WO2013021913A1 - Osteosynthesis material - Google Patents

Osteosynthesis material Download PDF

Info

Publication number
WO2013021913A1
WO2013021913A1 PCT/JP2012/069707 JP2012069707W WO2013021913A1 WO 2013021913 A1 WO2013021913 A1 WO 2013021913A1 JP 2012069707 W JP2012069707 W JP 2012069707W WO 2013021913 A1 WO2013021913 A1 WO 2013021913A1
Authority
WO
WIPO (PCT)
Prior art keywords
purity
magnesium
osteosynthesis
present
osteosynthesis material
Prior art date
Application number
PCT/JP2012/069707
Other languages
French (fr)
Japanese (ja)
Inventor
堤 定美
Original Assignee
株式会社メディカルユーアンドエイ
堤総研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メディカルユーアンドエイ, 堤総研株式会社 filed Critical 株式会社メディカルユーアンドエイ
Publication of WO2013021913A1 publication Critical patent/WO2013021913A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to an osteosynthesis material having biodegradability using high purity magnesium.
  • metal materials such as titanium that do not have biodegradability have been widely used as osteosynthesis materials used for fixing fractures and the like.
  • titanium or the like used for the bone bonding material has high rigidity, and if the bone bonding material is left in the living body for a long time after healing, the bone bonding material supports the load instead of the bone. , Bone mass may decrease and bones may become weak. It is also conceivable to inhibit bone growth, particularly when the bone cement is used for growing children. Therefore, after the healing of a fracture or the like, the osteosynthesis material is removed, and therefore, a procedure such as re-operation is often taken. However, the re-operation requires a large burden on the patient, so that the osteosynthesis does not require re-operation. Was desired.
  • the present situation is that it is still difficult to obtain sufficient strength with an osteosynthesis material using a biodegradable polymer, and it is also conceivable that the polymer decomposed and absorbed in the living body has a bad influence on the living body.
  • the biodegradable polymer when polylactic acid or the like is used as the biodegradable polymer, there is a possibility that inflammation may occur due to lactic acid or the like as a monomer being stored in the living body.
  • An object of the present invention is to provide an osteosynthesis material that decomposes in vivo, has sufficient strength and appropriate rigidity, and is safer for the human body.
  • the present invention [1] An osteosynthesis material manufactured using high-purity magnesium as a raw material. [2] The osteosynthesis material according to [1], wherein the osteosynthesis material is a medical bone plate, a bone screw, or a mesh sheet. [3] The osteosynthesis material according to [1] or [2], wherein the purity of the high-purity magnesium is 3N (99.9%) or more. [4] The osteosynthesis material according to any one of [1] to [3], wherein the purity of the high-purity magnesium is 4N (99.99%) or more and 5N (99.999%) or less. . [5] An osteosynthesis material, wherein a film is further provided on the surface of the osteosynthesis material according to any one of [1] to [4].
  • the osteosynthesis material of the present invention has sufficient strength, safety, moderate rigidity, and moderate biodegradability by using high-purity magnesium as a raw material.
  • healing of fractures and the like is further promoted by the action of helping bone formation of magnesium.
  • a suitable biodegradability and the like as an osteosynthesis material can be obtained without providing a coating film or alloying high-purity magnesium as a raw material, it is possible to produce an osteosynthesis material that is safer for the human body. At the same time, it can save the labor of processing, and is very advantageous industrially.
  • the osteosynthesis material of the present invention is manufactured using high-purity magnesium as a raw material.
  • FIG. 1 (a) to 1 (i) are plan views showing one embodiment of the osteosynthesis material of the present invention, where (a) is straight, (b) is L-shaped, and (c) is T-shaped. , (D) is double Y-shaped, (e) is curved, (f) is straight without constriction, (g) is ribbon-shaped used in orthopedics, etc. (h) is double-Y-shaped, (i ) Shows a box-shaped osteosynthesis material, and FIG. 2 is a plan view showing an embodiment of the mesh sheet of the present invention.
  • the bone cement means, for example, a molded article suitable for fixing and assisting a damaged part and a fracture part of a bone until a bone is formed.
  • a medical bone plate, a bone screw, a mesh sheet, etc. are mentioned.
  • the use of the osteosynthesis material of the present invention is not particularly limited. For example, it is preferable when performing bone fixation and prosthesis or the like in joint and reconstruction for the treatment of trauma such as skulls and facial bones. Used.
  • the bone plate examples include those formed into a plate shape having a bone screw insertion hole 2 as shown in FIG.
  • the shape of the bone plate is not particularly limited, but has a shape corresponding to the fixed location, such as straight, L-shaped, T-shaped, X-shaped, curved, ribbon-shaped, double Y-shaped, box-shaped, etc. Can be used.
  • As the size of the bone plate an appropriate one can be selected according to an application site or the like.
  • the thickness of the bone plate is not particularly limited as long as the effect of the present invention is not hindered, and an appropriate one may be selected depending on the application site and the like, but it has sufficient strength and has little burden on the patient.
  • preferable Specifically, for example, about 0.3 mm to 2 mm is preferable, and about 0.5 mm to 1 mm is more preferable.
  • the bone screw examples include those formed into a screw shape so as to fix the bone plate, the mesh sheet, and the like to the bone or to be used alone for osteosynthesis.
  • the diameter and length of the bone screw are not particularly limited as long as the effects of the present invention are not hindered, and an appropriate one may be selected according to the application site, bone plate and mesh to be used, etc., but it has sufficient strength. In addition, it is preferable that the burden on the patient is small.
  • the diameter (nominal diameter) is preferably about 1 mm to 3 mm, and more preferably about 1.5 mm to 2 mm.
  • the length (screw tip) is preferably about 1 mm to 30 mm, more preferably about 3 mm to 20 mm.
  • Examples of the mesh sheet include those formed into a plate shape having bone screw insertion holes 4 as shown in FIG.
  • As the size of the mesh sheet an appropriate one can be selected according to the application site and the like.
  • the mesh sheet may be used, for example, in a wide area that is difficult to fix with the bone plate, and may be cut into an arbitrary shape when being fixed in accordance with the shape of the application site.
  • the thickness of the mesh sheet is not particularly limited as long as the effect of the present invention is not hindered, and an appropriate one may be selected depending on the application site and the like, but it has sufficient strength and has little burden on the patient.
  • preferable Specifically, for example, about 0.1 mm to 1 mm is preferable, and about 0.2 mm to 0.5 mm is more preferable.
  • the osteosynthesis material of the present invention is biodegradable by using high-purity magnesium as a raw material, and is decomposed and absorbed in the body after fixation, correction, and reconstruction in osteosynthesis. Since magnesium has an action of helping bone formation, the use of the osteosynthesis material of the present invention promotes healing of fractures and the like.
  • the period required for degradation of the osteosynthesis material of the present invention in vivo (hereinafter also referred to as a degradation period) is not particularly limited as long as the effect of the present invention is not hindered, and is appropriate depending on the period required for healing of the application site.
  • the period is 3 months or more and 3 years or less in consideration of the healing time of the fracture, and 6 months or more 1 More preferably, it is about a year or less.
  • the mesh sheet is used for floor surface reconstruction at the time of orbital floor fracture, it is preferably about 1 year to 5 years in consideration of the occurrence of scar tissue, etc., and preferably 2 years to 3 years. More preferably, it is about. If the bone bonding material is not decomposed and remains in the living body even after the above range, there is a risk of inhibiting bone growth and weakening the bone, which is not preferable.
  • the purity of the high-purity magnesium in the present invention is not particularly limited as long as the effect of the present invention is not hindered, but is preferably about 3N (99.9% by weight) to 6N (99.9999% by weight), and preferably 4N (99.99). % By weight) to 6N (99.9999% by weight) or less.
  • the osteosynthesis of the present invention can adjust the decomposition period with the purity of the high-purity magnesium without providing a coating or alloying the high-purity magnesium of the raw material, the adverse effect on the human body due to impurities etc. can be reduced. Can do.
  • the purity of the high-purity magnesium may be obtained by a method well known to those skilled in the art, and can be measured using a widely known method. Examples of the method include fluorescent X-ray analysis, glow discharge mass spectrometry, ICP (inductively coupled plasma) mass spectrometry, and the like. Glow discharge mass spectrometry and the like are possible because high purity analysis is possible. Is preferred.
  • the purity of magnesium may be directly measured, or the purity of magnesium may be calculated by measuring the purity of impurities other than magnesium, but from the point of high accuracy measurement, The latter method is preferred.
  • the impurities include beryllium, aluminum, silicon, calcium, manganese, iron, nickel, copper, zinc, zirconium, silver, cadmium, tin, lanthanum, cerium, neodymium, lead, mercury, and thorium.
  • the purity may or may not consider specific trace elements (for example, zinc, mercury, beryllium, lanthanum, and cerium) as impurities.
  • zinc may or may not be considered, but is preferably considered as an impurity from the viewpoint of influence on the human body.
  • the purity may be such that non-metallic components such as oxygen, carbon, nitrogen, hydrogen, sulfur and phosphorus are not considered as impurities.
  • the osteosynthesis material of the present invention may or may not be provided with a coating on the surface, but can be provided for the purpose of assisting the adjustment of the decomposition period.
  • the coating is not particularly limited as long as the effect of the present invention is not hindered.
  • magnesium oxidation products such as polylactic acid and polyglycolic acid
  • bioceramics such as calcium phosphate and hydroxyapatite
  • those containing one or more selected from the group consisting of active substances; antibiotics; pharmaceuticals; growth factors and the like Preferably, those containing one or more selected from the group consisting of active substances; antibiotics; pharmaceuticals; growth factors and the like.
  • the thickness of the coating film varies depending on the material of the coating film, the application site, the required decomposition period, and the like. .
  • As a method for providing a coating on the osteosynthesis material of the present invention widely known methods can be applied as long as the effects of the present invention are not hindered.
  • the osteosynthesis material of the present invention may be manufactured from an alloy containing other metals, bioceramics, and the like as desired in addition to the high-purity magnesium.
  • the metal is not particularly limited as long as the effect of the present invention is not hindered.
  • zinc (Zn), calcium (Ca), manganese, etc. from the viewpoint of biocompatibility and the like.
  • (Mn), aluminum (Al), yttrium (Y), and neodymium (Nd) are preferable.
  • the said metal may contain only 1 type and may contain 2 or more types.
  • the total content of the metal is not particularly limited as long as the effect of the present invention is not hindered, and varies depending on the type of metal and the purpose of inclusion, but from the viewpoint of biocompatibility and the like, with respect to 100 parts by weight of high-purity magnesium, About 0.01 to 30 parts by weight is preferable, and about 0.01 to 10 parts by weight is more preferable.
  • the bioceramics are not particularly limited as long as the effects of the present invention are not hindered, and preferred examples include calcium phosphate and hydroxyapatite from the viewpoint of biocompatibility and the like.
  • the said bioceramics may contain only 1 type and may contain 2 or more types.
  • the total content of the bioceramics is not particularly limited as long as the effects of the present invention are not hindered, but varies depending on the type of bioceramics and the purpose of inclusion, etc.
  • the weight ratio of high-purity magnesium to bioceramics is preferably about 1:20 to 20: 1, and more preferably about 1: 5 to 5: 1.
  • the osteosynthesis material of the present invention may be colored as desired.
  • the color may be changed depending on the size so that the size of the osteosynthesis can be easily recognized.
  • it does not specifically limit as a coloring method unless the effect of this invention is disturbed, For example, methods, such as anodizing and electrodeposition coating, are mentioned.
  • the high-purity magnesium used in the osteosynthesis material of the present invention can be obtained by widely known methods as long as the effects of the present invention are not hindered.
  • a commercially available product may be used, or a magnesium material purified to a desired purity may be used.
  • Preferred examples of the purification method include the vacuum distillation purification method described in JP-A-2002-348621, JP-A-2005-126802, and the like.
  • a magnesium material as a raw material of high purity magnesium is put in a crucible, heated and dissolved in a suction vacuum atmosphere, and vapor generated from the dissolved magnesium material is condensed in a condenser at a constant temperature. Methods and the like.
  • the temperature in the crucible during the heating is preferably about 550 ° C. to 650 ° C., more preferably about 590 ° C. to 610 ° C.
  • the temperature of the condenser is preferably about 350 ° C. to 450 ° C., more preferably about 390 ° C. to 410 ° C.
  • the vacuum distillation apparatus used in the vacuum distillation purification method is not particularly limited as long as the effects of the present invention are not hindered.
  • the crucible containing the raw material and the raw material contained in the crucible are heated and dissolved.
  • a cooling means located near the magnesium condenser, and an exhaust means for reducing the pressure inside the double cylinder are heated and dissolved.
  • Examples of the magnesium material that is a raw material for high-purity magnesium include commercially available pure magnesium materials, magnesium alloy materials, and magnesium-containing scrap materials.
  • the purity of the pure magnesium is not particularly limited as long as the effects of the present invention are not hindered.
  • the purity of the pure magnesium differs depending on the purity of the target high-purity magnesium. More than about 99.99% by weight is preferable, and more than about 99.9% by weight and less than about 99.99% by weight is more preferable.
  • the condensate (high purity magnesium) on the condenser obtained has a higher purity as the distance from the condenser is longer, that is, the later condensed part.
  • the purity can be easily adjusted by means such as cutting out and using only the portion having the desired purity.
  • a method for forming the high-purity magnesium into the osteosynthesis material of the present invention widely known methods can be used as long as the effects of the present invention are not hindered.
  • injection molding methods such as thixomolding, die casting method, molten metal forging method, gravity casting method, low pressure casting method, etc. are mentioned, from the viewpoint of easy mold production, easy to obtain products with a smooth surface, etc.
  • a gravity casting method and a low pressure casting method are preferred.
  • there is a method of performing punching and cutting after rolling, etc. because it is simple and suitable for obtaining small quantities of various products in forming an osteosynthesis having a size suitable for the affected area. Preferably mentioned.
  • the purity is measured by the concentration of impurities (aluminum, silicon, calcium, manganese, iron, nickel, copper, zinc, silver, cadmium, tin, lead, mercury, beryllium, lanthanum and cerium) contained in the magnesium block. Then, the sum thereof was calculated as a value obtained by subtracting from 100%.
  • the measurement was performed according to the method described in “Analytical Chemistry, vol. 53, No. 6, pp. 569-574 (2004)”. Data acquisition was performed three times from 15 minutes after the start of discharge, and the third data was used as a GD-MS quantitative value. The conditions are shown below.
  • Glow discharge mass spectrometer VG9000 manufactured by Thermo Electron
  • Discharge conditions Argon glow discharge, 1.5 kV-1.6 to 2.0 mA
  • Mass resolution 4000 (m / ⁇ m; 5% peak height)
  • Ta mask 10mm ⁇
  • Alumina insulator 17mm ⁇
  • Example 1 Production of bone plate
  • the high-purity magnesium lump obtained in Production Example 1 was formed into a plate shape by an injection molding method.
  • the plate-like high-purity magnesium was pressure-formed with a press machine to obtain the bone plate of the present invention.
  • Example 2 Production of mesh sheet
  • the high-purity magnesium lump obtained in Production Example 1 was formed into a plate shape by an injection molding method.
  • the plate-like high-purity magnesium was pressure-formed with a press machine to obtain a mesh sheet of the present invention.
  • Example 3 Production of bone screw
  • the high-purity magnesium block obtained in Production Example 1 was formed into a rod shape by an injection molding method.
  • the rod-like high-purity magnesium was forged to obtain a semi-part having an outer shape.
  • the threaded part of the half part was formed by rolling to obtain the bone screw of the present invention.
  • the osteosynthesis material of the present invention has sufficient strength, safety, moderate rigidity and moderate biodegradability and absorbability as an osteosynthesis material.
  • healing of fractures and the like is further promoted by the action of helping bone formation of magnesium.

Abstract

The present invention provides an osteosynthesis material which decomposes inside the body and has sufficient strength and suitable rigidity, and is safe in the human body. The osteosynthesis material is characterized in that it is produced using high-purity magnesium as the starting material.

Description

骨接合材Osteosynthesis
 本発明は、高純度マグネシウムを用いた、生体内分解性を有する骨接合材に関するものである。 The present invention relates to an osteosynthesis material having biodegradability using high purity magnesium.
 従来、骨折部分の固定等に用いる骨接合材としては、生体内分解性を有しないチタン等の金属製のものが広く用いられていた。しかしながら、該骨接合材に用いられるチタン等は剛性が高く、該骨接合材を治癒後も長期にわたり生体内に留置しておくと、該骨接合材が骨に代わって荷重を支持することにより、骨量が減少し、骨が脆弱化する恐れがある。また、特に成長期の子供に該骨接合材を使用した場合、骨の成長を阻害することも考えられる。従って、骨折等の治癒後、該骨接合材を抜去するため、再手術等の手段がとられることが多いが、再手術は患者への負担が大きいため、再手術を必要としない骨接合材が望まれていた。 Conventionally, metal materials such as titanium that do not have biodegradability have been widely used as osteosynthesis materials used for fixing fractures and the like. However, titanium or the like used for the bone bonding material has high rigidity, and if the bone bonding material is left in the living body for a long time after healing, the bone bonding material supports the load instead of the bone. , Bone mass may decrease and bones may become weak. It is also conceivable to inhibit bone growth, particularly when the bone cement is used for growing children. Therefore, after the healing of a fracture or the like, the osteosynthesis material is removed, and therefore, a procedure such as re-operation is often taken. However, the re-operation requires a large burden on the patient, so that the osteosynthesis does not require re-operation. Was desired.
 そこで、生体内分解性を有する骨接合材の研究が行われ、ポリ乳酸等の生体内分解性ポリマーを用いた骨接合材が開発された。ポリ乳酸は強度が低い、変形性に乏しい等の問題を有するが、これを解決するために、例えば特許文献1に記載の骨接合材等が提案されている。 Therefore, research on osteosynthesis materials having biodegradability was conducted, and osteosynthesis materials using biodegradable polymers such as polylactic acid were developed. Polylactic acid has problems such as low strength and poor deformability. In order to solve this problem, for example, an osteosynthesis material described in Patent Document 1 has been proposed.
 しかしながら、生体内分解性ポリマーを用いた骨接合材では未だ十分な強度が得られにくいのが現状であり、さらに、生体内で分解吸収されたポリマーが生体に悪影響を及ぼすことも考えられる。例えば、生体内分解性ポリマーとしてポリ乳酸等を用いた場合、モノマーである乳酸等が生体内に貯留されることにより、炎症が起こる可能性が考えられる。 However, the present situation is that it is still difficult to obtain sufficient strength with an osteosynthesis material using a biodegradable polymer, and it is also conceivable that the polymer decomposed and absorbed in the living body has a bad influence on the living body. For example, when polylactic acid or the like is used as the biodegradable polymer, there is a possibility that inflammation may occur due to lactic acid or the like as a monomer being stored in the living body.
特開2000-84064JP 2000-84064 A
 本発明は、生体内で分解する骨接合材であって、十分な強度及び適度な剛性を有し、人体により安全な骨接合材を提供することを目的とする。 An object of the present invention is to provide an osteosynthesis material that decomposes in vivo, has sufficient strength and appropriate rigidity, and is safer for the human body.
 本発明者らは、上記課題を解決するために鋭意研究を行った結果、驚くべきことに、高純度マグネシウムが骨接合材として適当な強度、剛性及び生体内分解性を有することを見出し、さらに研究を重ねて本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have surprisingly found that high-purity magnesium has suitable strength, rigidity and biodegradability as an osteosynthesis material, The present invention was completed through repeated research.
 即ち、本発明は、
[1]高純度マグネシウムを原料として製造されていることを特徴とする骨接合材。
[2]前記骨接合材が医療用のボーンプレート、ボーンスクリュー又はメッシュシートであることを特徴とする前記[1]に記載の骨接合材。
[3]前記高純度マグネシウムの純度が3N(99.9%)以上であることを特徴とする前記[1]又は[2]に記載の骨接合材。
[4]前記高純度マグネシウムの純度が4N(99.99%)以上5N(99.999%)以下であることを特徴とする前記[1]~[3]のいずれかに記載の骨接合材。
[5]前記[1]~[4]のいずれかに記載の骨接合材の表面に、さらに被膜を設けたことを特徴とする骨接合材。
[6]生体内分解性を有することを特徴とする前記[1]~[5]のいずれかに記載の骨接合材。
[7]生体内での分解に要する期間が6ヶ月以上1年以下であることを特徴とする前記[6]に記載の骨接合材。
に関する。
That is, the present invention
[1] An osteosynthesis material manufactured using high-purity magnesium as a raw material.
[2] The osteosynthesis material according to [1], wherein the osteosynthesis material is a medical bone plate, a bone screw, or a mesh sheet.
[3] The osteosynthesis material according to [1] or [2], wherein the purity of the high-purity magnesium is 3N (99.9%) or more.
[4] The osteosynthesis material according to any one of [1] to [3], wherein the purity of the high-purity magnesium is 4N (99.99%) or more and 5N (99.999%) or less. .
[5] An osteosynthesis material, wherein a film is further provided on the surface of the osteosynthesis material according to any one of [1] to [4].
[6] The osteosynthesis material according to any one of [1] to [5] above, which has biodegradability.
[7] The osteosynthesis material according to [6] above, wherein a period required for degradation in vivo is 6 months or more and 1 year or less.
About.
 本発明の骨接合材は、高純度マグネシウムを原料とすることにより、骨接合材として十分な強度、安全性、適度な剛性及び適度な生体内分解吸収性を有する。また、本発明の骨接合材を使用することで、マグネシウムの骨形成を助ける作用により骨折等の治癒がより促進される。本発明によると、被膜を設けたり原料の高純度マグネシウムを合金にしたりせずとも、骨接合材として適当な生体内分解性等を得られるため、人体により安全な骨接合材の製造が可能であると共に加工の手間を省くことができ、工業的に非常に有利である。 The osteosynthesis material of the present invention has sufficient strength, safety, moderate rigidity, and moderate biodegradability by using high-purity magnesium as a raw material. In addition, by using the osteosynthesis material of the present invention, healing of fractures and the like is further promoted by the action of helping bone formation of magnesium. According to the present invention, since a suitable biodegradability and the like as an osteosynthesis material can be obtained without providing a coating film or alloying high-purity magnesium as a raw material, it is possible to produce an osteosynthesis material that is safer for the human body. At the same time, it can save the labor of processing, and is very advantageous industrially.
本発明のボーンプレートの一態様を示す平面図である。It is a top view which shows the one aspect | mode of the bone plate of this invention. 本発明のメッシュシートの一態様を示す平面図である。It is a top view which shows the one aspect | mode of the mesh sheet | seat of this invention.
 以下、適宜図面を参照して本発明を詳細に説明する。本発明の骨接合材は、高純度マグネシウムを原料として製造されていることを特徴とする。 Hereinafter, the present invention will be described in detail with reference to the drawings as appropriate. The osteosynthesis material of the present invention is manufactured using high-purity magnesium as a raw material.
 図1(a)~(i)はいずれも本発明の骨接合材の一態様を示す平面図であって、(a)はストレート、(b)はL字状、(c)はT字状、(d)はダブルY字状、(e)はカーブ状、(f)はくびれがないストレート、(g)は整形外科等で用いられるリボン状、(h)はダブルY字状、(i)はボックス状の骨接合材を示すものであり、図2は本発明のメッシュシートの一態様を示す平面図である。 1 (a) to 1 (i) are plan views showing one embodiment of the osteosynthesis material of the present invention, where (a) is straight, (b) is L-shaped, and (c) is T-shaped. , (D) is double Y-shaped, (e) is curved, (f) is straight without constriction, (g) is ribbon-shaped used in orthopedics, etc. (h) is double-Y-shaped, (i ) Shows a box-shaped osteosynthesis material, and FIG. 2 is a plan view showing an embodiment of the mesh sheet of the present invention.
 本発明において、骨接合材とは、例えば、骨の損傷部分及び骨折部分等を、骨が形成されるまで固定、補助するのに適した成形物等を意味する。本発明の骨接合材としては、特に限定されないが、例えば、医療用のボーンプレート、ボーンスクリュー、及びメッシュシート等が挙げられる。また、本発明の骨接合材の用途としては、特に限定されないが、例えば、頭蓋骨及び顔面骨等の外傷治療のための接合術及び再建術等において、骨の固定及び補綴等を行う際に好ましく用いられる。 In the present invention, the bone cement means, for example, a molded article suitable for fixing and assisting a damaged part and a fracture part of a bone until a bone is formed. Although it does not specifically limit as an osteosynthesis of this invention, For example, a medical bone plate, a bone screw, a mesh sheet, etc. are mentioned. In addition, the use of the osteosynthesis material of the present invention is not particularly limited. For example, it is preferable when performing bone fixation and prosthesis or the like in joint and reconstruction for the treatment of trauma such as skulls and facial bones. Used.
 前記ボーンプレートとしては、例えば、図1に示すようなボーンスクリュー挿通孔2を有するプレート状に成形されたもの等が挙げられる。前記ボーンプレートの形状としては、特に限定されないが、ストレート、L字状、T字状、X字状、カーブ状、リボン状、ダブルY字状、ボックス状等、固定箇所に応じた形状のものを用いることができる。前記ボーンプレートのサイズは、適用部位等に応じ、適切なものを選択することができる。前記ボーンプレートの厚さは、本発明の効果を妨げない限り特に限定されず、適用部位等により適切なものを選択すればよいが、十分な強度を有し、かつ患者の負担も少ないものが好ましい。具体的には、例えば、0.3mm~2mm程度が好ましく、0.5mm~1mm程度がより好ましい。 Examples of the bone plate include those formed into a plate shape having a bone screw insertion hole 2 as shown in FIG. The shape of the bone plate is not particularly limited, but has a shape corresponding to the fixed location, such as straight, L-shaped, T-shaped, X-shaped, curved, ribbon-shaped, double Y-shaped, box-shaped, etc. Can be used. As the size of the bone plate, an appropriate one can be selected according to an application site or the like. The thickness of the bone plate is not particularly limited as long as the effect of the present invention is not hindered, and an appropriate one may be selected depending on the application site and the like, but it has sufficient strength and has little burden on the patient. preferable. Specifically, for example, about 0.3 mm to 2 mm is preferable, and about 0.5 mm to 1 mm is more preferable.
 前記ボーンスクリューとしては、例えば、前記ボーンプレート及びメッシュシート等を骨に固定するために、又は単独で骨接合に用いるために、ねじ状に成形されたもの等が挙げられる。前記ボーンスクリューの直径及び長さは、本発明の効果を妨げない限り特に限定されず、適用部位、使用するボーンプレート及びメッシュ等に応じ適切なものを選択すればよいが、十分な強度を有し、かつ患者の負担も少ないものが好ましい。具体的には、例えば、直径(呼び径)1mm~3mm程度が好ましく、1.5mm~2mm程度がより好ましい。また、長さ(ねじ先)1mm~30mm程度が好ましく、3mm~20mm程度がより好ましい。 Examples of the bone screw include those formed into a screw shape so as to fix the bone plate, the mesh sheet, and the like to the bone or to be used alone for osteosynthesis. The diameter and length of the bone screw are not particularly limited as long as the effects of the present invention are not hindered, and an appropriate one may be selected according to the application site, bone plate and mesh to be used, etc., but it has sufficient strength. In addition, it is preferable that the burden on the patient is small. Specifically, for example, the diameter (nominal diameter) is preferably about 1 mm to 3 mm, and more preferably about 1.5 mm to 2 mm. The length (screw tip) is preferably about 1 mm to 30 mm, more preferably about 3 mm to 20 mm.
 前記メッシュシートとしては、例えば、図2に示すようなボーンスクリュー挿通孔4をメッシュ状に有するプレート状に成形されたもの等が挙げられる。前記メッシュシートのサイズは、適用部位等に応じ、適切なものを選択することができる。前記メッシュシートは、例えば、前記ボーンプレートでは固定することが困難である広範囲部位に用いてもよく、適用部位の形状に合わせて固定する際に任意の形状に切り取り使用してもよい。前記メッシュシートの厚さは、本発明の効果を妨げない限り特に限定されず、適用部位等により適切なものを選択すればよいが、十分な強度を有し、かつ患者の負担も少ないものが好ましい。具体的には、例えば、0.1mm~1mm程度が好ましく、0.2mm~0.5mm程度がより好ましい。 Examples of the mesh sheet include those formed into a plate shape having bone screw insertion holes 4 as shown in FIG. As the size of the mesh sheet, an appropriate one can be selected according to the application site and the like. The mesh sheet may be used, for example, in a wide area that is difficult to fix with the bone plate, and may be cut into an arbitrary shape when being fixed in accordance with the shape of the application site. The thickness of the mesh sheet is not particularly limited as long as the effect of the present invention is not hindered, and an appropriate one may be selected depending on the application site and the like, but it has sufficient strength and has little burden on the patient. preferable. Specifically, for example, about 0.1 mm to 1 mm is preferable, and about 0.2 mm to 0.5 mm is more preferable.
 本発明の骨接合材は、高純度マグネシウムを原料とすることにより、生体内分解性を有し、骨接合術における固定及び矯正、再建術後に体内で分解され、吸収される。マグネシウムは骨形成を助ける作用を有するため、本発明の骨接合材を使用することで、骨折等の治癒が促進される。本発明の骨接合材が生体内での分解に要する期間(以下、分解期間ともいう。)は、本発明の効果を妨げない限り特に限定されず、適用箇所の治癒にかかる期間に応じて適切なものを選択すればよいが、例えば、骨接合用プレート等の用途で使用する場合、骨折の治癒時間等を考慮し、3ヶ月以上3年以下程度であることが好ましく、6か月以上1年以下程度であることがより好ましい。また、メッシュシートを眼窩底骨折時の床面再建等の用途で使用する場合、瘢痕組織の発生時期等を考慮し、1年以上5年以下程度であることが好ましく、2年以上3年以下程度であることがより好ましい。前記範囲を過ぎても骨接合材が分解されず生体内に残ると、骨成長の阻害及び骨の脆弱化等の恐れがあり、好ましくない。 The osteosynthesis material of the present invention is biodegradable by using high-purity magnesium as a raw material, and is decomposed and absorbed in the body after fixation, correction, and reconstruction in osteosynthesis. Since magnesium has an action of helping bone formation, the use of the osteosynthesis material of the present invention promotes healing of fractures and the like. The period required for degradation of the osteosynthesis material of the present invention in vivo (hereinafter also referred to as a degradation period) is not particularly limited as long as the effect of the present invention is not hindered, and is appropriate depending on the period required for healing of the application site. For example, when used for applications such as osteosynthesis plates, it is preferable that the period is 3 months or more and 3 years or less in consideration of the healing time of the fracture, and 6 months or more 1 More preferably, it is about a year or less. In addition, when the mesh sheet is used for floor surface reconstruction at the time of orbital floor fracture, it is preferably about 1 year to 5 years in consideration of the occurrence of scar tissue, etc., and preferably 2 years to 3 years. More preferably, it is about. If the bone bonding material is not decomposed and remains in the living body even after the above range, there is a risk of inhibiting bone growth and weakening the bone, which is not preferable.
 本発明における高純度マグネシウムの純度は、本発明の効果を妨げない限り特に限定されないが、3N(99.9重量%)以上6N(99.9999重量%)以下程度が好ましく、4N(99.99重量%)以上6N(99.9999重量%)以下程度がさらに好ましい。高純度マグネシウムの純度を前記範囲に設定することにより、好ましい分解期間を有する骨接合材が得られるとともに、生体内に適用した際の経時的な強度変化が、骨折等の治癒により適したものとなる。また、前記範囲内でさらに純度を調節することで、さらに厳密な分解期間を設定できる。本発明の骨接合材は、被膜を設けたり、原料の高純度マグネシウムを合金にしたりせずとも、高純度マグネシウムの純度で分解期間を調節できるため、不純物等による人体への悪影響を低減することができる。 The purity of the high-purity magnesium in the present invention is not particularly limited as long as the effect of the present invention is not hindered, but is preferably about 3N (99.9% by weight) to 6N (99.9999% by weight), and preferably 4N (99.99). % By weight) to 6N (99.9999% by weight) or less. By setting the purity of the high purity magnesium within the above range, an osteosynthesis material having a preferable decomposition period can be obtained, and the strength change with time when applied in vivo is more suitable for healing of fractures and the like. Become. Further, by further adjusting the purity within the above range, a more strict decomposition period can be set. Since the osteosynthesis of the present invention can adjust the decomposition period with the purity of the high-purity magnesium without providing a coating or alloying the high-purity magnesium of the raw material, the adverse effect on the human body due to impurities etc. can be reduced. Can do.
 前記高純度マグネシウムの純度は、当業者に周知の方法によって得られるものであってよく、広く公知の方法を用いて測定することができる。前記方法としては、例えば、蛍光X線分析法、グロー放電質量分析法、ICP(誘導結合プラズマ)質量分析法等が挙げられ、高純度の分析が可能である点から、グロー放電質量分析法等が好ましく挙げられる。前記純度を測定する場合、直接マグネシウムの純度を測定してもよく、マグネシウム以外の不純物の純度を測定してマグネシウムの純度を算出してもよいが、精度の高い測定が可能である点から、後者の方法が好ましい。 The purity of the high-purity magnesium may be obtained by a method well known to those skilled in the art, and can be measured using a widely known method. Examples of the method include fluorescent X-ray analysis, glow discharge mass spectrometry, ICP (inductively coupled plasma) mass spectrometry, and the like. Glow discharge mass spectrometry and the like are possible because high purity analysis is possible. Is preferred. When measuring the purity, the purity of magnesium may be directly measured, or the purity of magnesium may be calculated by measuring the purity of impurities other than magnesium, but from the point of high accuracy measurement, The latter method is preferred.
 前記不純物としては、例えば、ベリリウム、アルミニウム、ケイ素、カルシウム、マンガン、鉄、ニッケル、銅、亜鉛、ジルコニウム、銀、カドミウム、スズ、ランタン、セリウム、ネオジム、鉛、水銀、トリウム等が挙げられる。但し、前記純度は、特定の微量元素(例えば、亜鉛、水銀、ベリリウム、ランタン及びセリウム等)を不純物として考慮したものであってもよく、考慮しないものであってもよい。特に、亜鉛については、考慮してもしなくてもよいが、人体への影響等の点から、不純物として考慮されることが好ましい。また、前記純度は、酸素、炭素、窒素、水素、硫黄及びリン等の非金属成分を不純物として考慮しないものであってもよい。 Examples of the impurities include beryllium, aluminum, silicon, calcium, manganese, iron, nickel, copper, zinc, zirconium, silver, cadmium, tin, lanthanum, cerium, neodymium, lead, mercury, and thorium. However, the purity may or may not consider specific trace elements (for example, zinc, mercury, beryllium, lanthanum, and cerium) as impurities. In particular, zinc may or may not be considered, but is preferably considered as an impurity from the viewpoint of influence on the human body. Further, the purity may be such that non-metallic components such as oxygen, carbon, nitrogen, hydrogen, sulfur and phosphorus are not considered as impurities.
 本発明の骨接合材は、表面に被膜を設けていてもよく、設けていなくてもよいが、分解期間の調節を補助する等の目的で設けることができる。該被膜としては、本発明の効果を妨げない限り特に限定されないが、例えば、マグネシウムの酸化生成物;ポリ乳酸、ポリグリコール酸等の生分解性ポリマー;リン酸カルシウム、ヒドロキシアパタイト等の生体セラミックス;生物学的活性物質;抗生物質;医薬;成長因子等から選ばれる一以上を含有するものが好ましく挙げられる。該被膜の厚みは、被膜の素材、適用部位及び求められる分解期間等により異なるが、例えば、分解期間の調節の補助効果の点から0.01μm~100μm程度が好ましく、1μm~30μm程度がより好ましい。本発明の骨接合材に被膜を設ける方法としては、本発明の効果を妨げない限り、広く公知の方法を適用できる。 The osteosynthesis material of the present invention may or may not be provided with a coating on the surface, but can be provided for the purpose of assisting the adjustment of the decomposition period. The coating is not particularly limited as long as the effect of the present invention is not hindered. For example, magnesium oxidation products; biodegradable polymers such as polylactic acid and polyglycolic acid; bioceramics such as calcium phosphate and hydroxyapatite; Preferably, those containing one or more selected from the group consisting of active substances; antibiotics; pharmaceuticals; growth factors and the like. The thickness of the coating film varies depending on the material of the coating film, the application site, the required decomposition period, and the like. . As a method for providing a coating on the osteosynthesis material of the present invention, widely known methods can be applied as long as the effects of the present invention are not hindered.
 本発明の骨接合材は、前記高純度マグネシウムの他に、所望により他の金属及び生体セラミックス等を含む合金から製造されていてもよい。 The osteosynthesis material of the present invention may be manufactured from an alloy containing other metals, bioceramics, and the like as desired in addition to the high-purity magnesium.
 前記金属としては、本発明の効果を妨げない限り特に限定されないが、例えば、アルミニウム(Al)、亜鉛(Zn)、ジルコニウム(Zr)、マンガン(Mn)、銀(Ag)、珪素(Si)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、カルシウム(Ca)、及びその他希土類金属等が挙げられ、特に、生体適合性等の点から、亜鉛(Zn)、カルシウム(Ca)、マンガン(Mn)、アルミニウム(Al)、イットリウム(Y)、ネオジム(Nd)が好ましく挙げられる。前記金属は1種のみを含有させてもよく、2種以上を含有させてもよい。前記金属の総含有量は、本発明の効果を妨げない限り特に限定されず、金属の種類及び含有させる目的等により異なるが、生体適合性等の点から、高純度マグネシウム100重量部に対し、0.01~30重量部程度が好ましく、0.01~10重量部程度がさらに好ましい。 The metal is not particularly limited as long as the effect of the present invention is not hindered. For example, aluminum (Al), zinc (Zn), zirconium (Zr), manganese (Mn), silver (Ag), silicon (Si), Examples include copper (Cu), nickel (Ni), iron (Fe), calcium (Ca), and other rare earth metals. In particular, zinc (Zn), calcium (Ca), manganese, etc. from the viewpoint of biocompatibility and the like. (Mn), aluminum (Al), yttrium (Y), and neodymium (Nd) are preferable. The said metal may contain only 1 type and may contain 2 or more types. The total content of the metal is not particularly limited as long as the effect of the present invention is not hindered, and varies depending on the type of metal and the purpose of inclusion, but from the viewpoint of biocompatibility and the like, with respect to 100 parts by weight of high-purity magnesium, About 0.01 to 30 parts by weight is preferable, and about 0.01 to 10 parts by weight is more preferable.
 前記生体セラミックスとしては、本発明の効果を妨げない限り特に限定されないが、例えば、生体適合性等の点から、リン酸カルシウム、ヒドロキシアパタイト等が好ましく挙げられる。前記生体セラミックスは1種のみを含有させてもよく、2種以上を含有させてもよい。本発明の骨接合材が前記生体セラミックスを含有する場合、前記生体セラミックスの総含有量は、本発明の効果を妨げない限り特に限定されず、生体セラミックスの種類及び含有させる目的等により異なるが、安全性及び治癒の促進等の点から、高純度マグネシウムと生体セラミックスとの重量比は1:20~20:1程度が好ましく、1:5~5:1程度がさらに好ましい。 The bioceramics are not particularly limited as long as the effects of the present invention are not hindered, and preferred examples include calcium phosphate and hydroxyapatite from the viewpoint of biocompatibility and the like. The said bioceramics may contain only 1 type and may contain 2 or more types. When the bone bonding material of the present invention contains the bioceramics, the total content of the bioceramics is not particularly limited as long as the effects of the present invention are not hindered, but varies depending on the type of bioceramics and the purpose of inclusion, etc. From the viewpoint of safety and promotion of healing, the weight ratio of high-purity magnesium to bioceramics is preferably about 1:20 to 20: 1, and more preferably about 1: 5 to 5: 1.
 本発明の骨接合材は、所望により着色されていてもよい。例えば、骨接合材のサイズを容易に視認できるよう、サイズにより色を変えて着色されていてもよい。着色方法としては、本発明の効果を妨げない限り特に限定されないが、例えば、陽極酸化、電着塗装等の方法が挙げられる。 The osteosynthesis material of the present invention may be colored as desired. For example, the color may be changed depending on the size so that the size of the osteosynthesis can be easily recognized. Although it does not specifically limit as a coloring method unless the effect of this invention is disturbed, For example, methods, such as anodizing and electrodeposition coating, are mentioned.
 本発明の骨接合材に用いられる高純度マグネシウムは、本発明の効果を妨げない限り、広く公知の方法により得ることができる。例えば、市販のものを用いてもよく、マグネシウム材を所望の純度に精製したものを用いてもよい。前記精製の方法としては、例えば、特開2002-348621、特開2005-126802等に記載の真空蒸留精製法等が好ましく挙げられる。該真空蒸留精製法としては、例えば、高純度マグネシウムの原料となるマグネシウム材を坩堝に入れ、吸引真空雰囲気下で加熱溶解し、溶解したマグネシウム材から発生する蒸気を一定温度の凝縮器で凝縮する方法等が挙げられる。前記加熱時の坩堝内の温度としては、550℃~650℃程度が好ましく、590℃~610℃程度がより好ましい。また、前記凝縮器の温度としては、350℃~450℃程度が好ましく、390℃~410℃程度がより好ましい。 The high-purity magnesium used in the osteosynthesis material of the present invention can be obtained by widely known methods as long as the effects of the present invention are not hindered. For example, a commercially available product may be used, or a magnesium material purified to a desired purity may be used. Preferred examples of the purification method include the vacuum distillation purification method described in JP-A-2002-348621, JP-A-2005-126802, and the like. As the vacuum distillation purification method, for example, a magnesium material as a raw material of high purity magnesium is put in a crucible, heated and dissolved in a suction vacuum atmosphere, and vapor generated from the dissolved magnesium material is condensed in a condenser at a constant temperature. Methods and the like. The temperature in the crucible during the heating is preferably about 550 ° C. to 650 ° C., more preferably about 590 ° C. to 610 ° C. The temperature of the condenser is preferably about 350 ° C. to 450 ° C., more preferably about 390 ° C. to 410 ° C.
 また、前記真空蒸留精製法に用いられる真空蒸留装置としては、本発明の効果を妨げない限り特に限定されないが、例えば、原料を収容する坩堝と、該坩堝内に収容した原料を加熱して溶解させる加熱装置と、前記坩堝の開放空間を覆って密閉する、内側密閉筒と外側密閉筒とからなる二重筒と、前記内側密閉筒内にあって前記坩堝の上方側に配置されたマグネシウム凝縮器と、該マグネシウム凝縮器の近傍に位置する冷却手段と、前記二重筒内を減圧する排気手段とを有するもの等が挙げられる。 Further, the vacuum distillation apparatus used in the vacuum distillation purification method is not particularly limited as long as the effects of the present invention are not hindered. For example, the crucible containing the raw material and the raw material contained in the crucible are heated and dissolved. A heating device, a double cylinder comprising an inner sealed cylinder and an outer sealed cylinder, which covers and seals the open space of the crucible, and magnesium condensation in the inner sealed cylinder and disposed above the crucible And a cooling means located near the magnesium condenser, and an exhaust means for reducing the pressure inside the double cylinder.
 高純度マグネシウムの原料となるマグネシウム材としては、例えば、市販の純マグネシウム材、マグネシウム合金材、マグネシウム含有スクラップ材等が挙げられる。前記純マグネシウムの純度は、本発明の効果を妨げない限り特に限定されず、目的とする高純度マグネシウムの純度によっても異なるが、不純物の混入抑制等の点から、例えば、マグネシウムが約99重量%以上約99.99重量%未満含まれるものが好ましく、約99.9重量%以上約99.99重量%未満含まれるものがより好ましい。 Examples of the magnesium material that is a raw material for high-purity magnesium include commercially available pure magnesium materials, magnesium alloy materials, and magnesium-containing scrap materials. The purity of the pure magnesium is not particularly limited as long as the effects of the present invention are not hindered. The purity of the pure magnesium differs depending on the purity of the target high-purity magnesium. More than about 99.99% by weight is preferable, and more than about 99.9% by weight and less than about 99.99% by weight is more preferable.
 前記高純度マグネシウムの純度を調節する方法としては、例えば、原料となるマグネシウム材の純度の調節等、広く公知の方法を用いることができる。また、上記真空蒸留精製法により高純度マグネシウムを得る場合、得られる凝縮器上の凝縮物(高純度マグネシウム)は、凝縮器からの距離が遠いほど、つまり後に凝縮された部分ほど純度が高いため、所望の純度の部分のみを切り出して用いる等の手段により、容易に純度の調節を行うことができる。 As a method for adjusting the purity of the high-purity magnesium, for example, a widely known method such as adjustment of the purity of a magnesium material as a raw material can be used. In addition, when high purity magnesium is obtained by the above vacuum distillation purification method, the condensate (high purity magnesium) on the condenser obtained has a higher purity as the distance from the condenser is longer, that is, the later condensed part. The purity can be easily adjusted by means such as cutting out and using only the portion having the desired purity.
 前記高純度マグネシウムを、本発明の骨接合材に成形する方法としては、本発明の効果を妨げない限り、広く公知の方法を用いることができる。例えば、チクソモールディング等の射出成型法、ダイカスト法、溶湯鍛造法、重力鋳造法、低圧鋳造法等が挙げられ、金型製作が容易である、表面の平滑な製品が得やすい等の観点から、重力鋳造法及び低圧鋳造法等が好ましく挙げられる。また、患部に見合ったサイズの骨接合材を成形するにあたり、簡便であり、多品種のものを少量ずつ得るのに適している等の点から、圧延後に打ち抜き加工及び切削加工等を行う方法も好ましく挙げられる。 As a method for forming the high-purity magnesium into the osteosynthesis material of the present invention, widely known methods can be used as long as the effects of the present invention are not hindered. For example, injection molding methods such as thixomolding, die casting method, molten metal forging method, gravity casting method, low pressure casting method, etc. are mentioned, from the viewpoint of easy mold production, easy to obtain products with a smooth surface, etc. A gravity casting method and a low pressure casting method are preferred. In addition, there is a method of performing punching and cutting after rolling, etc., because it is simple and suitable for obtaining small quantities of various products in forming an osteosynthesis having a size suitable for the affected area. Preferably mentioned.
 以下、本発明を、実施例を挙げてより詳細に説明するが、本発明はこれらに限定されるものではなく、本発明の技術的思想内で当分野において通常の知識を有する者により、多くの変形が可能である。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples, and many of those who have ordinary knowledge in the art within the technical idea of the present invention will be described. Can be modified.
(製造例)
 純マグネシウム材(マグネシウム含有率:99.90質量%)300gを真空蒸留装置の坩堝内に挿入し、密閉後、油回転真空ポンプで1MPa以下まで真空排気した。電気炉の精製温度600℃、コンデンサの冷却温度400℃、精製時間5時間で精製を行ったところ、コンデンサには150gの凝集塊が得られた。凝集塊の先端(コンデンサから遠い側)から1/3部を切削し、高純度マグネシウム塊を得た。該高純度マグネシウム塊のマグネシウム含有量をグロー放電質量分析で測定したところ、純度は99.998重量%であった。前記純度は、前記マグネシウム塊中に含有される不純物(アルミニウム、ケイ素、カルシウム、マンガン、鉄、ニッケル、銅、亜鉛、銀、カドミウム、スズ、鉛、水銀、ベリリウム、ランタン及びセリウム)の濃度を測定し、それらの和を100%から引いた値として求めた。なお、測定は、「分析化学、vol.53, No.6, pp.569-574(2004)」に記載の方法に準じて行われた。データ取得は放電開始後、15分後から3回測定し、3回目のデータをGD-MS定量値とした。条件を以下に示す。
  装置:グロー放電質量分析装置VG9000(Thermo Electron社製)
  放電条件:アルゴングロー放電、1.5kV-1.6~2.0mA
  質量分解能:4000(m/Δm;5%ピーク高さ)
  Taマスク:10mmφ、 アルミナインシュレータ:17mmφ
(Production example)
300 g of pure magnesium material (magnesium content: 99.90% by mass) was inserted into a crucible of a vacuum distillation apparatus, sealed, and then evacuated to 1 MPa or less with an oil rotary vacuum pump. When purification was performed at an electric furnace purification temperature of 600 ° C., a capacitor cooling temperature of 400 ° C., and a purification time of 5 hours, 150 g of agglomerates were obtained in the capacitor. 1/3 part was cut from the tip of the agglomerate (the side far from the capacitor) to obtain a high purity magnesium agglomerate. When the magnesium content of the high-purity magnesium lump was measured by glow discharge mass spectrometry, the purity was 99.998% by weight. The purity is measured by the concentration of impurities (aluminum, silicon, calcium, manganese, iron, nickel, copper, zinc, silver, cadmium, tin, lead, mercury, beryllium, lanthanum and cerium) contained in the magnesium block. Then, the sum thereof was calculated as a value obtained by subtracting from 100%. The measurement was performed according to the method described in “Analytical Chemistry, vol. 53, No. 6, pp. 569-574 (2004)”. Data acquisition was performed three times from 15 minutes after the start of discharge, and the third data was used as a GD-MS quantitative value. The conditions are shown below.
Apparatus: Glow discharge mass spectrometer VG9000 (manufactured by Thermo Electron)
Discharge conditions: Argon glow discharge, 1.5 kV-1.6 to 2.0 mA
Mass resolution: 4000 (m / Δm; 5% peak height)
Ta mask: 10mmφ, Alumina insulator: 17mmφ
(実施例1:ボーンプレートの作製)
 製造例1で得られた高純度マグネシウム塊を、射出成型法により板状に成形した。該板状の高純度マグネシウムをプレス加工機で加圧成形し、本発明のボーンプレートを得た。
(Example 1: Production of bone plate)
The high-purity magnesium lump obtained in Production Example 1 was formed into a plate shape by an injection molding method. The plate-like high-purity magnesium was pressure-formed with a press machine to obtain the bone plate of the present invention.
(実施例2:メッシュシートの作製)
 製造例1で得られた高純度マグネシウム塊を、射出成型法により板状に成形した。該板状の高純度マグネシウムをプレス加工機で加圧成形し、本発明のメッシュシートを得た。
(Example 2: Production of mesh sheet)
The high-purity magnesium lump obtained in Production Example 1 was formed into a plate shape by an injection molding method. The plate-like high-purity magnesium was pressure-formed with a press machine to obtain a mesh sheet of the present invention.
(実施例3:ボーンスクリューの作製)
 製造例1で得られた高純度マグネシウム塊を、射出成型法により棒状に成形した。該棒状の高純度マグネシウムを圧造成形し、外形が形成された半部品を得た。前記半部品のねじ部を転造成形し、本発明のボーンスクリューを得た。
(Example 3: Production of bone screw)
The high-purity magnesium block obtained in Production Example 1 was formed into a rod shape by an injection molding method. The rod-like high-purity magnesium was forged to obtain a semi-part having an outer shape. The threaded part of the half part was formed by rolling to obtain the bone screw of the present invention.
 本発明の骨接合材は、骨接合材として十分な強度、安全性、適度な剛性及び適度な生体内分解吸収性を有する。また、本発明の骨接合材を使用することで、マグネシウムの骨形成を助ける作用により骨折等の治癒がより促進される。 The osteosynthesis material of the present invention has sufficient strength, safety, moderate rigidity and moderate biodegradability and absorbability as an osteosynthesis material. In addition, by using the osteosynthesis material of the present invention, healing of fractures and the like is further promoted by the action of helping bone formation of magnesium.
 1  ボーンプレート
 2  ボーンスクリュー挿通孔
 3  メッシュシート
 4  ボーンスクリュー挿通孔
1 Bone plate 2 Bone screw insertion hole 3 Mesh sheet 4 Bone screw insertion hole

Claims (7)

  1.  高純度マグネシウムを原料として製造されていることを特徴とする骨接合材。 An osteosynthesis material characterized by being manufactured from high-purity magnesium.
  2.  前記骨接合材が医療用のボーンプレート、ボーンスクリュー又はメッシュシートであることを特徴とする請求項1に記載の骨接合材。 The osteosynthesis material according to claim 1, wherein the osteosynthesis material is a bone plate, a bone screw, or a mesh sheet for medical use.
  3.  前記高純度マグネシウムの純度が3N(99.9%)以上であることを特徴とする請求項1又は2に記載の骨接合材。 The osteosynthesis material according to claim 1 or 2, wherein the purity of the high-purity magnesium is 3N (99.9%) or more.
  4.  前記高純度マグネシウムの純度が4N(99.99%)以上5N(99.999%)以下であることを特徴とする請求項1~3のいずれか一項に記載の骨接合材。 The osteosynthesis material according to any one of claims 1 to 3, wherein the purity of the high-purity magnesium is 4N (99.99%) or more and 5N (99.999%) or less.
  5.  請求項1~4のいずれか一項に記載の骨接合材の表面に、さらに被膜を設けたことを特徴とする骨接合材。 An osteosynthesis material, wherein a coating is further provided on the surface of the osteosynthesis material according to any one of claims 1 to 4.
  6.  生体内分解性を有することを特徴とする請求項1~5のいずれか一項に記載の骨接合材。 The osteosynthesis material according to any one of claims 1 to 5, which has biodegradability.
  7.  生体内での分解に要する期間が6ヶ月以上1年以下であることを特徴とする請求項6に記載の骨接合材。 The osteosynthesis material according to claim 6, wherein the period required for decomposition in vivo is 6 months or more and 1 year or less.
PCT/JP2012/069707 2011-08-05 2012-08-02 Osteosynthesis material WO2013021913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-172107 2011-08-05
JP2011172107 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013021913A1 true WO2013021913A1 (en) 2013-02-14

Family

ID=47668421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069707 WO2013021913A1 (en) 2011-08-05 2012-08-02 Osteosynthesis material

Country Status (1)

Country Link
WO (1) WO2013021913A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015119893A (en) * 2013-12-25 2015-07-02 堤総研株式会社 Organism implement
WO2016103423A1 (en) * 2014-12-25 2016-06-30 オリンパス株式会社 Implant for bone setting use, and method for producing same
EP3081181A4 (en) * 2013-10-10 2017-03-01 Dongguan Eontec Co., Ltd. Biodegradable pure magnesium bone nail
WO2022130948A1 (en) 2020-12-14 2022-06-23 日東精工株式会社 Biodegradable medical implement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058276A1 (en) * 2005-11-16 2007-05-24 National Institute For Materials Science Magnesium-based biodegradable metal material
WO2008059968A1 (en) * 2006-11-17 2008-05-22 National Institute For Materials Science Magnesium-based medical device and process for producing the same
JP2008125622A (en) * 2006-11-17 2008-06-05 National Institute For Materials Science Biodegradable magnesium material
JP2011072617A (en) * 2009-09-30 2011-04-14 Olympus Corp Implantation material and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058276A1 (en) * 2005-11-16 2007-05-24 National Institute For Materials Science Magnesium-based biodegradable metal material
WO2008059968A1 (en) * 2006-11-17 2008-05-22 National Institute For Materials Science Magnesium-based medical device and process for producing the same
JP2008125622A (en) * 2006-11-17 2008-06-05 National Institute For Materials Science Biodegradable magnesium material
JP2011072617A (en) * 2009-09-30 2011-04-14 Olympus Corp Implantation material and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUFUMI TAKAYA ET AL.: "Giji Taieki-chu ni Okeru Magnesium no Fushoku", JOURNAL OF JAPAN INSTITUTE OF LIGHT METALS, vol. 48, no. 7, 1998, pages 352 - 353 *
REN, Y. ET AL.: "STUDY OF BIODEGRADATION OF PURE MAGNESIUM", KEY ENGENEERING MATERIALS, vol. 342-343, 2007, pages 601 - 604 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081181A4 (en) * 2013-10-10 2017-03-01 Dongguan Eontec Co., Ltd. Biodegradable pure magnesium bone nail
JP2015119893A (en) * 2013-12-25 2015-07-02 堤総研株式会社 Organism implement
WO2015098071A1 (en) * 2013-12-25 2015-07-02 堤総研株式会社 Living body instrument
WO2016103423A1 (en) * 2014-12-25 2016-06-30 オリンパス株式会社 Implant for bone setting use, and method for producing same
JPWO2016103423A1 (en) * 2014-12-25 2017-09-28 オリンパス株式会社 Bone implant and its manufacturing method
WO2022130948A1 (en) 2020-12-14 2022-06-23 日東精工株式会社 Biodegradable medical implement
JP7301490B2 (en) 2020-12-14 2023-07-03 日東精工株式会社 biodegradable medical device

Similar Documents

Publication Publication Date Title
Lu et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys
KR102253200B1 (en) Magnesium alloy with adjustable degradation rate
WO2013021913A1 (en) Osteosynthesis material
EP2864514B1 (en) Implant made from a magnesium alloy, method for the production thereof and use thereof
TWI517865B (en) Biodegradable implantable medical devices formed from super-pure magnesium-based material
AU2012306511B2 (en) Method for producing a medical implant from a magnesium alloy
ES2913105T3 (en) Magnesium alloy, method for producing the same and use thereof
CN104328312B (en) A kind of medical bio degradable kirsite and preparation method thereof
EP2422821A2 (en) Biodegradable implant and method for manufacturing same
CN104630587A (en) Degradable magnesium alloy plate and bar for fracture internal fixation and preparation methods thereof
CN104623739B (en) A kind of coating magnesium alloy nail, hone lamella and cancellous bone screw and preparation method thereof
Jeong et al. Morphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti–Nb–Zr alloys for dental implants
CN103014389B (en) Preparation method of high-strength nanocrystalline type medical Beta titanium alloy for orthopaedic implanting
EP3822378B1 (en) Magnesium alloy
CN102978495A (en) Mg-Sr-Zn alloy and preparation method thereof
CN102258806B (en) Degradable magnesium-base biomedical material for implantation in orthopaedics, and preparation method thereof
CN105401033B (en) High strength and toughness anti-corrosion biomedical magnesium alloy
Xie et al. Development of high performance MgFe alloy as potential biodegradable materials
CN110694121A (en) In-vivo degradable magnesium alloy anastomosis nail and preparation method thereof
Li et al. Highly porous Ni-free Ti-based scaffolds with large recoverable strain for biomedical applications
CN105803254B (en) A kind of preparation method of bulk titanium copper calcium biomaterial
CN107541632A (en) A kind of bio-medical Mg Zn Zr magnesium alloys and preparation method thereof
Farrahnoor et al. Effects of hydroxyapatite addition on the bioactivity of Ti-Nb alloy matrix composite fabricated via powder metallurgy process
CN110923486A (en) Heat treatment process for degradable magnesium alloy
Cesarz-Andraczke et al. Corrosion properties of Mg-Zn-Ca-(Cu, Au) metallic glasses in artificial physiological fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP