WO2013021851A1 - High-purity epoxy compound and method for producing same - Google Patents

High-purity epoxy compound and method for producing same Download PDF

Info

Publication number
WO2013021851A1
WO2013021851A1 PCT/JP2012/069355 JP2012069355W WO2013021851A1 WO 2013021851 A1 WO2013021851 A1 WO 2013021851A1 JP 2012069355 W JP2012069355 W JP 2012069355W WO 2013021851 A1 WO2013021851 A1 WO 2013021851A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy compound
crown
ether
diaminodiphenyl ether
acid
Prior art date
Application number
PCT/JP2012/069355
Other languages
French (fr)
Japanese (ja)
Inventor
学哉 石川
秀利 加藤
仁郎 中谷
寛 大皷
宏明 坂田
厚仁 新井
Original Assignee
東レ・ファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ファインケミカル株式会社 filed Critical 東レ・ファインケミカル株式会社
Publication of WO2013021851A1 publication Critical patent/WO2013021851A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/36Compounds containing oxirane rings with hydrocarbon radicals, substituted by nitrogen atoms

Definitions

  • the present invention relates to an industrially useful novel epoxy compound and a method for producing the same.
  • Epoxy compounds are compounds widely used in the fields of organic chemistry and polymer chemistry, and are useful in a wide range of industrial applications such as fine chemicals, raw materials for medical and agricultural chemicals and resin materials, and electronic information materials and optical materials.
  • a compound is widely used in the fields of organic chemistry and polymer chemistry, and are useful in a wide range of industrial applications such as fine chemicals, raw materials for medical and agricultural chemicals and resin materials, and electronic information materials and optical materials.
  • polyfunctional epoxy compounds are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, and electrical properties. It is used in a wide range of fields such as plates and composite materials.
  • glycidylamine type epoxy compounds are excellent in heat resistance, and thus have widespread applications for composite materials and electronic materials (see, for example, Patent Documents 1 to 3).
  • N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers are epoxy resin raw materials useful as fiber-reinforced composite materials.
  • N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers have excellent characteristics that the cured product has high mechanical properties (tensile strength and hardness) and high heat resistance. However, depending on the application, it may be required to increase the elastic modulus.
  • An object of the present invention is to provide a novel epoxy compound and a method for producing the same that can improve the performance of a cured epoxy resin.
  • the novel epoxy compound of the present invention is an epoxy compound represented by the following formula (1).
  • the method for producing a novel epoxy compound of the present invention is obtained by an addition reaction step in which a compound represented by the following formula (2) is reacted with an epihalohydrin, and a cyclization reaction step in which the reaction mixture is treated with an alkali.
  • An epoxy compound represented by (1) is obtained.
  • N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether represented by the above formula (1) of the present invention is a novel epoxy compound, and is cured by curing with a curing agent.
  • a highly functional cured epoxy resin such as strength, high elastic modulus, high adhesiveness, high toughness, heat resistance, weather resistance, solvent resistance and impact resistance can be obtained.
  • the elastic modulus at 5% strain
  • the elastic modulus is maintained while maintaining the high strength and high heat resistance characteristics of conventional N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers. (Tensile stress) can be further increased.
  • this novel epoxy compound and a normal epoxy resin are mixed and cured with an amine, a cured product that can be used for, for example, an adhesive or a paint can be obtained.
  • an epoxy compound of this invention it is preferable that content of the dimer which consists of an epoxy compound shown by said Formula (1) is 10% or less, the viscosity of an epoxy compound is made low, and the epoxy resin composition containing this The product can be easily made into a uniform composition, and its handleability and moldability can be improved.
  • the epoxy compound of the present invention preferably has a chemical purity of 75% or more of the compound represented by the formula (1).
  • the epoxy compound When used as a main component of the epoxy resin composition, the epoxy compound has high strength, high heat resistance and high elasticity. It is possible to obtain an excellent characteristic that the ratio is compatible at an excellent level.
  • novel epoxy compound of the present invention is useful in various fields such as fine chemicals, raw materials for medical and agricultural chemicals, resin raw materials, fiber reinforced composite materials, electronic information materials, and optical materials.
  • N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′- is reacted with 3,3′-diaminodiphenyl ether and epihalohydrin.
  • N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether can be efficiently produced.
  • the reaction rate of 3,3′-diaminodiphenyl ether and epihalohydrin is improved by preferably using a solvent containing a protic solvent.
  • the protic solvent is preferably at least one compound selected from water, alcohols, organic acids, inorganic acids, and phenols, and can allow the addition reaction to proceed rapidly.
  • a hydroxyl group-containing compound can be preferably used as the protic solvent.
  • the temperature of this addition reaction is preferably 40 to 120 ° C., which can increase the reaction efficiency and suppress the formation of by-products.
  • the cyclization reaction step is preferably performed in the presence of a phase transfer catalyst comprising a quaternary ammonium salt and / or a quaternary phosphonium salt, and N, N, N ′, N′-tetraglycidyl- 3,3′-diaminodiphenyl ether can be efficiently produced.
  • FIG. 1 is a hydrogen nuclear magnetic resonance spectrum chart of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether obtained in Example 2.
  • FIG. 2 is an enlarged view of the high magnetic field side of the hydrogen nuclear magnetic resonance spectrum chart of FIG.
  • FIG. 3 is an enlarged view of the low magnetic field side of the hydrogen nuclear magnetic resonance spectrum chart of FIG. 4 is an infrared absorption spectrum chart of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether obtained in Example 2.
  • Example 5 is a mass spectrum of the main product obtained by liquid chromatography-mass spectrometry of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether obtained in Example 2. is there.
  • novel epoxy compound in the present invention is N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether represented by the following formula (1).
  • the epoxy compound represented by the formula (1) is a novel compound that has never been prepared. That is, N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether has not been described for its specific preparation method. Therefore, chemical analysis of the obtained epoxy compound has shown that The structure has never been confirmed.
  • N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether can obtain excellent characteristics when used as a main component of an epoxy resin composition. That is, it is possible to obtain an epoxy resin cured product excellent in high strength, high elastic modulus, high adhesion, high toughness, heat resistance, weather resistance, solvent resistance, impact resistance, and the like.
  • other epoxy compounds characterized by high strength and high heat resistance especially conventional N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers
  • the elastic modulus tensile stress at 5% strain
  • N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether is preferably 75% or more, more preferably 80%. As described above, the purity is extremely high as 85 to 100%. Since N, N, N ', N'-tetraglycidyl-3,3'-diaminodiphenyl ether has a very high chemical purity, it has high strength, high heat resistance and high resistance when used as the main component of an epoxy resin composition. It is possible to obtain an excellent characteristic of achieving both an elastic modulus and an excellent level.
  • the chemical purity means the content of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether in the epoxy compound, which will be described later by high performance liquid chromatography. Analyzed under analysis conditions (HPLC area%).
  • the epoxy compound of the present invention preferably has a dimer content comprising N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether of 10% or less, more preferably 7% or less, Preferably it is 5% or less.
  • a dimer content comprising N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether of 10% or less, more preferably 7% or less, Preferably it is 5% or less.
  • the dimer composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether refers to a compound represented by the following formulas (4) and (5). (In the formula, X represents halogen.)
  • the content of the dimer represented by the above formulas (4) and (5) contained in the epoxy compound is the amount of the compound detected at an elution time of 56 to 72 minutes in the high performance liquid chromatography method described later. Calculated as (HPLC area%).
  • the epoxy compound of the present invention has a viscosity at 40 ° C. measured with an E-type viscometer, preferably 50 Pa ⁇ s or less, more preferably 40 Pa ⁇ s or less.
  • a viscosity at 40 ° C. measured with an E-type viscometer preferably 50 Pa ⁇ s or less, more preferably 40 Pa ⁇ s or less.
  • the epoxy compound of the present invention has a high chemical purity of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether and a low content of impurities, so that the storage stability is excellent.
  • the viscosity rarely increases over time.
  • An epoxy compound composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether is mixed with a normal epoxy resin and cured with an amine, for example, to an adhesive or a paint.
  • a cured product that can be used can be obtained.
  • epoxy compounds composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether are fine chemicals, medical and agrochemical raw materials, resin raw materials, fiber reinforced composite materials, electronic information materials, and optical materials. It is useful in a wide variety of industrial applications.
  • N, N which is an epoxy compound precursor represented by the following formula (3):
  • An addition reaction step for producing N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether and after completion of the addition reaction step, the obtained N, N, N ′, N'-tetrakis (3-halo-2-hydroxypropyl) -3,3'-diaminodiphenyl ether is treated with an alkali, and is carried out in two steps consisting of a cyclization reaction step in which dehydrohalogenation is carried out.
  • X represents halogen.
  • N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether is dehydrohalogenated with an alkali to produce a tetrafunctional epoxy.
  • N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether is produced.
  • N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether was produced by two steps consisting of an addition reaction step and a cyclization reaction step. While increasing the viscosity, the viscosity can be decreased. The reason for this is that the reaction between an intermediate having an active hydrogen of an amino group and an intermediate having an epoxy group, generated during the reaction, is suppressed, and by-products such as dimer and trimer are prevented. It is.
  • N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether of the formula (1) is prepared in one step from 3,3′-diaminodiphenyl ether of the formula (2). Even if it does so, reaction of the intermediate body which has active hydrogen, and the intermediate body which has an epoxy group cannot be controlled, and high molecularization of an intermediate body progresses and the target epoxy compound cannot be obtained.
  • the epihalohydrin used in the addition reaction step of the present invention is a 3-halogeno 1,2-epoxide compound, and specific examples include epichlorohydrin and epibromohydrin.
  • the amount of epihalohydrin used is preferably 5 mole times to 40 mole times, more preferably 8 mole times to 20 mole times, per mole of 3,3′-diaminodiphenyl ethers. It is. By setting the amount to 5 mol times or more, it is possible to suppress impureness such as high molecular weight in the addition reaction step, and by setting the amount to 40 mol times or less, less energy is required for removing epihalohydrin. It is economical because waste is reduced.
  • the method for producing an epoxy compound of the present invention can be carried out without a solvent or in the presence of a solvent.
  • a protic solvent is preferably used as the reaction solvent.
  • the protic solvent examples include water, alcohol, organic acid, inorganic acid, and phenols.
  • a hydroxyl group-containing compound can be suitably used.
  • Water is not particularly limited, but general industrial water can be used. That is, it is purified by precipitation, coagulation, filtration, distillation, ion exchange, ultrafiltration, reverse osmosis, etc. using rivers, groundwater, lakes, seawater, brine, etc. as water sources.
  • the alcohol examples include primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, Secondary alcohols such as 2-hexanol, cyclohexanol, 2-heptanol and 3-heptanol, tertiary alcohols such as tert-butanol and tert-pentanol, and others, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol mono Ethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol monophenyl ether, diethylene glycol, diethylene glycol monome Ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, tri
  • Organic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, valeric acid, isovaleric acid, capcanic acid, 2-ethylbutyric acid, caprylic acid, 2-ethylhexanoic acid, oleic acid, acetic anhydride, Propionic acid anhydride, butyric acid anhydride, citric acid, lactic acid, oxalic acid, octylic acid, naphthenic acid, neodecanoic acid, capric acid, lauric acid, mycelotic acid, montanic acid, melicic acid, succinic acid, Linderic acid, tuzuic acid , Spermic acid, myristoleic acid, zomarinic acid, petrothelic acid, vaccenic acid, gadoleic acid, whale oil acid, erucic acid, shark oil acid, linoleic acid, hiragoic acid, ele
  • inorganic acids examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, and hydrofluoric acid.
  • phenols examples include phenol, o-cresol, m-cresol, p-cresol, xylenol and the like.
  • solvents water, methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, tert-butanol, phenol, formic acid, acetic acid, propionic acid, butyric acid and hydrochloric acid are particularly preferably used.
  • the protic solvent may be used alone or in combination of two or more.
  • the amount of the protic solvent used is preferably 0.05 to 40 times by weight, more preferably 0.1 to 20 times by weight with respect to 3,3′-diaminodiphenyl ether.
  • the weight By setting the weight to 0.05 times or more, the reaction between 3,3'-diaminodiphenyl ether and epihalohydrin proceeds rapidly.
  • By making the weight 40 times or less, energy required for removing the protic solvent is reduced and waste is also reduced, which is economical.
  • the addition reaction solvent may contain a solvent other than the protic solvent as long as it does not inhibit the reaction between 3,3′-diaminodiphenyl ether and epihalohydrin.
  • Examples of types of solvents other than protic solvents include hydrocarbons, halogenated hydrocarbons, ethers, esters, ketones, nitrogen compounds, and sulfur compounds.
  • hydrocarbons hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, octane, isooctane, nonane, trimethylhexane, decane, dodecane, benzene, toluene, xylene, ethylbenzene, cumene , Mesitylene, cyclohexylbenzene, diethylbenzene, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane.
  • halogenated hydrocarbon examples include methyl chloride, dichloromethane, chloroform, carbon tetrachloride, ethyl chloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, , 1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, propyl chloride, isopropyl chloride, 1,2-dichloropropane, 1,2,3-trichloropropane, chloride Butyl, sec-butyl chloride, isobutyl chloride, tert-butyl chloride, 1-chloropentane, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, 1,2,4-trich
  • ethers include diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, anisole, phenetole, diphenyl ether, dioxane, trioxane, tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, Examples include diethylene glycol diethyl ether and diethylene glycol dibutyl ether.
  • Esters include methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, pentyl acetate, isopentyl acetate , 3-methoxybutyl acetate, sec-hexyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, propionic acid
  • Examples include isopentyl, methyl isobutyrate, methyl benzoate, ethylene glycol monoacetate, ethylene diacetate,
  • Ketones include acetone, 2-butanone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, diisobutyl ketone, acetylacetone, acetonylacetone, cyclopentanone, cyclohexanone, methyl Examples include cyclohexanone and acetophenone.
  • Nitrogen compounds include nitromethane, nitroethane, 1-nitropropane, 2-nitropropane, nitrobenzene, acetonitrile, propionitrile, succinonitrile, butyronitrile, isobutyronitrile, valeronitrile, benzonitrile, ⁇ -tolunitrile, pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, quinoline, isoquinoline, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, etc. I can list them.
  • sulfur compounds include carbon disulfide, dimethyl sulfide, diethyl sulfide, thiophene, tetrahydrothiophene, dimethyl sulfoxide, and sulfolane.
  • reaction solvents other than the above protic solvents cyclohexane, toluene, xylene, ethylbenzene, cumene, mesitylene and diethylbenzene are particularly preferably used.
  • the amount of the solvent other than the protic solvent is preferably 10 times by weight or less, more preferably 5 times by weight or less with respect to 3,3′-diaminodiphenyl ether. By setting it in such a range, energy required for removing a solvent other than the protic solvent is reduced and waste is reduced, which is economical.
  • epihalohydrin and a protic solvent may be added to 3,3′-diaminodiphenyl ether, or epihalohydrin or epihalohydrin is added to a solution containing 3,3′-diaminodiphenyl ether and protic solvent.
  • a protic solvent may be added.
  • 3,3′-diaminodiphenyl ether and a protic solvent may be added to epihalohydrin
  • 3,3′-diaminodiphenyl ether and a protic solvent may be added to a solvent containing epihalohydrin and protic solvent.
  • the reaction in which three molecules of epihalohydrin are added to one molecule of 3,3′-diaminodiphenyl ether proceeds relatively quickly, and is a trifunctional halogenohydrin, that is, N, N, N represented by the following formula (6): '-Tris (3-halo-2-hydroxypropyl) -3,3'-diaminodiphenyl ether is formed. (In the formula, X represents halogen.)
  • An epihalohydrin is further added to the N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether represented by the formula (6) to obtain an epoxy compound precursor, that is, the following formula
  • the reaction for producing N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether represented by (3) is a slow reaction.
  • X represents halogen.
  • N, N, N′-tris (3-halo-2-hydroxypropyl) -N′-glycidyl-3,3′-diaminodiphenyl ether may be formed.
  • X represents halogen.
  • the intermediate represented by the formula (7) reacts with the epoxy compound precursor represented by the formula (3) to produce a dimeric intermediate represented by the following formula (8).
  • the intermediate of this dimer becomes a dimer of an epoxy compound represented by the following formula (5) by the cyclization reaction step.
  • X represents halogen.
  • X represents halogen.
  • the intermediate represented by the above (7) reacts with the trifunctional halogenohydrin represented by the above formula (6) to produce a dimeric intermediate represented by the following formula (9).
  • the intermediate of this dimer becomes a dimer of an epoxy compound represented by the following formula (4) by the cyclization reaction step. (In the formula, X represents halogen.)
  • the dimer of the epoxy compound represented by the above formulas (4) and (5) not only lowers the chemical purity of the target epoxy compound but also increases its viscosity. Therefore, in the addition reaction step, it is required that the intermediate of formula (7), which causes the dimerization of the epoxy compound as a by-product, is not generated.
  • the temperature of the addition reaction step in the present invention is preferably 40 to 120 ° C, more preferably 50 to 100 ° C.
  • the temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C.
  • the residual amount of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether of the above formula (6) contained in the reaction mixture is minimized.
  • the point of time when it becomes can be used as a measure of the end of reaction.
  • the content of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether contained in the reaction solution was 10% (HPLC area%) The following is preferable, and more preferably when it is 7% (HPLC area%) or less. If the amount of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether is 10% or less, formation of a dimer in the cyclization reaction step is suppressed. N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether having high purity and low viscosity is obtained.
  • the amount of N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether is preferably 90% (HPLC area%). Above, more preferably 93% (HPLC area%) or more.
  • the protic solvent and epihalohydrin in the addition reaction step may be removed by a commonly used method.
  • N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether is reacted with an alkali to perform dehydrohalogenation.
  • alkali examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide, magnesium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, barium carbonate, magnesium carbonate, calcium carbonate, and hydrogen carbonate.
  • Alkali may be used alone or in combination of two or more.
  • the amount of alkali used is preferably 4 to 16 mol times, more preferably 5 to 12 mol times the amount of 3,3'-diaminodiphenyl ether. By making it 4 moles or more, the cyclization reaction of the 3-halo-2-hydroxypropyl group is completed. By adjusting the amount to 16 mol times or less, it is economical because excessive energy is not required when the generated salt and excess alkali are removed from the reaction mixture, and waste is reduced.
  • the cyclization reaction in the present invention is preferably performed in the presence of a phase transfer catalyst.
  • phase transfer catalyst include crown ethers, quaternary ammonium salts, and quaternary phosphonium salts.
  • crown ether used in the present invention examples include dibenzo-18-crown-6, 18-crown-6, 15-crown-5, 12-crown-4, dicyclohexano-18-crown-6, and methylbenzo15-crown.
  • quaternary ammonium salt used in the present invention tetramethylammonium, trimethylethylammonium, dimethyldiethylammonium, triethylmethylammonium, tripropylmethylammonium, tributylmethylammonium, trioctylmethylammonium, tetraethylammonium, trimethylpropylammonium, Trimethylphenylammonium, benzyltrimethylammonium, benzyltriethylammonium, diallyldimethylammonium, n-octyltrimethylammonium, stearyltrimethylammonium, cetyldimethylethylammonium, tetrapropylammonium, tetra-n-butylammonium, ⁇ -methylcholine and phenyltrimethylammonium Odor Salt, chloride salt, iodine Casio, can be mentioned hydrogen sulfate and hydro
  • tetramethylphosphonium trimethylethylphosphonium, dimethyldiethylphosphonium, triethylmethylphosphonium, tripropylmethylphosphonium, tributylmethylphosphonium, trioctylmethylphosphonium, tetraethylphosphonium, trimethylpropylphosphonium, Trimethylphenylphosphonium, benzyltrimethylphosphonium, diallyldimethylphosphonium, n-octyltrimethylphosphonium, stearyltrimethylphosphonium, cetyldimethylethylphosphonium, tetrapropylphosphonium, tetra-n-butylphosphonium, phenyltrimethylphosphonium, methyltriphenylphosphonium, ethyltriphenyl Phosphoni Arm and bromide salts, such as tetraphenylphosphonium, chloride salt
  • phase transfer catalysts quaternary ammonium salts and / or quaternary phosphonium salts are preferred, and quaternary ammonium salts are particularly preferred.
  • quaternary ammonium salts are particularly preferred.
  • trioctylmethylammonium, tetraethylammonium, benzyltrimethylammonium, benzyltriethylammonium, tetra-n-butylammonium bromide, chloride, hydrogen sulfate and hydroxide are more preferably used.
  • a phase transfer solvent may be used independently and may be used in mixture of 2 or more types.
  • the addition amount of the phase transfer catalyst may be a catalytic amount, and is 0.001 to 0.5 mol times, more preferably 0.01 to 0.1 mol times with respect to 3,3′-diaminodiphenyl ether. . By setting it to 0.001 mol times or more, the cyclization reaction proceeds promptly. By making it 0.5 mol times or less, the amount of catalyst used can be reduced, which is economical.
  • the reaction temperature of the cyclization reaction is preferably 0 to 90 ° C, more preferably 20 to 60 ° C.
  • the reaction temperature of the cyclization reaction is preferably 0 to 90 ° C, more preferably 20 to 60 ° C.
  • reaction time is preferably 0.5 to 10 hours, more preferably 1 to 6 hours after completion of the alkali addition.
  • duration By setting the duration to 0.5 hours or longer, it is possible to prevent an increase in the easily saponifiable chlorine content caused by the 3-halo-2-hydroxypropyl group remaining without reacting. By setting it to 6 hours or less, the aging time can be shortened and it is economical.
  • any one selected from alcohols, hydrocarbons and ethers is preferably used.
  • Alcohols as cyclization reaction solvents include primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol, 2-propanol, 2-butanol, 2-pentanol, 3 -Secondary alcohols such as pentanol, 2-hexanol, cyclohexanol, 2-heptanol and 3-heptanol, tert-butanol, tert-pentanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Mono-n-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol monophenyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethyl Glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl
  • hydrocarbons hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, octane, isooctane, nonane, trimethylhexane, decane, dodecane, benzene, toluene, xylene, ethylbenzene, cumene , Mesitylene, cyclohexylbenzene, diethylbenzene, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane.
  • the ethers include diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, cyclopentyl methyl ether, anisole, phenetole, diphenyl ether, tetrahydrofuran, tetrahydropyran, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl.
  • Examples include ether and diethylene glycol dibutyl ether.
  • cyclization reaction solvents methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, tert-butanol, cyclohexane, toluene, xylene, ethylbenzene, cumene, mesitylene and diethylbenzene are particularly preferably used. It is done.
  • the amount of the solvent used in the cyclization reaction step is preferably 1 to 20 times by weight, more preferably 2 to 10 times by weight with respect to 3,3′-diaminodiphenyl ether. By setting it to 1 weight times or more, the viscosity of the reaction mixture is reduced, and the stirring efficiency is improved, whereby the reaction is completed quickly. By making the weight 20 times or less, energy required for removing the solvent is reduced and waste is reduced, which is economical.
  • the reaction mixture obtained in the cyclization reaction step described above contains N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether, a salt formed by dehydrohalogenation, and a solvent.
  • the salt produced by dehydrohalogenation can be removed, for example, by washing the reaction mixture with water and separating the aqueous layer.
  • the desired product can be obtained by distilling off the solvent under heating and reduced pressure of the obtained oil layer.
  • Thin film distillation refers to an operation of distilling a liquid into a thin film in a high vacuum where the distance between the evaporation surface and the condensation surface is shorter than the mean free path of molecules. Under high vacuum, collisions between gas molecules can be ignored, and by making the liquid into a thin film, collisions between liquid molecules can be suppressed more than normal distillation operations. This is an effective operation.
  • the apparatus used in the thin film distillation include a centrifugal molecular distillation apparatus and a falling film molecular distillation apparatus.
  • the N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether thus obtained is a fine chemical, a raw material for medical and agricultural chemicals, a sealant for electric / electronic parts, an electronic information material, and an optical material.
  • it is preferably used for a wide variety of industrial applications such as insulating materials, adhesives, and resin raw materials constituting composite materials such as glass fibers and carbon fibers.
  • a sealing material for electric / electronic parts an insulating material, an adhesive, a composite material with glass fiber, carbon fiber, or the like.
  • a highly functional cured epoxy resin such as strength, high elastic modulus, high adhesiveness, high toughness, heat resistance, weather resistance, solvent resistance and impact resistance can be obtained.
  • high elastic modulus high tensile stress at 5% strain
  • the elastic modulus of the epoxy compound is determined by measuring the cured product according to JIS K 6911-1995 thermosetting plastic general test method, 5.18 tensile strength, at 5% strain. A tensile stress (unit: MPa) is measured, and this is defined as an elastic modulus.
  • N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether of the present invention is mixed with a normal epoxy resin and cured with an amine, it is used for, for example, an adhesive or a paint.
  • cured material which can be obtained can be obtained.
  • These cured products are cured products having high mechanical properties and electrical properties, and high durability and reliability.
  • the content of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether in the epoxy compound that is, N, N, N ′, N′-tetraglycidyl-3,3 ′
  • the chemical purity of diaminodiphenyl ether is the one analyzed by the high performance liquid chromatography method (hereinafter abbreviated as “HPLC”) under the following analysis conditions (HPLC area%).
  • HPLC high performance liquid chromatography method
  • the dimer content of N, N, N'-tris (3-halo-2-hydroxypropyl) -3,3'-diaminodiphenyl ether and epoxy compound was also measured under the same analytical conditions.
  • A: B 45: 55 ⁇ Flow rate: 1 ml / min ⁇ Injection volume: 2 ⁇ l ⁇ Detection: Ultraviolet (UV) detection, wavelength 254nm Analysis time: 80 minutes Analysis sample preparation: 0.02 g of sample was weighed and dissolved in about 25 ml of ethylene glycol dimethyl ether.
  • the analysis condition is not limited to this.
  • the viscosity of the epoxy compound is analyzed by the following method. Viscometer: RE85R (manufactured by Toki Sangyo Co., Ltd.), rotor code No. 38 ⁇ Temperature: 40 °C ⁇ Rotation speed: 1rpm
  • the analysis condition is not limited to this.
  • Example 1 In a four-necked flask equipped with a thermometer, a condenser and a stirrer, 1110 g (12.0 mol) of epichlorohydrin, 501 g of toluene (2.5 times by weight / diaminodiphenyl ether), 50.4 g of water (0.25 wt.) Double / diaminodiphenyl ether), and 201 g (1.0 mol) of 3,3′-diaminodiphenyl ether was added thereto. This mixture was stirred at a temperature of 80 ° C. for 15 hours to carry out an addition reaction.
  • the amount of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether contained in the reaction solution was 2.0% (HPLC area%).
  • 10.1 g (0.03 mol) of tetrabutylammonium hydrogen sulfate was added to the reaction mixture, followed by dropwise addition of 500 g (6.0 mol) of 48% aqueous sodium hydroxide solution at a temperature of 30 ° C. over 30 minutes.
  • the mixture was aged with stirring at temperature for 4 hours to carry out a cyclization reaction.
  • the produced salt was dissolved in 600 g (3.0 times by weight / diaminodiphenyl ether) of water, and the aqueous layer and the oil layer were separated.
  • the oil layer was further washed with 600 g (3.0 times by weight / diaminodiphenyl ether) of water, and the water layer and the oil layer were separated.
  • toluene and epichlorohydrin were distilled off from the oil layer under reduced pressure, a brown viscous liquid mainly composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether was obtained.
  • the yield of this epoxy compound was 418 g (99% of the theoretical yield).
  • Example 2 In Example 1, except that the addition reaction temperature was changed from 80 ° C. to 70 ° C. and the addition reaction time was changed from 15 hours to 21 hours, N, N, N ′, N′ ⁇ A brown viscous liquid mainly composed of tetraglycidyl-3,3′-diaminodiphenyl ether was obtained. The amount of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether contained in the reaction solution at the end of the addition reaction is 1.7% (HPLC area%). there were. The yield of this epoxy compound was 414 g (97% of the theoretical yield).
  • FIG. 1 shows the hydrogen nuclear magnetic resonance ( 1 H-NMR) spectrum chart obtained in Example 2
  • FIG. 4 shows the infrared (IR) absorption spectrum chart
  • FIG. 5 shows the liquid chromatograph-mass spectrometry method. The mass spectrum of the main product obtained by (LC-MS) is shown.
  • the obtained compound was identified as N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether.
  • the chemical purity of this epoxy compound was measured by the method mentioned above using HPLC, it was 86% (HPLC area%).
  • the dimer detected at an elution time of 56 to 72 minutes was 4.1% (HPLC area%), the epoxy equivalent was 120 g / eq, and the viscosity was 39 Pa ⁇ s.
  • a liquid composition was prepared by uniformly mixing 60 parts by weight of m-xylylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) as a curing agent with 100 parts by weight of the epoxy compound obtained in Example 2. This liquid composition was defoamed by stirring under reduced pressure, poured into a Teflon (registered trademark) mold, cured at room temperature for 16 hours or more, then cured by heating at 60 ° C. for 2 hours, and a test piece. It was. Using this test piece, a tensile test and a hardness measurement were performed.
  • the test methods were in accordance with JIS K 6911-1995 General Test Methods for Thermosetting Plastics, 5.18 Tensile Strength, and 5.16 Hardness, respectively. Further, in the tensile test, when measuring the tensile strength described above, the tensile stress at 5% strain is obtained as an elastic modulus (unit: MPa) and the elongation (unit: mm) when the test piece is broken is measured. did. However, the specimen used for the tensile test has the shape described in 5.18.2 (2) FIG. 31 of JIS K 6911-1995, and ASKER TYPE D (Polymer Keiki Co., Ltd.) is used as the hardness meter. It was.
  • the cured product of Reference Example 1 had a tensile strength of 83.4 MPa, an elongation at break of the test piece of 4.6 mm, an elastic modulus (tensile stress at 5% strain) of 47.5 MPa, and a hardness of 83. .
  • Reference Example 2 A cured product was prepared in the same manner as in Reference Example 1 except that the epoxy compound in Reference Example 1 was changed to tetraglycidyldiaminodiphenylmethane (trade name: MY721, manufactured by HUNTSMAN), and a tensile test and a hardness test were performed. It was.
  • the cured product of Reference Example 2 had a tensile strength of 33.6 MPa, an elongation of 3.7 mm when the test piece broke, an elastic modulus (tensile stress at 5% strain) of 26.6 MPa, and a hardness of 82. It was.
  • Reference Example 3 A cured product as in Reference Example 1 except that the epoxy compound in Reference Example 1 was changed to N, N, N ′, N′-tetraglycidyl-3,4′-diaminodiphenyl ether obtained in Reference Example 1. Were prepared and subjected to a tensile test and a hardness test. The cured product of Reference Example 3 had a tensile strength of 85.6 MPa, an elongation of 5.6 mm when the test piece broke, an elastic modulus (tensile stress at 5% strain) of 35.9 MPa, and a hardness of 83. It was.
  • the cured product of Reference Example 1 had a modulus of elasticity (tensile stress at 5% strain) of 30% or more higher than that of Reference Example 3, and the tensile strength, tensile elongation at break and hardness were almost the same level.

Abstract

Provided are: N,N,N',N'-tetraglycidyl-3,3'-diaminodiphenyl ether; and a method for producing same. N,N,N',N'-tetraglycidyl-3,3'-diaminodiphenyl ether is produced by an addition reaction step wherein 3,3'-diaminodiphenyl ether and epihalohydrin are reacted with each other in a solvent that contains a protic solvent, thereby producing N,N,N',N'-tetrakis(3-halo-2-hydroxypropyl)-3,3'- diaminodiphenyl ether and a cyclization reaction step wherein the N,N,N',N'-tetraglycidyl(3-halo-2-hydroxypropyl)-3,3'- diaminodiphenyl ether is treated with an alkali for dehydrohalogenation.

Description

高純度エポキシ化合物およびその製造方法High purity epoxy compound and method for producing the same
 本発明は、工業的に有用な、新規エポキシ化合物およびその製造方法に関する。 The present invention relates to an industrially useful novel epoxy compound and a method for producing the same.
 エポキシ化合物は、有機化学分野および高分子化学分野で広く用いられている化合物であり、ファインケミカル、医農薬原料および樹脂原料、さらには電子情報材料や光学材料など、工業用途として多岐にわたる分野で有用な化合物である。 Epoxy compounds are compounds widely used in the fields of organic chemistry and polymer chemistry, and are useful in a wide range of industrial applications such as fine chemicals, raw materials for medical and agricultural chemicals and resin materials, and electronic information materials and optical materials. A compound.
 さらに多官能のエポキシ化合物は、種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性および電気特性に優れた硬化物となり、接着剤、塗料、積層板および複合材料などの広い分野に利用されている。中でもグリシジルアミン型エポキシ化合物は、耐熱性に優れるため、複合材料や電子材料用途へ用途が広がっている(例えば、特許文献1~3を参照)。その中でも、N,N,N’,N’-テトラグリシジルジアミノジフェニルエーテル類は繊維強化複合材料として有用なエポキシ樹脂原料である。 In addition, polyfunctional epoxy compounds are generally cured with various curing agents, resulting in cured products with excellent mechanical properties, water resistance, chemical resistance, heat resistance, and electrical properties. It is used in a wide range of fields such as plates and composite materials. Among these, glycidylamine type epoxy compounds are excellent in heat resistance, and thus have widespread applications for composite materials and electronic materials (see, for example, Patent Documents 1 to 3). Among these, N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers are epoxy resin raw materials useful as fiber-reinforced composite materials.
 従来、N,N,N’,N’-テトラグリシジルジアミノジフェニルエーテル骨格を有するエポキシ化合物として、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルエーテル、N,N,N’,N’-テトラグリシジル-3,4’-ジアミノジフェニルエーテルおよびその類縁体が知られていた(例えば、特許文献4~6、非特許文献1、2を参照)。これらのN,N,N’,N’-テトラグリシジルジアミノジフェニルエーテル類は、その硬化物の機械的性質(引張強さや硬度)や耐熱性が高いという優れた特徴がある。しかし、その用途によっては弾性率をより高くすること求められることがあった。 Conventionally, as an epoxy compound having an N, N, N ′, N′-tetraglycidyldiaminodiphenyl ether skeleton, N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenyl ether, N, N, N ′ , N′-tetraglycidyl-3,4′-diaminodiphenyl ether and its analogs have been known (see, for example, Patent Documents 4 to 6 and Non-Patent Documents 1 and 2). These N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers have excellent characteristics that the cured product has high mechanical properties (tensile strength and hardness) and high heat resistance. However, depending on the application, it may be required to increase the elastic modulus.
日本国特開昭59-73577号公報Japanese Unexamined Patent Publication No. 59-73577 日本国特開昭60-16979号公報Japanese Unexamined Patent Publication No. 60-16979 日本国特開2001-247746号公報Japanese Unexamined Patent Publication No. 2001-247746 日本国特開平3-26750号公報Japanese Laid-Open Patent Publication No. 3-26750 日本国特開平4-335018号公報Japanese Laid-Open Patent Publication No. 4-335018 国際公開第97/13745号International Publication No. 97/13745
 本発明の目的は、エポキシ樹脂硬化物の性能を向上可能にする、新規エポキシ化合物およびその製造方法を提供することにある。 An object of the present invention is to provide a novel epoxy compound and a method for producing the same that can improve the performance of a cured epoxy resin.
 本発明者らは、上記従来技術の現状に鑑み、鋭意検討の結果、エポキシ樹脂硬化物の性能を向上可能にする新規エポキシ化合物と、その製造方法を見出した。 As a result of intensive studies, the present inventors have found a novel epoxy compound that can improve the performance of a cured epoxy resin and a method for producing the same.
  本発明の新規エポキシ化合物は、下記式(1)で示されるエポキシ化合物である。
Figure JPOXMLDOC01-appb-C000005
The novel epoxy compound of the present invention is an epoxy compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
 本発明の新規エポキシ化合物の製造方法は、下記式(2)で示される化合物と、エピハロヒドリンとを反応させる付加反応工程と、該反応混合物をアルカリで処理する環化反応工程から得られる、上記式(1)で示されるエポキシ化合物を得ることを特徴とする。
Figure JPOXMLDOC01-appb-C000006
The method for producing a novel epoxy compound of the present invention is obtained by an addition reaction step in which a compound represented by the following formula (2) is reacted with an epihalohydrin, and a cyclization reaction step in which the reaction mixture is treated with an alkali. An epoxy compound represented by (1) is obtained.
Figure JPOXMLDOC01-appb-C000006
 本発明の前記式(1)で示されたN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルは、新規のエポキシ化合物であり、硬化剤で硬化させることにより、高強度、高弾性率、高接着性、高靭性、耐熱性、耐候性、耐溶剤性および耐衝撃性などの高機能なエポキシ樹脂硬化物を得ることが出来る。とりわけ繊維強化複合材料にしたとき、従来のN,N,N’,N’-テトラグリシジルジアミノジフェニルエーテル類が有する高強度・高耐熱性という特徴をほぼ維持しながら、弾性率(5%ひずみ時の引張応力)をより高くすることができる。また、この新規エポキシ化合物と通常のエポキシ樹脂とを混合し、アミンで硬化させると、例えば、接着剤や塗料などに使用することが出来る硬化物を得ることが出来る。 N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether represented by the above formula (1) of the present invention is a novel epoxy compound, and is cured by curing with a curing agent. A highly functional cured epoxy resin such as strength, high elastic modulus, high adhesiveness, high toughness, heat resistance, weather resistance, solvent resistance and impact resistance can be obtained. In particular, when a fiber reinforced composite material is used, the elastic modulus (at 5% strain) is maintained while maintaining the high strength and high heat resistance characteristics of conventional N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers. (Tensile stress) can be further increased. Moreover, when this novel epoxy compound and a normal epoxy resin are mixed and cured with an amine, a cured product that can be used for, for example, an adhesive or a paint can be obtained.
 本発明のエポキシ化合物としては、前記式(1)で示されるエポキシ化合物からなる二量体の含有量が10%以下であることが好ましく、エポキシ化合物の粘度を低くし、これを含むエポキシ樹脂組成物を容易に均一な組成にするとともに、その取り扱い性および成形加工性を良好にすることができる。 As an epoxy compound of this invention, it is preferable that content of the dimer which consists of an epoxy compound shown by said Formula (1) is 10% or less, the viscosity of an epoxy compound is made low, and the epoxy resin composition containing this The product can be easily made into a uniform composition, and its handleability and moldability can be improved.
 また本発明のエポキシ化合物は、前記式(1)で示される化合物の化学純度が75%以上であることが好ましく、エポキシ樹脂組成物の主剤に使用したとき、高強度・高耐熱性と高弾性率とを優れたレベルで両立するという優れた特性を得ることができる。 In addition, the epoxy compound of the present invention preferably has a chemical purity of 75% or more of the compound represented by the formula (1). When used as a main component of the epoxy resin composition, the epoxy compound has high strength, high heat resistance and high elasticity. It is possible to obtain an excellent characteristic that the ratio is compatible at an excellent level.
 本発明の新規エポキシ化合物は、ファインケミカル、医農薬原料、樹脂原料、繊維強化複合材料、更には電子情報材料、光学材料など、工業用途として多岐にわたる分野で有用である。 The novel epoxy compound of the present invention is useful in various fields such as fine chemicals, raw materials for medical and agricultural chemicals, resin raw materials, fiber reinforced composite materials, electronic information materials, and optical materials.
 本発明のエポキシ化合物の製造方法は、3,3’-ジアミノジフェニルエーテルとエピハロヒドリンとを反応させN,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルを生成する付加反応工程、及び生成したN,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルをアルカリで処理する環化反応工程により、N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルを効率よく製造することができる。 In the process for producing an epoxy compound of the present invention, N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′- is reacted with 3,3′-diaminodiphenyl ether and epihalohydrin. Addition reaction step for producing diaminodiphenyl ether, and cyclization reaction step for treating the produced N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether with alkali Thus, N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether can be efficiently produced.
 また3,3’-ジアミノジフェニルエーテルと、エピハロヒドリンとを反応させる付加反応工程において、好ましくはプロトン性溶媒を含む溶媒を使用することにより、3,3’-ジアミノジフェニルエーテルとエピハロヒドリンとの反応速度が向上し、生産性が向上する。プロトン性溶媒としては、好ましくは水、アルコール類、有機酸、無機酸、フェノール類から選ばれる少なくとも1種の化合物が好ましく、付加反応を速やかに進行させることができる。またプロトン性溶媒としては、ヒドロキシル基含有化合物を好ましく使用することができる。この付加反応の温度は好ましくは40~120℃にするとよく、反応効率を高くすると共に、副生物の生成を抑制することができる。 In addition, in the addition reaction step of reacting 3,3′-diaminodiphenyl ether and epihalohydrin, the reaction rate of 3,3′-diaminodiphenyl ether and epihalohydrin is improved by preferably using a solvent containing a protic solvent. , Improve productivity. The protic solvent is preferably at least one compound selected from water, alcohols, organic acids, inorganic acids, and phenols, and can allow the addition reaction to proceed rapidly. As the protic solvent, a hydroxyl group-containing compound can be preferably used. The temperature of this addition reaction is preferably 40 to 120 ° C., which can increase the reaction efficiency and suppress the formation of by-products.
 更に、環化反応工程は、好ましくは第四級アンモニウム塩および/または第四級ホスホニウム塩からなる相間移動触媒の存在下で行うことがよく、N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルを効率的に生成させることができる。 Furthermore, the cyclization reaction step is preferably performed in the presence of a phase transfer catalyst comprising a quaternary ammonium salt and / or a quaternary phosphonium salt, and N, N, N ′, N′-tetraglycidyl- 3,3′-diaminodiphenyl ether can be efficiently produced.
図1は、実施例2で得られたN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルの水素核磁気共鳴スペクトルチャートである。1 is a hydrogen nuclear magnetic resonance spectrum chart of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether obtained in Example 2. FIG. 図2は、図1の水素核磁気共鳴スペクトルチャートの高磁場側拡大図である。FIG. 2 is an enlarged view of the high magnetic field side of the hydrogen nuclear magnetic resonance spectrum chart of FIG. 図3は、図1の水素核磁気共鳴スペクトルチャートの低磁場側拡大図である。FIG. 3 is an enlarged view of the low magnetic field side of the hydrogen nuclear magnetic resonance spectrum chart of FIG. 図4は、実施例2で得られたN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルの赤外吸収スペクトルチャートである。4 is an infrared absorption spectrum chart of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether obtained in Example 2. FIG. 図5は、実施例2で得られたN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルの液体クロマトグラフ-質量分析法によって得られた主生成物の質量スペクトルである。FIG. 5 is a mass spectrum of the main product obtained by liquid chromatography-mass spectrometry of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether obtained in Example 2. is there.
 以下に、本発明の新規エポキシ化合物およびそのエポキシ化合物の製造方法について詳細に記載する。 Hereinafter, the novel epoxy compound of the present invention and the method for producing the epoxy compound will be described in detail.
 本発明における新規エポキシ化合物は、下記式(1)で示されるN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルである。
Figure JPOXMLDOC01-appb-C000007
 
The novel epoxy compound in the present invention is N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
 この式(1)で示されるエポキシ化合物は、これまで実際に調製されたことがない新規化合物である。すなわちN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルは、その具体的な調製方法が記載されたことがなく、したがって得られたエポキシ化合物の化学分析により、その化学構造が確認されたことがなかった。 The epoxy compound represented by the formula (1) is a novel compound that has never been prepared. That is, N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether has not been described for its specific preparation method. Therefore, chemical analysis of the obtained epoxy compound has shown that The structure has never been confirmed.
 N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルは、エポキシ樹脂組成物の主剤に使用したとき優れた特性を得ることができる。すなわち、高強度、高弾性率、高接着性、高靭性、耐熱性、耐候性、耐溶剤性および耐衝撃性などが優れたエポキシ樹脂硬化物を得ることができる。とりわけこのエポキシ化合物を主剤にして繊維強化複合材料を製造するとき、高強度・高耐熱性を特徴とする他のエポキシ化合物、特に従来のN,N,N’,N’-テトラグリシジルジアミノジフェニルエーテル類とほぼ同等の性能を維持しながら、弾性率(5%ひずみ時の引張応力)を高くするという特徴がある。 N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether can obtain excellent characteristics when used as a main component of an epoxy resin composition. That is, it is possible to obtain an epoxy resin cured product excellent in high strength, high elastic modulus, high adhesion, high toughness, heat resistance, weather resistance, solvent resistance, impact resistance, and the like. Especially when producing fiber-reinforced composite materials using this epoxy compound as the main ingredient, other epoxy compounds characterized by high strength and high heat resistance, especially conventional N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers The elastic modulus (tensile stress at 5% strain) is increased while maintaining almost the same performance as the above.
 本発明のエポキシ化合物は、初めてその調製を確認し、しかもN,N,N′,N′-テトラグリシジル-3,3′-ジアミノジフェニルエーテルの化学純度が好ましくは75%以上、より好ましくは80%以上、さらに好ましくは85~100%と極めて高純度である。このようにN,N,N′,N′-テトラグリシジル-3,3′-ジアミノジフェニルエーテルの化学純度が極めて高いため、エポキシ樹脂組成物の主剤に使用したとき、高強度・高耐熱性と高弾性率とを優れたレベルで両立するという優れた特性を得ることができる。なお、本発明において、化学純度とは、エポキシ化合物中のN,N,N′,N′-テトラグリシジル-3,3′-ジアミノジフェニルエーテルの含有量をいい、高速液体クロマトグラフィー法で、後述する分析条件で分析したもの(HPLC area%)である。 The preparation of the epoxy compound of the present invention was confirmed for the first time, and the chemical purity of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether is preferably 75% or more, more preferably 80%. As described above, the purity is extremely high as 85 to 100%. Since N, N, N ', N'-tetraglycidyl-3,3'-diaminodiphenyl ether has a very high chemical purity, it has high strength, high heat resistance and high resistance when used as the main component of an epoxy resin composition. It is possible to obtain an excellent characteristic of achieving both an elastic modulus and an excellent level. In the present invention, the chemical purity means the content of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether in the epoxy compound, which will be described later by high performance liquid chromatography. Analyzed under analysis conditions (HPLC area%).
 本発明のエポキシ化合物は、N,N,N′,N′-テトラグリシジル-3,3′-ジアミノジフェニルエーテルからなる二量体の含有量が好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下であるとよい。N,N,N′,N′-テトラグリシジル-3,3′-ジアミノジフェニルエーテルからなる二量体の含有量をこのような範囲内にすることにより、エポキシ化合物の粘度を低くすることができる。本発明において、N,N,N′,N′-テトラグリシジル-3,3′-ジアミノジフェニルエーテルからなる二量体とは、下記式(4),式(5)で示される化合物をいう。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(式中、Xはハロゲンを表す。)
The epoxy compound of the present invention preferably has a dimer content comprising N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether of 10% or less, more preferably 7% or less, Preferably it is 5% or less. By setting the content of the dimer composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether within such a range, the viscosity of the epoxy compound can be lowered. In the present invention, the dimer composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether refers to a compound represented by the following formulas (4) and (5).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(In the formula, X represents halogen.)
 またエポキシ化合物中に含まれる前記式(4),式(5)で示される二量体の含有量は、後述する高速液体クロマトグラフィー法における、溶出時間56~72分に検出される化合物の量(HPLC area%)として求められる。 Further, the content of the dimer represented by the above formulas (4) and (5) contained in the epoxy compound is the amount of the compound detected at an elution time of 56 to 72 minutes in the high performance liquid chromatography method described later. Calculated as (HPLC area%).
 本発明のエポキシ化合物は、E型粘度計で測定した40℃における粘度が好ましくは50Pa・s以下、より好ましくは40Pa・s以下にする。エポキシ化合物の粘度を50Pa・s以下にすることにより、これを含むエポキシ樹脂組成物を均一な組成にすることが容易であり、かつエポキシ樹脂組成物の取り扱い性および成形加工性を良好にすることができる。なお、エポキシ化合物の粘度は、E型粘度計を使用して後述する方法で測定したものである。 The epoxy compound of the present invention has a viscosity at 40 ° C. measured with an E-type viscometer, preferably 50 Pa · s or less, more preferably 40 Pa · s or less. By setting the viscosity of the epoxy compound to 50 Pa · s or less, it is easy to make the epoxy resin composition containing this uniform, and to improve the handling and molding processability of the epoxy resin composition. Can do. In addition, the viscosity of an epoxy compound is measured by the method mentioned later using an E-type viscometer.
 本発明のエポキシ化合物は、上述した通り、N,N,N′,N′-テトラグリシジル-3,3′-ジアミノジフェニルエーテルの化学純度が高く、不純物の含有量が少ないので貯蔵安定性が優れ、粘度が経時で増加することが少ない。 As described above, the epoxy compound of the present invention has a high chemical purity of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether and a low content of impurities, so that the storage stability is excellent. The viscosity rarely increases over time.
 また、N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルからなるエポキシ化合物は、通常のエポキシ樹脂と混合し、アミンで硬化させると、例えば、接着剤や塗料などに使用することができる硬化物を得ることができる。 An epoxy compound composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether is mixed with a normal epoxy resin and cured with an amine, for example, to an adhesive or a paint. A cured product that can be used can be obtained.
 更に、N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルからなるエポキシ化合物は、ファインケミカル、医農薬原料、樹脂原料、繊維強化複合材料、更には電子情報材料、光学材料など、工業用途として多岐にわたる分野で有用である。 Furthermore, epoxy compounds composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether are fine chemicals, medical and agrochemical raw materials, resin raw materials, fiber reinforced composite materials, electronic information materials, and optical materials. It is useful in a wide variety of industrial applications.
 本発明の新規エポキシ化合物の製造方法は、下記式(2)で示される3,3’-ジアミノジフェニルエーテルにエピハロヒドリンを反応させ、下記式(3)で示されるエポキシ化合物前駆体であるN,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルを生成する付加反応工程と、付加反応工程の終了後、得られたN,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルをアルカリで処理し、脱ハロゲン化水素を行う環化反応工程とからなる二つの工程で実施する。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(式中、Xはハロゲンを表す。)
In the method for producing a novel epoxy compound of the present invention, 3,3′-diaminodiphenyl ether represented by the following formula (2) is reacted with epihalohydrin, and N, N, which is an epoxy compound precursor represented by the following formula (3): An addition reaction step for producing N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether, and after completion of the addition reaction step, the obtained N, N, N ′, N'-tetrakis (3-halo-2-hydroxypropyl) -3,3'-diaminodiphenyl ether is treated with an alkali, and is carried out in two steps consisting of a cyclization reaction step in which dehydrohalogenation is carried out.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(In the formula, X represents halogen.)
 すなわち、付加反応工程では、3,3’-ジアミノジフェニルエーテル1分子にエピハロヒドリン4分子が付加し、エポキシ化合物前駆体であるN,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルが生成する。これに続く環化反応工程では、N,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルをアルカリにより脱ハロゲン化水素し、四官能エポキシ体であるN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルが生成する。 That is, in the addition reaction step, 4 molecules of epihalohydrin are added to 1 molecule of 3,3′-diaminodiphenyl ether, and N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) which is an epoxy compound precursor. ) -3,3′-diaminodiphenyl ether is formed. In the subsequent cyclization reaction step, N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether is dehydrohalogenated with an alkali to produce a tetrafunctional epoxy. N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether is produced.
 このように付加反応工程と環化反応工程とからなる二つの工程により、N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルを生成したので、エポキシ化合物の化学純度を高くするとともに、粘度を低くすることができる。この理由は、反応の途中に生成する、アミノ基の活性水素を有する中間体と、エポキシ基を有する中間体との反応を抑制し、二量体、三量体などの副成を防止したからである。これに対し、前記式(2)の3,3’-ジアミノジフェニルエーテルから、前記式(1)のN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルを一段階で調製しようしても、活性水素を有する中間体と、エポキシ基を有する中間体との反応を制御することができず、中間体の高分子化が進み目的とするエポキシ化合物を得ることができない。 In this way, N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether was produced by two steps consisting of an addition reaction step and a cyclization reaction step. While increasing the viscosity, the viscosity can be decreased. The reason for this is that the reaction between an intermediate having an active hydrogen of an amino group and an intermediate having an epoxy group, generated during the reaction, is suppressed, and by-products such as dimer and trimer are prevented. It is. On the other hand, N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether of the formula (1) is prepared in one step from 3,3′-diaminodiphenyl ether of the formula (2). Even if it does so, reaction of the intermediate body which has active hydrogen, and the intermediate body which has an epoxy group cannot be controlled, and high molecularization of an intermediate body progresses and the target epoxy compound cannot be obtained.
 本発明の付加反応工程に用いられるエピハロヒドリンは、3-ハロゲノー1,2-エポキシド化合物であり、具体的にはエピクロロヒドリン、エピブロモヒドリンを例示することができる。 The epihalohydrin used in the addition reaction step of the present invention is a 3-halogeno 1,2-epoxide compound, and specific examples include epichlorohydrin and epibromohydrin.
 付加反応工程において、エピハロヒドリンの使用量は、3,3’-ジアミノジフェニルエーテル類1モルに対し、好ましくは5モル倍量~40モル倍量であり、より好ましくは8モル倍量~20モル倍量である。5モル倍量以上とすることで、付加反応工程において、高分子量化をはじめとした不純化を抑制することが出来、40モル倍量以下とすることで、エピハロヒドリンの除去に必要なエネルギーが少なくなり、廃棄物も少なくなるため、経済的である。 In the addition reaction step, the amount of epihalohydrin used is preferably 5 mole times to 40 mole times, more preferably 8 mole times to 20 mole times, per mole of 3,3′-diaminodiphenyl ethers. It is. By setting the amount to 5 mol times or more, it is possible to suppress impureness such as high molecular weight in the addition reaction step, and by setting the amount to 40 mol times or less, less energy is required for removing epihalohydrin. It is economical because waste is reduced.
 本発明のエポキシ化合物の製造方法は、無溶媒で実施することも、溶媒存在下で実施することも可能である。特に、付加反応工程では、反応溶媒として、プロトン性溶媒が好ましく用いられる。 The method for producing an epoxy compound of the present invention can be carried out without a solvent or in the presence of a solvent. In particular, in the addition reaction step, a protic solvent is preferably used as the reaction solvent.
 プロトン性溶媒としては、好ましくは、水、アルコール、有機酸、無機酸、フェノール類を挙げることが出来る。プロトン性溶媒として、ヒドロキシル基含有化合物を好適に用いることが出来る。プロトン性溶媒を溶媒とすることで、エピハロヒドリンと、基質のアミノ基との間の付加反応が速やかに進行する。 Preferred examples of the protic solvent include water, alcohol, organic acid, inorganic acid, and phenols. As the protic solvent, a hydroxyl group-containing compound can be suitably used. By using a protic solvent as the solvent, the addition reaction between the epihalohydrin and the amino group of the substrate proceeds rapidly.
 水としては、特に限定されないが、一般的な工業用水を用いることができる。すなわち、河川、地下水、湖沼、海水、かん水等を水源とし、沈殿、凝析、ろ過、蒸留、イオン交換、限外ろ過、逆浸透法等で精製したものである。 Water is not particularly limited, but general industrial water can be used. That is, it is purified by precipitation, coagulation, filtration, distillation, ion exchange, ultrafiltration, reverse osmosis, etc. using rivers, groundwater, lakes, seawater, brine, etc. as water sources.
 アルコールとしては、例えばメタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノールおよび1-ヘキサノールなどの1級アルコール類、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、2-ヘキサノール、シクロヘキサノール、2-ヘプタノールおよび3-ヘプタノールなどの2級アルコール類、tert-ブタノール、tert-ペンタノールなどの3級アルコール類、他にはエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノ-n-ブチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノフェニルエーテル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテルおよびトリプロピレングリコールモノ-n-ブチルエーテルが挙げられる。 Examples of the alcohol include primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, Secondary alcohols such as 2-hexanol, cyclohexanol, 2-heptanol and 3-heptanol, tertiary alcohols such as tert-butanol and tert-pentanol, and others, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol mono Ethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol monophenyl ether, diethylene glycol, diethylene glycol monome Ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol mono-n-butyl ether, propylene glycol, propylene glycol monomethyl ether, propylene Glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, propylene glycol monophenyl ether, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono- n-propyl ether, dipropi Glycol mono -n- butyl ether, tripropylene glycol, tripropylene glycol monomethyl ether and tripropylene glycol mono -n- butyl ether.
 有機酸としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ピバル酸、吉草酸、イソ吉草酸、カプカン酸、2-エチル酪酸、カプリル酸、2-エチルヘキサン酸、オレイン酸、無水酢酸、プロピオン酸無水物、酪酸無水物、クエン酸、乳酸、シュウ酸、オクチル酸、ナフテン酸、ネオデカン酸、カプリン酸、ラウリン酸、ミセロチン酸、モンタン酸、メリシン酸、トウハク酸、リンデル酸、ツズ酸、マッコウ酸、ミリストオレイン酸、ゾーマリン酸、ペトロセリン酸、バクセン酸、ガドレイン酸、鯨油酸、エルシン酸、サメ油酸、リノール酸、ヒラゴ酸、エレオステアリン酸、ブニカ酸、トリコサン酸、リノレン酸、モロクチ酸、パリナリン酸、アラキドン酸、イワシ酸、ヒラガシラ酸、ニシン酸などが挙げられる。 Organic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, valeric acid, isovaleric acid, capcanic acid, 2-ethylbutyric acid, caprylic acid, 2-ethylhexanoic acid, oleic acid, acetic anhydride, Propionic acid anhydride, butyric acid anhydride, citric acid, lactic acid, oxalic acid, octylic acid, naphthenic acid, neodecanoic acid, capric acid, lauric acid, mycelotic acid, montanic acid, melicic acid, succinic acid, Linderic acid, tuzuic acid , Spermic acid, myristoleic acid, zomarinic acid, petrothelic acid, vaccenic acid, gadoleic acid, whale oil acid, erucic acid, shark oil acid, linoleic acid, hiragoic acid, eleostearic acid, bunicic acid, tricosanoic acid, linolenic acid , Moloctic acid, parinaric acid, arachidonic acid, sardine acid, hiragasiraic acid, nisic acid and the like.
 無機酸としては、塩酸、硫酸、硝酸、リン酸、ホウ酸、フッ化水素酸などが挙げられる。 Examples of inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, and hydrofluoric acid.
 フェノール類としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、キシレノールなどが挙げられる。 Examples of phenols include phenol, o-cresol, m-cresol, p-cresol, xylenol and the like.
 上記溶媒のうち、特に、水、メタノール、エタノール、1-プロパノール、1-ブタノール、2-プロパノール、2-ブタノール、tert-ブタノール、フェノール、ギ酸、酢酸、プロピオン酸、酪酸および塩酸が好ましく用いられる。 Of the above solvents, water, methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, tert-butanol, phenol, formic acid, acetic acid, propionic acid, butyric acid and hydrochloric acid are particularly preferably used.
 また、プロトン性溶媒は、単独で用いても良いし、2種類以上を混合して用いても良い。 In addition, the protic solvent may be used alone or in combination of two or more.
 プロトン性溶媒の使用量は、3,3’-ジアミノジフェニルエーテルに対して、好ましくは0.05~40重量倍であり、より好ましくは、0.1~20重量倍である。0.05重量倍以上とすることで、3,3’-ジアミノジフェニルエーテルとエピハロヒドリンとの反応が速やかに進行する。40重量倍以下とすることで、プロトン性溶媒の除去に必要なエネルギーが少なくなり、廃棄物も少なくなるため、経済的である。 The amount of the protic solvent used is preferably 0.05 to 40 times by weight, more preferably 0.1 to 20 times by weight with respect to 3,3′-diaminodiphenyl ether. By setting the weight to 0.05 times or more, the reaction between 3,3'-diaminodiphenyl ether and epihalohydrin proceeds rapidly. By making the weight 40 times or less, energy required for removing the protic solvent is reduced and waste is also reduced, which is economical.
 付加反応溶媒には、3,3’-ジアミノジフェニルエーテルとエピハロヒドリンとの反応を阻害しない限り、プロトン性溶媒以外の溶媒を含んでも良い。 The addition reaction solvent may contain a solvent other than the protic solvent as long as it does not inhibit the reaction between 3,3′-diaminodiphenyl ether and epihalohydrin.
 プロトン性溶媒以外の溶媒の種類としては、炭化水素、ハロゲン化炭化水素、エーテル、エステル、ケトン、窒素化合物、硫黄化合物が挙げられる。 Examples of types of solvents other than protic solvents include hydrocarbons, halogenated hydrocarbons, ethers, esters, ketones, nitrogen compounds, and sulfur compounds.
 炭化水素としては、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、オクタン、イソオクタン、ノナン、トリメチルヘキサン、デカン、ドデカン、ベンゼン、トルエン、キシレン、エチルベンゼン、クメン、メシチレン、シクロヘキシルベンゼン、ジエチルベンゼン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサンおよびエチルシクロヘキサン等を挙げることが出来る。 As hydrocarbons, hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, octane, isooctane, nonane, trimethylhexane, decane, dodecane, benzene, toluene, xylene, ethylbenzene, cumene , Mesitylene, cyclohexylbenzene, diethylbenzene, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane.
 ハロゲン化炭化水素としては、塩化メチル、ジクロロメタン、クロロホルム、四塩化炭素、塩化エチル、1,1―ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、塩化プロピル、塩化イソプロピル、1,2-ジクロロプロパン、1,2,3-トリクロロプロパン、塩化ブチル、塩化sec-ブチル、塩化イソブチル、塩化tert-ブチル、1-クロロペンタン、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、1,2,4-トリクロロベンゼン、o-クロロトルエン、p-クロロトルエン、1-クロロナフタレン、塩素化ナフタレン、臭化メチル、ブロモホルム、臭化エチル、1,2-ジブロモエタン、1,1,2,2-テトラブロモエタン、臭化プロピル、臭化イソプロピル、ブロモベンゼン、o-ジブロモベンゼン、1-ブロモナフタレン、フルオロベンゼン、ベンゾトリフルオリド、ヘキサフルオロベンゼン、クロロブロモメタン、トリクロロフルオロメタン、1-ブロモ-2-クロロエタン1,1,2-トリクロロ-1,2,2-トリフルオロエタン、1,1,2,2-テトラクロロ-1,2-ジフルオロエタン等を挙げることが出来る。 Examples of the halogenated hydrocarbon include methyl chloride, dichloromethane, chloroform, carbon tetrachloride, ethyl chloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, , 1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, propyl chloride, isopropyl chloride, 1,2-dichloropropane, 1,2,3-trichloropropane, chloride Butyl, sec-butyl chloride, isobutyl chloride, tert-butyl chloride, 1-chloropentane, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, 1,2,4-trichlorobenzene, o-chlorotoluene , P-chlorotoluene, 1-chloronaphtha , Chlorinated naphthalene, methyl bromide, bromoform, ethyl bromide, 1,2-dibromoethane, 1,1,2,2-tetrabromoethane, propyl bromide, isopropyl bromide, bromobenzene, o-dibromobenzene 1-bromonaphthalene, fluorobenzene, benzotrifluoride, hexafluorobenzene, chlorobromomethane, trichlorofluoromethane, 1-bromo-2- chloroethane 1,1,2-trichloro-1,2,2-trifluoroethane, Examples thereof include 1,1,2,2-tetrachloro-1,2-difluoroethane.
 エーテルとしては、ジエチルエーテル、ジ-n-プロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、アニソール、フェネトール、ジフェニルエーテル、ジオキサン、トリオキサン、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルおよびジエチレングリコールジブチルエーテル等を挙げることが出来る。 Examples of ethers include diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, anisole, phenetole, diphenyl ether, dioxane, trioxane, tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, Examples include diethylene glycol diethyl ether and diethylene glycol dibutyl ether.
 エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸ペンチル、酢酸イソペンチル、3-メトキシブチルアセタート、酢酸sec-ヘキシル、2-エチルブチルアセタート、2-エチルヘキシルアセタート、酢酸シクロヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、プロピオン酸イソペンチル、イソ酪酸メチル、安息香酸メチル、エチレングリコールモノアセタート、二酢酸エチレン、エチレングリコールエステル、炭酸ジエチル等を挙げることが出来る。 Esters include methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, pentyl acetate, isopentyl acetate , 3-methoxybutyl acetate, sec-hexyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, benzyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, propionic acid Examples include isopentyl, methyl isobutyrate, methyl benzoate, ethylene glycol monoacetate, ethylene diacetate, ethylene glycol ester, and diethyl carbonate.
 ケトンとしては、アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、ジイソブチルケトン、アセチルアセトン、アセトニルアセトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトフェノン等を挙げることが出来る。 Ketones include acetone, 2-butanone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, diisobutyl ketone, acetylacetone, acetonylacetone, cyclopentanone, cyclohexanone, methyl Examples include cyclohexanone and acetophenone.
 窒素化合物としては、ニトロメタン、ニトロエタン、1-ニトロプロパン、2-ニトロプロパン、ニトロベンゼン、アセトニトリル、プロピオニトリル、スクシノニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、ベンゾニトリル、α-トルニトリル、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、2,4-ルチジン、2,6-ルチジン、キノリン、イソキノリン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド等を挙げることが出来る。 Nitrogen compounds include nitromethane, nitroethane, 1-nitropropane, 2-nitropropane, nitrobenzene, acetonitrile, propionitrile, succinonitrile, butyronitrile, isobutyronitrile, valeronitrile, benzonitrile, α-tolunitrile, pyridine, α-picoline, β-picoline, γ-picoline, 2,4-lutidine, 2,6-lutidine, quinoline, isoquinoline, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, etc. I can list them.
 硫黄化合物としては、二硫化炭素、ジメチルスルフィド、ジエチルスルフィド、チオフェン、テトラヒドロチオフェン、ジメチルスルホキシド、スルホラン等を挙げることが出来る。 Examples of sulfur compounds include carbon disulfide, dimethyl sulfide, diethyl sulfide, thiophene, tetrahydrothiophene, dimethyl sulfoxide, and sulfolane.
 上記プロトン性溶媒以外の付加反応溶媒のうち、特に、シクロヘキサン、トルエン、キシレン、エチルベンゼン、クメン、メシチレンおよびジエチルベンゼンが好ましく用いられる。 Of the addition reaction solvents other than the above protic solvents, cyclohexane, toluene, xylene, ethylbenzene, cumene, mesitylene and diethylbenzene are particularly preferably used.
 プロトン性溶媒以外の溶媒の使用量は、3,3’-ジアミノジフェニルエーテルに対し、10重量倍以下が好ましく、より好ましくは5重量倍以下である。このような範囲にすることで、プロトン性溶媒以外の溶媒の除去に必要なエネルギーが少なくなり、廃棄物も少なくなるため、経済的である。 The amount of the solvent other than the protic solvent is preferably 10 times by weight or less, more preferably 5 times by weight or less with respect to 3,3′-diaminodiphenyl ether. By setting it in such a range, energy required for removing a solvent other than the protic solvent is reduced and waste is reduced, which is economical.
 原料の仕込み順序および方法としては、3,3’-ジアミノジフェニルエーテルにエピハロヒドリンとプロトン性溶媒を添加しても良いし、または3,3’-ジアミノジフェニルエーテルとプロトン性溶媒を含む溶液にエピハロヒドリンあるいはエピハロヒドリンとプロトン性溶媒を添加しても良い。逆にエピハロヒドリンに3,3’-ジアミノジフェニルエーテルとプロトン性溶媒を添加しも良いし、またはエピハロヒドリンとプロトン性溶媒とを含む溶媒に3,3’-ジアミノジフェニルエーテルとプロトン性溶媒を添加しても良い。 As the raw material charging order and method, epihalohydrin and a protic solvent may be added to 3,3′-diaminodiphenyl ether, or epihalohydrin or epihalohydrin is added to a solution containing 3,3′-diaminodiphenyl ether and protic solvent. A protic solvent may be added. Conversely, 3,3′-diaminodiphenyl ether and a protic solvent may be added to epihalohydrin, or 3,3′-diaminodiphenyl ether and a protic solvent may be added to a solvent containing epihalohydrin and protic solvent. .
 付加反応工程において、3,3’-ジアミノジフェニルエーテル1分子に3分子のエピハロヒドリンが付加する反応は、比較的速やかに進み、三官能ハロゲノヒドリン体、すなわち下記式(6)で示されるN,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルが生成する。
Figure JPOXMLDOC01-appb-C000012
(式中、Xはハロゲンを表す。)
In the addition reaction step, the reaction in which three molecules of epihalohydrin are added to one molecule of 3,3′-diaminodiphenyl ether proceeds relatively quickly, and is a trifunctional halogenohydrin, that is, N, N, N represented by the following formula (6): '-Tris (3-halo-2-hydroxypropyl) -3,3'-diaminodiphenyl ether is formed.
Figure JPOXMLDOC01-appb-C000012
(In the formula, X represents halogen.)
 この式(6)で示されるN,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルに、さらにエピハロヒドリンが付加し、エポキシ化合物前駆体、すなわち下記式(3)で示されるN,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルが生成する反応は、遅い反応である。
Figure JPOXMLDOC01-appb-C000013
(式中、Xはハロゲンを表す。)
An epihalohydrin is further added to the N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether represented by the formula (6) to obtain an epoxy compound precursor, that is, the following formula The reaction for producing N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether represented by (3) is a slow reaction.
Figure JPOXMLDOC01-appb-C000013
(In the formula, X represents halogen.)
 このため付加反応が終了するまでの間に、加熱によって意図せずに、前記式(3)で示されるエポキシ化合物前駆体が、部分的に環化反応を起こし、下記式(7)で示されるN,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-N’-グリシジル-3,3’-ジアミノジフェニルエーテルを生成することがある。
Figure JPOXMLDOC01-appb-C000014
(式中、Xはハロゲンを表す。)
For this reason, the epoxy compound precursor represented by the above formula (3) partially undergoes a cyclization reaction unintentionally by heating until the addition reaction is completed, and is represented by the following formula (7). N, N, N′-tris (3-halo-2-hydroxypropyl) -N′-glycidyl-3,3′-diaminodiphenyl ether may be formed.
Figure JPOXMLDOC01-appb-C000014
(In the formula, X represents halogen.)
 この式(7)で示される中間体は、前記式(3)で示されるエポキシ化合物前駆体と反応し、下記式(8)で示される二量体の中間体を生成する。この二量体の中間体は、環化反応工程により、下記式(5)で示されるエポキシ化合物の二量体になる。
Figure JPOXMLDOC01-appb-C000015
(式中、Xはハロゲンを表す。)
Figure JPOXMLDOC01-appb-C000016
(式中、Xはハロゲンを表す。)
The intermediate represented by the formula (7) reacts with the epoxy compound precursor represented by the formula (3) to produce a dimeric intermediate represented by the following formula (8). The intermediate of this dimer becomes a dimer of an epoxy compound represented by the following formula (5) by the cyclization reaction step.
Figure JPOXMLDOC01-appb-C000015
(In the formula, X represents halogen.)
Figure JPOXMLDOC01-appb-C000016
(In the formula, X represents halogen.)
 また前記(7)で示される中間体は、前記式(6)で示される三官能ハロゲノヒドリン体と反応し、下記式(9)で示される二量体の中間体を生成する。この二量体の中間体は、環化反応工程により、下記式(4)で示されるエポキシ化合物の二量体になる。
Figure JPOXMLDOC01-appb-C000017
(式中、Xはハロゲンを表す。)
Figure JPOXMLDOC01-appb-C000018
The intermediate represented by the above (7) reacts with the trifunctional halogenohydrin represented by the above formula (6) to produce a dimeric intermediate represented by the following formula (9). The intermediate of this dimer becomes a dimer of an epoxy compound represented by the following formula (4) by the cyclization reaction step.
Figure JPOXMLDOC01-appb-C000017
(In the formula, X represents halogen.)
Figure JPOXMLDOC01-appb-C000018
 前記式(4)および式(5)で示されるエポキシ化合物の二量体は、目的生成物のエポキシ化合物の化学純度を低下させるばかりでなく、その粘度を高くする。したがって、付加反応工程において、エポキシ化合物の二量体を副成する原因となる前記式(7)の中間体が、生成しないようにすることが求められる。 The dimer of the epoxy compound represented by the above formulas (4) and (5) not only lowers the chemical purity of the target epoxy compound but also increases its viscosity. Therefore, in the addition reaction step, it is required that the intermediate of formula (7), which causes the dimerization of the epoxy compound as a by-product, is not generated.
 本発明における付加反応工程の温度としては、40~120℃が好ましく、より好ましくは50~100℃にするとよい。40℃以上とすることで、速やかに反応が進行し、熟成時間が短縮できるので経済的である。120℃以下とすることで、3-ハロ-2-ヒドロキシプロピル基の環化に起因する不純化、すなわち前記式(7)で示される中間体が生成するのを抑制することが出来る。 The temperature of the addition reaction step in the present invention is preferably 40 to 120 ° C, more preferably 50 to 100 ° C. By setting the temperature to 40 ° C. or higher, the reaction proceeds promptly and the aging time can be shortened, which is economical. By setting the temperature to 120 ° C. or lower, it is possible to suppress the impurity resulting from the cyclization of the 3-halo-2-hydroxypropyl group, that is, the generation of the intermediate represented by the formula (7).
 本発明では、好ましくは、反応混合物中に含まれる前記式(6)のN,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルの残存量が最小になった時点を、反応終了の目安にすることができる。 In the present invention, preferably, the residual amount of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether of the above formula (6) contained in the reaction mixture is minimized. The point of time when it becomes can be used as a measure of the end of reaction.
 反応終了の時点としては、反応液中に含まれるN,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルの含有量として10%(HPLC area%)以下が好ましく、より好ましくは7%(HPLC area%)以下である時にするとよい。N,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルの量が10%以下であれば、環化反応工程での二量体の生成が抑制され、高純度かつ低粘度のN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルが得られる。また付加反応工程の終点において、N,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルの量が、好ましくは90%(HPLC area%)以上、より好ましくは93%(HPLC area%)以上であるとよい。 At the end of the reaction, the content of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether contained in the reaction solution was 10% (HPLC area%) The following is preferable, and more preferably when it is 7% (HPLC area%) or less. If the amount of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether is 10% or less, formation of a dimer in the cyclization reaction step is suppressed. N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether having high purity and low viscosity is obtained. At the end of the addition reaction step, the amount of N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether is preferably 90% (HPLC area%). Above, more preferably 93% (HPLC area%) or more.
 また、付加反応工程が完了した後、環化反応工程の開始前に、付加反応工程のプロトン性溶媒及びエピハロヒドリンの少なくとも一部を通常用いられる方法により除去しても良い。 In addition, after completion of the addition reaction step and before the start of the cyclization reaction step, at least a part of the protic solvent and epihalohydrin in the addition reaction step may be removed by a commonly used method.
 本発明では、環化反応工程において、N,N,N’,N’-テトラキス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルをアルカリと反応させ脱ハロゲン化水素を行う。 In the present invention, in the cyclization reaction step, N, N, N ′, N′-tetrakis (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether is reacted with an alkali to perform dehydrohalogenation. .
 アルカリとしては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化マグネシウム、水酸化カルシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化リチウム、水素化ナトリウム、水素化カリウム、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムn-プロポキシド、カリウムn-プロポキシド、ナトリウムイソプロポキシド、カリウムイソプロポキシド、ナトリウムn-ブトキシド、カリウムn-ブトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、ナトリウムtert-アミラート、カリウムtert-アミラート、ナトリウムn-ヘキシラート、およびカリウムn-ヘキシラートおよびテトラメチルアンモニウムヒドロキシドなどが例示されるが、中でも、水酸化ナトリウムと水酸化カリウムが好ましく用いられる。これらのアルカリは、そのものを投入しても良いが、水またはアルコール溶液として滴下しても良い。 Examples of the alkali include lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide, magnesium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, barium carbonate, magnesium carbonate, calcium carbonate, and hydrogen carbonate. Lithium, sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydride, sodium hydride, potassium hydride, sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium n-propoxide, potassium n-propoxide, Sodium isopropoxide, potassium isopropoxide, sodium n-butoxide, potassium n-butoxide, sodium tert-butoxide, potassium tert-butoxide, sodium tert-amylate, Although potassium tert- amylate, sodium n- Hekishirato, and potassium n- Hekishirato and tetramethylammonium hydroxide can be exemplified. Among them, potassium hydroxide and sodium hydroxide are preferably used. These alkalis may be added as such or may be dropped as water or an alcohol solution.
 アルカリは、単独で用いても良いし、2種類以上を混合して用いても良い。アルカリの使用量は、3,3’-ジアミノジフェニルエーテルに対し、好ましくは4~16モル倍量、より好ましくは5~12モル倍量にすると良い。4モル倍以上とすることで、3-ハロ-2-ヒドロキシプロピル基の環化反応が完結する。16モル倍量以下とすることで、生成した塩や、余剰のアルカリを反応混合物から除去する際に過大なエネルギーを必要とせず、また廃棄物も少なくなるため、経済的である。 Alkali may be used alone or in combination of two or more. The amount of alkali used is preferably 4 to 16 mol times, more preferably 5 to 12 mol times the amount of 3,3'-diaminodiphenyl ether. By making it 4 moles or more, the cyclization reaction of the 3-halo-2-hydroxypropyl group is completed. By adjusting the amount to 16 mol times or less, it is economical because excessive energy is not required when the generated salt and excess alkali are removed from the reaction mixture, and waste is reduced.
 本発明における環化反応は、相間移動触媒の共存下で行うことが好ましい。相間移動触媒としてはクラウンエーテル、第四級アンモニウム塩、第四級ホスホニウム塩が挙げられる。 The cyclization reaction in the present invention is preferably performed in the presence of a phase transfer catalyst. Examples of the phase transfer catalyst include crown ethers, quaternary ammonium salts, and quaternary phosphonium salts.
 本発明で用いられるクラウンエーテルとしては、ジベンゾ-18-クラウン-6、18-クラウン-6、15-クラウン-5、12-クラウン-4、ジシクロヘキサノ-18-クラウン-6、メチルベンゾ15-クラウン-5、ジ-tert-ブチルベンゾ-15-クラウン-5、メチルベンゾ-18-クラウン-6、tert-ブチルベンゾ-18-クラウン-6、ベンゾ-15-クラウン-5、シクロヘキサノ-15-クラウン-5、tert-ブチルベンゾ-15-クラウン-5、ニトロベンゾ-15-クラウン-5、ベンゾ-18-クラウン-6、ジベンゾ-24-クラウン-8、ニトロベンゾ18-クラウン-6、ベンゾ-12-クラウン-4、16-クラウン-5、2,2-ジメチル-1,3,6,9-テトラオキサ-2-シラシクロウンデカン、1-フェニル-4,7,10,13-テトラオキサ-1-アザシクロペンタデカン、21-クラウン-7、24-クラウン-8、15-(2,5-ジオキサヘキシル)-15-メチル-16-クラウン-5、13-クラウン-4、14-クラウン-4、15-クラウン-4、16-クラウン-4、ジメチルシラ-20-クラウン-7、ジベンゾ-20-クラウン-6、ジベンゾ-22-クラウン-6、ジベンジル-14-クラウン-4、ベンゾ-13-クラウン-4、15,15-ジメチル-16-クラウン-5、ドデシルオキシメチル-18-クラウン-6、1,4,7,10,13,ジベンゾ-30-クラウン-10、ジベンゾ-14-クラウン-4、ジシクロヘキサノ-27-クラウン-9、ジシクロヘキサノ-30-クラウン-10、ベンゾ-9-クラウン-3、ジベンゾ-16-クラウン-5、30-クラウン-10、ペルフルオロ-15-クラウン-5、ペルフルオロ-12-クラウン-4、ペルフルオロ-18-クラウン-6、ペルフルオロジシクロヘキサノ-24-クラウン-8、ナフト-15-クラウン-5、12-クラウン-3、60-クラウン-20、81-クラウン-27、ジ-tert-ブチルジベンゾ-24-クラウン-8、ジ-tert-ブチルジベンゾ-14-クラウン-4、ジ-tert-ブチルジベンゾ-18-クラウン-6、ジ-tert-ブチルジベンゾ-16-クラウン-5、18-クラウン-5、19-クラウン-6、ジ-tert-ブチルジベンゾ-21-クラウン-7、9-クラウン-3、フラノトリベンゾ-21-クラウン-7、N,N’-ジメチルシアノジアザ-18-クラウン-6、15-メチレン-16-クラウン-5、2,2-ジフェニル-11-クラウン-4、2,2-ジフェニル-14-クラウン-5、2,2-ジフェニル-17-クラウン-6、2,2-ジフェニル-20-クラウン-7、ジシクロヘキサノ-21-クラウン-7、1,5-ナフト-22-クラウン-6、デシル-18-クラウン-6、ベンジルオキシメチル-12-クラウン-3、ビス(m-フェニレン)-32-クラウン-10、ジベンゾ-15-クラウン-5、トリベンゾ-18-クラウン-6、トリベンゾ-21-クラウン-7、テトラベンゾ-24-クラウン-8、4’,5’-ジブロモベンゾ-15-クラウン-5、ベンゾ-24-クラウン-8、ベンゾ-21-クラウン-7、15-クラウン-3、20-クラウン-4、25-クラウン-5、30-クラウン-6、35-クラウン-7、40-クラウン-8、45-クラウン-9、50-クラウン-10、55-クラウン-11、60-クラウン-12、70-クラウン-14、メチル-18-クラウン-6、2,3-ジメチル-18-クラウン-6、1-メチル-1-アザ-18‐クラウン-6、1,10-ジメチル-1,10-ジアザ-18-クラウン-6、ジ-tert-ブチルジシクロヘキサノ-18-クラウン-6、36-クラウン-4、40-クラウン-4、ナフト-18-クラウン-6、ビス-4,4’(5’)-[tert-ブチルシクロヘキサノ]-18-クラウン-6、4,5’-ジ-tert-ブチルジシクロヘキサノ-18-クラウン-6、ナフト-9-クラウン-3、ナフト-12-クラウン-4、4,4’,4’’,5’’’-テトラ-tert-ブチルテトラベンゾ-24-クラウン-8、4,4’,4’’,5’’’-テトラ-tert-ブチルテトラベンゾ-24-クラウン-8、4,5’,4’’,5’’’テトラ-tert-ブチルテトラベンゾ-24-クラウン-8、ジベンゾ-27-クラウン-9、ジベンゾ-16-クラウン-4、ベンゾ-30-クラウン-10、[2,8]ジベンゾ-30-クラウン-10、ベンゾ-33-クラウン-11、ジベンゾ-48-クラウン-16、[4,7]ジベンゾ-33-クラウン-11、ベンゾ-27-クラウン-9、ビスナフト-9-クラウン-3、ジベンゾ-28-クラウン-6、ナフト-24-クラウン-8、4,5’-ジ-tert-ブチルジベンゾ-18-クラウン-6、ベンゾ-14-クラウン-4、ベンゾ-17-クラウン‐5、ベンゾ-20-クラウン-6、ジメチルジベンゾ-24-クラウン-8等を挙げることができる。 Examples of the crown ether used in the present invention include dibenzo-18-crown-6, 18-crown-6, 15-crown-5, 12-crown-4, dicyclohexano-18-crown-6, and methylbenzo15-crown. -5, di-tert-butylbenzo-15-crown-5, methylbenzo-18-crown-6, tert-butylbenzo-18-crown-6, benzo-15-crown-5, cyclohexano-15-crown-5, tert-Butylbenzo-15-crown-5, nitrobenzo-15-crown-5, benzo-18-crown-6, dibenzo-24-crown-8, nitrobenzo18-crown-6, benzo-12-crown-4, 16 -Crown-5,2,2-dimethyl-1,3,6,9-tetraoxa-2-silane Cycloundecane, 1-phenyl-4,7,10,13-tetraoxa-1-azacyclopentadecane, 21-crown-7, 24-crown-8, 15- (2,5-dioxahexyl) -15-methyl -16-crown-5, 13-crown-4, 14-crown-4, 15-crown-4, 16-crown-4, dimethylsila-20-crown-7, dibenzo-20-crown-6, dibenzo-22 Crown-6, dibenzyl-14-crown-4, benzo-13-crown-4, 15,15-dimethyl-16-crown-5, dodecyloxymethyl-18-crown-6, 1,4,7,10 , 13, dibenzo-30-crown-10, dibenzo-14-crown-4, dicyclohexano-27-crown-9, dicyclohexano- 0-crown-10, benzo-9-crown-3, dibenzo-16-crown-5, 30-crown-10, perfluoro-15-crown-5, perfluoro-12-crown-4, perfluoro-18-crown- 6, perfluorodicyclohexano-24-crown-8, naphth-15-crown-5, 12-crown-3, 60-crown-20, 81-crown-27, di-tert-butyldibenzo-24-crown- 8, di-tert-butyldibenzo-14-crown-4, di-tert-butyldibenzo-18-crown-6, di-tert-butyldibenzo-16-crown-5, 18-crown-5, 19-crown -6, di-tert-butyldibenzo-21-crown-7, 9-crown-3, furanotribenzo -21-crown-7, N, N'-dimethylcyanodiaza-18-crown-6, 15-methylene-16-crown-5, 2,2-diphenyl-11-crown-4, 2,2-diphenyl -14-crown-5, 2,2-diphenyl-17-crown-6, 2,2-diphenyl-20-crown-7, dicyclohexano-21-crown-7, 1,5-naphth-22-crown -6, decyl-18-crown-6, benzyloxymethyl-12-crown-3, bis (m-phenylene) -32-crown-10, dibenzo-15-crown-5, tribenzo-18-crown-6, Tribenzo-21-crown-7, tetrabenzo-24-crown-8, 4 ', 5'-dibromobenzo-15-crown-5, benzo-24-crown-8, Zo-21-crown-7, 15-crown-3, 20-crown-4, 25-crown-5, 30-crown-6, 35-crown-7, 40-crown-8, 45-crown-9, 50-crown-10, 55-crown-11, 60-crown-12, 70-crown-14, methyl-18-crown-6, 2,3-dimethyl-18-crown-6, 1-methyl-1- Aza-18-crown-6, 1,10-dimethyl-1,10-diaza-18-crown-6, di-tert-butyldicyclohexano-18-crown-6, 36-crown-4, 40-crown -4, naphth-18-crown-6, bis-4,4 ′ (5 ′)-[tert-butylcyclohexano] -18-crown-6, 4,5′-di-tert-butyldicyclohexane Sano-18-crown-6, naphth-9-crown-3, naphth-12-crown-4, 4,4 ', 4' ', 5' ''-tetra-tert-butyltetrabenzo-24-crown- 8,4,4 ′, 4 ″, 5 ′ ″-tetra-tert-butyltetrabenzo-24-crown-8,4,5 ′, 4 ″, 5 ′ ″ tetra-tert-butyltetrabenzo -24-crown-8, dibenzo-27-crown-9, dibenzo-16-crown-4, benzo-30-crown-10, [2,8] dibenzo-30-crown-10, benzo-33-crown- 11, dibenzo-48-crown-16, [4,7] dibenzo-33-crown-11, benzo-27-crown-9, bisnaphth-9-crown-3, dibenzo-28-crown-6, naphtho -24-crown-8,4,5'-di-tert-butyldibenzo-18-crown-6, benzo-14-crown-4, benzo-17-crown-5, benzo-20-crown-6, dimethyl And dibenzo-24-crown-8.
 本発明で用いられる第四級アンモニウム塩としては、テトラメチルアンモニウム、トリメチルエチルアンモニウム、ジメチルジエチルアンモニウム、トリエチルメチルアンモニウム、トリプロピルメチルアンモニウム、トリブチルメチルアンモニウム、トリオクチルメチルアンモニウム、テトラエチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルフェニルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ジアリルジメチルアンモニウム、n-オクチルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、セチルジメチルエチルアンモニウム、テトラプロピルアンモニウム、テトラ-n-ブチルアンモニウム、β-メチルコリンおよびフェニルトリメチルアンモニウム等の臭化塩、塩化塩、ヨウ化塩、硫酸水素塩および水酸化物等を挙げることが出来る。 As the quaternary ammonium salt used in the present invention, tetramethylammonium, trimethylethylammonium, dimethyldiethylammonium, triethylmethylammonium, tripropylmethylammonium, tributylmethylammonium, trioctylmethylammonium, tetraethylammonium, trimethylpropylammonium, Trimethylphenylammonium, benzyltrimethylammonium, benzyltriethylammonium, diallyldimethylammonium, n-octyltrimethylammonium, stearyltrimethylammonium, cetyldimethylethylammonium, tetrapropylammonium, tetra-n-butylammonium, β-methylcholine and phenyltrimethylammonium Odor Salt, chloride salt, iodine Casio, can be mentioned hydrogen sulfate and hydroxide, and the like.
 本発明で用いられる第四級ホスホニウム塩としては、テトラメチルホスホニウム、トリメチルエチルホスホニウム、ジメチルジエチルホスホニウム、トリエチルメチルホスホニウム、トリプロピルメチルホスホニウム、トリブチルメチルホスホニウム、トリオクチルメチルホスホニウム、テトラエチルホスホニウム、トリメチルプロピルホスホニウム、トリメチルフェニルホスホニウム、ベンジルトリメチルホスホニウム、ジアリルジメチルホスホニウム、n-オクチルトリメチルホスホニウム、ステアリルトリメチルホスホニウム、セチルジメチルエチルホスホニウム、テトラプロピルホスホニウム、テトラ-n-ブチルホスホニウム、フェニルトリメチルホスホニウム、メチルトリフェニルホスホニウム、エチルトリフェニルホスホニウムおよびテトラフェニルホスホニウム等の臭化塩、塩化塩、ヨウ化塩、硫酸水素塩および水酸化物等を挙げることが出来る。 As the quaternary phosphonium salt used in the present invention, tetramethylphosphonium, trimethylethylphosphonium, dimethyldiethylphosphonium, triethylmethylphosphonium, tripropylmethylphosphonium, tributylmethylphosphonium, trioctylmethylphosphonium, tetraethylphosphonium, trimethylpropylphosphonium, Trimethylphenylphosphonium, benzyltrimethylphosphonium, diallyldimethylphosphonium, n-octyltrimethylphosphonium, stearyltrimethylphosphonium, cetyldimethylethylphosphonium, tetrapropylphosphonium, tetra-n-butylphosphonium, phenyltrimethylphosphonium, methyltriphenylphosphonium, ethyltriphenyl Phosphoni Arm and bromide salts, such as tetraphenylphosphonium, chloride salt, iodine Casio, can be mentioned hydrogen sulfate and hydroxide, and the like.
 上記相間移動触媒のうち、第四級アンモニウム塩および/または第四級ホスホニウム塩が好ましく、とりわけ第四級アンモニウム塩が好ましく用いられる。特に、トリオクチルメチルアンモニウム、テトラエチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、テトラ-n-ブチルアンモニウムの臭化塩、塩化塩、硫酸水素塩および水酸化物がより好ましく用いられる。また、相間移動溶媒は、単独で用いても良いし、2種類以上を混合して用いても良い。 Of the above phase transfer catalysts, quaternary ammonium salts and / or quaternary phosphonium salts are preferred, and quaternary ammonium salts are particularly preferred. In particular, trioctylmethylammonium, tetraethylammonium, benzyltrimethylammonium, benzyltriethylammonium, tetra-n-butylammonium bromide, chloride, hydrogen sulfate and hydroxide are more preferably used. Moreover, a phase transfer solvent may be used independently and may be used in mixture of 2 or more types.
 相間移動触媒の添加量は、触媒量でよく、3,3’-ジアミノジフェニルエーテルに対して0.001~0.5モル倍、より好ましくは、0.01~0.1モル倍であるとよい。0.001モル倍以上とすることで、環化反応が速やかに進行する。0.5モル倍以下とすることで、触媒の使用量が少なく済むため、経済的である。 The addition amount of the phase transfer catalyst may be a catalytic amount, and is 0.001 to 0.5 mol times, more preferably 0.01 to 0.1 mol times with respect to 3,3′-diaminodiphenyl ether. . By setting it to 0.001 mol times or more, the cyclization reaction proceeds promptly. By making it 0.5 mol times or less, the amount of catalyst used can be reduced, which is economical.
 環化反応の反応温度は、好ましくは0~90℃であり、より好ましくは20~60℃である。環化反応の反応温度を0℃以上にすることで、反応が速やかに進行する。また90℃以下とすることで、加熱に必要なエネルギーを低減することが出来、経済的である。 The reaction temperature of the cyclization reaction is preferably 0 to 90 ° C, more preferably 20 to 60 ° C. By setting the reaction temperature of the cyclization reaction to 0 ° C. or higher, the reaction proceeds promptly. Moreover, by setting it as 90 degrees C or less, the energy required for a heating can be reduced and it is economical.
 また、反応時間は、アルカリの添加終了後、好ましくは0.5~10時間、より好ましくは1~6時間である。0.5時間以上とすることで、3-ハロ-2-ヒドロキシプロピル基が反応せずに残留することに起因する、易可けん化塩素含有量の増加を防ぐことができる。6時間以下とすることで、熟成時間が短縮出来、経済的である。 In addition, the reaction time is preferably 0.5 to 10 hours, more preferably 1 to 6 hours after completion of the alkali addition. By setting the duration to 0.5 hours or longer, it is possible to prevent an increase in the easily saponifiable chlorine content caused by the 3-halo-2-hydroxypropyl group remaining without reacting. By setting it to 6 hours or less, the aging time can be shortened and it is economical.
 環化反応の溶媒として、アルコール、炭化水素、エーテルから選ばれるいずれかが好ましく用いられる。 As the solvent for the cyclization reaction, any one selected from alcohols, hydrocarbons and ethers is preferably used.
 環化反応溶媒としてのアルコールは、メタノール、エタノール、1-プロパノール、1-ブタノール、1-ペンタノールおよび1-ヘキサノールなどの1級アルコール類、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、2-ヘキサノール、シクロヘキサノール、2-ヘプタノールおよび3-ヘプタノールなどの2級アルコール類、tert-ブタノール、tert-ペンタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノ-n-ブチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノフェニルエーテル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテルおよびトリプロピレングリコールモノ-n-ブチルエーテル等を挙げることが出来る。 Alcohols as cyclization reaction solvents include primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol, 2-propanol, 2-butanol, 2-pentanol, 3 -Secondary alcohols such as pentanol, 2-hexanol, cyclohexanol, 2-heptanol and 3-heptanol, tert-butanol, tert-pentanol, ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Mono-n-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol monophenyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethyl Glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol mono-n-butyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol Monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, propylene glycol monophenyl ether, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n -Propyl ether, dipropylene glycol mono- - butyl ether, tripropylene glycol, tripropylene glycol monomethyl ether and tripropylene glycol mono -n- butyl ether and the like.
 炭化水素としては、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、オクタン、イソオクタン、ノナン、トリメチルヘキサン、デカン、ドデカン、ベンゼン、トルエン、キシレン、エチルベンゼン、クメン、メシチレン、シクロヘキシルベンゼン、ジエチルベンゼン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサンおよびエチルシクロヘキサン等を挙げることが出来る。 As hydrocarbons, hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, octane, isooctane, nonane, trimethylhexane, decane, dodecane, benzene, toluene, xylene, ethylbenzene, cumene , Mesitylene, cyclohexylbenzene, diethylbenzene, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane.
 また、エーテルとしては、ジエチルエーテル、ジ-n-プロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、シクロペンチルメチルエーテル、アニソール、フェネトール、ジフェニルエーテル、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルおよびジエチレングリコールジブチルエーテル等を挙げることが出来る。 The ethers include diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, cyclopentyl methyl ether, anisole, phenetole, diphenyl ether, tetrahydrofuran, tetrahydropyran, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl. Examples include ether and diethylene glycol dibutyl ether.
 上記環化反応溶媒のうち、特に、メタノール、エタノール、1-プロパノール、1-ブタノール、2-プロパノール、2-ブタノール、tert-ブタノール、シクロヘキサン、トルエン、キシレン、エチルベンゼン、クメン、メシチレンおよびジエチルベンゼンが好ましく用いられる。 Of the cyclization reaction solvents, methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol, tert-butanol, cyclohexane, toluene, xylene, ethylbenzene, cumene, mesitylene and diethylbenzene are particularly preferably used. It is done.
 環化反応工程における溶媒の使用量は、3,3’-ジアミノジフェニルエーテルに対して好ましくは1~20重量倍であり、より好ましくは、2~10重量倍である。1重量倍以上とすることで、反応混合物の粘度が低減し、撹拌効率が良くなることで速やかに反応が完結する。20重量倍以下とすることで、溶媒の除去に必要なエネルギーが少なくなり、廃棄物も少なくなるため、経済的である。 The amount of the solvent used in the cyclization reaction step is preferably 1 to 20 times by weight, more preferably 2 to 10 times by weight with respect to 3,3′-diaminodiphenyl ether. By setting it to 1 weight times or more, the viscosity of the reaction mixture is reduced, and the stirring efficiency is improved, whereby the reaction is completed quickly. By making the weight 20 times or less, energy required for removing the solvent is reduced and waste is reduced, which is economical.
 上述した環化反応工程で得られた反応混合物は、N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテル、脱ハロゲン化水素により生成した塩及び溶媒を含む。 The reaction mixture obtained in the cyclization reaction step described above contains N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether, a salt formed by dehydrohalogenation, and a solvent.
 脱ハロゲン化水素により生成した塩は、例えば、反応混合物を水で洗浄し、水層を分離することで除去することが出来る。得られた油層を加熱減圧下で、溶媒を留去することにより、目的物を得ることが出来る。 The salt produced by dehydrohalogenation can be removed, for example, by washing the reaction mixture with water and separating the aqueous layer. The desired product can be obtained by distilling off the solvent under heating and reduced pressure of the obtained oil layer.
 また、溶媒を留去する際には、薄膜蒸留を行うことが好ましい。薄膜蒸留とは、蒸発面と凝縮面との距離が分子の平均自由行程よりも短いような高真空中で、液体を薄膜状にして蒸留する操作をいう。高真空下では、気体分子どうしの衝突が無視出来、液を薄膜にすることで、液体分子どうしの衝突も通常の蒸留操作よりも抑制出来るため、高粘度の化合物から効率的に溶媒を留去するには有効な操作である。薄膜蒸留で用いられる装置としては、例えば、遠心式分子蒸留装置、流下膜式分子蒸留装置等が挙げられる。 Moreover, when distilling off the solvent, it is preferable to perform thin film distillation. Thin film distillation refers to an operation of distilling a liquid into a thin film in a high vacuum where the distance between the evaporation surface and the condensation surface is shorter than the mean free path of molecules. Under high vacuum, collisions between gas molecules can be ignored, and by making the liquid into a thin film, collisions between liquid molecules can be suppressed more than normal distillation operations. This is an effective operation. Examples of the apparatus used in the thin film distillation include a centrifugal molecular distillation apparatus and a falling film molecular distillation apparatus.
 このようにして得られたN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルは、ファインケミカル、医農薬原料、電気・電子部品の封止剤、電子情報材料、光学材料、絶縁材料や接着剤、ガラス繊維や炭素繊維等の複合材料などを構成する樹脂原料等、多岐にわたる工業用途に好ましく用いられる。中でも、電気・電子部品の封止剤、絶縁材料や接着剤、ガラス繊維や炭素繊維などとの複合材料に好ましく用いられる。 The N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether thus obtained is a fine chemical, a raw material for medical and agricultural chemicals, a sealant for electric / electronic parts, an electronic information material, and an optical material. In addition, it is preferably used for a wide variety of industrial applications such as insulating materials, adhesives, and resin raw materials constituting composite materials such as glass fibers and carbon fibers. Among them, it is preferably used for a sealing material for electric / electronic parts, an insulating material, an adhesive, a composite material with glass fiber, carbon fiber, or the like.
 本発明のN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルと硬化剤を含有してなる樹脂組成物をガラス繊維、炭素繊維などに含浸させ硬化させることにより、高強度、高弾性率、高接着性、高靭性、耐熱性、耐候性、耐溶剤性および耐衝撃性などの高機能なエポキシ樹脂硬化物を得ることが出来る。特に従来のN,N,N’,N’-テトラグリシジルジアミノジフェニルエーテル類とほぼ同等レベルの高強度・耐熱性を維持しながら、高弾性率(5%ひずみ時の引張り応力が高いこと)を、より高くすることができる。なお、本発明において、エポキシ化合物の弾性率は、その硬化物をJIS K 6911-1995 熱硬化性プラスチック一般試験方法、5.18引張強さに従って引張強さを測定するとき、5%ひずみ時の引張応力(単位:MPa)を測定し、これを弾性率とする。 By impregnating a glass fiber, carbon fiber or the like with a resin composition containing N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether of the present invention and a curing agent, A highly functional cured epoxy resin such as strength, high elastic modulus, high adhesiveness, high toughness, heat resistance, weather resistance, solvent resistance and impact resistance can be obtained. In particular, while maintaining high strength and heat resistance at almost the same level as conventional N, N, N ′, N′-tetraglycidyldiaminodiphenyl ethers, high elastic modulus (high tensile stress at 5% strain) Can be higher. In the present invention, the elastic modulus of the epoxy compound is determined by measuring the cured product according to JIS K 6911-1995 thermosetting plastic general test method, 5.18 tensile strength, at 5% strain. A tensile stress (unit: MPa) is measured, and this is defined as an elastic modulus.
 また、本発明のN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルと通常のエポキシ樹脂を混合してアミンで硬化させると、例えば、接着剤や塗料などに使用することができる硬化物を得ることが出来る。これらの硬化物は、機械的特性や電気的特性が高く、耐久性や信頼性も高い硬化物である。 Further, when the N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether of the present invention is mixed with a normal epoxy resin and cured with an amine, it is used for, for example, an adhesive or a paint. The hardened | cured material which can be obtained can be obtained. These cured products are cured products having high mechanical properties and electrical properties, and high durability and reliability.
 以下、実施例により具体的に説明するが、本発明は実施例のみに制限されるものではない。なお、以下の実施例において、「○○重量倍/ジアミノジフェニルエーテル」という記載は、それぞれの添加量が、3,3’-ジアミノジフェニルエーテル重量の○○重量倍であることを意味する。 Hereinafter, although it demonstrates concretely by an Example, this invention is not restrict | limited only to an Example. In the following examples, the description “XX times by weight / diaminodiphenyl ether” means that each added amount is XX times the weight of 3,3′-diaminodiphenyl ether.
 本発明において、エポキシ化合物中のN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルの含有量、すなわちN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルの化学純度は、高速液体クロマトグラフィー法(以下、「HPLC」と略)で、以下の分析条件で分析したもの(HPLC area%)である。また、N,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルおよびエポキシ化合物の二量体の含有量も、同じ分析条件で測定した。 In the present invention, the content of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether in the epoxy compound, that is, N, N, N ′, N′-tetraglycidyl-3,3 ′ The chemical purity of diaminodiphenyl ether is the one analyzed by the high performance liquid chromatography method (hereinafter abbreviated as “HPLC”) under the following analysis conditions (HPLC area%). The dimer content of N, N, N'-tris (3-halo-2-hydroxypropyl) -3,3'-diaminodiphenyl ether and epoxy compound was also measured under the same analytical conditions.
 ・カラム: YMC―Pack ODS-AM303 4.6φ×250mm
 ・カラム温度: 40℃
 ・移動相:
  A:0.1%(v/v)リン酸水溶液
  B:メタノール
 (グラジエント) 0min. A:B=45:55
         30min. A:B=45:55
         70min. A:B=30:70
       70.1min. A:B=45:55
         80min. A:B=45:55
 ・流量:1ml/min
 ・注入量: 2μl
 ・検出: 紫外(UV)検出 波長254nm
 ・分析時間: 80分
 ・分析サンプル調製:サンプル0.02gを秤量し、エチレングリコールジメチルエーテル約25mlに溶解させた。
Column: YMC-Pack ODS-AM303 4.6φ × 250mm
-Column temperature: 40 ° C
・ Mobile phase:
A: 0.1% (v / v) phosphoric acid aqueous solution B: Methanol (gradient) 0 min. A: B = 45: 55
30 min. A: B = 45: 55
70 min. A: B = 30: 70
70.1 min. A: B = 45: 55
80 min. A: B = 45: 55
・ Flow rate: 1 ml / min
・ Injection volume: 2μl
・ Detection: Ultraviolet (UV) detection, wavelength 254nm
Analysis time: 80 minutes Analysis sample preparation: 0.02 g of sample was weighed and dissolved in about 25 ml of ethylene glycol dimethyl ether.
 ただし、上記の分析条件に基づく分析結果と同じ結果が得られる限り、この分析条件に限定されるものではない。 However, as long as the same result as the analysis result based on the above analysis condition is obtained, the analysis condition is not limited to this.
 本発明において、エポキシ化合物の粘度は、以下の方法で分析したものである。
 ・粘度計: RE85R(東機産業(株)製)、ローターコードNo.38
 ・温度: 40℃
 ・回転数: 1rpm
 ただし、上記の分析条件に基づく分析結果と同じ結果が得られる限り、この分析条件に限定されるものではない。
In the present invention, the viscosity of the epoxy compound is analyzed by the following method.
Viscometer: RE85R (manufactured by Toki Sangyo Co., Ltd.), rotor code No. 38
・ Temperature: 40 ℃
・ Rotation speed: 1rpm
However, as long as the same result as the analysis result based on the above analysis condition is obtained, the analysis condition is not limited to this.
   (実施例1)
 温度計、冷却管および撹拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1110g(12.0mol)、トルエン501g(2.5重量倍/ジアミノジフェニルエーテル)、水50.4g(0.25重量倍/ジアミノジフェニルエーテル)を仕込み、これに3,3’-ジアミノジフェニルエーテル201g(1.0mol)を添加した。この混合液を80℃の温度で15時間撹拌し、付加反応を行った。反応液中に含まれるN,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルの量は2.0%(HPLC area%)であった。反応混合物に硫酸水素テトラブチルアンモニウム10.1g(0.03mol)を添加し、続いて48%水酸化ナトリウム水溶液500g(6.0mol)を30℃の温度で30分かけて滴下、さらに30℃の温度で4時間撹拌しながら熟成し、環化反応を行った。環化反応が終了した後、600g(3.0重量倍/ジアミノジフェニルエーテル)の水で、生成した塩を溶解し、水層と油層とを分離した。油層をさらに600g(3.0重量倍/ジアミノジフェニルエーテル)の水で洗浄し、水層と油層とを分離した。油層からトルエンとエピクロロヒドリンとを減圧下留去すると、N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルを主成分とする褐色の粘性液体が得られた。このエポキシ化合物の収量は、418g(理論収量の99%)であった。また、エポキシ化合物の化学純度を、HPLCを使用して前述した方法で測定したところ83%(HPLC area%)であった。また、溶出時間56~72分に検出される二量体は5.8%(HPLC area%)、エポキシ当量は122g/eq、粘度は46Pa・sであった。
(Example 1)
In a four-necked flask equipped with a thermometer, a condenser and a stirrer, 1110 g (12.0 mol) of epichlorohydrin, 501 g of toluene (2.5 times by weight / diaminodiphenyl ether), 50.4 g of water (0.25 wt.) Double / diaminodiphenyl ether), and 201 g (1.0 mol) of 3,3′-diaminodiphenyl ether was added thereto. This mixture was stirred at a temperature of 80 ° C. for 15 hours to carry out an addition reaction. The amount of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether contained in the reaction solution was 2.0% (HPLC area%). 10.1 g (0.03 mol) of tetrabutylammonium hydrogen sulfate was added to the reaction mixture, followed by dropwise addition of 500 g (6.0 mol) of 48% aqueous sodium hydroxide solution at a temperature of 30 ° C. over 30 minutes. The mixture was aged with stirring at temperature for 4 hours to carry out a cyclization reaction. After completion of the cyclization reaction, the produced salt was dissolved in 600 g (3.0 times by weight / diaminodiphenyl ether) of water, and the aqueous layer and the oil layer were separated. The oil layer was further washed with 600 g (3.0 times by weight / diaminodiphenyl ether) of water, and the water layer and the oil layer were separated. When toluene and epichlorohydrin were distilled off from the oil layer under reduced pressure, a brown viscous liquid mainly composed of N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether was obtained. The yield of this epoxy compound was 418 g (99% of the theoretical yield). Moreover, when the chemical purity of the epoxy compound was measured by the method mentioned above using HPLC, it was 83% (HPLC area%). The dimer detected at an elution time of 56 to 72 minutes was 5.8% (HPLC area%), the epoxy equivalent was 122 g / eq, and the viscosity was 46 Pa · s.
   (実施例2)
 実施例1において、付加反応温度を80℃から70℃、付加反応時間を15時間から21時間に変更した以外は、実施例1と同様に実施したところ、N,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルを主成分とする褐色の粘性液体が得られた。付加反応終了時点の反応液中に含まれるN,N,N’-トリス(3-ハロ-2-ヒドロキシプロピル)-3,3’-ジアミノジフェニルエーテルの量は1.7%(HPLC area%)であった。このエポキシ化合物の収量は、414g(理論収量の97%)であった。
(Example 2)
In Example 1, except that the addition reaction temperature was changed from 80 ° C. to 70 ° C. and the addition reaction time was changed from 15 hours to 21 hours, N, N, N ′, N′− A brown viscous liquid mainly composed of tetraglycidyl-3,3′-diaminodiphenyl ether was obtained. The amount of N, N, N′-tris (3-halo-2-hydroxypropyl) -3,3′-diaminodiphenyl ether contained in the reaction solution at the end of the addition reaction is 1.7% (HPLC area%). there were. The yield of this epoxy compound was 414 g (97% of the theoretical yield).
 下記に、実施例2で得られたエポキシ化合物の水素核磁気共鳴(1H-NMR)測定結果、LC-MS測定で得られた主生成物のm/z値を示す。
 1H-NMR(CDCl3、400MHz)δ2.54(dd,4H),2.76(dd,4H),3.13(m,4H),3.41(ddd,4H),3.71(ddd,4H),6.35(d,2H),6.48(s,2H),6.52(d,2H),7.14(t,4H)。
 MS(ESI+)m/z 425 ([M+H]+)。
The hydrogen nuclear magnetic resonance ( 1 H-NMR) measurement result of the epoxy compound obtained in Example 2 and the m / z value of the main product obtained by LC-MS measurement are shown below.
1 H-NMR (CDCl 3 , 400 MHz) δ 2.54 (dd, 4H), 2.76 (dd, 4H), 3.13 (m, 4H), 3.41 (ddd, 4H), 3.71 ( ddd, 4H), 6.35 (d, 2H), 6.48 (s, 2H), 6.52 (d, 2H), 7.14 (t, 4H).
MS (ESI <+> ) m / z 425 ([M + H] < +>).
 図1、2、3に、実施例2で得られた水素核磁気共鳴(1H-NMR)スペクトルチャート、図4に赤外(IR)吸収スペクトルチャート、図5に液体クロマトグラフ-質量分析法(LC-MS)で得られた、主生成物の質量スペクトルを示す。 1, 2 and 3 show the hydrogen nuclear magnetic resonance ( 1 H-NMR) spectrum chart obtained in Example 2, FIG. 4 shows the infrared (IR) absorption spectrum chart, and FIG. 5 shows the liquid chromatograph-mass spectrometry method. The mass spectrum of the main product obtained by (LC-MS) is shown.
 以上の結果をもって、得られた化合物がN,N,N’,N’-テトラグリシジル-3,3’-ジアミノジフェニルエーテルであると同定した。このエポキシ化合物の化学純度を、HPLCを使用して前述した方法で測定したところ86%(HPLC area%)であった。また、溶出時間56~72分に検出される二量体は4.1%(HPLC area%)、エポキシ当量は120g/eq、粘度は39Pa・sであった。 Based on the above results, the obtained compound was identified as N, N, N ′, N′-tetraglycidyl-3,3′-diaminodiphenyl ether. When the chemical purity of this epoxy compound was measured by the method mentioned above using HPLC, it was 86% (HPLC area%). The dimer detected at an elution time of 56 to 72 minutes was 4.1% (HPLC area%), the epoxy equivalent was 120 g / eq, and the viscosity was 39 Pa · s.
   (参考例1)
 実施例1において、3,3′-ジアミノジフェニルエーテルを3,4′-ジアミノジフェニルエーテルに変更した以外は、実施例1と同様に実施したところ、N,N,N′,N′-テトラグリシジル-3,4′-ジアミノジフェニルエーテルを主成分とする褐色の粘性液体が得られた。このエポキシ化合物の収量は、425g(理論収量の100%)であった。また、エポキシ化合物の化学純度を、高速液体クロマトグラフィー(以下「HPLC」という。)を使用して前述した方法で測定したところ87%(HPLC area%)であった。また、エポキシ当量が122g/eq、E型粘度計を使用し40℃で測定した粘度が36Pa・sであった。
(Reference Example 1)
The same procedure as in Example 1 was performed except that 3,3′-diaminodiphenyl ether was changed to 3,4′-diaminodiphenyl ether in Example 1. N, N, N ′, N′-tetraglycidyl-3 A brown viscous liquid mainly composed of 4,4'-diaminodiphenyl ether was obtained. The yield of this epoxy compound was 425 g (100% of the theoretical yield). The chemical purity of the epoxy compound was 87% (HPLC area%) as measured by the above-described method using high performance liquid chromatography (hereinafter referred to as “HPLC”). The epoxy equivalent was 122 g / eq, and the viscosity measured at 40 ° C. using an E-type viscometer was 36 Pa · s.
   (比較例1)
 温度計、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン、トルエン、水、3,3′-ジアミノジフェニルエーテルを仕込んだ後、直ちに硫酸水素テトラブチルアンモニウム、48%水酸化ナトリウム水溶液を添加し、80℃の温度で、18時間攪拌し反応を行った他は、実施例1と同様にして実験を行ったところ、褐色塊状の物質が得られた。この褐色塊状物質はエチレングリコールジメチルエーテルに溶解しなかったためHPLC分析を行うことができず、また、固形であるため粘度も測定することができなかった。
(Comparative Example 1)
Epichlorohydrin, toluene, water, and 3,3'-diaminodiphenyl ether are charged into a four-necked flask equipped with a thermometer, condenser, and stirrer, and immediately followed by tetrabutylammonium hydrogen sulfate and 48% sodium hydroxide aqueous solution. Was added, and the reaction was conducted by stirring for 18 hours at a temperature of 80 ° C., and an experiment was conducted in the same manner as in Example 1. As a result, a brown lumpy substance was obtained. Since this brown lump was not dissolved in ethylene glycol dimethyl ether, HPLC analysis could not be performed, and since it was solid, viscosity could not be measured.
   (参照例1)
 実施例2で得られたエポキシ化合物100重量部に対し、硬化剤として、m-キシリレンジアミン(東京化成工業(株)製)60重量部を均一に混合して液状組成物を調製した。この液状組成物を、減圧下攪拌することで脱泡し、テフロン(登録商標)製の型に注入し、室温で16時間以上養生した後、60℃で2時間加熱して硬化させ、試験片とした。この試験片を用いて、引張り試験、硬さ測定を行った。試験方法はそれぞれ、JIS K 6911-1995 熱硬化性プラスチック一般試験方法、5.18引張強さ、5.16硬さに従った。また、引張り試験において、上述した引張強さを測定するとき、5%ひずみ時の引張応力を弾性率(単位:MPa)として求めると共に、試験片が破断したときの伸び(単位:mm)を測定した。ただし、引張り試験に供した試験片は、JIS K 6911-1995の5.18.2(2)図31記載の形状とし、硬度計には、ASKER TYPE D(高分子計器(株))を用いた。
(Reference Example 1)
A liquid composition was prepared by uniformly mixing 60 parts by weight of m-xylylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) as a curing agent with 100 parts by weight of the epoxy compound obtained in Example 2. This liquid composition was defoamed by stirring under reduced pressure, poured into a Teflon (registered trademark) mold, cured at room temperature for 16 hours or more, then cured by heating at 60 ° C. for 2 hours, and a test piece. It was. Using this test piece, a tensile test and a hardness measurement were performed. The test methods were in accordance with JIS K 6911-1995 General Test Methods for Thermosetting Plastics, 5.18 Tensile Strength, and 5.16 Hardness, respectively. Further, in the tensile test, when measuring the tensile strength described above, the tensile stress at 5% strain is obtained as an elastic modulus (unit: MPa) and the elongation (unit: mm) when the test piece is broken is measured. did. However, the specimen used for the tensile test has the shape described in 5.18.2 (2) FIG. 31 of JIS K 6911-1995, and ASKER TYPE D (Polymer Keiki Co., Ltd.) is used as the hardness meter. It was.
 参照例1の硬化物は、引張強さが83.4MPa、試験片が破断したときの伸びが4.6mm、弾性率(5%ひずみ時引張応力)が47.5MPa、硬度が83であった。 The cured product of Reference Example 1 had a tensile strength of 83.4 MPa, an elongation at break of the test piece of 4.6 mm, an elastic modulus (tensile stress at 5% strain) of 47.5 MPa, and a hardness of 83. .
   (参照例2)
 参照例1におけるエポキシ化合物を、テトラグリシジルジアミノジフェニルメタン(商品名:MY721、HUNTSMAN社製)に変更した以外は、参照例1と同様にして硬化物を作成し、その引張り試験および硬さ試験を行った。参照例2の硬化物の引張強さは、33.6MPa、試験片が破断したときの伸びは3.7mm、弾性率(5%ひずみ時引張応力)は26.6MPa、硬度は、82であった。
(Reference Example 2)
A cured product was prepared in the same manner as in Reference Example 1 except that the epoxy compound in Reference Example 1 was changed to tetraglycidyldiaminodiphenylmethane (trade name: MY721, manufactured by HUNTSMAN), and a tensile test and a hardness test were performed. It was. The cured product of Reference Example 2 had a tensile strength of 33.6 MPa, an elongation of 3.7 mm when the test piece broke, an elastic modulus (tensile stress at 5% strain) of 26.6 MPa, and a hardness of 82. It was.
 参照例1の硬化物は、硬度は参照例2と同等である一方、引張強さは2.5倍以上高く、試験片が破断したときの伸びが20%以上高く、また、弾性率(5%ひずみ時引張応力)が1.5倍以上高くなった。 While the cured product of Reference Example 1 has the same hardness as Reference Example 2, the tensile strength is 2.5 times or higher, the elongation when the test piece breaks is 20% or higher, and the elastic modulus (5 % Strain tensile stress) increased 1.5 times or more.
   (参照例3)
 参照例1におけるエポキシ化合物を、参考例1で得られたN,N,N’,N’-テトラグリシジル-3,4’-ジアミノジフェニルエーテルに変更した以外は、参照例1と同様にして硬化物を作成し、その引張り試験および硬さ試験を行った。参照例3の硬化物の引張強さは、85.6MPa、試験片が破断したときの伸びは5.6mm、弾性率(5%ひずみ時引張応力)は35.9MPa、硬度は、83であった。
(Reference Example 3)
A cured product as in Reference Example 1 except that the epoxy compound in Reference Example 1 was changed to N, N, N ′, N′-tetraglycidyl-3,4′-diaminodiphenyl ether obtained in Reference Example 1. Were prepared and subjected to a tensile test and a hardness test. The cured product of Reference Example 3 had a tensile strength of 85.6 MPa, an elongation of 5.6 mm when the test piece broke, an elastic modulus (tensile stress at 5% strain) of 35.9 MPa, and a hardness of 83. It was.
 参照例1の硬化物は、参照例3と比べ、弾性率(5%ひずみ時引張応力)が30%以上高くなると共に、引張強さ、引張破断伸び及び硬度がほぼ同じレベルであった。 The cured product of Reference Example 1 had a modulus of elasticity (tensile stress at 5% strain) of 30% or more higher than that of Reference Example 3, and the tensile strength, tensile elongation at break and hardness were almost the same level.

Claims (11)

  1.  下記式(1)で示されるエポキシ化合物。
    Figure JPOXMLDOC01-appb-C000001
    @0015
    An epoxy compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    @ 0015
  2.  前記式(1)で示されるエポキシ化合物からなる二量体の含有量が10%以下である請求項1に記載のエポキシ化合物。 The epoxy compound according to claim 1, wherein the content of the dimer composed of the epoxy compound represented by the formula (1) is 10% or less.
  3.  前記式(1)で示されるエポキシ化合物の化学純度が75%以上である請求項1または2に記載のエポキシ化合物。 The epoxy compound according to claim 1 or 2, wherein the chemical purity of the epoxy compound represented by the formula (1) is 75% or more.
  4.  下記式(2)で示される化合物と、エピハロヒドリンとを反応させる付加反応工程と、該反応混合物をアルカリで処理する環化反応工程から得られる、下記式(1)で示されるエポキシ化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    @0016
    Figure JPOXMLDOC01-appb-C000003
    @0017
    A method for producing an epoxy compound represented by the following formula (1) obtained from an addition reaction step for reacting a compound represented by the following formula (2) with epihalohydrin and a cyclization reaction step for treating the reaction mixture with an alkali .
    Figure JPOXMLDOC01-appb-C000002
    @ 0016
    Figure JPOXMLDOC01-appb-C000003
    @ 0017
  5.  前記付加反応工程により、下記式(3)で示されるエポキシ化合物前駆体を生成し、これを環化することを特徴とする請求項4に記載のエポキシ化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    @0018
    (式中、Xはハロゲンを表す。)
    The method for producing an epoxy compound according to claim 4, wherein an epoxy compound precursor represented by the following formula (3) is produced by the addition reaction step and cyclized.
    Figure JPOXMLDOC01-appb-C000004
    @ 0018
    (In the formula, X represents halogen.)
  6.  前記付加反応工程において、温度を40~120℃で実施することを特徴とする請求項4または5に記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to claim 4 or 5, wherein the addition reaction step is carried out at a temperature of 40 to 120 ° C.
  7.  前記付加反応工程において、プロトン性溶媒を含む溶媒中で、式(2)で示される化合物と、エピハロヒドリンとを反応させることを特徴とする請求項4,5または6に記載のエポキシ化合物の合成方法。 The method for synthesizing an epoxy compound according to claim 4, 5 or 6, wherein in the addition reaction step, the compound represented by the formula (2) is reacted with epihalohydrin in a solvent containing a protic solvent. .
  8.  前記ヒドロキシル基含有化合物が、水、アルコール類、有機酸、無機酸、フェノール類から選ばれる少なくとも1種の化合物であることを特徴とする請求項7に記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to claim 7, wherein the hydroxyl group-containing compound is at least one compound selected from water, alcohols, organic acids, inorganic acids, and phenols.
  9.  前記プロトン性溶媒が、ヒドロキシル基含有化合物であることを特徴とする請求項7に記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to claim 7, wherein the protic solvent is a hydroxyl group-containing compound.
  10.  前記環化反応工程において、相間移動触媒を用いることを特徴とする請求項4~9のいずれかに記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to any one of claims 4 to 9, wherein a phase transfer catalyst is used in the cyclization reaction step.
  11.  前記相関移動触媒が、第四級アンモニウム塩および/または第四級ホスホニウム塩であることを特徴とする請求項10に記載のエポキシ化合物の製造方法。 The method for producing an epoxy compound according to claim 10, wherein the phase transfer catalyst is a quaternary ammonium salt and / or a quaternary phosphonium salt.
PCT/JP2012/069355 2011-08-11 2012-07-30 High-purity epoxy compound and method for producing same WO2013021851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011176063 2011-08-11
JP2011-176063 2011-08-11

Publications (1)

Publication Number Publication Date
WO2013021851A1 true WO2013021851A1 (en) 2013-02-14

Family

ID=47668363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069355 WO2013021851A1 (en) 2011-08-11 2012-07-30 High-purity epoxy compound and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2013021851A1 (en)
TW (1) TW201311653A (en)
WO (1) WO2013021851A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193980A (en) * 2012-03-19 2013-09-30 Toray Fine Chemicals Co Ltd Low viscosity epoxy compound, and method for producing the same
CN107207408A (en) * 2015-02-13 2017-09-26 东丽精细化工株式会社 With N, the manufacture method of the compound of double (chloropropyl of the 2 hydroxyl 3) amino of N
CN110845704A (en) * 2019-11-07 2020-02-28 江苏泰特尔新材料科技有限公司 Preparation process of high-temperature-resistant glycidylamine epoxy resin
US11319404B2 (en) * 2018-08-08 2022-05-03 Teijin Limited Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production methods for these
CN115960021A (en) * 2023-02-09 2023-04-14 胜利油田物华化工厂 Thickened oil viscosity reducer for improving crude oil recovery efficiency and synthesis method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116496495A (en) * 2022-01-18 2023-07-28 闽都创新实验室 Crown ether group covalent organic polymer and light-assisted lithium battery cell device thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973577A (en) * 1982-10-19 1984-04-25 Mitsubishi Petrochem Co Ltd Preparation of polyepoxy compound
JPS6351363A (en) * 1986-08-21 1988-03-04 Tekukemu:Kk Production of amino group-containing diphenyl compound
CN102031082A (en) * 2010-12-10 2011-04-27 东华大学 Benzimidazole diamine curing type epoxy adhesive and preparation method thereof
WO2011118106A1 (en) * 2010-03-23 2011-09-29 東レ株式会社 Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973577A (en) * 1982-10-19 1984-04-25 Mitsubishi Petrochem Co Ltd Preparation of polyepoxy compound
JPS6351363A (en) * 1986-08-21 1988-03-04 Tekukemu:Kk Production of amino group-containing diphenyl compound
WO2011118106A1 (en) * 2010-03-23 2011-09-29 東レ株式会社 Epoxy resin composition for use in a carbon-fiber-reinforced composite material, prepreg, and carbon-fiber-reinforced composite material
CN102031082A (en) * 2010-12-10 2011-04-27 东华大学 Benzimidazole diamine curing type epoxy adhesive and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193980A (en) * 2012-03-19 2013-09-30 Toray Fine Chemicals Co Ltd Low viscosity epoxy compound, and method for producing the same
CN107207408A (en) * 2015-02-13 2017-09-26 东丽精细化工株式会社 With N, the manufacture method of the compound of double (chloropropyl of the 2 hydroxyl 3) amino of N
CN107207408B (en) * 2015-02-13 2019-06-07 东丽精细化工株式会社 With N, the manufacturing method of the compound of bis- (2- hydroxyl -3- chloropropyl) amino of N-
US11319404B2 (en) * 2018-08-08 2022-05-03 Teijin Limited Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production methods for these
CN110845704A (en) * 2019-11-07 2020-02-28 江苏泰特尔新材料科技有限公司 Preparation process of high-temperature-resistant glycidylamine epoxy resin
CN115960021A (en) * 2023-02-09 2023-04-14 胜利油田物华化工厂 Thickened oil viscosity reducer for improving crude oil recovery efficiency and synthesis method thereof
CN115960021B (en) * 2023-02-09 2023-10-20 胜利油田物华化工厂 Thickened oil viscosity reducer for improving crude oil recovery ratio and synthesis method thereof

Also Published As

Publication number Publication date
TW201311653A (en) 2013-03-16
JPWO2013021851A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
WO2013021851A1 (en) High-purity epoxy compound and method for producing same
US8415490B2 (en) Epoxy compound and manufacturing method thereof
US8664413B2 (en) High-purity epoxy compound and method of producing thereof
JP2013193980A (en) Low viscosity epoxy compound, and method for producing the same
JP5843584B2 (en) Method for producing polyvalent glycidyl compound
WO2013089006A1 (en) Method for producing glycidylamine epoxy compound
EP3656799B1 (en) Epoxy resin, epoxy resin composition including same, and cured product using said epoxy resin composition
JP2012219081A (en) High purity diglycidyl amine epoxy compound and method for producing the same
JP2013185134A (en) Epoxy resin and manufacturing method therefor
JP2013075889A (en) High-purity epoxy compound and method of producing the same
JP2013184954A (en) Epoxy compound and method for production thereof
JP2013184955A (en) Epoxy compound and method for production thereof
JP6432791B2 (en) Method for producing 2-glycidyloxy-N, N-diglycidylaniline
JP6095620B2 (en) Epoxy resin having binaphthalene skeleton
WO2014162947A1 (en) Method for producing diglycidylamine-type epoxy compound
JP2009209117A (en) Epoxy compound, method for producing the same, epoxy resin composition and cured product thereof
US20150210660A1 (en) Alicyclic epoxy compound and method for producing same
JP2011213683A (en) Phthalimide structure-containing glycidyl ether compound and method for producing the same
JP6710662B2 (en) Method for producing thermoplastic polyhydroxyurethane resin
JP4671018B2 (en) Method for producing glycidyl 2-hydroxyisobutyrate
JP2016155891A (en) Production method for purified epoxy resin including bi-naphthalene skeleton
WO2016063957A1 (en) Decalin derivative and method for producing same
JP2015232093A (en) Method for producing polyfunctional glycidyl aniline-based epoxy compound
JP2006117554A (en) Method for producing allyl ether compound and the resultant allyl ether compound

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012538122

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821599

Country of ref document: EP

Kind code of ref document: A1