WO2013021640A1 - Electrode plate for electrochemical element, method for manufacturing electrode plate for electrochemical element, and electrochemical element - Google Patents

Electrode plate for electrochemical element, method for manufacturing electrode plate for electrochemical element, and electrochemical element Download PDF

Info

Publication number
WO2013021640A1
WO2013021640A1 PCT/JP2012/005049 JP2012005049W WO2013021640A1 WO 2013021640 A1 WO2013021640 A1 WO 2013021640A1 JP 2012005049 W JP2012005049 W JP 2012005049W WO 2013021640 A1 WO2013021640 A1 WO 2013021640A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
electrode
active material
alloy
electrode lead
Prior art date
Application number
PCT/JP2012/005049
Other languages
French (fr)
Japanese (ja)
Inventor
古結 康隆
心 原口
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013021640A1 publication Critical patent/WO2013021640A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode plate for an electrochemical element, a method for manufacturing the same, and an electrochemical element, and more particularly, to an improved bonding state between an electrode plate and an electrode lead.
  • lithium ion secondary batteries and nickel metal hydride storage batteries have high capacity and energy density, and are easy to reduce in size and weight. Therefore, mobile phones, personal digital assistants (PDAs), notebook personal computers, etc. It is widely used as a power source for various electronic devices such as computers, video cameras, and portable game machines.
  • Such electrochemical devices such as secondary batteries and capacitors have a pair of electrode plates with different polarities inside, and the electrode plates are electrically connected via external terminals such as sealing plates and electrode leads. Connected to.
  • the electrode plate usually has a structure in which active material layers are formed on both surfaces of a metal foil as a current collector.
  • the electrode plate having such a structure is provided with a current collector exposed portion on which an active material layer is not formed in order to connect strip-shaped metal pieces as electrode leads.
  • the electrical connection between the electrode plate and the electrode lead is conventionally performed by connecting the current collector and the electrode lead. This is because if it is attempted to connect the electrode plate and the electrode lead through the active material layer, it is difficult to ensure sufficient electrical connection.
  • the current collector exposed portion (that is, the uncoated portion of the active material layer) is prepared without applying the electrode slurry containing the active material, or formed after the electrode slurry is applied, for example. It is produced by removing a part of the film.
  • alloy-based active materials include silicon-containing active materials such as silicon, silicon alloys, and silicon compounds.
  • the active material layer containing an alloy-based active material can also be formed by depositing the active material in a film form on the surface of the current collector by a vapor phase method other than the method using the electrode slurry.
  • a vapor phase method other than the method using the electrode slurry.
  • Patent Document 1 discloses a negative electrode in which a communication hole penetrating the laminated body in the thickness direction is formed by irradiating a laser on a laminated body of a negative electrode plate having an active material layer formed by a vapor phase method or the like and a negative electrode lead. Disclosure. When the laminated body is irradiated with laser, the negative electrode current collector and the negative electrode lead existing on the inner surface of the communication hole are melted and brought into contact with each other, thereby connecting the negative electrode current collector and the negative electrode lead.
  • Patent Document 2 discloses a negative electrode in which a negative electrode lead made of copper, a copper alloy, or a copper clad material is joined to the surface of a deposited film containing an alloy-based active material by resistance welding.
  • Patent Document 3 discloses arc welding of a contact portion between a negative electrode active material layer formed by a vapor phase method and a negative electrode lead.
  • the active material layer is formed by the vapor phase method, unlike the case of using the electrode slurry, it is substantially impossible to form the current collector exposed portion by partially removing the formed active material layer. is there. Further, in order to form the current collector exposed portion by not partially forming the active material layer, for example, it is necessary to mask the formation region of the lead connection portion in the step of depositing the active material such as vacuum evaporation. is there. However, such a mask operation becomes very complicated in terms of the process. That is, in the case of a deposited film, it is difficult to form the current collector exposed portion on the current collector surface.
  • the negative electrode current collector or the negative electrode lead may locally melt, but the negative electrode active material layer of the alloy-based active material Since almost no current flows through the negative electrode active material layer, the negative electrode active material layer does not melt. For this reason, it is difficult to sufficiently join the negative electrode current collector and the negative electrode lead by resistance welding.
  • Patent Document 3 a current collector in which an active material layer containing a silicon-containing active material formed by a vapor phase method is formed on both sides, and nickel, copper, or A method of connecting the electrode lead containing the alloy etc. by arc welding was proposed.
  • the active material layer and the electrode lead are overlapped, and the end of the overlapped portion is arc-welded.
  • the active material is melted together with a part of each of the current collector and the electrode lead to form a silicon-containing alloy, and a solidified portion is formed by re-solidification.
  • the silicon-containing alloy layer is formed between the current collector and the electrode lead, the current collector and the electrode lead are connected with good conductivity.
  • FIG. 7a is a schematic cross-sectional view showing a melted portion formed at one end of an electrode plate containing an alloy-based active material by arc welding
  • FIG. 7b is a melt formed at one end of the electrode plate of FIG. 7a.
  • It is a schematic front view which shows a part.
  • the electrode plate body 101 including the current collector 110 and an active material layer 111 containing an alloy-based active material such as a silicon-containing active material formed on both surfaces of the current collector 110 The electrode lead 113 is disposed so as to overlap the surface, and one end of the electrode plate body 101 and one end of the electrode lead 113 are arc-welded.
  • a melted portion 118 is formed in the welded region, and the current collector 110 of the electrode plate body 101 and the electrode lead 113 are connected via the melted portion 118.
  • the present inventors have found the following new problem when using arc welding.
  • the electrode plate body containing an alloy-based active material such as a silicon-containing active material is welded to the electrode lead, a molten part is formed at the welded portion, that is, at the end of the portion where the electrode plate body and the electrode lead are overlapped. Is done.
  • the thickness of the melted portion becomes larger than necessary, and becomes greater than the thickness of the obtained electrode plate (that is, the total thickness of the electrode plate main body and the electrode lead).
  • the dimensions and shape of the electrode group may be out of specification, or the electrode plate and separator The distance from the polar electrode plate may increase.
  • An object of the present invention is to provide an electrochemical device capable of suppressing deformation of an electrode group due to a melted portion and a short circuit in an electrochemical element while electrically connecting an electrode plate body to an electrode lead through a melted portion at one end thereof. It is providing a device electrode plate, a method for producing the same, and an electrochemical device.
  • One aspect of the present invention is an electrode plate body including a laminate of a strip-shaped current collector containing a metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material.
  • An electrode lead including a metal disposed on a part of the surface, and at one end of the electrode plate main body, the electrode plate main body and the electrode lead are provided with a melting portion that electrically connects the melting portion to the electrode plate.
  • the present invention relates to an electrode plate for an electrochemical element having a flat portion parallel to the surface of a main body.
  • an electrode plate body including a laminate of a strip-shaped current collector containing a metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material.
  • Step A Step B in which the electrode lead is disposed so that one end of the electrode plate body and one end of the electrode lead containing metal are close to a part of the surface of the active material layer, and the adjacent electrode plate At one end of the main body and one end of the electrode lead, by melting a welding region including the end surface of the electrode plate main body and the end surface of the electrode lead, a melting portion that electrically connects the electrode plate main body and the electrode lead is provided.
  • An electrode plate for an electrochemical device comprising: a step C of forming; and a step D of compressing the melted portion in a direction perpendicular to the surface of the electrode plate body to form a flat portion parallel to the surface of the electrode plate body. It relates to the manufacturing method.
  • Still another aspect of the present invention is the above-described electrode plate for an electrochemical element as a first electrode, a second electrode having a polarity opposite to the first electrode, and between the first electrode and the second electrode.
  • the present invention relates to an electrochemical element including a separator interposed between the two.
  • the electrode plate main body is electrically connected to the electrode lead through the melting portion at one end thereof, and the melting portion has a flat portion parallel to the surface of the electrode plate main body. Therefore, it is possible to suppress deformation of the electrode group due to the melting part and short circuit in the electrochemical element.
  • FIG. 1a is a schematic cross-sectional view showing a configuration of an electrode plate for an electrochemical element according to an embodiment of the present invention.
  • FIG. 1b is a schematic front view showing the configuration of the electrode plate for an electrochemical element in FIG. 1a.
  • FIG. 2 a is a schematic cross-sectional view showing an electrode plate main body and electrode leads arranged in a welding jig in the method for manufacturing an electrode plate for an electrochemical element according to an embodiment of the present invention.
  • FIG. 2B is a schematic cross-sectional view for explaining a step of forming a flat portion in the melted portion in the method for manufacturing an electrode plate for an electrochemical element according to one embodiment of the present invention.
  • FIG. 1a is a schematic cross-sectional view showing a configuration of an electrode plate for an electrochemical element according to an embodiment of the present invention.
  • FIG. 1b is a schematic front view showing the configuration of the electrode plate for an electrochemical element in FIG. 1a.
  • FIG. 2 a is a schematic
  • FIG. 3 is a longitudinal sectional view schematically showing a configuration of a lithium ion battery as an electrochemical element according to an embodiment of the present invention.
  • FIG. 4 is a side view schematically showing the configuration of an electron beam evaporation apparatus for forming an active material layer containing an alloy-based active material.
  • FIG. 5A is a schematic perspective view for explaining a method for preparing a sample for measuring the bonding strength between the electrode plate body and the electrode lead.
  • FIG. 5B is a schematic perspective view for explaining the state of a sample for measuring the bonding strength between the electrode plate main body and the electrode lead.
  • FIG. 6 is a schematic perspective view for explaining a method of measuring the bonding strength between the electrode plate main body and the electrode lead.
  • FIG. 7 a is a schematic cross-sectional view showing a melted portion formed at one end of an electrode plate containing an alloy-based active material by arc welding.
  • FIG. 7b is a schematic front view showing a melting portion formed at one end of the electrode plate of FIG. 7a.
  • the electrode plate for an electrochemical element of the present invention includes an electrode plate main body including a laminate of a strip-shaped current collector containing a metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material, An electrode lead including a metal disposed on a part of the surface of the active material layer, and a melting portion that electrically connects the electrode plate main body and the electrode lead are provided at one end of the electrode plate main body. And a fusion
  • melting part has a flat part parallel to the surface (namely, surface which an electrode plate main body and a negative electrode lead oppose) of an electrode plate main body.
  • the present inventors do not join the electrode plate main body and the electrode lead at the current collector exposed portion, but instead of the electrode plate main body and the electrode lead through the active material layer containing the alloy-based active material of the electrode plate main body. Attention was paid to the structure of joining the two. And as shown in patent document 3, the method which joins the electrode plate main body which has an active material layer containing an alloy type active material, and an electrode lead by arc welding in the both ends of both was discovered. According to this method, not only the current collector and electrode lead of the electrode plate main body are melted, but also the alloy-based active material contained in the active material layer of the electrode plate main body is melted, and the molten components are alloyed. It progresses and a melting part is formed. Thereby, although the electrode plate body and the electrode lead are joined through the active material layer containing the alloy-based active material, the electrode plate body and the electrode lead are joined firmly and with good conductivity.
  • the joining method by arc welding first, the surface of a part of the active material layer containing the alloy-based active material of the electrode plate body so that one end portion of the electrode plate body and one end portion of the electrode lead containing metal are close to each other.
  • An electrode lead is disposed on the surface.
  • the electrode plate main body and the electrode lead are sandwiched with a welding jig so that the welding region including the end surface of the electrode plate main body and the end surface of the electrode lead is exposed at one end of both the electrode plate main body and the electrode lead.
  • the welding region is melted to form a melted portion that electrically connects the electrode plate body and the electrode lead.
  • the formed melted portion includes at least an alloy of an alloy-based active material and a metal component constituting the electrode lead.
  • the size of the melted part tends to be larger than necessary.
  • the alloy-based activity present at the interface with the electrode lead is used. It is necessary to heat to a temperature at which a component containing an alloyable element such as silicon contained in the substance melts (1414 ° C. in the case of silicon).
  • the bonding strength between the electrode lead and the electrode plate body can be increased.
  • the size of the melted part becomes large, when producing a laminated or wound electrode group using an electrode plate, the size of the electrode group becomes large or the shape becomes distorted. Prone. Moreover, the space
  • the electrode reaction becomes non-uniform, the electrode group is deformed due to deformation of the surrounding components by the melting part, or an internal short circuit due to damage to the separator. Inconvenience occurs.
  • the melted part is formed wide in the width direction of the electrode plate body or when a plurality of melted parts are formed, the shape and dimensions of the melted part are not uniform, and the above disadvantages may become more prominent. is there.
  • the inventors of the present invention are capable of plastic deformation of the melted part, and can form a flat part parallel to the surface of the electrode plate body by shaping the melted part. It has been found that inconvenience can be suppressed.
  • the electrode plate of the present invention is used, the electrode group can be reliably and stably wound by winding without deforming the components around the melting portion or short-circuiting the electrode plate and the electrode plate of the opposite polarity. Can be formed.
  • Such a flat portion can be formed by flattening the protruding portion of the melted portion in the thickness direction of the electrode plate body. Even if such a flat portion is formed in the melted portion, it is only plastically deformed, so that the joining region between the melted portion, the electrode plate body, and the electrode lead is not deformed. Furthermore, since there is no change in the composition of the melted portion, there is no change in bonding strength, and the electrode plate body and the electrode lead can be electrically connected with high bonding strength.
  • the electrode plate main body and the electrode lead can be bonded with high bonding strength in spite of using the alloy-based active material, the effect of the alloy-based active material can be easily obtained, and a high capacity and output can be obtained. Thereby, battery performance, such as cycling characteristics, can be improved. Even when the active material layer is a deposited film formed by a vapor phase method, a high bonding strength between the electrode plate main body and the electrode lead without going through a complicated process of providing a current collector exposed portion Is obtained.
  • FIG. 1a is a schematic cross-sectional view showing a configuration of an electrode plate for an electrochemical element according to an embodiment of the present invention.
  • FIG. 1 b is a front view schematically showing a configuration of the electrode plate for an electrochemical element in FIG. 1.
  • the electrode plate body 1 includes a laminate of a strip-shaped current collector 10 containing a metal, such as a metal foil, and an active material layer 11 containing an alloy-based active material formed on both surfaces of the current collector 10. .
  • the active material layer 11 is formed over the entire surface of the current collector 10.
  • An electrode lead 13 containing a metal such as a metal foil is adjacent to one end of the electrode plate main body 1 and one end of the electrode lead 13 on a part of the surface of one active material layer 11 of the electrode plate main body 1.
  • a melting part 17 containing an alloy of the constituent components of the electrode plate main body 1 and the metal component of the electrode lead 13 is formed.
  • the melting part 17 physically connects and electrically joins the electrode plate body 1 and the electrode lead 13 at one end of the electrode plate body 1.
  • the electrode lead 13 is connected to an external terminal or the like.
  • the electrode plate body 1 and the electrode lead 13 are overlapped so that one end portion in the longitudinal direction of the electrode plate body 1 and one end portion in the short direction of the electrode lead 13 are close to each other. Is arranged.
  • the melting part 17 is formed at one end of the electrode plate body 1 in the longitudinal direction.
  • the melting part 17 has a first flat part 17a and a second flat part 17b parallel to the surface of the electrode plate body 1.
  • the second flat portion 17b is formed on the side opposite to the first flat portion 17a.
  • Such a flat part is obtained by flattening a portion protruding in the thickness direction of the electrode plate body of the melted part formed by melting the components of the electrode plate body and the electrode lead by welding or the like by compression or the like. It is formed by. That is, by compressing and deforming the melted portion, the melted portion has a shape in which the region protruding beyond the total thickness of the electrode plate body and the electrode lead of the melted portion is regulated in the thickness direction of the electrode plate body. Have.
  • the deformation equivalent amount of the melted part due to compression is the width direction and / or the length direction of the melted part (in particular, the electrode plate It projects in the length direction opposite to the main body side).
  • the melting part 17 of FIG. 1b has shown the mode that it protrudes in the length direction (direction parallel to the longitudinal direction of an electrode plate main body) of a fusion
  • the melting part does not necessarily have a first flat part and a second flat part as shown in FIG. 1a, and 1 is provided on either the electrode lead side of the melting part or the opposite side of the electrode lead.
  • the flat portion only needs to be generally parallel to the surface of the electrode plate body, and the angle formed between the normal line of the flat portion and the normal line of the surface of the electrode plate body may be 20 ° or less. If it is such an angle, the deformation
  • the flat portion does not necessarily have to be a flat surface as a whole, and may have a gentle curved surface or unevenness in part.
  • the thickness t of the melting part 17 in the thickness direction of the electrode plate body 1 is equal to or greater than the total thickness T of the electrode plate body 1 and the electrode lead 13.
  • the flat part is formed in the fusion
  • melting part is the distance between a 1st flat part and a 2nd flat part.
  • the ratio t / T between the thickness t of the melted portion in the thickness direction of the electrode plate body and the total thickness T of the electrode plate body and the electrode lead is preferably 1 or more or greater than 1.
  • the ratio t / T is preferably 1.3 or less, more preferably 1.2 or less. These lower limit value and upper limit value can be appropriately selected and combined.
  • the ratio t / T may be, for example, 1 to 1.3 or 1 to 1.2.
  • the melting part electrically connects the electrode plate main body including the current collector and the electrode lead, and joins the electrode plate main body and the electrode lead.
  • the length of the melted portion (in FIGS. 1a and 1b, the length protruding in the longitudinal direction of the electrode plate body in the direction opposite to the electrode plate body) is preferably 1 mm or less, for example.
  • the width of the melted portion (in FIGS. 1a and 1b, the width of the melted portion in the direction parallel to the width direction of the electrode plate body) is substantially the same as or smaller than the width of the electrode plate body.
  • the projecting amount is 1 mm or less. It is desirable that
  • the melting part usually includes an alloy of the constituent components of the electrode plate body and the metal components of the electrode lead.
  • As a component of the electrode plate main body in addition to the alloy-based active material, when the metal component of the current collector and the active material layer include a metal component as a conductive material, the metal component as the conductive material and the like can be mentioned. .
  • the melted portion preferably includes at least an alloy of the alloy-based active material and the metal component of the electrode lead.
  • the melted portion may include an alloy of an alloy-based active material, a conductive material and / or a metal component of a current collector, and a metal component of an electrode lead.
  • the melted portion may include a region where the elements constituting the alloy-based active material, the constituent elements of the electrode plate body such as the metal component of the current collector, and the metal elements contained in the electrode lead are uniformly dispersed. it can.
  • Such a melted portion has good conductivity, and can more effectively electrically connect the electrode plate body and the electrode lead. Therefore, the electrode plate having such a melted portion is advantageous in that it can have both high strength bondability between the electrode plate main body and the electrode lead and good current collecting performance.
  • the melting portion may be formed in a continuous band shape so as to cover most of the end surface in the width direction (short direction) at one end portion of the electrode plate body, or may be formed intermittently like a spot. May be.
  • at least one melting part may be formed at one end of the electrode plate body, and the number of melting parts that may form two or more melting parts is not limited to one or two, for example, There may be three or more.
  • the weld strength can be further increased by forming the melted portion continuously in a strip shape or the like at one end of the electrode plate body or by forming a plurality of melted portions.
  • the electrode plate body and the electrode lead are joined with the width direction (short direction) of the electrode plate body and the longitudinal direction of the electrode lead aligned as shown in FIG. It is preferable to form a plurality of melted parts.
  • a melted part is formed continuously or a plurality of melts are formed.
  • one melting part may be formed in a spot shape.
  • the electrode plate of the present invention is useful as an electrode plate for various electrochemical elements because the electrode lead and the electrode plate main body are firmly joined by the melting part.
  • a high bonding strength can be obtained between the electrode plate main body and the electrode lead by forming the melted portion.
  • the bonding strength between the electrode lead and the electrode plate body is, for example, 0.5 N / mm or more, preferably 1 N / mm or more, and more preferably 1.5 N / mm or more.
  • the bonding strength is, for example, 50 N / mm or less, 10 N / mm or less, or 5 N / mm or less. These lower limit value and upper limit value can be appropriately selected and combined.
  • the bonding strength may be, for example, 0.5 to 50 N / mm or 1 to 5 N / mm. It is desirable to appropriately select the number and width of the melted portions and the welding conditions so that the joining strength is in such a range.
  • the bonding strength can be obtained as follows. First, one end of the electrode plate body and one end of the electrode lead are overlapped with both end faces aligned and close together, and the welded area including both end faces is melted by welding or the like to form a melted portion. To join. Next, the other end of the electrode plate body and the other end of the electrode lead are set in a tensile strength measuring instrument, pulled at a predetermined speed in a direction in which both other ends are separated, and the tensile strength ( N) is measured. Then, by dividing by the width of the joint portion (joint width) (mm), the joint strength can be obtained as the tensile strength per 1 mm of the joint width.
  • joining width is the width
  • the electrochemical element includes the above-described electrode plate for an electrochemical element as a first electrode, a second electrode having a polarity opposite to the first electrode, and a separator interposed between the first electrode and the second electrode.
  • the electrochemical element in which the electrode plate is used include a battery and a capacitor (for example, an electric double layer capacitor) having a current collecting structure similar to that of the secondary battery.
  • the battery include primary batteries such as alkaline dry batteries and lithium primary batteries, alkaline secondary batteries such as nickel hydride storage batteries, and secondary batteries such as non-aqueous electrolyte secondary batteries (such as lithium ion secondary batteries).
  • the electrode plate main body included in the electrode plate includes a laminate of a current collector containing metal and an active material layer formed on the surface and containing an alloy-based active material.
  • the type of metal contained in the electrode lead, the metal contained in the current collector, and the active material can be either the type of electrochemical element or the type of electrode on which the electrode plate is used (positive electrode (or anode) or negative electrode (or cathode)). )) And so on. If the molten part is formed by alloying the metal component of the electrode lead and at least the active material (preferably the active material and the metal component of the current collector), it is included in the electrode lead that can be alloyed What is necessary is just to select suitably the combination of the metal and the metal contained in an active material or an electrical power collector.
  • Examples of the metal contained in the electrode lead include copper, copper alloy, nickel, nickel alloy, aluminum, aluminum alloy, silver, silver alloy, gold, and gold alloy.
  • an alloyable element such as a metalloid element such as silicon contained in the alloy-based negative electrode active material in the molten portion and increasing the bonding strength
  • nickel and nickel alloy Copper, copper alloy or the like is preferable.
  • nickel alloys include alloys containing metalloid elements such as nickel-silicon alloys and nickel-tin alloys; alloys containing transition metal elements such as nickel-cobalt alloys, nickel-iron alloys and nickel-manganese alloys.
  • Copper alloys include alloys containing alkaline earth metal elements such as copper-beryllium alloys; alloys containing transition metal elements such as copper-zirconia alloys, copper-nickel alloys, copper-iron alloys, copper-silver alloys; copper- Examples include alloys containing typical metal elements such as aluminum alloys; alloys containing metalloid elements such as copper-phosphorus alloys, copper-silicon alloys, and copper-tin alloys. Of these alloys, copper-nickel alloys are preferred.
  • the metal component contained in the electrode lead is copper or a copper alloy.
  • the electrode lead an electrode lead using a clad material of copper and nickel is also preferable.
  • the electrode lead can be obtained by molding a material such as the above metal or alloy into a general lead form.
  • the metal contained in the current collector is selected according to the type of electrochemical element or the type of electrode, and examples thereof include copper, copper alloy, nickel, nickel alloy, aluminum, aluminum alloy, and stainless steel. Of these, copper or a copper alloy is preferable from the viewpoint of uniformly dispersing an alloyable element (such as a metalloid element such as silicon) contained in the alloy-based negative electrode active material.
  • an alloyable element such as a metalloid element such as silicon
  • the alloy-based active material means a substance containing an element that can be alloyed and dealloyed with ions (for example, lithium ions in a lithium ion battery) that are conductive carriers in an electrochemical element. Moreover, it is preferable that the alloy-based active material can be alloyed with the metal contained in the current collector and / or the electrode lead. Therefore, the alloy-based active material preferably contains, for example, Al, Zn and / or Mg and lithium in addition to silicon and / or tin as the above-mentioned element, depending on the type of electrochemical element.
  • the electrode plate of the present invention is particularly useful for use in non-aqueous electrolyte secondary batteries such as lithium ion batteries among electrochemical elements.
  • non-aqueous electrolyte secondary batteries such as lithium ion batteries among electrochemical elements.
  • the constituent elements of the electrochemical device will be described below by taking a nonaqueous electrolyte secondary battery as an example.
  • the nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and a nonaqueous electrolyte.
  • the electrode plate of the present invention is preferably used as a negative electrode.
  • the negative electrode includes a laminate of a current collector and an active material layer formed on the surface of the current collector.
  • the active material layer may be formed on one surface of the current collector, or may be formed on both surfaces.
  • Examples of the material of the negative electrode current collector include stainless steel, titanium, nickel, copper, and copper alloy.
  • the form of the negative electrode current collector is not particularly limited, and may be a nonporous metal foil, a sheet, a film, or the like, or may be porous.
  • the thickness of the negative electrode current collector can be selected from the range of 1 to 500 ⁇ m, for example, and is, for example, 1 to 50 ⁇ m, preferably 10 to 40 ⁇ m or 10 to 30 ⁇ m.
  • the negative electrode active material layer may be formed only of an alloy-based active material.
  • alloy-based active material other non-alloy-based active materials, binders, conductive agents, thickeners may be used as long as the characteristics are not impaired. Agents, known additives and the like.
  • the alloy-based active material occludes lithium by alloying with lithium at the time of charging and releases lithium by de-alloying at the time of discharge under a negative electrode potential.
  • Such an alloy-based active material is not particularly limited as an alloy-based active material, can be alloyed with a known material, for example, a metal component of an electrode lead, and reversibly occludes and releases lithium ions.
  • Various materials containing the element to be obtained can be used.
  • Such materials include silicon, silicon alloys, silicon compounds (silicon oxide SiO a , silicon carbide SiC b , silicon nitride SiN c, etc.), tin, tin alloys, tin compounds (tin oxide SnO a , SnO 2 ; tin carbide SnC b ; tin nitride SnN c ; SnSiO 3 , Ni 2 Sn 4 , Mg 2 Sn, etc.), lithium alloys containing Al, Zn and / or Mg, etc. in addition to these partially substituted or solid solutions Examples thereof include alloy materials.
  • the coefficient a is 0 ⁇ a ⁇ 2, preferably 0.05 ⁇ a ⁇ 1.95.
  • the coefficient b is 0 ⁇ b ⁇ 1.
  • the coefficient c is 0 ⁇ c ⁇ 4/3.
  • Examples of the silicon alloy include an alloy containing silicon and lithium, an alloy containing Al, Zn, and / or Mg in addition to silicon and lithium, and an alloy of silicon and a different element A1.
  • Examples of the different element A1 include at least one element selected from the group consisting of Mg, Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti.
  • the tin alloy examples include an alloy containing tin and lithium, an alloy containing tin, lithium, an alloy containing Al, Zn, and / or Mg, an alloy of tin and a different element A2, and the like.
  • the different element A2 include at least one element selected from the group consisting of Mg, Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, and Ti.
  • Specific examples of the tin alloy include Mg—Sn alloy, Ti—Sn alloy, Fe—Sn alloy, Ni—Sn alloy, Cu—Sn alloy and the like.
  • silicon, a silicon alloy, or a compound obtained by substituting a part of silicon contained in a silicon compound with a different element B1, tin, a tin alloy, or a part of tin contained in a tin compound is replaced with a different element B2.
  • Examples include substituted compounds.
  • the different element B1 is at least selected from the group consisting of B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn.
  • One element can be used.
  • the different element B2 is at least one selected from the group consisting of B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, and N. Two elements can be used.
  • alloy-based active materials can be used singly or in combination of two or more.
  • active materials containing silicon and / or tin are preferable, and silicon, silicon alloys, silicon compounds, and the like are particularly preferable.
  • a lithium foil or a lithium alloy foil may be attached to the surface of the negative electrode active material layer in the negative electrode active material layer. Lithium contained in the attached lithium foil or alloy foil is appropriately occluded in the negative electrode active material layer.
  • the electrode lead electrically connected to the negative electrode preferably contains copper or a copper alloy.
  • an electrode lead containing copper or a copper alloy and an electrode plate main body containing an alloy-based active material containing an element such as silicon or tin in the active material layer are welded at one end of the electrode plate main body so that the molten portion is It is formed.
  • the negative electrode current collector contains copper or a copper alloy as in the case of the electrode lead, as in the alloying of the active material and the metal component of the electrode lead, the current collector copper or copper alloy, Alloying with the active material, and hence the electrode lead, is likely to proceed.
  • the melted portion thus formed preferably contains an alloy of copper and silicon or tin.
  • the molten part contains an alloy of copper and silicon.
  • the composition of such an alloy is not particularly limited, but the alloy preferably contains Cu 5 Si.
  • the negative electrode active material layer can be formed using a negative electrode slurry containing an alloy-based active material, a binder and a dispersion medium.
  • the negative electrode slurry may further contain a thickener, a conductive material, a known additive and the like as necessary.
  • the negative electrode active material layer can be formed by preparing a negative electrode slurry containing these components and applying it to the surface of the negative electrode current collector. The coating film of the negative electrode slurry is usually dried and subjected to rolling.
  • binders various resin materials, for example, fluororesins (polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyhexafluoropropylene, etc.); polyolefin resins (polyethylene, polypropylene, etc.); polyamide resins such as aromatic polyamides, etc.
  • PVDF polyvinylidene fluoride
  • polyolefin resins polyethylene, polypropylene, etc.
  • polyamide resins such as aromatic polyamides, etc.
  • Polyimide resin such as polyimide and polyamideimide
  • acrylic resin such as polymethyl acrylate and ethylene-methyl methacrylate copolymer
  • polyvinyl pyrrolidone polyvinyl pyrrolidone
  • rubber-like material such as styrene-butadiene rubber, acrylic rubber or modified products thereof it can.
  • the ratio of the binder is, for example, 0.1 to 10 parts by mass, preferably 1 to 5 parts by
  • Examples of the dispersion medium contained in the negative electrode slurry include water; alcohols such as ethanol; ketones such as acetone and cyclohexanone; amides such as dimethylformamide, dimethylacetamide and methylformamide; N-methyl-2-pyrrolidone (NMP); dimethyl Examples thereof include amines such as amines; or mixed solvents thereof.
  • non-alloy active materials include carbonaceous materials such as natural or artificial graphite.
  • the amount of the non-alloy type active material is, for example, 30 parts by mass or less, preferably 10 parts by mass or less, per 100 parts by mass of the alloy type active material.
  • the conductive agent examples include carbon black; conductive fibers such as metal fibers and carbon fibers; metal powders such as aluminum; and carbon fluoride. These electrically conductive agents can be used individually by 1 type or in combination of 2 or more types. The ratio of the conductive agent is, for example, 0.1 to 7 parts by mass per 100 parts by mass of the active material.
  • the thickener examples include cellulose derivatives such as carboxymethyl cellulose (CMC); poly C 2-4 alkylene glycol such as polyethylene glycol.
  • CMC carboxymethyl cellulose
  • poly C 2-4 alkylene glycol such as polyethylene glycol.
  • the ratio of the thickener is, for example, 0.1 to 10 parts by mass per 100 parts by mass of the active material.
  • the negative electrode active material layer may be formed by depositing an alloy-based active material on the surface of the current collector to form a thin film of the negative electrode active material.
  • a vacuum evaporation method it is preferable to form a negative electrode active material layer by a vacuum evaporation method.
  • the active material layer is a deposited film of an alloy-based active material by a vapor phase method, a current collector exposed portion is provided as in the conventional method, and an electrode lead is joined to this current collector exposed portion. Difficult to do.
  • the electrode plate and the electrode lead can be joined by the melting portion, it is particularly effective when the active material layer is a deposited film.
  • Formation of the negative electrode active material layer by vacuum deposition can be performed, for example, as follows.
  • a current collector is disposed above the silicon target in the vertical direction.
  • the silicon target is irradiated with an electron beam to generate silicon vapor, and this silicon vapor is deposited on the surface of the negative electrode current collector.
  • a thin-film negative electrode active material layer made of silicon is formed on the surface of the current collector.
  • oxygen or nitrogen is supplied into the electron beam vacuum deposition apparatus, a negative electrode active material layer containing silicon oxide or silicon nitride is formed.
  • the negative electrode active material layer thus obtained is formed as a thin solid film, but is not limited thereto, and is formed by a gas phase method as a pattern shape such as a lattice or an aggregate of a plurality of columnar bodies. Also good.
  • Each of the plurality of columnar bodies contains an alloy-based active material, and is formed to extend outward from the surface of the negative electrode current collector and to be separated from each other.
  • the convex portions are regularly formed, the arrangement of the convex portions on the negative electrode current collector surface includes a grid-like arrangement, a lattice arrangement, a staggered arrangement, a close-packed arrangement, and the like. Further, the convex portion is formed on one surface or both surfaces in the thickness direction of the negative electrode current collector.
  • the height of the columnar body is preferably 3 ⁇ m to 30 ⁇ m.
  • the thickness of the negative electrode active material layer is, for example, 3 to 200 ⁇ m, preferably 5 to 100 ⁇ m.
  • the thickness of the negative electrode active material layer formed by deposition is, for example, 3 to 50 ⁇ m or 5 to 30 ⁇ m.
  • the negative electrode active material layer in a preferred form is an amorphous or low crystalline deposited film containing an alloy-based active material and having a thickness of 3 to 50 ⁇ m.
  • the positive electrode includes a current collector and an active material layer formed on the surface of the current collector.
  • the active material layer may be formed on one surface of a current collector (such as a belt-shaped or sheet-shaped current collector), or may be formed on both surfaces.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • the form and thickness of the positive electrode current collector are the same as those of the negative electrode current collector.
  • As the positive electrode current collector it is also preferable to use a porous material, and examples of the porous current collector include a mesh body, a net body, a punching sheet, a lath body, a porous body, a foam, and a nonwoven fabric. It can be illustrated.
  • the positive electrode active material layer may contain a binder, a conductive agent, a thickener and the like in addition to the positive electrode active material.
  • the positive electrode active material layer can be formed by the same method as in the case of forming a negative electrode active material layer using a negative electrode slurry using a positive electrode slurry containing these components.
  • As each component contained in a positive electrode slurry what was illustrated by the term of the negative electrode slurry can be used, and content of each component can be selected from the same range as the case of a negative electrode slurry.
  • As the conductive agent added to the positive electrode slurry graphite such as natural graphite or artificial graphite can be used in addition to those exemplified in the section of the negative electrode slurry.
  • the thickness of the positive electrode active material layer can be selected from the same range as the thickness of the negative electrode active material layer.
  • the positive electrode active material a known non-aqueous electrolyte secondary battery positive electrode active material can be used, and among these, lithium transition metal composite oxide, olivine type lithium phosphate and the like are preferably used.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the lithium transition metal composite oxide examples include a metal oxide containing lithium and a transition metal element, and a metal oxide in which a part of the transition metal element in such a metal oxide is substituted with a different element.
  • Specific examples of the transition metal element include Sc, Y, Cr, Mn, Fe, Co, Ni, and Cu.
  • the lithium transition metal composite oxide may contain one of these transition metal elements or a combination of two or more. Of these transition metal elements, Mn, Co and / or Ni are preferred.
  • the different elements include alkali metal elements, alkaline earth metal elements, typical metal elements, and semimetal elements. Specific examples of the different elements include Na, Mg, Zn, Al, Pb, Sb, and B.
  • the lithium transition metal composite oxide may contain one kind of these different elements or two or more kinds. Among the different elements, Mg and / or Al are preferable.
  • lithium transition metal composite oxides for example, Li l CoO 2, Li l NiO 2, Li l MnO 2, Li l Co m Ni 1-m O 2, Li l Co m A 1-m O n, Li l Ni 1-m A m O n , Li l Mn 2 O 4, Li l like Mn 2-m A n O 4 and the like.
  • A represents at least one element selected from the group consisting of the transition metal element and the heterogeneous element, and 0 ⁇ l ⁇ 1.2, 0 ⁇ m ⁇ 0.9, 2 ⁇ n ⁇ 2.
  • olivine type lithium phosphate examples include LiXPO 4 and Li 2 XPO 4 F.
  • X represents a transition metal element, for example, at least one element selected from the group consisting of Co, Ni, Mn and Fe.
  • the molar ratio of lithium is a value immediately after the production of the positive electrode active material, and increases or decreases due to charge / discharge.
  • the positive electrode further includes at least a positive electrode lead electrically connected to the current collector.
  • the positive electrode lead can be electrically connected to the current collector and the active material layer in the same manner as the electrode lead connection method in the negative electrode.
  • one end of the positive electrode lead is bonded to the current collector by resistance welding, ultrasonic welding, or the like.
  • the other end of the positive electrode lead is electrically connected to the positive electrode terminal. Examples of the material for the positive electrode lead include aluminum and aluminum alloys.
  • a sheet having a predetermined ion permeability, mechanical strength, insulation and the like can be used.
  • a porous sheet such as a resin microporous film, a woven fabric or a non-woven fabric.
  • a polyolefin resin such as polyethylene or polypropylene as the resin material constituting the separator.
  • the thickness of the separator is, for example, 10 to 300 ⁇ m, preferably 10 to 30 ⁇ m, and more preferably 10 to 25 ⁇ m.
  • the porosity of the separator is preferably 30 to 70%, more preferably 35 to 60%. The porosity is a percentage of the total volume of pores of the separator with respect to the volume of the separator.
  • a non-aqueous electrolyte having lithium ion conductivity is used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent as a solute (or supporting salt). At least the separator is impregnated with the nonaqueous electrolyte.
  • Non-aqueous solvents include cyclic carbonates such as propylene carbonate and ethylene carbonate (EC); chain carbonates such as diethyl carbonate, ethylmethyl carbonate (EMC) and dimethyl carbonate; cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone Examples thereof include carboxylic acid esters.
  • cyclic carbonates such as propylene carbonate and ethylene carbonate (EC); chain carbonates such as diethyl carbonate, ethylmethyl carbonate (EMC) and dimethyl carbonate
  • cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone Examples thereof include carboxylic acid esters.
  • lithium salt LiPF 6, LiSbF 6, LiAsF 6, LiBF 4, LiBCl 4, LiB 10 Cl 10, LiAlCl 4, LiClO 4, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, imidates [ LiN etc. (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2], halide (LiCl, LiBr, etc. LiI), boric acid salts, LiCF 3 CO 2, LiSCN, lower aliphatic carboxylic acid lithium, etc. Is mentioned.
  • a lithium salt can be used individually by 1 type or in combination of 2 or more types.
  • the concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.5 to 2 mol / L.
  • a known additive may be added to the nonaqueous electrolyte.
  • Additives that improve charge and discharge efficiency such as fluorine atom-containing cyclic carbonates (fluorinated ethylene carbonate, etc.) and cyclic carbonates with unsaturated bonds (vinylene carbonate, vinylethylene carbonate, divinylethylene carbonate, etc.)
  • An additive that inactivates a battery such as an aromatic compound such as cyclohexylbenzene, biphenyl, and diphenyl ether;
  • An additive can be used individually by 1 type or in combination of 2 or more types.
  • the nonaqueous electrolyte secondary battery can be manufactured by a known method according to the shape of the battery.
  • a positive electrode, a negative electrode, and a separator disposed between them are wound to form an electrode group, and the electrode group and the electrolyte can be accommodated in a battery case. .
  • the electrode group is not limited to a wound one, but may be a laminated one or a zigzag folded one.
  • the shape of the electrode group may be a cylindrical shape or a flat shape having an oval end surface perpendicular to the winding axis, depending on the shape of the battery or battery case.
  • aluminum As the battery case material, aluminum, an aluminum alloy (such as an alloy containing a trace amount of a metal such as manganese or copper), a steel plate, or the like can be used.
  • FIG. 3 is a longitudinal sectional view schematically showing a configuration of a lithium ion battery as an electrochemical element according to an embodiment of the present invention.
  • the lithium ion battery 25 has the same configuration as a conventional lithium ion battery except that the electrode plate for electrochemical elements of the present invention is included as the negative electrode 28.
  • the lithium ion battery 25 includes a bottomed cylindrical battery case 32, a wound electrode group 26 accommodated in the battery case 32, and a non-aqueous electrolyte (not shown), and the opening of the battery case 32 has a sealing plate. 34 is sealed.
  • the electrode group 26 is formed by laminating a belt-like positive electrode 27 and a belt-like negative electrode 28 with a belt-like separator 29 interposed therebetween, and winding one end portion in the longitudinal direction of the laminate. It is formed by winding around a rotation axis.
  • the electrode group 26 is housed inside the battery case 32 with the upper insulating plate 30 disposed on the upper surface and the lower insulating plate 31 disposed on the bottom surface.
  • the positive electrode lead 36 led out from the upper part of the electrode group 26 is electrically connected to a sealing plate 34 that seals the opening of the battery case 32 and supports the positive electrode terminal 33.
  • the negative electrode 28 includes a plurality of melts that electrically connect the electrode plate body 1 and the electrode lead 13, and the electrode plate body 1 and the negative electrode lead, each including a laminate of a current collector and an active material layer formed on both sides thereof.
  • the electrode lead 13 is led out from the electrode group 26 and is electrically connected to the inner bottom surface of the battery case 32.
  • the nonaqueous electrolyte is injected into the battery case 32 after the electrode group 26 is stored in a predetermined amount. After injecting the nonaqueous electrolyte, a sealing body 34 that supports the positive terminal 33 is inserted into the opening of the battery case 32.
  • the lithium ion battery 25 can be obtained by caulking and sealing the opening of the battery case 32 so as to be bent inward.
  • the upper insulating plate, the lower insulating plate, and the sealing plate are produced by molding an electrically insulating material, preferably a resin material, a rubber material, or the like into a predetermined shape.
  • the battery case and the positive terminal are produced by molding a metal material such as iron or stainless steel into a predetermined shape.
  • the shape or type of the nonaqueous electrolyte secondary battery is not particularly limited, and may be a square battery, a flat battery, a coin battery, a laminated film pack battery, or the like.
  • the wound electrode group is used in FIG. 3, the present invention is not limited to this, and a stacked electrode group, a flat electrode group, or the like may be used.
  • an electrochemical element such as a non-aqueous electrolyte secondary battery including the electrode plate of the present invention has a high capacity and a high output, and is excellent in battery performance such as output characteristics and cycle characteristics. Further, the electrode plate and the electrode lead are bonded to the melted portion more firmly and with high conductivity. On the other hand, since the flat part is formed in the melting part, it is possible to suppress a short circuit due to undesired deformation of the constituent elements of the electrode group around the melting part or damage to the separator. Thereby, the current collection performance of the electrode plate, the output characteristics of the battery, etc. are maintained at a high level over a long period of time. Therefore, the electrochemical element has a long service life.
  • the method for producing an electrode plate for an electrochemical element used as an electrode for a nonaqueous electrolyte secondary battery includes the following steps A to D.
  • a step of preparing an electrode plate body including a laminate of a band-shaped current collector containing a metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material (Ii) Step B of arranging the electrode lead so that one end of the electrode plate body and one end of the electrode lead containing metal are close to a part of the surface of the active material layer, (Iii) At one end of the electrode plate body and one end of the electrode lead that are close to each other, the electrode plate body and the electrode lead are electrically connected by melting a welding region including the end surface of the electrode plate body and the end surface of the electrode lead.
  • the electrode plate body can be prepared by laminating an active material layer containing an alloy-based active material on the surface of the current collector to form a laminate.
  • a laminated body can be formed according to the formation method of the negative electrode in said nonaqueous electrolyte secondary battery.
  • the active material layer may be formed on one surface of the current collector, or may be formed on both surfaces.
  • lithium storage step in which lithium is stored in the active material layer is provided between step A and step B. Also good. Thereby, the uniform dispersibility of the alloy in the fusion
  • the lithium occlusion process is particularly effective when the alloy-based active material contains silicon.
  • the bonding strength can be ensured without impairing the uniformity of the shape of the melted part as compared with the case where the lithium occlusion process is not provided.
  • melting part, an electrode plate main body, and an electrode lead can be enlarged in the width direction whole region of a fusion
  • the occlusion of lithium into the active material layer can be performed, for example, by vacuum deposition, an electrochemical method, sticking of lithium foil on the surface of the active material layer, or the like.
  • vacuum deposition method when metal lithium is attached to a target of a vacuum deposition apparatus and vacuum deposition is performed, lithium is occluded in the active material layer.
  • the amount of lithium occluded is not particularly limited, but it is preferable to occlude lithium for the irreversible capacity of the active material layer.
  • step B electrode leads are arranged on a part of the surface of the active material layer of the electrode plate body prepared in step A.
  • the electrode lead is disposed on the surface of the active material layer so that the one end portion of the electrode plate body and the one end portion of the electrode lead containing metal are close to each other so that the melted portion can be easily formed in the next step C.
  • the end surface of the electrode plate main body and the end surface of the electrode lead are welded, and in step B, the end surface of the electrode plate main body and the end surface of the electrode lead are brought close to each other.
  • both the end face of the electrode plate body and the end face of the electrode lead are formed so as to form the same plane (a flat weld end face formed by the end face of the electrode plate body and the end face of the electrode lead). Arranged in the thickness direction of the electrode plate body.
  • the electrode lead may be arranged so that one end in the longitudinal direction and one end in the longitudinal direction of the electrode plate body are close to each other, and one end in the short direction and one end in the longitudinal direction of the electrode plate body. They may be arranged so that they are close to each other, or may be arranged so that one end in the longitudinal direction is close to one end in the short direction of the electrode plate body. In a preferred embodiment, one end part of the electrode lead in the longitudinal direction or the short side direction and one end part of the electrode plate body in the longitudinal direction are brought close to each other. The electrode lead and the electrode plate body are overlapped with each other in the thickness direction.
  • a melted portion is formed by melting a welded region including the end face of the electrode plate body and the end face of the electrode lead at one end portion of the electrode plate body and the one end portion of the electrode lead that are close to each other.
  • the constituent components of the electrode plate main body and the constituent components of the electrode lead are melted in the welding region to form a molten portion.
  • the metal component of the current collector preferably the metal component of the current collector and the alloy-based active material of the active material layer
  • the metal component of the electrode lead among the constituent components of the electrode plate main body are melted. Is preferred. It is considered that when the constituent components of the electrode plate main body and the metal components of the electrode lead are melted, the constituent elements contained therein are uniformly dispersed in the melt and alloying occurs. Alloying preferably takes place throughout the melt.
  • the welding is not particularly limited as long as the melted part can be formed by melting the end face of the electrode plate body and the end face of the electrode lead, and a known welding method can be used.
  • the alloy-based active material has low conductivity, when resistance welding is used, it is difficult for current to flow through the active material layer. Therefore, a part of the current collector is locally melted near the interface between the current collector and the active material layer, or a part of the electrode lead is locally localized at the contact point between the active material layer and the electrode lead.
  • the end surface of the electrode plate body and the end surface of the electrode lead cannot be melted only by melting.
  • resistance welding it is difficult to melt the alloy-based active material. Therefore, resistance welding may not be able to form a melted part that can electrically connect the electrode plate body and the electrode lead. In the case of ultrasonic welding, the same result as that obtained by resistance welding is easily obtained.
  • arc welding it is advantageous to use arc welding to melt the end face of the electrode plate body and the end face of the electrode lead to form a melted portion that can electrically join the electrode plate body and the electrode lead.
  • an arc discharge is performed toward a welding region including the end surface of the electrode plate main body and the end surface of the electrode lead, and the molten region is melted and arc-welded to form a fusion zone.
  • the alloy active material is melted and alloyed with the metal component of the current collector and / or the metal component of the electrode lead to form the alloy active material in the melted part. It is easy to disperse the elements to be dispersed. Therefore, the electrode plate body and the electrode lead can be firmly joined.
  • the alloy-based active material may remain as it is in the molten part without melting.
  • one end of the electrode plate body and one end of the electrode lead are melted in a relatively wide range to form a melted portion. Therefore, even if the alloy-based active material remains in the melted part, the electrode plate body and the electrode lead can be firmly joined by the melted part. In addition, the electrical connectivity between the electrode plate body and the electrode lead is not impaired.
  • step C it is preferable to arrange the electrode plate body and the electrode lead so that the welding region is exposed between a pair of plates of a welding jig including the pair of plates prior to arc discharge.
  • the welding region may be exposed from the end of the welding jig, and a space is formed between the pair of plates and the electrode plate main body or the electrode lead at one end of the electrode plate main body and the electrode lead adjacent to each other.
  • the welding region may be exposed.
  • An example of the latter case is shown in FIG.
  • FIG. 2 a is a schematic cross-sectional view showing an electrode plate main body and electrode leads arranged in a welding jig in the method for manufacturing an electrode plate for an electrochemical element according to an embodiment of the present invention.
  • an electrode plate body 1 including a laminate of a current collector 10 and an active material layer 11 containing an alloy-based active material formed on both sides thereof, and an electrode lead 13
  • the end surface 1 a of the plate body 1 and the end surface 13 a of the electrode lead 13 are aligned and overlapped in the surface direction of the electrode plate body 1 and the electrode lead 13.
  • the electrode plate body 1 and the electrode lead 13 are sandwiched by a welding jig having a pair of plates 14 including a first plate 20 and a second plate 21.
  • the pair of plates 14 of the welding jig is produced by forming a metal material such as copper into a predetermined shape.
  • a space (or a depression) is formed between the first plate 20 of the welding jig and the electrode lead 13 by the first recess 20 x formed in the first plate 20. .
  • a space (or a depression) is formed between the second plate 21 of the welding jig and the active material layer 11 by the second recess 21 x formed in the second plate 21. Is formed.
  • An arc welding electrode (not shown) is arranged in a welding region including the end surface 1 a of the electrode plate body 1 and the end surface 13 a of the electrode lead 13, particularly in a direction perpendicular to the flat welding end surface 16. Then, energy is irradiated in the direction of the arrow 19 from the welding torch of the electrode for arc welding. The energy irradiated from the welding torch is irradiated to the welding end surface 16.
  • the welding region including the weld end surface 16 is the energy of arc discharge in the electrode plate main body 1 and the electrode lead 13 when arc discharge is performed from a direction 19 perpendicular to the weld end surface 16 under the conditions described later. This is the area covered by
  • the thermal energy generated by the arc discharge does not escape to the welding jig due to the depressions formed in the first concave portion 20x and the second concave portion 21x of the pair of plates 14 of the welding jig, and the electrode plate main body and the electrode lead, and the electrode plate main body 1 and the electrode lead 13 are used for melting without waste.
  • the melting of the alloy-based active material is facilitated, and the alloy-based active material and the metal component of the current collector and / or electrode lead are alloyed to form an alloy-based active material.
  • the melting point of the substance tends to decrease.
  • melting point of the alloy-based active material is lowered, melting of the welding region proceeds rapidly, the size of the molten part increases, and the thickness of the molten part may become larger than the thickness of the obtained electrode plate.
  • step C It is also possible to control the welding conditions in step C so that the thickness of the melted part does not become larger than necessary.
  • the degree of melting in the weld region is reduced and the thickness of the melted portion is reduced, the joint strength is likely to be lowered.
  • the degree of melting of the weld region is small, the alloy-based active material is likely to remain without melting, and a barrier including active material particles is formed between the electrode plate body and the electrode lead, and alloying proceeds. The bonding strength is likely to decrease from the point of difficulty.
  • step C the weld region including the weld end face is uniformly melted by arc welding, and then solidified to form a melted portion.
  • the cross-sectional shape of the solidified molten part is rounded. This is presumably because the melt obtained by melting the electrode plate body and the electrode lead is spheroidized by the surface tension and solidifies in that state.
  • arc discharge is performed while moving the electrode for arc welding in the width direction of the electrode plate body at predetermined intervals. If the arc discharge is continuously performed in the width direction while appropriately adjusting the arc discharge conditions, depending on the conditions, a continuous belt-like molten part is formed, or the molten metal is partially agglomerated in the width direction to form a spherical shape. And the melted portion solidified into a spherical shape is intermittently formed. When the melted portion is intermittently formed in the width direction of the electrode plate body, the arc welding may be performed intermittently while moving the electrode for arc welding in the width direction of the electrode plate body. By performing arc welding, it is possible to easily form a melted portion at an arbitrary position in one end portion of the electrode plate main body and the electrode lead that are close to each other.
  • arc welding is performed with sufficient strength to ensure melting of the current collector and / or active material layer of the electrode plate body and the electrode lead. Need to be joined together. At this time, the thickness t1 of the melted portion tends to be thicker than the total thickness T of the electrode plate body and the electrode lead.
  • the ratio t1 / T between the thickness t1 of the melted portion after welding (before step D) and the total thickness T of the electrode plate body 1 and the electrode lead is, for example, 1 or more, preferably 1.3 or more, Preferably it is 1.5 or more. Further, the ratio t1 / T is, for example, 4 or less, preferably 3 or less. These lower limit value and upper limit value can be appropriately selected and combined.
  • the ratio t1 / T may be, for example, 1 to 3 or 1.3 to 3.
  • arc welding examples include TIG (Tungsten Inert Gas) welding, plasma welding, and covering arc welding.
  • non-consumable electrode type arc welding such as TIG welding or plasma welding is preferable.
  • plasma is particularly preferable.
  • Welding is preferred.
  • Plasma welding and TIG welding can be performed using a commercially available plasma welding machine and TIG welding machine, respectively.
  • Plasma welding can be performed, for example, by appropriately selecting conditions such as welding current value, welding speed (moving speed of the welding torch), welding time, types of plasma gas and shield gas, and their flow rates. By selecting these conditions, it is possible to control the bondability and electrical connectivity between the electrode plate main body and the electrode lead by the melting portion to be generated.
  • the welding current value is, for example, 1 to 100A, preferably 5 to 50A.
  • the sweep speed of the welding torch is, for example, 1 to 100 mm / second, preferably 5 to 50 mm / second.
  • an inert gas such as an argon gas can be used.
  • the plasma gas flow rate is, for example, 10 mL / min to 10 L / min, preferably 0.05 to 5 L / min.
  • Argon, hydrogen, etc. can be used for the shielding gas.
  • the shield gas flow rate is, for example, 10 mL / min to 10 L / min, preferably 0.1 to 5 L / min.
  • a flat portion parallel to the surface of the electrode plate body is formed in the melted portion formed in step C.
  • the flat part can be formed by flattening the melted part. Specifically, the flat part forms a generally flat surface by cutting or pressing at least a part of the melted part region protruding beyond the thickness of the electrode plate body and electrode lead laminate. Can be formed. By forming the flat portion, the melted portion is processed so as to be thin.
  • the flat portion is formed by compressing the melted portion in a direction perpendicular to the surface of the electrode plate body (that is, deformation by pressurization).
  • the compression can be performed by a known compression processing apparatus such as a flat pressing means.
  • FIG. 2b shows an example of a method for forming the flat portion.
  • FIG. 2B is a schematic cross-sectional view for explaining a step of forming a flat portion in the melted portion in the method for manufacturing an electrode plate for an electrochemical element according to one embodiment of the present invention.
  • step D first, in step C, the melted portion 18 formed at one end of the electrode plate main body 1 and the electrode lead 13 is replaced with a pair of planar pressing jigs 23. Is sandwiched between a pair of flat surface pressing jigs 23 of the flat surface pressing means. And the area
  • a load is applied to the topmost portion (and the bottommost portion) in the thickness direction of the melted portion 18, and the vicinity of the topmost portion (and the vicinity of the bottommost portion) is pressed.
  • the vicinity of the top part (and the vicinity of the bottom part) of the melted part 18 is subjected to pressure deformation so that the thickness of the melted part 18 becomes thin, and a flat part as shown in FIG. 1a is formed.
  • a flat part When a load is applied mainly to the topmost part, a flat part is formed near the topmost part. Further, the melted portion is compressed from both directions in a direction perpendicular to the surface of the electrode plate body to form a first flat portion and a second flat portion opposite to the first flat portion as shown in FIG. 1a. May be.
  • a first flat portion is formed by applying a weight to the topmost portion
  • a second flat portion is formed by applying a weight to the bottommost portion.
  • the relationship between the thickness t of the melted portion having a flat portion and the total thickness T of the electrode plate body and the electrode lead is as described above.
  • the melting part 18 is preferably sandwiched between the flat pressing jigs 23 so that the pressing surface of the flat pressing jig 23 is generally parallel to the surface of the electrode plate body.
  • melting part 18 can be compressed substantially perpendicularly with respect to the surface of an electrode plate main body using the plane pressurization jig
  • the flat portion may be generally parallel to the surface of the electrode plate body.
  • the electrode plate body and the electrode lead When compressing the melted portion with a flat pressure jig, the electrode plate body and the electrode lead may or may not be fixed. When not fixed, the pressing surface of the flat pressing jig and the surface of the electrode plate main body are likely to shift from parallel. However, if the angle of the flat portion is within a certain range as described above, the effects of the present invention can be sufficiently obtained.
  • the bonding strength between the electrode plate body and the electrode lead does not decrease. This is because the boundary region between the electrode plate main body and the electrode lead and the melted part is separated from the topmost part (and the bottommost part) of the melted part. This is presumed to be unaffected.
  • Step C even if arc discharge is continuously performed in the width direction at one end portion of the electrode plate body, the formed melted portions are a plurality of melted portions that are discontinuously aggregated into a spherical shape or the like. There is a case. In this case, the formed melted portion tends to increase in thickness. Therefore, when a flat part is formed by compressing such a melted part, as shown in FIG. 1b, the degree of protrusion of the melted part from the electrode plate body tends to increase. In some cases, the melted portion protrudes greatly due to the planarization, but the protruding direction is parallel to the longitudinal direction of the electrode plate body.
  • the amount of protrusion is preferably not so large, and the amount of protrusion from one end of the electrode plate body (that is, the length of the melted portion) is desirably 1 mm or less as described above.
  • the load applied when compressing the melted part is, for example, 3 N / mm or more, preferably 5 N / mm or more, and more preferably 15 N / mm or more.
  • a load is 1000 N / mm or less, for example, Preferably it is 200 N / mm or less, More preferably, it is 80 N / mm or less.
  • These lower limit value and upper limit value can be appropriately selected and combined.
  • the weight is in such a range, the flat portion can be formed more effectively, and the thickness of the melted portion can be in an appropriate range.
  • a load can be applied only to the melted portion, which is advantageous for suppressing damage to the electrode plate body and the electrode lead and cracking in the melted portion.
  • melting part formed at the process C is larger than the total thickness of an electrode plate main body and an electrode lead, a load is added only to a fusion
  • the weight at the time of compression is defined as the weight per 1 mm of the welding width of the welded portion.
  • a ternary precipitate having a composition represented by Ni 0.85 Co 0.15 (OH) 2 was coprecipitated by gradually dropping a 2 mol / L sodium hydroxide aqueous solution into the aqueous solution while stirring to neutralize the solution. It was generated by the method. This precipitate was separated by filtration, washed with water, and dried at 80 ° C. to obtain a composite hydroxide.
  • the obtained composite hydroxide was heated in the atmosphere at 900 ° C. for 10 hours to obtain a composite oxide having a composition represented by Ni 0.85 Co 0.15 O 2 .
  • Lithium hydroxide monohydrate was added to the obtained composite oxide so that the sum of the number of Ni and Co atoms and the number of Li atoms were equal, and heated in air at 800 ° C. for 10 hours.
  • a lithium nickel-containing composite metal oxide having a composition represented by LiNi 0.85 Co 0.15 O 2 was obtained.
  • a positive electrode active material having a secondary particle volume average particle size of 10 ⁇ m was obtained.
  • a positive electrode mixture slurry was prepared by thoroughly mixing 93 g of the positive electrode active material powder obtained above, 3 g of acetylene black (conductive agent), 4 g of PVDF powder (binder) and 50 ml of NMP. did.
  • the positive electrode mixture slurry was applied to both surfaces of a 15 ⁇ m thick aluminum foil (positive electrode current collector), and the resulting coating film was dried and rolled to form a positive electrode active material layer having a thickness of 50 ⁇ m per side, 56 mm
  • a positive electrode plate of ⁇ 205 mm was produced.
  • a part (56 mm ⁇ 5 mm) of the positive electrode active material layer on both sides of the positive electrode plate is excised to form a positive electrode current collector exposed portion, and an aluminum positive electrode lead is welded to the positive electrode current collector exposed portion by ultrasonic welding. As a result, a positive electrode was produced.
  • FIG. 4 is a side view schematically showing the configuration of the electron beam type vacuum vapor deposition apparatus 40.
  • the vacuum chamber 41 is a pressure-resistant container, and accommodates a transfer means 42, a gas supply means 48, a plasma generating means 49, silicon targets 50a and 50b, a shielding plate 51, and an electron beam generator (not shown).
  • the conveying means 42 includes an unwinding roller 43, a can 44, a winding roller 45, and guide rollers 46 and 47.
  • a strip-shaped current collector 10 is wound around the unwinding roller 43.
  • the strip-shaped current collector 10 is conveyed via the guide roller 46, the can 44 and the guide roller 47, and is taken up by the take-up roller 45 as the electrode plate body 1.
  • silicon vapor is supplied to the surface of the strip-shaped current collector 10.
  • the silicon vapor is cooled by a cooling means (not shown) inside the can 44 and deposited on the surface of the strip-shaped current collector 10 to form the solid active material layer 11.
  • the silicon vapor is generated by irradiating the silicon targets 50a and 50b with an electron beam from an electron beam generator.
  • the gas supply means 48 supplies the source gas into the vacuum chamber 41.
  • the source gas is oxygen
  • a mixture of silicon vapor and oxygen is supplied to the surface of the strip-shaped current collector 10 to form an active material layer 11 containing silicon oxide.
  • the gas supply means 48 does not supply the source gas
  • the active material layer 11 containing silicon is formed.
  • the plasma generating means 49 converts the raw material gas into plasma.
  • the horizontal position of the shielding plate 51 is adjusted according to the formation state of the active material layer 11 on the surface of the current collector 10.
  • a thin-film negative electrode active material layer (silicon thin film) having a thickness of 5 ⁇ m was formed on both surfaces of the strip-shaped negative electrode current collector using the electron beam vacuum vapor deposition apparatus 40 under the following conditions to produce a negative electrode plate.
  • This electrode plate body was fixed in a resistance heating vapor deposition apparatus (manufactured by ULVAC, Inc.) so that the tantalum board and the active material layer face each other.
  • the tantalum board was loaded with lithium metal.
  • An argon atmosphere was introduced into the resistance heating vapor deposition apparatus, a 50 A current was passed through the tantalum boat, and lithium was deposited on the active material layer.
  • the deposition time was 10 minutes. As a result, the irreversible capacity of lithium stored during the first charge / discharge was supplemented in the active material layer.
  • the electrode plate body obtained above was cut from a copper foil (tough pitch copper, manufactured by Hitachi Cable Co., Ltd.), having a width of 5 mm, a length of 70 mm, and a thickness of 0.1 mm.
  • the negative electrode lead was joined by plasma welding as follows to produce a negative electrode.
  • the electrode plate main body and the negative electrode lead are formed such that one end surface in the longitudinal direction of the electrode plate main body and one end surface in the width direction of the negative electrode lead are in one continuous plane and a flat weld end surface is formed. Are superimposed.
  • the direction perpendicular to the weld end face was made to coincide with the vertical direction, and the weld end face was arranged so as to face upward in the vertical direction.
  • the welding jig includes a pair of plates of a first plate and a second plate, and the dimensions of the first plate and the second plate are 100 mm ⁇ 40 mm ⁇ 10 mm, respectively, and both are made of copper.
  • the cross-sectional shape of the notch which is the 1st recessed part formed in the 1st board and the 2nd recessed part formed in the 2nd board is a taper shape, and the cross-sectional dimension of a notch is a 1st board or a 2nd board.
  • the length in the direction along the end surface of the first plate was 0.5 mm, and the length in the direction along the mating surface of the first plate or the second plate was 0.5 mm.
  • a plasma welding machine (trade name: PW-50NR, manufactured by Koike Oxygen Industry Co., Ltd.) was placed vertically above the weld end face. Energy was irradiated from the torch of this plasma welding machine perpendicularly to the welding end face in the welding region. The torch was moved at equal intervals in the width direction of the electrode plate body. At the location where the torch was stopped, energy was applied to the weld end face under the following conditions, and the end face of the electrode plate body and the negative electrode lead was melted to form a melted portion, thereby producing a negative electrode.
  • PW-50NR manufactured by Koike Oxygen Industry Co., Ltd.
  • Electrode bar 1.0mm in diameter
  • Electrode nozzle 1.6mm in diameter Torch distance: 2.0mm Torch sweep speed: 30 mm / s
  • Plasma gas Argon Plasma gas flow rate: 100 (sccm)
  • Shield gas hydrogen, argon Shield gas flow rate (hydrogen): 500 (sccm)
  • the negative electrode was allowed to cool naturally, and the weld end face was observed with a scanning electron microscope (trade name: 3D Real Surface View, manufactured by Keyence Corporation). As a result, it was confirmed that a continuous melted portion was formed at one end of the electrode plate body and the negative electrode lead.
  • a scanning electron microscope (trade name: 3D Real Surface View, manufactured by Keyence Corporation).
  • the weld end face On the weld end face, a plurality of fused portions aggregated in a spherical shape at indefinite intervals in the width direction of the electrode plate body were formed.
  • the maximum thickness is 0.4 mm, The ratio of thickness is 2 with respect to the total thickness 0.2mm of the electrode plate main body and negative electrode lead before plasma welding. 0.0.
  • the cross section of the melted part was qualitatively analyzed by a micro part X-ray diffractometer (trade name: RINT2500, manufactured by Rigaku Corporation). From a peak of components contained in the molten portion, components contained in the molten portion, it was identified as copper and Cu 5 Si. Therefore, it was found that the molten portion contains a Cu 5 Si alloy.
  • the elemental map of lithium was examined with respect to the cross section of the melted portion by an Auger electron spectrometer (trade name: MODEL670, manufactured by ULVAC PHI).
  • Auger electron spectrometer (trade name: MODEL670, manufactured by ULVAC PHI).
  • the active material layer is a portion that remains without melting.
  • the silicon layer is a portion that has been melted once and resolidified without being alloyed.
  • the melted part was placed between a pair of opposed plane pressure jigs and subjected to pressure deformation.
  • a precision press manufactured by Nippon Automatic Machine Co., Ltd., SSP1000
  • SSP1000 was used as a flat press machine.
  • Each of the pair of flat surface pressing jigs has a size of 150 mm ⁇ 150 mm ⁇ 20 mm and is made of stainless steel.
  • the melted part was subjected to pressure deformation by setting the press load condition to 1000N.
  • the width of the melted part is 30 mm, and the load per melted width is 33.3 N / mm.
  • the maximum thickness is 0.23 mm, and the ratio of the thickness is 1.15 with respect to the total thickness of 0.2 mm of the electrode plate body and the negative electrode lead before plasma welding. Met.
  • the flat portion generated by the pressure deformation of the melted portion was substantially parallel to the surface of the electrode plate body.
  • the dimension in which the melted portion protruded in the same plane as the negative electrode lead to the opposite side was 0.2 mm at the maximum from the end of the negative electrode lead.
  • the polyethylene microporous membrane (separator, trade name: Hypore, thickness 20 ⁇ m, manufactured by Asahi Kasei Co., Ltd.) is interposed between the positive electrode and the negative electrode obtained above, and the resulting laminate is obtained.
  • a wound electrode group was produced.
  • the other end of the positive electrode lead was welded to a stainless steel positive electrode terminal, and the other end of the negative electrode lead was connected to the inner bottom surface of a bottomed cylindrical iron battery case.
  • An upper insulating plate and a lower insulating plate made of polyethylene were attached to one end and the other end in the longitudinal direction of the wound electrode group, respectively, and accommodated in a battery case.
  • a nonaqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent containing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 1 was poured into the battery case. Furthermore, a sealing plate was attached to the opening of the battery case via a polyethylene gasket, and the battery case was sealed by caulking the opening end of the battery case to the inside to produce a cylindrical lithium ion battery.
  • Comparative Example 1 A cylindrical lithium ion battery was produced in the same manner as in Example 1 except that the negative electrode was produced without being subjected to pressure deformation by a flat press.
  • the negative electrode was allowed to cool naturally, and the weld end face was observed with a scanning electron microscope (trade name: 3D real surface view).
  • the maximum thickness is 0.4 mm, with respect to the total thickness of 0.2 mm of the electrode plate main body and the negative electrode lead before plasma welding.
  • the ratio was 2.0.
  • the cross-sectional shape of the maximum melting part is a shape that is almost a semicircle as a whole, and protrudes relatively large from the surface of the electrode plate body.
  • Comparative Example 2 A cylindrical lithium ion battery was produced in the same manner as in Comparative Example 1 except that the negative electrode was produced by changing the joining method of the negative electrode lead to the negative electrode current collector from plasma welding to resistance welding.
  • the negative electrode was produced as follows.
  • FIG. 5a is a schematic perspective view for explaining a method for preparing a sample for measuring the bonding strength between the electrode plate main body and the electrode lead
  • FIG. 5b shows the bonding strength between the electrode plate main body and the electrode lead.
  • FIG. 6 is a schematic perspective view for explaining a method of measuring the bonding strength between the electrode plate main body and the electrode lead.
  • the electrode lead 13 was cut so that the length of the electrode lead (negative electrode lead) 13 was the same as the width of the electrode plate body 1.
  • the electrode plate body 1 was cut so that the length of the electrode plate body 1 was 30 mm from the end where the electrode lead 13 was joined.
  • the bonding width d was measured.
  • the joining width d is the length of the melting part 17 in the width direction of the electrode plate body 1.
  • the bonding width d is formed at the other end from the melting portion 17 formed at one end in the width direction of the electrode plate body 1. It is the length to the melted part 17 made. In this case, the length of the melting part 17 formed at one end and the other end is included in the joining width d.
  • the junction width d of each of the negative electrodes obtained in Example 1 and Comparative Examples 1 and 2 was cut to 30 mm.
  • the electrode lead 13 was folded back in the direction of the arrow 66 so as to peel off the electrode plate body 1, and a sample 65 for measuring tensile strength was produced.
  • the tensile strength was measured by the measuring method shown in FIG.
  • a universal testing machine (manufactured by Shimadzu Corp.) 70 is fixed to the lower fixing jig 71 with the end of the electrode plate body 1 on the side where the melted portion 17 is not formed being sandwiched.
  • the lead 13 was fixed by sandwiching the end portion on the side where the melted portion 17 is not formed (end portion on the folded side).
  • the upper fixing jig 72 was moved at a speed of 5 mm / min in the direction of the arrow 73 to pull the electrode lead 13.
  • ruptured was measured.
  • the tensile strength (N / mm) per 1 mm of the bonding width was determined from the measured value of the tensile strength and the measured value of the bonding width d. The results are shown in Table 1.
  • Example 1 From the results in Table 1, it can be seen that in Example 1, the melted portion can obtain good jointability between the electrode plate body and the negative electrode lead and can be electrically connected effectively. Also in Comparative Example 1, good bondability and electrical connectivity can be obtained between the electrode plate body and the negative electrode lead. However, since the melted part of Comparative Example 1 does not have a flat part, the shape is larger than that of the melted part of Example 1, and an electrode that circulates adjacent to the melted part when producing a wound electrode group. Was deformed.
  • Each battery was charged at a constant current of 1C rate (1C is a current value that can use up the entire battery capacity in 1 hour) until the battery voltage reaches 4.2V. After the battery voltage reached 4.2V, each battery was charged at a constant voltage of 4.2V until the current value reached 0.05C. Next, after resting for 20 minutes, the charged battery was discharged at a constant rate of 1C rate until the battery voltage reached 2.5V. Such charge and discharge was repeated 100 cycles.
  • the ratio of the total discharge capacity at the 100th cycle to the total discharge capacity at the first cycle was determined as a percentage value.
  • the obtained values are shown in Table 2 as capacity retention rates.
  • the batteries of Example 1 and Comparative Example 1 were found to have a high capacity retention rate and good cycle characteristics. In particular, the battery of Example 1 exhibited a higher capacity retention rate. In the battery of Comparative Example 1, the distance between the positive electrode and the negative electrode was changed in the region due to the weld part deforming a part of the electrode group, so that the electrode reaction became non-uniform and the capacity retention rate was slightly reduced. The On the other hand, the battery of Comparative Example 2 could not be energized, and the resistance was infinite. It is presumed that when the battery was assembled, the lead peeled off from the negative electrode active material, making it impossible to conduct electricity.
  • the electrode plate of the present invention can be suitably used as an electrode plate for electrochemical elements such as non-aqueous electrolyte secondary batteries.
  • the electrochemical device of the present invention is useful as a power source for portable electronic devices. Examples of portable electronic devices include personal computers, mobile phones, mobile devices, personal digital assistants (PDAs), portable game devices, and video cameras.
  • the electrochemical element of the present invention is used as a main power source and auxiliary power source for hybrid electric vehicles, electric vehicles, fuel cell vehicles, etc., driving power sources for electric tools, vacuum cleaners, robots, etc., power sources for plug-in HEVs, etc. Use is also expected.
  • Electrode plate main body 1a End surface of electrode plate main body 10 Current collector 11 Active material layer 13 Electrode lead 13a End surface of electrode lead 14 A pair of plates of welding jig 17, 18 Melting portion 20 First plate 20x First concave portion 21 Second Plate 21x Second concave portion 23 Flat pressing jig 25 Lithium ion battery 40 Electron beam vacuum deposition device

Abstract

The present invention suppresses undesired deformation of constituent elements of an electrode group and short-circuits in an electrochemical element due to a melt portion, while electrically connecting one end portion of an electrode plate main body with an electrode lead via the melt portion. This electrode plate for an electrochemical element is provided with: an electrode plate main body, which includes a laminated body composed of a strip-like current-collecting body containing a metal, and an active material layer, which is formed on the surface of the current-collecting body, and contains an alloy-based active material; an electrode lead, which is disposed on a part of the surface of the active material layer, and includes a metal; and a melt portion, which electrically connects, at one end portion of the electrode plate main body, the electrode plate main body and the electrode lead to each other. The melt portion has a flat portion parallel to the surface of the electrode plate main body.

Description

電気化学素子用電極板およびその製造方法、ならびに電気化学素子Electrode element electrode plate, method for producing the same, and electrochemical element
 本発明は、電気化学素子用電極板およびその製造方法、ならびに電気化学素子に関し、特に、電極板と電極リードとの接合状態の改良に関する。 The present invention relates to an electrode plate for an electrochemical element, a method for manufacturing the same, and an electrochemical element, and more particularly, to an improved bonding state between an electrode plate and an electrode lead.
 近年、携帯用電子機器の小型化、軽量化が進み、それらの電子機器の電源として、小型軽量で高出力な二次電池の需要が高まっている。中でも、リチウムイオン二次電池やニッケル水素蓄電池は、高い容量およびエネルギー密度を有し、小型化および軽量化が容易なことから、携帯電話、携帯情報端末(Personal Digital Assistant、PDA)、ノート型パーソナルコンピュータ、ビデオカメラ、携帯ゲーム機などの各種電子機器の電源として広く利用されている。 In recent years, portable electronic devices have become smaller and lighter, and the demand for small, lightweight, high-output secondary batteries as power sources for these electronic devices has increased. Among them, lithium ion secondary batteries and nickel metal hydride storage batteries have high capacity and energy density, and are easy to reduce in size and weight. Therefore, mobile phones, personal digital assistants (PDAs), notebook personal computers, etc. It is widely used as a power source for various electronic devices such as computers, video cameras, and portable game machines.
 このような二次電池や、コンデンサなどの電気化学素子は、内部に極性の異なる一対の電極板を備えており、電極板は、封口板などの外部端子と、電極リードを介して、電気的に接続される。電極板は、通常、集電体としての金属箔の両面に活物質層が形成された構造を有している。このような構造の電極板には、電極リードとしての短冊状の金属片を接続するために、活物質層が形成されていない集電体露出部が設けられている。 Such electrochemical devices such as secondary batteries and capacitors have a pair of electrode plates with different polarities inside, and the electrode plates are electrically connected via external terminals such as sealing plates and electrode leads. Connected to. The electrode plate usually has a structure in which active material layers are formed on both surfaces of a metal foil as a current collector. The electrode plate having such a structure is provided with a current collector exposed portion on which an active material layer is not formed in order to connect strip-shaped metal pieces as electrode leads.
 このように、電極板と電極リードとの電気的な接続は、従来、集電体と電極リードとを接続することにより行われている。なぜなら、活物質層を介して、電極板と電極リードとを接続させようとすると、十分な電気的接続を確保し難いからである。集電体露出部(すなわち、活物質層の未塗工部分)は、例えば、活物質を含む電極スラリーを塗布せずに作製されるか、もしくは、電極スラリーを塗布した後に、形成された塗膜の一部を取り除くことにより作製される。 Thus, the electrical connection between the electrode plate and the electrode lead is conventionally performed by connecting the current collector and the electrode lead. This is because if it is attempted to connect the electrode plate and the electrode lead through the active material layer, it is difficult to ensure sufficient electrical connection. The current collector exposed portion (that is, the uncoated portion of the active material layer) is prepared without applying the electrode slurry containing the active material, or formed after the electrode slurry is applied, for example. It is produced by removing a part of the film.
 また、最近では電子機器の多機能化が進み、その電力消費量が増大する一方、一度の充電で出来るだけ長時間連続使用できることが望まれている。そのため、リチウムイオン電池などの電気化学素子のさらなる高容量化が必要になり、黒鉛よりも高容量である合金系活物質の開発が盛んに行われている。代表的な合金系活物質として、ケイ素、ケイ素合金、ケイ素化合物などのケイ素含有活物質が挙げられる。 In recent years, electronic devices have become more multifunctional and their power consumption has increased. On the other hand, it is desired that they can be used continuously for as long as possible with a single charge. For this reason, it is necessary to further increase the capacity of electrochemical elements such as lithium ion batteries, and the development of alloy-based active materials having a capacity higher than that of graphite has been actively conducted. Typical alloy-based active materials include silicon-containing active materials such as silicon, silicon alloys, and silicon compounds.
 合金系活物質を含む活物質層は、電極スラリーを用いる方法以外に、気相法により、集電体の表面に活物質を膜状に堆積させることにより形成することもできる。しかし、堆積膜の場合には、集電体表面に集電体露出部を形成することは困難であるため、電極スラリーを用いる場合に比べて、電極板と電極リードとを接合し難い。 The active material layer containing an alloy-based active material can also be formed by depositing the active material in a film form on the surface of the current collector by a vapor phase method other than the method using the electrode slurry. However, in the case of a deposited film, it is difficult to form a current collector exposed portion on the surface of the current collector, so that it is difficult to join the electrode plate and the electrode lead as compared with the case where electrode slurry is used.
 特許文献1は、気相法などで形成された活物質層を有する負極板と負極リードとの積層体にレーザを照射することにより、積層体を厚み方向に貫通する連通孔を形成した負極を開示している。積層体にレーザを照射すると、連通孔の内部表面に存在する負極集電体と負極リードとが溶融して接触することにより、負極集電体と負極リードとが接続される。 Patent Document 1 discloses a negative electrode in which a communication hole penetrating the laminated body in the thickness direction is formed by irradiating a laser on a laminated body of a negative electrode plate having an active material layer formed by a vapor phase method or the like and a negative electrode lead. Disclosure. When the laminated body is irradiated with laser, the negative electrode current collector and the negative electrode lead existing on the inner surface of the communication hole are melted and brought into contact with each other, thereby connecting the negative electrode current collector and the negative electrode lead.
 特許文献2は、合金系活物質を含有する堆積膜の表面に、銅、銅合金または銅のクラッド材からなる負極リードを抵抗溶接により接合した負極を開示している。 Patent Document 2 discloses a negative electrode in which a negative electrode lead made of copper, a copper alloy, or a copper clad material is joined to the surface of a deposited film containing an alloy-based active material by resistance welding.
 特許文献3は、気相法により形成された負極活物質層と、負極リードとの接触部分をアーク溶接することを開示している。 Patent Document 3 discloses arc welding of a contact portion between a negative electrode active material layer formed by a vapor phase method and a negative electrode lead.
特開2007-214086号公報Japanese Patent Laid-Open No. 2007-214086 特開2007-115421号公報JP 2007-115421 A 国際公開第2010/041399号パンフレットInternational Publication No. 2010/041399 Pamphlet
 気相法により活物質層を形成する場合、電極スラリーを用いる場合とは異なり、形成された活物質層を部分的に取り除くことにより集電体露出部を形成することは実質的に不可能である。また、部分的に活物質層を形成しないことにより、集電体露出部を形成するには、例えば、真空蒸着などの活物質を堆積させる工程で、リード接続部の形成領域をマスクする必要がある。しかし、このようなマスク作業は、工程上非常に煩雑になる。つまり、堆積膜の場合には、集電体表面に集電体露出部を形成することは困難である。 When the active material layer is formed by the vapor phase method, unlike the case of using the electrode slurry, it is substantially impossible to form the current collector exposed portion by partially removing the formed active material layer. is there. Further, in order to form the current collector exposed portion by not partially forming the active material layer, for example, it is necessary to mask the formation region of the lead connection portion in the step of depositing the active material such as vacuum evaporation. is there. However, such a mask operation becomes very complicated in terms of the process. That is, in the case of a deposited film, it is difficult to form the current collector exposed portion on the current collector surface.
 特許文献1の方法では、レーザ照射する際に、合金系活物質の粒子が負極活物質層から流出し、負極集電体と負極リードとの接続部分に混入する。合金系活物質は融点が高いので、レーザを照射しただけでは溶融しにくい。そのため、接続部分の接合強度が低下し易い。また、合金系活物質は電気抵抗が大きいので、接続部分に合金系活物質の粒子が存在することにより、接続部分の電気的な接続性が低下しやすい。 In the method of Patent Literature 1, when laser irradiation is performed, particles of an alloy-based active material flow out of the negative electrode active material layer and are mixed into the connection portion between the negative electrode current collector and the negative electrode lead. Since the alloy-based active material has a high melting point, it is difficult to melt only by laser irradiation. For this reason, the joint strength of the connection portion tends to decrease. In addition, since the alloy-based active material has a large electric resistance, the presence of particles of the alloy-based active material in the connection portion tends to lower the electrical connectivity of the connection portion.
 特許文献2のように、堆積膜の表面と電極リードとを抵抗溶接しようとする場合、負極集電体または負極リードは局所的に溶融することがあるが、合金系活物質の負極活物質層には電流がほとんど流れないので、負極活物質層は溶融しない。このため、抵抗溶接では、負極集電体と負極リードとを十分に接合させることは困難である。 When the surface of the deposited film and the electrode lead are to be resistance-welded as in Patent Document 2, the negative electrode current collector or the negative electrode lead may locally melt, but the negative electrode active material layer of the alloy-based active material Since almost no current flows through the negative electrode active material layer, the negative electrode active material layer does not melt. For this reason, it is difficult to sufficiently join the negative electrode current collector and the negative electrode lead by resistance welding.
 このような問題に鑑み、本発明者らは、特許文献3において、気相法により形成されたケイ素含有活物質を含む活物質層が両面に形成された集電体と、ニッケル、銅、またはその合金などを含む電極リードとを、アーク溶接により接続する方法を提案した。この方法では、活物質層と電極リードとを重ね合わせて、重ね合わせた部分の端部をアーク溶接する。これにより、活物質が集電体および電極リードのそれぞれの一部とともに溶融して、ケイ素含有合金が形成され、再凝固することにより、溶融部が形成される。この方法では、集電体と電極リードとの間にケイ素含有合金層が形成されることになるため、集電体と電極リードとが導通性良く接続される。 In view of such a problem, the present inventors have disclosed in Patent Document 3 a current collector in which an active material layer containing a silicon-containing active material formed by a vapor phase method is formed on both sides, and nickel, copper, or A method of connecting the electrode lead containing the alloy etc. by arc welding was proposed. In this method, the active material layer and the electrode lead are overlapped, and the end of the overlapped portion is arc-welded. As a result, the active material is melted together with a part of each of the current collector and the electrode lead to form a silicon-containing alloy, and a solidified portion is formed by re-solidification. In this method, since the silicon-containing alloy layer is formed between the current collector and the electrode lead, the current collector and the electrode lead are connected with good conductivity.
 図7aは、アーク溶接により、合金系活物質を含む電極板の一端部に形成された溶融部を示す概略断面図であり、図7bは、図7aの電極板の一端部に形成された溶融部を示す概略正面図である。従来の方法では、集電体110と、その両面に形成されたケイ素含有活物質などの合金系活物質を含む活物質層111とを含む電極板本体101の一端部において、活物質層111の表面に重ねて電極リード113を配置し、電極板本体101の一端部と電極リード113の一端部とをアーク溶接する。これにより、溶接した領域には、溶融部118が形成され、この溶融部118を介して、電極板本体101の集電体110と電極リード113とが接続される。 FIG. 7a is a schematic cross-sectional view showing a melted portion formed at one end of an electrode plate containing an alloy-based active material by arc welding, and FIG. 7b is a melt formed at one end of the electrode plate of FIG. 7a. It is a schematic front view which shows a part. In the conventional method, at one end portion of the electrode plate body 101 including the current collector 110 and an active material layer 111 containing an alloy-based active material such as a silicon-containing active material formed on both surfaces of the current collector 110, The electrode lead 113 is disposed so as to overlap the surface, and one end of the electrode plate body 101 and one end of the electrode lead 113 are arc-welded. As a result, a melted portion 118 is formed in the welded region, and the current collector 110 of the electrode plate body 101 and the electrode lead 113 are connected via the melted portion 118.
 このように、電極板本体の端部をアーク溶接すれば、集電体とその表面に気相法で形成された活物質層とを有する電極板本体の場合も、集電体露出部を形成しなくても、電極板と電極リードとの強固な接合が可能となるため、工業的に有利である。しかしながら、本発明者らは、アーク溶接を利用する場合において、次のような新たな課題を見出した。 Thus, if the end of the electrode plate body is arc welded, the current collector exposed portion is formed even in the case of an electrode plate body having a current collector and an active material layer formed on the surface thereof by a vapor phase method. Even if it does not do, since it becomes possible to firmly join the electrode plate and the electrode lead, it is industrially advantageous. However, the present inventors have found the following new problem when using arc welding.
 ケイ素含有活物質などの合金系活物質を含む電極板本体では、電極リードと溶接する場合、溶接箇所、つまり、電極板本体と電極リードとを重ね合わせた部分の端部に、溶融部が形成される。しかし、アーク溶接により溶接する場合には、溶融部の厚みが、必要以上に大きくなり、得られる電極板の厚み(つまり、電極板本体と電極リードとの合計厚み)以上になる。そのため、このような溶融部が形成された状態で、電極板を用いて積層型または巻回型電極群を作製すると、電極群の寸法および形状が規格外になったり、電極板とセパレータや反対極性の電極板との間隔が広がったりする。このような電極群を用いて電池を形成しても、電極反応が不均一になったり、溶融部が周辺の構成要素を変形させることにより電極群が変形したり、セパレータの損傷により内部短絡が発生したりなどといった不都合が生じやすい。 When the electrode plate body containing an alloy-based active material such as a silicon-containing active material is welded to the electrode lead, a molten part is formed at the welded portion, that is, at the end of the portion where the electrode plate body and the electrode lead are overlapped. Is done. However, in the case of welding by arc welding, the thickness of the melted portion becomes larger than necessary, and becomes greater than the thickness of the obtained electrode plate (that is, the total thickness of the electrode plate main body and the electrode lead). For this reason, when a laminated or wound electrode group is produced using an electrode plate with such a melted portion formed, the dimensions and shape of the electrode group may be out of specification, or the electrode plate and separator The distance from the polar electrode plate may increase. Even when a battery is formed using such an electrode group, the electrode reaction becomes non-uniform, the melted part deforms the surrounding components, the electrode group deforms, or the separator is damaged, causing an internal short circuit. Inconveniences such as occurrence are likely to occur.
 本発明の目的は、電極板本体を、その一端部において溶融部を介して電極リードと電気的に接続しながらも、溶融部による電極群の変形や電気化学素子における短絡を抑制できる、電気化学素子用電極板およびその製造方法、ならびに電気化学素子を提供することである。 An object of the present invention is to provide an electrochemical device capable of suppressing deformation of an electrode group due to a melted portion and a short circuit in an electrochemical element while electrically connecting an electrode plate body to an electrode lead through a melted portion at one end thereof. It is providing a device electrode plate, a method for producing the same, and an electrochemical device.
 本発明の一局面は、金属を含む帯状の集電体と、集電体の表面に形成され、かつ合金系活物質を含む活物質層との積層体を含む電極板本体、活物質層の一部の表面に配置された金属を含む電極リード、および電極板本体の一端部において、電極板本体と、電極リードとを、電気的に接続する溶融部を具備し、溶融部は、電極板本体の表面に平行な平坦部を有する電気化学素子用電極板に関する。 One aspect of the present invention is an electrode plate body including a laminate of a strip-shaped current collector containing a metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material. An electrode lead including a metal disposed on a part of the surface, and at one end of the electrode plate main body, the electrode plate main body and the electrode lead are provided with a melting portion that electrically connects the melting portion to the electrode plate The present invention relates to an electrode plate for an electrochemical element having a flat portion parallel to the surface of a main body.
 本発明の他の一局面は、金属を含む帯状の集電体と、集電体の表面に形成され、かつ合金系活物質を含む活物質層との積層体を含む電極板本体を準備する工程Aと、活物質層の一部の表面に、電極板本体の一端部と、金属を含む電極リードの一端部とが近接するように、電極リードを配置する工程Bと、近接した電極板本体の一端部および電極リードの一端部において、電極板本体の端面および電極リードの端面を含む溶接領域を溶融させることにより、電極板本体と、電極リードとを、電気的に接続する溶融部を形成する工程Cと、溶融部を電極板本体の表面に垂直な方向に圧縮して、電極板本体の表面に平行な平坦部を形成する工程Dと、を具備する、電気化学素子用電極板の製造方法に関する。 Another aspect of the present invention provides an electrode plate body including a laminate of a strip-shaped current collector containing a metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material. Step A, Step B in which the electrode lead is disposed so that one end of the electrode plate body and one end of the electrode lead containing metal are close to a part of the surface of the active material layer, and the adjacent electrode plate At one end of the main body and one end of the electrode lead, by melting a welding region including the end surface of the electrode plate main body and the end surface of the electrode lead, a melting portion that electrically connects the electrode plate main body and the electrode lead is provided. An electrode plate for an electrochemical device, comprising: a step C of forming; and a step D of compressing the melted portion in a direction perpendicular to the surface of the electrode plate body to form a flat portion parallel to the surface of the electrode plate body. It relates to the manufacturing method.
 本発明のさらに他の一局面は、第1電極としての、上記の電気化学素子用電極板と、第1電極とは反対の極性の第2電極と、第1電極と第2電極との間に介在するセパレータとを含む、電気化学素子に関する。 Still another aspect of the present invention is the above-described electrode plate for an electrochemical element as a first electrode, a second electrode having a polarity opposite to the first electrode, and between the first electrode and the second electrode. The present invention relates to an electrochemical element including a separator interposed between the two.
 本発明では、電極板本体を、その一端部において溶融部を介して電極リードと電気的に接続するが、溶融部が、電極板本体の表面に平行な平坦部を有する。そのため、溶融部による電極群の変形や電気化学素子における短絡を抑制できる。 In the present invention, the electrode plate main body is electrically connected to the electrode lead through the melting portion at one end thereof, and the melting portion has a flat portion parallel to the surface of the electrode plate main body. Therefore, it is possible to suppress deformation of the electrode group due to the melting part and short circuit in the electrochemical element.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention will be further described by reference to the following detailed description, taken in conjunction with the other objects and features of the invention, both in terms of construction and content. It will be well understood.
図1aは、本発明の一実施形態に係る電気化学素子用電極板の構成を示す概略断面図である。FIG. 1a is a schematic cross-sectional view showing a configuration of an electrode plate for an electrochemical element according to an embodiment of the present invention. 図1bは、図1aの電気化学素子用電極板の構成を示す概略正面図である。FIG. 1b is a schematic front view showing the configuration of the electrode plate for an electrochemical element in FIG. 1a. 図2aは、本発明の一実施形態に係る電気化学素子用電極板の製造方法において、溶接治具に配置された電極板本体および電極リードを示す概略断面図である。FIG. 2 a is a schematic cross-sectional view showing an electrode plate main body and electrode leads arranged in a welding jig in the method for manufacturing an electrode plate for an electrochemical element according to an embodiment of the present invention. 図2bは、本発明の一実施形態に係る電気化学素子用電極板の製造方法において、溶融部に平坦部を形成する工程を説明するための概略断面図である。FIG. 2B is a schematic cross-sectional view for explaining a step of forming a flat portion in the melted portion in the method for manufacturing an electrode plate for an electrochemical element according to one embodiment of the present invention. 図3は、本発明の一実施形態に係る電気化学素子としてのリチウムイオン電池の構成を模式的に示す縦断面図である。FIG. 3 is a longitudinal sectional view schematically showing a configuration of a lithium ion battery as an electrochemical element according to an embodiment of the present invention. 図4は、合金系活物質を含む活物質層を形成するための、電子ビーム式蒸着装置の構成を模式的に示す側面図である。FIG. 4 is a side view schematically showing the configuration of an electron beam evaporation apparatus for forming an active material layer containing an alloy-based active material. 図5aは、電極板本体と電極リードとの接合強度を測定するための試料の作製方法を説明するための概略斜視図である。FIG. 5A is a schematic perspective view for explaining a method for preparing a sample for measuring the bonding strength between the electrode plate body and the electrode lead. 図5bは、電極板本体と電極リードとの接合強度を測定するための試料の状態を説明するための概略斜視図である。FIG. 5B is a schematic perspective view for explaining the state of a sample for measuring the bonding strength between the electrode plate main body and the electrode lead. 図6は、電極板本体と電極リードとの接合強度の測定方法を説明するための概略斜視図である。FIG. 6 is a schematic perspective view for explaining a method of measuring the bonding strength between the electrode plate main body and the electrode lead. 図7aは、アーク溶接により、合金系活物質を含む電極板の一端部に形成された溶融部を示す概略断面図である。FIG. 7 a is a schematic cross-sectional view showing a melted portion formed at one end of an electrode plate containing an alloy-based active material by arc welding. 図7bは、図7aの電極板の一端部に形成された溶融部を示す概略正面図である。FIG. 7b is a schematic front view showing a melting portion formed at one end of the electrode plate of FIG. 7a.
 以下、必要に応じて、図面を参照しながら、本発明の実施形態について説明する。
(電気化学素子用電極板および電気化学素子)
 本発明の電気化学素子用電極板は、金属を含む帯状の集電体と、集電体の表面に形成され、かつ合金系活物質を含む活物質層との積層体を含む電極板本体、活物質層の一部の表面に配置された金属を含む電極リード、および電極板本体の一端部において、電極板本体と、電極リードとを、電気的に接続する溶融部を具備する。そして、溶融部は、電極板本体の表面(つまり、電極板本体と負極リードとが対峙する面)に平行な平坦部を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings as necessary.
(Electrode plate for electrochemical element and electrochemical element)
The electrode plate for an electrochemical element of the present invention includes an electrode plate main body including a laminate of a strip-shaped current collector containing a metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material, An electrode lead including a metal disposed on a part of the surface of the active material layer, and a melting portion that electrically connects the electrode plate main body and the electrode lead are provided at one end of the electrode plate main body. And a fusion | melting part has a flat part parallel to the surface (namely, surface which an electrode plate main body and a negative electrode lead oppose) of an electrode plate main body.
 本発明者らは、集電体露出部において、電極板本体と電極リードとを接合させるのではなく、電極板本体の合金系活物質を含む活物質層を介して、電極板本体と電極リードとを接合させる構成に着目した。そして、特許文献3に示すように、合金系活物質を含む活物質層を有する電極板本体と、電極リードとを、両者の一端部において、アーク溶接により接合する方法を見出した。この方法によれば、電極板本体の集電体と電極リードとが溶融するだけでなく、電極板本体の活物質層に含まれる合金系活物質が溶融して、溶融した成分の合金化が進行し、溶融部が形成される。これにより、合金系活物質を含む活物質層を介して電極板本体と電極リードとを接合するにも拘わらず、電極板本体と電極リードとが、導通性良くかつ強固に接合される。 The present inventors do not join the electrode plate main body and the electrode lead at the current collector exposed portion, but instead of the electrode plate main body and the electrode lead through the active material layer containing the alloy-based active material of the electrode plate main body. Attention was paid to the structure of joining the two. And as shown in patent document 3, the method which joins the electrode plate main body which has an active material layer containing an alloy type active material, and an electrode lead by arc welding in the both ends of both was discovered. According to this method, not only the current collector and electrode lead of the electrode plate main body are melted, but also the alloy-based active material contained in the active material layer of the electrode plate main body is melted, and the molten components are alloyed. It progresses and a melting part is formed. Thereby, although the electrode plate body and the electrode lead are joined through the active material layer containing the alloy-based active material, the electrode plate body and the electrode lead are joined firmly and with good conductivity.
 アーク溶接による接合方法では、まず、電極板本体の一端部と、金属を含む電極リードの一端部とが近接するように、電極板本体の合金系活物質を含む活物質層の一部の表面に電極リードを配置する。次いで、電極板本体および電極リード双方の一端部において、電極板本体の端面および電極リードの端面を含む溶接領域が露出するように、溶接治具で電極板本体および電極リードを挟持する。そして、溶接領域に向けてアーク放電することにより、溶接領域が溶融して、電極板本体と、電極リードとを、電気的に接続する溶融部が形成される。形成された溶融部は、少なくとも合金系活物質と、電極リードを構成する金属成分との合金を含む。 In the joining method by arc welding, first, the surface of a part of the active material layer containing the alloy-based active material of the electrode plate body so that one end portion of the electrode plate body and one end portion of the electrode lead containing metal are close to each other. An electrode lead is disposed on the surface. Next, the electrode plate main body and the electrode lead are sandwiched with a welding jig so that the welding region including the end surface of the electrode plate main body and the end surface of the electrode lead is exposed at one end of both the electrode plate main body and the electrode lead. Then, by performing arc discharge toward the welding region, the welding region is melted to form a melted portion that electrically connects the electrode plate body and the electrode lead. The formed melted portion includes at least an alloy of an alloy-based active material and a metal component constituting the electrode lead.
 しかし、アーク溶接により、溶融部を形成すると、溶融部の寸法が必要以上に大きくなり易い。その理由は、十分には明らかではないが、次のように推測される。電極板本体と電極リードとを接合させる際に、合金系活物質と電極リードを構成する金属成分との合金を含む溶融部を形成するためには、電極リードとの界面に存在する合金系活物質に含まれるケイ素などの合金化可能な元素を含む成分が溶融する温度(ケイ素の場合、1414℃)まで加熱する必要がある。ところが、活物質層と電極リードとの界面において、銅などの電極リードを構成する金属成分と、ケイ素との合金(例えば、銅-シリサイド合金など)が形成されると、融点が低下する。そのため、溶融領域の溶融速度が急激に大きくなり、溶融物の流動により溶融部が必要以上に大きくなると推測される。 However, when the melted part is formed by arc welding, the size of the melted part tends to be larger than necessary. The reason is not sufficiently clear, but is presumed as follows. When the electrode plate body and the electrode lead are joined, in order to form a melted portion containing an alloy of the alloy-based active material and the metal component constituting the electrode lead, the alloy-based activity present at the interface with the electrode lead is used. It is necessary to heat to a temperature at which a component containing an alloyable element such as silicon contained in the substance melts (1414 ° C. in the case of silicon). However, when an alloy (for example, copper-silicide alloy) of a metal component constituting the electrode lead such as copper and silicon is formed at the interface between the active material layer and the electrode lead, the melting point is lowered. Therefore, it is presumed that the melting rate of the melting region increases rapidly, and the melted portion becomes larger than necessary due to the flow of the melt.
 アーク溶接によらない場合でも、電極リードと電極板本体とを溶接させる際に、合金系活物質が溶融するような場合には、アーク溶接の場合と同様に、溶融部の寸法が必要以上に大きくなりやすい。 Even when not using arc welding, when the alloy-based active material melts when welding the electrode lead and the electrode plate body, the size of the molten part is more than necessary, as in arc welding. Easy to grow.
 このように、合金系活物質が溶融して、溶融部の寸法が大きくなると、電極リードと電極板本体との接合強度を高めることができる。ところが、溶融部の寸法が大きくなると、電極板を用いて積層型または巻回型電極群を作製する際に、電極群の寸法が大きくなったり、形状がいびつになったりして、規格外になりやすい。また、電極板とセパレータや反対極性の電極板との間隔が広がることもある。このような電極群を用いて、電気化学素子を形成すると、電極反応が不均一になったり、溶融部が周辺の構成要素を変形させることにより電極群が変形したり、セパレータの損傷により内部短絡が発生したりする不都合が生じる。また、溶融部を電極板本体の幅方向に広く形成したり、複数の溶融部を形成したりした場合に、溶融部の形状や寸法が不揃いになり、上記の不都合がさらに顕著になる場合がある。 As described above, when the alloy-based active material is melted and the size of the melted portion is increased, the bonding strength between the electrode lead and the electrode plate body can be increased. However, when the size of the melted part becomes large, when producing a laminated or wound electrode group using an electrode plate, the size of the electrode group becomes large or the shape becomes distorted. Prone. Moreover, the space | interval of an electrode plate, a separator, or an electrode plate of opposite polarity may spread. When such an electrode group is used to form an electrochemical device, the electrode reaction becomes non-uniform, the electrode group is deformed due to deformation of the surrounding components by the melting part, or an internal short circuit due to damage to the separator. Inconvenience occurs. In addition, when the melted part is formed wide in the width direction of the electrode plate body or when a plurality of melted parts are formed, the shape and dimensions of the melted part are not uniform, and the above disadvantages may become more prominent. is there.
 本発明者らは、研究を重ねた結果、溶融部の塑性変形が可能であり、溶融部を成形して電極板本体の表面に平行な平坦部を形成できること、さらには、これにより、上記の不都合が生じるのを抑制できることを見出した。本発明の電極板を用いると、溶融部周辺の構成要素を変形させたり、電極板とこれとは反対極性の電極板とを短絡させたりすることなく、確実かつ安定に、巻回により電極群を形成することができる。 As a result of repeated research, the inventors of the present invention are capable of plastic deformation of the melted part, and can form a flat part parallel to the surface of the electrode plate body by shaping the melted part. It has been found that inconvenience can be suppressed. When the electrode plate of the present invention is used, the electrode group can be reliably and stably wound by winding without deforming the components around the melting portion or short-circuiting the electrode plate and the electrode plate of the opposite polarity. Can be formed.
 このような平坦部は、電極板本体の厚み方向における溶融部の突出部を、平坦化することにより形成できる。溶融部にこのような平坦部を形成しても、塑性変形するだけであるため、溶融部と電極板本体および電極リードとの接合領域は変形しない。さらに、溶融部の組成にも変わりがないため、接合強度の変化もなく、電極板本体と電極リードとを高い接合強度で電気的に接続させることができる。 Such a flat portion can be formed by flattening the protruding portion of the melted portion in the thickness direction of the electrode plate body. Even if such a flat portion is formed in the melted portion, it is only plastically deformed, so that the joining region between the melted portion, the electrode plate body, and the electrode lead is not deformed. Furthermore, since there is no change in the composition of the melted portion, there is no change in bonding strength, and the electrode plate body and the electrode lead can be electrically connected with high bonding strength.
 また、合金系活物質を用いるにも拘わらず電極板本体と電極リードとを高い接合強度で接合できるため、合金系活物質の効果を得られやすく、高い容量および出力を得ることができる。これにより、サイクル特性などの電池性能を向上できる。活物質層が、気相法により形成される堆積膜である場合であっても、集電体露出部を設ける煩雑な工程を経ることなく、電極板本体と電極リードとの間で高い接合強度が得られる。 Moreover, since the electrode plate main body and the electrode lead can be bonded with high bonding strength in spite of using the alloy-based active material, the effect of the alloy-based active material can be easily obtained, and a high capacity and output can be obtained. Thereby, battery performance, such as cycling characteristics, can be improved. Even when the active material layer is a deposited film formed by a vapor phase method, a high bonding strength between the electrode plate main body and the electrode lead without going through a complicated process of providing a current collector exposed portion Is obtained.
 図1aは、本発明の一実施形態に係る電気化学素子用電極板の構成を示す概略断面図である。図1bは、図1の電気化学素子用電極板の構成を概略的に示す正面図である。電極板本体1は、金属箔などの、金属を含む帯状の集電体10と、集電体10の両方の表面に形成された合金系活物質を含む活物質層11との積層体を含む。集電体10のいずれの表面にも、全体に亘って活物質層11が形成されている。電極板本体1の一方の活物質層11の一部の表面には、金属箔などの金属を含む電極リード13が、電極板本体1の一端部と、電極リード13の一端部とが近接するように配置されている。 FIG. 1a is a schematic cross-sectional view showing a configuration of an electrode plate for an electrochemical element according to an embodiment of the present invention. FIG. 1 b is a front view schematically showing a configuration of the electrode plate for an electrochemical element in FIG. 1. The electrode plate body 1 includes a laminate of a strip-shaped current collector 10 containing a metal, such as a metal foil, and an active material layer 11 containing an alloy-based active material formed on both surfaces of the current collector 10. . The active material layer 11 is formed over the entire surface of the current collector 10. An electrode lead 13 containing a metal such as a metal foil is adjacent to one end of the electrode plate main body 1 and one end of the electrode lead 13 on a part of the surface of one active material layer 11 of the electrode plate main body 1. Are arranged as follows.
 電極板本体1の上記一端部には、電極板本体1の構成成分と、電極リード13の金属成分との合金を含む溶融部17が形成されている。溶融部17は、電極板本体1と、電極リード13とを、電極板本体1の一端部において、物理的に接続するとともに、電気的に接合する。電気化学素子において、電極リード13は、外部端子などに接続される。 At the one end of the electrode plate main body 1, a melting part 17 containing an alloy of the constituent components of the electrode plate main body 1 and the metal component of the electrode lead 13 is formed. The melting part 17 physically connects and electrically joins the electrode plate body 1 and the electrode lead 13 at one end of the electrode plate body 1. In the electrochemical device, the electrode lead 13 is connected to an external terminal or the like.
 図1bに示されるように、電極板本体1と電極リード13とは、電極板本体1の長手方向における一端部と、電極リード13の短手方向における一端部とが近接するように、重ねて配置されている。溶融部17は、電極板本体1の長手方向の一端部に形成されている。 As shown in FIG. 1b, the electrode plate body 1 and the electrode lead 13 are overlapped so that one end portion in the longitudinal direction of the electrode plate body 1 and one end portion in the short direction of the electrode lead 13 are close to each other. Is arranged. The melting part 17 is formed at one end of the electrode plate body 1 in the longitudinal direction.
 溶融部17は、電極板本体1の表面に平行な第1平坦部17aと第2平坦部17bとを有している。第2平坦部17bは、第1平坦部17aとは反対側に形成されている。このような平坦部は、溶接などにより電極板本体および電極リードの構成成分を溶融させることにより形成される溶融部の、電極板本体の厚み方向に突出した部分を、圧縮などにより平坦化することにより形成される。つまり、溶融部を圧縮して変形させることにより、溶融部は、電極板本体の厚み方向において、溶融部の、電極板本体および電極リードの合計厚みを超えて突出する領域が規制された形状を有している。溶融部を、電極リード側や、電極リード側とその反対側との双方向から圧縮すると、圧縮による溶融部の変形相当量は、溶融部の幅方向および/または長さ方向(特に、電極板本体側とは反対側の長さ方向)に突出する。図1bの溶融部17は、溶融部の長さ方向(電極板本体の長手方向と平行な方向)で、電極板本体とは反対側に突出している様子を示している。 The melting part 17 has a first flat part 17a and a second flat part 17b parallel to the surface of the electrode plate body 1. The second flat portion 17b is formed on the side opposite to the first flat portion 17a. Such a flat part is obtained by flattening a portion protruding in the thickness direction of the electrode plate body of the melted part formed by melting the components of the electrode plate body and the electrode lead by welding or the like by compression or the like. It is formed by. That is, by compressing and deforming the melted portion, the melted portion has a shape in which the region protruding beyond the total thickness of the electrode plate body and the electrode lead of the melted portion is regulated in the thickness direction of the electrode plate body. Have. When the melted part is compressed from the electrode lead side or from both sides of the electrode lead side and the opposite side, the deformation equivalent amount of the melted part due to compression is the width direction and / or the length direction of the melted part (in particular, the electrode plate It projects in the length direction opposite to the main body side). The melting part 17 of FIG. 1b has shown the mode that it protrudes in the length direction (direction parallel to the longitudinal direction of an electrode plate main body) of a fusion | melting part on the opposite side to an electrode plate main body.
 溶融部は、平坦部として、必ずしも、図1aのように第1平坦部と第2平坦部とを有する必要はなく、溶融部の電極リード側または電極リードとは反対側のいずれか一方に1つの平坦部を有していてもよい。平坦部は、電極板本体の表面と概して平行であればよく、平坦部の法線と、電極板本体の表面の法線とがなす角度が20°以下であればよい。このような角度であれば、溶融部による周辺の構成要素の変形やセパレータの損傷を十分に抑制できる。これは、平坦部から、溶融部に対向する周辺の構成要素やセパレータに加わる圧力が低減されるためである。
 平坦部は、必ずしも、全体が平面である必要はなく、一部に緩やかな曲面や凹凸を有していてもよい。
As shown in FIG. 1a, the melting part does not necessarily have a first flat part and a second flat part as shown in FIG. 1a, and 1 is provided on either the electrode lead side of the melting part or the opposite side of the electrode lead. You may have two flat parts. The flat portion only needs to be generally parallel to the surface of the electrode plate body, and the angle formed between the normal line of the flat portion and the normal line of the surface of the electrode plate body may be 20 ° or less. If it is such an angle, the deformation | transformation of the surrounding component by a melt | fusion part and the damage of a separator can fully be suppressed. This is because the pressure applied to the peripheral components and separators facing the melted portion from the flat portion is reduced.
The flat portion does not necessarily have to be a flat surface as a whole, and may have a gentle curved surface or unevenness in part.
 電極板本体1の厚み方向における溶融部17の厚みtは、電極板本体1および電極リード13の合計厚みT以上となっている。しかし、溶融部17には平坦部が形成されているため、電極板本体の厚み方向の寸法が必要以上に大きくならない。そのため、電極板を巻回する場合にも、溶融部の周囲の構成要素を変形させたり、セパレータを損傷したりするのを抑制できる。なお、溶融部が、第1平坦部および第2平坦部を有する場合、溶融部の厚みtは、第1平坦部と第2平坦部との間の距離である。 The thickness t of the melting part 17 in the thickness direction of the electrode plate body 1 is equal to or greater than the total thickness T of the electrode plate body 1 and the electrode lead 13. However, since the flat part is formed in the fusion | melting part 17, the dimension of the thickness direction of an electrode plate main body does not become large more than necessary. Therefore, even when the electrode plate is wound, it is possible to suppress deformation of constituent elements around the melting portion or damage to the separator. In addition, when a fusion | melting part has a 1st flat part and a 2nd flat part, the thickness t of a fusion | melting part is the distance between a 1st flat part and a 2nd flat part.
 電極板本体の厚み方向における溶融部の厚みtと、電極板本体と電極リードとの合計厚みTとの比t/Tは、好ましくは1以上であるか、もしくは1よりも大きい。比t/Tは、好ましくは1.3以下、さらに好ましくは1.2以下である。これらの下限値と上限値とは適宜選択して組み合わせることができる。比t/Tは、例えば、1~1.3または1~1.2であってもよい。比t/Tがこのような範囲である場合、電極板本体の一端部において、電極板本体の厚み方向に電極板本体と電極リードの双方の端面全体が溶融部で覆われることになる。そのため、電極板本体と電極リードとを高い強度で接合することができる。また、溶融部の周辺の構成要素の変形やセパレータの損傷をより効果的に抑制できる。 The ratio t / T between the thickness t of the melted portion in the thickness direction of the electrode plate body and the total thickness T of the electrode plate body and the electrode lead is preferably 1 or more or greater than 1. The ratio t / T is preferably 1.3 or less, more preferably 1.2 or less. These lower limit value and upper limit value can be appropriately selected and combined. The ratio t / T may be, for example, 1 to 1.3 or 1 to 1.2. When the ratio t / T is within such a range, at one end portion of the electrode plate body, the entire end surfaces of both the electrode plate body and the electrode lead are covered with the melted portion in the thickness direction of the electrode plate body. Therefore, the electrode plate body and the electrode lead can be joined with high strength. Moreover, the deformation | transformation of the component around a fusion | melting part and the damage of a separator can be suppressed more effectively.
 溶融部は、集電体を含む電極板本体と電極リードとを電気的に接続するとともに、電極板本体と電極リードとを接合する。溶融部の長さ(図1aおよび図1bでは、電極板本体の長手方向に、電極板本体とは反対側に突出した長さ)は、例えば、1mm以下であるのが望ましい。また、溶融部の幅(図1aおよび図1bでは、電極板本体の幅方向と平行な方向における溶融部の幅)は、電極板本体の幅とほぼ同じかそれ以下であると、電極群を形成する際に、溶融部の周辺の構成要素が変形したり、セパレータを損傷したりすることが、より効果的に抑制できる。溶融部が形成されている電極板本体の端面の長さ(図1aおよび図1bでは、電極板本体の幅)よりも、溶融部の幅が大きく突出している場合、その突出量は、1mm以下であることが望ましい。 The melting part electrically connects the electrode plate main body including the current collector and the electrode lead, and joins the electrode plate main body and the electrode lead. The length of the melted portion (in FIGS. 1a and 1b, the length protruding in the longitudinal direction of the electrode plate body in the direction opposite to the electrode plate body) is preferably 1 mm or less, for example. Further, the width of the melted portion (in FIGS. 1a and 1b, the width of the melted portion in the direction parallel to the width direction of the electrode plate body) is substantially the same as or smaller than the width of the electrode plate body. When forming, it can suppress more effectively that the component of the circumference | surroundings of a fusion | melting part deform | transforms or damages a separator. When the width of the melted portion protrudes larger than the length of the end face of the electrode plate main body in which the melted portion is formed (the width of the electrode plate main body in FIGS. 1a and 1b), the projecting amount is 1 mm or less. It is desirable that
 溶融部は、通常、電極板本体の構成成分と電極リードの金属成分との合金を含む。電極板本体の構成成分としては、合金系活物質以外に、集電体の金属成分、活物質層が、導電材として金属成分を含む場合には、この導電材としての金属成分などが挙げられる。合金系活物質が合金化すると、接合強度を高めやすいため、溶融部は、少なくとも合金系活物質と電極リードの金属成分との合金を含むことが好ましい。また、溶融部は、合金系活物質と、導電材および/または集電体の金属成分と、電極リードの金属成分との合金を含んでもよい。溶融部が、銅を含む合金を含む場合、特に、圧縮により平坦部を形成しても、圧縮時にクラックが生じるのを抑制できる。 The melting part usually includes an alloy of the constituent components of the electrode plate body and the metal components of the electrode lead. As a component of the electrode plate main body, in addition to the alloy-based active material, when the metal component of the current collector and the active material layer include a metal component as a conductive material, the metal component as the conductive material and the like can be mentioned. . When the alloy-based active material is alloyed, it is easy to increase the bonding strength. Therefore, the melted portion preferably includes at least an alloy of the alloy-based active material and the metal component of the electrode lead. In addition, the melted portion may include an alloy of an alloy-based active material, a conductive material and / or a metal component of a current collector, and a metal component of an electrode lead. When the molten part contains an alloy containing copper, it is possible to suppress the occurrence of cracks during compression, even if the flat part is formed by compression.
 つまり、溶融部は、合金系活物質を構成する元素、集電体の金属成分などの電極板本体の構成元素、電極リードに含まれる金属元素などが均一に分散している領域を含むことができる。このような溶融部は、良好な導電性を有することとなり、電極板本体と電極リードとをより有効に電気的に接続できる。そのため、このような溶融部を有する電極板は、電極板本体と電極リードとの間の高強度での接合性と、良好な集電性能を併せ持つことができる点で有利である。 In other words, the melted portion may include a region where the elements constituting the alloy-based active material, the constituent elements of the electrode plate body such as the metal component of the current collector, and the metal elements contained in the electrode lead are uniformly dispersed. it can. Such a melted portion has good conductivity, and can more effectively electrically connect the electrode plate body and the electrode lead. Therefore, the electrode plate having such a melted portion is advantageous in that it can have both high strength bondability between the electrode plate main body and the electrode lead and good current collecting performance.
 図1bの実施形態では、電極板本体の一端部の端面全体を覆うように帯状の連続的な溶融部を1つ形成する例を示したが、このような例に限らない。例えば、溶融部を、電極板本体の一端部において、端面の大部分を幅方向(短手方向)に覆うように連続的な帯状に形成してもよく、スポットのように間欠的に形成してもよい。また、電極板本体の一端部において、少なくとも1つの溶融部を形成すればよく、2つ以上の溶融部を形成してもよい溶融部の個数は、例えば、1つまたは2つに限らず、3つ以上であってもよい。 In the embodiment of FIG. 1b, an example in which one band-like continuous melting portion is formed so as to cover the entire end face of one end portion of the electrode plate main body is shown, but the embodiment is not limited thereto. For example, the melting portion may be formed in a continuous band shape so as to cover most of the end surface in the width direction (short direction) at one end portion of the electrode plate body, or may be formed intermittently like a spot. May be. Further, at least one melting part may be formed at one end of the electrode plate body, and the number of melting parts that may form two or more melting parts is not limited to one or two, for example, There may be three or more.
 電極板本体の一端部において、溶融部を帯状などに連続的に形成したり、複数の溶融部を形成したりすることにより、溶接強度をさらに大きくすることもできる。図1bのように、電極板本体の幅方向(短手方向)と電極リードの長手方向とを一致させて、電極板本体と電極リードとを接合する場合、溶融部を連続的に形成したり、複数の溶融部を形成したりすることが好ましい。また、電極板本体の長手方向と電極リードの幅方向(短手方向)とを一致させて、電極板本体と電極リードとを接合する場合、溶融部を連続的に形成したり、複数の溶融部を形成したりしてもよいが、1つの溶融部をスポット状に形成してもよい。
 本発明の電極板は、溶融部により電極リードと電極板本体とが強固に接合されているため、各種電気化学素子用の電極板として有用である。
The weld strength can be further increased by forming the melted portion continuously in a strip shape or the like at one end of the electrode plate body or by forming a plurality of melted portions. When the electrode plate body and the electrode lead are joined with the width direction (short direction) of the electrode plate body and the longitudinal direction of the electrode lead aligned as shown in FIG. It is preferable to form a plurality of melted parts. Also, when joining the electrode plate body and the electrode lead by matching the longitudinal direction of the electrode plate body and the width direction (short direction) of the electrode lead, a melted part is formed continuously or a plurality of melts are formed. Although a part may be formed, one melting part may be formed in a spot shape.
The electrode plate of the present invention is useful as an electrode plate for various electrochemical elements because the electrode lead and the electrode plate main body are firmly joined by the melting part.
 本発明の電極板では、溶融部の形成により、電極板本体と電極リードとの間で高い接合強度を得ることができる。電極リードと電極板本体との接合強度は、例えば、0.5N/mm以上、好ましくは1N/mm以上、さらに好ましくは1.5N/mm以上である。また、接合強度は、例えば、50N/mm以下、10N/mm以下、または5N/mm以下である。これらの下限値と上限値とは適宜選択して組み合わせることができる。接合強度は、例えば、0.5~50N/mmまたは1~5N/mmであってもよい。接合強度が、このような範囲となるように、溶融部の個数や幅、溶接条件を適宜選択することが望ましい。 In the electrode plate of the present invention, a high bonding strength can be obtained between the electrode plate main body and the electrode lead by forming the melted portion. The bonding strength between the electrode lead and the electrode plate body is, for example, 0.5 N / mm or more, preferably 1 N / mm or more, and more preferably 1.5 N / mm or more. The bonding strength is, for example, 50 N / mm or less, 10 N / mm or less, or 5 N / mm or less. These lower limit value and upper limit value can be appropriately selected and combined. The bonding strength may be, for example, 0.5 to 50 N / mm or 1 to 5 N / mm. It is desirable to appropriately select the number and width of the melted portions and the welding conditions so that the joining strength is in such a range.
 上記の接合強度は、次のようにして求めることができる。
 まず、電極板本体の一端部と電極リードの一端部とを、双方の端面を揃えて近接させた状態で重ね合わせ、双方の端面を含む溶接領域を、溶接などにより溶融させ、溶融部を形成することにより接合させる。次いで、電極板本体の他端部と電極リードの他端部とを、引張強度測定器にセットし、両他端部が離れる方向に所定速度で引っ張り、接合部分が破断したときの引張強度(N)を測定する。そして、接合部分の幅(接合幅)(mm)で除することにより、接合強度を、接合幅1mm当たりの引張強度として求めることができる。
The bonding strength can be obtained as follows.
First, one end of the electrode plate body and one end of the electrode lead are overlapped with both end faces aligned and close together, and the welded area including both end faces is melted by welding or the like to form a melted portion. To join. Next, the other end of the electrode plate body and the other end of the electrode lead are set in a tensile strength measuring instrument, pulled at a predetermined speed in a direction in which both other ends are separated, and the tensile strength ( N) is measured. Then, by dividing by the width of the joint portion (joint width) (mm), the joint strength can be obtained as the tensile strength per 1 mm of the joint width.
 なお、接合部分において、1つの溶融部が形成されている場合、接合幅は、溶融部の幅(接合する電極板本体の幅方向に平行な方向における幅)であり、複数の溶融部が形成されている場合、両端の溶融部の最外部間の距離である。 In addition, when one fusion | melting part is formed in a joining part, joining width is the width | variety of a fusion | melting part (width in the direction parallel to the width direction of the electrode plate main body to join), and several fusion | melting parts form If it is, it is the distance between the outermost parts of the melted portions at both ends.
 電気化学素子は、第1電極としての上記の電気化学素子用電極板と、第1電極とは反対の極性の第2電極と、第1電極と第2電極との間に介在するセパレータとを含む。
 電極板が使用される電気化学素子としては、電池の他、二次電池と同様の集電構造を有するキャパシタ(例えば、電気二重層キャパシタなど)などが例示できる。電池としては、アルカリ乾電池やリチウム一次電池などの一次電池、ニッケル水素蓄電池などのアルカリ二次電池、非水電解質二次電池(リチウムイオン二次電池など)などの二次電池が例示できる。
The electrochemical element includes the above-described electrode plate for an electrochemical element as a first electrode, a second electrode having a polarity opposite to the first electrode, and a separator interposed between the first electrode and the second electrode. Including.
Examples of the electrochemical element in which the electrode plate is used include a battery and a capacitor (for example, an electric double layer capacitor) having a current collecting structure similar to that of the secondary battery. Examples of the battery include primary batteries such as alkaline dry batteries and lithium primary batteries, alkaline secondary batteries such as nickel hydride storage batteries, and secondary batteries such as non-aqueous electrolyte secondary batteries (such as lithium ion secondary batteries).
 以下に、電極板および電気化学素子の各構成要素について説明する。
 電極板に含まれる電極板本体は、金属を含む集電体と、この表面に形成され、合金系活物質を含む活物質層との積層体を含む。
Below, each component of an electrode plate and an electrochemical element is demonstrated.
The electrode plate main body included in the electrode plate includes a laminate of a current collector containing metal and an active material layer formed on the surface and containing an alloy-based active material.
 電極リードに含まれる金属、集電体に含まれる金属および活物質の種類は、電気化学素子の種類、電極板が使用される電極の種類(正極(または陽極)もしくは負極(または陰極)のどちらか)などによって左右される。溶融部が、電極リードの金属成分と、少なくとも活物質(好ましくは活物質および集電体の金属成分)とが合金化されることにより形成される場合、合金化可能な、電極リードに含まれる金属と、活物質や集電体に含まれる金属との組み合わせを適宜選択すればよい。 The type of metal contained in the electrode lead, the metal contained in the current collector, and the active material can be either the type of electrochemical element or the type of electrode on which the electrode plate is used (positive electrode (or anode) or negative electrode (or cathode)). )) And so on. If the molten part is formed by alloying the metal component of the electrode lead and at least the active material (preferably the active material and the metal component of the current collector), it is included in the electrode lead that can be alloyed What is necessary is just to select suitably the combination of the metal and the metal contained in an active material or an electrical power collector.
 電極リードに含まれる金属としては、例えば、銅、銅合金、ニッケル、ニッケル合金、アルミニウム、アルミニウム合金、銀、銀合金、金、金合金などが挙げられる。 Examples of the metal contained in the electrode lead include copper, copper alloy, nickel, nickel alloy, aluminum, aluminum alloy, silver, silver alloy, gold, and gold alloy.
 合金系負極活物質に含有される合金化可能な元素(ケイ素などの半金属元素など)を、溶融部中に均一に分散させ、接合強度を高める観点からは、上記のうち、ニッケル、ニッケル合金、銅、または銅合金などが好ましい。 From the viewpoint of uniformly dispersing an alloyable element (such as a metalloid element such as silicon) contained in the alloy-based negative electrode active material in the molten portion and increasing the bonding strength, among these, nickel and nickel alloy Copper, copper alloy or the like is preferable.
 ニッケル合金としては、ニッケル-ケイ素合金、ニッケル-スズ合金などの半金属元素を含む合金;ニッケル-コバルト合金、ニッケル-鉄合金、ニッケル-マンガン合金などの遷移金属元素を含む合金などが例示できる。銅合金としては、銅-ベリリウム合金などのアルカリ土類金属元素を含む合金;銅-ジルコニア合金、銅-ニッケル合金 、銅-鉄合金、銅-銀合金などの遷移金属元素を含む合金;銅-アルミニウム合金などの典型金属元素を含む合金;銅-りん合金、銅-ケイ素合金、銅-スズ合金などの半金属元素を含む合金などが例示できる。これらの合金の中では、銅-ニッケル合金が好ましい。 Examples of nickel alloys include alloys containing metalloid elements such as nickel-silicon alloys and nickel-tin alloys; alloys containing transition metal elements such as nickel-cobalt alloys, nickel-iron alloys and nickel-manganese alloys. Copper alloys include alloys containing alkaline earth metal elements such as copper-beryllium alloys; alloys containing transition metal elements such as copper-zirconia alloys, copper-nickel alloys, copper-iron alloys, copper-silver alloys; copper- Examples include alloys containing typical metal elements such as aluminum alloys; alloys containing metalloid elements such as copper-phosphorus alloys, copper-silicon alloys, and copper-tin alloys. Of these alloys, copper-nickel alloys are preferred.
 中でも、電極リードに含まれる金属成分が、銅または銅合金であるのが好ましい。電極リードとしては、銅とニッケルとのクラッド材を用いた電極リードなども好ましい。電極リードは、上記の金属または合金などの材料を一般的なリードの形態に成形することにより得ることができる。 Especially, it is preferable that the metal component contained in the electrode lead is copper or a copper alloy. As the electrode lead, an electrode lead using a clad material of copper and nickel is also preferable. The electrode lead can be obtained by molding a material such as the above metal or alloy into a general lead form.
 集電体に含まれる金属は、電気化学素子の種類や電極の種類などに応じて選択され、例えば、銅、銅合金、ニッケル、ニッケル合金、アルミニウム、アルミニウム合金、ステンレス鋼などが例示できる。合金系負極活物質に含有される合金化可能な元素(ケイ素などの半金属元素など)を均一に分散させる観点からは、上記のうち、銅または銅合金が好ましい。 The metal contained in the current collector is selected according to the type of electrochemical element or the type of electrode, and examples thereof include copper, copper alloy, nickel, nickel alloy, aluminum, aluminum alloy, and stainless steel. Of these, copper or a copper alloy is preferable from the viewpoint of uniformly dispersing an alloyable element (such as a metalloid element such as silicon) contained in the alloy-based negative electrode active material.
 合金系活物質は、電気化学素子において、導電キャリアであるイオン(例えば、リチウムイオン電池では、リチウムイオン)と合金化および脱合金化可能な元素を含む物質を意味する。また、合金系活物質は、集電体および/または電極リードに含まれる上記の金属と合金化可能であることが好ましい。そのため、合金系活物質は、上記の元素として、電気化学素子の種類にもよるが、例えば、ケイ素および/またはスズの他、Al、Znおよび/またはMgとリチウムとを含むことが好ましい。 The alloy-based active material means a substance containing an element that can be alloyed and dealloyed with ions (for example, lithium ions in a lithium ion battery) that are conductive carriers in an electrochemical element. Moreover, it is preferable that the alloy-based active material can be alloyed with the metal contained in the current collector and / or the electrode lead. Therefore, the alloy-based active material preferably contains, for example, Al, Zn and / or Mg and lithium in addition to silicon and / or tin as the above-mentioned element, depending on the type of electrochemical element.
 本発明の電極板は、電気化学素子のうち、特に、リチウムイオン電池などの非水電解質二次電池に使用するのに有用である。以下に、非水電解質二次電池を例に挙げて、電気化学素子の構成要素を説明する。 The electrode plate of the present invention is particularly useful for use in non-aqueous electrolyte secondary batteries such as lithium ion batteries among electrochemical elements. The constituent elements of the electrochemical device will be described below by taking a nonaqueous electrolyte secondary battery as an example.
 非水電解質二次電池は、正極と、負極と、これらの間に介在するセパレータと、非水電解質とを備える。
 非水電解質二次電池において、本発明の電極板は、負極として使用するのが好ましい。
 負極は、集電体と、集電体の表面に形成された活物質層との積層体を含む。活物質層は、集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
The nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator interposed therebetween, and a nonaqueous electrolyte.
In the nonaqueous electrolyte secondary battery, the electrode plate of the present invention is preferably used as a negative electrode.
The negative electrode includes a laminate of a current collector and an active material layer formed on the surface of the current collector. The active material layer may be formed on one surface of the current collector, or may be formed on both surfaces.
 負極集電体の材質としては、ステンレス鋼、チタン、ニッケル、銅、銅合金などが例示できる。負極集電体の形態は特に制限されず、無孔性の金属箔やシート、フィルムなどであってもよく、多孔性であってもよい。負極集電体の厚みは、例えば、1~500μmの範囲から選択でき、例えば、1~50μm、好ましくは10~40μまたは10~30μmである。 Examples of the material of the negative electrode current collector include stainless steel, titanium, nickel, copper, and copper alloy. The form of the negative electrode current collector is not particularly limited, and may be a nonporous metal foil, a sheet, a film, or the like, or may be porous. The thickness of the negative electrode current collector can be selected from the range of 1 to 500 μm, for example, and is, for example, 1 to 50 μm, preferably 10 to 40 μm or 10 to 30 μm.
 負極活物質層は、合金系活物質のみで形成してもよく、その特性を損なわない範囲で、合金系活物質の他、他の非合金系活物質、結着剤、導電剤、増粘剤、公知の添加剤などを含有してもよい。 The negative electrode active material layer may be formed only of an alloy-based active material. In addition to the alloy-based active material, other non-alloy-based active materials, binders, conductive agents, thickeners may be used as long as the characteristics are not impaired. Agents, known additives and the like.
 非水電解質二次電池において、合金系活物質は、負極電位下で、充電時にリチウムと合金化することによりリチウムを吸蔵し、かつ放電時に脱合金化することによりリチウムを放出する。このような合金系活物質としては、合金系活物質としては特に制限されず、公知の材料、例えば、電極リードの金属成分と合金化可能で、かつ、リチウムイオンを可逆的に吸蔵および放出し得る元素を含む各種材料を使用できる。 In a non-aqueous electrolyte secondary battery, the alloy-based active material occludes lithium by alloying with lithium at the time of charging and releases lithium by de-alloying at the time of discharge under a negative electrode potential. Such an alloy-based active material is not particularly limited as an alloy-based active material, can be alloyed with a known material, for example, a metal component of an electrode lead, and reversibly occludes and releases lithium ions. Various materials containing the element to be obtained can be used.
 このような材料としては、例えば、ケイ素、ケイ素合金、ケイ素化合物(ケイ素酸化物SiOa、ケイ素炭化物SiCb、ケイ素窒化物SiNcなど)、スズ、スズ合金、スズ化合物(スズ酸化物SnOa、SnO2;スズ炭化物SnCb;スズ窒化物SnNc;SnSiO3、Ni2Sn4、Mg2Snなど)、これらの部分置換体または固溶体の他、Al、Znおよび/またはMgなどを含むリチウム合金などの合金系材料が例示できる。ケイ素酸化物およびスズ酸化物において、係数aは、0<a<2、好ましくは0.05<a<1.95である。ケイ素炭化物およびスズ炭化物において、係数bは、0<b<1である。ケイ素窒化物およびスズ窒化物において、係数cは、0<c<4/3である。 Examples of such materials include silicon, silicon alloys, silicon compounds (silicon oxide SiO a , silicon carbide SiC b , silicon nitride SiN c, etc.), tin, tin alloys, tin compounds (tin oxide SnO a , SnO 2 ; tin carbide SnC b ; tin nitride SnN c ; SnSiO 3 , Ni 2 Sn 4 , Mg 2 Sn, etc.), lithium alloys containing Al, Zn and / or Mg, etc. in addition to these partially substituted or solid solutions Examples thereof include alloy materials. In silicon oxide and tin oxide, the coefficient a is 0 <a <2, preferably 0.05 <a <1.95. In silicon carbide and tin carbide, the coefficient b is 0 <b <1. In silicon nitride and tin nitride, the coefficient c is 0 <c <4/3.
 ケイ素合金としては、ケイ素とリチウムとを含む合金、ケイ素およびリチウムに加え、Al、Znおよび/またはMgなどを含む合金などの他、ケイ素と異種元素A1との合金などが例示できる。異種元素A1としては、Mg、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、SnおよびTiからなる群より選ばれる少なくとも1つの元素が挙げられる。 Examples of the silicon alloy include an alloy containing silicon and lithium, an alloy containing Al, Zn, and / or Mg in addition to silicon and lithium, and an alloy of silicon and a different element A1. Examples of the different element A1 include at least one element selected from the group consisting of Mg, Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, Sn, and Ti.
 スズ合金としては、スズとリチウムとを含む合金、スズおよびリチウムに加え、Al、Znおよび/またはMgなどを含む合金に加え、スズと異種元素A2との合金などが例示できる。異種元素A2としては、Mg、Fe、Co、Sb、Bi、Pb、Ni、Cu、Zn、Ge、In、およびTiからなる群より選ばれる少なくとも1つの元素が挙げられる。スズ合金の具体例としては、Mg-Sn合金、Ti-Sn合金、Fe-Sn合金、Ni-Sn合金、Cu-Sn合金などが挙げられる。 Examples of the tin alloy include an alloy containing tin and lithium, an alloy containing tin, lithium, an alloy containing Al, Zn, and / or Mg, an alloy of tin and a different element A2, and the like. Examples of the different element A2 include at least one element selected from the group consisting of Mg, Fe, Co, Sb, Bi, Pb, Ni, Cu, Zn, Ge, In, and Ti. Specific examples of the tin alloy include Mg—Sn alloy, Ti—Sn alloy, Fe—Sn alloy, Ni—Sn alloy, Cu—Sn alloy and the like.
 部分置換体としては、ケイ素、ケイ素合金、またはケイ素化合物に含まれるケイ素の一部を異種元素B1で置換した化合物、スズ、スズ合金、またはスズ化合物に含まれるスズの一部を異種元素B2で置換した化合物などが例示できる。異種元素B1としては、B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、NおよびSnよりなる群から選ばれる少なくとも1つの元素を使用できる。異種元素B2としては、B、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、およびNよりなる群から選ばれる少なくとも1つの元素を使用できる。 As the partially substituted body, silicon, a silicon alloy, or a compound obtained by substituting a part of silicon contained in a silicon compound with a different element B1, tin, a tin alloy, or a part of tin contained in a tin compound is replaced with a different element B2. Examples include substituted compounds. The different element B1 is at least selected from the group consisting of B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, N, and Sn. One element can be used. The different element B2 is at least one selected from the group consisting of B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, V, W, Zn, C, and N. Two elements can be used.
 これらの合金系活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。
 合金系活物質のうち、ケイ素および/またはスズを含む活物質が好ましく、特に、ケイ素、ケイ素合金、ケイ素化合物などが好ましい。
These alloy-based active materials can be used singly or in combination of two or more.
Of the alloy-based active materials, active materials containing silicon and / or tin are preferable, and silicon, silicon alloys, silicon compounds, and the like are particularly preferable.
 負極活物質層には、活物質の溶融効率を高める観点から、負極活物質層の表面にリチウム箔またはリチウム合金箔を貼り付けてもよい。貼り付けたリチウム箔や合金箔に含まれるリチウムは、適宜、負極活物質層に吸蔵される。 From the viewpoint of increasing the melting efficiency of the active material, a lithium foil or a lithium alloy foil may be attached to the surface of the negative electrode active material layer in the negative electrode active material layer. Lithium contained in the attached lithium foil or alloy foil is appropriately occluded in the negative electrode active material layer.
 負極に電気的に接続される電極リードは、銅または銅合金を含むのが好ましい。
 例えば、銅または銅合金を含む電極リードと、活物質層にケイ素やスズなどの元素を含む合金系活物質を含む電極板本体とを、電極板本体の一端部において溶接することにより溶融部が形成される。
The electrode lead electrically connected to the negative electrode preferably contains copper or a copper alloy.
For example, an electrode lead containing copper or a copper alloy and an electrode plate main body containing an alloy-based active material containing an element such as silicon or tin in the active material layer are welded at one end of the electrode plate main body so that the molten portion is It is formed.
 また、負極集電体が、電極リードと同様に、銅や銅合金を含む場合、上記の活物質と電極リードの金属成分との合金化と同様に、集電体の銅や銅合金と、活物質、ひいては電極リードとの合金化が進行し易くなる。 In addition, when the negative electrode current collector contains copper or a copper alloy as in the case of the electrode lead, as in the alloying of the active material and the metal component of the electrode lead, the current collector copper or copper alloy, Alloying with the active material, and hence the electrode lead, is likely to proceed.
 このようにして形成される溶融部は、銅と、ケイ素やスズとの合金を含むことが好ましい。より好ましい態様では、溶融部は、銅とケイ素との合金を含む。このような合金の組成は特に制限されないが、合金が、Cu5Siを含むことが好ましい。 The melted portion thus formed preferably contains an alloy of copper and silicon or tin. In a more preferred embodiment, the molten part contains an alloy of copper and silicon. The composition of such an alloy is not particularly limited, but the alloy preferably contains Cu 5 Si.
 負極活物質層は、合金系活物質、結着剤と分散媒を含む負極スラリーを用いて形成できる。負極スラリーは、必要に応じて、さらに増粘剤、導電材、公知の添加剤などを含有してもよい。負極活物質層は、これらの成分を含む負極スラリーを調製し、負極集電体の表面に塗布することにより形成できる。負極スラリーの塗膜は、通常、乾燥され、圧延に供される。 The negative electrode active material layer can be formed using a negative electrode slurry containing an alloy-based active material, a binder and a dispersion medium. The negative electrode slurry may further contain a thickener, a conductive material, a known additive and the like as necessary. The negative electrode active material layer can be formed by preparing a negative electrode slurry containing these components and applying it to the surface of the negative electrode current collector. The coating film of the negative electrode slurry is usually dried and subjected to rolling.
 結着剤としては、各種樹脂材料、例えば、フッ素樹脂(ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレンなど);ポリオレフィン樹脂(ポリエチレン、ポリプロピレンなど);芳香族ポリアミドなどのポリアミド樹脂;ポリイミド、ポリアミドイミドなどのポリイミド樹脂;ポリアクリル酸メチル、エチレン-メタクリル酸メチル共重合体などのアクリル樹脂;ポリビニルピロリドン;スチレン-ブタジエンゴム、アクリルゴムまたはこれらの変性体などのゴム状材料が例示できる。これらの結着剤は、一種を単独でまたは二種以上を組み合わせて使用できる。
 結着剤の割合は、活物質100質量部当たり、例えば、0.1~10質量部、好ましくは1~5質量部である。
As binders, various resin materials, for example, fluororesins (polyvinylidene fluoride (PVDF), polytetrafluoroethylene, polyhexafluoropropylene, etc.); polyolefin resins (polyethylene, polypropylene, etc.); polyamide resins such as aromatic polyamides, etc. Polyimide resin such as polyimide and polyamideimide; acrylic resin such as polymethyl acrylate and ethylene-methyl methacrylate copolymer; polyvinyl pyrrolidone; rubber-like material such as styrene-butadiene rubber, acrylic rubber or modified products thereof it can. These binders can be used individually by 1 type or in combination of 2 or more types.
The ratio of the binder is, for example, 0.1 to 10 parts by mass, preferably 1 to 5 parts by mass, per 100 parts by mass of the active material.
 負極スラリーに含まれる分散媒としては、例えば、水;エタノールなどのアルコール;アセトン、シクロヘキサノンなどのケトン;ジメチルホルムアミド、ジメチルアセトアミド、メチルホルムアミドなどのアミド;N-メチル-2-ピロリドン(NMP);ジメチルアミンなどのアミン;またはこれらの混合溶媒などが例示できる。 Examples of the dispersion medium contained in the negative electrode slurry include water; alcohols such as ethanol; ketones such as acetone and cyclohexanone; amides such as dimethylformamide, dimethylacetamide and methylformamide; N-methyl-2-pyrrolidone (NMP); dimethyl Examples thereof include amines such as amines; or mixed solvents thereof.
 非合金系活物質としては、例えば、天然または人造黒鉛などの炭素質材料などが例示できる。非合金系活物質の量は、合金系活物質100質量部当たり、例えば、30質量部以下、好ましくは10質量部以下である。 Examples of non-alloy active materials include carbonaceous materials such as natural or artificial graphite. The amount of the non-alloy type active material is, for example, 30 parts by mass or less, preferably 10 parts by mass or less, per 100 parts by mass of the alloy type active material.
 導電剤としては、カーボンブラック;金属繊維、炭素繊維などの導電性繊維;アルミニウム等の金属粉末;フッ化カーボンなどが挙げられる。これらの導電剤は、一種を単独でまたは二種以上を組み合わせて使用できる。導電剤の割合は、例えば、活物質100質量部当たり、例えば、0.1~7質量部である。 Examples of the conductive agent include carbon black; conductive fibers such as metal fibers and carbon fibers; metal powders such as aluminum; and carbon fluoride. These electrically conductive agents can be used individually by 1 type or in combination of 2 or more types. The ratio of the conductive agent is, for example, 0.1 to 7 parts by mass per 100 parts by mass of the active material.
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)などのセルロース誘導体;ポリエチレングリコールなどのポリC2-4アルキレングリコールなどが挙げられる。増粘剤の割合は、例えば、活物質100質量部当たり、例えば、0.1~10質量部である。 Examples of the thickener include cellulose derivatives such as carboxymethyl cellulose (CMC); poly C 2-4 alkylene glycol such as polyethylene glycol. The ratio of the thickener is, for example, 0.1 to 10 parts by mass per 100 parts by mass of the active material.
 また、真空蒸着法などの蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション法、化学気相成長(CVD;Chemical Vapor Deposition)法、プラズマ化学気相成長法、溶射法などの気相法により合金系活物質を集電体表面に堆積させて、負極活物質の薄膜を形成することにより、負極活物質層を形成してもよい。これらの中でも、真空蒸着法により負極活物質層を形成することが好ましい。活物質層が、気相法による、合金系活物質の堆積膜である場合には、従来の方法のように、集電体露出部を設けて、この集電体露出部に電極リードを接合することが難しい。本発明では、溶融部により、電極板と電極リードとを接合できるため、活物質層が堆積膜である場合に、特に有効である。 Also, by vapor deposition methods such as vacuum deposition, sputtering, ion plating, laser ablation, chemical vapor deposition (CVD), plasma chemical vapor deposition, and thermal spraying The negative electrode active material layer may be formed by depositing an alloy-based active material on the surface of the current collector to form a thin film of the negative electrode active material. Among these, it is preferable to form a negative electrode active material layer by a vacuum evaporation method. When the active material layer is a deposited film of an alloy-based active material by a vapor phase method, a current collector exposed portion is provided as in the conventional method, and an electrode lead is joined to this current collector exposed portion. Difficult to do. In the present invention, since the electrode plate and the electrode lead can be joined by the melting portion, it is particularly effective when the active material layer is a deposited film.
 真空蒸着による負極活物質層の形成は、例えば、次のようにして行うことができる。
 電子ビーム式真空蒸着装置において、シリコンターゲットの鉛直方向上方に集電体を配置する。シリコンターゲットに電子ビームを照射してケイ素蒸気を発生させ、このケイ素蒸気を負極集電体の表面に析出させる。これにより、ケイ素からなる薄膜状の負極活物質層が集電体の表面に形成される。このとき、電子ビーム式真空蒸着装置内に酸素または窒素を供給すると、ケイ素酸化物またはケイ素窒化物を含有する負極活物質層が形成される。
Formation of the negative electrode active material layer by vacuum deposition can be performed, for example, as follows.
In the electron beam vacuum deposition apparatus, a current collector is disposed above the silicon target in the vertical direction. The silicon target is irradiated with an electron beam to generate silicon vapor, and this silicon vapor is deposited on the surface of the negative electrode current collector. Thereby, a thin-film negative electrode active material layer made of silicon is formed on the surface of the current collector. At this time, when oxygen or nitrogen is supplied into the electron beam vacuum deposition apparatus, a negative electrode active material layer containing silicon oxide or silicon nitride is formed.
 このようにして得られる負極活物質層は、薄膜状のベタ膜として形成されるが、それに限定されず、気相法により、格子などのパターン形状や複数の柱状体の集合体として形成してもよい。複数の柱状体は、それぞれが合金系活物質を含有し、負極集電体表面から外方に延びかつ互いに離隔するように形成される。 The negative electrode active material layer thus obtained is formed as a thin solid film, but is not limited thereto, and is formed by a gas phase method as a pattern shape such as a lattice or an aggregate of a plurality of columnar bodies. Also good. Each of the plurality of columnar bodies contains an alloy-based active material, and is formed to extend outward from the surface of the negative electrode current collector and to be separated from each other.
 この場合、負極集電体の表面に複数の凸部を規則的にまたは不規則に形成し、1つの凸部の表面に1つの柱状体を形成するのが好ましい。凸部の鉛直方向上方からの正投影図における形状には、菱形、円形、楕円形、多角形(三角形、八角形等)などがある。凸部を規則的に形成する場合、凸部の負極集電体表面での配置には、碁盤目状配置、格子状配置、千鳥格子状配置、最密充填配置などがある。また、凸部は、負極集電体の厚み方向の一方の表面または両方の表面に形成される。また、柱状体の高さは好ましくは3μm~30μmである。 In this case, it is preferable to form a plurality of convex portions regularly or irregularly on the surface of the negative electrode current collector and to form one columnar body on the surface of one convex portion. Examples of the shape in the orthographic projection from above in the vertical direction of the convex portion include a rhombus, a circle, an ellipse, and a polygon (triangle, octagon, etc.). When the convex portions are regularly formed, the arrangement of the convex portions on the negative electrode current collector surface includes a grid-like arrangement, a lattice arrangement, a staggered arrangement, a close-packed arrangement, and the like. Further, the convex portion is formed on one surface or both surfaces in the thickness direction of the negative electrode current collector. The height of the columnar body is preferably 3 μm to 30 μm.
 負極活物質層の厚みは、例えば、3~200μm、好ましくは5~100μmである。堆積により形成される負極活物質層の厚みは、例えば、3~50μmまたは5~30μmである。
 好ましい形態の負極活物質層は、合金系活物質を含有し、かつ膜厚が3~50μmである非晶質または低結晶性の堆積膜である。
The thickness of the negative electrode active material layer is, for example, 3 to 200 μm, preferably 5 to 100 μm. The thickness of the negative electrode active material layer formed by deposition is, for example, 3 to 50 μm or 5 to 30 μm.
The negative electrode active material layer in a preferred form is an amorphous or low crystalline deposited film containing an alloy-based active material and having a thickness of 3 to 50 μm.
 正極は、集電体と、集電体の表面に形成された活物質層とを含む。活物質層は、集電体(帯状やシート状の集電体など)の一方の表面に形成してもよく、両方の表面に形成してもよい。 The positive electrode includes a current collector and an active material layer formed on the surface of the current collector. The active material layer may be formed on one surface of a current collector (such as a belt-shaped or sheet-shaped current collector), or may be formed on both surfaces.
 正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが挙げられる。正極集電体の形態および厚みは、負極集電体と同様である。正極集電体としては、多孔性のものを用いるのも好ましく、多孔性の集電体としては、例えば、メッシュ体、ネット体、パンチングシート、ラス体、多孔質体、発泡体、不織布などが例示できる。 Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium. The form and thickness of the positive electrode current collector are the same as those of the negative electrode current collector. As the positive electrode current collector, it is also preferable to use a porous material, and examples of the porous current collector include a mesh body, a net body, a punching sheet, a lath body, a porous body, a foam, and a nonwoven fabric. It can be illustrated.
 正極活物質層は、正極活物質の他、結着剤、導電剤、増粘剤などを含有してもよい。正極活物質層は、これらの成分を含む正極スラリーを用いて、負極スラリーを用いて負極活物質層を形成する場合と同様の方法により形成できる。正極スラリーに含まれる各成分としては、負極スラリーの項で例示したものが使用でき、各成分の含有量は、負極スラリーの場合と同様の範囲から選択できる。なお、正極スラリーに添加する導電剤としては、負極スラリーの項で例示したもの以外に、天然黒鉛または人造黒鉛などの黒鉛も使用できる。また、正極活物質層の厚みは、負極活物質層の厚みと同様の範囲から選択できる。 The positive electrode active material layer may contain a binder, a conductive agent, a thickener and the like in addition to the positive electrode active material. The positive electrode active material layer can be formed by the same method as in the case of forming a negative electrode active material layer using a negative electrode slurry using a positive electrode slurry containing these components. As each component contained in a positive electrode slurry, what was illustrated by the term of the negative electrode slurry can be used, and content of each component can be selected from the same range as the case of a negative electrode slurry. As the conductive agent added to the positive electrode slurry, graphite such as natural graphite or artificial graphite can be used in addition to those exemplified in the section of the negative electrode slurry. The thickness of the positive electrode active material layer can be selected from the same range as the thickness of the negative electrode active material layer.
 正極活物質としては、公知の非水電解質二次電池正極活物質が使用でき、その中でも、リチウム遷移金属複合酸化物、オリビン型リン酸リチウムなどが好ましく用いられる。正極活物質は、一種を単独でまたは二種以上を組み合わせて使用できる。 As the positive electrode active material, a known non-aqueous electrolyte secondary battery positive electrode active material can be used, and among these, lithium transition metal composite oxide, olivine type lithium phosphate and the like are preferably used. A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
 リチウム遷移金属複合酸化物としては、リチウムと遷移金属元素とを含む金属酸化物、このような金属酸化物中の遷移金属元素の一部が異種元素によって置換された金属酸化物などが例示できる。遷移金属元素の具体例としては、Sc、Y、Cr、Mn、Fe、Co、Ni、Cuなどが挙げられる。リチウム遷移金属複合酸化物は、これらの遷移金属元素を一種含んでもよく、二種以上を組み合わせて含んでもよい。これらの遷移金属元素のうち、Mn、Coおよび/またはNiなどが好ましい。 Examples of the lithium transition metal composite oxide include a metal oxide containing lithium and a transition metal element, and a metal oxide in which a part of the transition metal element in such a metal oxide is substituted with a different element. Specific examples of the transition metal element include Sc, Y, Cr, Mn, Fe, Co, Ni, and Cu. The lithium transition metal composite oxide may contain one of these transition metal elements or a combination of two or more. Of these transition metal elements, Mn, Co and / or Ni are preferred.
 異種元素としては、アルカリ金属元素、アルカリ土類金属元素、典型金属元素、半金属元素などが例示できる。異種元素の具体例としては、Na、Mg、Zn、Al、Pb、Sb、Bなどが挙げられる。リチウム遷移金属複合酸化物は、これらの異種元素を一種含んでもよく、二種以上を含んでもよい。異種元素の中でも、Mgおよび/またはAlなどが好ましい。 Examples of the different elements include alkali metal elements, alkaline earth metal elements, typical metal elements, and semimetal elements. Specific examples of the different elements include Na, Mg, Zn, Al, Pb, Sb, and B. The lithium transition metal composite oxide may contain one kind of these different elements or two or more kinds. Among the different elements, Mg and / or Al are preferable.
 リチウム遷移金属複合酸化物としては、例えば、LilCoO2、LilNiO2、LilMnO2、LilComNi1-m2、LilCom1-mn、LilNi1-mmn、LilMn24、LilMn2-mn4などが挙げられる。これらの式中、Aは上記遷移金属元素および異種元素からなる群より選択される少なくとも1つの元素を示し、0<l≦1.2、0≦m≦0.9、2≦n≦2.3である。 Examples of the lithium transition metal composite oxides, for example, Li l CoO 2, Li l NiO 2, Li l MnO 2, Li l Co m Ni 1-m O 2, Li l Co m A 1-m O n, Li l Ni 1-m A m O n , Li l Mn 2 O 4, Li l like Mn 2-m A n O 4 and the like. In these formulas, A represents at least one element selected from the group consisting of the transition metal element and the heterogeneous element, and 0 <l ≦ 1.2, 0 ≦ m ≦ 0.9, 2 ≦ n ≦ 2. 3.
 オリビン型リン酸リチウムとしては、LiXPO4、Li2XPO4Fなどが例示できる。これらの式中、Xは、遷移金属元素、例えば、Co、Ni、MnおよびFeからなる群より選択される少なくとも1つの元素を示す。
 なお、上記で例示した正極活物質において、リチウムのモル比は正極活物質作製直後の値であり、充放電により増減する。
Examples of the olivine type lithium phosphate include LiXPO 4 and Li 2 XPO 4 F. In these formulas, X represents a transition metal element, for example, at least one element selected from the group consisting of Co, Ni, Mn and Fe.
In the positive electrode active material exemplified above, the molar ratio of lithium is a value immediately after the production of the positive electrode active material, and increases or decreases due to charge / discharge.
 正極は、さらに少なくとも集電体に電気的に接続した正極リードを含む。正極リードは、活物質の種類によっては、負極における電極リードの接続方法と同様にして集電体および活物質層に電気的に接続できるが、正極の一部に正極集電体の露出部を設け、この露出部に正極リードの一端を抵抗溶接、超音波溶接などにより集電体に接合することが好ましい。正極リードの他端は、正極端子に電気的に接続される。
 正極リードの材質としては、アルミニウム、アルミニウム合金などが挙げられる。
The positive electrode further includes at least a positive electrode lead electrically connected to the current collector. Depending on the type of active material, the positive electrode lead can be electrically connected to the current collector and the active material layer in the same manner as the electrode lead connection method in the negative electrode. Preferably, one end of the positive electrode lead is bonded to the current collector by resistance welding, ultrasonic welding, or the like. The other end of the positive electrode lead is electrically connected to the positive electrode terminal.
Examples of the material for the positive electrode lead include aluminum and aluminum alloys.
 セパレータとしては、所定のイオン透過度、機械的強度、絶縁性などを併せ持つシートが使用できる。セパレータとしては、樹脂製の微多孔膜、織布、不織布などの多孔質シートを使用するのが好ましい。耐久性、シャットダウン機能などの観点からは、セパレータを構成する樹脂材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂を使用することが好ましい。 As the separator, a sheet having a predetermined ion permeability, mechanical strength, insulation and the like can be used. As the separator, it is preferable to use a porous sheet such as a resin microporous film, a woven fabric or a non-woven fabric. From the viewpoint of durability, shutdown function, etc., it is preferable to use a polyolefin resin such as polyethylene or polypropylene as the resin material constituting the separator.
 セパレータの厚みは、例えば、10~300μm、好ましくは10~30μm、さらに好ましくは10~25μmである。また、セパレータの空孔率は、好ましくは30~70%、さらに好ましくは35~60%である。空孔率とは、セパレータの体積に対する、セパレータが有する細孔の総容積の百分率である。 The thickness of the separator is, for example, 10 to 300 μm, preferably 10 to 30 μm, and more preferably 10 to 25 μm. Further, the porosity of the separator is preferably 30 to 70%, more preferably 35 to 60%. The porosity is a percentage of the total volume of pores of the separator with respect to the volume of the separator.
 非水電解質二次電池において、非水電解質としては、リチウムイオン伝導性を有する非水電解質が使用される。非水電解質は、非水溶媒と、溶質(または支持塩)としての非水溶媒に溶解したリチウム塩とを含む。非水電解質は、少なくともセパレータに含浸される。 In the non-aqueous electrolyte secondary battery, a non-aqueous electrolyte having lithium ion conductivity is used as the non-aqueous electrolyte. The non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent as a solute (or supporting salt). At least the separator is impregnated with the nonaqueous electrolyte.
 非水溶媒としては、プロピレンカーボネート、エチレンカーボネート(EC)などの環状炭酸エステル;ジエチルカーボネート、エチルメチルカーボネート(EMC)、ジメチルカーボネートなどの鎖状炭酸エステル;γ-ブチロラクトン、γ-バレロラクトンなどの環状カルボン酸エステルなどが例示できる。これらの非水溶媒は、1種を単独でまたは2種以上を組み合わせて使用できる。 Non-aqueous solvents include cyclic carbonates such as propylene carbonate and ethylene carbonate (EC); chain carbonates such as diethyl carbonate, ethylmethyl carbonate (EMC) and dimethyl carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone Examples thereof include carboxylic acid esters. These non-aqueous solvents can be used alone or in combination of two or more.
 リチウム塩としては、例えば、LiPF6、LiSbF6、LiAsF6、LiBF4、LiBCl4、LiB10Cl10、LiAlCl4、LiClO4、LiCF3SO3、LiC(SO2CF33、イミド塩類[LiN(SO2CF32、LiN(SO2252など]、ハライド(LiCl、LiBr、LiIなど)、ホウ酸塩類、LiCF3CO2、LiSCN、低級脂肪族カルボン酸リチウムなどが挙げられる。リチウム塩は、1種を単独でまたは2種以上を組み合わせて使用できる。非水電解質中のリチウム塩の濃度は、例えば、0.5~2mol/Lである。 Examples of the lithium salt, LiPF 6, LiSbF 6, LiAsF 6, LiBF 4, LiBCl 4, LiB 10 Cl 10, LiAlCl 4, LiClO 4, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, imidates [ LiN etc. (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2], halide (LiCl, LiBr, etc. LiI), boric acid salts, LiCF 3 CO 2, LiSCN, lower aliphatic carboxylic acid lithium, etc. Is mentioned. A lithium salt can be used individually by 1 type or in combination of 2 or more types. The concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.5 to 2 mol / L.
 非水電解質には、公知の添加剤を添加してもよい。添加剤としては、フッ素原子含有環状炭酸エステル(フッ化エチレンカーボネートなど)、不飽和結合を有する環状炭酸エステル(ビニレンカーボネート、ビニルエチレンカーボネート、ジビニルエチレンカーボネートなど)などの充放電効率を向上させる添加剤;シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテルなどの芳香族化合物などの電池を不活性化する添加剤などが例示できる。添加剤は、一種を単独でまたは二種以上を組み合わせて使用できる。 A known additive may be added to the nonaqueous electrolyte. Additives that improve charge and discharge efficiency such as fluorine atom-containing cyclic carbonates (fluorinated ethylene carbonate, etc.) and cyclic carbonates with unsaturated bonds (vinylene carbonate, vinylethylene carbonate, divinylethylene carbonate, etc.) An additive that inactivates a battery such as an aromatic compound such as cyclohexylbenzene, biphenyl, and diphenyl ether; An additive can be used individually by 1 type or in combination of 2 or more types.
 非水電解質二次電池は、電池の形状などに応じて、公知の方法により製造できる。円筒型電池または角型電池では、例えば、正極と、負極と、これらの間に配されるセパレータとを巻回して電極群を形成し、電極群および電解質を電池ケースに収容することにより製造できる。 The nonaqueous electrolyte secondary battery can be manufactured by a known method according to the shape of the battery. In a cylindrical battery or a rectangular battery, for example, a positive electrode, a negative electrode, and a separator disposed between them are wound to form an electrode group, and the electrode group and the electrolyte can be accommodated in a battery case. .
 電極群は、巻回したものに限らず、積層したもの、またはつづら折りにしたものであってもよい。電極群の形状は、電池または電池ケースの形状に応じて、円筒形、巻回軸に垂直な端面が長円形である扁平形であってもよい。 The electrode group is not limited to a wound one, but may be a laminated one or a zigzag folded one. The shape of the electrode group may be a cylindrical shape or a flat shape having an oval end surface perpendicular to the winding axis, depending on the shape of the battery or battery case.
 電池ケース材料としては、アルミニウム、アルミニウム合金(マンガン、銅等などの金属を微量含有する合金など)、鋼鈑などが使用できる。 As the battery case material, aluminum, an aluminum alloy (such as an alloy containing a trace amount of a metal such as manganese or copper), a steel plate, or the like can be used.
 図3は、本発明の一実施形態に係る電気化学素子としてのリチウムイオン電池の構成を模式的に示す縦断面図である。リチウムイオン電池25は、本発明の電気化学素子用電極板を、負極28として含む以外は、従来のリチウムイオン電池と同様の構成を有している。
 リチウムイオン電池25は、有底円筒型電池ケース32と、電池ケース32内に収容された巻回式電極群26および図示しない非水電解質とを具備し、電池ケース32の開口部は、封口板34で封口されている。
FIG. 3 is a longitudinal sectional view schematically showing a configuration of a lithium ion battery as an electrochemical element according to an embodiment of the present invention. The lithium ion battery 25 has the same configuration as a conventional lithium ion battery except that the electrode plate for electrochemical elements of the present invention is included as the negative electrode 28.
The lithium ion battery 25 includes a bottomed cylindrical battery case 32, a wound electrode group 26 accommodated in the battery case 32, and a non-aqueous electrolyte (not shown), and the opening of the battery case 32 has a sealing plate. 34 is sealed.
 より詳細には、電極群26は、帯状の正極27と、帯状の負極28とを、これらの間に、帯状のセパレータ29を介在させて積層させ、この積層物の長手方向の一端部を巻回軸にして巻回することにより形成されている。電極群26は、上面に上部絶縁板30を配するとともに、底面に下部絶縁板31を配した状態で、電池ケース32の内部に収納される。 More specifically, the electrode group 26 is formed by laminating a belt-like positive electrode 27 and a belt-like negative electrode 28 with a belt-like separator 29 interposed therebetween, and winding one end portion in the longitudinal direction of the laminate. It is formed by winding around a rotation axis. The electrode group 26 is housed inside the battery case 32 with the upper insulating plate 30 disposed on the upper surface and the lower insulating plate 31 disposed on the bottom surface.
 電極群26の上部より導出した正極リード36は、電池ケース32の開口部を封口し、かつ正極端子33を支持する封口板34に電気的に接続される。
 負極28は、集電体とその両面に形成された活物質層との積層体を含む電極板本体1と電極リード13と、電極板本体1と負極リードとを電気的に接続する複数の溶融部17とを備える。電極リード13は、電極群26より導出され、電池ケース32の内底面に電気的に接続される。
The positive electrode lead 36 led out from the upper part of the electrode group 26 is electrically connected to a sealing plate 34 that seals the opening of the battery case 32 and supports the positive electrode terminal 33.
The negative electrode 28 includes a plurality of melts that electrically connect the electrode plate body 1 and the electrode lead 13, and the electrode plate body 1 and the negative electrode lead, each including a laminate of a current collector and an active material layer formed on both sides thereof. Unit 17. The electrode lead 13 is led out from the electrode group 26 and is electrically connected to the inner bottom surface of the battery case 32.
 非水電解質は、電極群26を電池ケース32に収納した後に、所定量注液される。非水電解質を注液した後、電池ケース32の開口部に、正極端子33を支持する封口体34が挿入される。そして、電池ケース32の開口部を内方向に折り曲げるようにかしめ封口することにより、リチウムイオン電池25を得ることができる。 The nonaqueous electrolyte is injected into the battery case 32 after the electrode group 26 is stored in a predetermined amount. After injecting the nonaqueous electrolyte, a sealing body 34 that supports the positive terminal 33 is inserted into the opening of the battery case 32. The lithium ion battery 25 can be obtained by caulking and sealing the opening of the battery case 32 so as to be bent inward.
 上部絶縁板、下部絶縁板および封口板は、電気絶縁性材料、好ましくは樹脂材料、ゴム材料などを所定の形状に成形することにより作製される。電池ケースおよび正極端子は、鉄、ステンレス鋼などの金属材料を所定の形状に成形することにより作製される。 The upper insulating plate, the lower insulating plate, and the sealing plate are produced by molding an electrically insulating material, preferably a resin material, a rubber material, or the like into a predetermined shape. The battery case and the positive terminal are produced by molding a metal material such as iron or stainless steel into a predetermined shape.
 図3には円筒形電池の例を示したが、非水電解質二次電池の形状または種類は、特に制限されず、角形電池、扁平電池、コイン電池、ラミネートフィルムパック電池などであってもよい。
 図3では、巻回型電極群を用いたが、これに限定されずに、積層型電極群や、扁平状電極群などを用いてもよい。
Although an example of a cylindrical battery is shown in FIG. 3, the shape or type of the nonaqueous electrolyte secondary battery is not particularly limited, and may be a square battery, a flat battery, a coin battery, a laminated film pack battery, or the like. .
Although the wound electrode group is used in FIG. 3, the present invention is not limited to this, and a stacked electrode group, a flat electrode group, or the like may be used.
 このように、本発明の電極板を含む非水電解液二次電池などの電気化学素子は、高容量および高出力を有し、出力特性、サイクル特性等の電池性能に優れている。また、電極板と、電極リードとが、溶融部により強固に、かつ高い導電性で接合されている。その一方、溶融部には平坦部が形成されているため、溶融部周辺の電極群の構成要素の望まない変形やセパレータの損傷による短絡を抑制することができる。これにより、電極板の集電性能、電池の出力特性などが長期にわたって高水準で維持される。したがって、電気化学素子は、耐用寿命が長い。 Thus, an electrochemical element such as a non-aqueous electrolyte secondary battery including the electrode plate of the present invention has a high capacity and a high output, and is excellent in battery performance such as output characteristics and cycle characteristics. Further, the electrode plate and the electrode lead are bonded to the melted portion more firmly and with high conductivity. On the other hand, since the flat part is formed in the melting part, it is possible to suppress a short circuit due to undesired deformation of the constituent elements of the electrode group around the melting part or damage to the separator. Thereby, the current collection performance of the electrode plate, the output characteristics of the battery, etc. are maintained at a high level over a long period of time. Therefore, the electrochemical element has a long service life.
(電気化学素子用電極板の製造方法)
 非水電解質二次電池などの電極として使用される、電気化学素子用電極板の製造方法は、下記の工程A~Dを含む。
 (i)金属を含む帯状の集電体と、集電体の表面に形成され、かつ合金系活物質を含む活物質層との積層体を含む電極板本体を準備する工程A、
 (ii)活物質層の一部の表面に、電極板本体の一端部と、金属を含む電極リードの一端部とが近接するように、電極リードを配置する工程B、
 (iii)近接した電極板本体の一端部および電極リードの一端部において、電極板本体の端面および電極リードの端面を含む溶接領域を溶融させることにより、電極板本体と、電極リードとを、電気的に接続する溶融部を形成する工程C、および
 (iv)溶融部を電極板本体の表面に垂直な方向に圧縮して、電極板本体の表面に平行な平坦部を形成する工程D。
(Method for producing electrode plate for electrochemical element)
The method for producing an electrode plate for an electrochemical element used as an electrode for a nonaqueous electrolyte secondary battery includes the following steps A to D.
(I) A step of preparing an electrode plate body including a laminate of a band-shaped current collector containing a metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material,
(Ii) Step B of arranging the electrode lead so that one end of the electrode plate body and one end of the electrode lead containing metal are close to a part of the surface of the active material layer,
(Iii) At one end of the electrode plate body and one end of the electrode lead that are close to each other, the electrode plate body and the electrode lead are electrically connected by melting a welding region including the end surface of the electrode plate body and the end surface of the electrode lead. A step C of forming a fusion part to be connected in general, and (iv) a step D of compressing the fusion part in a direction perpendicular to the surface of the electrode plate body to form a flat part parallel to the surface of the electrode plate body.
 工程Aにおいて、電極板本体は、集電体の表面に合金系活物質を含む活物質層を積層して積層体を形成することにより準備できる。積層体は、上記の非水電解質二次電池における負極の形成方法に準じて形成できる。活物質層は、集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。 In step A, the electrode plate body can be prepared by laminating an active material layer containing an alloy-based active material on the surface of the current collector to form a laminate. A laminated body can be formed according to the formation method of the negative electrode in said nonaqueous electrolyte secondary battery. The active material layer may be formed on one surface of the current collector, or may be formed on both surfaces.
 電極板を、非水電解質二次電池の負極として使用する場合、工程Aと工程Bとの間に、活物質層に、リチウムを吸蔵させる工程(以下「リチウム吸蔵工程」とする)を設けてもよい。これにより、工程Cで得られる溶融部内部における合金の均一分散性を、より一層向上させることができる。リチウム吸蔵工程は、特に、合金系活物質が、ケイ素を含む場合に有効である。 When the electrode plate is used as a negative electrode of a non-aqueous electrolyte secondary battery, a step (hereinafter referred to as “lithium storage step”) in which lithium is stored in the active material layer is provided between step A and step B. Also good. Thereby, the uniform dispersibility of the alloy in the fusion | melting part obtained at the process C can be improved further. The lithium occlusion process is particularly effective when the alloy-based active material contains silicon.
 また、リチウム吸蔵工程を設けると、リチウム吸蔵工程を設けない場合に比べて、溶融部の形状の均一性を損なうことなく、接合強度を確保することが出来る。これにより、溶融部の幅方向全域において、溶融部と、電極板本体および電極リードとの接触面積を大きくできる。その結果、溶融部による電極板本体と電極リードとの接合性および電気的な接続性をより効果的に向上することができる。 Further, when the lithium occlusion process is provided, the bonding strength can be ensured without impairing the uniformity of the shape of the melted part as compared with the case where the lithium occlusion process is not provided. Thereby, the contact area of a fusion | melting part, an electrode plate main body, and an electrode lead can be enlarged in the width direction whole region of a fusion | melting part. As a result, it is possible to more effectively improve the bondability and electrical connectivity between the electrode plate body and the electrode lead by the melted portion.
 活物質層へのリチウムの吸蔵は、例えば、真空蒸着法、電気化学的な方法、活物質層表面へのリチウム箔の貼付などにより行うことができる。例えば、真空蒸着法によれば、真空蒸着装置のターゲットに金属リチウムを装着し、真空蒸着を行うと、活物質層にリチウムが吸蔵される。リチウムの吸蔵量は特に制限されないが、活物質層の不可逆容量分のリチウムを吸蔵させるのが好ましい。 The occlusion of lithium into the active material layer can be performed, for example, by vacuum deposition, an electrochemical method, sticking of lithium foil on the surface of the active material layer, or the like. For example, according to the vacuum deposition method, when metal lithium is attached to a target of a vacuum deposition apparatus and vacuum deposition is performed, lithium is occluded in the active material layer. The amount of lithium occluded is not particularly limited, but it is preferable to occlude lithium for the irreversible capacity of the active material layer.
 工程Bでは、工程Aで準備された電極板本体の活物質層の一部の表面に電極リードを配置する。このとき、次工程Cで溶融部を形成しやすいように、電極板本体の一端部と、金属を含む電極リードの一端部とが近接するように、電極リードを活物質層の表面に配置する。次工程Cでは、電極板本体の端面と、電極リードの端面とを溶接するため、工程Bでは、電極板本体の端面と電極リードの端面とを近接させる。好ましい態様では、電極板本体の端面と、電極リードの端面とが連続した同一平面(電極板本体の端面と電極リードの端面とで形成される平坦な溶接端面)を形成するように両者を、電極板本体の厚み方向に重ねて配置する。 In step B, electrode leads are arranged on a part of the surface of the active material layer of the electrode plate body prepared in step A. At this time, the electrode lead is disposed on the surface of the active material layer so that the one end portion of the electrode plate body and the one end portion of the electrode lead containing metal are close to each other so that the melted portion can be easily formed in the next step C. . In the next step C, the end surface of the electrode plate main body and the end surface of the electrode lead are welded, and in step B, the end surface of the electrode plate main body and the end surface of the electrode lead are brought close to each other. In a preferred embodiment, both the end face of the electrode plate body and the end face of the electrode lead are formed so as to form the same plane (a flat weld end face formed by the end face of the electrode plate body and the end face of the electrode lead). Arranged in the thickness direction of the electrode plate body.
 工程Bにおいて、電極リードは、長手方向の一端部と電極板本体の長手方向の一端部とが近接するように配置してもよく、短手方向の一端部と電極板本体の長手方向の一端部とが近接するように配置してもよく、長手方向の一端部と電極板本体の短手方向の一端部とが近接するように配置してもよい。好ましい態様では、電極リードの長手方向または短手方向の一端部と、電極板本体の長手方向の一端部とを近接させる。電極リードと電極板本体とは、互いの厚み方向に重ね合わせる。 In step B, the electrode lead may be arranged so that one end in the longitudinal direction and one end in the longitudinal direction of the electrode plate body are close to each other, and one end in the short direction and one end in the longitudinal direction of the electrode plate body. They may be arranged so that they are close to each other, or may be arranged so that one end in the longitudinal direction is close to one end in the short direction of the electrode plate body. In a preferred embodiment, one end part of the electrode lead in the longitudinal direction or the short side direction and one end part of the electrode plate body in the longitudinal direction are brought close to each other. The electrode lead and the electrode plate body are overlapped with each other in the thickness direction.
 工程Cでは、近接した電極板本体の一端部および電極リードの一端部において、電極板本体の端面および電極リードの端面を含む溶接領域を溶融させることにより溶融部を形成する。溶接領域を溶融させると、溶接領域において、電極板本体の構成成分と電極リードの構成成分とが溶融して、溶融部が形成される。溶接領域において、電極板本体の構成成分のうちの少なくとも集電体の金属成分(好ましくは集電体の金属成分および活物質層の合金系活物質)と電極リードの金属成分とが溶融することが好ましい。電極板本体の構成成分と電極リードの金属成分とが溶融することにより、これらに含まれる構成元素が溶融物中に均一に分散して、合金化が起こると考えられる。合金化は、溶融物全体で起こるのが好ましい。 In step C, a melted portion is formed by melting a welded region including the end face of the electrode plate body and the end face of the electrode lead at one end portion of the electrode plate body and the one end portion of the electrode lead that are close to each other. When the welding region is melted, the constituent components of the electrode plate main body and the constituent components of the electrode lead are melted in the welding region to form a molten portion. In the welding region, at least the metal component of the current collector (preferably the metal component of the current collector and the alloy-based active material of the active material layer) and the metal component of the electrode lead among the constituent components of the electrode plate main body are melted. Is preferred. It is considered that when the constituent components of the electrode plate main body and the metal components of the electrode lead are melted, the constituent elements contained therein are uniformly dispersed in the melt and alloying occurs. Alloying preferably takes place throughout the melt.
 溶接は、電極板本体の端面と電極リードの端面とを溶融させることにより溶融部を形成できれば、その方法は特に制限されず、公知の溶接方法が利用できる。ただし、合金系活物質は導電性が低いため、抵抗溶接を利用する場合には、活物質層に電流が流れにくい。そのため、集電体と活物質層との界面付近で、集電体の一部が局所的に溶融したり、活物質層と電極リードとの接触箇所で、電極リードの一部が局所的に溶融したりするだけで、電極板本体の端面と電極リードの端面とを溶融させることができない。特に、抵抗溶接では、合金系活物質を溶融させることは難しい。よって、抵抗溶接では、電極板本体と電極リードとを電気的に接続できるような溶融部を形成できないことがある。超音波溶接の場合にも、抵抗溶接と同様の結果が得られ易い。 The welding is not particularly limited as long as the melted part can be formed by melting the end face of the electrode plate body and the end face of the electrode lead, and a known welding method can be used. However, since the alloy-based active material has low conductivity, when resistance welding is used, it is difficult for current to flow through the active material layer. Therefore, a part of the current collector is locally melted near the interface between the current collector and the active material layer, or a part of the electrode lead is locally localized at the contact point between the active material layer and the electrode lead. The end surface of the electrode plate body and the end surface of the electrode lead cannot be melted only by melting. In particular, in resistance welding, it is difficult to melt the alloy-based active material. Therefore, resistance welding may not be able to form a melted part that can electrically connect the electrode plate body and the electrode lead. In the case of ultrasonic welding, the same result as that obtained by resistance welding is easily obtained.
 電極板本体の端面と電極リードの端面とを溶融させて、電極板本体と電極リードとを電気的に接合できるような溶融部を形成するには、アーク溶接を利用するのが有利である。アーク溶接では、電極板本体の端面と電極リードの端面とを含む溶接領域に向けてアーク放電し、溶接領域を溶融させてアーク溶接することにより、溶融部が形成される。アーク溶接により、溶融部を形成する場合、合金系活物質が溶融され、集電体の金属成分および/または電極リードの金属成分と合金化することにより、溶融部に、合金系活物質を構成する元素を分散させ易い。そのため、電極板本体と電極リードとを強固に接合させることができる。 It is advantageous to use arc welding to melt the end face of the electrode plate body and the end face of the electrode lead to form a melted portion that can electrically join the electrode plate body and the electrode lead. In arc welding, an arc discharge is performed toward a welding region including the end surface of the electrode plate main body and the end surface of the electrode lead, and the molten region is melted and arc-welded to form a fusion zone. When forming the melted part by arc welding, the alloy active material is melted and alloyed with the metal component of the current collector and / or the metal component of the electrode lead to form the alloy active material in the melted part. It is easy to disperse the elements to be dispersed. Therefore, the electrode plate body and the electrode lead can be firmly joined.
 なお、溶接方法の種類や溶接条件によっては、溶融部の内部に、合金系活物質が溶融せずにそのまま残存することがある。しかし、アーク溶接では、電極板本体の一端部と電極リードの一端部とが比較的広範囲に溶融されて溶融部が形成される。そのため、溶融部に合金系活物質が残存しても、溶融部により、電極板本体と電極リードとを強固に接合することが可能である。また、電極板本体と電極リードとの間の電気的な接続性を損なうこともない。 In addition, depending on the type of welding method and welding conditions, the alloy-based active material may remain as it is in the molten part without melting. However, in arc welding, one end of the electrode plate body and one end of the electrode lead are melted in a relatively wide range to form a melted portion. Therefore, even if the alloy-based active material remains in the melted part, the electrode plate body and the electrode lead can be firmly joined by the melted part. In addition, the electrical connectivity between the electrode plate body and the electrode lead is not impaired.
 工程Cでは、アーク放電に先立って、一対の板を含む溶接治具の一対の板の間に、溶接領域が露出するように、電極板本体および電極リードを配置することが好ましい。溶接領域は、溶接治具の端部から露出していてもよく、近接した電極板本体および電極リードの一端部において、一対の板と電極板本体または電極リードとの間に空間を形成することにより、溶接領域を露出させてもよい。後者の場合の例を、図2aに示す。 In step C, it is preferable to arrange the electrode plate body and the electrode lead so that the welding region is exposed between a pair of plates of a welding jig including the pair of plates prior to arc discharge. The welding region may be exposed from the end of the welding jig, and a space is formed between the pair of plates and the electrode plate main body or the electrode lead at one end of the electrode plate main body and the electrode lead adjacent to each other. Thus, the welding region may be exposed. An example of the latter case is shown in FIG.
 図2aは、本発明の一実施形態に係る電気化学素子用電極板の製造方法において、溶接治具に配置された電極板本体および電極リードを示す概略断面図である。
 図2aにおいて、集電体10とその両面に形成された合金系活物質を含む活物質層11との積層体を含む電極板本体1と、電極リード13とは、互いの一端部において、電極板本体1の端面1aと電極リード13の端面13aとを揃えて、電極板本体1と電極リード13の面方向に重ねられている。そして、この状態で、電極板本体1および電極リード13は、第1板20および第2板21からなる一対の板14を有する溶接治具に挟持されている。溶接治具の一対の板14は、銅などの金属材料を所定の形状に成形することにより作製される。
FIG. 2 a is a schematic cross-sectional view showing an electrode plate main body and electrode leads arranged in a welding jig in the method for manufacturing an electrode plate for an electrochemical element according to an embodiment of the present invention.
In FIG. 2a, an electrode plate body 1 including a laminate of a current collector 10 and an active material layer 11 containing an alloy-based active material formed on both sides thereof, and an electrode lead 13 The end surface 1 a of the plate body 1 and the end surface 13 a of the electrode lead 13 are aligned and overlapped in the surface direction of the electrode plate body 1 and the electrode lead 13. In this state, the electrode plate body 1 and the electrode lead 13 are sandwiched by a welding jig having a pair of plates 14 including a first plate 20 and a second plate 21. The pair of plates 14 of the welding jig is produced by forming a metal material such as copper into a predetermined shape.
 電極リード13の一端部では、溶接治具の第1板20と、電極リード13との間に、第1板20に形成された第1凹部20xにより、空間(または窪み)が形成されている。同様に、電極板本体1の一端部では、溶接治具の第2板21と、活物質層11との間に、第2板21に形成された第2凹部21xにより、空間(または窪み)が形成されている。 At one end of the electrode lead 13, a space (or a depression) is formed between the first plate 20 of the welding jig and the electrode lead 13 by the first recess 20 x formed in the first plate 20. . Similarly, at one end of the electrode plate body 1, a space (or a depression) is formed between the second plate 21 of the welding jig and the active material layer 11 by the second recess 21 x formed in the second plate 21. Is formed.
 電極板本体1の端面1aと、電極リード13の端面13aを含む溶接領域、特に、平坦な溶接端面16に対して垂直な方向に、図示しないアーク溶接用電極を配置する。そして、アーク溶接用電極の溶接トーチから矢符19の方向にエネルギーを照射する。溶接トーチから照射されるエネルギーは、溶接端面16に照射される。なお、溶接端面16を含む溶接領域とは、後述するような条件で溶接端面16に対して垂直な方向19からアーク放電を行った場合に、電極板本体1および電極リード13におけるアーク放電のエネルギーが及ぶ領域である。 An arc welding electrode (not shown) is arranged in a welding region including the end surface 1 a of the electrode plate body 1 and the end surface 13 a of the electrode lead 13, particularly in a direction perpendicular to the flat welding end surface 16. Then, energy is irradiated in the direction of the arrow 19 from the welding torch of the electrode for arc welding. The energy irradiated from the welding torch is irradiated to the welding end surface 16. The welding region including the weld end surface 16 is the energy of arc discharge in the electrode plate main body 1 and the electrode lead 13 when arc discharge is performed from a direction 19 perpendicular to the weld end surface 16 under the conditions described later. This is the area covered by
 アーク放電による熱エネルギーは、溶接治具の一対の板14の第1凹部20xおよび第2凹部21xと、電極板本体および電極リードとに形成される窪みによって溶接治具に逃げず、電極板本体1と電極リード13との溶融に無駄なく用いられる。 The thermal energy generated by the arc discharge does not escape to the welding jig due to the depressions formed in the first concave portion 20x and the second concave portion 21x of the pair of plates 14 of the welding jig, and the electrode plate main body and the electrode lead, and the electrode plate main body 1 and the electrode lead 13 are used for melting without waste.
 ただし、アーク溶接により溶融部を形成すると、合金系活物質の溶融が進行し易くなり、合金系活物質と集電体および/または電極リードの金属成分とが合金化することにより、合金系活物質の融点が低下し易くなる。合金系活物質の融点が低下すると、溶接領域の溶融が急激に進行して、溶融部のサイズが大きくなり、得られる電極板の厚みよりも溶融部の厚みが大きくなることがある。これにより、得られる電極板を用いて巻回型電極群を形成したり、電気化学素子を組み立てたりすると、溶融部の周辺の構成要素の変形が生じたり、セパレータの損傷を引き起こしたりする。 However, when the melted part is formed by arc welding, the melting of the alloy-based active material is facilitated, and the alloy-based active material and the metal component of the current collector and / or electrode lead are alloyed to form an alloy-based active material. The melting point of the substance tends to decrease. When the melting point of the alloy-based active material is lowered, melting of the welding region proceeds rapidly, the size of the molten part increases, and the thickness of the molten part may become larger than the thickness of the obtained electrode plate. Thus, when a wound electrode group is formed using the obtained electrode plate or an electrochemical element is assembled, the constituent elements around the melted portion are deformed or the separator is damaged.
 溶融部の厚みが必要以上に大きくならないように、工程Cにおける溶接の条件を制御することも可能である。しかし、溶接領域の溶融の程度を少なくして、溶融部の厚みを小さくすると、接合強度が低下し易い。また、溶接領域の溶融の程度が少ないと、合金系活物質が溶融せずに残存し易くなり、電極板本体と電極リードとの間に活物質粒子を含む障壁が形成され、合金化が進行しにくくなる点からも接合強度が低下し易くなる。 It is also possible to control the welding conditions in step C so that the thickness of the melted part does not become larger than necessary. However, if the degree of melting in the weld region is reduced and the thickness of the melted portion is reduced, the joint strength is likely to be lowered. In addition, if the degree of melting of the weld region is small, the alloy-based active material is likely to remain without melting, and a barrier including active material particles is formed between the electrode plate body and the electrode lead, and alloying proceeds. The bonding strength is likely to decrease from the point of difficulty.
 接合強度が高い安定な溶融部を形成するためには、十分な強度のアーク溶接を行い、電極板本体と電極リードとを溶接領域において確実に溶融して接合させる必要がある。そして、このような接合を行うと、溶融部の厚みが大きくなるため、形成された溶融部を、工程Dで平坦化することにより、溶融部の厚みを適度な範囲に制御する。 In order to form a stable melted part with high joint strength, it is necessary to perform arc welding with sufficient strength and to reliably melt and join the electrode plate body and the electrode lead in the welding region. When such bonding is performed, the thickness of the melted portion becomes large, and thus the formed melted portion is flattened in step D, thereby controlling the thickness of the melted portion within an appropriate range.
 工程Cでは、アーク溶接により、溶接端面を含む溶接領域が均一に溶融して、その後固化して溶融部が形成される。凝固した溶融部の断面形状は丸みを有する。これは、電極板本体と電極リードとが溶融した溶融物が、表面張力により球状化して、その状態で凝固するためと考えられる。 In step C, the weld region including the weld end face is uniformly melted by arc welding, and then solidified to form a melted portion. The cross-sectional shape of the solidified molten part is rounded. This is presumably because the melt obtained by melting the electrode plate body and the electrode lead is spheroidized by the surface tension and solidifies in that state.
 アーク溶接では、アーク溶接用電極を、所定の間隔で電極板本体の幅方向に移動させながらアーク放電を行う。アーク放電の条件を適宜調節しながら、幅方向に連続的にアーク放電を行うと、条件によって、連続した帯状の溶融部が形成されたり、溶融した金属が幅方向において部分的に凝集して球状になり、球状に固化した溶融部が間欠的に形成されたりする。溶融部を電極板本体の幅方向に間欠的に形成する場合には、アーク溶接用電極を電極板本体の幅方向に移動させながら、間欠的にアーク溶接を行ってもよい。アーク溶接を行うことにより、近接した電極板本体と電極リードの一端部において、任意の箇所に、溶融部を容易に形成できる。 In arc welding, arc discharge is performed while moving the electrode for arc welding in the width direction of the electrode plate body at predetermined intervals. If the arc discharge is continuously performed in the width direction while appropriately adjusting the arc discharge conditions, depending on the conditions, a continuous belt-like molten part is formed, or the molten metal is partially agglomerated in the width direction to form a spherical shape. And the melted portion solidified into a spherical shape is intermittently formed. When the melted portion is intermittently formed in the width direction of the electrode plate body, the arc welding may be performed intermittently while moving the electrode for arc welding in the width direction of the electrode plate body. By performing arc welding, it is possible to easily form a melted portion at an arbitrary position in one end portion of the electrode plate main body and the electrode lead that are close to each other.
 電極板本体と電極リードとの強固な接合強度を確保するためには、十分な強度でアーク溶接を行い、電極板本体の集電体および/または活物質層と電極リードとを確実に溶融させて接合させる必要がある。この時、溶融部の厚みt1は、電極板本体と電極リードの合計厚みTと比較して厚くなる傾向がある。電極板本体と電極リードとを確実に接合させるためには、電極板本体の端面と電極リードの端面の全体を覆うのに十分なサイズの溶融部を形成することが好ましい。 In order to ensure a strong joint strength between the electrode plate body and the electrode lead, arc welding is performed with sufficient strength to ensure melting of the current collector and / or active material layer of the electrode plate body and the electrode lead. Need to be joined together. At this time, the thickness t1 of the melted portion tends to be thicker than the total thickness T of the electrode plate body and the electrode lead. In order to securely bond the electrode plate main body and the electrode lead, it is preferable to form a melting portion having a size sufficient to cover the entire end surface of the electrode plate main body and the end surface of the electrode lead.
 そのため、溶接後(工程Dの前)の溶融部の厚みt1と、電極板本体1と電極リードの合計厚みTとの比率t1/Tは、例えば、1以上、好ましくは1.3以上、さらに好ましくは1.5以上である。また、比率t1/Tは、例えば、4以下、好ましくは3以下である。これらの下限値と上限値とは適宜選択して組み合わせることができる。比率t1/Tは、例えば、1~3または1.3~3であってもよい。 Therefore, the ratio t1 / T between the thickness t1 of the melted portion after welding (before step D) and the total thickness T of the electrode plate body 1 and the electrode lead is, for example, 1 or more, preferably 1.3 or more, Preferably it is 1.5 or more. Further, the ratio t1 / T is, for example, 4 or less, preferably 3 or less. These lower limit value and upper limit value can be appropriately selected and combined. The ratio t1 / T may be, for example, 1 to 3 or 1.3 to 3.
 アーク溶接としては、TIG(Tungsten Inert Gas)溶接、プラズマ溶接、被覆アーク溶接などが例示できる。これらの溶接方法のうち、中でも、TIG溶接やプラズマ溶接などの非消耗電極式アーク溶接が好ましく、溶融部中に電極板本体および電極リードの構成元素を均一に分散させる観点からは、特に、プラズマ溶接が好ましい。溶融部中への、電極板本体および電極リードの構成元素の分散性が高まると、溶融部による、電極板本体と電極リードとの間の接合性および電気的な接続性を向上させることができると推測される。プラズマ溶接およびTIG溶接は、それぞれ、市販されているプラズマ溶接機およびTIG溶接機を用いて行うことができる。 Examples of arc welding include TIG (Tungsten Inert Gas) welding, plasma welding, and covering arc welding. Among these welding methods, non-consumable electrode type arc welding such as TIG welding or plasma welding is preferable. From the viewpoint of uniformly dispersing the constituent elements of the electrode plate main body and the electrode lead in the melted portion, plasma is particularly preferable. Welding is preferred. When the dispersibility of the constituent elements of the electrode plate main body and the electrode lead in the melted portion is increased, the bondability and electrical connectivity between the electrode plate main body and the electrode lead by the melted portion can be improved. It is guessed. Plasma welding and TIG welding can be performed using a commercially available plasma welding machine and TIG welding machine, respectively.
 プラズマ溶接は、例えば、溶接電流値、溶接速度(溶接トーチの移動速度)、溶接時間、プラズマガスおよびシールドガスの種類とその流量等の条件を適宜選択して実施できる。これらの条件を選択することにより、生成する溶融部による電極板本体と電極リードとの接合性および電気的な接続性を制御できる。 Plasma welding can be performed, for example, by appropriately selecting conditions such as welding current value, welding speed (moving speed of the welding torch), welding time, types of plasma gas and shield gas, and their flow rates. By selecting these conditions, it is possible to control the bondability and electrical connectivity between the electrode plate main body and the electrode lead by the melting portion to be generated.
 溶接電流値は、例えば、1~100A、好ましくは5~50Aである。溶接トーチの掃引速度は、例えば、1~100mm/秒、好ましくは5~50mm/秒である。プラズマガスには、アルゴンガスなどの不活性ガスなどが使用できる。プラズマガス流量は、例えば、10mL/分~10L/分、好ましくは0.05~5L/分である。シールドガスには、アルゴン、水素などが使用できる。シールドガス流量は、例えば、10mL/分~10L/分、好ましくは0.1~5L/分である。 The welding current value is, for example, 1 to 100A, preferably 5 to 50A. The sweep speed of the welding torch is, for example, 1 to 100 mm / second, preferably 5 to 50 mm / second. As the plasma gas, an inert gas such as an argon gas can be used. The plasma gas flow rate is, for example, 10 mL / min to 10 L / min, preferably 0.05 to 5 L / min. Argon, hydrogen, etc. can be used for the shielding gas. The shield gas flow rate is, for example, 10 mL / min to 10 L / min, preferably 0.1 to 5 L / min.
 工程Dでは、工程Cで形成された溶融部に、電極板本体の表面に平行な平坦部を形成する。
 平坦部は溶融部を平坦化することにより形成できる。具体的には、平坦部は、電極板本体および電極リードの積層体の厚みよりも突出した溶融部の領域の少なくとも一部を切除したり、押圧したりすることにより、概して平坦な面を形成することにより形成できる。平坦部を形成することにより、溶融部は、厚みが薄くなるように加工されることになる。
In step D, a flat portion parallel to the surface of the electrode plate body is formed in the melted portion formed in step C.
The flat part can be formed by flattening the melted part. Specifically, the flat part forms a generally flat surface by cutting or pressing at least a part of the melted part region protruding beyond the thickness of the electrode plate body and electrode lead laminate. Can be formed. By forming the flat portion, the melted portion is processed so as to be thin.
 好ましい態様では、平坦部は、溶融部を、電極板本体の表面に垂直な方向に圧縮(つまり、加圧により変形)することにより形成される。圧縮は、平面プレス手段などの公知の圧縮加工装置により行うことができる。図2bに平坦部の形成方法の一例を示す。
 図2bは、本発明の一実施形態に係る電気化学素子用電極板の製造方法において、溶融部に平坦部を形成する工程を説明するための概略断面図である。
In a preferred embodiment, the flat portion is formed by compressing the melted portion in a direction perpendicular to the surface of the electrode plate body (that is, deformation by pressurization). The compression can be performed by a known compression processing apparatus such as a flat pressing means. FIG. 2b shows an example of a method for forming the flat portion.
FIG. 2B is a schematic cross-sectional view for explaining a step of forming a flat portion in the melted portion in the method for manufacturing an electrode plate for an electrochemical element according to one embodiment of the present invention.
 図2bに示されるように、具体的に、工程Dでは、まず、工程Cにおいて、電極板本体1および電極リード13の一端部に形成された溶融部18を、一対の平面加圧治具23を含む平面プレス手段の一対の平面加圧治具23間に挟持する。そして、平面加圧治具23に加重をかけることにより、溶融部18の、電極板本体1と電極リード13の積層体の表面よりも突出した領域を圧縮する。 As shown in FIG. 2b, specifically, in step D, first, in step C, the melted portion 18 formed at one end of the electrode plate main body 1 and the electrode lead 13 is replaced with a pair of planar pressing jigs 23. Is sandwiched between a pair of flat surface pressing jigs 23 of the flat surface pressing means. And the area | region which protruded from the surface of the laminated body of the electrode plate main body 1 and the electrode lead 13 of the fusion | melting part 18 is compressed by applying a load to the plane pressurization jig | tool 23. FIG.
 このとき、溶融部18の厚み方向の最頂部(および最底部)に加重がかかることになり、最頂部付近(および最底部付近)が押圧される。このようにして、溶融部18の厚みが薄くなるように、溶融部18の最頂部付近(および最底部付近)が加圧変形され、図1aに示すような平坦部が形成される。 At this time, a load is applied to the topmost portion (and the bottommost portion) in the thickness direction of the melted portion 18, and the vicinity of the topmost portion (and the vicinity of the bottommost portion) is pressed. In this manner, the vicinity of the top part (and the vicinity of the bottom part) of the melted part 18 is subjected to pressure deformation so that the thickness of the melted part 18 becomes thin, and a flat part as shown in FIG. 1a is formed.
 主に最頂部に加重がかかると、最頂部付近に平坦部が形成される。また、溶融部を電極板本体の表面に垂直な方向に双方向から圧縮して、図1aに示すような、第1平坦部および第1平坦部とは反対側の第2平坦部を形成してもよい。最頂部に加重がかかることにより第1平坦部が形成され、最底部に加重がかかることにより第2平坦部が形成される。
 なお、平坦部を有する溶融部の厚みtと、電極板本体と電極リードの合計厚みTとの関係は既述の通りである。
When a load is applied mainly to the topmost part, a flat part is formed near the topmost part. Further, the melted portion is compressed from both directions in a direction perpendicular to the surface of the electrode plate body to form a first flat portion and a second flat portion opposite to the first flat portion as shown in FIG. 1a. May be. A first flat portion is formed by applying a weight to the topmost portion, and a second flat portion is formed by applying a weight to the bottommost portion.
The relationship between the thickness t of the melted portion having a flat portion and the total thickness T of the electrode plate body and the electrode lead is as described above.
 溶融部18は、平面加圧治具23の加圧面が電極板本体の表面と概して平行となるように、平面加圧治具23間に挟持することが好ましい。これにより、平面加圧治具23を用いて溶融部18を、電極板本体の表面に対して略垂直に圧縮することができ、平坦部を電極板本体の表面に対して概して平行にすることができる。平坦部は、既述のように、電極板本体の表面に対して概して平行であればよい。 The melting part 18 is preferably sandwiched between the flat pressing jigs 23 so that the pressing surface of the flat pressing jig 23 is generally parallel to the surface of the electrode plate body. Thereby, the fusion | melting part 18 can be compressed substantially perpendicularly with respect to the surface of an electrode plate main body using the plane pressurization jig | tool 23, and a flat part is made substantially parallel with respect to the surface of an electrode plate main body. Can do. As described above, the flat portion may be generally parallel to the surface of the electrode plate body.
 平面加圧治具により溶融部を圧縮する際に、電極板本体と電極リードとは、固定してもよく、固定しなくてもよい。固定しない場合、平面加圧治具の加圧面と電極板本体の表面とが平行からずれ易くなる。しかし、平坦部の角度が既述のように一定の範囲であれば、本発明の効果を十分に得ることができる。 When compressing the melted portion with a flat pressure jig, the electrode plate body and the electrode lead may or may not be fixed. When not fixed, the pressing surface of the flat pressing jig and the surface of the electrode plate main body are likely to shift from parallel. However, if the angle of the flat portion is within a certain range as described above, the effects of the present invention can be sufficiently obtained.
 既述のように、平坦部を形成しても、電極板本体と電極リードとの間の接合強度は低下しない。これは、電極板本体および電極リードと、溶融部との境界領域が、溶融部の最頂部(および最底部)から離れているため、これらの箇所に加重がかかっても、前記の境界領域が影響を受けることはないためと推定される。 As described above, even if the flat portion is formed, the bonding strength between the electrode plate body and the electrode lead does not decrease. This is because the boundary region between the electrode plate main body and the electrode lead and the melted part is separated from the topmost part (and the bottommost part) of the melted part. This is presumed to be unaffected.
 なお、工程Cにおいて、電極板本体の一端部において幅方向に連続的にアーク放電を行っても、形成される溶融部が、球状などの形状に、不連続に凝集した複数の溶融部である場合がある。この場合、形成される溶融部は、厚みが大きくなりやすい。そのため、このような溶融部を圧縮することにより平坦部を形成すると、図1bに示すように、溶融部の電極板本体からの突出の程度が大きくなり易い。溶融部は、平坦化によりこのように大きく突出する場合もあるが、突出する方向が、電極板本体の長手方向と平行である。そのため、電極群を形成したり、電気化学素子を形成したりしても、周辺の構成要素を変形させたり、セパレータを損傷したりすることを抑制できる。ただし、突出量はあまり大きくない方が好ましく、電極板本体の一端部からの突出量(つまり、溶融部の長さ)は、既述のように、1mm以下であることが望ましい。 In Step C, even if arc discharge is continuously performed in the width direction at one end portion of the electrode plate body, the formed melted portions are a plurality of melted portions that are discontinuously aggregated into a spherical shape or the like. There is a case. In this case, the formed melted portion tends to increase in thickness. Therefore, when a flat part is formed by compressing such a melted part, as shown in FIG. 1b, the degree of protrusion of the melted part from the electrode plate body tends to increase. In some cases, the melted portion protrudes greatly due to the planarization, but the protruding direction is parallel to the longitudinal direction of the electrode plate body. Therefore, even if an electrode group is formed or an electrochemical element is formed, it is possible to suppress deformation of peripheral components and damage to the separator. However, the amount of protrusion is preferably not so large, and the amount of protrusion from one end of the electrode plate body (that is, the length of the melted portion) is desirably 1 mm or less as described above.
 工程Dにおいて、溶融部を圧縮する際の加重は、例えば、3N/mm以上、好ましくは5N/mm以上、さらに好ましくは15N/mm以上である。また、加重は、例えば、1000N/mm以下、好ましくは200N/mm以下、さらに好ましくは80N/mm以下である。これらの下限値と上限値とは適宜選択して組み合わせることができる。加重がこのような範囲である場合、平坦部をより有効に形成することができ、溶融部の厚みを適度な範囲にすることができる。また、溶融部だけに加重を印加することができ、電極板本体や電極リードの損傷や、溶融部に亀裂が生じるのを抑制するのに有利である。 In step D, the load applied when compressing the melted part is, for example, 3 N / mm or more, preferably 5 N / mm or more, and more preferably 15 N / mm or more. Moreover, a load is 1000 N / mm or less, for example, Preferably it is 200 N / mm or less, More preferably, it is 80 N / mm or less. These lower limit value and upper limit value can be appropriately selected and combined. When the weight is in such a range, the flat portion can be formed more effectively, and the thickness of the melted portion can be in an appropriate range. In addition, a load can be applied only to the melted portion, which is advantageous for suppressing damage to the electrode plate body and the electrode lead and cracking in the melted portion.
 なお、工程Cで形成された溶融部の厚みは、電極板本体と電極リードとの合計厚みよりも大きいため、平坦化の際には、溶融部だけに加重が加わる。平面プレスの加重を圧力に換算するには、溶融部18と平面加圧治具23との接触面積の計測が必要であるが、加圧変形によって接触面積が変化するためこれを計測することは困難である。そこで、上記のように、圧縮時の加重を、溶接部分の接合幅1mmあたりの加重で定義する。 In addition, since the thickness of the fusion | melting part formed at the process C is larger than the total thickness of an electrode plate main body and an electrode lead, a load is added only to a fusion | melting part in the case of planarization. In order to convert the load of the plane press into a pressure, it is necessary to measure the contact area between the melting part 18 and the plane pressure jig 23. However, since the contact area changes due to pressure deformation, it is possible to measure this. Have difficulty. Therefore, as described above, the weight at the time of compression is defined as the weight per 1 mm of the welding width of the welded portion.
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.
 実施例1
(1)正極活物質の作製
 NiSO4水溶液に、Ni:Co=8.5:1.5(モル比)になるように硫酸コバルトを加えて金属イオン濃度が2mol/Lの水溶液を調製した。この水溶液に、撹拌下、2mol/Lの水酸化ナトリウム水溶液を徐々に滴下して中和することにより、Ni0.85Co0.15(OH)2で示される組成を有する三元系の沈殿物を共沈法により生成させた。この沈殿物をろ過により分離し、水洗し、80℃で乾燥し、複合水酸化物を得た。
Example 1
(1) Preparation NiSO 4 aqueous solution of the positive electrode active material, Ni: Co = 8.5: 1.5 ( molar ratio) metal ion concentration by the addition of cobalt sulfate so as to have to prepare an aqueous solution of 2 mol / L. A ternary precipitate having a composition represented by Ni 0.85 Co 0.15 (OH) 2 was coprecipitated by gradually dropping a 2 mol / L sodium hydroxide aqueous solution into the aqueous solution while stirring to neutralize the solution. It was generated by the method. This precipitate was separated by filtration, washed with water, and dried at 80 ° C. to obtain a composite hydroxide.
 得られた複合水酸化物を、大気中にて900℃で10時間加熱することにより、Ni0.85Co0.152で表される組成を有する複合酸化物を得た。得られた複合酸化物に、NiおよびCoの原子数の和とLiの原子数とが等量になるように、水酸化リチウム1水和物を加え、大気中にて800℃で10時間加熱することにより、LiNi0.85Co0.152で示される組成を有するリチウムニッケル含有複合金属酸化物を得た。こうして、二次粒子の体積平均粒径が10μmの正極活物質を得た。 The obtained composite hydroxide was heated in the atmosphere at 900 ° C. for 10 hours to obtain a composite oxide having a composition represented by Ni 0.85 Co 0.15 O 2 . Lithium hydroxide monohydrate was added to the obtained composite oxide so that the sum of the number of Ni and Co atoms and the number of Li atoms were equal, and heated in air at 800 ° C. for 10 hours. Thus, a lithium nickel-containing composite metal oxide having a composition represented by LiNi 0.85 Co 0.15 O 2 was obtained. In this way, a positive electrode active material having a secondary particle volume average particle size of 10 μm was obtained.
(2)正極の作製
 上記で得られた正極活物質の粉末93g、アセチレンブラック(導電剤)3g、PVDF粉末(結着剤)4gおよびNMP50mlを充分に混合することにより、正極合剤スラリーを調製した。正極合剤スラリーを、厚み15μmのアルミニウム箔(正極集電体)の両面に塗布し、得られた塗膜を乾燥し、圧延して、片面あたり厚み50μmの正極活物質層を形成し、56mm×205mmの正極板を作製した。この正極板の両面の正極活物質層の一部(56mm×5mm)を切除し、正極集電体露出部を形成し、正極集電体露出部に、アルミニウム製正極リードを超音波溶接により溶接することにより、正極を作製した。
(2) Preparation of positive electrode A positive electrode mixture slurry was prepared by thoroughly mixing 93 g of the positive electrode active material powder obtained above, 3 g of acetylene black (conductive agent), 4 g of PVDF powder (binder) and 50 ml of NMP. did. The positive electrode mixture slurry was applied to both surfaces of a 15 μm thick aluminum foil (positive electrode current collector), and the resulting coating film was dried and rolled to form a positive electrode active material layer having a thickness of 50 μm per side, 56 mm A positive electrode plate of × 205 mm was produced. A part (56 mm × 5 mm) of the positive electrode active material layer on both sides of the positive electrode plate is excised to form a positive electrode current collector exposed portion, and an aluminum positive electrode lead is welded to the positive electrode current collector exposed portion by ultrasonic welding. As a result, a positive electrode was produced.
(3)負極の作製
 図4は、電子ビーム式真空蒸着装置40の構成を模式的に示す側面図である。図4では、電子ビーム式真空蒸着装置40の内部の部材を実線で示している。真空チャンバー41は耐圧性容器であり、その内部に、搬送手段42、ガス供給手段48、プラズマ化手段49、シリコンターゲット50a、50b、遮蔽板51および図示しない電子ビーム発生装置を収容する。
(3) Production of Negative Electrode FIG. 4 is a side view schematically showing the configuration of the electron beam type vacuum vapor deposition apparatus 40. In FIG. 4, members inside the electron beam vacuum deposition apparatus 40 are indicated by solid lines. The vacuum chamber 41 is a pressure-resistant container, and accommodates a transfer means 42, a gas supply means 48, a plasma generating means 49, silicon targets 50a and 50b, a shielding plate 51, and an electron beam generator (not shown).
 搬送手段42は、巻き出しローラ43、キャン44、巻き取りローラ45および案内ローラ46、47を含む。巻き出しローラ43には、帯状の集電体10が捲き付けられる。帯状の集電体10は、案内ローラ46、キャン44および案内ローラ47を経由して搬送され、電極板本体1として巻き取りローラ45に巻き取られる。 The conveying means 42 includes an unwinding roller 43, a can 44, a winding roller 45, and guide rollers 46 and 47. A strip-shaped current collector 10 is wound around the unwinding roller 43. The strip-shaped current collector 10 is conveyed via the guide roller 46, the can 44 and the guide roller 47, and is taken up by the take-up roller 45 as the electrode plate body 1.
 帯状の集電体10がキャン44の表面を搬送される際に、帯状の集電体10の表面にケイ素の蒸気が供給される。ケイ素の蒸気はキャン44内部の図示しない冷却手段により冷却されて帯状の集電体10の表面に析出し、ベタ膜である活物質層11が形成される。ケイ素の蒸気は、シリコンターゲット50a、50bに、電子ビーム発生装置から電子ビームを照射することにより生成する。 When the strip-shaped current collector 10 is transported on the surface of the can 44, silicon vapor is supplied to the surface of the strip-shaped current collector 10. The silicon vapor is cooled by a cooling means (not shown) inside the can 44 and deposited on the surface of the strip-shaped current collector 10 to form the solid active material layer 11. The silicon vapor is generated by irradiating the silicon targets 50a and 50b with an electron beam from an electron beam generator.
 ガス供給手段48は、原料ガスを真空チャンバー41内に供給する。原料ガスが酸素である場合、ケイ素の蒸気と酸素との混合物が帯状の集電体10の表面に供給され、ケイ素酸化物を含有する活物質層11が形成される。ガス供給手段48が原料ガスを供給しない場合は、ケイ素を含有する活物質層11が形成される。プラズマ化手段49は、原料ガスをプラズマ化する。集電体10表面の活物質層11の形成状況に応じて、遮蔽板51の水平方向の位置が調整される。 The gas supply means 48 supplies the source gas into the vacuum chamber 41. When the source gas is oxygen, a mixture of silicon vapor and oxygen is supplied to the surface of the strip-shaped current collector 10 to form an active material layer 11 containing silicon oxide. When the gas supply means 48 does not supply the source gas, the active material layer 11 containing silicon is formed. The plasma generating means 49 converts the raw material gas into plasma. The horizontal position of the shielding plate 51 is adjusted according to the formation state of the active material layer 11 on the surface of the current collector 10.
 電子ビーム式真空蒸着装置40を用いて、下記の条件で、帯状負極集電体の両方の表面に、厚み5μmの薄膜状負極活物質層(シリコン薄膜)を形成し、負極板を作製した。 A thin-film negative electrode active material layer (silicon thin film) having a thickness of 5 μm was formed on both surfaces of the strip-shaped negative electrode current collector using the electron beam vacuum vapor deposition apparatus 40 under the following conditions to produce a negative electrode plate.
  真空チャンバー内の圧力:8.0×10-5Torr
  帯状負極集電体:粗面化処理した電解銅箔(古河電工(株)製)
  帯状負極集電体の巻き取りローラによる巻き取り速度:2cm/分
  原料ガス:供給せず
  シリコンターゲット:純度99.9999%のシリコン単結晶(信越化学工業(株)製)
  電子ビームの加速電圧:-8kV
  電子ビームのエミッション:300mA
 得られた負極板(電極板本体)を58mm×210mmに裁断した。この電極板本体を、タンタル製ボードと活物質層とが対向するように、抵抗加熱蒸着装置((株)アルバック製)内に固定した。タンタル製ボードには、リチウム金属を装填した。抵抗加熱蒸着装置内にアルゴン雰囲気を導入し、タンタル製ボートに50Aの電流を通電し、活物質層にリチウムを蒸着した。蒸着時間は10分であった。これにより、初回充放電時に蓄えられる不可逆容量分のリチウムを活物質層に補填した。
Pressure in the vacuum chamber: 8.0 × 10 −5 Torr
Strip-shaped negative electrode current collector: roughened electrolytic copper foil (Furukawa Electric Co., Ltd.)
Winding speed of belt-shaped negative electrode current collector by winding roller: 2 cm / min Raw material gas: Not supplied Silicon target: Silicon single crystal of purity 99.9999% (manufactured by Shin-Etsu Chemical Co., Ltd.)
Electron beam acceleration voltage: -8 kV
Electron beam emission: 300 mA
The obtained negative electrode plate (electrode plate main body) was cut into 58 mm × 210 mm. This electrode plate body was fixed in a resistance heating vapor deposition apparatus (manufactured by ULVAC, Inc.) so that the tantalum board and the active material layer face each other. The tantalum board was loaded with lithium metal. An argon atmosphere was introduced into the resistance heating vapor deposition apparatus, a 50 A current was passed through the tantalum boat, and lithium was deposited on the active material layer. The deposition time was 10 minutes. As a result, the irreversible capacity of lithium stored during the first charge / discharge was supplemented in the active material layer.
(4)負極リードの接合
 上記で得られた電極板本体に、銅箔(タフピッチ銅、日立電線(株)製)を裁断して作製された、幅5mm、長さ70mm、厚み0.1mmの負極リードを、次のようにしてプラズマ溶接により接合し、負極を作製した。
(4) Bonding of negative electrode lead The electrode plate body obtained above was cut from a copper foil (tough pitch copper, manufactured by Hitachi Cable Co., Ltd.), having a width of 5 mm, a length of 70 mm, and a thickness of 0.1 mm. The negative electrode lead was joined by plasma welding as follows to produce a negative electrode.
 まず、電極板本体の長手方向の一端面と、負極リードの幅方向の一端面とが、連続した1つの平面になり、平坦な溶接端面が形成されるように、電極板本体と負極リードとを重ね合せた。溶接端面に垂直な方向を鉛直方向に一致させ、溶接端面が鉛直方向上方を臨むように配置した。これらを、図2aに示すような一対の板を含む溶接治具の一対の板の間に挟持し、さらに単軸ロボット((株)アイエイアイ製)で固定した。 First, the electrode plate main body and the negative electrode lead are formed such that one end surface in the longitudinal direction of the electrode plate main body and one end surface in the width direction of the negative electrode lead are in one continuous plane and a flat weld end surface is formed. Are superimposed. The direction perpendicular to the weld end face was made to coincide with the vertical direction, and the weld end face was arranged so as to face upward in the vertical direction. These were sandwiched between a pair of plates of a welding jig including a pair of plates as shown in FIG. 2a, and further fixed by a single-axis robot (manufactured by IAI Corporation).
 溶接治具は、第1板および第2板の一対の板を含み、第1板および第2板の寸法は、それぞれ、100mm×40mm×10mmであり、いずれも銅製であった。また、第1板に形成された第1凹部および第2板に形成された第2凹部である切欠きの断面形状はテーパ形状であり、切欠きの断面寸法は、第1板または第2板の端面に沿う方向の長さが0.5mmであり、第1板または第2板の合わせ面に沿う方向の長さが0.5mmであった。 The welding jig includes a pair of plates of a first plate and a second plate, and the dimensions of the first plate and the second plate are 100 mm × 40 mm × 10 mm, respectively, and both are made of copper. Moreover, the cross-sectional shape of the notch which is the 1st recessed part formed in the 1st board and the 2nd recessed part formed in the 2nd board is a taper shape, and the cross-sectional dimension of a notch is a 1st board or a 2nd board. The length in the direction along the end surface of the first plate was 0.5 mm, and the length in the direction along the mating surface of the first plate or the second plate was 0.5 mm.
 次に、プラズマ溶接機(商品名:PW-50NR、小池酸素工業(株)製)を、溶接端面の鉛直方向上方に配置した。このプラズマ溶接機のトーチから、溶接領域の溶接端面に対して垂直にエネルギーを照射した。トーチを電極板本体の幅方向に等間隔で移動させた。トーチを停止させた箇所において、溶接端面に下記の条件でエネルギーを照射し、電極板本体および負極リードの端面を溶融させることにより溶融部を形成し、これにより、負極を作製した。 Next, a plasma welding machine (trade name: PW-50NR, manufactured by Koike Oxygen Industry Co., Ltd.) was placed vertically above the weld end face. Energy was irradiated from the torch of this plasma welding machine perpendicularly to the welding end face in the welding region. The torch was moved at equal intervals in the width direction of the electrode plate body. At the location where the torch was stopped, energy was applied to the weld end face under the following conditions, and the end face of the electrode plate body and the negative electrode lead was melted to form a melted portion, thereby producing a negative electrode.
  電極棒:直径1.0mm
  電極ノズル:直径1.6mm
  トーチ距離:2.0mm
  トーチ掃引速度:30mm/s
  プラズマガス:アルゴン
  プラズマガス流量:100(sccm)
  シールドガス:水素、アルゴン
  シールドガス流量(水素):500(sccm)
  シールドガス流量(アルゴン):1(slm)
  溶接電流:8.0A
Electrode bar: 1.0mm in diameter
Electrode nozzle: 1.6mm in diameter
Torch distance: 2.0mm
Torch sweep speed: 30 mm / s
Plasma gas: Argon Plasma gas flow rate: 100 (sccm)
Shield gas: hydrogen, argon Shield gas flow rate (hydrogen): 500 (sccm)
Shielding gas flow rate (argon): 1 (slm)
Welding current: 8.0A
 プラズマ溶接後、負極を自然放冷し、溶接端面を走査型電子顕微鏡(商品名:3Dリアルサーフェースビュー、(株)キーエンス製)で観察した。その結果、電極板本体および負極リードの一端部において、連続した溶融部が形成されていることが確認された。溶接端面には、電極板本体の幅方向に不定間隔で球状に凝集した複数の溶融部が形成されていた。また、電極板本体の厚み方向における溶融部の断面において、最大厚みは0.4mmであり、プラズマ溶接前の電極板本体と負極リードとの合計厚み0.2mmに対して、厚みの比率は2.0であった。 After the plasma welding, the negative electrode was allowed to cool naturally, and the weld end face was observed with a scanning electron microscope (trade name: 3D Real Surface View, manufactured by Keyence Corporation). As a result, it was confirmed that a continuous melted portion was formed at one end of the electrode plate body and the negative electrode lead. On the weld end face, a plurality of fused portions aggregated in a spherical shape at indefinite intervals in the width direction of the electrode plate body were formed. Moreover, in the cross section of the fusion | melting part in the thickness direction of an electrode plate main body, the maximum thickness is 0.4 mm, The ratio of thickness is 2 with respect to the total thickness 0.2mm of the electrode plate main body and negative electrode lead before plasma welding. 0.0.
 走査型電子顕微鏡(3Dリアルサーフェースビュー)にエネルギー分散型X線分析装置(商品名:Genesis XM2、EDAX社製)により、溶融部の断面の銅およびケイ素の元素マップを調べた。その結果、溶融部断面のほぼ全領域に、銅およびケイ素が存在していた。また、エネルギー分散型X線分析装置(Genesis XM2)により、溶融部の所定の部分で銅とケイ素との元素モル比率を測定した結果、銅が90モル%、ケイ素が10モル%であった。これらの結果から、銅中にケイ素が拡散し、合金を形成していることが判った。 Using a scanning electron microscope (3D real surface view), an elemental map of copper and silicon in the cross section of the molten part was examined using an energy dispersive X-ray analyzer (trade name: Genesis XM2, manufactured by EDAX). As a result, copper and silicon were present in almost the entire region of the melted section. Moreover, as a result of measuring the element molar ratio of copper and silicon in the predetermined part of the fusion | melting part with the energy dispersive X-ray analyzer (Genesis XM2), copper was 90 mol% and silicon was 10 mol%. From these results, it was found that silicon diffused in copper to form an alloy.
 溶融部の断面を、微小部X線回折装置(商品名:RINT2500、理学電機(株)製)により定性分析した。溶融部に含まれる成分のピークから、溶融部に含まれる成分が、銅およびCu5Siであることが同定された。したがって、溶融部には、Cu5Si合金が含まれていること判った。 The cross section of the melted part was qualitatively analyzed by a micro part X-ray diffractometer (trade name: RINT2500, manufactured by Rigaku Corporation). From a peak of components contained in the molten portion, components contained in the molten portion, it was identified as copper and Cu 5 Si. Therefore, it was found that the molten portion contains a Cu 5 Si alloy.
 さらに、溶融部の断面について、オージェ電子分光装置(商品名:MODEL670、ULVAC PHI社製)によりリチウムの元素マップを調べた。溶融部の断面の周縁部には、溶融部の断面に比べて寸法が非常に小さい活物質層の断面およびケイ素の層の断面が存在した。活物質層は、溶融せずに残存した部分である。ケイ素の層は、1度溶融して、合金化せずに再凝固した部分である。これらの断面にはリチウムが存在したが、銅および銅合金の断面にはリチウムは存在しなかった。 Further, the elemental map of lithium was examined with respect to the cross section of the melted portion by an Auger electron spectrometer (trade name: MODEL670, manufactured by ULVAC PHI). At the periphery of the cross section of the melted portion, there were a cross section of the active material layer and a cross section of the silicon layer, which had very small dimensions compared to the cross section of the melted portion. The active material layer is a portion that remains without melting. The silicon layer is a portion that has been melted once and resolidified without being alloyed. Although lithium was present in these cross sections, lithium was not present in the cross sections of copper and copper alloys.
 以上の分析結果から、溶融部には、銅と、Cu5Siを含む銅-ケイ素合金とが存在し、溶融部断面の周縁部にはケイ素とリチウムが存在することがわかった。 From the above analysis results, it was found that copper and a copper-silicon alloy containing Cu 5 Si exist in the molten part, and silicon and lithium exist in the peripheral part of the cross section of the molten part.
 次に溶融部を、対向する一対の平面加圧治具の間に設置して、加圧変形させた。平面プレス機として精密プレス(日本オートマチックマシン(株)社製、SSP1000)を用いた。一対の平面加圧治具のそれぞれは、150mm×150mm×20mmの大きさであり、材質はステンレスであった。プレス加重条件を1000Nに設定して溶融部を加圧変形させた。溶融部の幅は30mmであり、溶融幅あたりの加重は33.3N/mmである。 Next, the melted part was placed between a pair of opposed plane pressure jigs and subjected to pressure deformation. A precision press (manufactured by Nippon Automatic Machine Co., Ltd., SSP1000) was used as a flat press machine. Each of the pair of flat surface pressing jigs has a size of 150 mm × 150 mm × 20 mm and is made of stainless steel. The melted part was subjected to pressure deformation by setting the press load condition to 1000N. The width of the melted part is 30 mm, and the load per melted width is 33.3 N / mm.
 電極板本体の厚み方向における溶融部の断面において、最大厚みは0.23mmであり、プラズマ溶接前の電極板本体と負極リードとの合計厚み0.2mmに対して、厚みの比率は1.15であった。断面形状の観察結果、溶融部の加圧変形によって生成した平坦部は、電極板本体の表面とほぼ平行であった。溶融部が負極リードと同一平面で反対側へ突出した寸法は、負極リードの端部から最大0.2mmであった。 In the cross section of the melted portion in the thickness direction of the electrode plate body, the maximum thickness is 0.23 mm, and the ratio of the thickness is 1.15 with respect to the total thickness of 0.2 mm of the electrode plate body and the negative electrode lead before plasma welding. Met. As a result of observing the cross-sectional shape, the flat portion generated by the pressure deformation of the melted portion was substantially parallel to the surface of the electrode plate body. The dimension in which the melted portion protruded in the same plane as the negative electrode lead to the opposite side was 0.2 mm at the maximum from the end of the negative electrode lead.
(5)電池の作製
 上記で得られた正極と負極との間にポリエチレン微多孔膜(セパレータ、商品名:ハイポア、厚み20μm、旭化成(株)製)を介在させて積層し、得られた積層物を巻回することにより、巻回型電極群を作製した。正極リードの他端をステンレス鋼製正極端子に溶接し、負極リードの他端を有底円筒形の鉄製電池ケースの内底面に接続した。巻回型電極群の長手方向の一端部および他端部に、それぞれ、ポリエチレン製の上部絶縁板および下部絶縁板を装着し、電池ケース内に収容した。
(5) Production of Battery The polyethylene microporous membrane (separator, trade name: Hypore, thickness 20 μm, manufactured by Asahi Kasei Co., Ltd.) is interposed between the positive electrode and the negative electrode obtained above, and the resulting laminate is obtained. By winding the object, a wound electrode group was produced. The other end of the positive electrode lead was welded to a stainless steel positive electrode terminal, and the other end of the negative electrode lead was connected to the inner bottom surface of a bottomed cylindrical iron battery case. An upper insulating plate and a lower insulating plate made of polyethylene were attached to one end and the other end in the longitudinal direction of the wound electrode group, respectively, and accommodated in a battery case.
 次に、エチレンカーボネートとエチルメチルカーボネートとを体積比1:1の割合で含む混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させた非水電解質を電池ケースに注液した。さらに、電池ケースの開口に、ポリエチレン製のガスケットを介して封口板を装着し、電池ケースの開口端部を内側にかしめて電池ケースを封口することにより、円筒型リチウムイオン電池を作製した。 Next, a nonaqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent containing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 1 was poured into the battery case. Furthermore, a sealing plate was attached to the opening of the battery case via a polyethylene gasket, and the battery case was sealed by caulking the opening end of the battery case to the inside to produce a cylindrical lithium ion battery.
 比較例1
 平面プレス機による加圧変形をさせずに負極を作製する以外は実施例1と同様にして、円筒リチウムイオン電池を作製した。
Comparative Example 1
A cylindrical lithium ion battery was produced in the same manner as in Example 1 except that the negative electrode was produced without being subjected to pressure deformation by a flat press.
 プラズマ溶接後に、負極を自然放冷し、溶接端面を走査型電子顕微鏡(商品名:3Dリアルサーフェースビュー)で観察した。その結果、プラズマ溶接の負極板の厚み方向における溶融部の断面において、最大厚みは0.4mmであり、プラズマ溶接前の電極板本体と負極リードとの合計厚み0.2mmに対して、厚みの比率は2.0であった。最大溶融部の断面形状は、全体がほぼ半円に近い形状であり、電極板本体の表面から比較的大きく突出していた。 After the plasma welding, the negative electrode was allowed to cool naturally, and the weld end face was observed with a scanning electron microscope (trade name: 3D real surface view). As a result, in the cross section of the melted portion in the thickness direction of the negative electrode plate of plasma welding, the maximum thickness is 0.4 mm, with respect to the total thickness of 0.2 mm of the electrode plate main body and the negative electrode lead before plasma welding. The ratio was 2.0. The cross-sectional shape of the maximum melting part is a shape that is almost a semicircle as a whole, and protrudes relatively large from the surface of the electrode plate body.
 比較例2
 負極リードの負極集電体への接合方法をプラズマ溶接から抵抗溶接に変更して負極を作製する以外は、比較例1と同様にして円筒型リチウムイオン電池を作製した。なお、負極の作製は次のようにして実施した。
Comparative Example 2
A cylindrical lithium ion battery was produced in the same manner as in Comparative Example 1 except that the negative electrode was produced by changing the joining method of the negative electrode lead to the negative electrode current collector from plasma welding to resistance welding. The negative electrode was produced as follows.
 [負極の作製]
 まず、実施例1と同様にして得られた電極板本体と銅製の負極リード(幅4mm、長さ70mm、厚み100μm)とを、電極板本体の長手方向の端面と負極リードの幅方向の端面とが1つの連続した平面になるように近接させて配置した。これらの電極板本体および負極リードを、先端径2mmの電極棒で挟持し、抵抗溶接機(ミヤチテクノス(株)製)を用いて、電流値を1.3kAに設定してスポット溶接を行うことにより接合し、負極を作製した。
[Production of negative electrode]
First, an electrode plate main body and a copper negative electrode lead (width 4 mm, length 70 mm, thickness 100 μm) obtained in the same manner as in Example 1 were combined, and the end surface in the longitudinal direction of the electrode plate main body and the end surface in the width direction of the negative electrode lead Are arranged close to each other so as to form one continuous plane. The electrode plate body and the negative electrode lead are sandwiched between electrode rods having a tip diameter of 2 mm, and spot welding is performed using a resistance welding machine (manufactured by Miyachi Technos Co., Ltd.) with the current value set to 1.3 kA. Was joined to prepare a negative electrode.
 [負極集電体と負極リードとの接合強度]
 実施例1および比較例1~2で得られた負極について、次のようにして集電体と負極リードとの接合強度を、負極リードの集電体に対する引張強度として測定した。図5aは、電極板本体と電極リードとの接合強度を測定するための試料の作製方法を説明するための概略斜視図であり、図5bは、電極板本体と電極リードとの接合強度を測定するための試料の状態を説明するための概略斜視図である。図6は、電極板本体と電極リードとの接合強度の測定方法を説明するための概略斜視図である。
[Joint strength between negative electrode current collector and negative electrode lead]
For the negative electrodes obtained in Example 1 and Comparative Examples 1 and 2, the bonding strength between the current collector and the negative electrode lead was measured as the tensile strength of the negative electrode lead with respect to the current collector as follows. FIG. 5a is a schematic perspective view for explaining a method for preparing a sample for measuring the bonding strength between the electrode plate main body and the electrode lead, and FIG. 5b shows the bonding strength between the electrode plate main body and the electrode lead. It is a schematic perspective view for demonstrating the state of the sample for doing. FIG. 6 is a schematic perspective view for explaining a method of measuring the bonding strength between the electrode plate main body and the electrode lead.
 図5aに示すように、まず、電極リード(負極リード)13の長さが、電極板本体1の幅と同じになるように、電極リード13を切断した。次に、電極板本体1の長さが、電極リード13が接合されている端部から30mmになるように、電極板本体1を切断した。このとき、接合幅dを測定した。接合幅dは、電極板本体1の幅方向の溶融部17の長さである。 As shown in FIG. 5 a, first, the electrode lead 13 was cut so that the length of the electrode lead (negative electrode lead) 13 was the same as the width of the electrode plate body 1. Next, the electrode plate body 1 was cut so that the length of the electrode plate body 1 was 30 mm from the end where the electrode lead 13 was joined. At this time, the bonding width d was measured. The joining width d is the length of the melting part 17 in the width direction of the electrode plate body 1.
 図5aのように複数の溶融部17が所定の間隔を空けて形成されている場合、接合幅dは、電極板本体1の幅方向の一端に形成された溶融部17から、他端に形成された溶融部17までの長さである。この場合、一端および他端に形成された溶融部17の長さを、接合幅dに含めている。実施例1および比較例1~2で得られた負極それぞれの接合幅dを30mmに切断した。 When a plurality of melting portions 17 are formed at a predetermined interval as shown in FIG. 5a, the bonding width d is formed at the other end from the melting portion 17 formed at one end in the width direction of the electrode plate body 1. It is the length to the melted part 17 made. In this case, the length of the melting part 17 formed at one end and the other end is included in the joining width d. The junction width d of each of the negative electrodes obtained in Example 1 and Comparative Examples 1 and 2 was cut to 30 mm.
 引き続き、図5bに示すように、電極リード13を電極板本体1から剥がすように、矢符66の方向に折り返し、引張強度測定用の試料65を作製した。
 得られた試料65を用い、図6に示す測定方法により、引張強度を測定した。万能試験機((株)島津製作所製)70の下部固定治具71に、電極板本体1の溶融部17が形成されていない側の端部を挟んで固定し、上部固定治具72に電極リード13の溶融部17が形成されていない側の端部(折り返し側の端部)を挟んで固定した。
Subsequently, as shown in FIG. 5b, the electrode lead 13 was folded back in the direction of the arrow 66 so as to peel off the electrode plate body 1, and a sample 65 for measuring tensile strength was produced.
Using the obtained sample 65, the tensile strength was measured by the measuring method shown in FIG. A universal testing machine (manufactured by Shimadzu Corp.) 70 is fixed to the lower fixing jig 71 with the end of the electrode plate body 1 on the side where the melted portion 17 is not formed being sandwiched. The lead 13 was fixed by sandwiching the end portion on the side where the melted portion 17 is not formed (end portion on the folded side).
 室温25℃にて、上部固定治具72を5mm/分の速度で矢符73の方向に移動させて電極リード13を引っ張った。そして、電極板本体1と電極リード13との接合部分(溶融部17)が破断したときの引張強度(N)を測定した。得られた引張強度の測定値と接合幅dの測定値とから、接合幅1mm当たりの引張強度(N/mm)を求めた。結果を表1に示す。 At room temperature of 25 ° C., the upper fixing jig 72 was moved at a speed of 5 mm / min in the direction of the arrow 73 to pull the electrode lead 13. And the tensile strength (N) when the junction part (melting part 17) of the electrode plate main body 1 and the electrode lead 13 fractured | ruptured was measured. The tensile strength (N / mm) per 1 mm of the bonding width was determined from the measured value of the tensile strength and the measured value of the bonding width d. The results are shown in Table 1.
 [負極集電体と負極リードとの導通性]
 実施例1および比較例1~2で得られた負極について、次のようにして集電体と負極リードとの接合抵抗を測定した。
 まず、負極リード近傍の活物質層を、サンドペーパーを用いて剥離した。次に、露出した集電体と負極リードとの接合抵抗を、ミリオームメーター(商品名:ミリオームハイテスタ3540、日置電機(株)製)を用いて測定した。結果を表1に示す。
[Conductivity between negative electrode current collector and negative electrode lead]
For the negative electrodes obtained in Example 1 and Comparative Examples 1 and 2, the junction resistance between the current collector and the negative electrode lead was measured as follows.
First, the active material layer near the negative electrode lead was peeled off using sandpaper. Next, the junction resistance between the exposed current collector and the negative electrode lead was measured using a milliohm meter (trade name: milliohm high tester 3540, manufactured by Hioki Electric Co., Ltd.). The results are shown in Table 1.
 [電極群構成時の電極変形]
 実施例1および比較例1~2で得られた円筒型リチウムイオン電池20セルについて、CT(コンピュータ断層撮影法)による断面観察を行い、溶融部の突出による電極変形の有無を計測した。CT断面観察には、X線CT観察装置(島津製作所社製 SMX-225CT-f)を用いた。電極板本体と負極リードの厚み方向に対して、溶融部の突出が大きい電池では、溶融部の対向面に周回する電極が内側または外側に溶融部を避けるように変形している形状が確認された。
[Electrode deformation during electrode group configuration]
About 20 cylindrical lithium ion batteries obtained in Example 1 and Comparative Examples 1 and 2, a cross-sectional observation by CT (Computer Tomography) was performed to measure the presence or absence of electrode deformation due to protrusion of the melted portion. An X-ray CT observation apparatus (SMX-225CT-f manufactured by Shimadzu Corporation) was used for CT cross-sectional observation. In the battery with a large protrusion of the melting part relative to the thickness direction of the electrode plate body and negative electrode lead, the shape of the electrode that circulates on the opposite surface of the melting part is deformed so as to avoid the melting part inside or outside is confirmed. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1では、溶融部により、電極板本体と負極リードとの間で、良好な接合性を得ることができるとともに、電気的に有効に接続できることがわかる。比較例1においても、電極板本体と負極リードとの間で、良好な接合性および電気的な接続性が得られる。しかしながら、比較例1の溶融部は、平坦部を有しないため、実施例1の溶融部よりも形状が大きくなり、巻回型電極群を作製する際に、溶融部に隣接して周回する電極を変形させた。 From the results in Table 1, it can be seen that in Example 1, the melted portion can obtain good jointability between the electrode plate body and the negative electrode lead and can be electrically connected effectively. Also in Comparative Example 1, good bondability and electrical connectivity can be obtained between the electrode plate body and the negative electrode lead. However, since the melted part of Comparative Example 1 does not have a flat part, the shape is larger than that of the melted part of Example 1, and an electrode that circulates adjacent to the melted part when producing a wound electrode group. Was deformed.
 このように、比較例1のような溶融部を有する負極を用いて電池を作製する際には、内部短絡などの不良が発生するのを抑制するための溶融部の周囲の空間を電池内に設ける必要が生じる。これは、電池内の余分な空間を可能な限り排除する必要がある高密度設計および高容量設計を実施する上で、不利である。 Thus, when a battery is manufactured using a negative electrode having a melting part as in Comparative Example 1, the space around the melting part for suppressing the occurrence of defects such as an internal short circuit in the battery. It is necessary to provide it. This is disadvantageous in implementing high density and high capacity designs that need to eliminate as much extra space in the battery as possible.
 一方、抵抗溶接を実施した比較例2では、電極板本体と負極リードとを電気的に接続する溶融部が形成されず、十分な接合が出来なかったことが明らかである。 On the other hand, in Comparative Example 2 in which resistance welding was performed, it was clear that a melted portion for electrically connecting the electrode plate main body and the negative electrode lead was not formed, and sufficient bonding could not be performed.
 (試験例2)
 [サイクル特性]
 実施例1および比較例1~2のリチウムイオン電池を、それぞれ20℃の恒温槽に収容し、以下のような定電流定電圧方式で、電池を充電した。
(Test Example 2)
[Cycle characteristics]
The lithium ion batteries of Example 1 and Comparative Examples 1 and 2 were each housed in a constant temperature bath at 20 ° C., and the batteries were charged by the following constant current and constant voltage method.
 各電池を、電池電圧が4.2Vになるまで1Cレート(1Cとは1時間で全電池容量を使い切ることができる電流値)の定電流で充電した。電池電圧が4.2Vに達した後は、電流値が0.05Cになるまで、各電池を4.2Vの定電圧で充電した。次に、20分間休止した後、充電後の電池を、1Cレートのハイレートの定電流で、電池電圧が2.5Vになるまで放電した。このような充放電を100サイクル繰り返した。 Each battery was charged at a constant current of 1C rate (1C is a current value that can use up the entire battery capacity in 1 hour) until the battery voltage reaches 4.2V. After the battery voltage reached 4.2V, each battery was charged at a constant voltage of 4.2V until the current value reached 0.05C. Next, after resting for 20 minutes, the charged battery was discharged at a constant rate of 1C rate until the battery voltage reached 2.5V. Such charge and discharge was repeated 100 cycles.
 1サイクル目の全放電容量に対する、100サイクル目の全放電容量の割合を、百分率値で求めた。得られた値を、容量維持率として表2に示す。 The ratio of the total discharge capacity at the 100th cycle to the total discharge capacity at the first cycle was determined as a percentage value. The obtained values are shown in Table 2 as capacity retention rates.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1および比較例1の電池は、容量維持率が高く、良好なサイクル特性を有することが判った。特に、実施例1の電池は、さらに高い容量維持率を示した。比較例1の電池は、溶接部が電極群の一部を変形させたことにより正極と負極の距離がその領域で変化したことで電極反応が不均一となり容量維持率がやや低下したと推測される。一方、比較例2の電池は、通電することができず、抵抗が無限大となった。電池組立時にリードが負極活物質から剥がれて、通電不能となったと推測される。 The batteries of Example 1 and Comparative Example 1 were found to have a high capacity retention rate and good cycle characteristics. In particular, the battery of Example 1 exhibited a higher capacity retention rate. In the battery of Comparative Example 1, the distance between the positive electrode and the negative electrode was changed in the region due to the weld part deforming a part of the electrode group, so that the electrode reaction became non-uniform and the capacity retention rate was slightly reduced. The On the other hand, the battery of Comparative Example 2 could not be energized, and the resistance was infinite. It is presumed that when the battery was assembled, the lead peeled off from the negative electrode active material, making it impossible to conduct electricity.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims should be construed to include all variations and modifications without departing from the true spirit and scope of this invention.
 本発明の電極板は、非水電解質二次電池などの電気化学素子の電極板として好適に使用できる。また、本発明の電気化学素子は、携帯用電子機器の電源などとして有用である。携帯用電子機器には、例えば、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末(PDA)、携帯用ゲーム機器、ビデオカメラ等がある。また、本発明の電気化学素子は、ハイブリッド電気自動車、電気自動車、燃料電池自動車等の主電源および補助電源、電動工具、掃除機、ロボット等の駆動用電源、プラグインHEVの動力源などとしての利用も期待される。 The electrode plate of the present invention can be suitably used as an electrode plate for electrochemical elements such as non-aqueous electrolyte secondary batteries. The electrochemical device of the present invention is useful as a power source for portable electronic devices. Examples of portable electronic devices include personal computers, mobile phones, mobile devices, personal digital assistants (PDAs), portable game devices, and video cameras. In addition, the electrochemical element of the present invention is used as a main power source and auxiliary power source for hybrid electric vehicles, electric vehicles, fuel cell vehicles, etc., driving power sources for electric tools, vacuum cleaners, robots, etc., power sources for plug-in HEVs, etc. Use is also expected.
 1 電極板本体
 1a 電極板本体の端面
 10 集電体
 11 活物質層
 13 電極リード
 13a 電極リードの端面
 14 溶接治具の一対の板
 17、18 溶融部
 20 第1板
 20x 第1凹部
 21 第2板
 21x 第2凹部
 23 平面加圧治具
 25 リチウムイオン電池
 40 電子ビーム式真空蒸着装置
DESCRIPTION OF SYMBOLS 1 Electrode plate main body 1a End surface of electrode plate main body 10 Current collector 11 Active material layer 13 Electrode lead 13a End surface of electrode lead 14 A pair of plates of welding jig 17, 18 Melting portion 20 First plate 20x First concave portion 21 Second Plate 21x Second concave portion 23 Flat pressing jig 25 Lithium ion battery 40 Electron beam vacuum deposition device

Claims (14)

  1.  金属を含む帯状の集電体と、前記集電体の表面に形成され、かつ合金系活物質を含む活物質層との積層体を含む電極板本体、
     前記活物質層の一部の表面に配置された金属を含む電極リード、および
     前記電極板本体の一端部において、前記電極板本体と、前記電極リードとを、電気的に接続する溶融部を具備し、
     前記溶融部は、前記電極板本体の表面に平行な平坦部を有する電気化学素子用電極板。
    An electrode plate body comprising a laminate of a strip-shaped current collector containing metal and an active material layer formed on the surface of the current collector and containing an alloy-based active material;
    An electrode lead including a metal disposed on a part of the surface of the active material layer, and a melting portion that electrically connects the electrode plate body and the electrode lead at one end of the electrode plate body. And
    The melting part is an electrode plate for an electrochemical element having a flat part parallel to the surface of the electrode plate body.
  2.  前記溶融部が、前記平坦部として、第1平坦部および前記第1平坦部とは反対側の第2平坦部を有する、請求項1記載の電気化学素子用電極板。 2. The electrode plate for an electrochemical element according to claim 1, wherein the melting part has a first flat part and a second flat part opposite to the first flat part as the flat part.
  3.  前記電極板本体の厚み方向における前記溶融部の厚みtと、前記電極板本体と前記電極リードとの合計厚みTとの比t/Tが、1以上、1.3以下である請求項1または2記載の電気化学素子用電極板。 The ratio t / T between the thickness t of the melted portion in the thickness direction of the electrode plate body and the total thickness T of the electrode plate body and the electrode lead is 1 or more and 1.3 or less. The electrode plate for electrochemical elements according to 2.
  4.  前記電極リードと前記電極板本体との接合強度が、0.5N/mm以上、50N/mm以下である請求項1~3のいずれか1項に記載の電気化学素子用電極板。 The electrode plate for an electrochemical element according to any one of claims 1 to 3, wherein a bonding strength between the electrode lead and the electrode plate main body is 0.5 N / mm or more and 50 N / mm or less.
  5.  前記平坦部が、前記溶融部の圧縮により形成される請求項1~4のいずれか1項に記載の電気化学素子用電極板。 The electrode plate for an electrochemical element according to any one of claims 1 to 4, wherein the flat portion is formed by compression of the melted portion.
  6.  前記溶融部が、少なくとも前記合金系活物質と、前記電極リードの金属成分との合金を含む、請求項1~5のいずれか1項に記載の電気化学素子用電極板。 The electrode plate for an electrochemical element according to any one of claims 1 to 5, wherein the molten part contains at least an alloy of the alloy-based active material and a metal component of the electrode lead.
  7.  前記活物質層が、前記合金系活物質の堆積膜である、請求項1~6のいずれか1項に記載の電気化学素子用電極板。 The electrode plate for an electrochemical element according to any one of claims 1 to 6, wherein the active material layer is a deposited film of the alloy-based active material.
  8.  前記合金系活物質が、ケイ素、ケイ素合金およびケイ素化合物からなる群より選択される少なくとも一種であり、
     前記電極リードの前記金属成分が、銅または銅合金であり、
     前記溶融部が、ケイ素と銅との合金を含む、請求項1~7のいずれか1項に記載の電気化学素子用電極板。
    The alloy-based active material is at least one selected from the group consisting of silicon, silicon alloys and silicon compounds;
    The metal component of the electrode lead is copper or a copper alloy;
    The electrode plate for an electrochemical element according to any one of claims 1 to 7, wherein the molten part contains an alloy of silicon and copper.
  9.  前記ケイ素と銅との合金が、Cu5Siを含む、請求項8記載の電気化学素子用電極板。 The electrode plate for an electrochemical element according to claim 8, wherein the alloy of silicon and copper contains Cu 5 Si.
  10.  金属を含む帯状の集電体と、前記集電体の表面に形成され、かつ合金系活物質を含む活物質層との積層体を含む電極板本体を準備する工程Aと、
     前記活物質層の一部の表面に、前記電極板本体の一端部と、金属を含む電極リードの一端部とが近接するように、前記電極リードを配置する工程Bと、
     近接した前記電極板本体の一端部および前記電極リードの一端部において、前記電極板本体の端面および前記電極リードの端面を含む溶接領域を溶融させることにより、前記電極板本体と、前記電極リードとを、電気的に接続する溶融部を形成する工程Cと、
     前記溶融部を前記電極板本体の表面に垂直な方向に圧縮して、前記電極板本体の表面に平行な平坦部を形成する工程Dと、を具備する、電気化学素子用電極板の製造方法。
    Preparing an electrode plate body including a laminate of a strip-shaped current collector containing a metal and an active material layer formed on a surface of the current collector and containing an alloy-based active material; and
    A step B of disposing the electrode lead so that one end of the electrode plate body and one end of the electrode lead containing metal are close to a part of the surface of the active material layer;
    By melting a welding region including an end surface of the electrode plate body and an end surface of the electrode lead at one end portion of the electrode plate body and one end portion of the electrode lead that are close to each other, the electrode plate body, the electrode lead, A step C of forming a melted portion to be electrically connected;
    A process D for compressing the melted portion in a direction perpendicular to the surface of the electrode plate main body to form a flat portion parallel to the surface of the electrode plate main body. .
  11.  前記工程Cにおいて、一対の板の間に、前記溶接領域が露出するように、前記電極板本体および前記電極リードを配置し、前記溶接領域に向けてアーク放電することにより前記溶接領域を溶融させる、請求項10記載の電気化学素子用電極板の製造方法。 In the step C, the electrode plate main body and the electrode lead are arranged so that the welding region is exposed between a pair of plates, and the welding region is melted by performing arc discharge toward the welding region. Item 11. A method for producing an electrode plate for an electrochemical element according to Item 10.
  12.  前記工程Dにおいて、前記溶融部を前記電極板本体の表面に垂直な方向に双方向から圧縮して、前記平坦部として、第1平坦部および前記第1平坦部とは反対側の第2平坦部を形成する、請求項10または11記載の電気化学素子用電極板の製造方法。 In the step D, the melting portion is compressed from both directions in a direction perpendicular to the surface of the electrode plate body, and the first flat portion and the second flat portion on the opposite side of the first flat portion are used as the flat portion. The manufacturing method of the electrode plate for electrochemical devices of Claim 10 or 11 which forms a part.
  13.  前記工程Dにおいて、前記溶融部を、3N/mm以上、1000N/mm以下の加重で圧縮する、請求項10~12のいずれか1項に記載の電気化学素子用電極板の製造方法。 The method for producing an electrode plate for an electrochemical element according to any one of claims 10 to 12, wherein in the step D, the melted portion is compressed with a load of 3 N / mm or more and 1000 N / mm or less.
  14.  第1電極としての、請求項1~9のいずれか1項に記載の電気化学素子用電極板と、
     前記第1電極とは反対の極性の第2電極と、
     前記第1電極と前記第2電極との間に介在するセパレータとを含む、電気化学素子。
    The electrode plate for an electrochemical element according to any one of claims 1 to 9, as a first electrode;
    A second electrode having a polarity opposite to that of the first electrode;
    An electrochemical device comprising a separator interposed between the first electrode and the second electrode.
PCT/JP2012/005049 2011-08-10 2012-08-08 Electrode plate for electrochemical element, method for manufacturing electrode plate for electrochemical element, and electrochemical element WO2013021640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011174726A JP2014199715A (en) 2011-08-10 2011-08-10 Negative electrode for lithium ion battery and manufacturing method therefor and lithium ion battery
JP2011-174726 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013021640A1 true WO2013021640A1 (en) 2013-02-14

Family

ID=47668175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005049 WO2013021640A1 (en) 2011-08-10 2012-08-08 Electrode plate for electrochemical element, method for manufacturing electrode plate for electrochemical element, and electrochemical element

Country Status (2)

Country Link
JP (1) JP2014199715A (en)
WO (1) WO2013021640A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025650A1 (en) * 2013-08-22 2015-02-26 Necエナジーデバイス株式会社 Negative electrode, method for producing same and battery
JP2016167358A (en) * 2015-03-09 2016-09-15 Fdk株式会社 Lithium primary battery
WO2020129998A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Secondary battery electrode plate and secondary battery using same
CN112470336A (en) * 2018-07-20 2021-03-09 戴森技术有限公司 Energy storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277643A (en) * 2008-01-28 2009-11-26 Panasonic Corp Secondary cell collector terminal board, the secondary cell, and secondary cell manufacturing method
JP2011076836A (en) * 2009-09-30 2011-04-14 Panasonic Corp Electrode for secondary battery and the secondary battery
JP2011100642A (en) * 2009-11-06 2011-05-19 Panasonic Corp Manufacturing method of anode for lithium ion battery, and lithium ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277643A (en) * 2008-01-28 2009-11-26 Panasonic Corp Secondary cell collector terminal board, the secondary cell, and secondary cell manufacturing method
JP2011076836A (en) * 2009-09-30 2011-04-14 Panasonic Corp Electrode for secondary battery and the secondary battery
JP2011100642A (en) * 2009-11-06 2011-05-19 Panasonic Corp Manufacturing method of anode for lithium ion battery, and lithium ion battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025650A1 (en) * 2013-08-22 2015-02-26 Necエナジーデバイス株式会社 Negative electrode, method for producing same and battery
JPWO2015025650A1 (en) * 2013-08-22 2017-03-02 Necエナジーデバイス株式会社 Negative electrode, method for producing the same, battery
US10038194B2 (en) 2013-08-22 2018-07-31 Nec Energy Devices, Ltd. Negative electrode, method for producing the same, and battery
JP2016167358A (en) * 2015-03-09 2016-09-15 Fdk株式会社 Lithium primary battery
CN112470336A (en) * 2018-07-20 2021-03-09 戴森技术有限公司 Energy storage device
CN112470336B (en) * 2018-07-20 2023-05-02 戴森技术有限公司 Energy storage device
WO2020129998A1 (en) * 2018-12-19 2020-06-25 三洋電機株式会社 Secondary battery electrode plate and secondary battery using same
JPWO2020129998A1 (en) * 2018-12-19 2021-11-04 三洋電機株式会社 Electrode plate for secondary battery and secondary battery using it

Also Published As

Publication number Publication date
JP2014199715A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5419885B2 (en) Negative electrode, method for producing the same, and nonaqueous electrolyte secondary battery
JP6219273B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode for lithium secondary battery
US20110111293A1 (en) Method for producing negative electrode for lithium ion battery and lithium ion battery
JP5313761B2 (en) Lithium ion battery
JP7012647B2 (en) Lithium-ion secondary battery and its manufacturing method
WO2010098043A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20090129495A (en) Lithium ion secondary battery
JP2007214086A (en) Electrode for battery, and battery using it
WO2013080459A1 (en) Negative electrode for lithium ion battery, and lithium ion battery
US20120088136A1 (en) Non-aqueous electrolyte secondary battery
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
JP6493414B2 (en) Negative electrode active material for electric device and electric device using the same
CN113302763A (en) Lithium metal secondary battery
WO2013021640A1 (en) Electrode plate for electrochemical element, method for manufacturing electrode plate for electrochemical element, and electrochemical element
JP6327362B2 (en) Negative electrode active material for electric device and electric device using the same
JP5150095B2 (en) Non-aqueous electrolyte battery
JP2011029026A (en) Negative electrode, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP5506663B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JPWO2013180083A1 (en) Lithium ion secondary battery
KR101342696B1 (en) Lithium ion battery and fabrication method thereof
JP2008016194A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2011100643A (en) Manufacturing method of anode for lithium ion battery, and lithium ion battery
EP3832769A1 (en) Lithium secondary battery
US20140272566A1 (en) Weldability of aluminum alloys
JP6292317B2 (en) Negative electrode active material for electric device and electric device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP