside of the housing 12 is filled with the coolant 9. The housing 12 has an X-ray emission window 12w facing the X-ray emission window 231w.
 ハウジング12内には、偏向部270が収容されている。偏向部270は、磁気偏向部であり、真空容器232の外側で、電子ビームの軌道を取り囲む位置に設けられている。偏向部270は、陰極236から放出される電子ビームを偏向させ、焦点の位置をターゲット面235b上で移動させるものである。 
 上記のように、実施例2のX線管装置が形成されている。
A deflection unit 270 is accommodated in the housing 12. The deflection unit 270 is a magnetic deflection unit, and is provided outside the vacuum vessel 232 at a position surrounding the electron beam trajectory. The deflecting unit 270 deflects the electron beam emitted from the cathode 236 and moves the focal position on the target surface 235b.
As described above, the X-ray tube apparatus according to the second embodiment is formed.
 上記のように構成された第1の実施形態に係るX線CT装置1によれば、X線CT装置11は、X線管装置10と、冷却ユニット20と、X線検出器40と、回転架台6と、を備えている。冷却ユニット20は、循環ポンプ22と、ラジエータ24と、ファンユニット25と、を有している。回転架台6は、フレーム部7を有し、X線管装置10、循環ポンプ22、ラジエータ24、ファンユニット25及びX線検出器40が取付けられている。 According to the X-ray CT apparatus 1 according to the first embodiment configured as described above, the X-ray CT apparatus 11 includes the X-ray tube apparatus 10, the cooling unit 20, the X-ray detector 40, and the rotation. A gantry 6 is provided. The cooling unit 20 includes a circulation pump 22, a radiator 24, and a fan unit 25. The rotating gantry 6 has a frame portion 7 to which an X-ray tube device 10, a circulation pump 22, a radiator 24, a fan unit 25, and an X-ray detector 40 are attached.
 回転軸a1からファンユニット25までの距離は、回転軸a1からラジエータ24までの距離より長い。ファンユニット25は、ラジエータ24の周囲を流れる空気を開口部7aを通して回転架台6の外部へと放出させる。 The distance from the rotation axis a1 to the fan unit 25 is longer than the distance from the rotation axis a1 to the radiator 24. The fan unit 25 discharges the air flowing around the radiator 24 to the outside of the rotating mount 6 through the opening 7a.
 ラジエータ24はフレーム部7に密着して取り付けられていない。開口部7aのサイズは、ラジエータ24のサイズとほぼ同じである必要はなく、ラジエータ24のサイズより小さくすることができる。このため、フレーム部7の機械的強度の低下を抑制することができる。フレーム部7を広い幅にしたり、厚くしたりするなどの補強の必要は生じないため、装置の小型化及び軽量化を図ることができる。 The radiator 24 is not attached in close contact with the frame portion 7. The size of the opening 7 a need not be substantially the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
 X線CT装置1の使用時間の経過とともに、ラジエータ24の放熱パイプや放熱フィン間の隙間に埃が堆積すると、空気は次第にラジエータ24を通過し難くなってしまい、熱交換器23の冷却性能が低下し、X線管の冷却率も低下してしまう。 As the usage time of the X-ray CT apparatus 1 elapses, dust accumulates in the gaps between the heat radiation pipes and the heat radiation fins of the radiator 24, so that air gradually becomes difficult to pass through the radiator 24, and the cooling performance of the heat exchanger 23 is improved. And the cooling rate of the X-ray tube also decreases.
 しかしながら、ラジエータ24の風上側は、フレーム部7の内壁側の空間において露出している。このため、筐体2の一部を取り外すだけで、フレーム部7の内壁側の空間からラジエータ24を清掃することができ、ラジエータ24に堆積した埃を除去することができる。回転架台6から、冷却ユニット20を取り外したり、さらに冷却ユニット20に連結されたX線管装置10を併せて取り外したりすることなくラジエータ24を清掃することができるため、清掃(メンテナンス作業)にかかる時間を短縮することができる。 However, the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
 熱交換器23の機能が低下しないようにメンテナンスすることによりX線管13に生じる過熱を低減できるため、X線管13に頻発する放電の発生を低減することができ、X線管13の製品寿命の短縮を低減することができる。 
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。
By performing maintenance so that the function of the heat exchanger 23 does not deteriorate, overheating generated in the X-ray tube 13 can be reduced, so that frequent occurrence of discharge in the X-ray tube 13 can be reduced. The shortening of the lifetime can be reduced.
From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6.
 次に、第2の実施形態に係るX線CT装置について説明する。この実施形態において、他の構成は上述した第1の実施形態と同一であり、同一の部分には同一の符号を付してその詳細な説明を省略する。図11は、第2の実施形態に係るX線CT装置1の回転架台6、並びに回転架台6に搭載されたX線管装置10、冷却ユニット20及びX線検出器40を示す正面図である。 Next, an X-ray CT apparatus according to the second embodiment will be described. In this embodiment, other configurations are the same as those of the first embodiment described above, and the same parts are denoted by the same reference numerals and detailed description thereof is omitted. FIG. 11 is a front view showing the rotating gantry 6 of the X-ray CT apparatus 1 according to the second embodiment, the X-ray tube device 10 mounted on the rotating gantry 6, the cooling unit 20, and the X-ray detector 40. .
 図11に示すように、冷却ユニット20は、上記筐体50を備えていない。冷却ユニット20は、マウント27及びマウント28を備えている。マウント27及びマウント28は、それぞれ矩形枠状に形成されている。マウント27は、一端部がフレーム部7の内壁に取付けられている。マウント27は、開口部7aの周りを囲んでいる。マウント28は、一側縁部がフレーム部7の内壁に取付けられている。 As shown in FIG. 11, the cooling unit 20 does not include the casing 50. The cooling unit 20 includes a mount 27 and a mount 28. The mount 27 and the mount 28 are each formed in a rectangular frame shape. One end of the mount 27 is attached to the inner wall of the frame portion 7. The mount 27 surrounds the opening 7a. One side edge of the mount 28 is attached to the inner wall of the frame portion 7.
 循環ポンプ22は、マウント28内に位置し、マウント28取り付けられ、フレーム部7の内壁には間接的に取付けられ、固着されている。 
 空盆60は、マウント28及び回転軸a1間に位置し、マウント28に載置され、フレーム部7の内壁には間接的に取付けられ、固着されている。
The circulation pump 22 is located in the mount 28, is attached to the mount 28, and is indirectly attached and fixed to the inner wall of the frame portion 7.
The air basin 60 is located between the mount 28 and the rotation axis a1, is mounted on the mount 28, and is indirectly attached and fixed to the inner wall of the frame portion 7.
 ラジエータ24は、周縁部がマウント27の他端部に取付けられ、フレーム部7の内壁には間接的に取付けられ、固着されている。フレーム部7の内壁側の空間において、ラジエータ24の風上側が露出されていることは言うまでもない。 The periphery of the radiator 24 is attached to the other end of the mount 27, and is indirectly attached and fixed to the inner wall of the frame portion 7. Needless to say, the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7.
 ファンユニット25は、フレーム部7に直接取り付けられている。ここでは、ファンユニット25は、フレーム部7の開口部7aに直接取り付けられ固着されている。 
 このため、マウント27は、ラジエータ24及びファンユニット25の間に位置し、ラジエータ24の周囲の空気の流れをファンユニット25までガイドするダクトとしても機能している。
The fan unit 25 is directly attached to the frame portion 7. Here, the fan unit 25 is directly attached and fixed to the opening 7 a of the frame portion 7.
For this reason, the mount 27 is located between the radiator 24 and the fan unit 25, and also functions as a duct that guides the air flow around the radiator 24 to the fan unit 25.
 上記のように構成された第2の実施形態に係るX線CT装置1によれば、X線CT装置1は、マウント27を備えている。このため、機械的強度の設計が難しい上記第1の実施形態の筐体50無しにX線CT装置1を形成することができる。 
 X線CT装置1はマウント28を備えている。空盆60をマウント28上に載置することができるため、冷却ユニット20をコンパクトに設計することができる。
According to the X-ray CT apparatus 1 according to the second embodiment configured as described above, the X-ray CT apparatus 1 includes the mount 27. For this reason, the X-ray CT apparatus 1 can be formed without the housing 50 of the first embodiment, which is difficult to design mechanical strength.
The X-ray CT apparatus 1 includes a mount 28. Since the air basin 60 can be mounted on the mount 28, the cooling unit 20 can be designed compactly.
 開口部7aのサイズは、ラジエータ24のサイズとほぼ同じである必要はなく、ラジエータ24のサイズより小さくすることができる。このため、フレーム部7の機械的強度の低下を抑制することができる。フレーム部7を広い幅にしたり、厚くしたりするなどの補強の必要は生じないため、装置の小型化及び軽量化を図ることができる。 The size of the opening 7 a is not necessarily the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
 ラジエータ24の風上側は、フレーム部7の内壁側の空間において露出している。このため、筐体2の一部を取り外すだけで、フレーム部7の内壁側の空間からラジエータ24を清掃することができ、ラジエータ24に堆積した埃を除去することができる。回転架台6から、冷却ユニット20を取り外したり、さらに冷却ユニット20に連結されたX線管装置10を併せて取り外したりすることなくラジエータ24を清掃することができるため、清掃(メンテナンス作業)にかかる時間を短縮することができる。 The windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
 熱交換器23の機能が低下しないようにメンテナンスすることによりX線管13に生じる過熱を低減できるため、X線管13に頻発する放電の発生を低減することができ、X線管13の製品寿命の短縮を低減することができる。 
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。
By performing maintenance so that the function of the heat exchanger 23 does not deteriorate, overheating generated in the X-ray tube 13 can be reduced, so that frequent occurrence of discharge in the X-ray tube 13 can be reduced. The shortening of the lifetime can be reduced.
From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6.
 次に、第3の実施形態に係るX線CT装置について説明する。この実施形態において、他の構成は上述した第1の実施形態と同一であり、同一の部分には同一の符号を付してその詳細な説明を省略する。図12は、第3の実施形態に係るX線CT装置1の回転架台6、並びに回転架台6に搭載されたX線管装置10、冷却ユニット20及びX線検出器40を示す正面図である。 Next, an X-ray CT apparatus according to the third embodiment will be described. In this embodiment, other configurations are the same as those of the first embodiment described above, and the same parts are denoted by the same reference numerals and detailed description thereof is omitted. FIG. 12 is a front view showing the rotating gantry 6 of the X-ray CT apparatus 1 according to the third embodiment, the X-ray tube device 10 mounted on the rotating gantry 6, the cooling unit 20, and the X-ray detector 40. .
 図12に示すように、冷却ユニット20は、上記筐体50を備えていない。冷却ユニット20は、マウント29を備えている。マウント29は、矩形枠状の周壁部と、板状の天井壁部と、周壁部及び天井壁部間に位置した板状の一対の側壁部と、が一体に形成されている。マウント29の周壁部は、フレーム部7の内壁に取付けられている。マウント29の周壁部は、は、開口部7aの周りを囲んでいる。 
 循環ポンプ22及び空盆60は、マウント29及び回転軸a1間に位置し、マウント29の天井壁部に載置され、フレーム部7の内壁には間接的に取付けられ、固着されている。
As shown in FIG. 12, the cooling unit 20 does not include the casing 50. The cooling unit 20 includes a mount 29. The mount 29 is formed integrally with a rectangular frame-shaped peripheral wall portion, a plate-shaped ceiling wall portion, and a pair of plate-shaped side wall portions located between the peripheral wall portion and the ceiling wall portion. The peripheral wall portion of the mount 29 is attached to the inner wall of the frame portion 7. The peripheral wall of the mount 29 surrounds the opening 7a.
The circulation pump 22 and the air basin 60 are located between the mount 29 and the rotation axis a1, are placed on the ceiling wall portion of the mount 29, and are indirectly attached and fixed to the inner wall of the frame portion 7.
 ラジエータ24は、周縁部がマウント29の周壁部に取付けられ、フレーム部7の内壁には間接的に取付けられ、固着されている。フレーム部7の内壁側の空間において、ラジエータ24の風上側が露出されるよう、マウント29の一対の側壁部は、所定の高さを持っている。言い換えると、マウント29の天井壁部及びラジエータ24間の空間からラジエータ24を清掃することができるように、マウント29の一対の側壁部は、所定の高さを持っている。また、マウント29の天井壁部及びラジエータ24間の空間では、空気の出入りが許可されるため、マウント29の天井壁部及びラジエータ24間の空間を通った空気がラジエータ24を通ることとなる。 The radiator 24 has a peripheral portion attached to the peripheral wall portion of the mount 29 and is indirectly attached and fixed to the inner wall of the frame portion 7. In the space on the inner wall side of the frame portion 7, the pair of side wall portions of the mount 29 have a predetermined height so that the windward side of the radiator 24 is exposed. In other words, the pair of side walls of the mount 29 has a predetermined height so that the radiator 24 can be cleaned from the space between the ceiling wall of the mount 29 and the radiator 24. In addition, since air is allowed to enter and leave in the space between the ceiling wall portion of the mount 29 and the radiator 24, the air passing through the space between the ceiling wall portion of the mount 29 and the radiator 24 passes through the radiator 24.
 ファンユニット25は、フレーム部7に直接取り付けられている。ここでは、ファンユニット25は、フレーム部7の開口部7aに直接取り付けられ固着されている。 
 このため、マウント29の周壁部は、ラジエータ24及びファンユニット25の間に位置し、ラジエータ24の周囲の空気の流れをファンユニット25までガイドするダクトとしても機能している。
The fan unit 25 is directly attached to the frame portion 7. Here, the fan unit 25 is directly attached and fixed to the opening 7 a of the frame portion 7.
For this reason, the peripheral wall portion of the mount 29 is located between the radiator 24 and the fan unit 25, and also functions as a duct for guiding the air flow around the radiator 24 to the fan unit 25.
 上記のように構成された第3の実施形態に係るX線CT装置1によれば、X線CT装置1は、マウント29を備えている。このため、機械的強度の設計が難しい上記第1の実施形態の筐体50無しにX線CT装置1を形成することができる。 
 循環ポンプ22及び空盆60をマウント29の天井壁部上に載置することができるため、冷却ユニット20をコンパクトに設計することができる。
According to the X-ray CT apparatus 1 according to the third embodiment configured as described above, the X-ray CT apparatus 1 includes the mount 29. For this reason, the X-ray CT apparatus 1 can be formed without the housing 50 of the first embodiment, which is difficult to design mechanical strength.
Since the circulation pump 22 and the air basin 60 can be mounted on the ceiling wall part of the mount 29, the cooling unit 20 can be designed compactly.
 開口部7aのサイズは、ラジエータ24のサイズとほぼ同じである必要はなく、ラジエータ24のサイズより小さくすることができる。このため、フレーム部7の機械的強度の低下を抑制することができる。フレーム部7を広い幅にしたり、厚くしたりするなどの補強の必要は生じないため、装置の小型化及び軽量化を図ることができる。 The size of the opening 7 a is not necessarily the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
 マウント29の一対の側壁部は所定の高さを持っているため、ラジエータ24の風上側は、フレーム部7の内壁側の空間において露出している。マウント29の天井壁部及びラジエータ24間の空間から、ラジエータ24にアクセスすることができる。このため、筐体2の一部を取り外すだけで、フレーム部7の内壁側の空間からラジエータ24を清掃することができ、ラジエータ24に堆積した埃を除去することができる。回転架台6から、冷却ユニット20を取り外したり、さらに冷却ユニット20に連結されたX線管装置10を併せて取り外したりすることなくラジエータ24を清掃することができるため、清掃(メンテナンス作業)にかかる時間を短縮することができる。 Since the pair of side wall portions of the mount 29 have a predetermined height, the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7. The radiator 24 can be accessed from the space between the ceiling wall of the mount 29 and the radiator 24. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
 熱交換器23の機能が低下しないようにメンテナンスすることによりX線管13に生じる過熱を低減できるため、X線管13に頻発する放電の発生を低減することができ、X線管13の製品寿命の短縮を低減することができる。 
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。
By performing maintenance so that the function of the heat exchanger 23 does not deteriorate, overheating generated in the X-ray tube 13 can be reduced, so that frequent occurrence of discharge in the X-ray tube 13 can be reduced. The shortening of the lifetime can be reduced.
From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6.
 次に、第4の実施形態に係るX線CT装置について説明する。この実施形態において、他の構成は上述した第1の実施形態と同一であり、同一の部分には同一の符号を付してその詳細な説明を省略する。図13は、第4の実施形態に係るX線CT装置1の回転架台6、並びに回転架台6に搭載されたX線管装置10、冷却ユニット20及びX線検出器40を示す正面図である。 Next, an X-ray CT apparatus according to the fourth embodiment will be described. In this embodiment, other configurations are the same as those of the first embodiment described above, and the same parts are denoted by the same reference numerals and detailed description thereof is omitted. FIG. 13 is a front view showing the rotating gantry 6 of the X-ray CT apparatus 1 according to the fourth embodiment, the X-ray tube device 10 mounted on the rotating gantry 6, the cooling unit 20, and the X-ray detector 40. .
 図13に示すように、冷却ユニット20は、上記筐体50を備えていない。冷却ユニット20は、マウント28及びマウント29を備えている。 
 マウント28は、矩形枠状に形成されている。マウント28は、一側縁部がフレーム部7の内壁に取付けられている。
As shown in FIG. 13, the cooling unit 20 does not include the casing 50. The cooling unit 20 includes a mount 28 and a mount 29.
The mount 28 is formed in a rectangular frame shape. One side edge of the mount 28 is attached to the inner wall of the frame portion 7.
 循環ポンプ22は、マウント28内に位置し、マウント28取り付けられ、フレーム部7の内壁には間接的に取付けられ、固着されている。 
 空盆60は、マウント28及び回転軸a1間に位置し、マウント28に載置され、フレーム部7の内壁には間接的に取付けられ、固着されている。
The circulation pump 22 is located in the mount 28, is attached to the mount 28, and is indirectly attached and fixed to the inner wall of the frame portion 7.
The air basin 60 is located between the mount 28 and the rotation axis a1, is mounted on the mount 28, and is indirectly attached and fixed to the inner wall of the frame portion 7.
 マウント29は、矩形枠状の周壁部と、板状の天井壁部と、周壁部及び天井壁部間に位置した板状の一対の側壁部と、が一体に形成されている。マウント29の周壁部は、フレーム部7の内壁に取付けられている。マウント29の周壁部は、は、開口部7aの周りを囲んでいる。 The mount 29 is integrally formed with a rectangular frame-shaped peripheral wall portion, a plate-shaped ceiling wall portion, and a pair of plate-shaped side wall portions located between the peripheral wall portion and the ceiling wall portion. The peripheral wall portion of the mount 29 is attached to the inner wall of the frame portion 7. The peripheral wall of the mount 29 surrounds the opening 7a.
 X線管装置10(ハウジング12)は、マウント29及び回転軸a1間に位置し、マウント29の天井壁部に載置され、フレーム部7の内壁には間接的に取付けられ、固着されている。 The X-ray tube device 10 (housing 12) is located between the mount 29 and the rotation axis a1, is placed on the ceiling wall portion of the mount 29, and is indirectly attached and fixed to the inner wall of the frame portion 7. .
 ラジエータ24は、周縁部がマウント29の周壁部に取付けられ、フレーム部7の内壁には間接的に取付けられ、固着されている。フレーム部7の内壁側の空間において、ラジエータ24の風上側が露出されるよう、マウント29の一対の側壁部は、所定の高さを持っている。言い換えると、マウント29の天井壁部及びラジエータ24間の空間からラジエータ24を清掃することができるように、マウント29の一対の側壁部は、所定の高さを持っている。また、マウント29の天井壁部及びラジエータ24間の空間では、空気の出入りが許可されるため、マウント29の天井壁部及びラジエータ24間の空間を通った空気がラジエータ24を通ることとなる。 The radiator 24 has a peripheral portion attached to the peripheral wall portion of the mount 29 and is indirectly attached and fixed to the inner wall of the frame portion 7. In the space on the inner wall side of the frame portion 7, the pair of side wall portions of the mount 29 have a predetermined height so that the windward side of the radiator 24 is exposed. In other words, the pair of side walls of the mount 29 has a predetermined height so that the radiator 24 can be cleaned from the space between the ceiling wall of the mount 29 and the radiator 24. In addition, since air is allowed to enter and leave in the space between the ceiling wall portion of the mount 29 and the radiator 24, the air passing through the space between the ceiling wall portion of the mount 29 and the radiator 24 passes through the radiator 24.
 ファンユニット25は、フレーム部7に直接取り付けられている。ここでは、ファンユニット25は、フレーム部7の開口部7aに直接取り付けられ固着されている。 
 このため、マウント29の周壁部は、ラジエータ24及びファンユニット25の間に位置し、ラジエータ24の周囲の空気の流れをファンユニット25までガイドするダクトとしても機能している。
The fan unit 25 is directly attached to the frame portion 7. Here, the fan unit 25 is directly attached and fixed to the opening 7 a of the frame portion 7.
For this reason, the peripheral wall portion of the mount 29 is located between the radiator 24 and the fan unit 25, and also functions as a duct for guiding the air flow around the radiator 24 to the fan unit 25.
 上記のように構成された第4の実施形態に係るX線CT装置1によれば、X線CT装置1は、マウント29を備えている。このため、機械的強度の設計が難しい上記第1の実施形態の筐体50無しにX線CT装置1を形成することができる。 
 空盆60をマウント28上に載置することができ、X線管装置10(ハウジング12)をマウント29の天井壁部上に載置することができるため、冷却ユニット20をコンパクトに設計することができる。
According to the X-ray CT apparatus 1 according to the fourth embodiment configured as described above, the X-ray CT apparatus 1 includes the mount 29. For this reason, the X-ray CT apparatus 1 can be formed without the housing 50 of the first embodiment, which is difficult to design mechanical strength.
Since the air basin 60 can be placed on the mount 28 and the X-ray tube device 10 (housing 12) can be placed on the ceiling wall of the mount 29, the cooling unit 20 can be designed to be compact. Can do.
 開口部7aのサイズは、ラジエータ24のサイズとほぼ同じである必要はなく、ラジエータ24のサイズより小さくすることができる。このため、フレーム部7の機械的強度の低下を抑制することができる。フレーム部7を広い幅にしたり、厚くしたりするなどの補強の必要は生じないため、装置の小型化及び軽量化を図ることができる。 The size of the opening 7 a is not necessarily the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
 マウント29の一対の側壁部は所定の高さを持っているため、ラジエータ24の風上側は、フレーム部7の内壁側の空間において露出している。マウント29の天井壁部及びラジエータ24間の空間から、ラジエータ24にアクセスすることができる。このため、筐体2の一部を取り外すだけで、フレーム部7の内壁側の空間からラジエータ24を清掃することができ、ラジエータ24に堆積した埃を除去することができる。回転架台6から、冷却ユニット20を取り外したり、さらに冷却ユニット20に連結されたX線管装置10を併せて取り外したりすることなくラジエータ24を清掃することができるため、清掃(メンテナンス作業)にかかる時間を短縮することができる。 Since the pair of side wall portions of the mount 29 have a predetermined height, the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7. The radiator 24 can be accessed from the space between the ceiling wall of the mount 29 and the radiator 24. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
 熱交換器23の機能が低下しないようにメンテナンスすることによりX線管13に生じる過熱を低減できるため、X線管13に頻発する放電の発生を低減することができ、X線管13の製品寿命の短縮を低減することができる。 
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。
By maintaining so that the function of the heat exchanger 23 does not deteriorate, overheating generated in the X-ray tube 13 can be reduced, so that the occurrence of frequent discharge in the X-ray tube 13 can be reduced. The shortening of the lifetime can be reduced.
From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6.
 次に、第5の実施形態に係るX線CT装置について説明する。この実施形態において、他の構成は上述した第1の実施形態と同一であり、同一の部分には同一の符号を付してその詳細な説明を省略する。図14は、第5の実施形態に係るX線CT装置1の回転架台6、並びに回転架台6に搭載されたX線管装置10、冷却ユニット20及びX線検出器40を示す正面図である。図15は、上記第5の実施形態に係るX線CT装置1の一部を拡大して示す概略図であり、フレーム部7、循環ポンプ22、ラジエータ24、ファンユニット25a、25b、マウント28、筐体50、空盆60及びダクト401、402を示す図である。 Next, an X-ray CT apparatus according to the fifth embodiment will be described. In this embodiment, other configurations are the same as those of the first embodiment described above, and the same parts are denoted by the same reference numerals and detailed description thereof is omitted. FIG. 14 is a front view showing the rotating gantry 6 of the X-ray CT apparatus 1 according to the fifth embodiment, the X-ray tube device 10 mounted on the rotating gantry 6, the cooling unit 20, and the X-ray detector 40. . FIG. 15 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the fifth embodiment. The frame unit 7, the circulation pump 22, the radiator 24, the fan units 25a and 25b, the mount 28, It is a figure which shows the housing | casing 50, the air basin 60, and the ducts 401 and 402. FIG.
 図14及び図15に示すように、筐体50は、底壁部51及び蓋部52を有し、回転架台に取付けられている。底壁部51は、フレーム部7の内壁に対向している。蓋部52は、第1通気口Oa及び第2通気口Ob1、Ob2を含んでいる。蓋部52は、天井壁部53と、周壁部54と、を有している。天井壁部53は、第1通気口Oaを含み、底壁部51に間隔を置いて対向している。周壁部54は、第2通気口Ob1、Ob2を含み、枠状に形成されている。周壁部54は、一端が天井壁部53で閉塞され、他端が底壁部51で閉塞されている。第2通気口Ob1及び第2通気口Ob2は回転架台6の回転方向dに対向している。 As shown in FIGS. 14 and 15, the housing 50 has a bottom wall portion 51 and a lid portion 52, and is attached to a rotating mount. The bottom wall portion 51 faces the inner wall of the frame portion 7. The lid 52 includes a first ventilation port Oa and second ventilation ports Ob1 and Ob2. The lid part 52 has a ceiling wall part 53 and a peripheral wall part 54. The ceiling wall portion 53 includes the first ventilation port Oa and faces the bottom wall portion 51 with an interval. The peripheral wall portion 54 includes the second ventilation ports Ob1 and Ob2, and is formed in a frame shape. The peripheral wall portion 54 is closed at one end by the ceiling wall portion 53 and closed at the other end by the bottom wall portion 51. The second vent Ob1 and the second vent Ob2 face each other in the rotational direction d of the rotary mount 6.
 この実施形態において、底壁部51及び天井壁部53は矩形板状に形成され、周壁部54は矩形枠状に形成されている。筐体50は、第1通気口Oa及び第2通気口Ob1、Ob2を除いて気密に形成されている。 In this embodiment, the bottom wall portion 51 and the ceiling wall portion 53 are formed in a rectangular plate shape, and the peripheral wall portion 54 is formed in a rectangular frame shape. The housing 50 is formed airtight except for the first ventilation port Oa and the second ventilation ports Ob1 and Ob2.
 マウント28、循環ポンプ22及び空盆60は、筐体50に収納されている。マウント28は、矩形枠状に形成されている。マウント28は、一側縁部が底壁部51に取付けられている。循環ポンプ22は、マウント28内に位置し、マウント28に取り付けられている。この実施形態において、循環ポンプ22のモータの回転軸は、回転架台6の回転軸a1と平行である。空盆60は、マウント28及び回転軸a1間に位置し、マウント28に載置され、筐体50には間接的に取付けられている。 The mount 28, the circulation pump 22 and the air basin 60 are housed in a housing 50. The mount 28 is formed in a rectangular frame shape. One side edge of the mount 28 is attached to the bottom wall 51. The circulation pump 22 is located in the mount 28 and is attached to the mount 28. In this embodiment, the rotation axis of the motor of the circulation pump 22 is parallel to the rotation axis a <b> 1 of the rotary mount 6. The air basin 60 is located between the mount 28 and the rotation axis a1, is mounted on the mount 28, and is indirectly attached to the housing 50.
 ラジエータ24及びファンユニット25a、25b、筐体50に収納され、ユニット化されている。ラジエータ24は筐体50(天井壁部53)に取付けられている。ラジエータ24の風上側は、第1通気口Oaを通って筐体50の外側に露出している。 The radiator 24, the fan units 25a and 25b, and the housing 50 are unitized. The radiator 24 is attached to the housing 50 (ceiling wall portion 53). The windward side of the radiator 24 is exposed to the outside of the housing 50 through the first ventilation port Oa.
 ファンユニット25a、25bは筐体50(周壁部54)に取付けられている。ファンユニット25aは第2通気口Ob1に対向して位置している。ファンユニット25bは第2通気口Ob2に対向して位置している。ファンユニット25a、25bはラジエータ24を通過する空気の流れを作りだすことができる。ファンユニット25aは、第1通気口Oaを通りラジエータ24を通して空気を筐体50内に取込み、筐体50内の空気を第2通気口Ob1を通して筐体50の外部へ放出させる。ファンユニット25bは、第1通気口Oaを通りラジエータ24の周囲を流れた空気を筐体50内に取込み、筐体50内の空気を第2通気口Ob2を通して筐体50の外部へ放出させる。 The fan units 25a and 25b are attached to the casing 50 (the peripheral wall portion 54). The fan unit 25a is positioned to face the second ventilation port Ob1. The fan unit 25b is located opposite to the second ventilation port Ob2. The fan units 25 a and 25 b can create a flow of air that passes through the radiator 24. The fan unit 25a takes air into the housing 50 through the first vent Oa and the radiator 24, and releases the air in the housing 50 to the outside of the housing 50 through the second vent Ob1. The fan unit 25b takes the air that has passed through the first ventilation port Oa and flows around the radiator 24 into the housing 50, and releases the air in the housing 50 to the outside of the housing 50 through the second ventilation port Ob2.
 フレーム部7は、筐体50の底壁部51と対向した位置から外れた開口部7a、7bを有している。 
 ダクト401の一端は、第2通気口Ob1の周りを囲み、周壁部54に取付けられ、第2通気口Ob1に連通している。ダクト401の他端は、開口部7aの周りを囲み、フレーム部7に取付けられ、開口部7aに連通している。ダクト401は、第2通気口Ob1を通して筐体50の外部へ放出された空気を、開口部7aまでガイドし、回転架台6(フレーム部7)の外部へと放出させる。
The frame portion 7 has openings 7 a and 7 b that are out of a position facing the bottom wall portion 51 of the housing 50.
One end of the duct 401 surrounds the second ventilation port Ob1, is attached to the peripheral wall portion 54, and communicates with the second ventilation port Ob1. The other end of the duct 401 surrounds the opening 7a, is attached to the frame portion 7, and communicates with the opening 7a. The duct 401 guides the air discharged to the outside of the housing 50 through the second ventilation port Ob1 to the opening 7a and discharges it to the outside of the rotary mount 6 (frame portion 7).
 ダクト402の一端は、第2通気口Ob2の周りを囲み、周壁部54に取付けられ、第2通気口Ob2に連通している。ダクト402の他端は、開口部7bの周りを囲み、フレーム部7に取付けられ、開口部7bに連通している。ダクト402は、第2通気口Ob2を通して筐体50の外部へ放出された空気を、開口部7bまでガイドし、回転架台6(フレーム部7)の外部へと放出させる。 One end of the duct 402 surrounds the second ventilation port Ob2, is attached to the peripheral wall portion 54, and communicates with the second ventilation port Ob2. The other end of the duct 402 surrounds the opening 7b, is attached to the frame portion 7, and communicates with the opening 7b. The duct 402 guides the air discharged to the outside of the housing 50 through the second vent Ob2 to the opening 7b and discharges the air to the outside of the rotary mount 6 (frame portion 7).
 この実施形態において、ダクト401、402は、フレーム部7と一体に形成されている。空気のガイド効果を高めるため、ダクト401及びフレーム部7、並びにダクト402及びフレーム部7は、それぞれ気密に繋がっていた方が望ましい。同様に、ダクト401の一端及びダクト402の一端は、それぞれ周壁部54に気密に取付けられていた方が望ましい。 In this embodiment, the ducts 401 and 402 are formed integrally with the frame portion 7. In order to enhance the air guiding effect, it is desirable that the duct 401 and the frame portion 7 and the duct 402 and the frame portion 7 are connected in an airtight manner. Similarly, it is desirable that one end of the duct 401 and one end of the duct 402 are airtightly attached to the peripheral wall portion 54, respectively.
 上記のように構成された第5の実施形態に係るX線CT装置1によれば、ファンユニット25a、25bは、ラジエータ24の周囲を流れる空気を第2通気口Ob1、Ob2を通して筐体50の外部に放出させ、開口部7a、7bを通して回転架台6の外部へと放出させる。 According to the X-ray CT apparatus 1 according to the fifth embodiment configured as described above, the fan units 25a and 25b allow the air flowing around the radiator 24 to flow through the second vents Ob1 and Ob2 in the housing 50. It is discharged to the outside, and is released to the outside of the rotary mount 6 through the openings 7a and 7b.
 ラジエータ24はフレーム部7に密着して取り付けられていない。開口部7a、7bのサイズは、ラジエータ24のサイズとほぼ同じである必要はなく、ラジエータ24のサイズより小さくすることができる。このため、フレーム部7の機械的強度の低下を抑制することができる。フレーム部7を広い幅にしたり、厚くしたりするなどの補強の必要は生じないため、装置の小型化及び軽量化を図ることができる。 The radiator 24 is not attached in close contact with the frame portion 7. The sizes of the openings 7 a and 7 b do not have to be substantially the same as the size of the radiator 24, and can be made smaller than the size of the radiator 24. For this reason, the fall of the mechanical strength of the frame part 7 can be suppressed. Since there is no need for reinforcement such as making the frame portion 7 wide or thick, the apparatus can be reduced in size and weight.
 X線CT装置1の使用時間の経過とともに、ラジエータ24の放熱パイプや放熱フィン間の隙間に埃が堆積し易い。すると、空気は次第にラジエータ24を通過し難くなってしまい、熱交換器23の冷却性能が低下し、X線管13の冷却率も低下してしまう。 As the usage time of the X-ray CT apparatus 1 elapses, dust easily accumulates in the gaps between the radiator pipes and the radiator fins of the radiator 24. As a result, air gradually becomes difficult to pass through the radiator 24, the cooling performance of the heat exchanger 23 is lowered, and the cooling rate of the X-ray tube 13 is also lowered.
 しかしながら、ラジエータ24の風上側は、フレーム部7の内壁側の空間において露出している。このため、筐体2の一部を取り外すだけで、フレーム部7の内壁側の空間からラジエータ24を清掃することができ、ラジエータ24に堆積した埃を除去することができる。回転架台6から、冷却ユニット20を取り外したり、さらに冷却ユニット20に連結されたX線管装置10を併せて取り外したりすることなくラジエータ24を清掃することができるため、清掃(メンテナンス作業)にかかる時間を短縮することができる。 However, the windward side of the radiator 24 is exposed in the space on the inner wall side of the frame portion 7. For this reason, the radiator 24 can be cleaned from the space on the inner wall side of the frame portion 7 only by removing a part of the housing 2, and dust accumulated on the radiator 24 can be removed. Since the radiator 24 can be cleaned without removing the cooling unit 20 from the rotating mount 6 and further removing the X-ray tube device 10 connected to the cooling unit 20, it takes a cleaning (maintenance work). Time can be shortened.
 熱交換器23の機能が低下しないようにメンテナンスすることによりX線管13に生じる過熱を低減できるため、X線管13に頻発する放電の発生を低減することができ、X線管13の製品寿命の短縮を低減することができる。 By performing maintenance so that the function of the heat exchanger 23 does not deteriorate, overheating generated in the X-ray tube 13 can be reduced, so that frequent occurrence of discharge in the X-ray tube 13 can be reduced. The shortening of the lifetime can be reduced.
 ラジエータ24は天井壁部53に取付けられ、ファンユニット25a、25bは周壁部54に取付けられている。このため、筐体50の大型化を招くこと無しに、底壁部51上に循環ポンプ22及び空盆60を載置することができる。循環ポンプ22、ラジエータ24、ファンユニット25a、25b及び空盆60を回転架台6にコンパクトに取付けることができるため、フレーム部7の内壁側の空間の利用効率を高めることができる。 
 ここで、筐体50に循環ポンプ22及び空盆60を収納しても、ラジエータ24の周囲の空気の流れに悪影響を及ぼし難いため、熱交換器23の冷却性能は維持される。
The radiator 24 is attached to the ceiling wall portion 53, and the fan units 25 a and 25 b are attached to the peripheral wall portion 54. For this reason, the circulation pump 22 and the air basin 60 can be placed on the bottom wall portion 51 without increasing the size of the housing 50. Since the circulation pump 22, the radiator 24, the fan units 25 a and 25 b, and the air tray 60 can be compactly attached to the rotating mount 6, the utilization efficiency of the space on the inner wall side of the frame portion 7 can be increased.
Here, even if the circulation pump 22 and the air basin 60 are accommodated in the housing 50, the cooling performance of the heat exchanger 23 is maintained because the air flow around the radiator 24 is hardly adversely affected.
 循環ポンプ22のモータの回転軸は、回転架台6の回転軸a1と平行である。循環ポンプ22のモータの回転軸にジャイロモーメントは働かないため、循環ポンプ22の製品寿命の長期化を図ることができる。 The rotation axis of the motor of the circulation pump 22 is parallel to the rotation axis a1 of the rotary mount 6. Since the gyro moment does not act on the rotating shaft of the motor of the circulation pump 22, the product life of the circulation pump 22 can be extended.
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。また、フレーム部7の内壁側の空間の利用効率に優れたX線CT装置1を得ることができる。 From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
 次に、第6の実施形態に係るX線CT装置について説明する。この実施形態において、他の構成は上述した第5の実施形態と同一であり、同一の部分には同一の符号を付してその詳細な説明を省略する。図16は、第6の実施形態に係るX線CT装置1の一部を拡大して示す概略図であり、フレーム部7、循環ポンプ22、ラジエータ24、ファンユニット25a、25b、マウント28、筐体50、空盆60及びダクト401を示す図である。 Next, an X-ray CT apparatus according to the sixth embodiment will be described. In this embodiment, other configurations are the same as those of the above-described fifth embodiment, and the same reference numerals are given to the same portions, and detailed description thereof is omitted. FIG. 16 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the sixth embodiment. The frame unit 7, the circulation pump 22, the radiator 24, the fan units 25a and 25b, the mount 28, the housing It is a figure which shows the body 50, the air basin 60, and the duct 401. FIG.
 図16に示すように、X線CT装置1はダクト402無しに形成されている。周壁部54は第2通気口Ob2を含んでいない。底壁部51は第3通気口Ocを含んでいる。ファンユニット25bは、筐体50(底壁部51)に取付けられ、第3通気口Ocに対向して位置している。フレーム部7の開口部7bは、第3通気口Ocと対向している。 As shown in FIG. 16, the X-ray CT apparatus 1 is formed without a duct 402. The peripheral wall portion 54 does not include the second ventilation port Ob2. The bottom wall portion 51 includes a third ventilation port Oc. The fan unit 25b is attached to the housing 50 (bottom wall portion 51) and is positioned to face the third ventilation port Oc. The opening 7b of the frame portion 7 is opposed to the third ventilation port Oc.
 マウント28は、開口部7bから外れた底壁部51に取付けられている。ファンユニット25bは、第1通気口Oaを通りラジエータ24を通して空気を筐体50内に取込み、筐体50内の空気を第3通気口Oc及び開口部7bを通して回転架台6の外部へ放出させる。空気を効率よく回転架台6の外部へ放出させるため、第3通気口Oc及び開口部7bは気密に連通している方が望ましい。 The mount 28 is attached to the bottom wall 51 that is removed from the opening 7b. The fan unit 25b takes the air into the casing 50 through the first vent Oa and the radiator 24, and releases the air in the casing 50 to the outside of the rotary base 6 through the third vent Oc and the opening 7b. In order to efficiently release the air to the outside of the rotating gantry 6, it is desirable that the third ventilation port Oc and the opening 7b communicate with each other in an airtight manner.
 上記のように構成された第6の実施形態に係るX線CT装置1によれば、底壁部51の面積に余裕がある場合、底壁部51上に循環ポンプ22及び空盆60を載置し、底壁部51に第3通気口Ocを形成し、底壁部51にファンユニット25bを取付けてもよい。 According to the X-ray CT apparatus 1 according to the sixth embodiment configured as described above, the circulation pump 22 and the air basin 60 are mounted on the bottom wall 51 when the area of the bottom wall 51 is sufficient. The third vent Oc may be formed in the bottom wall portion 51, and the fan unit 25b may be attached to the bottom wall portion 51.
 この場合も、上記第5の実施形態と同様に、筐体50の大型化を招くこと無しに、底壁部51上に循環ポンプ22及び空盆60を載置することができる。循環ポンプ22、ラジエータ24、ファンユニット25a、25b及び空盆60を回転架台6にコンパクトに取付けることができるため、フレーム部7の内壁側の空間の利用効率を高めることができる。 Also in this case, similarly to the fifth embodiment, the circulation pump 22 and the air basin 60 can be placed on the bottom wall portion 51 without increasing the size of the housing 50. Since the circulation pump 22, the radiator 24, the fan units 25 a and 25 b, and the air tray 60 can be compactly attached to the rotating mount 6, the utilization efficiency of the space on the inner wall side of the frame portion 7 can be increased.
 その他、上記第5の実施形態と同様の効果を得ることができる。 
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。また、フレーム部7の内壁側の空間の利用効率に優れたX線CT装置1を得ることができる。
In addition, the same effects as those of the fifth embodiment can be obtained.
From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
 次に、第7の実施形態に係るX線CT装置について説明する。この実施形態において、他の構成は上述した第5の実施形態と同一であり、同一の部分には同一の符号を付してその詳細な説明を省略する。図17は、第7の実施形態に係るX線CT装置1の一部を拡大して示す概略図であり、フレーム部7、循環ポンプ22、ラジエータ24、ファンユニット25a、25b、マウント28、筐体50及び空盆60を示す図である。図18は、図17の線XVIII-XVIIIに沿ったX線CT装置1の一部を示す断面図である。 Next, an X-ray CT apparatus according to the seventh embodiment will be described. In this embodiment, other configurations are the same as those of the above-described fifth embodiment, and the same reference numerals are given to the same portions, and detailed description thereof is omitted. FIG. 17 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the seventh embodiment. The frame unit 7, the circulation pump 22, the radiator 24, the fan units 25a and 25b, the mount 28, the housing It is a figure which shows the body 50 and the air tray 60. 18 is a cross-sectional view showing a part of the X-ray CT apparatus 1 taken along line XVIII-XVIII in FIG.
 図17及び図18に示すように、第2通気口Ob1、Ob2は、回転架台6の回転軸a1に平行な方向に開口している。第2通気口Ob1、Ob2は、周壁部54の一側壁部に並んで形成されている。ダクト401は、第2通気口Ob1及び開口部7aに連通している。図示しないが、他のダクト(402)も、第2通気口Ob2及び開口部(7b)に連通している。 
 ファンユニット25a、25bは、それぞれ軸流ファンである。上記軸流ファンの回転軸は、回転架台の回転軸a1と平行である。
As shown in FIGS. 17 and 18, the second vents Ob <b> 1 and Ob <b> 2 are opened in a direction parallel to the rotation axis a <b> 1 of the rotary mount 6. The second vents Ob <b> 1 and Ob <b> 2 are formed side by side on one side wall portion of the peripheral wall portion 54. The duct 401 communicates with the second vent Ob1 and the opening 7a. Although not shown, the other duct (402) also communicates with the second vent Ob2 and the opening (7b).
The fan units 25a and 25b are axial fans. The rotational axis of the axial fan is parallel to the rotational axis a1 of the rotary mount.
 上記のように構成された第7の実施形態に係るX線CT装置1によれば、ファンユニット25a、25bはそれぞれ軸流ファンであり、軸流ファンの回転軸は回転軸a1と平行である。軸流ファンのモータの回転軸にジャイロモーメントは働かないため、ファンユニット25a、25bの製品寿命の長期化を図ることができる。 According to the X-ray CT apparatus 1 according to the seventh embodiment configured as described above, the fan units 25a and 25b are axial fans, and the rotational axis of the axial fan is parallel to the rotational axis a1. . Since the gyro moment does not act on the rotating shaft of the motor of the axial fan, the product life of the fan units 25a and 25b can be extended.
 その他、上記第5の実施形態と同様の効果を得ることができる。 
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。また、フレーム部7の内壁側の空間の利用効率に優れたX線CT装置1を得ることができる。
In addition, the same effects as those of the fifth embodiment can be obtained.
From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
 次に、第8の実施形態に係るX線CT装置について説明する。この実施形態において、他の構成は上述した第7の実施形態と同一であり、同一の部分には同一の符号を付してその詳細な説明を省略する。図19は、第8の実施形態に係るX線CT装置1の一部を拡大して示す概略図であり、フレーム部7、循環ポンプ22、ラジエータ24、ファンユニット25a、25b、25c、25d、マウント28、筐体50及び空盆60を示す図である。図20は、図19の線XX-XXに沿ったX線CT装置1の一部を示す断面図である。 Next, an X-ray CT apparatus according to the eighth embodiment will be described. In this embodiment, other configurations are the same as those of the above-described seventh embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof is omitted. FIG. 19 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the eighth embodiment. The frame unit 7, the circulation pump 22, the radiator 24, the fan units 25a, 25b, 25c, 25d, It is a figure which shows the mount 28, the housing | casing 50, and the air basin 60. FIG. FIG. 20 is a cross-sectional view showing a part of the X-ray CT apparatus 1 taken along line XX-XX in FIG.
 図19及び図20に示すように、底壁部51は第3通気口Oc1、Oc2を含んでいる。熱交換器23は、ファンユニット25c、25dをさらに有している。ファンユニット25cは、筐体50(底壁部51)に取付けられ、第3通気口Oc1に対向して位置している。ファンユニット25dは、筐体50(底壁部51)に取付けられ、第3通気口Oc2に対向して位置している。フレーム部7は開口部7c、7dをさらに有している。フレーム部7の開口部7cは、第3通気口Oc1と対向している。フレーム部7の開口部7dは、第3通気口Oc2と対向している。 As shown in FIGS. 19 and 20, the bottom wall portion 51 includes third vents Oc1 and Oc2. The heat exchanger 23 further includes fan units 25c and 25d. The fan unit 25c is attached to the housing 50 (bottom wall portion 51) and is positioned to face the third ventilation port Oc1. The fan unit 25d is attached to the housing 50 (bottom wall portion 51) and is positioned to face the third ventilation port Oc2. The frame part 7 further has openings 7c and 7d. The opening 7c of the frame part 7 faces the third ventilation port Oc1. The opening 7d of the frame portion 7 faces the third ventilation port Oc2.
 マウント28は、開口部7c、7dから外れた底壁部51に取付けられている。 
 ファンユニット25cは、第1通気口Oaを通りラジエータ24を通して空気を筐体50内に取込み、筐体50内の空気を第3通気口Oc1及び開口部7cを通して回転架台6の外部へ放出させる。
The mount 28 is attached to the bottom wall 51 that is out of the openings 7c and 7d.
The fan unit 25c takes the air into the casing 50 through the first vent Oa and the radiator 24, and discharges the air in the casing 50 to the outside of the rotary mount 6 through the third vent Oc1 and the opening 7c.
 ファンユニット25dは、第1通気口Oaを通りラジエータ24を通して空気を筐体50内に取込み、筐体50内の空気を第3通気口Oc2及び開口部7dを通して回転架台6の外部へ放出させる。 
 空気を効率よく回転架台6の外部へ放出させるため、第3通気口Oc1及び開口部7c、並びに第3通気口Oc2及び開口部7dは、それぞれ気密に繋がっていた方が望ましい。
The fan unit 25d takes air into the housing 50 through the first ventilation port Oa and the radiator 24, and releases the air in the housing 50 to the outside of the rotating base 6 through the third ventilation port Oc2 and the opening 7d.
In order to efficiently release the air to the outside of the rotating gantry 6, it is preferable that the third vent Oc1 and the opening 7c, and the third vent Oc2 and the opening 7d are connected in an airtight manner.
 上記のように構成された第8の実施形態に係るX線CT装置1によれば、底壁部51の面積に余裕がある場合、底壁部51上に循環ポンプ22及び空盆60を載置し、底壁部51に第3通気口Oc1、Oc2を形成し、底壁部51にファンユニット25c、27dを取付けてもよい。 According to the X-ray CT apparatus 1 according to the eighth embodiment configured as described above, the circulation pump 22 and the air basin 60 are mounted on the bottom wall 51 when the area of the bottom wall 51 is sufficient. The third vent holes Oc1 and Oc2 may be formed in the bottom wall portion 51, and the fan units 25c and 27d may be attached to the bottom wall portion 51.
 この場合も、上記第7の実施形態と同様に、筐体50の大型化を招くこと無しに、底壁部51上に循環ポンプ22及び空盆60を載置することができる。循環ポンプ22、ラジエータ24、ファンユニット25a、25b、25c、25d及び空盆60を回転架台6にコンパクトに取付けることができるため、フレーム部7の内壁側の空間の利用効率を高めることができる。また、熱交換器23の冷却性能を一層高めることができる。 Also in this case, similarly to the seventh embodiment, the circulation pump 22 and the air basin 60 can be placed on the bottom wall portion 51 without increasing the size of the housing 50. Since the circulation pump 22, the radiator 24, the fan units 25 a, 25 b, 25 c, 25 d and the air basin 60 can be compactly attached to the rotary mount 6, the utilization efficiency of the space on the inner wall side of the frame portion 7 can be enhanced. Moreover, the cooling performance of the heat exchanger 23 can be further enhanced.
 その他、上記第7の実施形態と同様の効果を得ることができる。 
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。また、フレーム部7の内壁側の空間の利用効率に優れたX線CT装置1を得ることができる。
In addition, the same effects as those of the seventh embodiment can be obtained.
From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
 次に、第9の実施形態に係るX線CT装置について説明する。この実施形態において、他の構成は上述した第7の実施形態と同一であり、同一の部分には同一の符号を付してその詳細な説明を省略する。図21は、第9の実施形態に係るX線CT装置1の一部を拡大して示す概略図であり、フレーム部7、循環ポンプ22、ラジエータ24、ファンユニット25a、25b、マウント28、筐体50、空盆60及びダクト403を示す図である。図22は、図21の線XXII-XXIIに沿ったX線CT装置1の一部を示す断面図である。 Next, an X-ray CT apparatus according to the ninth embodiment will be described. In this embodiment, other configurations are the same as those of the above-described seventh embodiment, and the same portions are denoted by the same reference numerals and detailed description thereof is omitted. FIG. 21 is an enlarged schematic view showing a part of the X-ray CT apparatus 1 according to the ninth embodiment. The frame unit 7, the circulation pump 22, the radiator 24, the fan units 25a and 25b, the mount 28, the housing It is a figure which shows the body 50, the air basin 60, and the duct 403. FIG. 22 is a cross-sectional view showing a part of the X-ray CT apparatus 1 taken along line XXII-XXII in FIG.
 図21及び図22に示すように、周壁部54には、第2通気口Ob1、Ob2の替わりに第2通気口Obが形成されている。 
 ダクト403の一端は、第2通気口Obの周りを囲み、周壁部54に取付けられ、第2通気口Obに連通している。ダクト403の他端は、開口部7aの周りを囲み、フレーム部7に取付けられ、開口部7aに連通している。ダクト403は、第2通気口Obを通して筐体50の外部へ放出された空気を、開口部7aまでガイドし、回転架台6(フレーム部7)の外部へと放出させる。
As shown in FIGS. 21 and 22, the second vent hole Ob is formed in the peripheral wall portion 54 instead of the second vent holes Ob <b> 1 and Ob <b> 2.
One end of the duct 403 surrounds the second ventilation port Ob, is attached to the peripheral wall portion 54, and communicates with the second ventilation port Ob. The other end of the duct 403 surrounds the opening 7a, is attached to the frame part 7, and communicates with the opening 7a. The duct 403 guides the air released to the outside of the housing 50 through the second vent Ob to the opening 7a, and releases it to the outside of the rotating mount 6 (frame portion 7).
 この実施形態において、ダクト403は、フレーム部7と一体に形成されている。熱交換器23の冷却性能を高めるため、ダクト403及び周壁部54は、気密に繋がっていた方が望ましい。 In this embodiment, the duct 403 is formed integrally with the frame portion 7. In order to enhance the cooling performance of the heat exchanger 23, it is desirable that the duct 403 and the peripheral wall portion 54 be connected in an airtight manner.
 ファンユニット25a、25bは、それぞれ軸流ファンである。上記軸流ファンの回転軸は、回転架台の回転軸a1と平行である。ファンユニット25a、25bは、ダクト403に取付けられている。ファンユニット25aの外壁404及びファンユニット25bの外壁405は、ダクト403の一部で形成されている。 The fan units 25a and 25b are axial fans. The rotational axis of the axial fan is parallel to the rotational axis a1 of the rotary mount. The fan units 25 a and 25 b are attached to the duct 403. The outer wall 404 of the fan unit 25a and the outer wall 405 of the fan unit 25b are formed by a part of the duct 403.
 上記のように構成された第9の実施形態に係るX線CT装置1によれば、ファンユニット25a、25bはそれぞれダクト403に取付けられている。ファンユニット25a、25bは、筐体50、ラジエータ24等とともにユニット化されていなくともよい。この場合も上記第7の実施形態と同様の効果を得ることができる。 According to the X-ray CT apparatus 1 according to the ninth embodiment configured as described above, the fan units 25a and 25b are respectively attached to the duct 403. The fan units 25a and 25b may not be unitized together with the casing 50, the radiator 24, and the like. In this case, the same effect as that of the seventh embodiment can be obtained.
 上記のことから、機械的強度の低下を防止することができ、ラジエータ24を回転架台6から取り外すこと無く清掃することができるX線CT装置1を得ることができる。また、フレーム部7の内壁側の空間の利用効率に優れたX線CT装置1を得ることができる。 From the above, it is possible to obtain the X-ray CT apparatus 1 that can prevent the mechanical strength from being lowered and can be cleaned without removing the radiator 24 from the rotary mount 6. Moreover, the X-ray CT apparatus 1 excellent in the utilization efficiency of the space on the inner wall side of the frame portion 7 can be obtained.
 次に、上記第1乃至第4の実施形態に係るX線CT装置の比較例について説明する。なお、上記比較例のX線CT装置は、上記第5乃至第9の実施形態に係るX線CT装置の比較例でもある。図28は、X線CT装置の比較例の回転架台6、並びに回転架台6に搭載されたX線管装置10、冷却ユニット20及びX線検出器40を示す正面図である。 Next, a comparative example of the X-ray CT apparatus according to the first to fourth embodiments will be described. The X-ray CT apparatus of the comparative example is also a comparative example of the X-ray CT apparatuses according to the fifth to ninth embodiments. FIG. 28 is a front view showing the rotating gantry 6 of the comparative example of the X-ray CT apparatus, and the X-ray tube device 10, the cooling unit 20, and the X-ray detector 40 mounted on the rotating gantry 6.
 図28に示すように、ラジエータ24は、開口部7a及びファンユニット25間に位置している。ラジエータ24はフレーム部7に密着して取り付けられている。回転軸a1からファンユニット25までの距離は、回転軸a1からラジエータ24までの距離より短い。開口部7aのサイズは、ラジエータ24のサイズとほぼ同じである。 28, the radiator 24 is located between the opening 7a and the fan unit 25. The radiator 24 is attached in close contact with the frame portion 7. The distance from the rotation axis a1 to the fan unit 25 is shorter than the distance from the rotation axis a1 to the radiator 24. The size of the opening 7 a is almost the same as the size of the radiator 24.
 上記のように構成されたX線CT装置の比較例によれば、ラジエータ24はフレーム部7に密着して取り付けられているため、開口部7aのサイズは、ラジエータ24のサイズとほぼ同じにする必要がある。開口部7aのサイズは大きくなるため、フレーム部7の機械的強度は低下することになる。上記の場合、フレーム部7を広い幅にしたり、厚くしたりするなどの補強の必要があるため、装置の小型化及び軽量化を図ることは困難である。 According to the comparative example of the X-ray CT apparatus configured as described above, since the radiator 24 is attached in close contact with the frame portion 7, the size of the opening 7 a is substantially the same as the size of the radiator 24. There is a need. Since the size of the opening 7a is increased, the mechanical strength of the frame 7 is reduced. In the above case, since it is necessary to reinforce the frame portion 7 by making it wide or thick, it is difficult to reduce the size and weight of the device.
 ラジエータ24を清掃するためには、回転架台6から、冷却ユニット20を取り外したり、冷却ユニット20及びX線管装置10を分離しない(できない)場合はさらに冷却ユニット20に連結されたX線管装置10を併せて取り外したりする必要があるため、清掃(メンテナンス作業)にかかる時間を短縮することは困難である。 In order to clean the radiator 24, the X-ray tube device connected to the cooling unit 20 is further removed when the cooling unit 20 is not removed from the rotating mount 6 or the cooling unit 20 and the X-ray tube device 10 are not separated. Since it is necessary to remove 10 together, it is difficult to reduce the time required for cleaning (maintenance work).
 なお、この発明は上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 例えば、空盆60は、循環路30に取付けられていればよく、冷却ユニット20とは別に設けられていてもよい。 
 図23に示すように、空盆60は、X線管装置10に設けられていてもよい。導管11cは、一端が導管11bに気密に取付けられている。空盆60の開口部61aは、導管11cに気密に連通されている。
For example, the air basin 60 only needs to be attached to the circulation path 30, and may be provided separately from the cooling unit 20.
As shown in FIG. 23, the air basin 60 may be provided in the X-ray tube apparatus 10. One end of the conduit 11c is airtightly attached to the conduit 11b. The opening 61a of the air basin 60 is in airtight communication with the conduit 11c.
 図24は、図23に示したX線管装置10の分離状態を示す概略構成図である。 
 図24に示すように、分離状態のX線管装置10は、空盆60を備えている。このため、X線管装置10に付加すること無く、分離状態のX線管装置10における、外部への液(冷却液9)漏れを防止することができ、内部への空気の混入を防止することができる。
FIG. 24 is a schematic configuration diagram showing a separated state of the X-ray tube apparatus 10 shown in FIG.
As shown in FIG. 24, the X-ray tube apparatus 10 in the separated state includes an air basin 60. For this reason, without adding to the X-ray tube apparatus 10, leakage of the liquid (cooling liquid 9) to the outside in the X-ray tube apparatus 10 in the separated state can be prevented, and mixing of air inside is prevented. be able to.
 分離状態の冷却ユニット20は、冷却液9の体積変化を吸収し難い構成である。そこで、導管21a、21b、21cをホースで形成することにより、導管21a、21b、21cに、冷却液9の体積変化を吸収させる機能を持たせることができる。しかし、導管21a、21b、21cだけでは冷却液9の体積変化を十分に吸収できない場合がある。この場合、分離状態の冷却ユニット20には空盆を取付けた方が好ましい。 The separated cooling unit 20 is configured to hardly absorb the volume change of the coolant 9. Therefore, by forming the conduits 21a, 21b, and 21c with hoses, the conduits 21a, 21b, and 21c can have a function of absorbing the volume change of the coolant 9. However, there are cases where the volume change of the coolant 9 cannot be sufficiently absorbed by the conduits 21a, 21b, and 21c alone. In this case, it is preferable to attach an air tray to the cooling unit 20 in the separated state.
 図25は、図23に示した冷却ユニット20の分離状態を示す概略構成図である。 
 図25に示すように、冷却ユニット20には、ベローズ機構としての空盆90が取付けられている。空盆90は、互いに気密、かつ液密に連結されたソケット85及び導管86を介して冷却ユニット20に取付けられている。プラグ81及びソケット85は、着脱自在継手としてのカプラを形成し、連結状態において、気密、かつ液密に連結されている。開口部91aは、導管86に気密に連通されている。 
 これにより、分離状態の冷却ユニット20における、外部への液(冷却液9)漏れを防止することができ、内部への空気の混入を防止することができる。
FIG. 25 is a schematic configuration diagram showing a separated state of the cooling unit 20 shown in FIG.
As shown in FIG. 25, the cooling unit 20 is provided with an air tray 90 as a bellows mechanism. The air basin 90 is attached to the cooling unit 20 via a socket 85 and a conduit 86 that are connected to each other in an airtight and liquid-tight manner. The plug 81 and the socket 85 form a coupler as a detachable joint, and are connected in an airtight and liquid-tight manner in the connected state. The opening 91 a is in airtight communication with the conduit 86.
Thereby, in the cooling unit 20 in the separated state, leakage of the liquid (cooling liquid 9) to the outside can be prevented, and mixing of air into the inside can be prevented.
 図26に示すように、X線CT装置1は、圧力検出器301、圧力制御装置302、圧力調整機構303及び導管304をさらに備えていてもよい。圧力検出器301(圧力センサ)は、ケース61に気密に取付けられている。圧力検出器301は、第2領域64の圧力(ガス圧力)を検出するものである。圧力検出器301は、検出した圧力の情報を圧力制御装置302に送信する。圧力制御装置302は、上記圧力の情報に基づいて圧力調整機構303の駆動を制御する。 As shown in FIG. 26, the X-ray CT apparatus 1 may further include a pressure detector 301, a pressure control device 302, a pressure adjustment mechanism 303, and a conduit 304. The pressure detector 301 (pressure sensor) is airtightly attached to the case 61. The pressure detector 301 detects the pressure (gas pressure) in the second region 64. The pressure detector 301 transmits information on the detected pressure to the pressure control device 302. The pressure control device 302 controls the driving of the pressure adjustment mechanism 303 based on the pressure information.
 圧力調整機構303は、導管304を介して通気孔65に気密に連通されている。なお、この例では第2領域64が大気に開放されないことは言うまでもない。圧力調整機構303は、第2領域64のガスの圧力を調整可能である。 The pressure adjusting mechanism 303 is in airtight communication with the vent hole 65 via a conduit 304. In this example, it goes without saying that the second region 64 is not opened to the atmosphere. The pressure adjustment mechanism 303 can adjust the gas pressure in the second region 64.
 圧力調整機構303が加圧機構として機能する場合、第2領域64のガスの圧力を、大気圧に比べて圧力の高い正圧に調整可能である。圧力調整機構303が減圧機構として機能する場合、第2領域64のガスの圧力を、大気圧に比べて圧力の低い負圧に調整可能である。 When the pressure adjusting mechanism 303 functions as a pressurizing mechanism, the gas pressure in the second region 64 can be adjusted to a positive pressure that is higher than the atmospheric pressure. When the pressure adjustment mechanism 303 functions as a pressure reduction mechanism, the gas pressure in the second region 64 can be adjusted to a negative pressure that is lower than the atmospheric pressure.
 X線管装置10の稼動を開始した直後の初期状態など、冷却液9の温度が十分に低い状態では、熱流速を上昇させるため、圧力調整機構303は、第2領域64の圧力を負圧に調整し、冷却液9の沸点を下げる。さらにX線管装置10の稼動が続き、X線管13の熱伝達面の温度が上昇すると、冷却液9の温度も上昇する。このため、冷却液9の温度上昇とともに、圧力調整機構303は、第2領域64の圧力を大気圧に調整し、冷却液9の沸点を上昇させ、さらには、第2領域64の圧力を正圧に調整し、冷却液9の沸点をさらに上昇させる。これにより、X線管13の熱伝達面から放出される沸騰熱を冷却液9に伝達させることができる。そして、バーンアウトの発生を回避しつつ、十分な熱流速を得ることができるため、一定のX線管入力パワーでの連続入力を可能とすることができる。 In a state where the temperature of the coolant 9 is sufficiently low, such as an initial state immediately after the operation of the X-ray tube device 10 is started, the pressure adjustment mechanism 303 reduces the pressure in the second region 64 to a negative pressure in order to increase the heat flow rate. To lower the boiling point of the coolant 9. When the operation of the X-ray tube device 10 continues and the temperature of the heat transfer surface of the X-ray tube 13 rises, the temperature of the coolant 9 also rises. For this reason, as the temperature of the coolant 9 rises, the pressure adjustment mechanism 303 adjusts the pressure in the second region 64 to atmospheric pressure, raises the boiling point of the coolant 9, and further corrects the pressure in the second region 64. The boiling point of the coolant 9 is further increased by adjusting the pressure. Thereby, the boiling heat released from the heat transfer surface of the X-ray tube 13 can be transmitted to the coolant 9. Since a sufficient heat flow rate can be obtained while avoiding the occurrence of burnout, continuous input with a constant X-ray tube input power can be made possible.
 上記の場合、X線CT装置1は、冷却液9の温度を検出する温度検出器を備えていた方が好ましい。例えば、温度検出器はX線管13の熱伝達面の上流側の冷却液9の温度を検出すればよい。X線CT装置1は他の温度検出器をさらに備えていてもよく、他の温度検出器はX線管13の熱伝達面の下流側の冷却液9の温度を検出すればよい。 In the above case, the X-ray CT apparatus 1 preferably includes a temperature detector that detects the temperature of the coolant 9. For example, the temperature detector may detect the temperature of the coolant 9 upstream of the heat transfer surface of the X-ray tube 13. The X-ray CT apparatus 1 may further include another temperature detector, and the other temperature detector may detect the temperature of the coolant 9 on the downstream side of the heat transfer surface of the X-ray tube 13.
 図27に示すように、空盆60の第2領域64は、大気に開放されずに密閉されていてもよい。第2領域64は、ガスで充満され、圧力を正圧に調整されている。冷却液9の沸点を上昇させることができるため、バーンアウトの発生を回避することができる。 As shown in FIG. 27, the second region 64 of the air basin 60 may be sealed without being opened to the atmosphere. The second region 64 is filled with gas, and the pressure is adjusted to a positive pressure. Since the boiling point of the coolant 9 can be raised, the occurrence of burnout can be avoided.
 冷却液9としては、水系冷却液や絶縁油などを利用することができる。水系冷却液としては、グリコール水などの不凍液を含むものを挙げることができる。 
 循環ポンプ22としては、遠心ポンプや、ギアポンプを利用することができる。 
 X線管装置10及び冷却ユニット20を分離しない場合、X線CT装置1は、カプラ70、80無しに形成されていてもよい。
As the coolant 9, an aqueous coolant or insulating oil can be used. Examples of the aqueous coolant include those containing an antifreeze such as glycol water.
As the circulation pump 22, a centrifugal pump or a gear pump can be used.
When the X-ray tube apparatus 10 and the cooling unit 20 are not separated, the X-ray CT apparatus 1 may be formed without the couplers 70 and 80.
 循環ポンプ22、ラジエータ24、ファンユニット25及び空盆60は、筐体50に収納され、ユニット化されていてもよい。 
 空盆60は、X線管装置10(ハウジング12)、循環ポンプ22、ラジエータ24及びファンユニット25とは独立して、回転架台6に直接又は間接的に取付けられていてもよい。
The circulation pump 22, the radiator 24, the fan unit 25, and the air basin 60 may be housed in the housing 50 and unitized.
The air basin 60 may be directly or indirectly attached to the rotary mount 6 independently of the X-ray tube device 10 (housing 12), the circulation pump 22, the radiator 24, and the fan unit 25.
 循環ポンプ22、ラジエータ24及びファンユニット25は、筐体50に収納され、ユニット化されていてもよい。 
 X線管装置10(ハウジング12)、循環ポンプ22、ラジエータ24、ファンユニット25及び空盆60は、互いに独立して、回転架台6に直接又は間接的に取付けられていてもよい。 
 空盆60は、X線管装置10(ハウジング12)の外面に取付けられていてもよい。
The circulation pump 22, the radiator 24, and the fan unit 25 may be housed in a housing 50 and unitized.
The X-ray tube device 10 (housing 12), the circulation pump 22, the radiator 24, the fan unit 25, and the air basin 60 may be directly or indirectly attached to the rotating mount 6 independently of each other.
The air basin 60 may be attached to the outer surface of the X-ray tube apparatus 10 (housing 12).
 ラジエータ24は、平板状であり、フレーム部7の内壁にほぼ平行に配置されているが、種々変形可能である。ラジエータ24は、任意形状でよく、また積層させてもよく、フレーム部7の内壁に対して傾斜して配置されていてもよい。 The radiator 24 has a flat plate shape and is arranged substantially parallel to the inner wall of the frame portion 7, but can be variously modified. The radiator 24 may have an arbitrary shape, may be stacked, and may be disposed to be inclined with respect to the inner wall of the frame portion 7.
 また、ラジエータ24は筐体50の周壁部54に設けた通気口を塞ぐように取付けられていても良い。 Further, the radiator 24 may be attached so as to close a vent hole provided in the peripheral wall portion 54 of the housing 50.
 回転架台6の回転速度は3rpsを超える場合、機械的強度を確保するため、上述した第2乃至第4の実施形態で示したように、ファンユニット25は回転架台6の開口部7aに直接取り付けられていることが好ましく、循環路に連通して取付けられるラジエータ24、空盆60及び循環ポンプ22も、それぞれ回転架台6に固定された専用のマウントに取付けた方が好ましい。また、第2乃至第4の実施形態の変形例として、循環ポンプ22、ダクト26、空盆90の中から少なくとも一つを、ラジエータ24とともに一つの筐体に収納し、その筐体を回転架台6に、ファンユニットの直上に位置するように、取り付けることもできる。 When the rotational speed of the rotating gantry 6 exceeds 3 rps, the fan unit 25 is directly attached to the opening 7a of the rotating gantry 6 as shown in the second to fourth embodiments to secure mechanical strength. The radiator 24, the air basin 60, and the circulation pump 22 that are attached in communication with the circulation path are preferably attached to dedicated mounts fixed to the rotary mount 6. As a modification of the second to fourth embodiments, at least one of the circulation pump 22, the duct 26, and the air basin 90 is housed in a single casing together with the radiator 24, and the casing is used as a rotating base. 6 can be mounted so as to be located immediately above the fan unit.
 上記ダクト401、402、403は、必要に応じて設けられていればよい。 
 熱交換器23は、複数のラジエータ24を有していてもよい。例えば、複数のラジエータ24は、積層されていてもよい。そのような意味において、以降はラジエータをラジエータユニットと呼称する。
The ducts 401, 402, and 403 may be provided as necessary.
The heat exchanger 23 may have a plurality of radiators 24. For example, the plurality of radiators 24 may be stacked. In that sense, the radiator is hereinafter referred to as a radiator unit.
 筐体50は、ラジエータユニット24の表面積を増大し得る形状を有していてもよい。筐体50は、通気口を含み屋根型に突出した天井壁を有していてもよい。天井壁は山形に形成されている。この場合、ラジエータユニット24は、風上側が通気口を通って筐体50の外側に露出するように筐体50に収納されている。 The housing 50 may have a shape that can increase the surface area of the radiator unit 24. The housing 50 may have a ceiling wall that includes a vent and protrudes into a roof shape. The ceiling wall is formed in a mountain shape. In this case, the radiator unit 24 is housed in the housing 50 so that the windward side is exposed to the outside of the housing 50 through the vent hole.
 上述したX線CT装置では、フレーム部7に通気口が設けられ、ラジエータユニット24を通過した空気の流れはこの通気口を通して回転架台6の外部(回転中心軸a1と反対側)に放出される場合について述べた。しかし、フレーム部7に通気口を設けない場合においても、ラジエータユニット24を通過する空気の流れ、および冷却ユニット筐体内部から冷却ユニット筐体の通気口を通じて冷却ユニット筐体外部に排出される空気の流れが、回転中心軸a1から遠ざかる向きであれば、加熱された空気がX線CT装置筐体2の内部にこもることがないため、筐体2の内部雰囲気の温度を上昇させたり、冷却ユニットの冷却性能やX線検出器の感度の安定性を損なうということを回避することが可能である。 In the X-ray CT apparatus described above, the frame portion 7 is provided with a vent hole, and the air flow that has passed through the radiator unit 24 is discharged to the outside of the rotating mount 6 (on the side opposite to the rotation center axis a1) through this vent hole. Said about the case. However, even when the frame portion 7 is not provided with a vent hole, the flow of air passing through the radiator unit 24 and the air discharged from the inside of the cooling unit casing to the outside of the cooling unit casing through the vent holes of the cooling unit casing. If the flow is away from the rotation center axis a1, the heated air will not be trapped inside the X-ray CT apparatus housing 2, so that the temperature of the internal atmosphere of the housing 2 is raised or cooled. It is possible to avoid impairing the cooling performance of the unit and the stability of the sensitivity of the X-ray detector.
  本発明の実施形態は、上述したX線CT装置に限定されるものではなく、各種のX線CT装置やその他のX線診断装置に適用可能である。 The embodiment of the present invention is not limited to the above-described X-ray CT apparatus, and can be applied to various X-ray CT apparatuses and other X-ray diagnostic apparatuses.
 次に、第10の実施形態に係るCT装置について、図面を参照して説明する。 
 図29は、実施の形態に係るCT(コンピュータ断層撮影)装置の外観を示し、図30は、図29に示すCT装置内の内部構造を概略的に示している。このCT装置は、ガントリ600を備え、このガントリ600は、回転中心軸504の周りに回転される回転体505、この回転体5を回転可能に支持する支持構造(図示せず)及びこの回転体505を囲むような筐体608から構成されている。ガントリ600の中央部には、被検体が寝かされる寝台620が進入する空洞部540が撮影領域として設けられている。被検体の撮影時には、この寝台620が空洞部540内に前進されて被検体が撮影領域に配置される。
Next, a CT apparatus according to a tenth embodiment will be described with reference to the drawings.
FIG. 29 shows an external appearance of a CT (Computer Tomography) apparatus according to the embodiment, and FIG. 30 schematically shows an internal structure in the CT apparatus shown in FIG. The CT apparatus includes a gantry 600. The gantry 600 includes a rotating body 505 that is rotated around a rotation center axis 504, a support structure (not shown) that rotatably supports the rotating body 5, and the rotating body. The housing 608 surrounds 505. In the central part of the gantry 600, a cavity 540 into which a bed 620 on which a subject is laid enters is provided as an imaging region. When imaging the subject, the bed 620 is advanced into the cavity 540 and the subject is placed in the imaging region.
 回転体505は、円環状のフレームで構成され、この回転体505には、X線をファンビーム状に発生するようにコリメータ(図示せず)を備えたX線発生器502が固定されている。また、このX線発生器502に空洞部540の撮影領域を介して対向して配置され、ファンビーム状のX線を検出するX線検出器508も回転体505に固定されている。更に、回転体505には、後に詳細に説明するX線発生器502を冷却する為の冷却機510が固定されている。 The rotator 505 is composed of an annular frame, and an X-ray generator 502 having a collimator (not shown) is fixed to the rotator 505 so as to generate X-rays in the form of a fan beam. . Further, an X-ray detector 508 that is arranged to face the X-ray generator 502 through the imaging region of the cavity 540 and detects fan-beam X-rays is also fixed to the rotating body 505. Further, a cooling machine 510 for cooling an X-ray generator 502, which will be described in detail later, is fixed to the rotating body 505.
 このようなCT装置では、被検体(図示せず)が寝かされた寝台620が空洞部540内に進入した状態で、回転体505が回転され、X線発生器502からX線ファンビームが被検体(図示せず)に照射されて透過X線がX線検出器508で検出される。回転体505の回転に伴い、被検体の周りの様々な方向からX線ファンビームが照射されて被検体内の様々な箇所からのX線がX線検出器508で検出される。このX線検出器508からの検出信号が回転体505外に出力されて画像再構成処理部(図示せず)に供給され、画像再構成処理部でこの出力信号が処理されて被検体内の様々な箇所の透過率が計算され、被検体の断層像が再構築される。 In such a CT apparatus, the rotating body 505 is rotated in a state where a bed 620 on which a subject (not shown) is laid has entered the cavity 540, and an X-ray fan beam is generated from the X-ray generator 502. A subject (not shown) is irradiated and transmitted X-rays are detected by an X-ray detector 508. As the rotator 505 rotates, the X-ray fan beam is irradiated from various directions around the subject, and X-rays from various locations in the subject are detected by the X-ray detector 508. A detection signal from the X-ray detector 508 is output to the outside of the rotating body 505 and supplied to an image reconstruction processing unit (not shown), and this output signal is processed by the image reconstruction processing unit, so The transmittance at various locations is calculated, and a tomographic image of the subject is reconstructed.
 冷却機510は、冷却液を循環する配管506でX線発生器2に連結され、X線発生器502内で発生した熱は、この冷却液に与えられて排熱の為に配管506を介して冷却機510に供給され、冷却機510で冷却された冷却液は、吸熱の為に配管506を介してX線発生器502に供給される。 The cooler 510 is connected to the X-ray generator 2 by a pipe 506 that circulates a coolant, and the heat generated in the X-ray generator 502 is given to the coolant and passed through the pipe 506 for exhaust heat. Then, the coolant supplied to the cooler 510 and cooled by the cooler 510 is supplied to the X-ray generator 502 via the pipe 506 for heat absorption.
 (実施形態10)
 図31、図32、図33及び図34には、図29及び図30に示された冷却機510の第10の実施形態が示されている。
(Embodiment 10)
31, 32, 33, and 34 show a tenth embodiment of the cooler 510 shown in FIGS. 29 and 30.
 冷却機510が載置固定される回転体505のフレーム上の冷却機搭載部551の冷却機固定面552には、ベース531が設けられ、ベース531には、回転体505のフレームに形成された排気部522に連通する複数の排気口517A,517Bが設けられている。また、このベース531の外周に隣接してベース531の支柱固定面532には、複数の支柱518A,518Bが立設され、ねじ等の結合部材で支柱固定面532に結合固定されている。そして、この複数の支柱518A,518Bの周囲には、ベース531に固定されている冷却機筐体カバー511が設けられ、この冷却機筐体カバー511で囲まれた空間が排気空間に定められている。 A base 531 is provided on the cooler fixing surface 552 of the cooler mounting portion 551 on the frame of the rotating body 505 on which the cooler 510 is placed and fixed. The base 531 is formed on the frame of the rotating body 505. A plurality of exhaust ports 517A and 517B communicating with the exhaust unit 522 are provided. A plurality of support columns 518A and 518B are erected on the support column fixing surface 532 of the base 531 adjacent to the outer periphery of the base 531, and are connected and fixed to the support column fixing surface 532 with a connecting member such as a screw. A cooler casing cover 511 fixed to the base 531 is provided around the plurality of support columns 518A and 518B, and a space surrounded by the cooler casing cover 511 is defined as an exhaust space. Yes.
 冷却機510は、複数のファンユニットとして複数の冷却ファン513A、513Bを備えている。この冷却ファン513A、513Bは、排気口517A,517B上に配置され、冷却機筐体カバー511で囲まれるように配置されている。また、この冷却ファン513A、513Bによって排気される排気空間の回転中心軸504側の全面には、ラジエータユニット512が冷却機筐体カバー511の開口部を覆うように固定されている。 The cooler 510 includes a plurality of cooling fans 513A and 513B as a plurality of fan units. The cooling fans 513A and 513B are disposed on the exhaust ports 517A and 517B and are disposed so as to be surrounded by the cooler casing cover 511. Further, a radiator unit 512 is fixed over the entire surface of the exhaust space exhausted by the cooling fans 513A and 513B on the side of the rotation center shaft 504 so as to cover the opening of the cooler casing cover 511.
 冷却機筐体611は、冷却機筐体カバー511を含み、冷却機510の内部部品を囲い、冷却機510の内部空間を画定してベース531上に排気空間を規定し、また、ラジエータユニット512が配置される吸気導入口516を規定している。 The cooler casing 611 includes a cooler casing cover 511, encloses the internal components of the cooler 510, defines the internal space of the cooler 510, defines an exhaust space on the base 531, and the radiator unit 512. Is defined.
 支持構造体560がラジエータユニット512を支持する為に複数の支柱518A、518Bを介してベース531の支柱固定面532に固定され、支持構造体560が支柱固定面532に立設されている複数の支柱518A、518Bとラジエータユニット512を取り付けて固定するための固定台座520とを有している。より具体的には、固定台座520が複数の支柱518A,518Bの固定台座固定面681A、681Bに固定され、この固定台座520にラジエータユニット512を構成する複数のラジエータ519A、519Bが載置固定されている。このラジエータ519A、519Bは、互いに流路が並列に連結されている。ここで、固定台座520は、複数のラジエータ519A、519Bが回転中心軸4側に頂部が向けられるような三角ルーフ状(三角屋根型)を成すようなフレーム構造523A、523Bに形成されている。より具体的には、固定台座520は、A-A断面として拡大して示すように取り付け部(板状部材)521A、521B及びこの取り付け部521A、521Bの背面(排気空間に向けられる面)に隣接する断面がL字形或いはT字形の板状補強部材(図示では断面がL字形の例を示している。)522A,522Bが固定されている。固定台座520を成す取り付け部521A、521Bの一端及び補強部材522A、522Bの一端は、複数の支柱518A、518Bの回転中心軸504側にある固定台座固定面681A、681Bにねじ等の固定部材で取り付け固定され、また、取り付け部521A、521Bの他端及び補強部材522A,522Bの他端は、ルーフ状(屋根状)の頂部を構成するように当接され、ねじ等の固定部材で取り付け固定されている。このような構造の固定台座520に複数のラジエータ519A、519Bが載置固定されていることから、ラジエータ519A、519Bも同様にルーフ状(屋根状)に配置されることとなる。従って、この複数のラジエータ519A、519Bは、その回転中心軸4側の前面に吸気口516A、516Bを有し、この吸気口516A、516Bで冷却機510の吸気導入口516が構成される。 The support structure 560 is fixed to the support fixing surface 532 of the base 531 via the support columns 518A and 518B to support the radiator unit 512, and the support structure 560 is erected on the support fixing surface 532. It has columns 518A and 518B and a fixing base 520 for attaching and fixing the radiator unit 512. More specifically, the fixed base 520 is fixed to the fixed base fixing surfaces 681A and 681B of the plurality of columns 518A and 518B, and the plurality of radiators 519A and 519B constituting the radiator unit 512 are mounted and fixed on the fixed base 520. ing. The radiators 519A and 519B have flow paths connected to each other in parallel. Here, the fixed base 520 is formed in a frame structure 523A, 523B in which a plurality of radiators 519A, 519B have a triangular roof shape (triangular roof type) such that the top is directed to the rotation center axis 4 side. More specifically, the fixed base 520 is attached to the attachment portions (plate-like members) 521A and 521B and the rear surfaces (surfaces directed to the exhaust space) of the attachment portions 521A and 521B as shown in an enlarged view of the AA cross section. Adjacent cross sections of L-shaped or T-shaped plate-shaped reinforcing members (examples of L-shaped cross sections are shown) 522A and 522B are fixed. One end of each of the mounting portions 521A and 521B forming the fixed base 520 and one end of each of the reinforcing members 522A and 522B are fixed to the fixed base fixing surfaces 681A and 681B on the rotation center axis 504 side of the plurality of columns 518A and 518B with fixing members such as screws. The other ends of the mounting portions 521A and 521B and the other ends of the reinforcing members 522A and 522B are brought into contact with each other so as to form a roof-like (roof-like) top portion, and are fixed by a fixing member such as a screw. Has been. Since the plurality of radiators 519A and 519B are mounted and fixed on the fixed base 520 having such a structure, the radiators 519A and 519B are similarly arranged in a roof shape (roof shape). Accordingly, the plurality of radiators 519A, 519B have intake ports 516A, 516B on the front surface on the rotation center axis 4 side, and the intake ports 516A, 516B constitute the intake inlet 516 of the cooler 510.
 ラジエータユニット512には、循環ポンプとして図31に示すポンプ514A、514Bが接続されている。このポンプ514A、514Bには、配管506が連結されている。従って、X線発生器502で熱せられた冷却液は、配管506を介してポンプ514Aと514Bに供給され、ポンプ514Aと514Bからラジエータ・ユニット512に供給される。ここで、ラジエータユニット512が互いに流路が並列に接続されている複数のラジエータ519A、519Bで構成されている場合には、冷却液がポンプ514Aと514Bの其々からラジエータ519A、519Bに並列に供給される。また、ラジエータユニット512で冷却された冷却液は、ラジエータ519A、519Bを通った後に合流し、ラジエータユニット512から配管506を介してX線発生器502に供給される
 ここで、ラジエータ519A、519Bは、冷却液が流通され、その熱を周囲の空気に放出するための放熱管(図示せず)及びこの放熱管に連結され、放熱面積を大きくする為の放熱フィン(図示せず)とで構成されている。
Pumps 514A and 514B shown in FIG. 31 are connected to the radiator unit 512 as circulation pumps. A pipe 506 is connected to the pumps 514A and 514B. Accordingly, the coolant heated by the X-ray generator 502 is supplied to the pumps 514A and 514B via the pipe 506, and is supplied from the pumps 514A and 514B to the radiator unit 512. Here, when the radiator unit 512 is composed of a plurality of radiators 519A and 519B whose flow paths are connected in parallel to each other, the coolant is supplied in parallel to the radiators 519A and 519B from the pumps 514A and 514B, respectively. Supplied. Further, the cooling liquid cooled by the radiator unit 512 is merged after passing through the radiators 519A and 519B, and is supplied from the radiator unit 512 to the X-ray generator 502 via the pipe 506. Here, the radiators 519A and 519B are And a heat radiating pipe (not shown) for circulating the coolant and releasing the heat to the surrounding air and a heat radiating fin (not shown) connected to the heat radiating pipe to increase the heat radiating area. Has been.
 冷却ファン513A、513Bは、冷却機筐体カバー511及びラジエータユニット512で囲繞され、冷却ファン513A、513Bのファン動作に伴い冷却機510外から吸気流Sが吸気口516A、516Bを介してラジエータユニット512を通過し、排気空間に流入し、流入した吸気流Sは、冷却ファン513A、513Bによって排気部522を介して排気空間外に排気流Vとして排気される。従って、ラジエータユニット512において、熱せられた冷却液は、吸気流Sで冷却され、吸気流Sは、冷却液によって熱せられるような熱交換が生じ、結果として、X線発生器502の熱は、冷却機510の外部に放出される。 The cooling fans 513A and 513B are surrounded by the cooler casing cover 511 and the radiator unit 512, and the intake air flow S from the outside of the cooler 510 through the intake ports 516A and 516B in accordance with the fan operation of the cooling fans 513A and 513B. The intake air flow S that passes through 512 and flows into the exhaust space is exhausted to the outside of the exhaust space as the exhaust flow V through the exhaust part 522 by the cooling fans 513A and 513B. Therefore, in the radiator unit 512, the heated coolant is cooled by the intake air flow S, and heat exchange occurs such that the intake air flow S is heated by the coolant. As a result, the heat of the X-ray generator 502 is It is discharged outside the cooler 510.
 図32を参照しながら、実施形態の特徴を説明する。 The features of the embodiment will be described with reference to FIG.
 ベース531には、ベース531を冷却機固定面552に固定するためのベース第1固定部811がベース531の回転体5の回転方向Rに関して上流側にある一辺に隣接して設けられ、ベース531を冷却機固定面552に固定するためのベース第2固定部812がベース531の回転体5の回転方向Rに関して下流側にある一辺に隣接して設けられている。冷却機固定面552からの冷却機筐体611の頂部612の高さH1がベース第1固定部811とベース第2固定部812の間の距離D1より小さく設定されている。 The base 531 is provided with a base first fixing portion 811 for fixing the base 531 to the cooler fixing surface 552 adjacent to one side on the upstream side in the rotation direction R of the rotating body 5 of the base 531. A second base fixing portion 812 for fixing the heat sink to the cooler fixing surface 552 is provided adjacent to one side on the downstream side in the rotation direction R of the rotating body 5 of the base 531. The height H1 of the top portion 612 of the cooler casing 611 from the cooler fixing surface 552 is set to be smaller than the distance D1 between the base first fixing portion 811 and the base second fixing portion 812.
 図33を参照しながら、実施形態の特徴を更に説明する。 The features of the embodiment will be further described with reference to FIG.
 支持構造体560には、支持構造体560を支柱固定面532に固定するための支持構造体第1固定部901が支持構造体560の回転体505の回転方向Rに関して上流側にある複数の支柱518Aに設けられ、支持構造体560を支柱固定面532に固定するための支持構造体第2固定部902が支持構造体560の回転体505の回転方向Rに関して下流側にある複数の支柱518Bに設けられている。支柱固定面532からのラジエータユニット512の頂部621の高さH2が支持構造体第1固定部901と支持構造体第2固定部902の間の距離D2より小さく設定されている。 The support structure 560 includes a plurality of support columns having a support structure first fixing portion 901 for fixing the support structure 560 to the support fixing surface 532 on the upstream side in the rotation direction R of the rotating body 505 of the support structure 560. A support structure second fixing portion 902 provided on the support structure 560 for fixing the support structure 560 to the support fixing surface 532 is provided on the plurality of supports 518B on the downstream side with respect to the rotation direction R of the rotating body 505 of the support structure 560. Is provided. The height H2 of the top portion 621 of the radiator unit 512 from the support fixing surface 532 is set to be smaller than the distance D2 between the support structure first fixing portion 901 and the support structure second fixing portion 902.
 図34を参照しながら、実施形態の特徴を更に説明する。 The features of the embodiment will be further described with reference to FIG.
 固定台座520には、固定台座520を複数の支柱518Aの固定台座固定面681Aに固定するための固定台座第1固定部701が固定台座520の回転体505の回転方向Rに関して上流側にあるフレーム構造523Aに設けられ、固定台座520を複数の支柱518Bの固定台座固定面681Bに固定するための固定台座第2固定部702が固定台座520の回転体505の回転方向Rに関して下流側にあるフレーム構造523Bに設けられている。固定台座固定面681A、681Bからのラジエータユニット512の頂部621の高さH3が固定台座第1固定部701と固定台座第2固定部702の間の距離D3より小さく設定されている。 The fixed pedestal 520 includes a frame having a fixed pedestal first fixing portion 701 for fixing the fixed pedestal 520 to the fixed pedestal fixing surface 681A of the plurality of columns 518A on the upstream side in the rotation direction R of the rotating body 505 of the fixed pedestal 520. A frame provided in the structure 523A and having a fixed base second fixing portion 702 on the downstream side in the rotation direction R of the rotating body 505 of the fixed base 520, for fixing the fixed base 520 to the fixed base fixing surface 681B of the plurality of columns 518B. Provided in structure 523B. The height H3 of the top 621 of the radiator unit 512 from the fixed base fixing surfaces 681A and 681B is set to be smaller than the distance D3 between the fixed base first fixing part 701 and the fixed base second fixing part 702.
 回転体505が回転方向Rで示されるように回転されるに伴い、冷却機510には、回転体505の半径方向の外側に方向に向けられた遠心力F0が作用する。一例として、回転体505が高速回転され、32G以上の遠心力F0がラジエータユニット512に作用される。ここで、ラジエータユニット512に与えられた遠心力F0は、ラジエータユニット512の支持構造を成すルーフ状(屋根型)の固定台座520に負荷される。固定台座520には、遠心力F0が向けられた方向に補強部材522A,522Bの板状部分(L字或いはT字の一方の辺の部分であって、遠心力F0に沿って幅がある部分)が設けられていることから、遠心力F0の負荷に固定台座520が十分に耐えることができ、固定台座520は、単なる板状ではないことから、この固定台座520が変形されることが防止される。また、固定台座520に与えられた負荷は、ルーフ(屋根)の方向に沿って、即ち、取り付け部(板状部材)521A、521Bの延出方向に沿って固定台座520の固定部701、702に伝達され、剛性の大きな支柱518A,518Bに与えられ、十分な剛性を有するベース531に伝達される。 As the rotator 505 is rotated as indicated by the rotation direction R, the centrifugal force F 0 directed in the radial direction of the rotator 505 acts on the cooler 510. As an example, the rotating body 505 is rotated at a high speed, and a centrifugal force F 0 of 32 G or more is applied to the radiator unit 512. Here, the centrifugal force F 0 applied to the radiator unit 512 is loaded on a roof-like (roof-type) fixed base 520 that forms the support structure of the radiator unit 512. The fixed base 520 has a plate-like portion of the reinforcing members 522A and 522B in the direction in which the centrifugal force F0 is directed (a portion of one side of the L-shape or T-shape and having a width along the centrifugal force F0). ) Is provided, the fixed base 520 can sufficiently withstand the load of the centrifugal force F0. Since the fixed base 520 is not a simple plate, the deformation of the fixed base 520 is prevented. Is done. In addition, the load applied to the fixed base 520 is along the direction of the roof (roof), that is, along the extending direction of the mounting portions (plate members) 521A and 521B, and the fixed portions 701 and 702 of the fixed base 520. Is transmitted to the bases 531 having sufficient rigidity.
 また、回転体の回転起動時などにおいて回転体505が回転方向Rで示されるように加速度的に回転されるに伴い、冷却機510には、回転体505の回転方向Rと逆の方向に向けられた慣性力F1が作用する。ここで、冷却機510が冷却機固定面552に固定され、冷却機固定面552からの冷却機510の質量中心C1の高さH11の位置に慣性力F1が作用することから、慣性力F1は冷却機510の固定部(即ちベース第1固定部811とベース第2固定部812)に対してモーメントM1(F1とH11の掛け算)が発生する。モーメントM1は、ベース第1固定部811とベース第2固定部812に作用する1対の反力R1を生じさせ、この1対の反力R1からなる偶力によるモーメント(R1とD1の掛け算)によってバランスされる。反力R1は固定部におけるねじ等の固定部材に負荷として作用する。モーメントM1は冷却機510を冷却機固定面552から引き離す作用として働き、ベース第1固定部811とベース第2固定部812におけるねじ等の固定部材に損傷を与える虞があり、小さく抑える必要がある。 Further, as the rotating body 505 is accelerated and rotated as indicated by the rotation direction R when the rotation of the rotating body is started, the cooler 510 is directed in a direction opposite to the rotation direction R of the rotating body 505. The inertial force F1 is applied. Here, since the cooler 510 is fixed to the cooler fixing surface 552 and the inertial force F1 acts on the position of the height H11 of the center of mass C1 of the cooler 510 from the cooler fixing surface 552, the inertial force F1 is A moment M1 (multiplication of F1 and H11) is generated with respect to the fixed portion of the cooler 510 (that is, the base first fixed portion 811 and the base second fixed portion 812). The moment M1 generates a pair of reaction forces R1 acting on the base first fixing portion 811 and the base second fixing portion 812, and a moment (a multiplication of R1 and D1) due to a couple consisting of the pair of reaction forces R1. Balanced by. The reaction force R1 acts as a load on a fixing member such as a screw in the fixing portion. The moment M1 works as an action of pulling the cooler 510 away from the cooler fixing surface 552, and may cause damage to fixing members such as screws in the base first fixing portion 811 and the base second fixing portion 812, and should be kept small. .
 ここで、本実施形態では、冷却機固定面552からの冷却機筐体611の頂部612の高さH1がベース第1固定部811とベース第2固定部812の間の距離D1より小さく設定されていることから、冷却機固定面552からの冷却機510の質量中心C1の高さH11(H1より小さい)も小さく抑えられ、ベース第1固定部811とベース第2固定部812の間の距離D1より小さくなっている。その結果、ベース第1固定部811とベース第2固定部812に作用する1対の反力のR1の大きさは慣性力F1より小さく低減されている。従って、回転体の回転の加速時における冷却機510の固定部(ベース第1固定部811とベース第2固定部812)のねじ等の固定部材に作用する負荷が小さく抑えられ、損傷を防ぐことができる。 Here, in the present embodiment, the height H1 of the top portion 612 of the cooler casing 611 from the cooler fixing surface 552 is set to be smaller than the distance D1 between the base first fixing portion 811 and the base second fixing portion 812. Therefore, the height H11 (smaller than H1) of the mass center C1 of the cooler 510 from the cooler fixing surface 552 is also kept small, and the distance between the base first fixing portion 811 and the base second fixing portion 812 is reduced. It is smaller than D1. As a result, the magnitude of R1 of the pair of reaction forces acting on the base first fixing portion 811 and the base second fixing portion 812 is reduced to be smaller than the inertial force F1. Therefore, a load acting on a fixing member such as a screw of the fixing portion (base first fixing portion 811 and base second fixing portion 812) of the cooler 510 at the time of acceleration of rotation of the rotating body can be suppressed to be small and damage can be prevented. Can do.
 また、回転体の回転起動時などにおいて回転体505が回転方向Rで示されるように加速度的に回転されるに伴い、支持構造体560及び支持構造体560に固定されているラジエータユニット512には、回転体505の回転方向Rと逆の方向に向けられた慣性力F2が作用する。ここで、支持構造体560が支柱固定面532に固定され、支柱固定面532からの支持構造体560とラジエータユニット512の合計の質量中心C2の高さH21の位置に慣性力F2が作用することから、慣性力F2は支持構造体560の固定部(支持構造体第1固定部901と支持構造体第2固定部902)に対してモーメントM2(F2とH21の掛け算)が発生する。モーメントM2は、支持構造体第1固定部901と支持構造体第2固定部902に作用する1対の反力R2を生じさせ、この1対の反力R2からなる偶力によるモーメント(R2とD2の掛け算)によってバランスされる。反力R2は固定部におけるねじ等の固定部材に負荷として作用する。モーメントM2は支持構造体560を支柱固定面532から引き離す作用として働き、支持構造体第1固定部901と支持構造体第2固定部902におけるねじ等の固定部材に損傷を与える虞があり、小さく抑える必要がある。 In addition, as the rotating body 505 is accelerated and rotated as indicated by the rotation direction R when the rotating body starts to rotate, the support structure 560 and the radiator unit 512 fixed to the support structure 560 include The inertial force F2 directed in the direction opposite to the rotation direction R of the rotating body 505 acts. Here, the support structure 560 is fixed to the support fixing surface 532, and the inertia force F2 acts on the position of the height H21 of the total mass center C2 of the support structure 560 and the radiator unit 512 from the support fixing surface 532. Therefore, the inertial force F2 generates a moment M2 (multiplication of F2 and H21) with respect to the fixed portion (support structure first fixed portion 901 and support structure second fixed portion 902) of the support structure 560. The moment M2 generates a pair of reaction forces R2 acting on the support structure first fixing portion 901 and the support structure second fixing portion 902, and the moment (R2 and the moment due to the couple consisting of the pair of reaction forces R2) D2 multiplication). The reaction force R2 acts as a load on a fixing member such as a screw in the fixing portion. The moment M2 works as an action of pulling the support structure 560 away from the support fixing surface 532, and may cause damage to fixing members such as screws in the support structure first fixing portion 901 and the support structure second fixing portion 902. It is necessary to suppress.
 ここで、本実施形態では、支柱固定面532からのラジエータユニット512の頂部621の高さH2が支持構造体第1固定部901と支持構造体第2固定部902の間の距離D2より小さく設定されていることから、支柱固定面532からの支持構造体560とラジエータユニット512の合計の質量中心C2の高さH21(H2より小さい)も小さく抑えられ、支持構造体第1固定部901と支持構造体第2固定部902の間の距離D2より小さくなっている。その結果、支持構造体第1固定部901と支持構造体第2固定部902に作用する1対の反力R2の大きさは慣性力F2より小さく低減されている。従って、回転体の回転の加速時における支持構造体560の固定部(支持構造体第1固定部901と支持構造体第2固定部902)のねじ等の固定部材に作用する負荷が小さく抑えられ、損傷を防ぐことができる。 Here, in the present embodiment, the height H2 of the top 621 of the radiator unit 512 from the support fixing surface 532 is set to be smaller than the distance D2 between the support structure first fixing portion 901 and the support structure second fixing portion 902. Therefore, the height H21 (smaller than H2) of the total mass center C2 of the support structure 560 and the radiator unit 512 from the support fixing surface 532 is also kept small, and the support structure first fixing portion 901 and the support unit 901 are supported. It is smaller than the distance D2 between the structure second fixing portions 902. As a result, the magnitude of the pair of reaction forces R2 acting on the support structure first fixing portion 901 and the support structure second fixing portion 902 is smaller than the inertia force F2. Therefore, a load acting on a fixing member such as a screw of the fixing portion (the supporting structure first fixing portion 901 and the supporting structure second fixing portion 902) of the support structure 560 at the time of acceleration of rotation of the rotating body can be suppressed to be small. Can prevent damage.
 また、回転体の回転起動時などにおいて回転体505が回転方向Rで示されるように加速度的に回転されるに伴い、固定台座520及び固定台座520に固定されているラジエータユニット512には、回転体505の回転方向Rと逆の方向に向けられた慣性力F3が作用する。ここで、固定台座520が固定台座固定面681A、681Bに固定され、固定台座固定面681A、681Bからの固定台座520とラジエータユニット512の合計の質量中心C3の高さH31の位置に慣性力F3が作用することから、慣性力F3は固定台座520の固定部(固定台座第1固定部701と固定台座第2固定部702)に対してモーメントM3(F3とH31の掛け算)が発生する。モーメントM3は、固定台座第1固定部701と固定台座第2固定部702に作用する1対の反力R3を生じさせ、この1対の反力R3からなる偶力によるモーメント(R3とD3の掛け算)によってバランスされる。反力R3は固定部におけるねじ等の固定部材に負荷として作用する。モーメントM3は固定台座520を固定台座固定面681A、681Bから引き離す作用として働き、固定台座第1固定部701と固定台座第2固定部702におけるねじ等の固定部材に損傷を与える虞があり、小さく抑える必要がある。 In addition, when the rotating body 505 is accelerated and rotated as indicated by the rotation direction R when the rotating body starts rotating, the fixed base 520 and the radiator unit 512 fixed to the fixed base 520 are rotated. Inertial force F3 directed in the direction opposite to the rotation direction R of the body 505 acts. Here, the fixed pedestal 520 is fixed to the fixed pedestal fixing surfaces 681A and 681B, and the inertia force F3 is at the height H31 of the total center of mass C3 of the fixed pedestal 520 and the radiator unit 512 from the fixed pedestal fixing surfaces 681A and 681B. Therefore, the inertia force F3 generates a moment M3 (multiplication of F3 and H31) with respect to the fixed portion of the fixed base 520 (the fixed base first fixed portion 701 and the fixed base second fixed portion 702). The moment M3 generates a pair of reaction forces R3 acting on the fixed pedestal first fixing portion 701 and the fixed pedestal second fixing portion 702, and a moment (R3 and D3 between the pair of reaction forces R3). Balanced). The reaction force R3 acts as a load on a fixing member such as a screw in the fixing portion. The moment M3 works as an action of separating the fixed base 520 from the fixed base fixing surfaces 681A and 681B, and may cause damage to fixing members such as screws in the fixed base first fixing portion 701 and the fixing base second fixing portion 702. It is necessary to suppress.
 ここで、本実施形態では、固定台座固定面681A、681Bからのラジエータユニット512の頂部621の高さH3が固定台座第1固定部701と固定台座第2固定部702の間の距離D3より小さく設定されていることから、固定台座固定面681A、681Bからの固定台座520とラジエータユニット512の合計の質量中心C3の高さH31(H3より小さい)も小さく抑えられ、固定台座第1固定部701と固定台座第2固定部702の間の距離D3より小さくなっている。その結果、固定台座第1固定部701と固定台座第2固定部702に作用する1対の反力R3の大きさは慣性力F3より小さく低減されている。従って、回転体の回転の加速時における固定台座520の固定部(固定台座第1固定部701と固定台座第2固定部702)のねじ等の固定部材に作用する負荷が小さく抑えられ、損傷を防ぐことができる。 Here, in this embodiment, the height H3 of the top 621 of the radiator unit 512 from the fixed base fixing surfaces 681A and 681B is smaller than the distance D3 between the fixed base first fixing part 701 and the fixed base second fixing part 702. Therefore, the height H31 (smaller than H3) of the total mass center C3 of the fixed base 520 and the radiator unit 512 from the fixed base fixing surfaces 681A and 681B can be kept small, and the fixed base first fixing portion 701 is fixed. And a distance D3 between the fixed base second fixing portion 702 and the fixed base second fixing portion 702. As a result, the magnitude of the pair of reaction forces R3 acting on the fixed base first fixing part 701 and the fixed base second fixing part 702 is reduced to be smaller than the inertial force F3. Therefore, the load acting on the fixing member such as the screw of the fixing portion of the fixing base 520 (the fixing base first fixing portion 701 and the fixing base second fixing portion 702) at the time of acceleration of the rotation of the rotating body can be suppressed to be small and damage can be caused. Can be prevented.
 尚、X線発生器502の電源装置は、スリップリング(図示せず)等を介して回転体505外のガントリ600に設けられている。同様に、冷却ファン513A、513B及びポンプ514A、514Bの電源装置(図示せず)は、回転体505上に設けられても良く、或いは、X線発生器502の電源装置と同様に回転体505外のガントリ600に設けられても良い。 Note that the power supply of the X-ray generator 502 is provided in the gantry 600 outside the rotating body 505 via a slip ring (not shown) or the like. Similarly, power supplies (not shown) for the cooling fans 513A and 513B and the pumps 514A and 514B may be provided on the rotating body 505, or the rotating body 505 is similar to the power supply apparatus for the X-ray generator 502. It may be provided in the outside gantry 600.
 以上のように、回転体の回転によって発生する遠心力F0が冷却機に作用しても、ラジエータユニット512が剛性の向上した支持構造で支持されていることから、変形されることがなく、また、放熱管など部品の破断の可能性が低減され、遠心力に対する耐性が向上される。更に、ラジエータユニット512をベース531に複数の支柱518a、518bを介して結合することによって、遠心力を確実に分散支持することができる。また、冷却機510のラジエータユニット512等の部品の負荷が作用しない部分、例えば、冷却機筐体カバー511等の遠心力が作用しない部分の軽量化を図ることができる。 As described above, even when the centrifugal force F0 generated by the rotation of the rotating body acts on the cooler, the radiator unit 512 is supported by the support structure having improved rigidity, and thus is not deformed. The possibility of breakage of parts such as a heat radiating tube is reduced, and the resistance to centrifugal force is improved. Further, by connecting the radiator unit 512 to the base 531 via a plurality of support columns 518a and 518b, the centrifugal force can be reliably distributed and supported. Further, it is possible to reduce the weight of a portion of the cooler 510 where a load of components such as the radiator unit 512 does not act, for example, a portion where the centrifugal force such as the cooler housing cover 511 does not act.
 更に、ベース531は、回転体に固定されるため、ポンプ514A、514B、冷却ファン513A、513B、電源装置(図示せず)の遠心力による荷重が作用しても、ベースの変形が低減され、部品の破断の可能性が低減される。その結果、冷却機の耐性を向上させることができる。 Furthermore, since the base 531 is fixed to the rotating body, even if a load due to the centrifugal force of the pumps 514A, 514B, the cooling fans 513A, 513B, and the power supply device (not shown) is applied, the deformation of the base is reduced. The possibility of part breakage is reduced. As a result, the resistance of the cooler can be improved.
 更に、回転体の回転加速時に発生する慣性力F1、F2、F3が冷却機に作用しても、冷却機固定面552からの冷却機の質量中心C1の高さと、支柱固定面532からの支持構造体560とラジエータユニット512の合計の質量中心C2の高さと、固定台座固定面681A、681Bからの固定台座520とラジエータユニット512の合計の質量中心C3の高さがともに小さく抑えられているため、固定部に作用する反力R1が慣性力F1以下に、反力R2が慣性力F2以下に、反力R3が慣性力F3以下に低減され、固定部のねじ等の固定部材に作用する負荷が小さく抑えられ、損傷を防ぐことができる。その結果、冷却機の耐性を向上させることができる。 Furthermore, even if inertial forces F1, F2, and F3 generated during the rotation acceleration of the rotating body act on the cooler, the height of the mass center C1 of the cooler from the cooler fixing surface 552 and the support from the support fixing surface 532 The total mass center C2 of the structure 560 and the radiator unit 512 and the total mass center C3 of the fixed base 520 and the radiator unit 512 from the fixed base fixing surfaces 681A and 681B are both suppressed to be small. The reaction force R1 acting on the fixed portion is reduced to the inertial force F1 or less, the reaction force R2 is reduced to the inertial force F2 or less, the reaction force R3 is reduced to the inertial force F3 or less, and the load acting on the fixing member such as a screw of the fixed portion. Can be kept small and damage can be prevented. As a result, the resistance of the cooler can be improved.
 このように第10の実施形態によれば、大きい冷却能力に対応するために部品が大型化した冷却機の回転体の回転による遠心力と慣性力に対する耐性を確保することができる。 Thus, according to the tenth embodiment, it is possible to ensure resistance to centrifugal force and inertial force due to the rotation of the rotating body of the cooler whose parts are enlarged in order to cope with a large cooling capacity.
 以上のように、上述した実施の形態によれば、CT装置の回転体の回転による遠心力と慣性力に対する耐性が向上した冷却機を実現することができる。 As described above, according to the above-described embodiment, it is possible to realize a cooler having improved resistance to centrifugal force and inertial force due to rotation of the rotating body of the CT apparatus.
 本発明の一つの実施形態を説明したが、実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although one embodiment of the present invention has been described, the embodiment is presented as an example and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (24)

  1.  ハウジングと、電子ビームを放出する陰極、前記電子ビームが照射されることによりX線を放出する陽極ターゲット、並びに前記陰極及び陽極ターゲットを収納した真空外囲器を含み、前記ハウジングに収納されたX線管と、を有したX線管装置と、
     前記X線管が発生する熱の少なくとも一部が伝達される冷却液と、
     前記冷却液が循環する循環路と、
     前記循環路に取付けられて前記冷却液を循環させる循環ポンプと、
     前記循環路に取付けられて前記冷却液の熱を外部へ放出させるラジエータユニットと、
     前記ラジエータユニットを通過する空気の流れを作りだすファンユニットと、
     前記X線を検出するX線検出器と、
     回転軸を中心に回転するリング状のフレーム部を有し、前記X線管装置、循環ポンプ、ラジエータユニット、ファンユニット及びX線検出器が取付けられた回転架台と、を備え、
     前記ラジエータユニットの風上側は、前記フレーム部の内壁側の空間に露出していることを特徴とするX線コンピュータ断層撮影装置。
    A housing, a cathode that emits an electron beam, an anode target that emits X-rays when irradiated with the electron beam, and a vacuum envelope that houses the cathode and the anode target, and is housed in the housing An X-ray tube device having a tube;
    A coolant to which at least part of heat generated by the X-ray tube is transmitted;
    A circulation path through which the coolant circulates;
    A circulation pump attached to the circulation path for circulating the coolant;
    A radiator unit attached to the circulation path to release heat of the coolant to the outside;
    A fan unit that creates a flow of air passing through the radiator unit;
    An X-ray detector for detecting the X-ray;
    A rotary frame having a ring-shaped frame portion that rotates about a rotation axis, and having the X-ray tube device, a circulation pump, a radiator unit, a fan unit, and an X-ray detector attached thereto;
    The X-ray computed tomography apparatus according to claim 1, wherein the windward side of the radiator unit is exposed in a space on the inner wall side of the frame portion.
  2.  前記フレーム部は、前記回転架台の最外周に位置し、開口部を有し、
     前記ファンユニットは、前記ラジエータユニットを通過する空気を前記開口部を通して前記回転架台の外部へと放出させることを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。
    The frame portion is located on the outermost periphery of the rotating mount and has an opening,
    The X-ray computed tomography apparatus according to claim 1, wherein the fan unit discharges air passing through the radiator unit to the outside of the rotating mount through the opening.
  3.  前記回転軸から前記ファンユニットまでの距離は、前記回転軸から前記ラジエータユニットまでの距離より長いことを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。 The X-ray computed tomography apparatus according to claim 1, wherein a distance from the rotation axis to the fan unit is longer than a distance from the rotation axis to the radiator unit.
  4.  前記ラジエータユニット及びファンユニットの間に位置し、前記ラジエータユニットを通過する空気の流れを前記ファンユニットまでガイドするダクトをさらに備えたことを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。 2. The X-ray computed tomography apparatus according to claim 1, further comprising a duct positioned between the radiator unit and the fan unit and guiding a flow of air passing through the radiator unit to the fan unit. .
  5.  前記循環路に取付けられ、前記冷却液の温度変化による体積変化を吸収するベローズ機構をさらに備えたことを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。 The X-ray computed tomography apparatus according to claim 1, further comprising a bellows mechanism attached to the circulation path and absorbing a volume change due to a temperature change of the coolant.
  6.  前記循環路を形成するように接続された前記ハウジング、ラジエータユニット、循環ポンプ及びベローズ機構は、2個所の着脱自在継手により、2系統に分離可能であることを特徴とする請求項5に記載のX線コンピュータ断層撮影装置。 6. The housing, the radiator unit, the circulation pump, and the bellows mechanism connected to form the circulation path can be separated into two systems by two detachable joints. X-ray computed tomography apparatus.
  7.  前記回転架台に取付けられた筐体をさらに備え、
     少なくとも前記ファンユニット及びラジエータユニットは、前記筐体に収納され、ユニット化され、前記ラジエータユニットの風上側は前記筐体の外側に露出していることを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。
    Further comprising a housing attached to the rotating mount,
    2. The X-ray according to claim 1, wherein at least the fan unit and the radiator unit are housed and unitized in the casing, and the windward side of the radiator unit is exposed to the outside of the casing. Computer tomography equipment.
  8.  前記筐体は、通気口を含み屋根型に突出した天井壁を有し、
     前記ラジエータユニットは、前記風上側が前記通気口を通って前記筐体の外側に露出するように前記筐体に収納されていることを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。
    The housing includes a ceiling wall including a vent and protruding in a roof shape,
    The X-ray computed tomography apparatus according to claim 1, wherein the radiator unit is housed in the housing such that the windward side is exposed to the outside of the housing through the vent. .
  9.  前記ファンユニットは、前記ラジエータユニット及び循環ポンプとは独立して、前記回転架台に取付けられていることを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。 The X-ray computed tomography apparatus according to claim 1, wherein the fan unit is attached to the rotary base independently of the radiator unit and the circulation pump.
  10.  前記フレーム部の内壁に対向した底壁部並びに第1通気口及び第2通気口を含んだ蓋部を有し、前記回転架台に取付けられた筐体をさらに備え、
     前記ラジエータユニットは、前記風上側が前記第1通気口を通って前記筐体の外側に露出するように前記筐体に収納され、
     前記ファンユニットは、前記第1通気口を通り前記ラジエータを通して空気を前記筐体内に取込み、前記筐体内の空気を前記第2通気口を通して前記筐体の外部へ放出させることを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。
    A bottom wall portion facing the inner wall of the frame portion, and a lid portion including a first ventilation port and a second ventilation port, further comprising a housing attached to the rotary mount;
    The radiator unit is housed in the housing such that the windward side is exposed to the outside of the housing through the first vent,
    The fan unit takes air into the casing through the radiator through the first vent, and discharges air in the casing to the outside through the second vent. The X-ray computed tomography apparatus according to 1.
  11.  前記蓋部は、前記第1通気口を含み前記底壁部に間隔を置いて対向した天井壁部と、前記第2通気口を含み枠状に形成され一端が前記天井壁部で閉塞され他端が前記底壁部で閉塞された周壁部と、を有していることを特徴とする請求項10に記載のX線コンピュータ断層撮影装置。 The lid portion includes a ceiling wall portion that includes the first vent and faces the bottom wall portion with a space therebetween, and a frame shape that includes the second vent and is closed at one end by the ceiling wall portion. The X-ray computed tomography apparatus according to claim 10, further comprising: a peripheral wall portion whose end is closed by the bottom wall portion.
  12.  ダクトをさらに備え、
     前記フレーム部は前記筐体の底壁部と対向した位置から外れた開口部を有し、
     前記ダクトは、前記第2通気口を通して前記筐体の外部へ放出された空気を前記開口部までガイドすることを特徴とする請求項10に記載のX線コンピュータ断層撮影装置。
    A duct,
    The frame portion has an opening that is out of a position facing the bottom wall of the housing,
    11. The X-ray computed tomography apparatus according to claim 10, wherein the duct guides the air discharged to the outside of the housing through the second ventilation port to the opening.
  13.  前記循環ポンプは、前記筐体に収納されていることを特徴とする請求項10に記載のX線コンピュータ断層撮影装置。 The X-ray computed tomography apparatus according to claim 10, wherein the circulation pump is housed in the housing.
  14.  前記循環路に取付けられ、前記筐体に収納され、前記冷却液の温度変化による体積変化を吸収するベローズ機構をさらに備えたことを特徴とする請求項13に記載のX線コンピュータ断層撮影装置。 The X-ray computed tomography apparatus according to claim 13, further comprising a bellows mechanism attached to the circulation path, housed in the housing, and absorbing a volume change due to a temperature change of the coolant.
  15.  他のファンユニットをさらに備え、
     前記底壁部は、第3通気口を含み、
     前記フレーム部は前記第3通気口と対向した開口部を有し、
     前記他のファンユニットは、前記第1通気口を通り前記ラジエータユニットを通して空気を前記筐体内に取込み、前記筐体内の空気を前記第3通気口及び開口部を通して前記回転架台の外部へ放出させることを特徴とする請求項10に記載のX線コンピュータ断層撮影装置。
    Further equipped with other fan units,
    The bottom wall includes a third vent;
    The frame portion has an opening facing the third vent;
    The other fan unit takes air into the casing through the radiator unit through the first vent, and discharges the air in the casing to the outside of the rotary mount through the third vent and an opening. The X-ray computed tomography apparatus according to claim 10.
  16.  前記ファンユニットは、軸流ファンであり、
     前記軸流ファンの回転軸は、前記回転架台の回転軸と平行であることを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。
    The fan unit is an axial fan,
    The X-ray computed tomography apparatus according to claim 1, wherein a rotation axis of the axial flow fan is parallel to a rotation axis of the rotating mount.
  17.  前記循環ポンプのモータの回転軸は、前記回転架台の回転軸と平行であることを特徴とする請求項1に記載のX線コンピュータ断層撮影装置。 2. The X-ray computed tomography apparatus according to claim 1, wherein a rotation axis of the motor of the circulation pump is parallel to a rotation axis of the rotating mount.
  18.  ハウジングと、電子ビームを放出する陰極、前記電子ビームが照射されることによりX線を放出する陽極ターゲット、並びに前記陰極及び陽極ターゲットを収納した真空外囲器を含み、前記ハウジングに収納されたX線管と、を有したX線管装置と、前記X線管が発生する熱の少なくとも一部が伝達される冷却液と、前記冷却液が循環する循環路と、前記循環路に取付けられて前記冷却液を循環させる循環ポンプと、前記循環路に取付けられて前記冷却液の熱を外部へ放出させるラジエータユニットと、前記ラジエータユニットを通過する空気の流れを作りだすファンユニットと、前記X線を検出するX線検出器と、回転軸を中心に回転するリング状のフレーム部を有し、前記X線管装置、循環ポンプ、ラジエータユニット、ファンユニット及びX線検出器が取付けられた回転架台と、前記循環路に取付けられ、前記冷却液の温度変化による体積変化を吸収するベローズ機構と、を備え、前記ラジエータユニットの風上側は、前記フレーム部の内壁側の空間に露出しているX線コンピュータ断層撮影装置を用意し、
     前記循環路を形成するように接続された前記ハウジング、ラジエータユニット、循環ポンプ及びベローズ機構を、2個所の着脱自在継手により、2系統に分離し、
     前記2系統に分離した後に、前記ベローズ機構を含まない方の系統に、他のベローズ機構を前記着脱自在継手を介して取り付けることを特徴とするX線コンピュータ断層撮影装置の保守方法。
    A housing, a cathode that emits an electron beam, an anode target that emits X-rays when irradiated with the electron beam, and a vacuum envelope that houses the cathode and the anode target, and is housed in the housing An X-ray tube device having a X-ray tube, a coolant to which at least a part of heat generated by the X-ray tube is transmitted, a circulation path through which the coolant circulates, and an attachment to the circulation path A circulation pump that circulates the cooling liquid, a radiator unit that is attached to the circulation path and discharges heat of the cooling liquid to the outside, a fan unit that creates a flow of air passing through the radiator unit, and the X-ray An X-ray detector for detection, and a ring-shaped frame portion that rotates about a rotation axis, the X-ray tube device, the circulation pump, the radiator unit, and the fan unit And a bellows mechanism that is attached to the circulation path and absorbs a volume change due to a temperature change of the coolant, and the windward side of the radiator unit includes the frame unit. Prepare an X-ray computed tomography device exposed in the space on the inner wall side of
    The housing, radiator unit, circulation pump and bellows mechanism connected to form the circulation path are separated into two systems by two detachable joints,
    A maintenance method for an X-ray computed tomography apparatus, wherein after the separation into the two systems, another bellows mechanism is attached to the other system not including the bellows mechanism via the removable joint.
  19.  回転体に搭載され、当該回転体とともに回転中心軸の周りに回転されるX線発生器を冷却する為の冷却機において、
     前記回転体の冷却機固定面に固定されるベースを有する筐体と、
     前記筐体の前記ベース以外の部分に設けられた通気口を塞ぐように取付けられ冷却液が循環する循環路に取付けられて前記冷却液の熱を外部へ放出させるラジエータユニットと、
     前記筐体に収納され前記ラジエータユニットを通過する空気の流れを作り出すファンユニットと、を備え、
     前記空気の流れは前記回転中心軸から遠ざかる流れであるとともに、前記ラジエータユニットの風上側は、筐体の外側に露出していることを特徴とする冷却機。
    In a cooler for cooling an X-ray generator mounted on a rotating body and rotated around the rotation center axis together with the rotating body,
    A housing having a base fixed to the cooling machine fixing surface of the rotating body;
    A radiator unit that is attached so as to close a vent provided in a portion other than the base of the housing and is attached to a circulation path through which the coolant circulates, and discharges heat of the coolant to the outside;
    A fan unit that creates a flow of air that is housed in the housing and passes through the radiator unit, and
    The air flow is a flow away from the rotation center axis, and the windward side of the radiator unit is exposed to the outside of the casing.
  20.  回転体に搭載され、当該回転体とともに回転中心軸の周りに回転されるX線発生器を冷却する為の冷却機において、
     前記回転体の冷却機固定面に固定され、この回転体に設けた排気部に連通される排気口を有するベースと、
     前記ベースを前記冷却機固定面に固定するベース第1固定部であって、前記ベースの前記回転体の回転方向に関して上流側にある一辺に隣接して設けられるベース第1固定部と、
     前記ベースを前記冷却機固定面に固定するベース第2固定部であって、前記ベースの前記回転体の回転方向に関して下流側にある一辺に隣接して設けられるベース第2固定部と、
     前記X線発生器で発生した熱を外部の雰囲気に放出する為のラジエータユニットであって、前記X線発生器とは、配管で連結されているラジエータユニットと、
     前記ベース上に配置固定され、前記X線発生器と前記ラジエータユニットとの間で前記配管を介して冷却液を循環させる循環ポンプと、
     前記ベース上に排気空間を規定するとともに前記ラジエータユニットが配置される吸気導入口を規定する筐体と、
     前記排気部上の前記ベースに配置固定され、前記吸気導入口に設けた前記ラジエータユニットを介して前記筐体外から前記排気空間に吸気し、前記排気口及び前記排気部を介して前記排気空間から排気するファンユニットと、
     前記ラジエータユニットを支持する前記ベースに固定された支持構造体であって、前記ラジエータユニットを前記回転中心軸側に向けられるように屋根型に突出して配置する支持構造体と、を具備し、
     前記冷却機固定面からの前記筐体の頂部の高さが、前記ベース第1固定部と前記ベース第2固定部の間の距離より小さいことを特徴とする冷却機。
    In a cooler for cooling an X-ray generator mounted on a rotating body and rotated around the rotation center axis together with the rotating body,
    A base fixed to a cooling machine fixing surface of the rotating body and having an exhaust port communicating with an exhaust portion provided in the rotating body;
    A base first fixing portion for fixing the base to the cooler fixing surface, the base first fixing portion provided adjacent to one side on the upstream side in the rotation direction of the rotating body of the base;
    A base second fixing portion for fixing the base to the cooler fixing surface, the base second fixing portion provided adjacent to one side on the downstream side in the rotation direction of the rotating body of the base;
    A radiator unit for releasing heat generated by the X-ray generator to an external atmosphere, wherein the X-ray generator is a radiator unit connected by piping;
    A circulation pump which is arranged and fixed on the base and circulates a coolant through the pipe between the X-ray generator and the radiator unit;
    A housing that defines an exhaust space on the base and defines an intake port in which the radiator unit is disposed;
    It is arranged and fixed to the base on the exhaust part, and sucks into the exhaust space from outside the housing via the radiator unit provided at the intake inlet, and from the exhaust space via the exhaust port and the exhaust part. A fan unit to exhaust,
    A support structure fixed to the base for supporting the radiator unit, the support structure being arranged so as to protrude in a roof shape so that the radiator unit is directed toward the rotation center axis side, and
    The cooler, wherein a height of a top portion of the casing from the cooler fixing surface is smaller than a distance between the base first fixing portion and the base second fixing portion.
  21.  前記支持構造体は、前記ベースの支柱固定面に立設された複数の支柱及び当該複数の支柱の固定台座固定面に取り付け固定された固定台座から構成され、この固定台座が前記回転中心軸側に向けて屋根型に突出するフレーム構造で構成され、前記ラジエータユニットを当該フレーム構造に取り付け固定していることを特徴とする請求項20に記載の冷却機。 The support structure is composed of a plurality of pillars erected on a pillar fixing surface of the base and a fixed base fixedly attached to a fixing base fixing surface of the plurality of pillars, and the fixed base is on the rotation center axis side 21. The cooling device according to claim 20, wherein the cooling unit is configured by a frame structure projecting in a roof shape toward the side, and the radiator unit is attached and fixed to the frame structure.
  22.  前記支持構造体を前記支柱固定面に固定する支持構造体第1固定部であって、前記支持構造体の前記回転体の回転方向に関して上流側にある前記複数の支柱に設けられる支持構造体第1固定部と、
     前記支持構造体を前記支柱固定面に固定する支持構造体第2固定部であって、前記支持構造体の前記回転体の回転方向に関して下流側にある前記複数の支柱に設けられる支持構造体第2固定部と、をさらに具備し、
     前記支柱固定面からの前記ラジエータユニットの頂部の高さが、前記支持構造体第1固定部と前記支持構造体第2固定部の間の距離より小さいことを特徴とする請求項21に記載の冷却機。
    A support structure first fixing portion for fixing the support structure to the support fixing surface, the support structure provided on the plurality of support columns on the upstream side in the rotation direction of the rotating body of the support structure. 1 fixed part,
    A support structure second fixing portion for fixing the support structure to the support fixing surface, the support structure provided on the plurality of support columns on the downstream side in the rotation direction of the rotating body of the support structure. 2 fixing parts,
    The height of the top portion of the radiator unit from the support fixing surface is smaller than the distance between the support structure first fixing portion and the support structure second fixing portion. Cooling machine.
  23.  前記固定台座を前記固定台座固定面に固定する固定台座第1固定部であって、前記固定台座の前記回転体の回転方向に関して上流側にある前記フレーム構造に設けられる固定台座第1固定部と、
     前記固定台座を前記固定台座固定面に固定する固定台座第2固定部であって、前記固定台座の前記回転体の回転方向に関して下流側にある前記フレーム構造に設けられる固定台座第2固定部と、を具備し、
     前記固定台座固定面からの前記ラジエータユニットの頂部の高さが、前記固定台座第1固定部と前記固定台座第2固定部の間の距離より小さいことを特徴とする請求項21に記載の冷却機。
    A fixed base first fixing portion for fixing the fixed base to the fixed base fixing surface, the fixed base first fixing portion provided on the frame structure on the upstream side in the rotation direction of the rotating body of the fixed base; ,
    A fixed pedestal second fixing portion for fixing the fixed pedestal to the fixed pedestal fixing surface, and a fixed pedestal second fixing portion provided in the frame structure on the downstream side in the rotation direction of the rotating body of the fixed pedestal; , And
    The cooling according to claim 21, wherein a height of a top portion of the radiator unit from the fixed base fixing surface is smaller than a distance between the fixed base first fixing portion and the fixed base second fixing portion. Machine.
  24.  前記ラジエータユニットは、前記循環ポンプに並列に連結された複数のラジエータで構成されることを特徴とする請求項19乃至23の何れか1項に記載の冷却機。 The cooling device according to any one of claims 19 to 23, wherein the radiator unit includes a plurality of radiators connected in parallel to the circulation pump.
PCT/JP2012/069744 2011-08-05 2012-08-02 Coolant device, x-ray computer tomography device, and x-ray computer tomography device maintenance method WO2013021919A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280037927.1A CN103732145B (en) 2011-08-05 2012-08-02 Cooler, X ray computer tomography device and the maintenance method of X ray computer tomography device
US14/173,556 US9351694B2 (en) 2011-08-05 2014-02-05 Cooler, X-ray computed tomography apparatus, and maintenance method of X-ray computed tomography apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-172027 2011-08-05
JP2011172027 2011-08-05
JP2011-211486 2011-09-27
JP2011211486 2011-09-27
JP2012-147432 2012-06-29
JP2012147432A JP5902054B2 (en) 2011-08-05 2012-06-29 X-ray computed tomography system
JP2012-169319 2012-07-31
JP2012169319A JP2013084572A (en) 2011-09-27 2012-07-31 Cooling machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/173,556 Continuation US9351694B2 (en) 2011-08-05 2014-02-05 Cooler, X-ray computed tomography apparatus, and maintenance method of X-ray computed tomography apparatus

Publications (1)

Publication Number Publication Date
WO2013021919A1 true WO2013021919A1 (en) 2013-02-14

Family

ID=47668427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069744 WO2013021919A1 (en) 2011-08-05 2012-08-02 Coolant device, x-ray computer tomography device, and x-ray computer tomography device maintenance method

Country Status (1)

Country Link
WO (1) WO2013021919A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400738A (en) * 2013-08-23 2013-11-20 苏州明威医疗科技有限公司 Direct vapor compression refrigeration system for X-ray pipe
CN111110263A (en) * 2018-10-31 2020-05-08 通用电气公司 External package of scanning frame and medical device
CN114901048A (en) * 2022-05-25 2022-08-12 扬州市职业大学(扬州开放大学) Building energy-saving reconstruction method based on green building

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180010U (en) * 1987-05-15 1988-11-21
JPH07194587A (en) * 1994-01-10 1995-08-01 Toshiba Corp X-ray ct system
JPH10179566A (en) * 1996-11-07 1998-07-07 General Electric Co <Ge> Device for removing heat from x-ray tube cooling fluid
JP2000116639A (en) * 1998-10-16 2000-04-25 Toshiba Corp X-ray ct instrument
JP2003144425A (en) * 2001-11-13 2003-05-20 Shimadzu Corp X-ray ct device
JP2004344667A (en) * 2003-05-22 2004-12-09 Ge Medical Systems Global Technology Co Llc Optimized x-ray tube cooling device
JP2007123212A (en) * 2005-10-31 2007-05-17 Toshiba Corp X-ray tube device, coupling method of coupler of x-ray tube device, and separation method of coupler of x-ray tube device
JP2007514287A (en) * 2003-12-10 2007-05-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Airflow flux director system for X-ray tube
JP2009268830A (en) * 2008-05-09 2009-11-19 Toshiba Corp X-ray computed tomography device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180010U (en) * 1987-05-15 1988-11-21
JPH07194587A (en) * 1994-01-10 1995-08-01 Toshiba Corp X-ray ct system
JPH10179566A (en) * 1996-11-07 1998-07-07 General Electric Co <Ge> Device for removing heat from x-ray tube cooling fluid
JP2000116639A (en) * 1998-10-16 2000-04-25 Toshiba Corp X-ray ct instrument
JP2003144425A (en) * 2001-11-13 2003-05-20 Shimadzu Corp X-ray ct device
JP2004344667A (en) * 2003-05-22 2004-12-09 Ge Medical Systems Global Technology Co Llc Optimized x-ray tube cooling device
JP2007514287A (en) * 2003-12-10 2007-05-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Airflow flux director system for X-ray tube
JP2007123212A (en) * 2005-10-31 2007-05-17 Toshiba Corp X-ray tube device, coupling method of coupler of x-ray tube device, and separation method of coupler of x-ray tube device
JP2009268830A (en) * 2008-05-09 2009-11-19 Toshiba Corp X-ray computed tomography device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400738A (en) * 2013-08-23 2013-11-20 苏州明威医疗科技有限公司 Direct vapor compression refrigeration system for X-ray pipe
CN111110263A (en) * 2018-10-31 2020-05-08 通用电气公司 External package of scanning frame and medical device
CN111110263B (en) * 2018-10-31 2023-10-20 通用电气公司 External and medical device for scanner frame
CN114901048A (en) * 2022-05-25 2022-08-12 扬州市职业大学(扬州开放大学) Building energy-saving reconstruction method based on green building
CN114901048B (en) * 2022-05-25 2023-10-20 扬州市职业大学(扬州开放大学) Building energy-saving reconstruction method based on green building

Similar Documents

Publication Publication Date Title
US9351694B2 (en) Cooler, X-ray computed tomography apparatus, and maintenance method of X-ray computed tomography apparatus
US9251994B2 (en) X-ray tube assembly and X-ray computerized tomography scanner
JP2016026853A (en) Maintenance method for x-ray computer tomographic apparatus
JP5265906B2 (en) Convection cooled X-ray tube target and manufacturing method thereof
JP6095641B2 (en) X-ray apparatus and X-ray diagnostic imaging apparatus
JP4746335B2 (en) Electronic recovery system
JP2006054181A (en) Cantilever type and straddle type rotating anode x-ray tube equipped with vacuum transition chamber
US20140029729A1 (en) Gradient vacuum for high-flux x-ray source
JP2009268830A (en) X-ray computed tomography device
JP5775257B2 (en) X-ray tube with liquid lubricated bearing and liquid cooled anode target assembly
WO2013021919A1 (en) Coolant device, x-ray computer tomography device, and x-ray computer tomography device maintenance method
JP6168901B2 (en) X-ray tube device and air-cooling mechanism of X-ray tube device
US20140311697A1 (en) Integral liquid-coolant passageways in an x-ray tube
JP5931379B2 (en) X-ray computed tomography system
WO2019198342A1 (en) X-ray generator
JP2007294420A (en) Rotating anode x-ray tube apparatus
KR101675633B1 (en) Rotary anode type x-ray tube assembly and rotary anode type x-ray tube apparatus
JP6996896B2 (en) Cooling system
JP2009043651A (en) Rotating anode type x-ray tube device
JP2020113447A (en) X-ray tube air bubble removing device
CN212326430U (en) Rack construction and CT equipment
JP2020013715A (en) X-ray tube device and x-ray computer tomographic device
JP2003197136A (en) Rotary anode x-ray tube device
US20240194436A1 (en) X-ray generating apparatus and imaging device
JP2022126718A (en) X-ray generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822350

Country of ref document: EP

Kind code of ref document: A1