WO2013021571A1 - Physical quantity detecting apparatus - Google Patents

Physical quantity detecting apparatus Download PDF

Info

Publication number
WO2013021571A1
WO2013021571A1 PCT/JP2012/004792 JP2012004792W WO2013021571A1 WO 2013021571 A1 WO2013021571 A1 WO 2013021571A1 JP 2012004792 W JP2012004792 W JP 2012004792W WO 2013021571 A1 WO2013021571 A1 WO 2013021571A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
comparator
connection point
output
physical quantity
Prior art date
Application number
PCT/JP2012/004792
Other languages
French (fr)
Japanese (ja)
Inventor
基樹 緒方
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013021571A1 publication Critical patent/WO2013021571A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/005Circuits for altering the indicating characteristic, e.g. making it non-linear

Definitions

  • the present invention relates to a physical quantity detection device that outputs electrical signals corresponding to various physical quantities.
  • FIG. 12A is a block diagram of a current detection device 500 which is a conventional physical quantity detection device.
  • the photocurrent sensor 2 detects a measured current I flowing in a conductor 1 such as a distribution line.
  • the photocurrent sensor 2 includes a core 3, a photocurrent element 4 disposed in a gap between the cores 3, a light emitting element 5, and a light receiving element 6.
  • a magnetic field is generated around the conductor 1, and the magnetic field is collected by the core 3 and applied to the photocurrent element 4.
  • Light input from the light emitting element 5 to the photocurrent element 4 is subjected to intensity modulation by this magnetic field.
  • the light whose intensity is modulated is converted into an electric signal by the light receiving element 6 and amplified, and an output signal corresponding to the current I to be measured is output to the output terminal 7.
  • FIG. 12B shows a characteristic 7 a that is a relationship between the current I to be measured and the output signal from the output terminal 7 of the photocurrent sensor 2.
  • the input / output characteristics of each element constituting the photocurrent sensor 2 have nonlinearity, and the nonlinearity itself has individual differences. Therefore, as shown in FIG. 12B, the output signal is not strictly proportional to the current I to be measured, and an error occurs in the measurement result of the current I.
  • an A / D converter 8 and a CPU 10 to which a writable read-only memory 9 such as an EEPROM is connected are connected to the subsequent stage of the output terminal 7.
  • the CPU 10 compensates for nonlinearity of the photocurrent sensor 2.
  • the output signal characteristic 7a at the output end 7 of the photocurrent sensor 2 is divided into a plurality of blocks in advance.
  • a plurality of first-order correction equations approximating those blocks of the characteristic 7a are set.
  • These correction formulas are written and stored in the memory 9, and the CPU 10 is installed with a program for executing correction using these correction formulas.
  • the output signal at the output terminal 7 of the photocurrent sensor 2 is converted into a digital signal by the A / D converter 8 and input to the CPU 10.
  • the CPU 10 discriminates one of the plurality of blocks having the characteristic 7a into which the output signal is input, reads a correction formula corresponding to the block from the memory 9, and calculates a correction value.
  • the output signal at the output terminal 11 of the CPU 10 has a characteristic 7b that is exactly proportional to the measured current I as shown in FIG. 12B.
  • the correction formula set for each of the plurality of blocks of the characteristic 7a of the photocurrent sensor 2 is stored in the memory 9, and the output signal of the photocurrent sensor 2 is output from the A / D converter 8. After being converted into a digital signal, it is corrected using a correction formula by calculation by the CPU 10. Therefore, the current detection device 500 is complicated, expensive, and large. In addition, since the calculation by the CPU 10 takes time, the current detection device 500 may not be able to measure the current I accurately when the change in the measured current I is fast.
  • Patent Document 1 describes a conventional physical quantity detection device similar to the current detection device 500.
  • the physical quantity detection device includes a physical quantity sensor, a correction voltage generation circuit, and an addition circuit.
  • the physical quantity sensor outputs a voltage V (x) corresponding to an arbitrary physical quantity x between the physical quantity a and the physical quantity b on a one-to-one basis.
  • the correction voltage generation circuit generates a correction voltage.
  • the adder circuit adds a correction voltage to the voltage V (x).
  • the physical quantity sensor outputs a voltage V (a) corresponding to the physical quantity a, and outputs a voltage V (b) higher than the voltage V (a) corresponding to the physical quantity b.
  • the differential voltage Z (x) is monotonously changed with respect to an arbitrary physical quantity, and the differential voltage Z (x) is monotonously changed with respect to the arbitrary physical quantity x.
  • the correction voltage generation circuit includes a voltage generator that generates a voltage V (a), a voltage V (b), and a voltage V (c).
  • the correction voltage generation circuit includes: a voltage generator that generates a voltage V (a), a voltage V (b), and a voltage V (c); a plurality of first resistors that are connected in series; 2n comparators (n is a predetermined constant satisfying n ⁇ 3), a plurality of second resistors connected in series with each other, a first to n-th OR circuit, and a plurality of switches in series with each other. A plurality of connected third resistors, fourth and fifth resistors, and an output circuit are provided.
  • the first connection point to which the voltage V (a) is applied, the second connection point, ..., the kth connection point, ..., the n-1th connection point, and the voltage V (c) is applied The plurality of first resistors are connected to the second connection point from the first connection point to the nth connection point,..., The kth connection point, so that the nth connection points connected in this order. ..., connected in series with the (n ⁇ 1) th connection point (k is an arbitrary integer satisfying 2 ⁇ k ⁇ n ⁇ 1).
  • the first comparator compares the voltage V (a) with the voltage V (x).
  • the kth comparator compares the voltage at the kth connection point with the voltage V (x).
  • the nth comparator compares the voltage V (c) with the voltage V (x).
  • the (n + 1) th connection point, the (n + 2) th connection point,..., The (n + k) connection point, the (2n-1) th connection point, and the voltage V (c) are applied.
  • the plurality of second resistors are connected to the (n + 2) -th connection point from the (n + 1) -th connection point to the (2n) -th connection point,..., The (n + k) -th connection point. ..., connected in series with the 2n-1th connection point.
  • the (n + 1) th comparator compares the voltage V (b) with the voltage V (x).
  • the n + k comparator compares the voltage at the n + k connection point with the voltage V (x).
  • the 2nth comparator compares the voltage V (c) with the voltage V (x).
  • the first OR circuit takes the OR of the signals output from the first and (n + 1) th comparators.
  • the kth OR circuit calculates the logical sum of the signals output from the kth and n + k comparators.
  • the nth OR circuit calculates the logical sum of signals output from the nth and 2nth comparators.
  • the plurality of switches are controlled by the first OR circuit to the nth OR circuit, respectively.
  • the plurality of third resistors are respectively connected in parallel to the plurality of switches, and are connected in series between the 2n + 1 connection point to which the first predetermined voltage is applied and the 2n + 2 connection point. ing.
  • the fourth resistor is connected in series to the plurality of third resistors between the (n + 1) th connection point and the (n + 2) th connection point.
  • the fifth resistor is connected between the n + 3 connection point to which the second predetermined voltage is applied and the n + 2 connection point.
  • the output circuit outputs a correction voltage based on the voltage at the (n + 2) th connection point.
  • This physical quantity detection device can satisfactorily correct non-linearity between a physical quantity such as a current and an electric signal corresponding to the physical quantity without providing a complicated arithmetic device, and can follow a high-speed change in the physical quantity.
  • FIG. 1A is a block diagram of a physical quantity detection device according to Embodiment 1 of the present invention.
  • FIG. 1B is a diagram illustrating a relationship between a physical quantity and an output voltage of the physical quantity sensor in the physical quantity detection device according to the first exemplary embodiment.
  • FIG. 2 is a circuit diagram of a correction voltage generation circuit of the physical quantity detection device according to the first embodiment.
  • FIG. 3A is a conceptual diagram showing the relationship between the input voltage of the correction voltage generation circuit and the voltage at the connection point in the first embodiment.
  • FIG. 3B is a conceptual diagram showing the relationship between the voltage input to the correction voltage generation circuit and the correction voltage in the first exemplary embodiment.
  • FIG. 4A is a circuit diagram of an addition circuit of the physical quantity detection device according to the first exemplary embodiment.
  • FIG. 4B is a conceptual diagram showing a voltage output from the adder circuit in the first embodiment.
  • FIG. 4C is a circuit diagram of an inverting circuit connected to the output terminal of the adder circuit in the first embodiment.
  • 4D is a conceptual diagram showing an output voltage of the inverting circuit shown in FIG. 4C.
  • FIG. 5 is a circuit diagram of another correction voltage generation circuit of the physical quantity detection device according to the first exemplary embodiment.
  • FIG. 6A is a circuit diagram of the physical quantity detection device according to Embodiment 2 of the present invention.
  • FIG. 6B is a diagram showing a relationship between the output voltage of the physical quantity detection device and the current to be measured in the second embodiment.
  • FIG. 7 is a circuit diagram of a correction voltage generation circuit of the physical quantity detection device according to the second embodiment.
  • FIG. 8A is a conceptual diagram showing an input voltage of the correction voltage generating circuit in the second embodiment.
  • FIG. 8B is a conceptual diagram showing the relationship between the voltage input to the correction voltage generation circuit and the output correction voltage in the second embodiment.
  • FIG. 9 is a circuit diagram of another correction voltage generation circuit according to the second embodiment.
  • FIG. 10 is a diagram illustrating a simulation result of the correction voltage generation circuit according to the second embodiment.
  • FIG. 11 is a circuit diagram of still another correction voltage generation circuit of the physical quantity detection device according to the second embodiment.
  • FIG. 12A is a block diagram of a conventional physical quantity detection device.
  • FIG. 12B is a diagram showing the relationship between the output of the photocurrent sensor of the conventional physical quantity detection device and the current I to be measured.
  • FIG. 1A is a block diagram of the physical quantity detection device 21 according to Embodiment 1 of the present invention.
  • the physical quantity detection device 21 includes a physical quantity sensor 22, a correction voltage generation circuit 23, and an addition circuit 24.
  • Physical quantities such as angular velocity, current, and magnetic field act on the physical quantity sensor 22 and output a voltage from the output terminal 25 in response to the physical quantity.
  • the inspection device 26 is used in the manufacturing process of the physical quantity detection device 21, measures the voltage output from the physical quantity sensor 22 corresponding to the physical quantity, and designates a parameter for causing the correction voltage generation circuit 23 to generate the correction voltage.
  • the inspection device 26 causes the known physical quantity 26 a to continuously act on the physical quantity sensor 22 within a predetermined range, and sequentially stores the voltage 22 a output from the physical quantity sensor 22.
  • FIG. 1B is a diagram showing the relationship between the physical quantity acting on the physical quantity sensor 22 and the output voltage 22 a of the physical quantity sensor 22.
  • the physical quantity sensor 22 outputs a voltage V (a) corresponding to the physical quantity a, and outputs a voltage V (b) higher than the voltage V (a) corresponding to the physical quantity b.
  • the physical quantity sensor 22 outputs a voltage V (x) corresponding to an arbitrary physical quantity x between the physical quantity a and the physical quantity b.
  • the voltage V (x) has an output characteristic that is convex downward between the physical quantities a and b.
  • a voltage Y (x) represented by Formula 1A representing a straight line connecting coordinates (a, V (a)) and (b, V (b)) is obtained.
  • a difference voltage Z (x) V (a) + ⁇ V (b) ⁇ V (a) ⁇ ⁇ (x ⁇ a) / (b ⁇ a) (Formula 1A)
  • a difference voltage Z (x) which is a difference obtained by subtracting the voltage Y (x) from the voltage V (x), takes a maximum value Z (c) in the physical quantity c.
  • the difference voltage Z (x) monotonously changes between the physical quantity a and the physical quantity c with respect to the arbitrary physical quantity x, and the difference voltage Z (x between the physical quantity c and the physical quantity b with respect to the arbitrary physical quantity x. ) Is changing monotonously.
  • the inspection device 26 detects four parameters: voltages V (a), V (b), differential voltage Z (c), and voltage V (c).
  • the correction voltage generation circuit 23 has an input terminal 23a and an output terminal 23b.
  • a voltage V (x) that is a voltage 22a output from the physical quantity sensor 22 is input to the input terminal 23a.
  • the correction voltage V123 is output from the output terminal 23b.
  • the voltage 22a output from the physical quantity sensor 22 is input to the adder circuit 24 to the input terminal 24a of the adder circuit 24, and the correction voltage V123 output from the correction voltage generator circuit 23 is input to the input terminal 24b.
  • FIG. 2 is a circuit diagram of the correction voltage generation circuit 23.
  • the voltage generator 40 includes a DC power supply 41 and resistors 42a, 42b, 43a, 43b, 44a, 44b.
  • the inspection device 26 uses a laser adjustment device or the like to adjust the resistance values of the resistors 42a to 44b, and the voltage at the connection point where the resistors 42a and 42b are connected, and the connection point where the resistors 43a and 43b are connected. And the voltage at the connection point where the resistors 44a and 44b are connected are set to voltages V (b), V (c), and V (a), respectively.
  • the resistors 50a, 50b, 50c, 50d, and 50e are connected in series in this order.
  • the voltage V (a) is applied to the connection point P1, which is one end 51 of the resistor 50a opposite to the connection point P2 to which the resistors 50a and 50b are connected.
  • the voltage V (c) is applied to the connection point P6 which is one end 52 of the resistor 50e on the opposite side of the connection point P5 to which the resistors 50d and 50e are connected.
  • the resistors 53a, 53b, 53c, 53d, and 53e are connected in series in this order.
  • the voltage V (c) is applied to the connection point P12 which is one end 54 of the resistor 53a on the side opposite to the connection point P11 to which the resistors 53a and 53b are connected.
  • a voltage V (b) is applied to a connection point P7 which is one end 55 of the resistor 53e on the opposite side of the connection point P8 to which the resistors 53d and 53e are connected.
  • the comparator 56a compares the voltage V (x) (voltage 22a) from the physical quantity sensor 22 input to the input terminal 23a with the voltage V (a) applied to one end 51 of the resistor 50a, and the voltage V (x) is When the voltage V (a) is lower than “1”, an active level signal is output, and when it is higher, “0”, an inactive level signal is output.
  • the comparator 56b compares the voltage V (x) with the voltage V1 at the connection point P2 to which the resistors 50a and 50b are connected. When the voltage V (x) is lower than the voltage V1, it is “1”, that is, the active level. When the signal is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 56c compares the voltage V (x) with the voltage V2 at the connection point P3 to which the resistors 50b and 50c are connected. When the voltage V (x) is lower than the voltage V2, “1”, that is, active A level signal is output, and when it is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 56d compares the voltage V (x) with the voltage V3 at the connection point P4 to which the resistors 50c and 50d are connected. When the voltage V (x) is lower than the voltage V3, the comparator 56d is active. A level signal is output, and when it is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 56e compares the voltage V (x) with the voltage V4 at the connection point P5 to which the resistors 50d and 50e are connected.
  • the comparator 56f compares the voltage V (x) with the voltage V (c) applied to the one end 52 of the resistor 50e.
  • the comparator 56f is “1”, that is, the active level.
  • the signal is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 57a compares the voltage V (x) with the voltage V (c) applied to the one end 54 of the resistor 53a. When the voltage V (x) is lower than the voltage V (c), the comparator 57a is “0”, that is, an inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output.
  • the comparator 57b compares the voltage V (x) with the voltage V5 at the connection point P11 to which the resistors 53a and 53b are connected. When the voltage V (x) is lower than the voltage V5, the comparator 57b is inactive. A level signal is output, and when it is high, an active level signal is output.
  • the comparator 57c compares the voltage V (x) with the voltage V6 at the connection point P10 to which the resistors 53b and 53c are connected. When the voltage V (x) is lower than the voltage V6, the comparator 57c is “0”. An active level signal is output, and when it is high, “1”, that is, an active level signal is output.
  • the comparator 57d compares the voltage V (x) with the voltage V7 at the connection point P9 to which the resistors 53c and 53d are connected. When the voltage V (x) is lower than the voltage V7, “0”, that is, the inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output.
  • the comparator 57e compares the voltage V (x) with the voltage V8 at the connection point P8 to which the resistors 53d and 53e are connected. When the voltage V (x) is lower than the voltage V8, “0”, that is, the inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output.
  • the comparator 57f compares the voltage V (x) with the voltage V (b) applied to the one end 55 of the resistor 53e. When the voltage V (x) is lower than the voltage V (b), the comparator 57f is “0”, that is, inactive. A level signal is output, and when it is high, an active level signal is output.
  • the OR circuit 58a calculates the logical sum of the signals output from the comparators 56a and 57f, outputs an inactive level signal only when both of these signals are at the inactive level, and outputs at least one of these signals.
  • An active level signal is output when the signal is at an active level.
  • the OR circuit 58b calculates the logical sum of the signals output from the comparators 56b and 57e, and outputs an inactive level signal only when both of these signals are at the inactive level. When at least one of the signals is at an active level, an active level signal is output.
  • the OR circuit 58c calculates the logical sum of the signals output from the comparators 56c and 57d, outputs an inactive level signal only when both of these signals are at the inactive level, and at least one of these signals.
  • An active level signal is output when the signal of is active level.
  • the OR circuit 58d calculates the logical sum of the signals output from the comparators 56d and 57c, and outputs an inactive level signal only when both of these signals are at an inactive level, and at least one of these signals.
  • An active level signal is output when the signal of is active level.
  • the OR circuit 58e calculates the logical sum of the signals output from the comparators 56e and 57b, and outputs an inactive level signal only when both of these signals are at an inactive level, and at least one of these signals.
  • An active level signal is output when the signal of is active level.
  • the logical sum circuit 58f calculates the logical sum of the signals output from the comparators 56f and 57a, outputs an inactive level signal only when both of these signals are at the inactive level, and at least one of these signals.
  • An active level signal is output when the signal of is active level.
  • the switch 59a is operated and closed when the signal output from the OR circuit 58a is at the active level, and is not operated and opened when the signal is at the inactive level.
  • the switches 59b, 59c, 59d, 59e, and 59f operate and close when the signals output from the OR circuits 58b, 58c, 58d, 58e, and 58f are at the active level, and these signals are inactive.
  • the switches 59a, 59b, 59c, 59d, 59e, and 59f are connected in series in this order.
  • One end 60 of the switch 59f is connected to the DC power supply 41, and one end 61 of the switch 59a is connected to one end of the resistor 62.
  • the other end of the resistor 62 is connected to one end of the resistor 63, and the other end of the resistor 63 is connected to the ground.
  • the resistors 64a, 64b, 64c, 64d, 64e, and 64f are respectively connected to both ends of the switches 59a, 59b, 59c, 59d, 59e, and 59f, that is, parallel to the switches 59a, 59b, 59c, 59d, 59e, and 59f, respectively. It is connected.
  • the sign of the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected is inverted by the output circuit 65, and the voltage V9 whose sign is inverted is output from the output terminal 23b as the correction voltage V123.
  • the operation of the correction voltage generation circuit 23 shown in FIG. 2 will be described.
  • a voltage V (x) is generated from the physical quantity sensor 22 and input to the input terminal 23 a of the correction voltage generation circuit 23.
  • the voltage V (x) is compared with the voltages V (a), V1, V2, V3, V4, V (c), V5, V6, V7, V8, V (b) in the comparators 56a to 56f and 57a to 57f, respectively.
  • the voltage V9 is ⁇ R / (2.R + r1) ⁇ .
  • Vcc (Formula 2)
  • the voltage V (x) is lower than the voltage Vcc / 2 shown in Expression 1B when the voltages V (x) and V (a) are equal.
  • the inspection device 26 has a difference between Vcc / 2 and the minimum voltage V9min shown in Equation 5, Vcc / 2 ⁇ ⁇ R / (2 ⁇ R + 6 ⁇ r1) ⁇ ⁇ Vcc (Formula 5) Is set equal to the differential voltage Z (c) shown in FIG. 1B by using a laser adjusting device or the like to set the resistance value R of the resistors 62 and 63 or the resistance value r1 of the resistors 64a to 64f.
  • the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected is ⁇ R / (2 ⁇ R + 5 ⁇ r1) ⁇ ⁇ Vcc (Expression 6).
  • the voltage rises again from the minimum voltage V9min shown in Equation 5.
  • FIG. 3A is a conceptual diagram showing a change of the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected with respect to the voltage V (x).
  • FIG. 3B is a conceptual diagram showing the correction voltage V123 output from the output terminal 23b of the correction voltage generation circuit 23.
  • the output circuit 65 includes an operational amplifier having a non-inverting input terminal to which the voltage Vcc / 2 is applied.
  • the voltage V9 is input to the inverting input terminal of the operational amplifier, is inverted with respect to the voltage Vcc / 2, and is output from the output circuit 65 as the correction voltage V123 shown in Expression 8A.
  • V123 Vcc / 2 ⁇ V9 (Formula 8A)
  • the sign of the voltage V9 is inverted in the correction voltage V123, that is, the output circuit 65 inverts the sign of the voltage V9 and outputs it as the correction voltage V123.
  • the correction voltage generation circuit 23 can output the correction voltage V123 approximate to the difference voltage Z (x) between the voltage Y (x) shown in FIG. 1B and the expression 1A from the output terminal 23b.
  • FIG. 4A is a circuit diagram of the adder circuit 24.
  • the correction voltage V123 from the correction voltage generation circuit 23 applied to the input terminal 24b is added to the voltage V (x) from the physical quantity sensor 22 applied to the input terminal 24a.
  • the adder circuit 24 includes an operational amplifier having a non-inverting input terminal to which the voltage Vcc / 2 is input.
  • FIG. 4B shows the voltage output to the output terminal 25 of the adder circuit 24.
  • physical quantity detection is performed in the physical quantity sensor 22 having non-linear output characteristics in which the voltage V (x) output by the action of the physical quantity x between the two physical quantities a and b has a downward convexity.
  • the device 21 can correct the nonlinearity satisfactorily and output a voltage having an output characteristic having linearity from the output terminal 25.
  • the physical quantity detection device 21 may invert the output of the addition circuit 24 and output it.
  • FIG. 4C is a circuit diagram of the inverting circuit 66 connected to the output terminal 25 of the adder circuit 24.
  • the inverting circuit 66 includes an operational amplifier having a non-inverting input terminal to which the voltage Vcc / 2 is input.
  • FIG. 4D is a diagram conceptually showing the voltage output from the output terminal 67 of the inverting circuit 66. The voltage output from the output terminal 67 is obtained by inverting the voltage output from the output terminal of the adder circuit 24 with respect to the voltage Vcc / 2.
  • the physical quantity detection device 21 has an output characteristic such that the voltage V (x) output by the physical quantity x between the two physical quantities a and b acts downward. The nonlinearity of the physical quantity sensor 22 can be corrected well.
  • the physical quantity detection device 21 is configured so that a physical quantity and a voltage corresponding to the physical quantity can be obtained without providing a complicated arithmetic device such as an A / D converter, a semiconductor memory, or a CPU. Nonlinearity can be corrected well. Since a CPU that requires a certain amount of calculation time is not provided, the physical quantity detection device 21 has a very high response speed, and can easily follow even when the physical quantity changes at high speed. It can be measured accurately.
  • the correction voltage generation circuit 23 includes five resistors 50a to 50e that divide the voltages V (a) and V (c), and the voltages V (c) and V (b).
  • the physical quantity detection device generally includes n ⁇ 1 resistors that divide the voltages V (a) and V (c), and the voltage V ( c) n-1 resistors for dividing the voltage between V (b), 2n comparators for comparing the voltage divided by these resistors with the voltage V (x) output from the physical quantity sensor, , N logical sum circuits to which the outputs of these comparators are input, n switches respectively controlled by these logical sum circuits, and n resistors respectively connected in parallel to these switches.
  • the correction voltage generating circuit 23 shown in FIG. 2 generally has the following configuration, where k is an arbitrary integer satisfying 2 ⁇ k ⁇ n ⁇ 1.
  • the voltage generator 40 generates a voltage V (a), a voltage V (b), and a voltage V (c).
  • the plurality of resistors (50a to 50e) include a first connection point (P1) to which the voltage V (a) is applied,..., A kth connection point (P2 to P5), and a voltage V (c). Is connected in series from the first connection point (P1) to the nth connection point (P6) at the kth connection point (P2 to P5) so that the nth connection point (P6) to which N is applied is connected in this order. It is connected to the.
  • the first comparator (56a) compares the voltage V (a) with the voltage V (x).
  • the kth comparators (56b to 56e) compare the voltage at the kth connection point (P2 to P5) with the voltage V (x).
  • the nth comparator (56f) compares the voltage V (c) with the voltage V (x).
  • the plurality of resistors (53e to 53a) are connected to the (n + 1) th connection point (P7) to which the voltage V (b) is applied,..., The (n + k) connection point (P8 to P11), and the voltage V (c). Are connected in series from the (n + 1) th connection point (P7) to the (2n) th connection point (P12) at the (n + k) th connection points (P8 to P11). It is connected to the.
  • the n + 1th comparator (57f) compares the voltage V (b) with the voltage V (x).
  • the n + k comparators (57e to 57b) compare the voltage at the connection point of the n + k with the voltage V (x).
  • the nth comparator (57a) compares the voltage V (c) with the voltage V (x).
  • the first OR circuit (58a) takes the OR of the signal output from the first comparator (56a) and the signal output from the (n + 1) th comparator (57f).
  • the kth OR circuit (58b to 58e) takes the logical sum of the signal output from the kth comparator (56b to 56e) and the signal output from the n + k comparator (57e to 57b).
  • the nth OR circuit calculates the logical sum of the signal output from the nth comparator (56f) and the signal output from the 2nth comparator (57a).
  • the plurality of switches (59a to 59f) are controlled by OR circuits 58a to 58f, respectively.
  • the plurality of resistors 64a to 64f are connected in parallel to the plurality of switches 59a to 59f, respectively, and are connected in series to each other between the connection point 901a and the connection point 901b to which a predetermined voltage (Vcc) is applied.
  • the resistor 62 is connected in series with a plurality of resistors 64a to 64f between the connection points 901a and 901b.
  • the resistor 63 is connected between a connection point 901c and a connection point 901b to which a predetermined voltage (ground voltage) is applied.
  • the output circuit 65 outputs a correction voltage V123 based on the voltage V9 at the connection point 901b.
  • FIG. 5 is a circuit diagram of another correction voltage generation circuit 23P of the physical quantity detection device 21 in the first embodiment.
  • the same reference numerals are assigned to the same portions as those of the correction voltage generation circuit 23 shown in FIG.
  • the voltage Vcc is applied to the connection point 901a, and the connection point 901c is connected to the ground. That is, the predetermined voltage applied to the connection point 901a is the voltage Vcc, which is higher than the predetermined voltage applied to the connection point 901c.
  • the output circuit 65 inverts the voltage V9 at the connection point 901b with respect to the voltage Vcc / 2 to generate a correction voltage V123, and inverts the sign of the voltage V9.
  • the connection point 901a is connected to the ground, and the voltage Vcc is applied to the connection point 901c. That is, the predetermined voltage applied to the connection point 901a is a ground voltage and is lower than the predetermined voltage Vcc applied to the connection point 901c.
  • the correction voltage generation circuit 23P has an output circuit 65P instead of the output circuit 65 shown in FIG.
  • the connection point 901b is connected to the non-inverting input terminal of the operational amplifier, and the voltage V9 is applied.
  • the operational amplifier outputs the voltage V9 as it is as the correction voltage V123, and does not invert the sign of the voltage V9.
  • the correction voltage generation circuit 23P functions similarly to the correction voltage generation circuit 23 shown in FIG. 2 and has the same effect.
  • FIG. 6A is a circuit diagram of the physical quantity sensor 22 according to Embodiment 2 of the present invention.
  • the physical quantity sensor 22 is a current sensor.
  • the physical quantity sensor 22 includes a magnetoresistive element unit 70, a differential amplifier 72, a signal processing unit 73, and a bias magnet 70f that applies a bias magnetic field to the magnetoresistive element unit 70.
  • the magnetoresistive element unit 70 includes magnetoresistive elements 70a, 70b, 70c, and 70d made of magnetoresistive thin films connected in a bridge.
  • the connection point 170a to which the magnetoresistive elements 70a and 70d are connected is connected to a power source, and the connection point 170b to which the magnetoresistive elements 70b and 70c are connected is connected to the ground.
  • the bridge composed of the magnetoresistive elements 70a, 70b, 70c, and 70d is balanced, and the connection point 170c to which the magnetoresistive elements 70a and 70b are connected, and the magnetoresistive element
  • the characteristics of the magnetoresistive elements 70a to 70d are set so as to have the same potential as the connection point 170d to which the elements 70c and 70d are connected.
  • the resistance values of the magnetoresistive elements 70a, 70b, 70c, and 70d change due to the magnetic field generated around the conductor, and the magnetoresistance
  • the balance of the bridge composed of the elements 70a, 70b, 70c, and 70d is broken, and a potential difference is generated between the connection point 170c between the magnetoresistive elements 70a and 70b and the connection point 170d between the magnetoresistive elements 70c and 70d.
  • This potential difference is amplified by the differential amplifier 72, adjusted to 0 set and adjusted in sensitivity by the signal processing unit 73, and corresponds to the magnetic field acting on the magnetoresistive element unit 70 at the output terminal 74, that is, the measured current I flowing through the conductor 71. Output voltage.
  • FIG. 6B is a diagram showing the relationship between the physical quantity x, which is the value of the current I to be measured, and the voltage V (x) output from the physical quantity sensor 22.
  • the value of the maximum current I of the measured current I flowing through the conductor 71 in the direction D1 is the physical quantity a
  • the value is the physical quantity b.
  • the physical quantity x takes an arbitrary value between the physical quantities a and b.
  • the voltage V (x) has a so-called S-shaped characteristic in which a downward convex portion and an upward convex portion are continuous with respect to the physical quantity x.
  • the inspection device 26 uses a physical quantity c that is a current at which a difference voltage Z (x) that is a difference between the voltage Y (x) and the voltage V (x) becomes zero, and a difference voltage Z (x) between the physical quantities a and c.
  • FIG. 7 is a circuit diagram of the correction voltage generation circuit 23 according to the second embodiment.
  • the voltage generator 80 includes a DC power supply 81 and resistors 82a, 82b, 82c, 82d, 83a, 83b, 83c, and 83d.
  • the inspection device 26 adjusts the resistors 82a to 83d using a laser adjusting device or the like, and the voltage at the connection point to which the resistors 82a and 83d are connected, the voltage at the connection point to which the resistors 82a and 82b are connected, and the resistor 82c.
  • the voltage at the connection point to which the resistors 83c and 83d are connected, and the voltage at the connection point to which the resistors 83a and 83b are connected are the voltages V (a) and V (b ), V (c), V (d), and V (e).
  • the resistors 90a, 90b, 90c, 90d, and 90e are connected in series in this order.
  • the voltage V (a) is applied to the connection point P21 which is one end 91 of the resistor 90a on the opposite side of the connection point P22 to which the resistors 90a and 90b are connected.
  • the voltage V (d) is applied to the connection point P26 which is one end 92 of the resistor 90e on the opposite side of the connection point P25 to which the resistors 90d and 90e are connected.
  • the resistors 93a, 93b, 93c, 93d, and 93e are connected in series in this order.
  • the voltage V (d) is applied to the connection point P32 which is one end 94 of the resistor 93a on the opposite side of the connection point P31 to which the resistors 93a and 93b are connected.
  • the voltage V (c) is applied to the connection point P27 which is one end 95 of the resistor 93e on the opposite side of the connection point P28 to which the resistors 93d and 93e are connected.
  • the comparator 96a compares the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a with the voltage V (a) applied to one end 91 of the resistor 90a, and the voltage V (x) is the voltage V (a "1", that is, an active level signal is output when it is lower, and "0", that is, an inactive level signal, when it is higher.
  • the comparator 96b compares the voltage V (x) with the voltage V21 at the connection point P22 to which the resistors 90a and 90b are connected. When the voltage V (x) is lower than the voltage V21, the comparator 96b is “1”, that is, an active level signal. When the signal is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 96c compares the voltage V (x) with the voltage V22 at the connection point P23 to which the resistors 90b and 90c are connected. When the voltage V (x) is lower than the voltage V22, the comparator 96c is “1”, that is, the active level. When the signal is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 96d compares the voltage V (x) with the voltage V23 at the connection point P24 to which the resistors 90c and 90d are connected. When the voltage V (x) is lower than the voltage V23, the comparator 96d is “1”, that is, the active level.
  • a signal is output, and when it is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 96e compares the voltage V (x) with the voltage V24 at the connection point P25 to which the resistors 90d and 90e are connected. When the voltage V (x) is lower than the voltage V24, the comparator 96e outputs “1”, that is, an active level signal. When it is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 96f compares the voltage V (x) with the voltage V (d) applied to the one end 92 of the resistor 90e. When the voltage V (x) is lower than the voltage V (d), the comparator 96f is “1”, that is, the active level. When the signal is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 97a compares the voltage V (x) with the voltage V (d) applied to one end 94 of the resistor 93a. When the voltage V (x) is lower than the voltage V (d), the comparator 97a is “0”, that is, an inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output.
  • the comparator 97b compares the voltage V (x) with the voltage V25 at the connection point P31 to which the resistors 93a and 93b are connected, and when the voltage V (x) is lower than the voltage V25, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output.
  • the comparator 97c compares the voltage V (x) with the voltage V26 at the connection point P30 to which the resistors 93b and 93c are connected, and when the voltage V (x) is lower than the voltage V26, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output.
  • the comparator 97d compares the voltage V (x) with the voltage V27 at the connection point P29 to which the resistors 93c and 93d are connected. When the voltage V (x) is lower than the voltage V27, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output.
  • the comparator 97e compares the voltage V (x) with the voltage V28 at the connection point P28 to which the resistors 93d and 93e are connected, and when the voltage V (x) is lower than the voltage V28, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output.
  • the comparator 97f compares the voltage V (x) with the voltage V (c) applied to the one end 95 of the resistor 93e. When the voltage V (x) is lower than the voltage V (c), the comparator 97f is “0”, that is, an inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output.
  • the OR circuit 98a calculates the logical sum of the signals output from the comparators 96a and 97f, and outputs an inactive level signal when both of the signals output from the comparators 96a and 97f are at an inactive level. When at least one of them is at the active level, an active level signal is output.
  • the logical sum circuit 98b takes the logical sum of the signals output from the comparators 96b and 97e, and outputs an inactive level signal when both the signals output from the comparators 96b and 97e are at the inactive level. When at least one of them is at the active level, an active level signal is output.
  • the OR circuit 98c calculates the logical sum of the signals output from the comparators 96c and 97d, and outputs an inactive level signal when both the signals output from the comparators 96c and 97d are at the inactive level.
  • An active level signal is output when at least one of the signals is at an active level.
  • the OR circuit 98d calculates the logical sum of the signals output from the comparators 96d and 97c, and outputs an inactive level signal when both of the signals output from the comparators 96d and 97c are at the inactive level. When at least one of them is at the active level, an active level signal is output.
  • the OR circuit 98e calculates the logical sum of the signals output from the comparators 96e and 97b, and outputs an inactive level signal when both the signals output from the comparators 96e and 97b are in an inactive level. When at least one of them is at the active level, an active level signal is output.
  • the OR circuit 98f calculates the logical sum of the signals output from the comparators 96f and 97a, and outputs an inactive level signal when both the signals output from the comparators 96f and 97a are at the inactive level. When at least one of them is at the active level, an active level signal is output.
  • the switch 99a is operated and closed when the signal output from the OR circuit 98a is "1", that is, active level, and is not operated and opened when the signal is "0", that is, inactive level.
  • the switches 99b, 99c, 99d, 99e, and 99f are closed when the signals output from the OR circuits 98b, 98c, 98d, 98e, and 98f are “1”, that is, at the active level, and these signals are “0”. In other words, it is inoperative and opened at the inactive level.
  • the switches 99a, 99b, 99c, 99d, 99e, 99f are connected in series with each other.
  • One end 100 of the switch 99f is connected to the DC power supply 81, and one end 101 of the switch 99a is connected to one end of the resistor 102. The other end of the resistor 102 is connected to one end of the resistor 103.
  • Resistors 104a, 104b, 104c, 104d, 104e, and 104f are connected to both ends of the switches 99a, 99b, 99c, 99d, 99e, and 99f, and are connected in parallel with the switches 99a, 99b, 99c, 99d, 99e, and 99f, respectively. Yes.
  • the resistors 110a, 110b, 110c, 110d, and 110e are connected in series in this order.
  • a voltage V (c) is applied to a connection point P41 which is one end 111 of the resistor 110a on the opposite side of the connection point P42 to which the resistors 110a and 110b are connected.
  • a voltage V (e) is applied to a connection point P46 which is one end 112 of the resistor 110e on the opposite side of the connection point P45 to which the resistors 110d and 110e are connected.
  • the resistors 113a, 113b, 113c, 113d, and 113e are connected in series in this order.
  • the voltage V (e) is applied to P52 which is one end 114 of the resistor 113a on the side opposite to the connection point P51 to which the resistors 113a and 113b are connected.
  • the voltage V (b) is applied to the connection point P47 which is one end 115 of the resistance 113e on the side opposite to the connection point P48 to which the resistors 113d and 113e are connected.
  • the comparator 116a compares the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a with the voltage V (c) applied to the one end 111 of the resistor 110a, and the voltage V (x) is the voltage V (c "1", that is, an active level signal is output when it is lower, and "0", that is, an inactive level signal, when it is higher.
  • the comparator 116b compares the voltage V (x) with the voltage V41 at the connection point P42 to which the resistors 110a and 110b are connected. When the voltage V (x) is lower than the voltage V41, the comparator 116b is “1”, that is, an active level signal. When the signal is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 116c compares the voltage V (x) with the voltage V42 at the connection point P43 to which the resistors 110b and 110c are connected. When the voltage V (x) is lower than the voltage V42, the comparator 116c outputs a signal of “1”, that is, an active level. When it is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 116d compares the voltage V (x) with the voltage V43 at the connection point P44 to which the resistors 110c and 110d are connected. When the voltage V (x) is lower than the voltage V43, the comparator 116d outputs “1”, that is, an active level signal.
  • the comparator 116e compares the voltage V (x) with the voltage V44 at the connection point P45 to which the resistors 110d and 110e are connected. When the voltage V (x) is lower than the voltage V44, the comparator 116e outputs “1”, that is, an active level signal. When it is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 116f compares the voltage V (x) with the voltage V (e) applied to the one end 112 of the resistor 110e. When the voltage V (x) is lower than the voltage V (e), the comparator 116f is “1”, that is, the active level. A signal is output, and when it is high, a signal of “0”, that is, an inactive level is output.
  • the comparator 117a compares the voltage V (x) with the voltage V (e) applied to the one end 114 of the resistor 113a. When the voltage V (x) is lower than the voltage V (e), “0”, that is, an inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output.
  • the comparator 117b compares the voltage V (x) with the voltage V45 at the connection point P51 to which the resistors 113a and 113b are connected. When the voltage V (x) is lower than the voltage V45, a signal of “0”, that is, an inactive level. When the signal is high, a signal of “1”, that is, an active level is output.
  • the comparator 117c compares the voltage V (x) with the voltage V46 at the connection point P50 to which the resistors 113b and 113c are connected. When the voltage V (x) is lower than the voltage V46, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output.
  • the comparator 117d compares the voltage V (x) with the voltage V47 at the connection point P49 to which the resistors 113c and 113d are connected, and when the voltage V (x) is lower than the voltage V47, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output.
  • the comparator 117e compares the voltage V (x) with the voltage V48 at the connection point P48 to which the resistors 113d and 113e are connected. When the voltage V (x) is lower than the voltage V48, the comparator 117e is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output.
  • the comparator 117f compares the voltage V (x) with the voltage V (b) applied to the one end 115 of the resistor 113e. When the voltage V (x) is lower than the voltage V (b), the comparator 117f is “0”, that is, the inactive level. The signal of “1”, that is, an active level signal is output when the signal is high.
  • the OR circuit 118a calculates the logical sum of the signals output from the comparators 116a and 117f, and outputs an inactive level signal when both the signals output from the comparators 116a and 117f are in an inactive level. An active level signal is output when at least one of them is at an active level.
  • the OR circuit 118b calculates the logical sum of the signals output from the comparators 116b and 117e, and outputs an inactive level signal when both of the signals output from the comparators 116b and 117e are at an inactive level. An active level signal is output when at least one of them is at an active level.
  • the OR circuit 118c calculates the logical sum of the signals output from the comparators 116c and 117d, and outputs an inactive level signal when both the signals output from the comparators 116c and 117d are in an inactive level.
  • An active level signal is output when at least one of them is at an active level.
  • the logical sum circuit 118d calculates the logical sum of the signals output from the comparators 116d and 117c, and outputs an inactive level signal when both the signals output from the comparators 116d and 117c are in an inactive level.
  • An active level signal is output when at least one of them is at an active level.
  • the logical sum circuit 118e calculates the logical sum of the signals output from the comparators 116e and 117b, and outputs an inactive level signal when both the signals output from the comparators 116e and 117b are in an inactive level. An active level signal is output when at least one of them is at an active level.
  • the logical sum circuit 118f calculates the logical sum of the signals output from the comparators 116f and 117a, and outputs an inactive level signal when the signals output from the comparators 116f and 117a are both in an inactive level. An active level signal is output when at least one of them is at an active level.
  • the switch 119a is closed when the signal output from the OR circuit 118a is "1", that is, active level, and is not operated when the signal output from the OR circuit 118a is "0", that is, when it is inactive level. Become. Similarly, the switches 119b, 119c, 119d, 119e, and 119f are closed when the signals output from the OR circuits 118b, 118c, 118d, 118e, and 118f are “1”, that is, at the active level. When it is “0”, that is, inactive level, it is inoperative and opened. The switches 119a, 119b, 119c, 119d, 119e, and 119f are connected in series with each other.
  • One end 120 of the switch 119f is connected to the ground, and one end 121 of the switch 119a is connected to the other end of the resistor 103.
  • the resistors 122a, 122b, 122c, 122d, 122e, and 122f are respectively connected to both ends of the switches 119a, 119b, 119c, 119d, 119e, and 119f. It is connected to the.
  • the switches 99b, 99c, 99d, 99e, and 99f are sequentially provided in this order. It opens when it does not operate, and the voltage V29 decreases to reach the minimum voltage V29min shown in Equation 11.
  • V29min ⁇ R / (2.R + 6.r1) ⁇ .
  • Vcc (Formula 11)
  • the inspection device 26 shown in FIG. 1A uses a laser adjusting device or the like so that the difference obtained by subtracting the minimum voltage V29min from the voltage Vcc / 2 shown in Equation 12 is equal to the difference voltage Z (d) shown in FIG. 6B.
  • a resistance value r1 of ⁇ 104f is set. Vcc / 2 ⁇ ⁇ R / (2 ⁇ R + 6 ⁇ r1) ⁇ ⁇ Vcc (Formula 12)
  • the switches 99f, 99e, 99d, 99c, 99b are sequentially operated and closed in this order, and the voltage V ( When x) becomes the voltage V (c), the voltage V29 is again ⁇ R / (2.R) ⁇ .
  • Vcc Vcc / 2 (Formula 13) It becomes.
  • 1A uses a laser adjustment device or the like so that the difference obtained by subtracting the maximum voltage V29max shown in Equation 16 from the voltage Vcc / 2 is equal to the difference voltage Z (e) shown in FIG. 6B.
  • a resistance value r2 of 122f is set.
  • FIG. 8A is a conceptual diagram showing a change in the voltage V29 at the connection point 902b to which the resistors 102 and 103 are connected with respect to the voltage V (x).
  • FIG. 8B is a conceptual diagram showing the correction voltage V123 output from the output terminal 23b of the correction voltage generation circuit 23.
  • the output circuit 65 shown in FIG. 7 includes an operational amplifier having a non-inverting input terminal to which the voltage Vcc / 2 is input.
  • the voltage V29 is input to the inverting input terminal of the operational amplifier, is inverted with respect to the voltage Vcc / 2, and is output from the output terminal 23b as the correction voltage V123. That is, the sign of the voltage V29 is inverted by the output circuit 65.
  • the correction voltage generation circuit 23 determines the difference between the voltage V (x) generated when an arbitrary physical quantity x between the physical quantities a and b acts on the physical quantity sensor 22 and the voltage Y (x) shown in Expression 9A.
  • a correction voltage V123 approximate to a certain difference voltage Z (x) can be generated.
  • the physical quantity sensor 22 that generates a voltage corresponding to a physical quantity such as a current is used for any physical quantity x between the two physical quantities a and b. Even if the output voltage has a first interval that protrudes upward and a second interval that protrudes downward, an arbitrary physical quantity x and an output voltage corresponding to this can be obtained without providing a complicated arithmetic unit. Can be corrected well. Since the physical quantity detection device 21 does not have a complicated arithmetic device, it has a very high response speed and can easily follow even when the physical quantity changes at high speed.
  • the correction voltage generation circuit 23 divides the voltage V (a) and V (d) between five resistors and the voltage V (d) and V (c) 5. Are divided by these resistors, five resistors that divide the voltages V (c) and V (e), five resistors that divide the voltages V (e) and V (b), and these resistors. 24 comparators that compare the pressed voltage with the voltage V (x) output from the physical quantity sensor 22, 12 OR circuits to which the outputs of these comparators are input, and these OR circuits It includes 12 switches to be controlled and 12 resistors connected in parallel to each of these switches.
  • the physical quantity detection device according to the second embodiment is not limited to this.
  • n is a predetermined integer satisfying n ⁇ 3, generally n ⁇ 1 pieces that divide the voltage between V (a) and V (d). , N ⁇ 1 resistors dividing voltage V (d), V (c), n ⁇ 1 resistors dividing voltage V (c), V (e), and voltage V (E) n-1 resistors for dividing the voltage between V (b) and 4n comparators for comparing the voltage divided by these resistors and the voltage V (x) output from the physical quantity sensor, respectively. 2n logical sum circuits to which signals output from these comparators are respectively input, 2n switches controlled by these logical sum circuits, and 2n number of switches connected in parallel to these switches, respectively. Provide resistance.
  • the correction voltage generation circuit 23 shown in FIG. 7 generally has the following configuration, where k is an arbitrary integer satisfying 2 ⁇ k ⁇ n ⁇ 1.
  • the voltage generator 80 generates a voltage V (a), a voltage V (b), a voltage V (c), a voltage V (d), and a voltage V (e).
  • the plurality of resistors (90a to 90e) are applied with the first connection point (P21) to which the voltage V (a) is applied, the kth connection point (P22 to P25), and the voltage V (d).
  • the nth connection point (P26) is connected in series at the kth connection point (P2 to P5) from the first connection point (P1) to the nth connection point (P6) so as to be connected in this order. Yes.
  • the first comparator (96a) compares the voltage V (a) with the voltage V (x).
  • the kth comparators (96b to 96e) compare the voltage at the kth connection point (P22 to P25) with the voltage V (x).
  • the nth comparator (96f) compares the voltage V (d) with the voltage V (x).
  • the plurality of resistors (93e to 93a) are connected to the (n + 1) th connection point (P27) to which the voltage V (c) is applied,..., The (n + k) connection point (P28 to P31), and the voltage V (e).
  • N + k connection points (P28 to P31) from the (n + 1) th connection point (P27) to the 2nth connection point (P32) so that the 2nth connection points (P32) to which N is applied are connected in this order. Connected in series.
  • the n + 1th comparator (97f) compares the voltage V (c) with the voltage V (x).
  • the kth comparators (97e to 97b) compare the voltage at the n + k connection points (P28 to P31) with the voltage V (x).
  • the 2nth comparator (97a) compares the voltage V (d) with the voltage V (x).
  • the first OR circuit (98a) takes the OR of the signal output from the first comparator (96a) and the signal output from the (n + 1) th comparator (97f).
  • the kth OR circuit (98b to 98e) takes the OR of the signal output from the kth comparator (96b to 96e) and the signal output from the n + k comparator (97e to 97b).
  • the nth OR circuit (98f) takes a logical sum of the signal output from the nth comparator (96f) and the signal output from the 2nth comparator (97a).
  • the plurality of resistors (110a to 110e) include a second n + 1 connection point (P41) to which the voltage V (c) is applied,..., A second n + k connection point (P42 to P45), and a voltage V (e).
  • P41 first connection point
  • P42 to P45 second n + k connection point
  • V (e) voltage V (e)
  • the 2n + 1th comparator (116a) compares the voltage V (c) with the voltage V (x).
  • the second n + k comparators (116b to 116e) compare the voltage at the second n + k connection points (P42 to P45) with the voltage V (x).
  • the third n comparator (116f) compares the voltage V (e) with the voltage V (x).
  • the plurality of resistors (113e to 113a) are connected to the third n + 1 connection point (P47) to which the voltage V (b) is applied,..., The third n + k connection point (P48 to P51), and the voltage V (e). Are connected in series at the 3n + k connection points (P48 to P51) from the 3n + 1 connection point (P47) to the 4n connection point (P52) so that the 4n connection points (P52) to which N is applied are connected in this order. It is connected to the.
  • the 3n + 1th comparator (117f) compares the voltage V (b) with the voltage V (x).
  • the third n + k comparator compares the voltage at the third n + k connection point (P48 to P51) with the voltage V (x).
  • the fourth n comparator (117a) compares the voltage V (e) with the voltage V (x).
  • the n + 1th logical sum circuit (118a) takes a logical sum of the signal output from the 2n + 1th comparator (116a) and the signal output from the 3n + 1th comparator (117f).
  • the n + k logical sum circuit takes a logical sum of signals output from the second n + k comparators (116b to 116e) and signals output from the third n + k comparators (117e to 117b).
  • the 2nth OR circuit calculates the logical sum of the signal output from the 3nth comparator (116f) and the signal output from the 4nth comparator (117a).
  • the plurality of switches (119a to 119f) are controlled by OR circuits (118a to 118f), respectively.
  • the plurality of resistors (112a to 112f) are connected in parallel to the plurality of switches (119a to 119f), respectively, and between a connection point (P902a) and a connection point P902b) to which a predetermined voltage (Vcc) is applied.
  • the resistor (102) is connected in series to a plurality of resistors (104a to 104f) between the connection points 902a and 902b.
  • the plurality of switches (119a to 119f) are controlled by OR circuits (118a to 118f), respectively.
  • the plurality of resistors (122a to 122f) are connected in parallel to the plurality of switches (119a to 119f), respectively, and a connection point (902c) and a connection point 902b to which a predetermined voltage (ground potential) is applied. Are connected in series with each other.
  • the resistor 103 is connected in series with a plurality of resistors 122a to 122f) between the connection points 902b and 902c.
  • the output circuit 65 outputs the correction voltage V123 based on the voltage at the connection point 902b.
  • FIG. 9 is another circuit diagram of the correction voltage generation circuit 23 according to the second embodiment.
  • the same reference numerals are assigned to the same portions as those in FIG.
  • the comparator, the OR circuit, and the switch are composed of transistors.
  • the voltage V (a) is 0 V
  • the voltage V (b) is the voltage Vcc of the DC power supply 131.
  • the power supply unit 130 includes a DC power supply 131, resistors 132a, 132b, 133a, 133b, 133c, and 133d, and buffers 134a, 134b, and 134c.
  • the inspection device 26 adjusts the resistance values of the resistors 132a to 133d using a laser adjustment device or the like, and the voltage at the connection point to which the resistors 132a and 132b are connected and the voltage at the connection point to which the resistors 133a and 133b are connected.
  • the voltages at the connection points where the resistors 133c and 133d are connected are set to voltages V (c), V (d), and V (e), respectively.
  • the voltage level conversion unit 135 includes a transistor having a base and a collector connected to each other and a bias resistor, and is based on the voltage VD between the base and emitter of the transistor from the voltages V (c), V (d), and V (e). Then, voltage + VD, voltage V (c) -VD, voltage V (d) + VD, voltage V (c) + VD, voltage V (e) -VD, and voltage Vcc-VD are output.
  • the resistors 136a, 136b, 136c, 136d, and 136e are connected in series in this order.
  • the voltage + VD is applied to one end 137 of the resistor 136a opposite to the connection point to which the resistors 136a and 136b are connected.
  • the voltage V (d) + VD is applied to one end 138 of the resistor 136e opposite to the connection point to which the resistors 136d and 136e are connected.
  • the resistors 139a, 139b, 139c, 139d, and 139e are connected in series in this order.
  • a voltage V (d) + VD is applied to one end 140 of the resistor 139a opposite to the connection point to which the resistors 139a and 139b are connected.
  • a voltage V (c) + VD is applied to one end 141 of the resistor 139e opposite to the connection point to which the resistors 139d and 139e are connected.
  • the voltage level conversion unit 142 includes a transistor having a base and a collector connected to each other and a bias resistor, and the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a is used to determine the transistor level.
  • the voltage V (x) + 2 ⁇ VD, the voltage V (x), and the voltage V (x) ⁇ 2 ⁇ VD are output by the base-emitter voltage VD.
  • Switch 143a is inoperative and opens when voltage V (x) is higher than zero.
  • the switch 143b is activated and closed when the voltage V (x) is lower than the voltage V61 at the connection point to which the resistors 136a and 136b are connected, and is deactivated and opened when the voltage V (x) is higher.
  • the switch 143c is closed when the voltage V (x) is lower than the voltage V62 at the connection point to which the resistors 136b and 136c are connected, and is opened when the voltage V (x) is high.
  • the switch 143d is activated and closed when the voltage V (x) is lower than the voltage V63 at the connection point to which the resistors 136c and 136d are connected, and is deactivated and opened when the voltage V (x) is higher.
  • the switch 143e closes when the voltage V (x) is lower than the voltage V64 at the connection point to which the resistors 136d and 136e are connected, and opens when the voltage V (x) is high.
  • the switch 143f is activated and closed when the voltage V (x) is also lower than the voltage V (d), and is deactivated and opened when the voltage V (x) is higher.
  • the switch 144a is activated and closed when the voltage V (x) is higher than the voltage V (d), and is deactivated and opened when the voltage V (x) is lower.
  • the switch 144b is closed when the voltage V (x) is higher than the voltage V65 at the connection point to which the resistors 139a and 139b are connected, and is opened when the voltage V (x) is low.
  • the switch 144c is activated and closed when the voltage V (x) is higher than the voltage V66 at the connection point to which the resistors 139b and 139c are connected, and is deactivated and opened when the voltage is low.
  • the switch 144d is activated and closed when the voltage V (x) is higher than the voltage V67 at the connection point to which the resistors 139c and 139d are connected, and is deactivated and opened when the voltage is low.
  • the switch 144e is closed when the voltage V (x) is higher than the voltage V68 at the connection point to which the resistors 139d and 139e are connected, and is opened when the voltage V (x) is low.
  • the switch 144f is activated and closed when the voltage V (x) is higher than the voltage V (c), and is deactivated and opened when the voltage V (x) is lower.
  • the switch 145a is closed when the switch 144f is operated and closed, and is opened when the switch 144f is not operated and opened.
  • the switch 145b is activated and closed when the switch 144e is activated and closed, and is deactivated and opened when the switch 144e is deactivated and opened.
  • the switch 145c is activated and closed when the switch 144d is operated and closed, and is deactivated and opened when the switch 144d is not operated and opened.
  • the switch 145d is activated and closed when the switch 144c is operated and closed, and is deactivated and opened when the switch 144c is not operated and opened.
  • the switch 145e is activated and closed when the switch 144b is activated and closed, and is deactivated and opened when the switch 144b is deactivated and opened.
  • the switch 145f is operated and closed when the switch 144a is operated and closed, and is inactivated and opened when the switch 144a is not operated and opened.
  • the switch 146a is inactivated and opened only when both the switches 143a and 145a are inactive and open, and is operated and closed when at least one of the switches 143a and 145a is in operation and closed. That is, the switch 146a is controlled by the logical sum of the switches 143a and 145a.
  • the switch 146b is inactivated and opened only when both the switches 143b and 145b are inactive and opened, and is activated and closed when at least one of the switches 143b and 145b is in operation and closed. That is, the switch 146b is controlled by the logical sum of the switches 143b and 145b.
  • the switch 146c is inactivated and opened only when both the switches 143c and 145c are inactive and open, and is activated and closed when at least one of the switches 143c and 145c is in operation and closed. That is, the switch 146c is controlled by the logical sum of the switches 143c and 145c.
  • the switch 146d is inactivated and opened only when both the switches 143d and 145d are inactive and open, and is activated and closed when at least one of the switches 143d and 145d is in operation and closed. That is, the switch 146d is controlled by the logical sum of the switches 143d and 145d.
  • the switch 146e is inactivated and opened only when both the switches 143e and 145e are inactive and open, and is operated and closed when at least one of the switches 143e and 145e is in operation and closed. That is, the switch 146e is controlled by the logical sum of the switches 143e and 145e.
  • the switch 146f is inactivated and opened only when both the switches 143f and 145f are inactive and open, and is operated and closed when at least one of the switches 143f and 145f is in operation and closed. That is, the switch 146f is controlled by the logical sum of the switches 143f and 145f.
  • the switches 146a, 146b, 146c, 146d, 146e, and 146f are connected in series in this order.
  • a connection point 903a which is one end 147 of the switch 146f on the opposite side of the connection point to which the connection points 146e and 146f are connected, is connected to the DC power supply 131 and applied with the voltage Vcc.
  • One end 148 of the switch 146a opposite to the connection point to which the switches 146a and 146b are connected is connected to one end of the resistor 149.
  • the resistor 150a is connected between the collector of the transistor constituting the switch 146a and the collector of the transistor constituting the switch 146b.
  • the resistor 150b is connected between the collector of the transistor constituting the switch 146b and the collector of the transistor constituting the switch 146c.
  • the resistor 150c is connected between the collector of the transistor constituting the switch 146c and the collector of the transistor constituting the switch 146d.
  • the resistor 150d is connected between the collector of the transistor constituting the switch 146d and the collector of the transistor constituting the switch 146e.
  • the resistor 150e is connected between the collector of the transistor constituting the switch 146e and the collector of the transistor constituting the switch 146f.
  • the resistor 150f is connected between the collector of the transistor constituting the switch 146f and one end 147 of the switch 146f.
  • the resistors 151a, 151b, 151c, 151d, and 151e are connected in series in this order.
  • a voltage V (c) -VD is applied to one end 152 of the resistor 151a on the side opposite to the connection point to which the resistors 151a and 151b are connected.
  • a voltage V (e) -VD is applied to one end 153 of the resistor 151e on the side opposite to the connection point to which the resistors 151d and 151e are connected.
  • the resistors 154a, 154b, 154c, 154d, and 154e are connected in series in this order.
  • a voltage V (e) -VD is applied to one end 155 of the resistor 154a opposite to the connection point to which the resistors 154a and 154b are connected.
  • a voltage Vcc-VD is applied to one end 156 of the resistor 154e opposite to the connection point to which the resistors 154d and 154e are connected.
  • the switch 157a closes when the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a is lower than the voltage V (c), and closes when the voltage V (x) is high.
  • the switch 157b is activated and closed when the voltage V (x) is lower than the voltage V69 at the connection point to which the resistors 151a and 151b are connected, and is deactivated and opened when the voltage V (x) is higher.
  • the switch 157c closes when the voltage V (x) is lower than the voltage V70 at the connection point to which the resistors 151b and 151c are connected, and opens when the voltage V (x) is high.
  • the switch 157d closes when the voltage V (x) is lower than the voltage V71 at the connection point to which the resistors 151c and 151d are connected, and closes when the voltage V (x) is high.
  • the switch 157e is activated and closed when the voltage V (x) is lower than the voltage V72 at the connection point to which the resistors 151d and 151e are connected, and is deactivated and opened when the voltage V (x) is higher.
  • the switch 157f is activated and closed when the voltage V (x) is lower than the voltage V (e), and is deactivated and opened when the voltage V (x) is higher.
  • the switch 158a is activated and closed when the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a is higher than the voltage V (e), and is deactivated and opened when the voltage V (e) is low.
  • the switch 158b is closed when the voltage V (x) is higher than the voltage V73 at the connection point to which the resistors 154a and 154b are connected, and is opened when it is low.
  • the switch 158c is closed when the voltage V (x) is higher than the voltage V74 at the connection point to which the resistors 154b and 154c are connected, and is opened when it is low.
  • the switch 158d is closed when the voltage V (x) is higher than the voltage V75 at the connection point to which the resistors 154c and 154d are connected, and is opened when it is low.
  • the switch 158e is closed when the voltage V (x) is higher than the voltage V76 at the connection point to which the resistors 154d and 154e are connected, and is opened when it is low.
  • the switch 158f is inoperative and opens when the voltage V (x) is lower than the voltage Vcc.
  • the switch 159a operates and closes when the switch 158f is operated and closed, and opens when the switch 158f is not operated and opened.
  • the switch 159b is activated and closed when the switch 158e is operated and closed, and is deactivated and opened when the switch 158e is not operated and opened.
  • the switch 159c is operated and closed when the switch 158d is operated and closed, and is inactivated and opened when the switch 158d is not operated and opened.
  • the switch 159d is operated and closed when the switch 158c is operated and closed, and is inactivated and opened when the switch 158c is not operated and opened.
  • the switch 159e is activated and closed when the switch 158b is operated and closed, and is inactivated and opened when the switch 158b is not operated and opened.
  • the switch 159f is operated and closed when the switch 158a is operated and closed, and is inactivated and opened when the switch 158a is not operated and opened.
  • the switch 160a is inactivated and opened only when both the switches 157a and 159a are inactive and open, and is operated and closed when at least one of the switches 157a and 159a is in operation and closed. That is, the switch 160a is controlled by the logical sum of the switches 157a and 159a.
  • the switch 160b is deactivated and opened only when both the switches 157b and 159b are deactivated and opened, and is activated and closed when at least one of the switches 157a and 159a is activated and closed. That is, the switch 160b is controlled by the logical sum of the switches 157b and 159b.
  • the switch 160c is inactivated and opened only when both the switches 157c and 159c are inactive and open, and is activated and closed when at least one of the switches 157c and 159c is in operation and closed. That is, the switch 160c is controlled by the logical sum of the switches 157c and 159c.
  • the switch 160d is inactivated and opened only when both the switches 157d and 159d are inactive and open, and is operated and closed when at least one of the switches 157d and 159d is in operation and closed. That is, the switch 160d is controlled by the logical sum of the switches 157d and 159d.
  • the switch 160e is inactivated and opened only when both the switches 157e and 159e are inactive and open, and is operated and closed when at least one of the switches 157e and 159e is in operation and closed. That is, the switch 160e is controlled by the logical sum of the switches 157e and 159e.
  • the switch 160f is inactivated and opened only when both the switches 157f and 159f are inactive and open, and is operated and closed when at least one of the switches 157f and 159f is in operation and closed. That is, the switch 160f is controlled by the logical sum of the switches 157f and 159f.
  • the switches 160a, 160b, 160c, 160d, 160e, and 160f are connected in series in this order.
  • a connection point 903c which is one end 161 of the switch 160f on the opposite side of the connection point to which the switches 160e and 160f are connected, is connected to the ground.
  • One end 162 of the switch 160a opposite to the connection point to which the switches 160a and 160b are connected is connected to one end of the resistor 163.
  • the resistor 164a is connected between one end 162 of the switch 160a and the collector of the transistor constituting the switch 160a.
  • the resistor 164b is connected between the collector of the transistor constituting the switch 160a and the collector of the transistor constituting the switch 160b.
  • the resistor 164c is connected between the collector of the transistor constituting the switch 160b and the collector of the transistor constituting the switch 160c.
  • the resistor 164d is connected between the collector of the transistor constituting the switch 160c and the collector of the transistor constituting the switch 160d.
  • the resistor 164e is connected between the collector of the transistor constituting the switch 160d and the collector of the transistor constituting the switch 160e.
  • the resistor 164f is connected between the collector of the transistor constituting the switch 160e and the collector of the transistor constituting the switch 160f.
  • the resistors 149 and 163 are connected at a connection point 903b.
  • the voltages V (x) and the voltages V (x) + 2 ⁇ VD and V (x) ⁇ 2 ⁇ VD output from the voltage level conversion unit 142 are switches 143a to 143f, 144a to 144f, 157a to 157f, and 158a to 158f.
  • the switches 143a to 143f, 144a to 144f, 157c to 157f are operated and closed, and the switches 157a, 157b, 158a to 158f is deactivated and opened. Accordingly, the switches 146a to 146f, 159c to 159f are operated to be closed, and the switches 159a and 159b are not operated to be opened.
  • the voltage V29 at the connection point 903b to which the resistors 149 and 163 are connected is ⁇ (R + 2 ⁇ r2) / (2 ⁇ R + 2 ⁇ r2) ⁇ ⁇ Vcc (Equation 19) It becomes.
  • a correction voltage V123 obtained by inverting the voltage V29 with respect to the voltage Vcc / 2 is generated.
  • FIG. 10 shows a simulation result of the correction voltage V123 showing the effect of correcting the nonlinearity of the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a using the correction voltage generation circuit 23 shown in FIG. .
  • the voltage V (a) is 0V
  • the voltage V (b) that is, the voltage Vcc is 5V
  • the voltage V (c) is 2.5V
  • the voltage V (d) is 1.25V
  • the voltage V (e) is 3.75V
  • the differential voltage Z (d) is 0.25V
  • the differential voltage Z (e) is 0.25V, that is, the voltage V (x) exhibits an S-shaped characteristic.
  • the resistance value R of the resistors 149 and 163, the resistance value r1 of the resistors 150a to 150f, and the resistance value r2 of the resistors 164a to 164f are a voltage V (d) of 1.25V and a differential voltage Z (e) of 0.25V. Therefore, they are set to 50 k ⁇ , 1 k ⁇ , and 1 k ⁇ , respectively.
  • the characteristic PA indicates the voltage V (x) from the physical quantity sensor 22, and the characteristic PB indicates a straight line connecting the coordinates (a, V (a)) and (b, V (b)) shown in Expression 9A.
  • the characteristic PC is a simulation result of the correction voltage V123 output from the output terminal of the correction voltage generation circuit 23 shown in FIG. As shown in FIG. 10, the characteristic PA having the nonlinearity of the voltage V (x) is corrected well and approximated to the characteristic PB.
  • FIG. 11 is a circuit diagram of another correction voltage generation circuit 23Q of the physical quantity detection device 21 in the second embodiment. 11, the same parts as those of the correction voltage generation circuit 23 shown in FIG.
  • the voltage Vcc is applied to the connection point 902a, and the connection point 902c is connected to the ground. That is, the predetermined voltage applied to the connection point 902a is the voltage Vcc, which is higher than the predetermined voltage applied to the connection point 902c.
  • the output circuit 65 inverts the voltage V29 at the connection point 902b with respect to the voltage Vcc / 2 to generate a correction voltage V123, and inverts the sign of the voltage V29.
  • connection point 902a is connected to the ground, and the voltage Vcc is applied to the connection point 902c. That is, the predetermined voltage applied to the connection point 902a is a ground voltage and is lower than the predetermined voltage Vcc applied to the connection point 902c.
  • the correction voltage generation circuit 23Q has an output circuit 65P instead of the output circuit 65 shown in FIG. In the output circuit 65P, the connection point 902b is connected to the non-inverting input terminal of the operational amplifier, and the voltage V29 is applied. The operational amplifier outputs the voltage V29 as it is as the correction voltage V123, and does not invert the sign of the voltage V29.
  • the correction voltage generation circuit 23Q functions similarly to the correction voltage generation circuit 23 shown in FIG. 7 and has the same effect.
  • the physical quantity detection device can satisfactorily correct non-linearity between a physical quantity and a voltage corresponding to the physical quantity without providing a complex arithmetic device such as an A / D converter, a semiconductor memory, or a CPU, and has a response speed. Is very fast. Therefore, this physical quantity detection device has an effect that it can easily follow even when the physical quantity changes at high speed, and is useful, for example, as a current detection device for detecting current in vehicles, industrial equipment, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

This physical quantity detecting apparatus is provided with a physical quantity sensor, a correction voltage generating circuit, and an adding circuit. The correction voltage generating circuit is provided with a voltage generator, a plurality of comparators, a plurality of OR circuits, a plurality of switches, and an output circuit. The physical quantity detecting apparatus is capable of excellently correcting nonlinearity between a physical quantity that operates to the physical quantity sensor, and a voltage that corresponds to the physical quantity.

Description

物理量検出装置Physical quantity detection device
 本発明は、種々の物理量に応じた電気信号を出力する物理量検出装置に関する。 The present invention relates to a physical quantity detection device that outputs electrical signals corresponding to various physical quantities.
 図12Aは従来の物理量検出装置である電流検出装置500のブロック図である。光電流センサ2は配電線等の導体1に流れる被測定電流Iを検出する。光電流センサ2はコア3と、コア3のギャップ内に配置された光電流素子4と、発光素子5と、受光素子6からなる。導体1に被測定電流Iが流れると導体1の周囲に磁界が発生し、その磁界はコア3により集磁され、光電流素子4に印加される。発光素子5から光電流素子4に入力された光はこの磁界によって強度変調を受ける。強度変調された光は受光素子6にて電気信号に変換、増幅され、被測定電流Iに対応した出力信号が出力端7に出力される。 FIG. 12A is a block diagram of a current detection device 500 which is a conventional physical quantity detection device. The photocurrent sensor 2 detects a measured current I flowing in a conductor 1 such as a distribution line. The photocurrent sensor 2 includes a core 3, a photocurrent element 4 disposed in a gap between the cores 3, a light emitting element 5, and a light receiving element 6. When the current I to be measured flows through the conductor 1, a magnetic field is generated around the conductor 1, and the magnetic field is collected by the core 3 and applied to the photocurrent element 4. Light input from the light emitting element 5 to the photocurrent element 4 is subjected to intensity modulation by this magnetic field. The light whose intensity is modulated is converted into an electric signal by the light receiving element 6 and amplified, and an output signal corresponding to the current I to be measured is output to the output terminal 7.
 図12Bは被測定電流Iと光電流センサ2の出力端7からの出力信号との関係である特性7aを示す。光電流センサ2を構成する各素子の入出力特性は非線形性を有し、さらに、その非線形性自体に個体差がある。したがって、図12Bに示すように、出力信号は被測定電流Iには厳密な比例せず、電流Iの測定結果に誤差が生ずる。電流検出装置500では、出力端7の後段に、A/D変換器8と、EEPROM等の書込み可能な読み出し専用メモリ9が接続されたCPU10とが接続されている。CPU10は光電流センサ2の非線形性を補償する。すなわち、光電流センサ2の出力端7における出力信号の特性7aは予め複数のブロックに分割されている。特性7aのそれらのブロックをそれぞれ近似する複数の1次の補正式が設定されている。これらの補正式はメモリ9に書込み記憶されており、CPU10にはこれらの補正式を用いた補正を実行するためのプログラムがインストールされている。 FIG. 12B shows a characteristic 7 a that is a relationship between the current I to be measured and the output signal from the output terminal 7 of the photocurrent sensor 2. The input / output characteristics of each element constituting the photocurrent sensor 2 have nonlinearity, and the nonlinearity itself has individual differences. Therefore, as shown in FIG. 12B, the output signal is not strictly proportional to the current I to be measured, and an error occurs in the measurement result of the current I. In the current detection device 500, an A / D converter 8 and a CPU 10 to which a writable read-only memory 9 such as an EEPROM is connected are connected to the subsequent stage of the output terminal 7. The CPU 10 compensates for nonlinearity of the photocurrent sensor 2. That is, the output signal characteristic 7a at the output end 7 of the photocurrent sensor 2 is divided into a plurality of blocks in advance. A plurality of first-order correction equations approximating those blocks of the characteristic 7a are set. These correction formulas are written and stored in the memory 9, and the CPU 10 is installed with a program for executing correction using these correction formulas.
 光電流センサ2の出力端7における出力信号はA/D変換器8でデジタル信号に変換され、CPU10に入力される。CPU10は特性7aの複数のブロックのうちのこの出力信号が入る1つのブロックを見分け、そのブロックに対応する補正式をメモリ9から読出し、補正値を算出する。これにより、CPU10の出力端11における出力信号は、図12Bに示すように、被測定電流Iに対して正確に比例する特性7bを有する。 The output signal at the output terminal 7 of the photocurrent sensor 2 is converted into a digital signal by the A / D converter 8 and input to the CPU 10. The CPU 10 discriminates one of the plurality of blocks having the characteristic 7a into which the output signal is input, reads a correction formula corresponding to the block from the memory 9, and calculates a correction value. As a result, the output signal at the output terminal 11 of the CPU 10 has a characteristic 7b that is exactly proportional to the measured current I as shown in FIG. 12B.
 従来の電流検出装置500においては、光電流センサ2の特性7aの複数のブロック毎に設定した補正式がメモリ9に記憶されており、光電流センサ2の出力信号がA/D変換器8でデジタル信号に変換された後、CPU10による演算により補正式を用いて補正されている。したがって、電流検出装置500が複雑、高価で大がかりになってしまう。また、CPU10による演算に時間がかかるので、被測定電流Iの変化が速い場合には電流検出装置500は正確に電流Iを測定できなくなる場合がある。 In the conventional current detection device 500, the correction formula set for each of the plurality of blocks of the characteristic 7a of the photocurrent sensor 2 is stored in the memory 9, and the output signal of the photocurrent sensor 2 is output from the A / D converter 8. After being converted into a digital signal, it is corrected using a correction formula by calculation by the CPU 10. Therefore, the current detection device 500 is complicated, expensive, and large. In addition, since the calculation by the CPU 10 takes time, the current detection device 500 may not be able to measure the current I accurately when the change in the measured current I is fast.
 特許文献1は電流検出装置500に類似の従来の物理量検出装置を記載している。 Patent Document 1 describes a conventional physical quantity detection device similar to the current detection device 500.
特開昭63-79016号公報JP-A-63-79016
 物理量検出装置は、物理量センサと補正電圧発生回路と加算回路とを備える。物理量センサは、物理量aと物理量bとの間の任意の物理量xに一対一に対応する電圧V(x)を出力する。補正電圧発生回路は補正電圧を発生する。加算回路は、補正電圧を電圧V(x)に加える。物理量センサは、物理量aに対応して電圧V(a)を出力し、物理量bに対応して電圧V(a)よりも高い電圧V(b)を出力する。また、物理量センサは、以下の式、
Y(x)=V(a)+{V(b)-V(a)}・(x-a)/(b-a)
で示される電圧Y(x)と電圧V(x)との差である差電圧Z(x)の絶対値が物理量cにおいて最大値Z(c)をとり、物理量aと物理量cとの間の任意の物理量に対して差電圧Z(x)が単調に変化し、任意の物理量xに対して差電圧Z(x)が単調に変化するように動作する。補正電圧発生回路は、電圧V(a)と電圧V(b)と電圧V(c)とを発生する電圧発生器を有する。
The physical quantity detection device includes a physical quantity sensor, a correction voltage generation circuit, and an addition circuit. The physical quantity sensor outputs a voltage V (x) corresponding to an arbitrary physical quantity x between the physical quantity a and the physical quantity b on a one-to-one basis. The correction voltage generation circuit generates a correction voltage. The adder circuit adds a correction voltage to the voltage V (x). The physical quantity sensor outputs a voltage V (a) corresponding to the physical quantity a, and outputs a voltage V (b) higher than the voltage V (a) corresponding to the physical quantity b. The physical quantity sensor is expressed by the following formula:
Y (x) = V (a) + {V (b) -V (a)}. (Xa) / (ba)
The absolute value of the difference voltage Z (x), which is the difference between the voltage Y (x) and the voltage V (x) indicated by the formula, takes the maximum value Z (c) in the physical quantity c, and is between the physical quantity a and the physical quantity c. The differential voltage Z (x) is monotonously changed with respect to an arbitrary physical quantity, and the differential voltage Z (x) is monotonously changed with respect to the arbitrary physical quantity x. The correction voltage generation circuit includes a voltage generator that generates a voltage V (a), a voltage V (b), and a voltage V (c).
 補正電圧発生回路は、電圧V(a)と電圧V(b)と電圧V(c)とを発生する電圧発生器と、互いに直列に接続された複数の第1の抵抗と、第1から第2nのコンパレータ(nはn≧3を満たす所定の定数)と、互いに直列に接続された複数の第2の抵抗と、第1から第nの論理和回路と、複数のスイッチと、互いに直列に接続された複数の第3の抵抗と、第4と第5の抵抗と、出力回路とを有する。 The correction voltage generation circuit includes: a voltage generator that generates a voltage V (a), a voltage V (b), and a voltage V (c); a plurality of first resistors that are connected in series; 2n comparators (n is a predetermined constant satisfying n ≧ 3), a plurality of second resistors connected in series with each other, a first to n-th OR circuit, and a plurality of switches in series with each other. A plurality of connected third resistors, fourth and fifth resistors, and an output circuit are provided.
 電圧V(a)が印加される第1の接続点と、第2の接続点と、…、第kの接続点と、…、第n-1の接続点と、電圧V(c)が印加される第nの接続点がこの順で繋がるように、複数の第1の抵抗は第1の接続点から第nの接続点まで第2の接続点と、…、第kの接続点と、…、第n-1の接続点とで直列に接続されている(kは2≦k≦n-1を満たす任意の整数)。 The first connection point to which the voltage V (a) is applied, the second connection point, ..., the kth connection point, ..., the n-1th connection point, and the voltage V (c) is applied The plurality of first resistors are connected to the second connection point from the first connection point to the nth connection point,..., The kth connection point, so that the nth connection points connected in this order. ..., connected in series with the (n−1) th connection point (k is an arbitrary integer satisfying 2 ≦ k ≦ n−1).
 第1のコンパレータは、電圧V(a)と電圧V(x)とを比較する。第kのコンパレータは、第kの接続点の電圧と電圧V(x)とを比較する。第nのコンパレータは、電圧V(c)と電圧V(x)とを比較する。 The first comparator compares the voltage V (a) with the voltage V (x). The kth comparator compares the voltage at the kth connection point with the voltage V (x). The nth comparator compares the voltage V (c) with the voltage V (x).
 電圧V(b)が印加される第n+1の接続点と、第n+2の接続点と、…、第n+kの接続点と、…、第2n-1の接続点と、電圧V(c)が印加される第2nの接続点がこの順で繋がるように、複数の第2の抵抗は第n+1の接続点から第2nの接続点まで第n+2の接続点と、…、第n+kの接続点と、…、第2n-1の接続点とで直列に接続されている。 The (n + 1) th connection point, the (n + 2) th connection point,..., The (n + k) connection point, the (2n-1) th connection point, and the voltage V (c) are applied. The plurality of second resistors are connected to the (n + 2) -th connection point from the (n + 1) -th connection point to the (2n) -th connection point,..., The (n + k) -th connection point. ..., connected in series with the 2n-1th connection point.
 第n+1のコンパレータは、電圧V(b)と電圧V(x)とを比較する。第n+kのコンパレータは、第n+kの接続点の電圧と電圧V(x)とを比較する。第2nのコンパレータは、電圧V(c)と電圧V(x)とを比較する。 The (n + 1) th comparator compares the voltage V (b) with the voltage V (x). The n + k comparator compares the voltage at the n + k connection point with the voltage V (x). The 2nth comparator compares the voltage V (c) with the voltage V (x).
 第1の論理和回路は、第1と第n+1のコンパレータの出力する信号の論理和をとる。第kの論理和回路は、第kと第n+kのコンパレータの出力する信号の論理和をとる。第nの論理和回路は、第nと第2nのコンパレータの出力する信号の論理和をとる。 The first OR circuit takes the OR of the signals output from the first and (n + 1) th comparators. The kth OR circuit calculates the logical sum of the signals output from the kth and n + k comparators. The nth OR circuit calculates the logical sum of signals output from the nth and 2nth comparators.
 複数のスイッチは第1の論理和回路から第nの論理和回路によりそれぞれ制御される。 The plurality of switches are controlled by the first OR circuit to the nth OR circuit, respectively.
 複数の第3の抵抗は複数のスイッチにそれぞれ並列に接続されており、かつ第1の所定の電圧が印加される第2n+1の接続点と第2n+2の接続点との間で互いに直列に接続されている。 The plurality of third resistors are respectively connected in parallel to the plurality of switches, and are connected in series between the 2n + 1 connection point to which the first predetermined voltage is applied and the 2n + 2 connection point. ing.
 第4の抵抗は、第n+1の接続点と第n+2の接続点との間で複数の第3の抵抗に直列に接続されている。 The fourth resistor is connected in series to the plurality of third resistors between the (n + 1) th connection point and the (n + 2) th connection point.
 第5の抵抗は第2の所定の電圧が印加される第n+3の接続点と第n+2の接続点との間に接続されている。出力回路は、第n+2の接続点の電圧に基づいて補正電圧を出力する。 The fifth resistor is connected between the n + 3 connection point to which the second predetermined voltage is applied and the n + 2 connection point. The output circuit outputs a correction voltage based on the voltage at the (n + 2) th connection point.
 この物理量検出装置は、複雑な演算装置を設けることなく、電流等の物理量とこれに対応する電気信号との非線形性を良好に補正できるとともに、物理量の高速変化に追従できる。 This physical quantity detection device can satisfactorily correct non-linearity between a physical quantity such as a current and an electric signal corresponding to the physical quantity without providing a complicated arithmetic device, and can follow a high-speed change in the physical quantity.
図1Aは本発明の実施の形態1における物理量検出装置のブロック図である。FIG. 1A is a block diagram of a physical quantity detection device according to Embodiment 1 of the present invention. 図1Bは実施の形態1における物理量検出装置における、物理量と物理量センサの出力電圧との関係を示す図である。FIG. 1B is a diagram illustrating a relationship between a physical quantity and an output voltage of the physical quantity sensor in the physical quantity detection device according to the first exemplary embodiment. 図2は実施の形態1における物理量検出装置の補正電圧発生回路の回路図である。FIG. 2 is a circuit diagram of a correction voltage generation circuit of the physical quantity detection device according to the first embodiment. 図3Aは実施の形態1における補正電圧発生回路の入力電圧と接続点の電圧との関係を示す概念図である。FIG. 3A is a conceptual diagram showing the relationship between the input voltage of the correction voltage generation circuit and the voltage at the connection point in the first embodiment. 図3Bは実施の形態1における補正電圧発生回路に入力される電圧と補正電圧との関係を示す概念図である。FIG. 3B is a conceptual diagram showing the relationship between the voltage input to the correction voltage generation circuit and the correction voltage in the first exemplary embodiment. 図4Aは実施の形態1における物理量検出装置の加算回路の回路図である。FIG. 4A is a circuit diagram of an addition circuit of the physical quantity detection device according to the first exemplary embodiment. 図4Bは実施の形態1における加算回路の出力する電圧を示す概念図である。FIG. 4B is a conceptual diagram showing a voltage output from the adder circuit in the first embodiment. 図4Cは実施の形態1における加算回路の出力端子に接続された反転回路の回路図である。FIG. 4C is a circuit diagram of an inverting circuit connected to the output terminal of the adder circuit in the first embodiment. 図4Dは図4Cに示す反転回路の出力電圧を示す概念図である。4D is a conceptual diagram showing an output voltage of the inverting circuit shown in FIG. 4C. 図5は実施の形態1における物理量検出装置の他の補正電圧発生回路の回路図である。FIG. 5 is a circuit diagram of another correction voltage generation circuit of the physical quantity detection device according to the first exemplary embodiment. 図6Aは本発明の実施の形態2における物理量検出装置の回路図である。FIG. 6A is a circuit diagram of the physical quantity detection device according to Embodiment 2 of the present invention. 図6Bは実施の形態2における物理量検出装置の出力電圧と被測定電流との関係を示す図である。FIG. 6B is a diagram showing a relationship between the output voltage of the physical quantity detection device and the current to be measured in the second embodiment. 図7は実施の形態2における物理量検出装置の補正電圧発生回路の回路図である。FIG. 7 is a circuit diagram of a correction voltage generation circuit of the physical quantity detection device according to the second embodiment. 図8Aは実施の形態2における補正電圧発生回路の入力電圧を示す概念図である。FIG. 8A is a conceptual diagram showing an input voltage of the correction voltage generating circuit in the second embodiment. 図8Bは実施の形態2における補正電圧発生回路に入力される電圧と出力する補正電圧との関係を示す概念図である。FIG. 8B is a conceptual diagram showing the relationship between the voltage input to the correction voltage generation circuit and the output correction voltage in the second embodiment. 図9は実施の形態2における他の補正電圧発生回路の回路図である。FIG. 9 is a circuit diagram of another correction voltage generation circuit according to the second embodiment. 図10は実施の形態2における補正電圧発生回路のシミュレーション結果を示す図である。FIG. 10 is a diagram illustrating a simulation result of the correction voltage generation circuit according to the second embodiment. 図11は実施の形態2における物理量検出装置のさらに他の補正電圧発生回路の回路図である。FIG. 11 is a circuit diagram of still another correction voltage generation circuit of the physical quantity detection device according to the second embodiment. 図12Aは従来の物理量検出装置のブロック図である。FIG. 12A is a block diagram of a conventional physical quantity detection device. 図12Bは従来の物理量検出装置の光電流センサの出力と被測定電流Iとの関係を示す図である。FIG. 12B is a diagram showing the relationship between the output of the photocurrent sensor of the conventional physical quantity detection device and the current I to be measured.
 (実施の形態1)
 図1Aは本発明の実施の形態1における物理量検出装置21のブロック図である。物理量検出装置21は物理量センサ22と、補正電圧発生回路23と、加算回路24とを備える。角速度、電流、磁界等の物理量が物理量センサ22に作用し、物理量に応答して出力端子25から電圧を出力する。検査装置26は物理量検出装置21の製造過程で使用され、物理量に対応して物理量センサ22が出力する電圧を測定して、補正電圧発生回路23に補正電圧を発生させるためのパラメータを指定する。検査装置26は、既知の物理量26aを所定の範囲内で連続的に物理量センサ22に作用させて、物理量センサ22から出力される電圧22aを順次記憶する。
(Embodiment 1)
FIG. 1A is a block diagram of the physical quantity detection device 21 according to Embodiment 1 of the present invention. The physical quantity detection device 21 includes a physical quantity sensor 22, a correction voltage generation circuit 23, and an addition circuit 24. Physical quantities such as angular velocity, current, and magnetic field act on the physical quantity sensor 22 and output a voltage from the output terminal 25 in response to the physical quantity. The inspection device 26 is used in the manufacturing process of the physical quantity detection device 21, measures the voltage output from the physical quantity sensor 22 corresponding to the physical quantity, and designates a parameter for causing the correction voltage generation circuit 23 to generate the correction voltage. The inspection device 26 causes the known physical quantity 26 a to continuously act on the physical quantity sensor 22 within a predetermined range, and sequentially stores the voltage 22 a output from the physical quantity sensor 22.
 図1Bは物理量センサ22に作用する物理量と物理量センサ22の出力電圧22aとの関係を示す図である。物理量センサ22は物理量aに対応して電圧V(a)を出力し、物理量bに対応して電圧V(a)よりも高い電圧V(b)を出力する。物理量センサ22は、物理量aと物理量bとの間の任意の物理量xに対応して電圧V(x)を出力する。このとき、電圧V(x)は物理量a、bの間で下に凸となるような出力特性を有する。座標(a、V(a))、(b、V(b))を結ぶ直線を表わす式1Aで示される電圧Y(x)を求める。 FIG. 1B is a diagram showing the relationship between the physical quantity acting on the physical quantity sensor 22 and the output voltage 22 a of the physical quantity sensor 22. The physical quantity sensor 22 outputs a voltage V (a) corresponding to the physical quantity a, and outputs a voltage V (b) higher than the voltage V (a) corresponding to the physical quantity b. The physical quantity sensor 22 outputs a voltage V (x) corresponding to an arbitrary physical quantity x between the physical quantity a and the physical quantity b. At this time, the voltage V (x) has an output characteristic that is convex downward between the physical quantities a and b. A voltage Y (x) represented by Formula 1A representing a straight line connecting coordinates (a, V (a)) and (b, V (b)) is obtained.
 Y(x)=V(a)+{V(b)-V(a)}・(x-a)/(b-a) …(式1A)
 電圧V(x)から電圧Y(x)を引いた差である差電圧Z(x)が物理量cにおいて最大値Z(c)をとる。物理量aと物理量cとの間で任意の物理量xに対して差電圧Z(x)は単調に変化し、かつ物理量cと物理量bとの間で任意の物理量xに対して差電圧Z(x)は単調に変化している。検査装置26は電圧V(a)、V(b)、差電圧Z(c)および電圧V(c)の4つのパラメータを検出する。
Y (x) = V (a) + {V (b) −V (a)} · (x−a) / (b−a) (Formula 1A)
A difference voltage Z (x), which is a difference obtained by subtracting the voltage Y (x) from the voltage V (x), takes a maximum value Z (c) in the physical quantity c. The difference voltage Z (x) monotonously changes between the physical quantity a and the physical quantity c with respect to the arbitrary physical quantity x, and the difference voltage Z (x between the physical quantity c and the physical quantity b with respect to the arbitrary physical quantity x. ) Is changing monotonously. The inspection device 26 detects four parameters: voltages V (a), V (b), differential voltage Z (c), and voltage V (c).
 補正電圧発生回路23は入力端子23aと出力端子23bとを有する。入力端子23aには物理量センサ22から出力される電圧22aである電圧V(x)が入力される。出力端子23bから補正電圧V123が出力される。加算回路24の入力端子24aには物理量センサ22から出力される電圧22aが加算回路24に入力され、入力端子24bには補正電圧発生回路23から出力される補正電圧V123が入力される。 The correction voltage generation circuit 23 has an input terminal 23a and an output terminal 23b. A voltage V (x) that is a voltage 22a output from the physical quantity sensor 22 is input to the input terminal 23a. The correction voltage V123 is output from the output terminal 23b. The voltage 22a output from the physical quantity sensor 22 is input to the adder circuit 24 to the input terminal 24a of the adder circuit 24, and the correction voltage V123 output from the correction voltage generator circuit 23 is input to the input terminal 24b.
 図2は補正電圧発生回路23の回路図である。電圧発生器40は、直流電源41と、抵抗42a、42b、43a、43b、44a、44bとからなる。検査装置26はレーザー調整装置等を用いて抵抗42a~44bの抵抗値を調整して、抵抗42aと抵抗42bとが接続された接続点の電圧、抵抗43aと抵抗43bとが接続された接続点の電圧、抵抗44aと抵抗44bとが接続された接続点の電圧を各々電圧V(b)、V(c)、V(a)となるように設定する。 FIG. 2 is a circuit diagram of the correction voltage generation circuit 23. The voltage generator 40 includes a DC power supply 41 and resistors 42a, 42b, 43a, 43b, 44a, 44b. The inspection device 26 uses a laser adjustment device or the like to adjust the resistance values of the resistors 42a to 44b, and the voltage at the connection point where the resistors 42a and 42b are connected, and the connection point where the resistors 43a and 43b are connected. And the voltage at the connection point where the resistors 44a and 44b are connected are set to voltages V (b), V (c), and V (a), respectively.
 抵抗50a、50b、50c、50d、50eはこの順で互いに直列に接続されている。抵抗50a、50bが接続されている接続点P2の反対側の抵抗50aの一端51である接続点P1には電圧V(a)が印加される。抵抗50d、50eが接続されている接続点P5の反対側の抵抗50eの一端52である接続点P6には電圧V(c)が印加されている。同様に、抵抗53a、53b、53c、53d、53eはこの順で互いに直列に接続されている。抵抗53a、53bが接続されている接続点P11の反対側の抵抗53aの一端54である接続点P12には電圧V(c)が印加される。抵抗53d、53eが接続されている接続点P8の反対側の抵抗53eの一端55である接続点P7には電圧V(b)が印加されている。 The resistors 50a, 50b, 50c, 50d, and 50e are connected in series in this order. The voltage V (a) is applied to the connection point P1, which is one end 51 of the resistor 50a opposite to the connection point P2 to which the resistors 50a and 50b are connected. The voltage V (c) is applied to the connection point P6 which is one end 52 of the resistor 50e on the opposite side of the connection point P5 to which the resistors 50d and 50e are connected. Similarly, the resistors 53a, 53b, 53c, 53d, and 53e are connected in series in this order. The voltage V (c) is applied to the connection point P12 which is one end 54 of the resistor 53a on the side opposite to the connection point P11 to which the resistors 53a and 53b are connected. A voltage V (b) is applied to a connection point P7 which is one end 55 of the resistor 53e on the opposite side of the connection point P8 to which the resistors 53d and 53e are connected.
 コンパレータ56aは、入力端子23aに入力される物理量センサ22からの電圧V(x)(電圧22a)と抵抗50aの一端51に加えられる電圧V(a)とを比較し、電圧V(x)が電圧V(a)よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。また、コンパレータ56bは、電圧V(x)と抵抗50a、50bが接続されている接続点P2の電圧V1とを比較し、電圧V(x)が電圧V1よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。同様に、コンパレータ56cは、電圧V(x)と抵抗50b、50cが接続されている接続点P3の電圧V2とを比較し、電圧V(x)が電圧V2よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。同様に、コンパレータ56dは、電圧V(x)と抵抗50c、50dが接続されている接続点P4の電圧V3とを比較し、電圧V(x)が電圧V3よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。同様に、コンパレータ56eは、電圧V(x)と抵抗50d、50eが接続されている接続点P5の電圧V4とを比較し、電圧V(x)が電圧V4よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。また、コンパレータ56fは電圧V(x)と抵抗50eの一端52に加えられる電圧V(c)とを比較し、電圧V(x)が電圧V(c)よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。 The comparator 56a compares the voltage V (x) (voltage 22a) from the physical quantity sensor 22 input to the input terminal 23a with the voltage V (a) applied to one end 51 of the resistor 50a, and the voltage V (x) is When the voltage V (a) is lower than “1”, an active level signal is output, and when it is higher, “0”, an inactive level signal is output. The comparator 56b compares the voltage V (x) with the voltage V1 at the connection point P2 to which the resistors 50a and 50b are connected. When the voltage V (x) is lower than the voltage V1, it is “1”, that is, the active level. When the signal is high, a signal of “0”, that is, an inactive level is output. Similarly, the comparator 56c compares the voltage V (x) with the voltage V2 at the connection point P3 to which the resistors 50b and 50c are connected. When the voltage V (x) is lower than the voltage V2, “1”, that is, active A level signal is output, and when it is high, a signal of “0”, that is, an inactive level is output. Similarly, the comparator 56d compares the voltage V (x) with the voltage V3 at the connection point P4 to which the resistors 50c and 50d are connected. When the voltage V (x) is lower than the voltage V3, the comparator 56d is active. A level signal is output, and when it is high, a signal of “0”, that is, an inactive level is output. Similarly, the comparator 56e compares the voltage V (x) with the voltage V4 at the connection point P5 to which the resistors 50d and 50e are connected. When the voltage V (x) is lower than the voltage V4, “1”, that is, active A level signal is output, and when it is high, a signal of “0”, that is, an inactive level is output. The comparator 56f compares the voltage V (x) with the voltage V (c) applied to the one end 52 of the resistor 50e. When the voltage V (x) is lower than the voltage V (c), the comparator 56f is “1”, that is, the active level. When the signal is high, a signal of “0”, that is, an inactive level is output.
 コンパレータ57aは電圧V(x)と抵抗53aの一端54に加えられる電圧V(c)とを比較し、電圧V(x)が電圧V(c)よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。また、コンパレータ57bは、電圧V(x)と抵抗53a、53bが接続されている接続点P11の電圧V5とを比較し、電圧V(x)が電圧V5よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。同様に、コンパレータ57cは、電圧V(x)と抵抗53b、53cが接続されている接続点P10の電圧V6とを比較し、電圧V(x)が電圧V6よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ57dは、電圧V(x)と抵抗53c、53dが接続されている接続点P9の電圧V7とを比較し、電圧V(x)が電圧V7よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ57eは、電圧V(x)と抵抗53d、53eが接続されている接続点P8の電圧V8とを比較し、電圧V(x)が電圧V8よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。また、コンパレータ57fは電圧V(x)と抵抗53eの一端55に加えられる電圧V(b)とを比較し、電圧V(x)が電圧V(b)よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。 The comparator 57a compares the voltage V (x) with the voltage V (c) applied to the one end 54 of the resistor 53a. When the voltage V (x) is lower than the voltage V (c), the comparator 57a is “0”, that is, an inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output. The comparator 57b compares the voltage V (x) with the voltage V5 at the connection point P11 to which the resistors 53a and 53b are connected. When the voltage V (x) is lower than the voltage V5, the comparator 57b is inactive. A level signal is output, and when it is high, an active level signal is output. Similarly, the comparator 57c compares the voltage V (x) with the voltage V6 at the connection point P10 to which the resistors 53b and 53c are connected. When the voltage V (x) is lower than the voltage V6, the comparator 57c is “0”. An active level signal is output, and when it is high, “1”, that is, an active level signal is output. The comparator 57d compares the voltage V (x) with the voltage V7 at the connection point P9 to which the resistors 53c and 53d are connected. When the voltage V (x) is lower than the voltage V7, “0”, that is, the inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output. The comparator 57e compares the voltage V (x) with the voltage V8 at the connection point P8 to which the resistors 53d and 53e are connected. When the voltage V (x) is lower than the voltage V8, “0”, that is, the inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output. The comparator 57f compares the voltage V (x) with the voltage V (b) applied to the one end 55 of the resistor 53e. When the voltage V (x) is lower than the voltage V (b), the comparator 57f is “0”, that is, inactive. A level signal is output, and when it is high, an active level signal is output.
 論理和回路58aはコンパレータ56a、57fが出力する信号の論理和をとり、それらの信号がともに非アクティブレベルであるときのみに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方の信号がアクティブレベルのときにアクティブレベルの信号を出力する。同様に、論理和回路58bは、コンパレータ56b、57eが出力する信号の論理和をとり、それらの信号がともに非アクティブレベルであるときのみに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方の信号がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路58cは、コンパレータ56c、57dが出力する信号の論理和をとり、それらの信号がともに非アクティブレベルであるときのみに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方の信号がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路58dは、コンパレータ56d、57cが出力する信号の論理和をとり、それらの信号がともに非アクティブレベルであるときのみに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方の信号がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路58eは、コンパレータ56e、57bが出力する信号の論理和をとり、それらの信号がともに非アクティブレベルであるときのみに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方の信号がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路58fは、コンパレータ56f、57aが出力する信号の論理和をとり、それらの信号がともに非アクティブレベルであるときのみに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方の信号がアクティブレベルのときにアクティブレベルの信号を出力する。 The OR circuit 58a calculates the logical sum of the signals output from the comparators 56a and 57f, outputs an inactive level signal only when both of these signals are at the inactive level, and outputs at least one of these signals. An active level signal is output when the signal is at an active level. Similarly, the OR circuit 58b calculates the logical sum of the signals output from the comparators 56b and 57e, and outputs an inactive level signal only when both of these signals are at the inactive level. When at least one of the signals is at an active level, an active level signal is output. The OR circuit 58c calculates the logical sum of the signals output from the comparators 56c and 57d, outputs an inactive level signal only when both of these signals are at the inactive level, and at least one of these signals. An active level signal is output when the signal of is active level. The OR circuit 58d calculates the logical sum of the signals output from the comparators 56d and 57c, and outputs an inactive level signal only when both of these signals are at an inactive level, and at least one of these signals. An active level signal is output when the signal of is active level. The OR circuit 58e calculates the logical sum of the signals output from the comparators 56e and 57b, and outputs an inactive level signal only when both of these signals are at an inactive level, and at least one of these signals. An active level signal is output when the signal of is active level. The logical sum circuit 58f calculates the logical sum of the signals output from the comparators 56f and 57a, outputs an inactive level signal only when both of these signals are at the inactive level, and at least one of these signals. An active level signal is output when the signal of is active level.
 スイッチ59aは論理和回路58aが出力する信号がアクティブレベルの時に動作して閉となり、その信号が非アクティブレベルのときに非動作して開となる。同様に、スイッチ59b、59c、59d、59e、59fはそれぞれ、論理和回路58b、58c、58d、58e、58fが出力する信号がアクティブレベルの時動作して閉となり、それらの信号が非アクティブレベルの時に非動作して開となる。スイッチ59a、59b、59c、59d、59e、59fはこの順で互いに直列に接続されている。スイッチ59fの一端60は直流電源41に接続され、スイッチ59aの一端61は抵抗62の一端と接続されている。また、抵抗62の他端は抵抗63の一端に接続され、抵抗63の他端はグランドに接続されている。 The switch 59a is operated and closed when the signal output from the OR circuit 58a is at the active level, and is not operated and opened when the signal is at the inactive level. Similarly, the switches 59b, 59c, 59d, 59e, and 59f operate and close when the signals output from the OR circuits 58b, 58c, 58d, 58e, and 58f are at the active level, and these signals are inactive. At the time of non-operation and open. The switches 59a, 59b, 59c, 59d, 59e, and 59f are connected in series in this order. One end 60 of the switch 59f is connected to the DC power supply 41, and one end 61 of the switch 59a is connected to one end of the resistor 62. The other end of the resistor 62 is connected to one end of the resistor 63, and the other end of the resistor 63 is connected to the ground.
 抵抗64a、64b、64c、64d、64e、64fは各々スイッチ59a、59b、59c、59d、59e、59fの両端に接続されており、すなわちスイッチ59a、59b、59c、59d、59e、59fにそれぞれ並列接続されている。 The resistors 64a, 64b, 64c, 64d, 64e, and 64f are respectively connected to both ends of the switches 59a, 59b, 59c, 59d, 59e, and 59f, that is, parallel to the switches 59a, 59b, 59c, 59d, 59e, and 59f, respectively. It is connected.
 抵抗62、63が接続されている接続点901bの電圧V9の符号は出力回路65にて反転され、符号が反転された電圧V9は補正電圧V123として出力端子23bから出力される。 The sign of the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected is inverted by the output circuit 65, and the voltage V9 whose sign is inverted is output from the output terminal 23b as the correction voltage V123.
 図2に示す補正電圧発生回路23の動作を説明する。物理量センサ22に物理量aと物理量bとの間の任意の物理量xが作用すると、物理量センサ22からは電圧V(x)が発生し、補正電圧発生回路23の入力端子23aに入力される。電圧V(x)はコンパレータ56a~56f、57a~57fにおいて電圧V(a)、V1、V2、V3、V4、V(c)、V5、V6、V7、V8、V(b)とそれぞれ比較される。 The operation of the correction voltage generation circuit 23 shown in FIG. 2 will be described. When an arbitrary physical quantity x between the physical quantity a and the physical quantity b acts on the physical quantity sensor 22, a voltage V (x) is generated from the physical quantity sensor 22 and input to the input terminal 23 a of the correction voltage generation circuit 23. The voltage V (x) is compared with the voltages V (a), V1, V2, V3, V4, V (c), V5, V6, V7, V8, V (b) in the comparators 56a to 56f and 57a to 57f, respectively. The
 電圧V(x)が電圧V(a)のとき、コンパレータ56a~56fの出力する信号が「1」すなわちアクティブレベルとなり、コンパレータ57a~57fの出力する信号が「0」すなわち非アクティブレベルとなるので、すべての論理和回路58a~58fの出力する信号が「1」すなわちアクティブレベルとなり、スイッチ59a~59fはすべて動作して閉じる。抵抗62、63が抵抗値Rを有する場合に、直流電源41の電圧Vccにより、抵抗62、63が接続されている接続点901bの電圧V9は、
{R/(2・R)}・Vcc=Vcc/2 …(式1B)
となる。
When the voltage V (x) is the voltage V (a), the signals output from the comparators 56a to 56f are “1”, that is, the active level, and the signals output from the comparators 57a to 57f are “0”, that is, the inactive level. The signals output from all the OR circuits 58a to 58f are "1", that is, the active level, and all the switches 59a to 59f are operated and closed. When the resistors 62 and 63 have the resistance value R, the voltage V9 of the connection point 901b to which the resistors 62 and 63 are connected is determined by the voltage Vcc of the DC power supply 41.
{R / (2.R)}. Vcc = Vcc / 2 (Formula 1B)
It becomes.
 電圧V(x)が電圧V(a)、V1の間である場合にはコンパレータ56aとコンパレータ57a~57fの出力する信号が「0」すなわち非アクティブレベルとなり、コンパレータ56b~56fの出力する信号が「1」すなわちアクティブレベルとなる。その結果、論理和回路58aの出力する信号のみが「0」すなわち非アクティブレベルとなりかつ論理和回路58b~58fの出力する信号が「1」すなわちアクティブレベルになるので、スイッチ59aのみが非動作して開き、その他のスイッチ59b~59fは動作して閉じている。抵抗64a、64b、64c、64d、64e、64fが抵抗値r1を有する場合に、電圧V9は、
{R/(2・R+r1)}・Vcc …(式2)
となり、電圧V(x)、V(a)が等しい場合の式1Bで示す電圧Vcc/2より低下する。
When the voltage V (x) is between the voltages V (a) and V1, the signals output from the comparator 56a and the comparators 57a to 57f are “0”, that is, inactive levels, and the signals output from the comparators 56b to 56f are “1”, that is, the active level. As a result, only the signal output from the OR circuit 58a is "0", that is, the inactive level, and the signals output from the OR circuits 58b to 58f are "1", that is, the active level, so that only the switch 59a is inoperative. The other switches 59b to 59f are operated and closed. When the resistors 64a, 64b, 64c, 64d, 64e, and 64f have the resistance value r1, the voltage V9 is
{R / (2.R + r1)}. Vcc (Formula 2)
Thus, the voltage V (x) is lower than the voltage Vcc / 2 shown in Expression 1B when the voltages V (x) and V (a) are equal.
 電圧V(x)がさらに増加して電圧V4、V(c)間である場合にはコンパレータ56fの出力する信号のみが「1」すなわちアクティブレベルとなり、これ以外のコンパレータ56a~56e、57a~57fの出力する信号はすべて「0」すなわち非アクティブレベルとなる。その結果、論理和回路58fの出力する信号のみが「1」すなわちアクティブレベルとなり、他の論理和回路58a~58eの出力する信号が非アクティブレベルとなる。これにより、スイッチ59a、59b、59c、59d、59eが非動作して開き、スイッチ59fのみが動作して閉じる。したがって、抵抗62、63が接続されている接続点901bの電圧V9は
{R/(2・R+5・r1)}・Vcc …(式3)
となり、さらに低下する。
When the voltage V (x) further increases and is between the voltages V4 and V (c), only the signal output from the comparator 56f becomes “1”, that is, the active level, and the other comparators 56a to 56e and 57a to 57f. All of the signals output by “0” are “0”, that is, inactive level. As a result, only the signal output from the OR circuit 58f is “1”, that is, the active level, and the signals output from the other OR circuits 58a to 58e are set to the inactive level. Thereby, the switches 59a, 59b, 59c, 59d, and 59e are inoperative and opened, and only the switch 59f is operated and closed. Therefore, the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected is {R / (2 · R + 5 · r1)} · Vcc (Equation 3)
And then further decrease.
 電圧V(x)がV(c)と一致したときにはコンパレータ56a~56f、コンパレータ57a~57fの出力する信号がすべて「0」すなわち非アクティブレベルとなる。その結果、論理和回路58a~58fの出力する信号がすべて「0」すなわち非アクティブレベルとなる。これにより、スイッチ59a、59b、59c、59d、59e、59fがすべて非動作して開いた状態となる。このため、電圧V9は
{R/(2・R+6・r1)}・Vcc …(式4)
となる。式4に示す電圧V9は、電圧V9の最低電圧V9minとなる。検査装置26は式5に示すVcc/2と最低電圧V9minとの差、
Vcc/2-{R/(2・R+6・r1)}・Vcc …(式5)
が図1Bに示す差電圧Z(c)と等しくなるよう、レーザー調整装置等を用いて抵抗62、63の抵抗値Rまたは抵抗64a~64fの抵抗値r1を設定する。
When the voltage V (x) coincides with V (c), the signals output from the comparators 56a to 56f and the comparators 57a to 57f are all “0”, that is, the inactive level. As a result, all the signals output from the OR circuits 58a to 58f become “0”, that is, inactive level. As a result, all of the switches 59a, 59b, 59c, 59d, 59e, and 59f are inoperative and opened. Therefore, the voltage V9 is {R / (2 · R + 6 · r1)} · Vcc (Equation 4)
It becomes. The voltage V9 shown in Expression 4 is the lowest voltage V9min of the voltage V9. The inspection device 26 has a difference between Vcc / 2 and the minimum voltage V9min shown in Equation 5,
Vcc / 2− {R / (2 · R + 6 · r1)} · Vcc (Formula 5)
Is set equal to the differential voltage Z (c) shown in FIG. 1B by using a laser adjusting device or the like to set the resistance value R of the resistors 62 and 63 or the resistance value r1 of the resistors 64a to 64f.
 次に、電圧V(x)が電圧V(c)、V5間にある場合には、コンパレータ57aの出力する信号のみが「1」すなわちアクティブレベルとなり、これ以外のコンパレータ56a~56f、57b~57fの出力する信号はすべて「0」すなわち非アクティブレベルとなる。その結果、論理和回路58aの出力する信号が「1」すなわちアクティブレベルとなり、その他の論理和回路58b~58fの出力する信号が「0」すなわち非アクティブレベルとなる。これにより、スイッチ59aが動作して閉じ、他のスイッチ59b~59fがすべて非動作して開いた状態となる。このため、抵抗62、63が接続された接続点901bの電圧V9は
{R/(2・R+5・r1)}・Vcc …(式6)
となり、式5に示す最低電圧V9minから再び上昇する。
Next, when the voltage V (x) is between the voltages V (c) and V5, only the signal output from the comparator 57a becomes “1”, that is, the active level, and the other comparators 56a to 56f, 57b to 57f. All of the signals output by “0” are “0”, that is, inactive level. As a result, the signal output from the OR circuit 58a is “1”, that is, the active level, and the signals that are output from the other OR circuits 58b to 58f are “0”, that is, the inactive level. As a result, the switch 59a is operated and closed, and the other switches 59b to 59f are all inactivated and opened. Therefore, the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected is {R / (2 · R + 5 · r1)} · Vcc (Expression 6).
Thus, the voltage rises again from the minimum voltage V9min shown in Equation 5.
 次に、電圧V(x)が電圧V8、V(b)の間にある場合には、コンパレータ56a~56f、57fの出力する信号が「0」すなわち非アクティブレベルとなり、コンパレータ57a~57eの出力する信号が「1」すなわちアクティブレベルとなる。その結果、論理和回路58fの出力する信号のみが「0」すなわち非アクティブレベルとなり、その他の論理和回路58a~58eの出力する信号は「1」すなわちアクティブレベルとなる。これにより、スイッチ59fのみが非動作して開き、他のスイッチ59a~59eがすべて動作して閉じた状態となる。このため、抵抗62、63が接続された接続点901bの電圧V9は、再び、
{R/(2・R+r1)}・Vcc …(式7)
となる。
Next, when the voltage V (x) is between the voltages V8 and V (b), the signals output from the comparators 56a to 56f and 57f are “0”, that is, inactive levels, and the outputs of the comparators 57a to 57e are output. Signal to be "1", that is, an active level. As a result, only the signal output from the OR circuit 58f is "0", that is, the inactive level, and the signals output from the other OR circuits 58a to 58e are "1", that is, the active level. As a result, only the switch 59f is deactivated and opened, and the other switches 59a to 59e are all activated and closed. Therefore, the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected is again
{R / (2.R + r1)}. Vcc (Expression 7)
It becomes.
 次に、電圧V(x)、V(b)が一致したときには、コンパレータ56a~56fの出力する信号がすべて「0」すなわち非アクティブレベルとなり、コンパレータ57a~57fの出力する信号すべてが「1」すなわちアクティブレベルとなる。その結果、論理和回路58a~58fの出力する信号すべてが「1」すなわちアクティブレベルとなる。これにより、スイッチ59a~59fがすべて動作して閉じた状態となる。したがって、抵抗62、63が接続された接続点901bの電圧V9は、再び、
{R/(2・R)}・Vcc=Vcc/2 …(式8)
となる。
Next, when the voltages V (x) and V (b) match, all the signals output from the comparators 56a to 56f are “0”, that is, inactive, and all the signals output from the comparators 57a to 57f are “1”. That is, it becomes an active level. As a result, all the signals output from the OR circuits 58a to 58f become “1”, that is, the active level. As a result, all the switches 59a to 59f are operated to be in a closed state. Therefore, the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected is again
{R / (2 · R)} · Vcc = Vcc / 2 (Formula 8)
It becomes.
 図3Aは、抵抗62、63が接続された接続点901bの電圧V9の電圧V(x)に対する変化を示す概念図である。図3Bは補正電圧発生回路23の出力端子23bから出力される補正電圧V123を示す概念図である。出力回路65は、電圧Vcc/2が印加された非反転入力端を有するオペアンプを備える。電圧V9はオペアンプの反転入力端に入力されて、電圧Vcc/2に対して反転して式8Aに示す補正電圧V123として出力回路65から出力される。
V123=Vcc/2-V9 …(式8A)
 式8Aに示すように、補正電圧V123では電圧V9の符号が反転しており、すなわち出力回路65は電圧V9の符号を反転させて補正電圧V123として出力する。これにより、補正電圧発生回路23は、図1Bと式1Aに示す電圧Y(x)との差電圧Z(x)に近似した補正電圧V123を出力端子23bから出力することができる。
FIG. 3A is a conceptual diagram showing a change of the voltage V9 at the connection point 901b to which the resistors 62 and 63 are connected with respect to the voltage V (x). FIG. 3B is a conceptual diagram showing the correction voltage V123 output from the output terminal 23b of the correction voltage generation circuit 23. The output circuit 65 includes an operational amplifier having a non-inverting input terminal to which the voltage Vcc / 2 is applied. The voltage V9 is input to the inverting input terminal of the operational amplifier, is inverted with respect to the voltage Vcc / 2, and is output from the output circuit 65 as the correction voltage V123 shown in Expression 8A.
V123 = Vcc / 2−V9 (Formula 8A)
As shown in Expression 8A, the sign of the voltage V9 is inverted in the correction voltage V123, that is, the output circuit 65 inverts the sign of the voltage V9 and outputs it as the correction voltage V123. Thereby, the correction voltage generation circuit 23 can output the correction voltage V123 approximate to the difference voltage Z (x) between the voltage Y (x) shown in FIG. 1B and the expression 1A from the output terminal 23b.
 図4Aは加算回路24の回路図である。加算回路24において、入力端子24aに加えられる物理量センサ22からの電圧V(x)に、入力端子24bに加えられる補正電圧発生回路23からの補正電圧V123が加算される。加算回路24は、電圧Vcc/2が入力されている非反転入力端を有するオペアンプを備える。図4Bは加算回路24の出力端子25に出力される電圧を示す。図4Bに示すように、2つの物理量a、bの間の物理量xが作用して出力する電圧V(x)が下に凸となる非線形性を有する出力特性を有する物理量センサ22において、物理量検出装置21は非線形性を良好に補正して直線性を有する出力特性を有する電圧を出力端子25から出力することができる。 FIG. 4A is a circuit diagram of the adder circuit 24. In the addition circuit 24, the correction voltage V123 from the correction voltage generation circuit 23 applied to the input terminal 24b is added to the voltage V (x) from the physical quantity sensor 22 applied to the input terminal 24a. The adder circuit 24 includes an operational amplifier having a non-inverting input terminal to which the voltage Vcc / 2 is input. FIG. 4B shows the voltage output to the output terminal 25 of the adder circuit 24. As shown in FIG. 4B, physical quantity detection is performed in the physical quantity sensor 22 having non-linear output characteristics in which the voltage V (x) output by the action of the physical quantity x between the two physical quantities a and b has a downward convexity. The device 21 can correct the nonlinearity satisfactorily and output a voltage having an output characteristic having linearity from the output terminal 25.
 物理量検出装置21は、加算回路24の出力を反転させて出力してもよい。図4Cは加算回路24の出力端子25に接続された反転回路66の回路図である。反転回路66は電圧Vcc/2が入力された非反転入力端を有するオペアンプを備える。図4Dは反転回路66の出力端子67から出力される電圧を概念的に示す図である。出力端子67から出力された電圧は、加算回路24の出力端子から出力された電圧を電圧Vcc/2に対して反転したものである。図4Dと図1Bに示すように、物理量検出装置21は2つの物理量a、bの間の物理量xが作用して出力される電圧V(x)が下に凸となるような出力特性を有する物理量センサ22の非線形性を良好に補正することができる。 The physical quantity detection device 21 may invert the output of the addition circuit 24 and output it. FIG. 4C is a circuit diagram of the inverting circuit 66 connected to the output terminal 25 of the adder circuit 24. The inverting circuit 66 includes an operational amplifier having a non-inverting input terminal to which the voltage Vcc / 2 is input. FIG. 4D is a diagram conceptually showing the voltage output from the output terminal 67 of the inverting circuit 66. The voltage output from the output terminal 67 is obtained by inverting the voltage output from the output terminal of the adder circuit 24 with respect to the voltage Vcc / 2. As shown in FIGS. 4D and 1B, the physical quantity detection device 21 has an output characteristic such that the voltage V (x) output by the physical quantity x between the two physical quantities a and b acts downward. The nonlinearity of the physical quantity sensor 22 can be corrected well.
 以上の説明から明らかなように、実施の形態1における物理量検出装置21は、A/D変換器や半導体メモリ、CPU等の複雑な演算装置を設けることなく、物理量とこれに対応する電圧との非線形性を良好に補正できる。ある程度の演算時間を要するCPUを備えていないので、物理量検出装置21は極めて大きい応答速度を有し、物理量が高速で変化した場合にも容易に追従でき、これにより、物理量を時間遅れなく、高精度に測定できる。なお、実施の形態1においては、補正電圧発生回路23は電圧V(a)、V(c)の間を分圧する5個の抵抗50a~50eと、電圧V(c)、V(b)の間を分圧する5個の抵抗53a~53eと、これらの抵抗により分圧された電圧と物理量センサ22から出力される電圧V(x)とを比較する12個のコンパレータ56a~56f、57a~57fと、これらのコンパレータの出力する信号が入力される6個の論理和回路58a~58fと、これらの論理和回路で制御される6個のスイッチ59a~59fと、これらの各スイッチに並列に接続された6個の抵抗64a~64fを備える。これらの構成部品の数は上記に限定されるものではない。nがn≧3を満たす所定の整数として、実施の形態1における物理量検出装置は、一般に、電圧V(a)、V(c)の間を分圧するn-1個の抵抗と、電圧V(c)、V(b)の間を分圧するn-1個の抵抗と、これらの抵抗により分圧された電圧と物理量センサから出力される電圧V(x)とを比較する2n個のコンパレータと、これらのコンパレータの出力が入力されるn個の論理和回路と、これらの論理和回路でそれぞれ制御されるn個のスイッチと、これらのスイッチにそれぞれ並列に接続されたn個の抵抗とを備える。 As is apparent from the above description, the physical quantity detection device 21 according to the first embodiment is configured so that a physical quantity and a voltage corresponding to the physical quantity can be obtained without providing a complicated arithmetic device such as an A / D converter, a semiconductor memory, or a CPU. Nonlinearity can be corrected well. Since a CPU that requires a certain amount of calculation time is not provided, the physical quantity detection device 21 has a very high response speed, and can easily follow even when the physical quantity changes at high speed. It can be measured accurately. In the first embodiment, the correction voltage generation circuit 23 includes five resistors 50a to 50e that divide the voltages V (a) and V (c), and the voltages V (c) and V (b). Five resistors 53a to 53e for dividing the voltage between them, and twelve comparators 56a to 56f and 57a to 57f for comparing the voltage divided by these resistors with the voltage V (x) output from the physical quantity sensor 22 6 OR circuits 58a to 58f to which signals output from these comparators are input, 6 switches 59a to 59f controlled by these OR circuits, and these switches are connected in parallel. The six resistors 64a to 64f are provided. The number of these components is not limited to the above. Assuming that n is a predetermined integer satisfying n ≧ 3, the physical quantity detection device according to the first embodiment generally includes n−1 resistors that divide the voltages V (a) and V (c), and the voltage V ( c) n-1 resistors for dividing the voltage between V (b), 2n comparators for comparing the voltage divided by these resistors with the voltage V (x) output from the physical quantity sensor, , N logical sum circuits to which the outputs of these comparators are input, n switches respectively controlled by these logical sum circuits, and n resistors respectively connected in parallel to these switches. Prepare.
 詳述すると、kが2≦k≦n-1を満たす任意の整数として、一般に、図2に示す補正電圧発生回路23は以下の構成を有する。 Specifically, the correction voltage generating circuit 23 shown in FIG. 2 generally has the following configuration, where k is an arbitrary integer satisfying 2 ≦ k ≦ n−1.
 電圧発生器40は電圧V(a)と電圧V(b)と電圧V(c)とを発生する。 The voltage generator 40 generates a voltage V (a), a voltage V (b), and a voltage V (c).
 複数の抵抗(50a~50e)は、電圧V(a)が印加される第1の接続点(P1)と、…、第kの接続点(P2~P5)と、…、電圧V(c)が印加される第nの接続点(P6)がこの順で繋がるように、第1の接続点(P1)から第nの接続点(P6)まで第kの接続点(P2~P5)で直列に接続されている。 The plurality of resistors (50a to 50e) include a first connection point (P1) to which the voltage V (a) is applied,..., A kth connection point (P2 to P5), and a voltage V (c). Is connected in series from the first connection point (P1) to the nth connection point (P6) at the kth connection point (P2 to P5) so that the nth connection point (P6) to which N is applied is connected in this order. It is connected to the.
 第1のコンパレータ(56a)は、電圧V(a)と電圧V(x)とを比較する。第kのコンパレータ(56b~56e)は、第kの接続点(P2~P5)の電圧と電圧V(x)とを比較する。第nのコンパレータ(56f)は、電圧V(c)と電圧V(x)とを比較する。 The first comparator (56a) compares the voltage V (a) with the voltage V (x). The kth comparators (56b to 56e) compare the voltage at the kth connection point (P2 to P5) with the voltage V (x). The nth comparator (56f) compares the voltage V (c) with the voltage V (x).
 複数の抵抗(53e~53a)は、電圧V(b)が印加される第n+1の接続点(P7)と、…、第n+kの接続点(P8~P11)と、…、電圧V(c)が印加される第2nの接続点(P12)がこの順で繋がるように、第n+1の接続点(P7)から第2nの接続点(P12)まで第n+kの接続点(P8~P11)で直列に接続されている。 The plurality of resistors (53e to 53a) are connected to the (n + 1) th connection point (P7) to which the voltage V (b) is applied,..., The (n + k) connection point (P8 to P11), and the voltage V (c). Are connected in series from the (n + 1) th connection point (P7) to the (2n) th connection point (P12) at the (n + k) th connection points (P8 to P11). It is connected to the.
 第n+1のコンパレータ(57f)は電圧V(b)と電圧V(x)とを比較する。第n+kのコンパレータ(57e~57b)は、第n+kの接続点の電圧と電圧V(x)とを比較する。第nのコンパレータ(57a)は、電圧V(c)と電圧V(x)とを比較する。 The n + 1th comparator (57f) compares the voltage V (b) with the voltage V (x). The n + k comparators (57e to 57b) compare the voltage at the connection point of the n + k with the voltage V (x). The nth comparator (57a) compares the voltage V (c) with the voltage V (x).
 第1の論理和回路(58a)は、第1のコンパレータ(56a)の出力する信号と第n+1のコンパレータ(57f)の出力する信号との論理和をとる。第kの論理和回路(58b~58e)は、第kのコンパレータ(56b~56e)の出力する信号と第n+kのコンパレータ(57e~57b)の出力する信号との論理和をとる。第nの論理和回路は、第nのコンパレータ(56f)の出力する信号と第2nのコンパレータ(57a)の出力する信号との論理和をとる。 The first OR circuit (58a) takes the OR of the signal output from the first comparator (56a) and the signal output from the (n + 1) th comparator (57f). The kth OR circuit (58b to 58e) takes the logical sum of the signal output from the kth comparator (56b to 56e) and the signal output from the n + k comparator (57e to 57b). The nth OR circuit calculates the logical sum of the signal output from the nth comparator (56f) and the signal output from the 2nth comparator (57a).
 複数のスイッチ(59a~59f)は、論理和回路58a~58fによりそれぞれ制御される。複数の抵抗64a~64fは、複数のスイッチ59a~59fにそれぞれ並列に接続されており、かつ所定の電圧(Vcc)が印加される接続点901aと接続点901bとの間で互いに直列に接続されている。抵抗62は、接続点901a、901b間で複数の抵抗64a~64fに直列に接続されている。抵抗63は、所定の電圧(グランドの電圧)が印加される接続点901cと接続点901bとの間に接続されている。出力回路65は接続点901bの電圧V9に基づいて補正電圧V123を出力する。 The plurality of switches (59a to 59f) are controlled by OR circuits 58a to 58f, respectively. The plurality of resistors 64a to 64f are connected in parallel to the plurality of switches 59a to 59f, respectively, and are connected in series to each other between the connection point 901a and the connection point 901b to which a predetermined voltage (Vcc) is applied. ing. The resistor 62 is connected in series with a plurality of resistors 64a to 64f between the connection points 901a and 901b. The resistor 63 is connected between a connection point 901c and a connection point 901b to which a predetermined voltage (ground voltage) is applied. The output circuit 65 outputs a correction voltage V123 based on the voltage V9 at the connection point 901b.
 図5は実施の形態1における物理量検出装置21の他の補正電圧発生回路23Pの回路図である。図5において図2に示す補正電圧発生回路23と同じ部分には同じ参照番号を付す。 FIG. 5 is a circuit diagram of another correction voltage generation circuit 23P of the physical quantity detection device 21 in the first embodiment. In FIG. 5, the same reference numerals are assigned to the same portions as those of the correction voltage generation circuit 23 shown in FIG.
 図2に示す補正電圧発生回路23では、接続点901aに電圧Vccが印加され、接続点901cがグランドに接続されている。すなわち、接続点901aに印加される所定の電圧は電圧Vccであり接続点901cに印加される所定の電圧より高い。出力回路65は接続点901bの電圧V9を電圧Vcc/2に関して反転して補正電圧V123を発生し、電圧V9の符号を反転させる。 In the correction voltage generation circuit 23 shown in FIG. 2, the voltage Vcc is applied to the connection point 901a, and the connection point 901c is connected to the ground. That is, the predetermined voltage applied to the connection point 901a is the voltage Vcc, which is higher than the predetermined voltage applied to the connection point 901c. The output circuit 65 inverts the voltage V9 at the connection point 901b with respect to the voltage Vcc / 2 to generate a correction voltage V123, and inverts the sign of the voltage V9.
 図5に示す補正電圧発生回路23Pでは、接続点901aがグランドに接続され、接続点901cに電圧Vccが印加されている。すなわち、接続点901aに印加される所定の電圧はグランドの電圧であり接続点901cに印加される所定の電圧Vccより低い。補正電圧発生回路23Pは図2に示す出力回路65の代わりに出力回路65Pを有する。出力回路65Pではオペアンプの非反転入力端に接続点901bが接続されて電圧V9が印加される。そのオペアンプは電圧V9をそのまま補正電圧V123として出力し、電圧V9の符号を反転しない。補正電圧発生回路23Pは図2に示す補正電圧発生回路23と同様に機能して同様の効果を有する。 In the correction voltage generation circuit 23P shown in FIG. 5, the connection point 901a is connected to the ground, and the voltage Vcc is applied to the connection point 901c. That is, the predetermined voltage applied to the connection point 901a is a ground voltage and is lower than the predetermined voltage Vcc applied to the connection point 901c. The correction voltage generation circuit 23P has an output circuit 65P instead of the output circuit 65 shown in FIG. In the output circuit 65P, the connection point 901b is connected to the non-inverting input terminal of the operational amplifier, and the voltage V9 is applied. The operational amplifier outputs the voltage V9 as it is as the correction voltage V123, and does not invert the sign of the voltage V9. The correction voltage generation circuit 23P functions similarly to the correction voltage generation circuit 23 shown in FIG. 2 and has the same effect.
 (実施の形態2)
 図6Aは本発明の実施の形態2における物理量センサ22の回路図である。実施の形態2において物理量センサ22は電流センサである。実施の形態2において図1Aに示す実施の形態1における物理量検出装置と同じ部分には同じ参照符号を付す。
(Embodiment 2)
FIG. 6A is a circuit diagram of the physical quantity sensor 22 according to Embodiment 2 of the present invention. In the second embodiment, the physical quantity sensor 22 is a current sensor. In the second embodiment, the same parts as those in the physical quantity detection device in the first embodiment shown in FIG.
 物理量センサ22は、磁気抵抗素子部70と、差動増幅器72と、信号処理部73と、磁気抵抗素子部70にバイアス磁界を印加するバイアス磁石70fとからなる。磁気抵抗素子部70は、ブリッジ接続された磁気抵抗薄膜からなる磁気抵抗素子70a、70b、70c、70dよりなる。磁気抵抗素子70a、70dが接続された接続点170aは電源に接続され、磁気抵抗素子70b、70cが接続された接続点170bはグランドに接続されている。磁気抵抗素子部70に外部から磁界が印加されない状態では、磁気抵抗素子70a、70b、70c、70dからなるブリッジは平衡し、磁気抵抗素子70a、70bが接続されている接続点170cと、磁気抵抗素子70c、70dが接続されている接続点170dとは同電位になるように磁気抵抗素子70a~70dの特性が設定されている。磁気抵抗素子部70の近傍に置かれた導体71に被測定電流Iが流れると、導体の周囲に発生する磁界により、磁気抵抗素子70a、70b、70c、70dの抵抗値が変化し、磁気抵抗素子70a、70b、70c、70dからなるブリッジの平衡が破れ、磁気抵抗素子70a、70b間の接続点170cと磁気抵抗素子70c、70d間の接続点170dとの間に電位差が発生する。この電位差は差動増幅器72で増幅され、信号処理部73にて0セット調整および感度調整されて、出力端子74に磁気抵抗素子部70に作用した磁界すなわち導体71を流れる被測定電流Iに応じた電圧が出力される。 The physical quantity sensor 22 includes a magnetoresistive element unit 70, a differential amplifier 72, a signal processing unit 73, and a bias magnet 70f that applies a bias magnetic field to the magnetoresistive element unit 70. The magnetoresistive element unit 70 includes magnetoresistive elements 70a, 70b, 70c, and 70d made of magnetoresistive thin films connected in a bridge. The connection point 170a to which the magnetoresistive elements 70a and 70d are connected is connected to a power source, and the connection point 170b to which the magnetoresistive elements 70b and 70c are connected is connected to the ground. In a state where no magnetic field is applied to the magnetoresistive element unit 70 from the outside, the bridge composed of the magnetoresistive elements 70a, 70b, 70c, and 70d is balanced, and the connection point 170c to which the magnetoresistive elements 70a and 70b are connected, and the magnetoresistive element The characteristics of the magnetoresistive elements 70a to 70d are set so as to have the same potential as the connection point 170d to which the elements 70c and 70d are connected. When the current I to be measured flows through the conductor 71 placed in the vicinity of the magnetoresistive element portion 70, the resistance values of the magnetoresistive elements 70a, 70b, 70c, and 70d change due to the magnetic field generated around the conductor, and the magnetoresistance The balance of the bridge composed of the elements 70a, 70b, 70c, and 70d is broken, and a potential difference is generated between the connection point 170c between the magnetoresistive elements 70a and 70b and the connection point 170d between the magnetoresistive elements 70c and 70d. This potential difference is amplified by the differential amplifier 72, adjusted to 0 set and adjusted in sensitivity by the signal processing unit 73, and corresponds to the magnetic field acting on the magnetoresistive element unit 70 at the output terminal 74, that is, the measured current I flowing through the conductor 71. Output voltage.
 図6Bは、被測定電流Iの値である物理量xと物理量センサ22の出力する電圧V(x)との関係を示す図である。図6Aと図6Bにおいて、導体71を方向D1に流れる被測定電流Iの最大電流の値が物理量aであり、導体71を方向D1とは逆の方向D2に流れる被測定電流Iの最大電流の値が物理量bである。物理量xは物理量a、b間の任意の値を取る。図6Bに示すように、電圧V(x)は物理量xに対して、下に凸の部分と上に凸の部分とが連続する、いわゆるS字型の特性を有する。 FIG. 6B is a diagram showing the relationship between the physical quantity x, which is the value of the current I to be measured, and the voltage V (x) output from the physical quantity sensor 22. 6A and 6B, the value of the maximum current I of the measured current I flowing through the conductor 71 in the direction D1 is the physical quantity a, and the maximum current of the measured current I flowing through the conductor 71 in the direction D2 opposite to the direction D1. The value is the physical quantity b. The physical quantity x takes an arbitrary value between the physical quantities a and b. As shown in FIG. 6B, the voltage V (x) has a so-called S-shaped characteristic in which a downward convex portion and an upward convex portion are continuous with respect to the physical quantity x.
 図1に示す実施の形態1における物理量検出装置21と同様に、検査装置26は、既知の物理量xを物理量aから物理量bまで連続的に変化させながら物理量センサ22に作用させて、物理量センサ22の出力する電圧V(x)を順次記憶する。そして、検査装置26は、座標(a、V(a))、(b、V(b))を結ぶ直線を表わす式9Aで示す電圧Y(x)を算出する。
Y(x)=V(a)+{V(b)-V(a)}・(x-a)/(b-a) …(式9A)
 検査装置26は、電圧Y(x)と電圧V(x)との差である差電圧Z(x)が零になる電流である物理量cと、物理量a、c間で差電圧Z(x)の絶対値が最大となる電流である物理量dと、物理量c、b間で差電圧Z(x)の絶対値が最大となる電流である物理量eと、被測定電流Iの値である物理量a、b、c、d、eに対してそれぞれ物理量センサ22から出力される電圧V(a)、V(b)、V(c)、V(d)、V(e)と、差電圧Z(d)、Z(e)の7つのパラメータを検出して記憶する。
Similar to the physical quantity detection device 21 in the first embodiment shown in FIG. 1, the inspection device 26 causes the physical quantity sensor 22 to act on the physical quantity sensor 22 while continuously changing the known physical quantity x from the physical quantity a to the physical quantity b. Are sequentially stored. Then, the inspection device 26 calculates a voltage Y (x) represented by Expression 9A representing a straight line connecting the coordinates (a, V (a)), (b, V (b)).
Y (x) = V (a) + {V (b) -V (a)}. (Xa) / (ba) (Equation 9A)
The inspection device 26 uses a physical quantity c that is a current at which a difference voltage Z (x) that is a difference between the voltage Y (x) and the voltage V (x) becomes zero, and a difference voltage Z (x) between the physical quantities a and c. A physical quantity d that is the current with the maximum absolute value, a physical quantity e that is the current with the maximum absolute value of the difference voltage Z (x) between the physical quantities c and b, and a physical quantity a that is the value of the current I to be measured. , B, c, d and e, the voltages V (a), V (b), V (c), V (d) and V (e) output from the physical quantity sensor 22 and the differential voltage Z ( d) The seven parameters Z (e) are detected and stored.
 図7は実施の形態2における補正電圧発生回路23の回路図である。電圧発生器80は、直流電源81と、抵抗82a、82b、82c、82d、83a、83b、83c、83dとからなる。検査装置26はレーザー調整装置等を用いて抵抗82a~83dを調整して、抵抗82a、83dが接続された接続点の電圧と、抵抗82a、82bが接続された接続点の電圧と、抵抗82c、82bが接続された接続点の電圧と、抵抗83c、83dが接続された接続点の電圧と、抵抗83a、83bが接続された接続点の電圧とをそれぞれ電圧V(a)、V(b)、V(c)、V(d)、V(e)に設定する。 FIG. 7 is a circuit diagram of the correction voltage generation circuit 23 according to the second embodiment. The voltage generator 80 includes a DC power supply 81 and resistors 82a, 82b, 82c, 82d, 83a, 83b, 83c, and 83d. The inspection device 26 adjusts the resistors 82a to 83d using a laser adjusting device or the like, and the voltage at the connection point to which the resistors 82a and 83d are connected, the voltage at the connection point to which the resistors 82a and 82b are connected, and the resistor 82c. , 82b, the voltage at the connection point to which the resistors 83c and 83d are connected, and the voltage at the connection point to which the resistors 83a and 83b are connected are the voltages V (a) and V (b ), V (c), V (d), and V (e).
 抵抗90a、90b、90c、90d、90eは互いにこの順に直列に接続されている。抵抗90a、90bが接続された接続点P22の反対側の抵抗90aの一端91である接続点P21には電圧V(a)が印加される。抵抗90d、90eが接続されている接続点P25の反対側の抵抗90eの一端92である接続点P26には電圧V(d)が印加されている。同様に、抵抗93a、93b、93c、93d、93eはこの順で互いに直列に接続されている。抵抗93a、93bが接続されている接続点P31の反対側の抵抗93aの一端94である接続点P32には電圧V(d)が印加される。抵抗93d、93eが接続されている接続点P28の反対側の抵抗93eの一端95である接続点P27には電圧V(c)が印加されている。 The resistors 90a, 90b, 90c, 90d, and 90e are connected in series in this order. The voltage V (a) is applied to the connection point P21 which is one end 91 of the resistor 90a on the opposite side of the connection point P22 to which the resistors 90a and 90b are connected. The voltage V (d) is applied to the connection point P26 which is one end 92 of the resistor 90e on the opposite side of the connection point P25 to which the resistors 90d and 90e are connected. Similarly, the resistors 93a, 93b, 93c, 93d, and 93e are connected in series in this order. The voltage V (d) is applied to the connection point P32 which is one end 94 of the resistor 93a on the opposite side of the connection point P31 to which the resistors 93a and 93b are connected. The voltage V (c) is applied to the connection point P27 which is one end 95 of the resistor 93e on the opposite side of the connection point P28 to which the resistors 93d and 93e are connected.
 コンパレータ96aは、入力端子23aに入力される物理量センサ22からの電圧V(x)と抵抗90aの一端91に加えられる電圧V(a)とを比較し、電圧V(x)が電圧V(a)よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。また、コンパレータ96bは、電圧V(x)と抵抗90a、90bが接続された接続点P22の電圧V21とを比較し、電圧V(x)が電圧V21より低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。同様に、コンパレータ96cは、電圧V(x)と抵抗90b、90cが接続された接続点P23の電圧V22とを比較し、電圧V(x)が電圧V22よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。また、コンパレータ96dは、電圧V(x)と抵抗90c、90dが接続された接続点P24の電圧V23とを比較し、電圧V(x)が電圧V23よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。コンパレータ96eは、電圧V(x)と抵抗90d、90eが接続された接続点P25の電圧V24とを比較し、電圧V(x)が電圧V24よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。また、コンパレータ96fは電圧V(x)と抵抗90eの一端92に加えられる電圧V(d)とを比較し、電圧V(x)が電圧V(d)よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。 The comparator 96a compares the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a with the voltage V (a) applied to one end 91 of the resistor 90a, and the voltage V (x) is the voltage V (a "1", that is, an active level signal is output when it is lower, and "0", that is, an inactive level signal, when it is higher. The comparator 96b compares the voltage V (x) with the voltage V21 at the connection point P22 to which the resistors 90a and 90b are connected. When the voltage V (x) is lower than the voltage V21, the comparator 96b is “1”, that is, an active level signal. When the signal is high, a signal of “0”, that is, an inactive level is output. Similarly, the comparator 96c compares the voltage V (x) with the voltage V22 at the connection point P23 to which the resistors 90b and 90c are connected. When the voltage V (x) is lower than the voltage V22, the comparator 96c is “1”, that is, the active level. When the signal is high, a signal of “0”, that is, an inactive level is output. The comparator 96d compares the voltage V (x) with the voltage V23 at the connection point P24 to which the resistors 90c and 90d are connected. When the voltage V (x) is lower than the voltage V23, the comparator 96d is “1”, that is, the active level. A signal is output, and when it is high, a signal of “0”, that is, an inactive level is output. The comparator 96e compares the voltage V (x) with the voltage V24 at the connection point P25 to which the resistors 90d and 90e are connected. When the voltage V (x) is lower than the voltage V24, the comparator 96e outputs “1”, that is, an active level signal. When it is high, a signal of “0”, that is, an inactive level is output. The comparator 96f compares the voltage V (x) with the voltage V (d) applied to the one end 92 of the resistor 90e. When the voltage V (x) is lower than the voltage V (d), the comparator 96f is “1”, that is, the active level. When the signal is high, a signal of “0”, that is, an inactive level is output.
 コンパレータ97aは電圧V(x)と抵抗93aの一端94に加えられる電圧V(d)とを比較し、電圧V(x)が電圧V(d)よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ97bは、電圧V(x)と抵抗93a、93bが接続された接続点P31の電圧V25とを比較し、電圧V(x)が電圧V25よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ97cは、電圧V(x)と抵抗93b、93cが接続された接続点P30の電圧V26とを比較し、電圧V(x)が電圧V26よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ97dは、電圧V(x)と抵抗93c、93dが接続された接続点P29の電圧V27とを比較し、電圧V(x)が電圧V27よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ97eは、電圧V(x)と抵抗93d、93eが接続された接続点P28の電圧V28とを比較し、電圧V(x)が電圧V28よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ97fは電圧V(x)と抵抗93eの一端95に加えられる電圧V(c)とを比較し、電圧V(x)が電圧V(c)よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。 The comparator 97a compares the voltage V (x) with the voltage V (d) applied to one end 94 of the resistor 93a. When the voltage V (x) is lower than the voltage V (d), the comparator 97a is “0”, that is, an inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output. The comparator 97b compares the voltage V (x) with the voltage V25 at the connection point P31 to which the resistors 93a and 93b are connected, and when the voltage V (x) is lower than the voltage V25, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output. The comparator 97c compares the voltage V (x) with the voltage V26 at the connection point P30 to which the resistors 93b and 93c are connected, and when the voltage V (x) is lower than the voltage V26, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output. The comparator 97d compares the voltage V (x) with the voltage V27 at the connection point P29 to which the resistors 93c and 93d are connected. When the voltage V (x) is lower than the voltage V27, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output. The comparator 97e compares the voltage V (x) with the voltage V28 at the connection point P28 to which the resistors 93d and 93e are connected, and when the voltage V (x) is lower than the voltage V28, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output. The comparator 97f compares the voltage V (x) with the voltage V (c) applied to the one end 95 of the resistor 93e. When the voltage V (x) is lower than the voltage V (c), the comparator 97f is “0”, that is, an inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output.
 論理和回路98aはコンパレータ96a、97fの出力する信号の論理和をとり、コンパレータ96a、97fの出力する信号がともに非アクティブレベルであるときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルであるときにアクティブレベルの信号を出力する。論理和回路98bはコンパレータ96b、97eの出力する信号の論理和をとり、コンパレータ96b、97eの出力する信号がともに非アクティブレベルであるときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルであるときにアクティブレベルの信号を出力する。同様に、論理和回路98cはコンパレータ96c、97dの出力する信号の論理和をとり、コンパレータ96c、97dの出力する信号がともに非アクティブレベルであるときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルであるときにアクティブレベルの信号を出力する。論理和回路98dはコンパレータ96d、97cの出力する信号の論理和をとり、コンパレータ96d、97cの出力する信号がともに非アクティブレベルであるときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルであるときにアクティブレベルの信号を出力する。論理和回路98eはコンパレータ96e、97bの出力する信号の論理和をとり、コンパレータ96e、97bの出力する信号がともに非アクティブレベルであるときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルであるときにアクティブレベルの信号を出力する。論理和回路98fはコンパレータ96f、97aの出力する信号の論理和をとり、コンパレータ96f、97aの出力する信号がともに非アクティブレベルであるときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルであるときにアクティブレベルの信号を出力する。 The OR circuit 98a calculates the logical sum of the signals output from the comparators 96a and 97f, and outputs an inactive level signal when both of the signals output from the comparators 96a and 97f are at an inactive level. When at least one of them is at the active level, an active level signal is output. The logical sum circuit 98b takes the logical sum of the signals output from the comparators 96b and 97e, and outputs an inactive level signal when both the signals output from the comparators 96b and 97e are at the inactive level. When at least one of them is at the active level, an active level signal is output. Similarly, the OR circuit 98c calculates the logical sum of the signals output from the comparators 96c and 97d, and outputs an inactive level signal when both the signals output from the comparators 96c and 97d are at the inactive level. An active level signal is output when at least one of the signals is at an active level. The OR circuit 98d calculates the logical sum of the signals output from the comparators 96d and 97c, and outputs an inactive level signal when both of the signals output from the comparators 96d and 97c are at the inactive level. When at least one of them is at the active level, an active level signal is output. The OR circuit 98e calculates the logical sum of the signals output from the comparators 96e and 97b, and outputs an inactive level signal when both the signals output from the comparators 96e and 97b are in an inactive level. When at least one of them is at the active level, an active level signal is output. The OR circuit 98f calculates the logical sum of the signals output from the comparators 96f and 97a, and outputs an inactive level signal when both the signals output from the comparators 96f and 97a are at the inactive level. When at least one of them is at the active level, an active level signal is output.
 スイッチ99aは論理和回路98aの出力する信号が「1」すなわちアクティブレベルの時に動作して閉となり、その信号が「0」すなわち非アクティブレベルの時に非動作して開となる。スイッチ99b、99c、99d、99e、99fはそれぞれ論理和回路98b、98c、98d、98e、98fの出力する信号が「1」すなわちアクティブレベルの時に動作して閉となり、それらの信号が「0」すなわち非アクティブレベルの時に非動作して開となる。スイッチ99a、99b、99c、99d、99e、99fは互いに直列に接続されている。スイッチ99fの一端100は直流電源81に接続され、スイッチ99aの一端101は抵抗102の一端と接続されている。抵抗102の他端は抵抗103の一端に接続されている。抵抗104a、104b、104c、104d、104e、104fはスイッチ99a、99b、99c、99d、99e、99fの両端に接続され、スイッチ99a、99b、99c、99d、99e、99fとそれぞれ並列に接続されている。 The switch 99a is operated and closed when the signal output from the OR circuit 98a is "1", that is, active level, and is not operated and opened when the signal is "0", that is, inactive level. The switches 99b, 99c, 99d, 99e, and 99f are closed when the signals output from the OR circuits 98b, 98c, 98d, 98e, and 98f are “1”, that is, at the active level, and these signals are “0”. In other words, it is inoperative and opened at the inactive level. The switches 99a, 99b, 99c, 99d, 99e, 99f are connected in series with each other. One end 100 of the switch 99f is connected to the DC power supply 81, and one end 101 of the switch 99a is connected to one end of the resistor 102. The other end of the resistor 102 is connected to one end of the resistor 103. Resistors 104a, 104b, 104c, 104d, 104e, and 104f are connected to both ends of the switches 99a, 99b, 99c, 99d, 99e, and 99f, and are connected in parallel with the switches 99a, 99b, 99c, 99d, 99e, and 99f, respectively. Yes.
 抵抗110a、110b、110c、110d、110eはこの順で互いに直列に接続されている。抵抗110a、110bが接続されている接続点P42の反対側の抵抗110aの一端111である接続点P41には電圧V(c)が印加される。抵抗110d、110eが接続されている接続点P45の反対側の抵抗110eの一端112である接続点P46には電圧V(e)が印加されている。同様に、抵抗113a、113b、113c、113d、113eはこの順で互いに直列に接続されている。抵抗113a、113bが接続されている接続点P51の反対側の抵抗113aの一端114であるP52には電圧V(e)が印加される。抵抗113d、113eが接続されている接続点P48の反対側の抵抗113eの一端115である接続点P47には電圧V(b)が印加されている。 The resistors 110a, 110b, 110c, 110d, and 110e are connected in series in this order. A voltage V (c) is applied to a connection point P41 which is one end 111 of the resistor 110a on the opposite side of the connection point P42 to which the resistors 110a and 110b are connected. A voltage V (e) is applied to a connection point P46 which is one end 112 of the resistor 110e on the opposite side of the connection point P45 to which the resistors 110d and 110e are connected. Similarly, the resistors 113a, 113b, 113c, 113d, and 113e are connected in series in this order. The voltage V (e) is applied to P52 which is one end 114 of the resistor 113a on the side opposite to the connection point P51 to which the resistors 113a and 113b are connected. The voltage V (b) is applied to the connection point P47 which is one end 115 of the resistance 113e on the side opposite to the connection point P48 to which the resistors 113d and 113e are connected.
 コンパレータ116aは、入力端子23aに入力される物理量センサ22からの電圧V(x)と抵抗110aの一端111に加えられる電圧V(c)とを比較し、電圧V(x)が電圧V(c)よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。コンパレータ116bは、電圧V(x)と抵抗110a、110bが接続されている接続点P42の電圧V41とを比較し、電圧V(x)が電圧V41よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。コンパレータ116cは、電圧V(x)と抵抗110b、110cが接続された接続点P43の電圧V42とを比較し、電圧V(x)が電圧V42よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。コンパレータ116dは、電圧V(x)と抵抗110c、110dが接続された接続点P44の電圧V43とを比較し、電圧V(x)が電圧V43よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。コンパレータ116eは、電圧V(x)と抵抗110d、110eが接続された接続点P45の電圧V44とを比較し、電圧V(x)が電圧V44よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。コンパレータ116fは、電圧V(x)と抵抗110eの一端112に加えられる電圧V(e)とを比較し、電圧V(x)が電圧V(e)よりも低い時に「1」すなわちアクティブレベルの信号を出力し、高い時に「0」すなわち非アクティブレベルの信号を出力する。 The comparator 116a compares the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a with the voltage V (c) applied to the one end 111 of the resistor 110a, and the voltage V (x) is the voltage V (c "1", that is, an active level signal is output when it is lower, and "0", that is, an inactive level signal, when it is higher. The comparator 116b compares the voltage V (x) with the voltage V41 at the connection point P42 to which the resistors 110a and 110b are connected. When the voltage V (x) is lower than the voltage V41, the comparator 116b is “1”, that is, an active level signal. When the signal is high, a signal of “0”, that is, an inactive level is output. The comparator 116c compares the voltage V (x) with the voltage V42 at the connection point P43 to which the resistors 110b and 110c are connected. When the voltage V (x) is lower than the voltage V42, the comparator 116c outputs a signal of “1”, that is, an active level. When it is high, a signal of “0”, that is, an inactive level is output. The comparator 116d compares the voltage V (x) with the voltage V43 at the connection point P44 to which the resistors 110c and 110d are connected. When the voltage V (x) is lower than the voltage V43, the comparator 116d outputs “1”, that is, an active level signal. When it is high, a signal of “0”, that is, an inactive level is output. The comparator 116e compares the voltage V (x) with the voltage V44 at the connection point P45 to which the resistors 110d and 110e are connected. When the voltage V (x) is lower than the voltage V44, the comparator 116e outputs “1”, that is, an active level signal. When it is high, a signal of “0”, that is, an inactive level is output. The comparator 116f compares the voltage V (x) with the voltage V (e) applied to the one end 112 of the resistor 110e. When the voltage V (x) is lower than the voltage V (e), the comparator 116f is “1”, that is, the active level. A signal is output, and when it is high, a signal of “0”, that is, an inactive level is output.
 コンパレータ117aは電圧V(x)と抵抗113aの一端114に加えられる電圧V(e)とを比較し、電圧V(x)が電圧V(e)よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ117bは、電圧V(x)と抵抗113a、113bが接続された接続点P51の電圧V45とを比較し、電圧V(x)が電圧V45よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ117cは、電圧V(x)と抵抗113b、113cが接続された接続点P50の電圧V46との比較し、電圧V(x)が電圧V46よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ117dは、電圧V(x)と抵抗113c、113dが接続された接続点P49の電圧V47とを比較し、電圧V(x)が電圧V47よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ117eは、電圧V(x)と抵抗113d、113eが接続された接続点P48の電圧V48とを比較し、電圧V(x)が電圧V48よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。コンパレータ117fは、電圧V(x)と抵抗113eの一端115に加えられる電圧V(b)とを比較し、電圧V(x)が電圧V(b)よりも低い時に「0」すなわち非アクティブレベルの信号を出力し、高い時に「1」すなわちアクティブレベルの信号を出力する。 The comparator 117a compares the voltage V (x) with the voltage V (e) applied to the one end 114 of the resistor 113a. When the voltage V (x) is lower than the voltage V (e), “0”, that is, an inactive level. A signal is output, and when it is high, a signal of “1”, that is, an active level is output. The comparator 117b compares the voltage V (x) with the voltage V45 at the connection point P51 to which the resistors 113a and 113b are connected. When the voltage V (x) is lower than the voltage V45, a signal of “0”, that is, an inactive level. When the signal is high, a signal of “1”, that is, an active level is output. The comparator 117c compares the voltage V (x) with the voltage V46 at the connection point P50 to which the resistors 113b and 113c are connected. When the voltage V (x) is lower than the voltage V46, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output. The comparator 117d compares the voltage V (x) with the voltage V47 at the connection point P49 to which the resistors 113c and 113d are connected, and when the voltage V (x) is lower than the voltage V47, it is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output. The comparator 117e compares the voltage V (x) with the voltage V48 at the connection point P48 to which the resistors 113d and 113e are connected. When the voltage V (x) is lower than the voltage V48, the comparator 117e is “0”, that is, an inactive level signal. When the signal is high, a signal of “1”, that is, an active level is output. The comparator 117f compares the voltage V (x) with the voltage V (b) applied to the one end 115 of the resistor 113e. When the voltage V (x) is lower than the voltage V (b), the comparator 117f is “0”, that is, the inactive level. The signal of “1”, that is, an active level signal is output when the signal is high.
 論理和回路118aはコンパレータ116a、117fの出力する信号の論理和をとり、コンパレータ116a、117fの出力する信号がともに非アクティブレベルのときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路118bはコンパレータ116b、117eの出力する信号の論理和をとり、コンパレータ116b、117eの出力する信号がともに非アクティブレベルのときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路118cはコンパレータ116c、117dの出力する信号の論理和をとり、コンパレータ116c、117dの出力する信号がともに非アクティブレベルのときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路118dはコンパレータ116d、117cの出力する信号の論理和をとり、コンパレータ116d、117cの出力する信号がともに非アクティブレベルのときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路118eはコンパレータ116e、117bの出力する信号の論理和をとり、コンパレータ116e、117bの出力する信号がともに非アクティブレベルのときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルのときにアクティブレベルの信号を出力する。論理和回路118fはコンパレータ116f、117aの出力する信号の論理和をとり、コンパレータ116f、117aの出力する信号がともに非アクティブレベルのときに非アクティブレベルの信号を出力し、それらの信号のうちの少なくとも一方がアクティブレベルのときにアクティブレベルの信号を出力する。 The OR circuit 118a calculates the logical sum of the signals output from the comparators 116a and 117f, and outputs an inactive level signal when both the signals output from the comparators 116a and 117f are in an inactive level. An active level signal is output when at least one of them is at an active level. The OR circuit 118b calculates the logical sum of the signals output from the comparators 116b and 117e, and outputs an inactive level signal when both of the signals output from the comparators 116b and 117e are at an inactive level. An active level signal is output when at least one of them is at an active level. The OR circuit 118c calculates the logical sum of the signals output from the comparators 116c and 117d, and outputs an inactive level signal when both the signals output from the comparators 116c and 117d are in an inactive level. An active level signal is output when at least one of them is at an active level. The logical sum circuit 118d calculates the logical sum of the signals output from the comparators 116d and 117c, and outputs an inactive level signal when both the signals output from the comparators 116d and 117c are in an inactive level. An active level signal is output when at least one of them is at an active level. The logical sum circuit 118e calculates the logical sum of the signals output from the comparators 116e and 117b, and outputs an inactive level signal when both the signals output from the comparators 116e and 117b are in an inactive level. An active level signal is output when at least one of them is at an active level. The logical sum circuit 118f calculates the logical sum of the signals output from the comparators 116f and 117a, and outputs an inactive level signal when the signals output from the comparators 116f and 117a are both in an inactive level. An active level signal is output when at least one of them is at an active level.
 スイッチ119aは論理和回路118aの出力する信号が「1」すなわちアクティブレベルの時に動作して閉となり、論理和回路118aの出力する信号が「0」すなわち非アクティブレベルの時に非動作して開となる。同様に、スイッチ119b、119c、119d、119e、119fはそれぞれ論理和回路118b、118c、118d、118e、118fの出力する信号が「1」すなわちアクティブレベルの時に動作して閉となり、それらの信号が「0」すなわち非アクティブレベルの時に非動作して開となる。スイッチ119a、119b、119c、119d、119e、119fは互いに直列に接続されている。スイッチ119fの一端120はグランドに接続され、スイッチ119aの一端121は抵抗103の他端と接続されている。抵抗122a、122b、122c、122d、122e、122fはそれぞれスイッチ119a、119b、119c、119d、119e、119fの両端に接続されており、すなわちスイッチ119a、119b、119c、119d、119e、119fとそれぞれ並列に接続されている。 The switch 119a is closed when the signal output from the OR circuit 118a is "1", that is, active level, and is not operated when the signal output from the OR circuit 118a is "0", that is, when it is inactive level. Become. Similarly, the switches 119b, 119c, 119d, 119e, and 119f are closed when the signals output from the OR circuits 118b, 118c, 118d, 118e, and 118f are “1”, that is, at the active level. When it is “0”, that is, inactive level, it is inoperative and opened. The switches 119a, 119b, 119c, 119d, 119e, and 119f are connected in series with each other. One end 120 of the switch 119f is connected to the ground, and one end 121 of the switch 119a is connected to the other end of the resistor 103. The resistors 122a, 122b, 122c, 122d, 122e, and 122f are respectively connected to both ends of the switches 119a, 119b, 119c, 119d, 119e, and 119f. It is connected to the.
 図7に示す補正電圧発生回路23の動作を説明する。物理量センサ22に物理量a、b間の任意の物理量xが作用すると、物理量センサ22からは電圧V(x)が発生し、補正電圧発生回路23の入力端子23aに入力される。電圧V(x)はコンパレータ96a~96f、97a~97fにおいて、電圧V(a)、V21、V22、V23、V24、V(d)、V25、V26、V27、V28、V(c)、V41、V42、V43、V44、V(e)、V45、V46、V47、V48、V(b)と比較される。 The operation of the correction voltage generation circuit 23 shown in FIG. When an arbitrary physical quantity x between physical quantities a and b acts on the physical quantity sensor 22, a voltage V (x) is generated from the physical quantity sensor 22 and is input to the input terminal 23 a of the correction voltage generation circuit 23. The voltage V (x) is applied to the voltages V (a), V21, V22, V23, V24, V (d), V25, V26, V27, V28, V (c), V41, in the comparators 96a to 96f and 97a to 97f. It is compared with V42, V43, V44, V (e), V45, V46, V47, V48, V (b).
 電圧V(x)が電圧V(a)のとき、コンパレータ96a~96f、116a~116fの出力する信号が「1」すなわちアクティブレベルとなり、コンパレータ97a~97f、117a~117fの出力する信号が「0」すなわち非アクティブレベルとなるので、論理和回路98a~98f、118a~118fの出力する信号はすべて「1」すなわちアクティブレベルとなり、スイッチ99a~99f、119a~119fはすべて動作して閉じる。これにより、スイッチ99aの一端101は直接、直流電源81に接続されるとともに、スイッチ119aの一端121は直接、グランドに接続される。抵抗102、103が抵抗値Rを有して直流電源81の電圧がVccであるときに、抵抗102、103が接続される接続点902bの電圧V29は、
{R/(2・R)}・Vcc=Vcc/2 …(式9B)
となる。
When the voltage V (x) is the voltage V (a), the signals output from the comparators 96a to 96f and 116a to 116f are “1”, that is, the active level, and the signals output from the comparators 97a to 97f and 117a to 117f are “0”. In other words, all the signals output from the OR circuits 98a to 98f and 118a to 118f are set to "1", that is, the active level, and the switches 99a to 99f and 119a to 119f are all operated and closed. Thereby, one end 101 of the switch 99a is directly connected to the DC power supply 81, and one end 121 of the switch 119a is directly connected to the ground. When the resistors 102 and 103 have the resistance value R and the voltage of the DC power supply 81 is Vcc, the voltage V29 at the connection point 902b to which the resistors 102 and 103 are connected is
{R / (2 · R)} · Vcc = Vcc / 2 (Equation 9B)
It becomes.
 電圧V(x)が電圧V(a)、V21間にある場合にはコンパレータ96a、97a~97fの出力する信号が「0」すなわち非アクティブレベルとなり、コンパレータ96b~96f、116a~116fの出力する信号は「1」すなわちアクティブレベルとなる。その結果、論理和回路98aの出力する信号のみが「0」すなわち非アクティブレベルとなり、他の論理和回路98b~98f、118a~118fが出力する信号がアクティブレベルになるので、スイッチ99aのみが非動作して開き、他のスイッチ99b~99f、119a~119fは動作して閉じる。抵抗104a、104b、104c、104d、104e、104fが抵抗値r1を有すると、抵抗102、103が接続された接続点902bの電圧V29は、
{R/(2・R+r1)}・Vcc …(式10)
となり、式9Bに示す電圧Vcc/2より低下する。
When the voltage V (x) is between the voltages V (a) and V21, the signals output from the comparators 96a and 97a to 97f are “0”, that is, the inactive level, and the comparators 96b to 96f and 116a to 116f output. The signal is “1”, that is, an active level. As a result, only the signal output from the OR circuit 98a is “0”, that is, the inactive level, and the signals output from the other OR circuits 98b to 98f and 118a to 118f are at the active level. Operates and opens, and the other switches 99b to 99f and 119a to 119f operate and close. When the resistors 104a, 104b, 104c, 104d, 104e, and 104f have the resistance value r1, the voltage V29 at the connection point 902b to which the resistors 102 and 103 are connected is
{R / (2.R + r1)}. Vcc (Formula 10)
Thus, the voltage drops below the voltage Vcc / 2 shown in Equation 9B.
 以下、実施の形態1における物理量検出装置と同様に、電圧V(x)が電圧V(a)から電圧V(d)に近づくにつれ、スイッチ99b、99c、99d、99e、99fがこの順で順次非動作して開き、電圧V29は低下して、式11に示す最低電圧V29minに至る。
V29min={R/(2・R+6・r1)}・Vcc …(式11)
 図1Aに示す検査装置26は、式12に示す電圧Vcc/2から最低電圧V29minを引いた差が図6Bに示す差電圧Z(d)と等しくなるよう、レーザー調整装置等を用いて抵抗104a~104fの抵抗値r1を設定する。
Vcc/2-{R/(2・R+6・r1)}・Vcc …(式12)
 次に、電圧V(x)が電圧V(d)よりも高くなり電圧V(c)に近づくにつれ、スイッチ99f、99e、99d、99c、99bがこの順で順次動作して閉じ、電圧V(x)が電圧V(c)になると電圧V29は再び、
{R/(2・R)}・Vcc=Vcc/2 …(式13)
となる。
Hereinafter, as with the physical quantity detection device in the first embodiment, as the voltage V (x) approaches the voltage V (d) from the voltage V (a), the switches 99b, 99c, 99d, 99e, and 99f are sequentially provided in this order. It opens when it does not operate, and the voltage V29 decreases to reach the minimum voltage V29min shown in Equation 11.
V29min = {R / (2.R + 6.r1)}. Vcc (Formula 11)
The inspection device 26 shown in FIG. 1A uses a laser adjusting device or the like so that the difference obtained by subtracting the minimum voltage V29min from the voltage Vcc / 2 shown in Equation 12 is equal to the difference voltage Z (d) shown in FIG. 6B. A resistance value r1 of ~ 104f is set.
Vcc / 2− {R / (2 · R + 6 · r1)} · Vcc (Formula 12)
Next, as the voltage V (x) becomes higher than the voltage V (d) and approaches the voltage V (c), the switches 99f, 99e, 99d, 99c, 99b are sequentially operated and closed in this order, and the voltage V ( When x) becomes the voltage V (c), the voltage V29 is again
{R / (2.R)}. Vcc = Vcc / 2 (Formula 13)
It becomes.
 また電圧V(x)が電圧V(c)、V41間にある場合にはコンパレータ96a~96f、116a、117a~117fの出力する信号が「0」すなわち非アクティブレベルとなり、コンパレータ97a~97f、116b~116fの出力する信号は「1」すなわちアクティブレベルとなる。その結果、論理和回路98a~98fの出力が1、論理和回路118aの出力が0、論理和回路118b~118fが1となるので、スイッチ119aのみが非動作して開き、その他のスイッチ99a~99f、119b~119fはすべて動作して閉じた状態となる。抵抗122a~122fが抵抗値r2を有すると、抵抗102、103が接続された接続点902bの電圧V29は、
{(R+r2)/(2・R+r2)}・Vcc=[1/2+r2/{2・(2・R+r2)}]・Vcc …(式14)
となり、式13に示す電圧Vcc/2より上昇する。
When the voltage V (x) is between the voltages V (c) and V41, the signals output from the comparators 96a to 96f, 116a, 117a to 117f are “0”, that is, inactive levels, and the comparators 97a to 97f, 116b. The signals output from .about.116f are "1", that is, the active level. As a result, the outputs of the logical sum circuits 98a to 98f are 1, the output of the logical sum circuit 118a is 0, and the logical sum circuits 118b to 118f are 1. Therefore, only the switch 119a is inoperative and opened, and the other switches 99a to 99a All of 99f, 119b to 119f are operated and closed. When the resistors 122a to 122f have the resistance value r2, the voltage V29 at the connection point 902b to which the resistors 102 and 103 are connected is
{(R + r2) / (2 · R + r2)} · Vcc = [1/2 + r2 / {2 · (2 · R + r2)}] · Vcc (Formula 14)
Thus, the voltage rises from the voltage Vcc / 2 shown in Equation 13.
 以下、電圧V(x)が電圧V(c)から電圧V(e)に近づくにつれ、スイッチ119b、119c、119d、119e、119fがこの順で順次非動作して開き、電圧V29は上昇して式15に示す最高電圧V29maxに至る。
V29max={(R+6・r2)/(2・R+6・r2)}・Vcc=[1/2+6・r2/{2・(2・R+6・r2)}]・Vcc …(式15)
 図1Aに示す検査装置26は電圧Vcc/2から式16に示す最高電圧V29maxを引いた差が図6Bに示す差電圧Z(e)と等しくなるよう、レーザー調整装置等を用いて抵抗122a~122fの抵抗値r2を設定する。
Vcc/2-{1/2+r2/(2・R+6・r2)}・Vcc …(式16)
 次に、電圧V(x)が電圧V(e)よりも高くなり電圧V(b)に近づくにつれ、スイッチ119f、119e、119d、119c、119bがこの順で順次動作して閉じ、抵抗102、103が接続された接続点902bの電圧V29は再び、
{R/(2・R)}・Vcc=Vcc/2 …(式17)
に戻る。
Hereinafter, as the voltage V (x) approaches the voltage V (e) from the voltage V (c), the switches 119b, 119c, 119d, 119e, and 119f are sequentially deactivated and opened in this order, and the voltage V29 increases. The maximum voltage V29max shown in Equation 15 is reached.
V29max = {(R + 6 · r2) / (2 · R + 6 · r2)} · Vcc = [1/2 + 6 · r2 / {2 · (2 · R + 6 · r2)}] · Vcc (Formula 15)
The inspection device 26 shown in FIG. 1A uses a laser adjustment device or the like so that the difference obtained by subtracting the maximum voltage V29max shown in Equation 16 from the voltage Vcc / 2 is equal to the difference voltage Z (e) shown in FIG. 6B. A resistance value r2 of 122f is set.
Vcc / 2− {1/2 + r2 / (2 · R + 6 · r2)} · Vcc (Equation 16)
Next, as the voltage V (x) becomes higher than the voltage V (e) and approaches the voltage V (b), the switches 119f, 119e, 119d, 119c, and 119b are sequentially operated and closed in this order, and the resistors 102, The voltage V29 at the connection point 902b to which 103 is connected is again
{R / (2 · R)} · Vcc = Vcc / 2 (Equation 17)
Return to.
 図8Aは電圧V(x)に対する抵抗102、103が接続された接続点902bの電圧V29の変化を示す概念図である。図8Bは補正電圧発生回路23の出力端子23bから出力される補正電圧V123を示す概念図である。図7に示す出力回路65は、電圧Vcc/2が入力された非反転入力端を有するオペアンプを備える。電圧V29はオペアンプの反転入力端に入力され、電圧Vcc/2に対して反転されて補正電圧V123として出力端子23bから出力される。すなわち、電圧V29の符号は出力回路65で反転される。これにより、補正電圧発生回路23は、物理量a、b間の任意の物理量xが物理量センサ22に作用したときに発生する電圧V(x)と式9Aに示す電圧Y(x)との差である差電圧Z(x)に近似した補正電圧V123を発生することができる。 FIG. 8A is a conceptual diagram showing a change in the voltage V29 at the connection point 902b to which the resistors 102 and 103 are connected with respect to the voltage V (x). FIG. 8B is a conceptual diagram showing the correction voltage V123 output from the output terminal 23b of the correction voltage generation circuit 23. The output circuit 65 shown in FIG. 7 includes an operational amplifier having a non-inverting input terminal to which the voltage Vcc / 2 is input. The voltage V29 is input to the inverting input terminal of the operational amplifier, is inverted with respect to the voltage Vcc / 2, and is output from the output terminal 23b as the correction voltage V123. That is, the sign of the voltage V29 is inverted by the output circuit 65. As a result, the correction voltage generation circuit 23 determines the difference between the voltage V (x) generated when an arbitrary physical quantity x between the physical quantities a and b acts on the physical quantity sensor 22 and the voltage Y (x) shown in Expression 9A. A correction voltage V123 approximate to a certain difference voltage Z (x) can be generated.
 補正電圧V123を図4Aに示す加算回路24に入力することにより、物理量xに対して電圧V(x)が下に凸の部分と、上に凸の部分とが連続するいわゆるS字型の特性の非線形性を良好に補正できる。 By inputting the correction voltage V123 into the adder circuit 24 shown in FIG. 4A, a so-called S-shaped characteristic in which the voltage V (x) has a downwardly convex portion and an upwardly convex portion with respect to the physical quantity x. Can be corrected satisfactorily.
 以上の説明から明らかなように、実施の形態2における物理量検出装置21は、電流等の物理量に対応する電圧を発生する物理量センサ22が、2つの物理量a、b間の任意の物理量xに対して出力する電圧が上に凸となる第1の区間と下に凸となる第2の区間を有する場合においても、複雑な演算装置を設けることなく、任意の物理量xとこれに対応する出力電圧との非線形性を良好に補正できる。物理量検出装置21は複雑な演算装置を有しないので、きわめて大きい応答速度を有し、物理量が高速で変化した場合にも容易に追従できる。なお、実施の形態2においては、補正電圧発生回路23は電圧V(a)、V(d)間を分圧する5個の抵抗と、電圧V(d)、V(c)間を分圧する5個の抵抗と、電圧V(c)、V(e)間を分圧する5個の抵抗と、電圧V(e)、V(b)間を分圧する5個の抵抗と、これらの抵抗により分圧された電圧と物理量センサ22から出力される電圧V(x)とを比較する24個のコンパレータと、これらのコンパレータの出力が入力される12個の論理和回路と、これらの論理和回路で制御される12個のスイッチと、これらの各スイッチに並列に接続された12個の抵抗を含む。実施の形態2における物理量検出装置はこれに限定されるものではなく、nをn≧3を満たす所定の整数とすると、一般に電圧V(a)、V(d)間を分圧するn-1個の抵抗と、電圧V(d)、V(c)間を分圧するn-1個の抵抗と、電圧V(c)、V(e)間を分圧するn-1個の抵抗と、電圧V(e)、V(b)間を分圧するn-1個の抵抗と、これらの抵抗により分圧された電圧と物理量センサから出力される電圧V(x)とをそれぞれ比較する4n個のコンパレータと、これらのコンパレータの出力する信号がそれぞれ入力される2n個の論理和回路と、これらの論理和回路で制御される2n個のスイッチと、これらのスイッチにそれぞれ並列に接続された2n個の抵抗を備える。 As is apparent from the above description, in the physical quantity detection device 21 according to the second embodiment, the physical quantity sensor 22 that generates a voltage corresponding to a physical quantity such as a current is used for any physical quantity x between the two physical quantities a and b. Even if the output voltage has a first interval that protrudes upward and a second interval that protrudes downward, an arbitrary physical quantity x and an output voltage corresponding to this can be obtained without providing a complicated arithmetic unit. Can be corrected well. Since the physical quantity detection device 21 does not have a complicated arithmetic device, it has a very high response speed and can easily follow even when the physical quantity changes at high speed. In the second embodiment, the correction voltage generation circuit 23 divides the voltage V (a) and V (d) between five resistors and the voltage V (d) and V (c) 5. Are divided by these resistors, five resistors that divide the voltages V (c) and V (e), five resistors that divide the voltages V (e) and V (b), and these resistors. 24 comparators that compare the pressed voltage with the voltage V (x) output from the physical quantity sensor 22, 12 OR circuits to which the outputs of these comparators are input, and these OR circuits It includes 12 switches to be controlled and 12 resistors connected in parallel to each of these switches. The physical quantity detection device according to the second embodiment is not limited to this. If n is a predetermined integer satisfying n ≧ 3, generally n−1 pieces that divide the voltage between V (a) and V (d). , N−1 resistors dividing voltage V (d), V (c), n−1 resistors dividing voltage V (c), V (e), and voltage V (E) n-1 resistors for dividing the voltage between V (b) and 4n comparators for comparing the voltage divided by these resistors and the voltage V (x) output from the physical quantity sensor, respectively. 2n logical sum circuits to which signals output from these comparators are respectively input, 2n switches controlled by these logical sum circuits, and 2n number of switches connected in parallel to these switches, respectively. Provide resistance.
 詳述すると、kが2≦k≦n-1を満たす任意の整数として、一般に、図7に示す補正電圧発生回路23は以下の構成を有する。 Specifically, the correction voltage generation circuit 23 shown in FIG. 7 generally has the following configuration, where k is an arbitrary integer satisfying 2 ≦ k ≦ n−1.
 電圧発生器80は、電圧V(a)と電圧V(b)と電圧V(c)と電圧V(d)と電圧V(e)とを発生する。 The voltage generator 80 generates a voltage V (a), a voltage V (b), a voltage V (c), a voltage V (d), and a voltage V (e).
 複数の抵抗(90a~90e)は、電圧V(a)が印加される第1の接続点(P21)と、第kの接続点(P22~P25)と、電圧V(d)が印加される第nの接続点(P26)がこの順で繋がるように、第1の接続点(P1)から第nの接続点(P6)まで第kの接続点(P2~P5)で直列に接続されている。 The plurality of resistors (90a to 90e) are applied with the first connection point (P21) to which the voltage V (a) is applied, the kth connection point (P22 to P25), and the voltage V (d). The nth connection point (P26) is connected in series at the kth connection point (P2 to P5) from the first connection point (P1) to the nth connection point (P6) so as to be connected in this order. Yes.
 第1のコンパレータ(96a)は、電圧V(a)と電圧V(x)とを比較する。第kのコンパレータ(96b~96e)は、第kの接続点(P22~P25)の電圧と電圧V(x)とを比較する。第nのコンパレータ(96f)は、電圧V(d)と電圧V(x)とを比較する。 The first comparator (96a) compares the voltage V (a) with the voltage V (x). The kth comparators (96b to 96e) compare the voltage at the kth connection point (P22 to P25) with the voltage V (x). The nth comparator (96f) compares the voltage V (d) with the voltage V (x).
 複数の抵抗(93e~93a)は、電圧V(c)が印加される第n+1の接続点(P27)と、…、第n+kの接続点(P28~P31)と、…、電圧V(e)が印加される第2nの接続点(P32)がこの順で繋がるように、第n+1の接続点(P27)から第2nの接続点(P32)まで、第n+kの接続点(P28~P31)で直列に接続されている。 The plurality of resistors (93e to 93a) are connected to the (n + 1) th connection point (P27) to which the voltage V (c) is applied,..., The (n + k) connection point (P28 to P31), and the voltage V (e). N + k connection points (P28 to P31) from the (n + 1) th connection point (P27) to the 2nth connection point (P32) so that the 2nth connection points (P32) to which N is applied are connected in this order. Connected in series.
 第n+1のコンパレータ(97f)は、電圧V(c)と電圧V(x)とを比較する。第kのコンパレータ(97e~97b)は、第n+kの接続点(P28~P31)の電圧と電圧V(x)とを比較する。第2nのコンパレータ(97a)は、電圧V(d)と電圧V(x)とを比較する。 The n + 1th comparator (97f) compares the voltage V (c) with the voltage V (x). The kth comparators (97e to 97b) compare the voltage at the n + k connection points (P28 to P31) with the voltage V (x). The 2nth comparator (97a) compares the voltage V (d) with the voltage V (x).
 第1の論理和回路(98a)は、第1のコンパレータ(96a)の出力する信号と第n+1のコンパレータ(97f)の出力する信号との論理和をとる。第kの論理和回路(98b~98e)は、第kのコンパレータ(96b~96e)の出力する信号と第n+kのコンパレータ(97e~97b)の出力する信号との論理和をとる。第nの論理和回路(98f)は、第nのコンパレータ(96f)の出力する信号と第2nのコンパレータ(97a)の出力する信号との論理和をとる。 The first OR circuit (98a) takes the OR of the signal output from the first comparator (96a) and the signal output from the (n + 1) th comparator (97f). The kth OR circuit (98b to 98e) takes the OR of the signal output from the kth comparator (96b to 96e) and the signal output from the n + k comparator (97e to 97b). The nth OR circuit (98f) takes a logical sum of the signal output from the nth comparator (96f) and the signal output from the 2nth comparator (97a).
 複数の抵抗(110a~110e)は、電圧V(c)が印加される第2n+1の接続点(P41)と、…、第2n+kの接続点(P42~P45)と、…、電圧V(e)が印加される第3nの接続点(P46)がこの順で繋がるように、第2n+1の接続点(P41)から第3nの接続点(P46)まで第2n+kの接続点(P42~P45)で直列に接続されている。 The plurality of resistors (110a to 110e) include a second n + 1 connection point (P41) to which the voltage V (c) is applied,..., A second n + k connection point (P42 to P45), and a voltage V (e). Are connected in series at the 2n + k connection points (P42 to P45) from the 2n + 1 connection point (P41) to the 3n connection point (P46) so that the 3n connection points (P46) to which N is applied are connected in this order. It is connected to the.
 第2n+1のコンパレータ(116a)は、電圧V(c)と電圧V(x)とを比較する。第2n+kのコンパレータ(116b~116e)は、第2n+kの接続点(P42~P45)の電圧と電圧V(x)とを比較する。第3nのコンパレータ(116f)は、電圧V(e)と電圧V(x)とを比較する。 The 2n + 1th comparator (116a) compares the voltage V (c) with the voltage V (x). The second n + k comparators (116b to 116e) compare the voltage at the second n + k connection points (P42 to P45) with the voltage V (x). The third n comparator (116f) compares the voltage V (e) with the voltage V (x).
 複数の抵抗(113e~113a)は、電圧V(b)が印加される第3n+1の接続点(P47)と、…、第3n+kの接続点(P48~P51)と、…、電圧V(e)が印加される第4nの接続点(P52)がこの順で繋がるように、第3n+1の接続点(P47)から第4nの接続点(P52)まで第3n+kの接続点(P48~P51)で直列に接続されている。 The plurality of resistors (113e to 113a) are connected to the third n + 1 connection point (P47) to which the voltage V (b) is applied,..., The third n + k connection point (P48 to P51), and the voltage V (e). Are connected in series at the 3n + k connection points (P48 to P51) from the 3n + 1 connection point (P47) to the 4n connection point (P52) so that the 4n connection points (P52) to which N is applied are connected in this order. It is connected to the.
 第3n+1のコンパレータ(117f)は、電圧V(b)と電圧V(x)とを比較する。第3n+kのコンパレータは、第3n+kの接続点(P48~P51)の電圧と電圧V(x)とを比較する。第4nのコンパレータ(117a)は、電圧V(e)と電圧V(x)とを比較する。 The 3n + 1th comparator (117f) compares the voltage V (b) with the voltage V (x). The third n + k comparator compares the voltage at the third n + k connection point (P48 to P51) with the voltage V (x). The fourth n comparator (117a) compares the voltage V (e) with the voltage V (x).
 第n+1の論理和回路(118a)は、第2n+1のコンパレータ(116a)の出力する信号と第3n+1のコンパレータ(117f)の出力する信号との論理和をとる。第n+kの論理和回路は、第2n+kのコンパレータ(116b~116e)の出力する信号と第3n+kのコンパレータ(117e~117b)の出力する信号との論理和をとる。第2nの論理和回路は、第3nのコンパレータ(116f)の出力する信号と第4nのコンパレータ(117a)の出力する信号との論理和をとる。 The n + 1th logical sum circuit (118a) takes a logical sum of the signal output from the 2n + 1th comparator (116a) and the signal output from the 3n + 1th comparator (117f). The n + k logical sum circuit takes a logical sum of signals output from the second n + k comparators (116b to 116e) and signals output from the third n + k comparators (117e to 117b). The 2nth OR circuit calculates the logical sum of the signal output from the 3nth comparator (116f) and the signal output from the 4nth comparator (117a).
 複数のスイッチ(119a~119f)は、論理和回路(118a~118f)によりそれぞれ制御される。複数の抵抗(112a~112f)は複数のスイッチ(119a~119f)にそれぞれ並列に接続されており、かつ所定の電圧(Vcc)が印加される接続点(P902a)と接続点P902b)との間で互いに直列に接続されている。抵抗(102)は、接続点902a、902b間で複数の抵抗(104a~104f)に直列に接続されている。 The plurality of switches (119a to 119f) are controlled by OR circuits (118a to 118f), respectively. The plurality of resistors (112a to 112f) are connected in parallel to the plurality of switches (119a to 119f), respectively, and between a connection point (P902a) and a connection point P902b) to which a predetermined voltage (Vcc) is applied. Are connected in series with each other. The resistor (102) is connected in series to a plurality of resistors (104a to 104f) between the connection points 902a and 902b.
 複数のスイッチ(119a~119f)は、論理和回路(118a~118f)によりそれぞれ制御される。複数の抵抗(122a~122f)は、複数のスイッチ(119a~119f)にそれぞれ並列に接続されており、かつ所定の電圧(グランドの電位)が印加される接続点(902c)と接続点902bとの間で互いに直列に接続されている。抵抗103は、接続点902b、902c間で複数の抵抗122a~122f)に直列に接続されている。出力回路65は、接続点902bの電圧に基づいて補正電圧V123を出力する。 The plurality of switches (119a to 119f) are controlled by OR circuits (118a to 118f), respectively. The plurality of resistors (122a to 122f) are connected in parallel to the plurality of switches (119a to 119f), respectively, and a connection point (902c) and a connection point 902b to which a predetermined voltage (ground potential) is applied. Are connected in series with each other. The resistor 103 is connected in series with a plurality of resistors 122a to 122f) between the connection points 902b and 902c. The output circuit 65 outputs the correction voltage V123 based on the voltage at the connection point 902b.
 図9は実施の形態2における補正電圧発生回路23の別の回路図である。図9において図7と同じ部分には同じ参照番号を付す。図9に示す補正電圧発生回路23ではコンパレータ、論理和回路およびスイッチをトランジスタにて構成されている。図9において、電圧V(a)は0Vであり、電圧V(b)は直流電源131の電圧Vccである。電源部130は、直流電源131と、抵抗132a、132b、133a、133b、133c、133dと、バッファ134a、134b、134cからなる。検査装置26はレーザー調整装置等を用いて抵抗132a~133dの抵抗値を調整して、抵抗132a、132bが接続された接続点の電圧と、抵抗133a、133bが接続された接続点の電圧と、抵抗133c、133dが接続された接続点の電圧をそれぞれ電圧V(c)、V(d)、V(e)に設定する。電圧レベル変換部135は、ベースとコレクタを接続したトランジスタとバイアス抵抗とで構成され、電圧V(c)、V(d)、V(e)から、トランジスタのベース・エミッタ間の電圧VDに基づいて電圧+VDと電圧V(c)-VDと電圧V(d)+VDと電圧V(c)+VDと電圧V(e)-VDと電圧Vcc-VDとを出力する。 FIG. 9 is another circuit diagram of the correction voltage generation circuit 23 according to the second embodiment. In FIG. 9, the same reference numerals are assigned to the same portions as those in FIG. In the correction voltage generation circuit 23 shown in FIG. 9, the comparator, the OR circuit, and the switch are composed of transistors. In FIG. 9, the voltage V (a) is 0 V, and the voltage V (b) is the voltage Vcc of the DC power supply 131. The power supply unit 130 includes a DC power supply 131, resistors 132a, 132b, 133a, 133b, 133c, and 133d, and buffers 134a, 134b, and 134c. The inspection device 26 adjusts the resistance values of the resistors 132a to 133d using a laser adjustment device or the like, and the voltage at the connection point to which the resistors 132a and 132b are connected and the voltage at the connection point to which the resistors 133a and 133b are connected. The voltages at the connection points where the resistors 133c and 133d are connected are set to voltages V (c), V (d), and V (e), respectively. The voltage level conversion unit 135 includes a transistor having a base and a collector connected to each other and a bias resistor, and is based on the voltage VD between the base and emitter of the transistor from the voltages V (c), V (d), and V (e). Then, voltage + VD, voltage V (c) -VD, voltage V (d) + VD, voltage V (c) + VD, voltage V (e) -VD, and voltage Vcc-VD are output.
 抵抗136a、136b、136c、136d、136eはこの順に互いに直列に接続されている。抵抗136a、136bが接続された接続点の反対側の抵抗136aの一端137には電圧+VDが印加されている。抵抗136d、136eが接続された接続点の反対側の抵抗136eの一端138には電圧V(d)+VDが印加されている。同様に、抵抗139a、139b、139c、139d、139eはこの順で互いに直列に接続されている。抵抗139a、139bが接続された接続点の反対側の抵抗139aの一端140には電圧V(d)+VDが印加されている。抵抗139d、139eが接続された接続点の反対側の抵抗139eの一端141には電圧V(c)+VDが印加されている。 The resistors 136a, 136b, 136c, 136d, and 136e are connected in series in this order. The voltage + VD is applied to one end 137 of the resistor 136a opposite to the connection point to which the resistors 136a and 136b are connected. The voltage V (d) + VD is applied to one end 138 of the resistor 136e opposite to the connection point to which the resistors 136d and 136e are connected. Similarly, the resistors 139a, 139b, 139c, 139d, and 139e are connected in series in this order. A voltage V (d) + VD is applied to one end 140 of the resistor 139a opposite to the connection point to which the resistors 139a and 139b are connected. A voltage V (c) + VD is applied to one end 141 of the resistor 139e opposite to the connection point to which the resistors 139d and 139e are connected.
 電圧レベル変換部142は、電圧レベル変換部135と同様に、ベースとコレクタを接続したトランジスタとバイアス抵抗よりなり、入力端子23aに入力される物理量センサ22からの電圧V(x)から、トランジスタのベース・エミッタ間の電圧VDにより、電圧V(x)+2・VDと電圧V(x)と電圧V(x)-2・VDとを出力する。 Similar to the voltage level conversion unit 135, the voltage level conversion unit 142 includes a transistor having a base and a collector connected to each other and a bias resistor, and the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a is used to determine the transistor level. The voltage V (x) + 2 · VD, the voltage V (x), and the voltage V (x) −2 · VD are output by the base-emitter voltage VD.
 スイッチ143aは電圧V(x)が0より高い時に非動作して開く。スイッチ143bは、電圧V(x)が抵抗136a、136bが接続された接続点の電圧V61よりも低い時に動作して閉じ、高い時に非動作して開く。スイッチ143cは、電圧V(x)が抵抗136b、136cが接続された接続点の電圧V62より低い時に動作して閉じ、高い時に非動作して開く。スイッチ143dは、電圧V(x)が抵抗136c、136dが接続された接続点の電圧V63より低い時に動作して閉じ、高い時に非動作して開く。スイッチ143eは、電圧V(x)が抵抗136d、136eが接続された接続点の電圧V64より低い時に動作して閉じ、高い時に非動作して開く。スイッチ143fは電圧V(x)が電圧V(d)も低い時に動作して閉じ、高い時に非動作して開く。 Switch 143a is inoperative and opens when voltage V (x) is higher than zero. The switch 143b is activated and closed when the voltage V (x) is lower than the voltage V61 at the connection point to which the resistors 136a and 136b are connected, and is deactivated and opened when the voltage V (x) is higher. The switch 143c is closed when the voltage V (x) is lower than the voltage V62 at the connection point to which the resistors 136b and 136c are connected, and is opened when the voltage V (x) is high. The switch 143d is activated and closed when the voltage V (x) is lower than the voltage V63 at the connection point to which the resistors 136c and 136d are connected, and is deactivated and opened when the voltage V (x) is higher. The switch 143e closes when the voltage V (x) is lower than the voltage V64 at the connection point to which the resistors 136d and 136e are connected, and opens when the voltage V (x) is high. The switch 143f is activated and closed when the voltage V (x) is also lower than the voltage V (d), and is deactivated and opened when the voltage V (x) is higher.
 スイッチ144aは、電圧V(x)が電圧V(d)よりも高い時に動作して閉じ、低い時に非動作して開く。スイッチ144bは、電圧V(x)が抵抗139a、139bが接続された接続点の電圧V65よりも高い時に動作して閉じ、低い時に非動作して開く。スイッチ144cは、電圧V(x)が抵抗139b、139cが接続された接続点の電圧V66よりも高い時に動作して閉じ、低い時に非動作して開く。スイッチ144dは、電圧V(x)が抵抗139c、139dが接続された接続点の電圧V67より高い時に動作して閉じ、低い時に非動作して開く。スイッチ144eは、電圧V(x)が抵抗139d、139eが接続された接続点の電圧V68よりも高い時に動作して閉じ、低い時に非動作して開く。スイッチ144fは、電圧V(x)が電圧V(c)よりも高い時に動作して閉じ、低い時に非動作して開く。 The switch 144a is activated and closed when the voltage V (x) is higher than the voltage V (d), and is deactivated and opened when the voltage V (x) is lower. The switch 144b is closed when the voltage V (x) is higher than the voltage V65 at the connection point to which the resistors 139a and 139b are connected, and is opened when the voltage V (x) is low. The switch 144c is activated and closed when the voltage V (x) is higher than the voltage V66 at the connection point to which the resistors 139b and 139c are connected, and is deactivated and opened when the voltage is low. The switch 144d is activated and closed when the voltage V (x) is higher than the voltage V67 at the connection point to which the resistors 139c and 139d are connected, and is deactivated and opened when the voltage is low. The switch 144e is closed when the voltage V (x) is higher than the voltage V68 at the connection point to which the resistors 139d and 139e are connected, and is opened when the voltage V (x) is low. The switch 144f is activated and closed when the voltage V (x) is higher than the voltage V (c), and is deactivated and opened when the voltage V (x) is lower.
 スイッチ145aは、スイッチ144fが動作して閉じている時動作して閉じ、スイッチ144fが非動作して開いた時に非動作して開く。同様に、スイッチ145bは、スイッチ144eが動作して閉じている時に動作して閉じ、スイッチ144eが非動作して開いている時に非動作して開く。スイッチ145cは、スイッチ144dが動作して閉じている時に動作して閉じ、スイッチ144dが非動作して開いている時に非動作して開く。スイッチ145dは、スイッチ144cが動作して閉じている時に動作して閉じ、スイッチ144cが非動作して開いている時に非動作して開く。スイッチ145eは、スイッチ144bが動作して閉じている時に動作して閉じ、スイッチ144bが非動作して開いている時に非動作して開く。スイッチ145fは、スイッチ144aが動作して閉じている時に動作して閉じ、スイッチ144aが非動作して開いている時に非動作して開く。 The switch 145a is closed when the switch 144f is operated and closed, and is opened when the switch 144f is not operated and opened. Similarly, the switch 145b is activated and closed when the switch 144e is activated and closed, and is deactivated and opened when the switch 144e is deactivated and opened. The switch 145c is activated and closed when the switch 144d is operated and closed, and is deactivated and opened when the switch 144d is not operated and opened. The switch 145d is activated and closed when the switch 144c is operated and closed, and is deactivated and opened when the switch 144c is not operated and opened. The switch 145e is activated and closed when the switch 144b is activated and closed, and is deactivated and opened when the switch 144b is deactivated and opened. The switch 145f is operated and closed when the switch 144a is operated and closed, and is inactivated and opened when the switch 144a is not operated and opened.
 スイッチ146aは、スイッチ143a、145aがともに非動作して開いている場合のみ非動作して開き、スイッチ143a、145aの少なくとも一方が動作して閉じている場合に動作して閉じる。すなわち、スイッチ146aはスイッチ143a、145aの論理和により制御される。スイッチ146bは、スイッチ143b、145bがともに非動作で開いている場合のみ非動作して開き、スイッチ143b、145bの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ146bはスイッチ143b、145bの論理和により制御される。スイッチ146cは、スイッチ143c、145cがともに非動作して開いている場合のみ非動作して開となり、スイッチ143c、145cのうちの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ146cはスイッチ143c、145cの論理和により制御される。スイッチ146dはスイッチ143d、145dがともに非動作して開いている場合のみ非動作して開き、スイッチ143d、145dのうちの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ146dはスイッチ143d、145dの論理和により制御される。スイッチ146eは、スイッチ143e、145eがともに非動作して開いている場合のみ非動作して開き、スイッチ143e、145eのうちの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ146eはスイッチ143e、145eの論理和により制御される。スイッチ146fは、スイッチ143f、145fがともに非動作して開いている場合のみ非動作して開き、スイッチ143f、145fのうちの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ146fはスイッチ143f、145fの論理和により制御される。スイッチ146a、146b、146c、146d、146e、146fはこの順で互いに直列に接続されている。146e、146fが接続された接続点の反対側のスイッチ146fの一端147である接続点903aは直流電源131に接続されて電圧Vccが印加されている。スイッチ146a、146bが接続された接続点の反対側のスイッチ146aの一端148は抵抗149の一端と接続されている。 The switch 146a is inactivated and opened only when both the switches 143a and 145a are inactive and open, and is operated and closed when at least one of the switches 143a and 145a is in operation and closed. That is, the switch 146a is controlled by the logical sum of the switches 143a and 145a. The switch 146b is inactivated and opened only when both the switches 143b and 145b are inactive and opened, and is activated and closed when at least one of the switches 143b and 145b is in operation and closed. That is, the switch 146b is controlled by the logical sum of the switches 143b and 145b. The switch 146c is inactivated and opened only when both the switches 143c and 145c are inactive and open, and is activated and closed when at least one of the switches 143c and 145c is in operation and closed. That is, the switch 146c is controlled by the logical sum of the switches 143c and 145c. The switch 146d is inactivated and opened only when both the switches 143d and 145d are inactive and open, and is activated and closed when at least one of the switches 143d and 145d is in operation and closed. That is, the switch 146d is controlled by the logical sum of the switches 143d and 145d. The switch 146e is inactivated and opened only when both the switches 143e and 145e are inactive and open, and is operated and closed when at least one of the switches 143e and 145e is in operation and closed. That is, the switch 146e is controlled by the logical sum of the switches 143e and 145e. The switch 146f is inactivated and opened only when both the switches 143f and 145f are inactive and open, and is operated and closed when at least one of the switches 143f and 145f is in operation and closed. That is, the switch 146f is controlled by the logical sum of the switches 143f and 145f. The switches 146a, 146b, 146c, 146d, 146e, and 146f are connected in series in this order. A connection point 903a, which is one end 147 of the switch 146f on the opposite side of the connection point to which the connection points 146e and 146f are connected, is connected to the DC power supply 131 and applied with the voltage Vcc. One end 148 of the switch 146a opposite to the connection point to which the switches 146a and 146b are connected is connected to one end of the resistor 149.
 抵抗150aはスイッチ146aを構成するトランジスタのコレクタとスイッチ146bを構成するトランジスタのコレクタとの間に接続されている。抵抗150bはスイッチ146bを構成するトランジスタのコレクタとスイッチ146cを構成するトランジスタのコレクタとの間に接続されている。抵抗150cはスイッチ146cを構成するトランジスタのコレクタとスイッチ146dを構成するトランジスタのコレクタとの間に接続されている。抵抗150dはスイッチ146dを構成するトランジスタのコレクタとスイッチ146eを構成するトランジスタのコレクタと間に接続されている。抵抗150eはスイッチ146eを構成するトランジスタのコレクタとスイッチ146fを構成するトランジスタのコレクタとの間に接続されている。抵抗150fはスイッチ146fを構成するトランジスタのコレクタとスイッチ146fの一端147との間に接続されている。 The resistor 150a is connected between the collector of the transistor constituting the switch 146a and the collector of the transistor constituting the switch 146b. The resistor 150b is connected between the collector of the transistor constituting the switch 146b and the collector of the transistor constituting the switch 146c. The resistor 150c is connected between the collector of the transistor constituting the switch 146c and the collector of the transistor constituting the switch 146d. The resistor 150d is connected between the collector of the transistor constituting the switch 146d and the collector of the transistor constituting the switch 146e. The resistor 150e is connected between the collector of the transistor constituting the switch 146e and the collector of the transistor constituting the switch 146f. The resistor 150f is connected between the collector of the transistor constituting the switch 146f and one end 147 of the switch 146f.
 抵抗151a、151b、151c、151d、151eはこの順で互いに直列に接続されている。抵抗151a、151bが接続された接続点の反対側の抵抗151aの一端152には電圧V(c)-VDが印加されている。抵抗151d、151eが接続された接続点の反対側の抵抗151eの一端153には電圧V(e)-VDが印加されている。同様に、抵抗154a、154b、154c、154d、154eはこの順で互いに直列に接続されている。抵抗154a、154bが接続された接続点の反対側の抵抗154aの一端155には電圧V(e)-VDが印加されている。抵抗154d、154eが接続された接続点の反対側の抵抗154eの一端156には電圧Vcc-VDが印加されている。 The resistors 151a, 151b, 151c, 151d, and 151e are connected in series in this order. A voltage V (c) -VD is applied to one end 152 of the resistor 151a on the side opposite to the connection point to which the resistors 151a and 151b are connected. A voltage V (e) -VD is applied to one end 153 of the resistor 151e on the side opposite to the connection point to which the resistors 151d and 151e are connected. Similarly, the resistors 154a, 154b, 154c, 154d, and 154e are connected in series in this order. A voltage V (e) -VD is applied to one end 155 of the resistor 154a opposite to the connection point to which the resistors 154a and 154b are connected. A voltage Vcc-VD is applied to one end 156 of the resistor 154e opposite to the connection point to which the resistors 154d and 154e are connected.
 スイッチ157aは入力端子23aに入力される物理量センサ22からの電圧V(x)が電圧V(c)よりも低い時に動作して閉じ、高い時に非動作して開く。スイッチ157bは、電圧V(x)が抵抗151a、151bが接続された接続点の電圧V69よりも低い時に動作して閉じ、高い時に非動作して開く。スイッチ157cは、電圧V(x)が抵抗151b、151cが接続された接続点の電圧V70より低い時に動作して閉じ、高い時に非動作して開く。スイッチ157dは、電圧V(x)が抵抗151c、151dが接続された接続点の電圧V71より低い時に動作して閉じ、高い時に非動作して開く。スイッチ157eは、電圧V(x)が抵抗151d、151eが接続された接続点の電圧V72より低い時に動作して閉じ、高い時に非動作して開となる。スイッチ157fは電圧V(x)が電圧V(e)より低い時に動作して閉じ、高い時に非動作して開く。 The switch 157a closes when the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a is lower than the voltage V (c), and closes when the voltage V (x) is high. The switch 157b is activated and closed when the voltage V (x) is lower than the voltage V69 at the connection point to which the resistors 151a and 151b are connected, and is deactivated and opened when the voltage V (x) is higher. The switch 157c closes when the voltage V (x) is lower than the voltage V70 at the connection point to which the resistors 151b and 151c are connected, and opens when the voltage V (x) is high. The switch 157d closes when the voltage V (x) is lower than the voltage V71 at the connection point to which the resistors 151c and 151d are connected, and closes when the voltage V (x) is high. The switch 157e is activated and closed when the voltage V (x) is lower than the voltage V72 at the connection point to which the resistors 151d and 151e are connected, and is deactivated and opened when the voltage V (x) is higher. The switch 157f is activated and closed when the voltage V (x) is lower than the voltage V (e), and is deactivated and opened when the voltage V (x) is higher.
 スイッチ158aは入力端子23aに入力される物理量センサ22からの電圧V(x)が電圧V(e)より高い時に動作して閉じ、低い時に非動作して開く。スイッチ158bは、電圧V(x)が抵抗154a、154bが接続された接続点の電圧V73より高い時に動作して閉じ、低い時に非動作して開く。スイッチ158cは、電圧V(x)が抵抗154b、154cが接続された接続点の電圧V74より高い時に動作して閉じ、低い時に非動作して開く。スイッチ158dは、電圧V(x)が抵抗154c、154dが接続された接続点の電圧V75より高い時に動作して閉じ、低い時に非動作して開く。スイッチ158eは、電圧V(x)が抵抗154d、154eが接続された接続点の電圧V76より高い時に動作して閉じ、低い時に非動作で開く。スイッチ158fは電圧V(x)が電圧Vccより低い時に非動作して開く。 The switch 158a is activated and closed when the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a is higher than the voltage V (e), and is deactivated and opened when the voltage V (e) is low. The switch 158b is closed when the voltage V (x) is higher than the voltage V73 at the connection point to which the resistors 154a and 154b are connected, and is opened when it is low. The switch 158c is closed when the voltage V (x) is higher than the voltage V74 at the connection point to which the resistors 154b and 154c are connected, and is opened when it is low. The switch 158d is closed when the voltage V (x) is higher than the voltage V75 at the connection point to which the resistors 154c and 154d are connected, and is opened when it is low. The switch 158e is closed when the voltage V (x) is higher than the voltage V76 at the connection point to which the resistors 154d and 154e are connected, and is opened when it is low. The switch 158f is inoperative and opens when the voltage V (x) is lower than the voltage Vcc.
 スイッチ159aはスイッチ158fが動作して閉じている時動作して閉じ、スイッチ158fが非動作して開いている時非動作して開く。スイッチ159bは、スイッチ158eが動作して閉じている時動作して閉じ、スイッチ158eが非動作して開いている時に非動作して開く。スイッチ159cは、スイッチ158dが動作して閉じている時動作して閉じ、スイッチ158dが非動作して開いている時に非動作して開く。スイッチ159dは、スイッチ158cが動作して閉じている時動作して閉じ、スイッチ158cが非動作して開いている時に非動作して開く。スイッチ159eは、スイッチ158bが動作して閉じている時動作して閉じ、スイッチ158bが非動作して開いている時に非動作して開く。スイッチ159fは、スイッチ158aが動作して閉じている時動作して閉じ、スイッチ158aが非動作して開いている時に非動作して開く。 The switch 159a operates and closes when the switch 158f is operated and closed, and opens when the switch 158f is not operated and opened. The switch 159b is activated and closed when the switch 158e is operated and closed, and is deactivated and opened when the switch 158e is not operated and opened. The switch 159c is operated and closed when the switch 158d is operated and closed, and is inactivated and opened when the switch 158d is not operated and opened. The switch 159d is operated and closed when the switch 158c is operated and closed, and is inactivated and opened when the switch 158c is not operated and opened. The switch 159e is activated and closed when the switch 158b is operated and closed, and is inactivated and opened when the switch 158b is not operated and opened. The switch 159f is operated and closed when the switch 158a is operated and closed, and is inactivated and opened when the switch 158a is not operated and opened.
 スイッチ160aはスイッチ157a、159aがともに非動作して開いている場合のみ非動作して開き、スイッチ157a、159aの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ160aはスイッチ157a、159aの論理和により制御される。スイッチ160bは、スイッチ157b、159bがともに非動作して開いている場合のみ非動作して開き、スイッチ157a、159aの少なくとも一方が動作して閉じている場合に動作して閉じる。すなわち、スイッチ160bはスイッチ157b、159bの論理和により制御される。スイッチ160cは、スイッチ157c、159cがともに非動作して開いている場合のみ非動作して開き、スイッチ157c、159cの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ160cはスイッチ157c、159cの論理和により制御される。スイッチ160dは、スイッチ157d、159dがともに非動作して開いている場合のみ非動作して開き、スイッチ157d、159dの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ160dはスイッチ157d、159dの論理和により制御される。スイッチ160eは、スイッチ157e、159eがともに非動作して開いている場合のみ非動作して開き、スイッチ157e、159eの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ160eはスイッチ157e、159eの論理和により制御される。スイッチ160fは、スイッチ157f、159fがともに非動作して開いている場合のみ非動作して開き、スイッチ157f、159fの少なくとも一方が動作して閉じている場合には動作して閉じる。すなわち、スイッチ160fはスイッチ157f、159fの論理和により制御される。スイッチ160a、160b、160c、160d、160e、160fはこの順で互いに直列に接続されている。スイッチ160e、160fが接続された接続点の反対側のスイッチ160fの一端161である接続点903cはグランドに接続されている。スイッチ160a、160bが接続された接続点の反対側のスイッチ160aの一端162は抵抗163の一端と接続されている。 The switch 160a is inactivated and opened only when both the switches 157a and 159a are inactive and open, and is operated and closed when at least one of the switches 157a and 159a is in operation and closed. That is, the switch 160a is controlled by the logical sum of the switches 157a and 159a. The switch 160b is deactivated and opened only when both the switches 157b and 159b are deactivated and opened, and is activated and closed when at least one of the switches 157a and 159a is activated and closed. That is, the switch 160b is controlled by the logical sum of the switches 157b and 159b. The switch 160c is inactivated and opened only when both the switches 157c and 159c are inactive and open, and is activated and closed when at least one of the switches 157c and 159c is in operation and closed. That is, the switch 160c is controlled by the logical sum of the switches 157c and 159c. The switch 160d is inactivated and opened only when both the switches 157d and 159d are inactive and open, and is operated and closed when at least one of the switches 157d and 159d is in operation and closed. That is, the switch 160d is controlled by the logical sum of the switches 157d and 159d. The switch 160e is inactivated and opened only when both the switches 157e and 159e are inactive and open, and is operated and closed when at least one of the switches 157e and 159e is in operation and closed. That is, the switch 160e is controlled by the logical sum of the switches 157e and 159e. The switch 160f is inactivated and opened only when both the switches 157f and 159f are inactive and open, and is operated and closed when at least one of the switches 157f and 159f is in operation and closed. That is, the switch 160f is controlled by the logical sum of the switches 157f and 159f. The switches 160a, 160b, 160c, 160d, 160e, and 160f are connected in series in this order. A connection point 903c, which is one end 161 of the switch 160f on the opposite side of the connection point to which the switches 160e and 160f are connected, is connected to the ground. One end 162 of the switch 160a opposite to the connection point to which the switches 160a and 160b are connected is connected to one end of the resistor 163.
 抵抗164aはスイッチ160aの一端162とスイッチ160aを構成するトランジスタのコレクタとの間に接続されている。抵抗164bはスイッチ160aを構成するトランジスタのコレクタとスイッチ160bを構成するトランジスタのコレクタとの間に接続されている。抵抗164cはスイッチ160bを構成するトランジスタのコレクタとスイッチ160cを構成するトランジスタのコレクタとの間に接続されている。抵抗164dはスイッチ160cを構成するトランジスタのコレクタとスイッチ160dを構成するトランジスタのコレクタとの間に接続されている。抵抗164eはスイッチ160dを構成するトランジスタのコレクタとスイッチ160eを構成するトランジスタのコレクタとの間に接続されている。抵抗164fはスイッチ160eを構成するトランジスタのコレクタとスイッチ160fを構成するトランジスタのコレクタとの間に接続されている。 The resistor 164a is connected between one end 162 of the switch 160a and the collector of the transistor constituting the switch 160a. The resistor 164b is connected between the collector of the transistor constituting the switch 160a and the collector of the transistor constituting the switch 160b. The resistor 164c is connected between the collector of the transistor constituting the switch 160b and the collector of the transistor constituting the switch 160c. The resistor 164d is connected between the collector of the transistor constituting the switch 160c and the collector of the transistor constituting the switch 160d. The resistor 164e is connected between the collector of the transistor constituting the switch 160d and the collector of the transistor constituting the switch 160e. The resistor 164f is connected between the collector of the transistor constituting the switch 160e and the collector of the transistor constituting the switch 160f.
 抵抗149、163は接続点903bで接続されている。 The resistors 149 and 163 are connected at a connection point 903b.
 図9に示す補正電圧発生回路23の動作を説明する。物理量センサ22に物理量a、b間の任意の物理量xが作用すると、物理量センサ22から電圧V(x)が発生し、補正電圧発生回路23の入力端子23aに入力される。 The operation of the correction voltage generation circuit 23 shown in FIG. 9 will be described. When an arbitrary physical quantity x between the physical quantities a and b acts on the physical quantity sensor 22, a voltage V (x) is generated from the physical quantity sensor 22 and input to the input terminal 23 a of the correction voltage generation circuit 23.
 電圧V(x)と電圧レベル変換部142から出力された電圧V(x)+2・VD、V(x)-2・VDはスイッチ143a~143f、144a~144f、157a~157f、158a~158fで、電圧+VD、V61、V62、V63、V64、V(d)+VD、V65、V66、V67、V68、V(c)+VD、V(c)-VD、V69、V70、V71、V72、V(e)-VD、V73、V74、V75、V76、Vcc-VDと比較され、補正電圧V123が出力回路65の出力端子23bから出力される。 The voltages V (x) and the voltages V (x) + 2 · VD and V (x) −2 · VD output from the voltage level conversion unit 142 are switches 143a to 143f, 144a to 144f, 157a to 157f, and 158a to 158f. , Voltage + VD, V61, V62, V63, V64, V (d) + VD, V65, V66, V67, V68, V (c) + VD, V (c) −VD, V69, V70, V71, V72, V (e ) -VD, V73, V74, V75, V76, Vcc-VD, and the correction voltage V123 is output from the output terminal 23b of the output circuit 65.
 たとえば、物理量センサ22で発生した電圧V(x)が電圧V63、V64間にある場合には、スイッチ143e、143f、157a~157fが動作して閉じ、他のスイッチ143a~143dは非動作して開くので、スイッチ146e、146f、164a~164fが動作して閉じ、スイッチ146a~146dが非動作して開く。抵抗149、163が抵抗値Rを有し、抵抗150a~150fが抵抗値r1を有する場合に、抵抗149、163が接続された接続点903bの電圧V29は、
{R/(2・R+4・r1)}・Vcc …(式18)
となる。出力回路65の出力端子23bには、電圧V29を電圧Vcc/2に関して反転した補正電圧V123が発生する。
For example, when the voltage V (x) generated by the physical quantity sensor 22 is between the voltages V63 and V64, the switches 143e, 143f, 157a to 157f are operated and closed, and the other switches 143a to 143d are not operated. Since it opens, the switches 146e, 146f, 164a to 164f are operated and closed, and the switches 146a to 146d are not operated and opened. When the resistors 149 and 163 have the resistance value R and the resistors 150a to 150f have the resistance value r1, the voltage V29 at the connection point 903b to which the resistors 149 and 163 are connected is
{R / (2.R + 4.r1)}. Vcc (Formula 18)
It becomes. At the output terminal 23b of the output circuit 65, a correction voltage V123 obtained by inverting the voltage V29 with respect to the voltage Vcc / 2 is generated.
 また、物理量センサ22から発生した電圧V(x)が電圧V69、V70間にある場合には、スイッチ143a~143f、144a~144f、157c~157fが動作して閉じ、スイッチ157a、157b、158a~158fが非動作して開く。したがって、スイッチ146a~146f、159c~159fが動作して閉じ、スイッチ159a、159bが非動作して開く。抵抗164a~164fが抵抗値r2を有すると、抵抗149、163が接続された接続点903bの電圧V29は、
{(R+2・r2)/(2・R+2・r2)}・Vcc …(式19)
となる。出力回路65の出力端子23bには、電圧V29を電圧Vcc/2に関して反転した補正電圧V123が発生する。
When the voltage V (x) generated from the physical quantity sensor 22 is between the voltages V69 and V70, the switches 143a to 143f, 144a to 144f, 157c to 157f are operated and closed, and the switches 157a, 157b, 158a to 158f is deactivated and opened. Accordingly, the switches 146a to 146f, 159c to 159f are operated to be closed, and the switches 159a and 159b are not operated to be opened. When the resistors 164a to 164f have the resistance value r2, the voltage V29 at the connection point 903b to which the resistors 149 and 163 are connected is
{(R + 2 · r2) / (2 · R + 2 · r2)} · Vcc (Equation 19)
It becomes. At the output terminal 23b of the output circuit 65, a correction voltage V123 obtained by inverting the voltage V29 with respect to the voltage Vcc / 2 is generated.
 図10は入力端子23aに入力される物理量センサ22からの電圧V(x)の非線形性を、図9に示す補正電圧発生回路23を用いて補正する効果を示す補正電圧V123のシミュレーション結果を示す。ここで、電圧V(a)は0Vであり、電圧V(b)すなわち電圧Vccは5Vであり、電圧V(c)は2.5Vであり、電圧V(d)は1.25Vであり、電圧V(e)は3.75Vであり、差電圧Z(d)は0.25Vであり、差電圧Z(e)は0.25Vであり、すなわち、電圧V(x)はS字形特性を有する。抵抗149、163の抵抗値R、抵抗150a~150fの抵抗値r1、抵抗164a~164fの抵抗値r2は電圧V(d)が1.25Vであり、差電圧Z(e)が0.25Vであるので、それぞれ50kΩ、1kΩ、1kΩと設定している。 FIG. 10 shows a simulation result of the correction voltage V123 showing the effect of correcting the nonlinearity of the voltage V (x) from the physical quantity sensor 22 input to the input terminal 23a using the correction voltage generation circuit 23 shown in FIG. . Here, the voltage V (a) is 0V, the voltage V (b), that is, the voltage Vcc is 5V, the voltage V (c) is 2.5V, and the voltage V (d) is 1.25V. The voltage V (e) is 3.75V, the differential voltage Z (d) is 0.25V, and the differential voltage Z (e) is 0.25V, that is, the voltage V (x) exhibits an S-shaped characteristic. Have. The resistance value R of the resistors 149 and 163, the resistance value r1 of the resistors 150a to 150f, and the resistance value r2 of the resistors 164a to 164f are a voltage V (d) of 1.25V and a differential voltage Z (e) of 0.25V. Therefore, they are set to 50 kΩ, 1 kΩ, and 1 kΩ, respectively.
 図10において、特性PAは物理量センサ22からの電圧V(x)を示し、特性PBは式9Aに示す座標(a、V(a))、(b、V(b))を結ぶ直線を示し、特性PCは図9に示す補正電圧発生回路23の出力端子から出力される補正電圧V123のシミュレーション結果である。図10に示すように、電圧V(x)の非線形性を有する特性PAが良好に補正され、特性PBに近似されている。 In FIG. 10, the characteristic PA indicates the voltage V (x) from the physical quantity sensor 22, and the characteristic PB indicates a straight line connecting the coordinates (a, V (a)) and (b, V (b)) shown in Expression 9A. The characteristic PC is a simulation result of the correction voltage V123 output from the output terminal of the correction voltage generation circuit 23 shown in FIG. As shown in FIG. 10, the characteristic PA having the nonlinearity of the voltage V (x) is corrected well and approximated to the characteristic PB.
 図11は実施の形態2における物理量検出装置21の他の補正電圧発生回路23Qの回路図である。図11において図7に示す補正電圧発生回路23と同じ部分には同じ参照番号を付す。 FIG. 11 is a circuit diagram of another correction voltage generation circuit 23Q of the physical quantity detection device 21 in the second embodiment. 11, the same parts as those of the correction voltage generation circuit 23 shown in FIG.
 図7に示す補正電圧発生回路23では、接続点902aに電圧Vccが印加され、接続点902cがグランドに接続されている。すなわち、接続点902aに印加される所定の電圧は電圧Vccであり接続点902cに印加される所定の電圧より高い。出力回路65は接続点902bの電圧V29を電圧Vcc/2に関して反転して補正電圧V123を発生し、電圧V29の符号を反転させる。 7, the voltage Vcc is applied to the connection point 902a, and the connection point 902c is connected to the ground. That is, the predetermined voltage applied to the connection point 902a is the voltage Vcc, which is higher than the predetermined voltage applied to the connection point 902c. The output circuit 65 inverts the voltage V29 at the connection point 902b with respect to the voltage Vcc / 2 to generate a correction voltage V123, and inverts the sign of the voltage V29.
 図11に示す補正電圧発生回路23Qでは、接続点902aがグランドに接続され、接続点902cに電圧Vccが印加されている。すなわち、接続点902aに印加される所定の電圧はグランドの電圧であり接続点902cに印加される所定の電圧Vccより低い。補正電圧発生回路23Qは図7に示す出力回路65の代わりに出力回路65Pを有する。出力回路65Pではオペアンプの非反転入力端に接続点902bが接続されて電圧V29が印加される。そのオペアンプは電圧V29をそのまま補正電圧V123として出力し、電圧V29の符号を反転しない。補正電圧発生回路23Qは図7に示す補正電圧発生回路23と同様に機能して同様の効果を有する。 In the correction voltage generation circuit 23Q shown in FIG. 11, the connection point 902a is connected to the ground, and the voltage Vcc is applied to the connection point 902c. That is, the predetermined voltage applied to the connection point 902a is a ground voltage and is lower than the predetermined voltage Vcc applied to the connection point 902c. The correction voltage generation circuit 23Q has an output circuit 65P instead of the output circuit 65 shown in FIG. In the output circuit 65P, the connection point 902b is connected to the non-inverting input terminal of the operational amplifier, and the voltage V29 is applied. The operational amplifier outputs the voltage V29 as it is as the correction voltage V123, and does not invert the sign of the voltage V29. The correction voltage generation circuit 23Q functions similarly to the correction voltage generation circuit 23 shown in FIG. 7 and has the same effect.
 本発明に係る物理量検出装置は、A/D変換器や半導体メモリ、CPU等の複雑な演算装置を設けることなく、物理量とこれに対応する電圧との非線形性を良好に補正できるとともに、応答速度がきわめて速い。したがって、この物理量検出装置は物理量が高速で変化した場合にも容易に追従できるという効果を有するものであり、例えば、車両、産業機器等における電流を検出する電流検出装置として有用である。 The physical quantity detection device according to the present invention can satisfactorily correct non-linearity between a physical quantity and a voltage corresponding to the physical quantity without providing a complex arithmetic device such as an A / D converter, a semiconductor memory, or a CPU, and has a response speed. Is very fast. Therefore, this physical quantity detection device has an effect that it can easily follow even when the physical quantity changes at high speed, and is useful, for example, as a current detection device for detecting current in vehicles, industrial equipment, and the like.
22  物理量センサ
23  補正電圧発生回路
24  加算回路
40  電圧発生器
50a~50e  抵抗(第1の抵抗)
53a~53e  抵抗(第2の抵抗)
56a~56f  コンパレータ(第1のコンパレータ~第nのコンパレータ)
57a~57f  コンパレータ(第n+1のコンパレータ~第2nのコンパレータ)
58a~58f  論理和回路(第1の論理和回路~第nの論理和回路)
59a~59f  スイッチ
62  抵抗(第4の抵抗)
63  抵抗(第5の抵抗)
64a~64f  抵抗(第3の抵抗)
65  出力回路
80  電圧発生器
90a~90e  抵抗(第1の抵抗)
93a~93e  抵抗(第2の抵抗)
96a~96f  コンパレータ(第1のコンパレータ~第nのコンパレータ)
97a~97f  コンパレータ(第n+1のコンパレータ~第2nのコンパレータ)
98a~98f  論理和回路(第1の論理和回路~第nの論理和回路)
99a~99f  スイッチ(第1のスイッチ)
102  抵抗(第6の抵抗)
103  抵抗(第8の抵抗)
104a~104f  抵抗(第5の抵抗)
110a~110e  抵抗(第3の抵抗)
133a~133e  抵抗(第4の抵抗)
116a~116f  コンパレータ(第2n+1のコンパレータ~第3nのコンパレータ)
117a~117f  コンパレータ(第3n+1のコンパレータ~第4nのコンパレータ)
118a~118f  論理和回路(第n+1の論理和回路~第2nの論理和回路)
119a~119f  スイッチ(第2のスイッチ)
122a~122f  抵抗(第7の抵抗)
901a~901c  接続点(第2n+1の接続点~第2n+3の接続点)
902a~902c  接続点(第4n+1の接続点~第4n+3の接続点)
P1~P6  接続点(第1の接続点~第nの接続点)
P7~P12  接続点(第n+1の接続点~第2nの接続点)
P21~P26  接続点(第1の接続点~第nの接続点)
P27~P32  接続点(第n+1の接続点~第2nの接続点)
P41~P46  接続点(第2n+1の接続点~第3nの接続点)
P47~P52  接続点(第3n+1の接続点~第4nの接続点)
22 Physical quantity sensor 23 Correction voltage generation circuit 24 Addition circuit 40 Voltage generators 50a to 50e Resistance (first resistance)
53a to 53e Resistance (second resistance)
56a to 56f Comparator (first comparator to nth comparator)
57a to 57f comparators (n + 1th comparator to 2nth comparator)
58a to 58f OR circuit (first OR circuit to nth OR circuit)
59a to 59f Switch 62 Resistance (fourth resistance)
63 Resistance (fifth resistance)
64a to 64f resistors (third resistors)
65 Output circuit 80 Voltage generators 90a to 90e Resistance (first resistance)
93a to 93e Resistance (second resistance)
96a to 96f Comparator (first comparator to nth comparator)
97a to 97f comparators (n + 1th comparator to 2nth comparator)
98a to 98f OR circuit (first OR circuit to nth OR circuit)
99a to 99f switch (first switch)
102 Resistance (sixth resistance)
103 Resistance (8th resistance)
104a to 104f Resistance (fifth resistance)
110a to 110e Resistance (third resistance)
133a to 133e Resistance (fourth resistance)
116a to 116f Comparator (2n + 1th comparator to 3nth comparator)
117a to 117f Comparator (3n + 1 comparator to 4n comparator)
118a to 118f OR circuit (n + 1th OR circuit to 2n OR circuit)
119a to 119f switch (second switch)
122a to 122f Resistance (seventh resistance)
901a to 901c connection point (2n + 1 connection point to 2n + 3 connection point)
902a to 902c connection point (4n + 1 connection point to 4n + 3 connection point)
P1 to P6 connection points (first connection point to nth connection point)
P7 to P12 connection points (n + 1th connection point to 2nth connection point)
P21 to P26 connection point (first connection point to nth connection point)
P27 to P32 connection point (n + 1th connection point to 2nth connection point)
P41 to P46 connection point (2n + 1 connection point to 3n connection point)
P47 to P52 connection points (3n + 1 connection point to 4n connection point)

Claims (8)

  1. 物理量aと物理量bとの間の任意の物理量xに一対一に対応する電圧V(x)を出力する物理量センサと、
    補正電圧を発生する補正電圧発生回路と、
    前記補正電圧を前記電圧V(x)に加える加算回路と、
    を備え、
    前記物理量センサは、
       前記物理量aに対応して電圧V(a)を出力し、
       前記物理量bに対応して前記電圧V(a)よりも高い電圧V(b)を出力し、
       以下の式、
    Y(x)=V(a)+{V(b)-V(a)}・(x-a)/(b-a)
    で示される電圧Y(x)と前記電圧V(x)との差である差電圧Z(x)の絶対値が物理量cにおいて最大値Z(c)をとり、
       前記物理量aと前記物理量cとの間の任意の物理量に対して前記差電圧Z(x)が単調に変化し、
       前記任意の物理量xに対して前記差電圧Z(x)が単調に変化する、
    ように動作し、
    前記補正電圧発生回路は、
       前記電圧V(a)と前記電圧V(b)と前記電圧V(c)とを発生する電圧発生器と、
       nはn≧3を満たす所定の整数であり、kは2≦k≦n-1を満たす任意の整数であり、前記電圧V(a)が印加される第1の接続点と、第2の接続点と、…、第kの接続点と、…、第n-1の接続点と、前記電圧V(c)が印加される第nの接続点がこの順で繋がるように、前記第1の接続点から前記第nの接続点まで前記第2の接続点と、…、前記第kの接続点と、…、前記第n-1の接続点とで直列に接続された複数の第1の抵抗と、
       前記電圧V(a)と前記電圧V(x)とを比較する第1のコンパレータと、前記第2の接続点の電圧と前記電圧V(x)とを比較する第2のコンパレータと、…、前記第kの接続点の電圧と前記電圧V(x)とを比較する第kのコンパレータと、…、前記第n-1の接続点の電圧と前記電圧V(x)とを比較する第n-1のコンパレータと、前記電圧V(c)と前記電圧V(x)とを比較する第nのコンパレータと、
       前記電圧V(b)が印加される第n+1の接続点と、第n+2の接続点と、…、第n+kの接続点と、…、第2n-1の接続点と、前記電圧V(c)が印加される第2nの接続点がこの順で繋がるように、前記第n+1の接続点から前記第2nの接続点まで前記第n+2の接続点と、…、前記第n+kの接続点と、…、前記第2n-1の接続点とで直列に接続された複数の第2の抵抗と、
       前記電圧V(b)と前記電圧V(x)とを比較する第n+1のコンパレータと、前記第n+2の接続点の電圧と前記電圧V(x)とを比較する第n+2のコンパレータと、…、前記第n+kの接続点の電圧と前記電圧V(x)とを比較する第n+kのコンパレータと、…、前記第2n-1の接続点の電圧と前記電圧V(x)とを比較する第2n-1のコンパレータと、前記電圧V(c)と前記電圧V(x)とを比較する第2nのコンパレータと、
       前記第1のコンパレータの出力する信号と前記第n+1のコンパレータの出力する信号との論理和をとる第1の論理和回路と、…、前記第kのコンパレータの出力する信号と前記第n+kのコンパレータの出力する信号との論理和をとる第kの論理和回路と、…、前記第nのコンパレータの出力する信号と前記第2nのコンパレータの出力する信号との論理和をとる第nの論理和回路と、
       前記第1の論理和回路から前記第nの論理和回路によりそれぞれ制御される複数のスイッチと、
       前記複数のスイッチにそれぞれ並列に接続されており、かつ第1の所定の電圧が印加される第2n+1の接続点と第2n+2の接続点との間で互いに直列に接続された複数の第3の抵抗と、
       前記第2n+1の接続点と前記第2n+2の接続点との間で前記複数の第3の抵抗に直列に接続された第4の抵抗と、
       第2の所定の電圧が印加される第2n+3の接続点と前記第2n+2の接続点との間に接続された第5の抵抗と、
       前記第2n+2の接続点の電圧に基づいて前記補正電圧を出力する出力回路と、
    を有する、物理量検出装置。
    A physical quantity sensor that outputs a voltage V (x) corresponding to an arbitrary physical quantity x between the physical quantity a and the physical quantity b;
    A correction voltage generating circuit for generating a correction voltage;
    An adding circuit for adding the correction voltage to the voltage V (x);
    With
    The physical quantity sensor is
    A voltage V (a) is output corresponding to the physical quantity a,
    A voltage V (b) higher than the voltage V (a) corresponding to the physical quantity b is output,
    The following formula,
    Y (x) = V (a) + {V (b) -V (a)}. (Xa) / (ba)
    The absolute value of the difference voltage Z (x), which is the difference between the voltage Y (x) and the voltage V (x) shown in FIG.
    The difference voltage Z (x) monotonously changes with respect to an arbitrary physical quantity between the physical quantity a and the physical quantity c,
    The differential voltage Z (x) monotonously changes with respect to the arbitrary physical quantity x.
    Works like
    The correction voltage generation circuit includes:
    A voltage generator for generating the voltage V (a), the voltage V (b), and the voltage V (c);
    n is a predetermined integer satisfying n ≧ 3, k is an arbitrary integer satisfying 2 ≦ k ≦ n−1, the first connection point to which the voltage V (a) is applied, The first connection point, the kth connection point, the n-1th connection point, and the nth connection point to which the voltage V (c) is applied are connected in this order. A plurality of first connections connected in series from the second connection point to the nth connection point, the kth connection point, and the n-1th connection point. Resistance of
    A first comparator that compares the voltage V (a) and the voltage V (x), a second comparator that compares the voltage at the second connection point and the voltage V (x), A k-th comparator for comparing the voltage at the k-th connection point with the voltage V (x),..., An n-th for comparing the voltage at the n-th connection point with the voltage V (x). -1 comparator, an nth comparator for comparing the voltage V (c) and the voltage V (x),
    The (n + 1) th connection point to which the voltage V (b) is applied, the (n + 2) th connection point, the (n + k) connection point, the (2n-1) th connection point, and the voltage V (c) N + 2 connection points from the (n + 1) th connection point to the (2n) th connection point,..., The (n + k) connection point, and so on. A plurality of second resistors connected in series with the second n-1 connection point;
    An (n + 1) th comparator for comparing the voltage V (b) and the voltage V (x), an n + 2th comparator for comparing the voltage at the n + 2 connection point and the voltage V (x), An n + k comparator that compares the voltage at the n + k connection point and the voltage V (x),..., A second n that compares the voltage at the second n−1 connection point and the voltage V (x). -1 comparator, a second n comparator for comparing the voltage V (c) and the voltage V (x),
    A first OR circuit that takes a logical sum of a signal output from the first comparator and a signal output from the (n + 1) th comparator;..., A signal output from the kth comparator and an n + k comparator A k-th logical sum circuit that performs a logical sum with a signal output from the n-th comparator,..., An n-th logical sum that performs a logical sum between a signal output from the n-th comparator and a signal output from the second n-th comparator. Circuit,
    A plurality of switches respectively controlled by the first OR circuit to the nth OR circuit;
    A plurality of third switches connected in parallel to each of the plurality of switches and connected in series between a second n + 1 connection point and a second n + 2 connection point to which a first predetermined voltage is applied. Resistance,
    A fourth resistor connected in series with the plurality of third resistors between the second n + 1 connection point and the second n + 2 connection point;
    A fifth resistor connected between a second n + 3 connection point to which a second predetermined voltage is applied and the second n + 2 connection point;
    An output circuit that outputs the correction voltage based on a voltage at the second n + 2 connection point;
    A physical quantity detection device.
  2. 前記第1の所定の電圧は前記第2の所定の電圧より高く、
    前記出力回路は前記第2の端の前記電圧の符号を反転させて前記補正電圧を発生する、請求項1に記載の物理量検出装置。
    The first predetermined voltage is higher than the second predetermined voltage;
    The physical quantity detection device according to claim 1, wherein the output circuit inverts the sign of the voltage at the second end to generate the correction voltage.
  3. 前記第1の所定の電圧は前記第2の所定の電圧より低く、
    前記出力回路は前記第2の端の前記電圧を前記補正電圧として出力する、請求項1に記載の物理量検出装置。
    The first predetermined voltage is lower than the second predetermined voltage;
    The physical quantity detection device according to claim 1, wherein the output circuit outputs the voltage at the second end as the correction voltage.
  4. 前記第1のコンパレータは、前記電圧V(x)が前記電圧V(a)よりも高い場合にアクティブレベルの信号を出力して、低い場合に非アクティブレベルの信号を出力し、
    前記第kのコンパレータは、前記電圧V(x)が前記第kの接続点の前記電圧よりも高い場合にアクティブレベルの信号を出力して、低い場合に非アクティブレベルの信号を出力し、
    前記第nのコンパレータは前記電圧V(x)が前記電圧V(c)よりも高い場合にアクティブレベルの信号を出力し、低い場合に非アクティブレベルの信号を出力し、
    前記第n+1のコンパレータは、前記電圧V(x)が前記電圧V(b)よりも高い場合に非アクティブレベルの信号を出力して、低い場合にアクティブレベルの信号を出力し、
    前記第n+kのコンパレータは、前記電圧V(x)が前記第n+kの接続点の前記電圧よりも高い場合に非アクティブレベルの信号を出力して、低い場合にアクティブレベルの信号を出力し、
    前記第2nのコンパレータは、前記電圧V(x)が前記電圧V(c)よりも高い場合に非アクティブレベルの信号を出力し、低い場合にアクティブレベルの信号を出力し、
    前記第1の論理和回路は、前記第1のコンパレータの出力する信号と前記n+1のコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第1のコンパレータの出力する前記信号と前記n+1のコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記第kの論理和回路は、前記第kのコンパレータの出力する信号と前記n+kのコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第kのコンパレータの出力する前記信号と前記n+kのコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記第nの論理和回路は、前記第nのコンパレータの出力する信号と前記2nのコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第nのコンパレータの出力する前記信号と前記2nのコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記複数のスイッチは、前記第1の論理和回路から前記第nの論理和回路がアクティブレベルの信号を出力するときにそれぞれ閉じ、前記第1の論理和回路から前記第nの論理和回路が非アクティブレベルの信号を出力するときにそれぞれ開く、請求項1に記載の物理量検出装置。
    The first comparator outputs an active level signal when the voltage V (x) is higher than the voltage V (a), and outputs an inactive level signal when the voltage is low.
    The kth comparator outputs an active level signal when the voltage V (x) is higher than the voltage at the kth connection point, and outputs an inactive level signal when the voltage is low.
    The nth comparator outputs an active level signal when the voltage V (x) is higher than the voltage V (c), and outputs an inactive level signal when the voltage is low.
    The n + 1 th comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage V (b), and outputs an active level signal when the voltage V (x) is lower,
    The n + k comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage at the n + k connection point, and outputs an active level signal when the voltage is low.
    The second n comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage V (c), and outputs an active level signal when the voltage is low.
    The first OR circuit outputs an inactive level signal when the signal output from the first comparator and the signal output from the n + 1 comparator are both in an inactive level. When at least one of the signal output from the comparator and the signal output from the n + 1 comparator is at an active level, an active level signal is output.
    The kth OR circuit outputs an inactive level signal when the signal output from the kth comparator and the signal output from the n + k comparator are both inactive, and the kth OR circuit An active level signal is output when at least one of the signal output from the comparator and the signal output from the n + k comparator is at an active level;
    The n-th OR circuit outputs an inactive level signal when both the signal output from the n-th comparator and the signal output from the 2n comparator are in an inactive level. An active level signal is output when at least one of the signal output by the comparator and the signal output by the 2n comparator is an active level;
    The plurality of switches are closed when the nth OR circuit outputs an active level signal from the first OR circuit, and the nth OR circuit from the first OR circuit is closed. The physical quantity detection device according to claim 1, wherein the physical quantity detection device opens each time an inactive level signal is output.
  5. 物理量aと物理量bとの間の任意の物理量xに一対一に対応する電圧V(x)を出力する物理量センサと、
    補正電圧を発生する補正電圧発生回路と、
    前記補正電圧を前記電圧V(x)に加える加算回路と、
    を備え、
    前記物理量センサは、
       前記物理量aに対応して電圧V(a)を出力し、
       前記物理量bに対応して前記電圧V(a)よりも高い電圧V(b)を出力し、
       以下の式、
    Y(x)=V(a)+{V(b)-V(a)}・(x-a)/(b-a)
    で示される電圧Y(x)と前記電圧V(x)との差である差電圧Z(x)が物理量cにおいて零となり、
       前記差電圧Z(x)の絶対値が前記物理量aと前記物理量cとの間の物理量dにおいて最大値Z(d)をとり、
       前記物理量aと前記物理量dとの間で前記任意の物理量xに対して前記差電圧Z(x)が単調に変化し、
       前記物理量dと前記物理量cとの間で前記任意の物理量xに対して前記差電圧Z(x)が単調に変化し、
       前記差電圧Z(x)の絶対値が前記物理量cと物理量bとの間の物理量eにおいて最大値Z(e)をとり、
       前記物理量cと前記物理量eとの間で前記任意の物理量xに対して前記差電圧Z(x)が単調に変化し、
       前記物理量eと前記物理量bとの間で前記任意の物理量xに対して前記差電圧ZV(x)が単調に変化する、
    ように動作し、
    前記補正信号発生回路は、
       前記電圧V(a)と前記電圧V(b)と前記電圧V(c)と前記電圧V(d)と前記電圧V(e)とを発生する電圧発生器と、
       nはn≧3を満たす所定の整数であり、kは2≦k≦n―1を満たす任意の整数であり、前記電圧V(a)が印加される第1の接続点と、第2の接続点と、…、第kの接続点と、…、第n-1の接続点と、前記電圧V(d)が印加される第nの接続点がこの順で繋がるように、前記第1の接続点から前記第nの接続点まで前記第2の接続点と、…、前記第kの接続点と、…、前記第n-1の接続点とで直列に接続された複数の第1の抵抗と、
       前記電圧V(a)と前記電圧V(x)とを比較する第1のコンパレータと、前記第2の接続点の電圧と前記電圧V(x)とを比較する第2のコンパレータと、…、前記第kの接続点の電圧と前記電圧V(x)とを比較する第kのコンパレータと、…、前記第n-1の接続点の電圧と前記電圧V(x)とを比較する第n-1のコンパレータと、前記電圧V(d)と前記電圧V(x)とを比較する第nのコンパレータと、
       前記電圧V(c)が印加される第n+1の接続点と、第n+2の接続点と、…、第n+kの接続点と、…、第2n-1の接続点と、前記電圧V(e)が印加される第2nの接続点がこの順で繋がるように、前記第n+1の接続点から前記第2nの接続点まで前記第n+2の接続点と、…、前記第n+kの接続点と、…、前記第2n-1の接続点とで直列に接続された複数の第2の抵抗と、
       前記電圧V(c)と前記電圧V(x)とを比較する第n+1のコンパレータと、前記第n+2の接続点の電圧と前記電圧V(x)とを比較する第n+2のコンパレータと、…、前記第n+kの接続点の電圧と前記電圧V(x)とを比較する第n+kのコンパレータと、…、前記第2n-1の接続点の電圧と前記電圧V(x)とを比較する第2n-1のコンパレータと、前記電圧V(d)と前記電圧V(x)とを比較する第2nのコンパレータと、
       前記第1のコンパレータの出力する信号と前記第n+1のコンパレータの出力する信号との論理和をとる第1の論理和回路と、…、前記第kのコンパレータの出力する信号と前記第n+kのコンパレータの出力する信号との論理和をとる第kの論理和回路と、…、前記第nのコンパレータの出力する信号と前記第2nのコンパレータの出力する信号との論理和をとる第nの論理和回路と、
       前記電圧V(c)が印加される第2n+1の接続点と、第2n+2の接続点と、…、第2n+kの接続点と、…、第3n-1の接続点と、前記電圧V(e)が印加される第3nの接続点がこの順で繋がるように、前記第2n+1の接続点から前記第3nの接続点まで前記第2n+2の接続点と、…、前記第2n+kの接続点と、…、前記第3n-1の接続点とで直列に接続された複数の第3の抵抗と、
       前記電圧V(c)と前記電圧V(x)とを比較する第2n+1のコンパレータと、前記第2n+2の接続点の電圧と前記電圧V(x)とを比較する第2n+2のコンパレータと、…、前記第2n+kの接続点の電圧と前記電圧V(x)とを比較する第2n+kのコンパレータと、…、前記第3n-1の接続点の電圧と前記電圧V(x)とを比較する第3n-1のコンパレータと、前記電圧V(e)と前記電圧V(x)とを比較する第3nのコンパレータと、
       前記電圧V(b)が印加される第3n+1の接続点と、第3n+2の接続点と、…、第3n+kの接続点と、…、第4n-1の接続点と、前記電圧V(e)が印加される第4nの接続点がこの順で繋がるように、前記第3n+1の接続点から前記第4nの接続点まで前記第3n+2の接続点と、…、前記第3n+kの接続点と、…、前記第4n-1の接続点とで直列に接続された複数の第4の抵抗と、
       前記電圧V(b)と前記電圧V(x)とを比較する第3n+1のコンパレータと、前記第3n+2の接続点の電圧と前記電圧V(x)とを比較する第3n+2のコンパレータと、…、前記第3n+kの接続点の電圧と前記電圧V(x)とを比較する第3n+kのコンパレータと、…、前記第4n-1の接続点の電圧と前記電圧V(x)とを比較する第4n-1のコンパレータと、前記電圧V(e)と前記電圧V(x)とを比較する第4nのコンパレータと、
       前記第2n+1のコンパレータの出力する信号と前記第3n+1のコンパレータの出力する信号との論理和をとる第n+1の論理和回路と、…、前記第2n+kのコンパレータの出力する信号と前記第3n+kのコンパレータの出力する信号との論理和をとる第n+kの論理和回路と、…、前記第3nのコンパレータの出力する信号と前記第4nのコンパレータの出力する信号との論理和をとる第2nの論理和回路と、
       前記第1の論理和回路から前記第nの論理和回路によりそれぞれ制御される複数の第1のスイッチと、
       前記複数の第1のスイッチにそれぞれ並列に接続されており、かつ第1の所定の電圧が印加される第4n+1の接続点と第4n+2の接続点との間で互いに直列に接続された複数の第5の抵抗と、
       前記第4n+1の接続点と前記第4n+2の接続点との間で前記複数の第5の抵抗に直列に接続された第6の抵抗と、
       前記第n+1の論理和回路から前記第2nの論理和回路によりそれぞれ制御される複数の第2のスイッチと、
       前記複数の第2のスイッチにそれぞれ並列に接続されており、かつ第2の所定の電圧が印加される第3の接続点と前記第2の接続点との間で互いに直列に接続された複数の第7の抵抗と、
       前記第2の接続点と前記第3の接続点との間で前記複数の第7の抵抗に直列に接続された第8の抵抗と、
       前記第2の接続点の電圧に基づいて前記補正電圧を出力する出力回路と、
    を有する、物理量検出装置。
    A physical quantity sensor that outputs a voltage V (x) corresponding to an arbitrary physical quantity x between the physical quantity a and the physical quantity b;
    A correction voltage generating circuit for generating a correction voltage;
    An adding circuit for adding the correction voltage to the voltage V (x);
    With
    The physical quantity sensor is
    A voltage V (a) is output corresponding to the physical quantity a,
    A voltage V (b) higher than the voltage V (a) corresponding to the physical quantity b is output,
    The following formula,
    Y (x) = V (a) + {V (b) -V (a)}. (Xa) / (ba)
    The difference voltage Z (x), which is the difference between the voltage Y (x) and the voltage V (x) shown in FIG.
    The absolute value of the differential voltage Z (x) takes the maximum value Z (d) in the physical quantity d between the physical quantity a and the physical quantity c,
    The difference voltage Z (x) monotonously changes with respect to the arbitrary physical quantity x between the physical quantity a and the physical quantity d,
    The difference voltage Z (x) monotonously changes with respect to the arbitrary physical quantity x between the physical quantity d and the physical quantity c,
    The absolute value of the differential voltage Z (x) takes the maximum value Z (e) in the physical quantity e between the physical quantity c and the physical quantity b,
    The difference voltage Z (x) monotonously changes with respect to the arbitrary physical quantity x between the physical quantity c and the physical quantity e,
    The difference voltage ZV (x) monotonously changes between the physical quantity e and the physical quantity b with respect to the arbitrary physical quantity x.
    Works like
    The correction signal generation circuit includes:
    A voltage generator for generating the voltage V (a), the voltage V (b), the voltage V (c), the voltage V (d), and the voltage V (e);
    n is a predetermined integer satisfying n ≧ 3, k is an arbitrary integer satisfying 2 ≦ k ≦ n−1, the first connection point to which the voltage V (a) is applied, and the second The first connection point, the k-th connection point, the n-th connection point, and the n-th connection point to which the voltage V (d) is applied are connected in this order. A plurality of first connections connected in series from the second connection point to the nth connection point, the kth connection point, and the n-1th connection point. Resistance of
    A first comparator that compares the voltage V (a) and the voltage V (x), a second comparator that compares the voltage at the second connection point and the voltage V (x), A k-th comparator for comparing the voltage at the k-th connection point with the voltage V (x),..., An n-th for comparing the voltage at the n-th connection point with the voltage V (x). -1 comparator, an nth comparator for comparing the voltage V (d) and the voltage V (x),
    The (n + 1) th connection point to which the voltage V (c) is applied, the (n + 2) th connection point, the (n + k) connection point, the (2n-1) th connection point, and the voltage V (e) N + 2 connection points from the (n + 1) th connection point to the (2n) th connection point,..., The (n + k) connection point, and so on. A plurality of second resistors connected in series with the second n-1 connection point;
    An (n + 1) th comparator for comparing the voltage V (c) and the voltage V (x), an n + 2 comparator for comparing the voltage at the n + 2 connection point and the voltage V (x), An n + k comparator that compares the voltage at the n + k connection point and the voltage V (x),..., A second n that compares the voltage at the second n−1 connection point and the voltage V (x). -1 comparator, a second n comparator for comparing the voltage V (d) and the voltage V (x),
    A first OR circuit that takes a logical sum of a signal output from the first comparator and a signal output from the (n + 1) th comparator;..., A signal output from the kth comparator and an n + k comparator A k-th logical sum circuit that performs a logical sum with a signal output from the n-th comparator,..., An n-th logical sum that performs a logical sum between a signal output from the n-th comparator and a signal output from the second n-th comparator. Circuit,
    The 2n + 1 connection point to which the voltage V (c) is applied, the 2n + 2 connection point, ..., the 2n + k connection point, ..., the 3n-1 connection point, and the voltage V (e) Are connected in this order so that the second n + 2 connection point from the second n + 1 connection point to the third n connection point, the second n + k connection point, and so on. A plurality of third resistors connected in series with the third n-1 connection point;
    A second n + 1 comparator that compares the voltage V (c) and the voltage V (x), a second n + 2 comparator that compares the voltage at the second n + 2 connection point and the voltage V (x),. A second n + k comparator that compares the voltage at the second n + k connection point and the voltage V (x),..., A third n that compares the voltage at the third n−1 connection point and the voltage V (x). -1 comparator, a third n comparator for comparing the voltage V (e) and the voltage V (x),
    The 3n + 1 connection point to which the voltage V (b) is applied, the 3n + 2 connection point, the 3n + k connection point, the 4n-1 connection point, and the voltage V (e) Are connected in this order so that the 3n + 2 connection point from the 3n + 1 connection point to the 4nth connection point, the 3n + k connection point, and so on. A plurality of fourth resistors connected in series at the fourth n-1 connection point;
    A third n + 1 comparator for comparing the voltage V (b) and the voltage V (x), a third n + 2 comparator for comparing the voltage at the third n + 2 connection point and the voltage V (x), A third n + k comparator for comparing the voltage at the third n + k connection point with the voltage V (x),..., A fourth n for comparing the voltage at the fourth n-1 connection point with the voltage V (x). -1 comparator, a fourth n comparator for comparing the voltage V (e) and the voltage V (x),
    An (n + 1) -th OR circuit that takes a logical sum of a signal output from the (2n + 1) th comparator and a signal output from the (3n + 1) th comparator;..., A signal output from the second (n + k) comparator and the third (n + k) comparator An (n + k) OR circuit that takes a logical sum with the signal output from the second nth, and a second n logical sum that takes a logical sum between the signal output from the third n comparator and the signal output from the fourth n comparator. Circuit,
    A plurality of first switches respectively controlled by the first OR circuit to the nth OR circuit;
    The plurality of first switches connected in parallel to each other and connected in series between the 4n + 1 connection point to which the first predetermined voltage is applied and the 4n + 2 connection point. A fifth resistor;
    A sixth resistor connected in series to the plurality of fifth resistors between the 4n + 1 connection point and the 4n + 2 connection point;
    A plurality of second switches respectively controlled by the (n + 1) th OR circuit and the (2n) th OR circuit;
    The plurality of second switches connected in parallel to each other and connected in series between a third connection point to which a second predetermined voltage is applied and the second connection point. A seventh resistance of
    An eighth resistor connected in series with the plurality of seventh resistors between the second connection point and the third connection point;
    An output circuit that outputs the correction voltage based on the voltage at the second connection point;
    A physical quantity detection device.
  6. 前記第1の所定の電圧は前記第2の所定の電圧より高く、
    前記出力回路は前記第2の端の前記電圧の符号を反転させて前記補正電圧を発生する、請求項5に記載の物理量検出装置。
    The first predetermined voltage is higher than the second predetermined voltage;
    The physical quantity detection device according to claim 5, wherein the output circuit generates the correction voltage by inverting the sign of the voltage at the second end.
  7. 前記第1の所定の電圧は前記第2の所定の電圧より低く、
    前記出力回路は前記第2の端の前記電圧を前記補正電圧として出力する、請求項5に記載の物理量検出装置。
    The first predetermined voltage is lower than the second predetermined voltage;
    The physical quantity detection device according to claim 5, wherein the output circuit outputs the voltage at the second end as the correction voltage.
  8. 前記第1のコンパレータは、前記電圧V(x)が前記電圧V(a)よりも高い場合にアクティブレベルの信号を出力して、低い場合に非アクティブレベルの信号を出力し、
    前記第kのコンパレータは、前記電圧V(x)が前記第k-1の抵抗と前記第kの抵抗とが接続された前記接続点の前記電圧よりも高い場合にアクティブレベルの信号を出力して、低い場合に非アクティブレベルの信号を出力し、
    前記第nのコンパレータは前記電圧V(x)が前記電圧V(d)よりも高い場合にアクティブレベルの信号を出力し、低い場合に非アクティブレベルの信号を出力し、
    前記第n+1のコンパレータは、前記電圧V(x)が前記電圧V(c)よりも高い場合に非アクティブレベルの信号を出力して、低い場合にアクティブレベルの信号を出力し、
    前記第n+kのコンパレータは、前記電圧V(x)が前記第n+k-1の抵抗と前記第n+kの抵抗とが接続された前記接続点の前記電圧よりも高い場合に非アクティブレベルの信号を出力して、低い場合にアクティブレベルの信号を出力し、
    前記第2nのコンパレータは、前記電圧V(x)が前記電圧V(d)よりも高い場合に非アクティブレベルの信号を出力し、低い場合にアクティブレベルの信号を出力し、
    前記第2n+1のコンパレータは、前記電圧V(x)が前記電圧V(c)よりも高い場合にアクティブレベルの信号を出力して、低い場合に非アクティブレベルの信号を出力し、
    前記第2n+kのコンパレータは、前記電圧V(x)が前記第2n+k-1の抵抗と前記第2n+kの抵抗とが接続された前記接続点の前記電圧よりも高い場合にアクティブレベルの信号を出力して、低い場合に非アクティブレベルの信号を出力し、
    前記第3nのコンパレータは前記電圧V(x)が前記電圧V(e)よりも高い場合にアクティブレベルの信号を出力し、低い場合に非アクティブレベルの信号を出力し、
    前記第3n+1のコンパレータは、前記電圧V(x)が前記電圧V(b)よりも高い場合に非アクティブレベルの信号を出力して、低い場合にアクティブレベルの信号を出力し、
    前記第3n+kのコンパレータは、前記電圧V(x)が前記第3n+k-1の抵抗と前記第3n+kの抵抗とが接続された前記接続点の前記電圧よりも高い場合に非アクティブレベルの信号を出力して、低い場合にアクティブレベルの信号を出力し、
    前記第4nのコンパレータは、前記電圧V(x)が前記電圧V(e)よりも高い場合に非アクティブレベルの信号を出力し、低い場合にアクティブレベルの信号を出力し、
    前記第1の論理和回路は、前記第1のコンパレータの出力する信号と前記n+1のコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第1のコンパレータの出力する前記信号と前記n+1のコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記第kの論理和回路は、前記第kのコンパレータの出力する信号と前記n+kのコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第kのコンパレータの出力する前記信号と前記n+kのコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記第nの論理和回路は、前記第nのコンパレータの出力する信号と前記2nのコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第4n+1のコンパレータの出力する前記信号と前記4n+2のコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記複数の第1のスイッチは、前記第1の論理和回路から前記第nの論理和回路がアクティブレベルの信号を出力するときにそれぞれ閉じ、前記第1の論理和回路から前記第nの論理和回路が非アクティブレベルの信号を出力するときにそれぞれ開き、
    前記第n+1の論理和回路は、前記第2n+1のコンパレータの出力する信号と前記3n+1のコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第2n+1のコンパレータの出力する前記信号と前記3n+1のコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記第n+kの論理和回路は、前記第2n+kのコンパレータの出力する信号と前記3n+kのコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第2n+kのコンパレータの出力する前記信号と前記3n+kのコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記第2nの論理和回路は、前記第3nのコンパレータの出力する信号と前記4nのコンパレータの出力する前記信号がともに非アクティブレベルの場合に非アクティブレベルの信号を出力して、前記第3nのコンパレータの出力する前記信号と前記4nのコンパレータの出力する前記信号の少なくとも一方がアクティブレベルの場合にアクティブレベルの信号を出力し、
    前記複数の第2のスイッチは、前記第n+1の論理和回路から前記第2nの論理和回路がアクティブレベルの信号を出力するときにそれぞれ閉じ、前記第n+1の論理和回路から前記第nの論理和回路が非アクティブレベルの信号を出力するときにそれぞれ開く、請求項5に記載の物理量検出装置。
    The first comparator outputs an active level signal when the voltage V (x) is higher than the voltage V (a), and outputs an inactive level signal when the voltage is low.
    The kth comparator outputs an active level signal when the voltage V (x) is higher than the voltage at the connection point where the k-1th resistor and the kth resistor are connected. Output inactive level signal when low,
    The nth comparator outputs an active level signal when the voltage V (x) is higher than the voltage V (d), and outputs an inactive level signal when the voltage V (x) is low,
    The (n + 1) th comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage V (c), and outputs an active level signal when the voltage V (x) is lower,
    The n + k comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage at the connection point where the n + k−1 resistor and the n + k resistor are connected. And output an active level signal when it is low,
    The second n comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage V (d), and outputs an active level signal when the voltage V (x) is lower,
    The 2n + 1th comparator outputs an active level signal when the voltage V (x) is higher than the voltage V (c), and outputs an inactive level signal when the voltage V (x) is low.
    The second n + k comparator outputs an active level signal when the voltage V (x) is higher than the voltage at the connection point where the second n + k−1 resistor and the second n + k resistor are connected. Output inactive level signal when low,
    The third n comparator outputs an active level signal when the voltage V (x) is higher than the voltage V (e), and outputs an inactive level signal when the voltage is low.
    The 3n + 1th comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage V (b), and outputs an active level signal when the voltage V (x) is lower,
    The third n + k comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage at the connection point where the third n + k−1 resistor and the third n + k resistor are connected. And output an active level signal when it is low,
    The fourth n comparator outputs an inactive level signal when the voltage V (x) is higher than the voltage V (e), and outputs an active level signal when the voltage V (x) is lower,
    The first OR circuit outputs an inactive level signal when the signal output from the first comparator and the signal output from the n + 1 comparator are both in an inactive level. When at least one of the signal output from the comparator and the signal output from the n + 1 comparator is at an active level, an active level signal is output.
    The kth OR circuit outputs an inactive level signal when the signal output from the kth comparator and the signal output from the n + k comparator are both inactive, and the kth OR circuit An active level signal is output when at least one of the signal output from the comparator and the signal output from the n + k comparator is at an active level;
    The n-th OR circuit outputs an inactive level signal when both the signal output from the n-th comparator and the signal output from the 2n comparator are in an inactive level. An active level signal is output when at least one of the signal output by the comparator and the signal output by the 4n + 2 comparator is an active level;
    The plurality of first switches are closed when the n-th OR circuit outputs an active level signal from the first OR circuit, and the n-th logic circuit from the first OR circuit. Open when each sum circuit outputs a signal of inactive level,
    The (n + 1) th OR circuit outputs an inactive level signal when both the signal output from the (2n + 1) comparator and the signal output from the (3n + 1) comparator are in an inactive level. An active level signal is output when at least one of the signal output from the comparator and the signal output from the 3n + 1 comparator is at an active level;
    The n + k OR circuit outputs an inactive level signal when both the signal output from the second n + k comparator and the signal output from the 3n + k comparator are in an inactive level. An active level signal is output when at least one of the signal output by the comparator and the signal output by the 3n + k comparator is an active level;
    The 2n-th OR circuit outputs an inactive level signal when both the signal output from the 3n-th comparator and the signal output from the 4n-comparator are inactive level, An active level signal is output when at least one of the signal output by the comparator and the signal output by the 4n comparator is at an active level;
    The plurality of second switches are closed when the 2n-th OR circuit outputs an active level signal from the (n + 1) -th OR circuit, and the n + 1-th OR circuit outputs the active level signal. The physical quantity detection device according to claim 5, wherein each of the sum circuits opens when outputting a signal of an inactive level.
PCT/JP2012/004792 2011-08-10 2012-07-27 Physical quantity detecting apparatus WO2013021571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011174731 2011-08-10
JP2011-174731 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013021571A1 true WO2013021571A1 (en) 2013-02-14

Family

ID=47668111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004792 WO2013021571A1 (en) 2011-08-10 2012-07-27 Physical quantity detecting apparatus

Country Status (1)

Country Link
WO (1) WO2013021571A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466863A (en) * 1977-08-26 1979-05-29 Siemens Ag Circuit for correcting characteristic curve of electronic measuring instrument
JPS608445B2 (en) * 1975-12-25 1985-03-02 日本電子機器株式会社 Characteristic setter for transducer
JPH0529848B2 (en) * 1987-10-17 1993-05-06 Okura Denki Co Ltd
JPH07103789A (en) * 1993-10-05 1995-04-18 Nippon Telegr & Teleph Corp <Ntt> Input conversion display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608445B2 (en) * 1975-12-25 1985-03-02 日本電子機器株式会社 Characteristic setter for transducer
JPS5466863A (en) * 1977-08-26 1979-05-29 Siemens Ag Circuit for correcting characteristic curve of electronic measuring instrument
JPH0529848B2 (en) * 1987-10-17 1993-05-06 Okura Denki Co Ltd
JPH07103789A (en) * 1993-10-05 1995-04-18 Nippon Telegr & Teleph Corp <Ntt> Input conversion display device

Similar Documents

Publication Publication Date Title
EP3300518B1 (en) Magnetic field sensor for angle detection with a phase-locked loop
US7982454B2 (en) Calibration circuits and methods for a proximity detector using a first rotation detector for a determined time period and a second rotation detector after the determined time period
KR101995279B1 (en) Circuits and methods for generating a threshold signal used in a magnetic field sensor
US7347096B2 (en) Digital accelerometer
US20120166122A1 (en) Reading circuit with automatic offset compensation for a magnetic-field sensor, and related reading method with automatic offset compensation
US8120209B2 (en) Voltage sensing device for an individual cell of a group of battery cells
JP7070969B2 (en) Crosstalk calibration for multi-channel systems
CN1993623A (en) Detector
US11454521B2 (en) Magnetic field sensor with an adjustable threshold
WO2013021571A1 (en) Physical quantity detecting apparatus
CN101065678A (en) Monitoring physical operating parameters of an integrated circuit
EP2972439B1 (en) Vertical hall effect sensor with offset reduction
JPS63151824A (en) Method of linearizing electronic balance
CN102841065B (en) Spectrophotometer
CN103080754A (en) Current sensor
JP2013101023A (en) Position detector and driver
CN112986871B (en) Null shift data acquisition method and device for fluxgate magnetometer
US20230016196A1 (en) Magnetic sensing device
JP2687624B2 (en) Electronic balance
JP2522003B2 (en) Detection amplification device
JP2000020852A (en) Photoelectric smoke sensor and method for adjusting sensitivity and method for compensating temperature
Antioch Fiscal policy dynamics in Australia and New Zealand
WO2007048487A3 (en) Digital display timepiece
Yamada et al. The incidence of restenosis following PTCA using a turbidimetric Lp (a) immunoassay without the influence of apo (a) size polymorphism
JPS59111416A (en) High accurate digital-analog converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP