WO2013021456A1 - Blow-by gas return device for supercharged engine - Google Patents

Blow-by gas return device for supercharged engine Download PDF

Info

Publication number
WO2013021456A1
WO2013021456A1 PCT/JP2011/068121 JP2011068121W WO2013021456A1 WO 2013021456 A1 WO2013021456 A1 WO 2013021456A1 JP 2011068121 W JP2011068121 W JP 2011068121W WO 2013021456 A1 WO2013021456 A1 WO 2013021456A1
Authority
WO
WIPO (PCT)
Prior art keywords
blow
gas
intake
intake air
compressor
Prior art date
Application number
PCT/JP2011/068121
Other languages
French (fr)
Japanese (ja)
Inventor
有希 天本
輝 小川
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to PCT/JP2011/068121 priority Critical patent/WO2013021456A1/en
Publication of WO2013021456A1 publication Critical patent/WO2013021456A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/06Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding lubricant vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/02Crankcase ventilating or breathing by means of additional source of positive or negative pressure
    • F01M13/021Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure
    • F01M13/022Crankcase ventilating or breathing by means of additional source of positive or negative pressure of negative pressure using engine inlet suction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention is applied to a supercharged engine in which a compressor rotated by an exhaust turbine and an intercooler that cools intake air discharged from the compressor are provided in an intake passage, and blowby gas generated in the supercharged engine is reduced.
  • the present invention relates to a blow-by gas reduction device that returns to the supercharged engine through intake air.
  • a blow-by gas reduction device that reduces blow-by gas generated in an engine to the engine through intake air is known as a device that is applied to a vehicle-mounted engine.
  • blow-by gas is sucked from a crankcase or the like using intake negative pressure and introduced into the intake air.
  • the pressure in the intake passage becomes positive, and the opportunity for forming a negative pressure during intake is limited. Therefore, using only the intake negative pressure reduces the blowby gas sufficiently. It becomes difficult to do.
  • Patent Document 1 a blow-by gas reduction device that sucks blow-by gas using an ejector pump (jet pump) as proposed in Patent Document 1 has been proposed.
  • a bypass passage is provided to connect a downstream portion of the compressor of the turbocharger in the intake passage and a upstream portion of the compressor, and an ejector pump is provided in the bypass passage. is doing.
  • the blow-by gas reduction passage extended from the crankcase of the engine to the ejector pump the negative pressure generated by the ejector pump due to the flow of intake air flowing in the bypass passage from the downstream side of the compressor to the upstream side thereof
  • the blow-by gas in the crankcase is sucked.
  • blow-by gas reduction device as shown in Patent Document 2 has also been proposed.
  • the blow-by gas reduction device described in the same document provides a bypass passage that connects a portion of the intake passage downstream of the intercooler and a portion near the intake port, and an ejector pump is disposed on the bypass passage to The blow-by gas is sucked by the negative pressure generated by the ejector pump.
  • blow-by gas reduction device According to such a conventional blow-by gas reduction device, it is possible to satisfactorily reduce the blow-by gas even in a supercharged engine with a low chance of generating negative intake pressure.
  • the upstream end of the bypass passage is connected to the intake passage on the downstream side of the compressor, and intake air that has become hot due to compression by the compressor is introduced into the bypass passage. . Therefore, the ejector pump is exposed to high-temperature intake air, and it is difficult to ensure the durability unless a material excellent in heat resistance and corrosion resistance is used for the ejector pump or the like.
  • downstream end of the bypass passage that introduces the blow-by gas into the intake passage on the upstream side of the compressor is relatively close to the upstream end of the bypass passage that takes in the intake air from the intake passage on the downstream side of the compressor. Therefore, the oil component introduced into the intake passage along with the blow-by gas from the bypass passage is easily introduced into the bypass passage from the intake passage, and the oil component forms a deposit in the bypass passage and the ejector pump, thereby clogging the passage. May occur.
  • An object of the present invention has been made in view of such circumstances, and the problem to be solved is to ensure durability and suppress deposit accumulation while allowing blowby gas to be reduced appropriately even during supercharging.
  • An object of the present invention is to provide a blow-by gas reduction device for a supercharged engine that can easily perform the above.
  • a blow-by gas reduction device for a supercharged engine is a supercharger in which a compressor rotated by an exhaust turbine and an intercooler for cooling intake air discharged from the compressor are provided in an intake passage.
  • a blow-by gas reduction device that is applied to an engine and that reduces blow-by gas generated in the supercharged engine to the supercharged engine through intake air, and is provided on the downstream side of the intercooler in the intake passage and the compressor in the intake passage.
  • a bypass passage connecting the upstream portion and a negative pressure generator that generates a negative pressure by the flow of intake air flowing through the bypass passage and sucks blow-by gas by the negative pressure.
  • the positive pressure is weaker at the downstream side of the intercooler in the intake passage than at the downstream side of the compressor, but at the upstream side of the compressor, negative pressure is generated by suction of the intake air by the compressor. It is getting bigger. Therefore, at the time of supercharging, a large differential pressure is generated between the upstream portion of the compressor in the intake passage and the downstream portion of the intercooler in the intake passage. Begins to flow.
  • the blow-by gas generated in the supercharged engine is sucked by the negative pressure generated by the negative pressure generator disposed in the bypass passage using the flow of the intake air. Such sucked blow-by gas is introduced into a portion of the intake passage upstream of the compressor along with the intake air flowing through the bypass passage.
  • the magnitude of the negative pressure formed by the negative pressure generator is to increase the differential pressure between the upstream portion of the compressor and the downstream portion of the intercooler in the intake passage.
  • the pressure difference increases, and the differential pressure increases according to the supercharging rate of the intake air.
  • the negative pressure generator is designed so that sufficient blow-by gas can be recirculated even when the supercharging rate is small, the negative pressure generated by the negative pressure generator becomes excessive when the supercharging rate is high.
  • the flow rate of the blow-by gas to be reduced becomes too large, and a large amount of oil mist is introduced into the intake air together with the blow-by gas.
  • a valve that adjusts the amount of blow-by gas sucked by the negative pressure generator is provided, the flow rate of the blow-by gas returned to the supercharged engine is appropriately adjusted so as to be suitable for ventilation. can do.
  • an ejector pump can be used as the negative pressure generator applied to the blow-by gas reduction apparatus of the present invention.
  • an intake pipe 1 of a supercharged engine includes an air cleaner 2 for purifying intake air, a compressor 4 for a turbocharger 3 that pressurizes and discharges intake air in accordance with rotation, and intake air.
  • a throttle valve 5 for adjusting the amount and an intercooler 6 for cooling intake air that has become hot due to compression by the compressor 4 are installed.
  • the intake pipe 1 is connected to an intake port 9 of each cylinder formed in a cylinder head 8 of a supercharged engine via an intake manifold 7 that distributes intake air to each cylinder.
  • an intake passage is constituted by the intake pipe 1, the intake manifold 7 and the intake port 9.
  • the cylinder head 8 is formed with an exhaust port 12 for each cylinder.
  • the exhaust port 12 is connected to the exhaust pipe 10 via an exhaust manifold 11 that joins the exhaust gases of the cylinders.
  • the exhaust pipe 10 is provided with an exhaust turbine 13 of a turbocharger 3 for rotating the compressor 4 by the flow of exhaust gas to be blown, and a catalytic converter 14 for purifying exhaust gas is disposed downstream thereof.
  • an exhaust passage is constituted by the exhaust port 12, the exhaust manifold 11 and the exhaust pipe 10.
  • a blow-by gas passage 18 for communicating the crankcase 16 and the head cover 17 is formed in the cylinder head 8 and the cylinder block 15 of the supercharged engine.
  • a first PCV hose 20 is connected to the head cover 17 via a first PCV (Positive Crankcase Ventilation) valve 19.
  • the first PCV hose 20 communicates the inside of the head cover 17 with the intake manifold 7.
  • a bypass passage 21 that connects a portion of the intake pipe 1 downstream of the intercooler 6 and a portion of the intake pipe 1 upstream of the compressor 4 is provided.
  • An ejector pump 22 as a negative pressure generator is installed on the bypass passage 21.
  • a second PCV hose 24 is further connected to the ejector pump 22. The tip of the second PCV hose 24 is connected to the head cover 17 via the second PCV valve 23.
  • the ejector pump 22 includes a substantially cylindrical nozzle portion 25 that is connected to a downstream portion of the intercooler 6 in the intake pipe 1 via a bypass passage 21.
  • a nozzle 26 is formed at the tip of the nozzle portion 25, and the tip is opened in the decompression chamber 27.
  • the decompression chamber 27 is connected to a portion of the intake pipe 1 upstream of the compressor 4 via the bypass passage 21.
  • a suction port 28 is opened at the side of the decompression chamber 27. The suction port 28 is connected to the inside of the head cover 17 through the second PCV hose 24, and thus to the crankcase 16 through the blow-by gas passage 18.
  • the intake air is introduced into the bypass passage 21 at this time from the downstream of the intercooler 6 that cools the intake air, low-temperature intake air is introduced into the ejector pump 22.
  • intake air is introduced into the bypass passage 21 through the intercooler 6 having a complicated labyrinth structure, and most of the oil mist mixed in the intake air is collected in the intercooler 6, so that the bypass passage Inflow of oil into 21 is limited.
  • the ejector pump 22 is designed so that a blow-by gas having a required flow rate is secured when the differential pressure between the intake pressure of the intake manifold 7 and the atmospheric pressure is “0”, the following problem occurs. That is, if blow-by gas is introduced in this case, the negative pressure formed by the ejector pump 22 is excessively reduced when the supercharging rate becomes high, as shown by the dotted line in FIG. The flow rate of blow-by gas becomes excessive. As a result, a large amount of oil mist is introduced into the intake air together with blow-by gas, so that proper ventilation cannot be performed.
  • the flow rate of blow-by gas sucked into the decompression chamber 27 of the ejector pump 22 through the second PCV hose 24 can be adjusted by the second PCV valve 23. Therefore, when the supercharging rate is high, the second PCV valve 23 is throttled, and the flow rate of blow-by gas sucked into the decompression chamber 27 of the ejector pump 22 through the second PCV hose 24 is limited, so that it is suitable for ventilation.
  • the flow rate of blow-by gas returned to the feed engine can be appropriately adjusted.
  • the bypass passage 21 connecting the downstream portion of the intercooler 6 in the intake passage and the upstream portion of the compressor 4 in the intake passage, and the flow rate of the intake air flowing through the bypass passage 21 And an ejector pump 22 that sucks blow-by gas by the generated negative pressure.
  • the ejector pump 22 since the intake air cooled by the intercooler 6 is introduced into the bypass passage 21, the ejector pump 22 is not required to have high heat resistance.
  • the temperature of the flowing intake air is low and the second PCV hose 24 does not reach a high temperature, it is not necessary to take measures against heat shielding to a wire harness or the like disposed in the vicinity thereof.
  • intake air is introduced into the bypass passage 21 from the downstream side of the intercooler 6 having a complicated labyrinth structure, and the oil content contained in the intake air is collected by the intercooler 6, so that the oil content introduced together with the blow-by gas Inflow to the bypass passage 21 is also limited. Therefore, according to the present embodiment, it is possible to easily ensure durability and suppress deposit deposition while enabling reduction of the preferred blow-by gas during supercharging.
  • the second PCV valve 23 for adjusting the amount of blow-by gas sucked by the ejector pump 22 is provided. Therefore, even when the supercharging rate is high, the flow rate of blow-by gas returned to the supercharged engine can be appropriately adjusted so as to be suitable for ventilation.
  • the second PCV valve 23 that adjusts the amount of blow-by gas sucked by the ejector pump 22 is provided.
  • the second PCV valve 23 may be omitted.
  • the ejector pump 22 is used.
  • any negative pressure generator of the ejector pump 22 may be used as long as it is a negative pressure generator that generates negative pressure by the flow of intake air flowing through the bypass passage. Can be adopted instead.
  • a device that swirls the intake air in a spiral shape and sucks blow-by gas using the negative pressure formed at the center of the vortex can be used as the negative pressure generator.

Abstract

A compressor (4) rotated by means of an exhaust turbine (13), and an intercooler (6) that cools the intake air discharged from that compressor (4), are provided in the intake passage of a supercharged engine. A blow-by gas return device returns the blow-by gas generated by this supercharged engine to the supercharged engine by means of the intake air. This return device is equipped with a bypass passage (21), which connects a region downstream from the intercooler (6) in the intake passage and a region upstream from the compressor (4) in the intake passage, and an ejector pump (22), which sucks in the blow-by gas by means of the negative pressure generated by the force of the flow of the intake air flowing in the bypass passage (21). By means of this configuration durability can be ensured easily and the deposition of deposits can be controlled easily while enabling a suitable return of blow-by gas during supercharging.

Description

過給エンジンのブローバイガス還元装置Blow-by gas reduction device for supercharged engine
 本発明は、排気タービンにより回転されるコンプレッサーと、そのコンプレッサーから吐出された吸気を冷却するインタークーラーとが吸気通路に設けられた過給エンジンに適用されて、その過給エンジンで発生するブローバイガスを、吸気を通じて同過給エンジンに還元するブローバイガス還元装置に関するものである。 The present invention is applied to a supercharged engine in which a compressor rotated by an exhaust turbine and an intercooler that cools intake air discharged from the compressor are provided in an intake passage, and blowby gas generated in the supercharged engine is reduced. The present invention relates to a blow-by gas reduction device that returns to the supercharged engine through intake air.
 車載等のエンジンに適用される装置として、エンジンで発生するブローバイガスを、吸気を通じてエンジンに還元するブローバイガス還元装置が知られている。自然吸気エンジンでは、吸気負圧を利用して、クランクケース等からブローバイガスを吸引して吸気中に導入している。しかしながら、過給エンジンでは、過給時には、吸気通路内が正圧となり、吸気中に負圧が形成される機会が限られるため、吸気負圧を利用しただけでは、十分なブローバイガスの還元を行うことは困難となる。 A blow-by gas reduction device that reduces blow-by gas generated in an engine to the engine through intake air is known as a device that is applied to a vehicle-mounted engine. In a naturally aspirated engine, blow-by gas is sucked from a crankcase or the like using intake negative pressure and introduced into the intake air. However, in a supercharged engine, when the engine is supercharged, the pressure in the intake passage becomes positive, and the opportunity for forming a negative pressure during intake is limited. Therefore, using only the intake negative pressure reduces the blowby gas sufficiently. It becomes difficult to do.
 そこで従来、特許文献1に見られるような、エゼクターポンプ(ジェットポンプ)を利用してブローバイガスの吸引を行うブローバイガス還元装置が提案されている。特許文献1に記載のブローバイガス還元装置では、吸気通路におけるターボチャージャーのコンプレッサーの下流側の部位と同コンプレッサーの上流側の部位とを繋ぐバイパス通路を設けるとともに、そのバイパス通路にエゼクターポンプを配設している。そしてエンジンのクランクケースから延伸されたブローバイガス還元通路をエゼクターポンプに接続することで、コンプレッサーの下流側からその上流側へとバイパス通路中を流れる吸気の流勢によってエゼクターポンプで発生された負圧により、クランクケース内のブローバイガスを吸引するようにしている。 Therefore, conventionally, a blow-by gas reduction device that sucks blow-by gas using an ejector pump (jet pump) as proposed in Patent Document 1 has been proposed. In the blow-by gas reduction device described in Patent Document 1, a bypass passage is provided to connect a downstream portion of the compressor of the turbocharger in the intake passage and a upstream portion of the compressor, and an ejector pump is provided in the bypass passage. is doing. Then, by connecting the blow-by gas reduction passage extended from the crankcase of the engine to the ejector pump, the negative pressure generated by the ejector pump due to the flow of intake air flowing in the bypass passage from the downstream side of the compressor to the upstream side thereof Thus, the blow-by gas in the crankcase is sucked.
 また従来には、特許文献2に見られるようなブローバイガス還元装置も提案されている。同文献に記載のブローバイガス還元装置は、吸気通路におけるインタークーラーの下流側の部位と吸気ポート近傍の部位とを繋ぐバイパス通路を設けるとともに、そのバイパス通路上にエゼクターポンプを配置し、吸気の流勢でそのエゼクターポンプが発生する負圧によりブローバイガスを吸引するようにしている。 Conventionally, a blow-by gas reduction device as shown in Patent Document 2 has also been proposed. The blow-by gas reduction device described in the same document provides a bypass passage that connects a portion of the intake passage downstream of the intercooler and a portion near the intake port, and an ejector pump is disposed on the bypass passage to The blow-by gas is sucked by the negative pressure generated by the ejector pump.
特開2009-299645号公報JP 2009-299645 A 特開2009-133292号公報JP 2009-133292 A
 こうした従来のブローバイガス還元装置によれば、吸気負圧が発生する機会の少ない過給エンジンにおいても、ブローバイガスの還元を良好に行うことが可能となる。しかしながら、特許文献1のブローバイガス還元装置では、バイパス通路の上流端がコンプレッサーの下流側で吸気通路に接続されており、バイパス通路には、コンプレッサーでの圧縮で高温となった吸気が導入される。そのため、エゼクターポンプは、高温の吸気に曝されることとなり、エグゼクターポンプ等に耐熱性や耐腐食性に秀でた材料を使用しないと、その耐久性を確保することが困難となっている。また、ブローバイガスをコンプレッサーの上流側で吸気通路に導入するバイパス通路の下流端が、コンプレッサーの下流側で吸気通路から吸気を取り入れるバイパス通路の上流端と比較的近い。そのため、バイパス通路からブローバイガスと共に吸気通路に導入されたオイル分が、吸気通路からバイパス通路に導入され易く、そのオイル分がバイパス通路内やエゼクターポンプ内でデポジットを形成して、通路の詰り等が発生する虞がある。 According to such a conventional blow-by gas reduction device, it is possible to satisfactorily reduce the blow-by gas even in a supercharged engine with a low chance of generating negative intake pressure. However, in the blow-by gas reduction device of Patent Document 1, the upstream end of the bypass passage is connected to the intake passage on the downstream side of the compressor, and intake air that has become hot due to compression by the compressor is introduced into the bypass passage. . Therefore, the ejector pump is exposed to high-temperature intake air, and it is difficult to ensure the durability unless a material excellent in heat resistance and corrosion resistance is used for the ejector pump or the like. Further, the downstream end of the bypass passage that introduces the blow-by gas into the intake passage on the upstream side of the compressor is relatively close to the upstream end of the bypass passage that takes in the intake air from the intake passage on the downstream side of the compressor. Therefore, the oil component introduced into the intake passage along with the blow-by gas from the bypass passage is easily introduced into the bypass passage from the intake passage, and the oil component forms a deposit in the bypass passage and the ejector pump, thereby clogging the passage. May occur.
 一方、特許文献2のブローバイガス還元装置では、バイパス通路の上流端及び下流端のいずれもが過給時に正圧となるため、バイパス通路の上流端及び下流端の間に差圧を形成するためにインタークーラーの下流に空気流量を調整するバルブを設置する必要があるなど、差圧の確保が困難となっている。 On the other hand, in the blow-by gas reduction device of Patent Document 2, since both the upstream end and the downstream end of the bypass passage are positive pressure during supercharging, a differential pressure is formed between the upstream end and the downstream end of the bypass passage. In addition, it is necessary to install a valve for adjusting the air flow rate downstream of the intercooler, making it difficult to ensure the differential pressure.
 本発明の目的は、こうした実情に鑑みてなされたものであり、その解決しようとする課題は、過給中にも好適にブローバイガスを還元可能としながらも、耐久性の確保やデポジット堆積の抑制を容易に行うことのできる過給エンジンのブローバイガス還元装置を提供することにある。 The object of the present invention has been made in view of such circumstances, and the problem to be solved is to ensure durability and suppress deposit accumulation while allowing blowby gas to be reduced appropriately even during supercharging. An object of the present invention is to provide a blow-by gas reduction device for a supercharged engine that can easily perform the above.
 上記課題を解決するため、本発明に従う過給エンジンのブローバイガス還元装置は、排気タービンにより回転されるコンプレッサーと、そのコンプレッサーから吐出された吸気を冷却するインタークーラーとが吸気通路に設けられた過給エンジンに適用されて、その過給エンジンで発生するブローバイガスを、吸気を通じて同過給エンジンに還元するブローバイガス還元装置であって、吸気通路におけるインタークーラーの下流側の部位と同吸気通路におけるコンプレッサーの上流側の部位とを繋ぐバイパス通路と、そのバイパス通路を流れる吸気の流勢で負圧を発生し、その負圧によりブローバイガスを吸引する負圧発生器とを備えている。 In order to solve the above problems, a blow-by gas reduction device for a supercharged engine according to the present invention is a supercharger in which a compressor rotated by an exhaust turbine and an intercooler for cooling intake air discharged from the compressor are provided in an intake passage. A blow-by gas reduction device that is applied to an engine and that reduces blow-by gas generated in the supercharged engine to the supercharged engine through intake air, and is provided on the downstream side of the intercooler in the intake passage and the compressor in the intake passage. A bypass passage connecting the upstream portion and a negative pressure generator that generates a negative pressure by the flow of intake air flowing through the bypass passage and sucks blow-by gas by the negative pressure.
 過給時には、吸気通路において、インタークーラーの下流側の部位では、コンプレッサーの下流側近傍の部位に比して正圧が弱まるものの、コンプレッサーの上流側の部位では、コンプレッサーによる吸気の吸引により負圧が大きくなっている。そのため、過給時には、吸気通路におけるコンプレッサーの上流側の部位と同吸気通路におけるインタークーラーの下流側の部位との間に大きい差圧が発生するようになり、その差圧によってバイパス通路に勢い良く吸気が流れるようになる。そしてバイパス通路に配設された負圧発生器がその吸気の流勢を利用して形成した負圧により、過給エンジンで発生したブローバイガスが吸引されるようになる。こうした吸引されたブローバイガスは、バイパス通路を流れる吸気と共に吸気通路におけるコンプレッサーの上流側の部位に導入されることになる。 At the time of supercharging, the positive pressure is weaker at the downstream side of the intercooler in the intake passage than at the downstream side of the compressor, but at the upstream side of the compressor, negative pressure is generated by suction of the intake air by the compressor. It is getting bigger. Therefore, at the time of supercharging, a large differential pressure is generated between the upstream portion of the compressor in the intake passage and the downstream portion of the intercooler in the intake passage. Begins to flow. The blow-by gas generated in the supercharged engine is sucked by the negative pressure generated by the negative pressure generator disposed in the bypass passage using the flow of the intake air. Such sucked blow-by gas is introduced into a portion of the intake passage upstream of the compressor along with the intake air flowing through the bypass passage.
 このときのバイパス通路には、コンプレッサーの圧縮により高温となった吸気を冷却するインタークーラーの下流から吸気が導入されるため、負圧発生器には、低温の吸気が導入されるようになる。また吸気中には、ブローバイガスやターボチャージャーの軸受等に由来するオイルミストが混入されているが、そうしたオイルミストの多くは、複雑に入り組んだラビリンス構造となったインタークーラーを通過する内に吸気から取り除かれるようになる。そのため、インタークーラーの下流から吸気を導入することで、バイパス通路へのオイル分の流入も限定されるようになる。したがって、上記構成によれば、過給中の好適なブローバイガスの還元を可能としながらも、耐久性の確保やデポジット堆積の抑制を容易とすることができる。 At this time, since the intake air is introduced into the bypass passage from the downstream of the intercooler that cools the intake air that has become hot due to the compression of the compressor, low-temperature intake air is introduced into the negative pressure generator. In addition, oil mist derived from blow-by gas, turbocharger bearings, etc. is mixed in the intake air, but most of such oil mist passes from the intake air while passing through the intercooler having a complicated labyrinth structure. It will be removed. Therefore, by introducing the intake air from the downstream of the intercooler, the inflow of oil into the bypass passage is also limited. Therefore, according to the above configuration, it is possible to easily ensure durability and suppress deposit accumulation while enabling the reduction of a suitable blow-by gas during supercharging.
 ところで、こうした本発明のブローバイガス還元装置では、負圧発生器により形成される負圧の大きさは、吸気通路におけるコンプレッサーの上流側の部位とインタークーラーの下流側の部位との差圧の拡大に応じて大きくなり、その差圧は、吸気の過給率に応じて大きくなる。そのため、過給率が小さいときにも、十分なブローバイガスの還流が可能なように負圧発生器を設計すると、過給率が高いときには、負圧発生器の形成する負圧が過大となって、還元されるブローバイガスの流量が多くなり過ぎてしまい、大量のオイルミストがブローバイガスと共に吸気に導入されてしまうなど、適切に換気を行えないようになってしまう。そうした場合にも、負圧発生器により吸引されるブローバイガスの量を調整するバルブを備えるようにすれば、換気に適したように、過給エンジンに還元されるブローバイガスの流量を適宜に調整することができる。 By the way, in such a blowby gas reduction device of the present invention, the magnitude of the negative pressure formed by the negative pressure generator is to increase the differential pressure between the upstream portion of the compressor and the downstream portion of the intercooler in the intake passage. The pressure difference increases, and the differential pressure increases according to the supercharging rate of the intake air. For this reason, if the negative pressure generator is designed so that sufficient blow-by gas can be recirculated even when the supercharging rate is small, the negative pressure generated by the negative pressure generator becomes excessive when the supercharging rate is high. As a result, the flow rate of the blow-by gas to be reduced becomes too large, and a large amount of oil mist is introduced into the intake air together with the blow-by gas. Even in such a case, if a valve that adjusts the amount of blow-by gas sucked by the negative pressure generator is provided, the flow rate of the blow-by gas returned to the supercharged engine is appropriately adjusted so as to be suitable for ventilation. can do.
 なお、こうした本発明のブローバイガス還元装置に適用される負圧発生器としては、例えばエゼクターポンプなどを用いることができる。 For example, an ejector pump can be used as the negative pressure generator applied to the blow-by gas reduction apparatus of the present invention.
本発明の一実施の形態に係る過給エンジンのブローバイガス還元装置の全体構造を模式的に示す略図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic which shows typically the whole structure of the blow-by gas reduction apparatus of the supercharged engine which concerns on one embodiment of this invention. 同実施の形態に採用されるエゼクターポンプの断面構造を示す断面図。Sectional drawing which shows the cross-section of the ejector pump employ | adopted as the embodiment. 第2PCVバルブがある場合とない場合とのそれぞれにおけるブローバイガス流量と吸気管圧力との関係を示すグラフ。The graph which shows the relationship between the blow-by gas flow rate and the intake pipe pressure in each case with and without the second PCV valve.
 以下、本発明の過給エンジンのブローバイガス還元装置を具体化した一実施の形態を、図1~図3を参照して説明する。 Hereinafter, an embodiment of a blow-by gas reduction device for a supercharged engine according to the present invention will be described with reference to FIGS.
 まず、本実施の形態の過給エンジンのブローバイガス還元装置の構成を、図1を参照して説明する。 First, the configuration of the blow-by gas reduction device for a supercharged engine according to the present embodiment will be described with reference to FIG.
 同図に示すように、過給エンジンの吸気管1には、その上流から順に、吸気を浄化するエアクリーナー2、回転に応じて吸気を加圧して吐出するターボチャージャー3のコンプレッサー4、吸入空気量を調節するスロットルバルブ5、コンプレッサー4での圧縮により高温となった吸気を冷却するインタークーラー6が設置されている。そして吸気管1は、各気筒に吸気を分配するインテークマニホールド7を介して、過給エンジンのシリンダーヘッド8に形成された各気筒の吸気ポート9に接続されている。なお、この過給エンジンでは、吸気管1、インテークマニホールド7及び吸気ポート9により吸気通路が構成されている。 As shown in the figure, an intake pipe 1 of a supercharged engine includes an air cleaner 2 for purifying intake air, a compressor 4 for a turbocharger 3 that pressurizes and discharges intake air in accordance with rotation, and intake air. A throttle valve 5 for adjusting the amount and an intercooler 6 for cooling intake air that has become hot due to compression by the compressor 4 are installed. The intake pipe 1 is connected to an intake port 9 of each cylinder formed in a cylinder head 8 of a supercharged engine via an intake manifold 7 that distributes intake air to each cylinder. In this supercharged engine, an intake passage is constituted by the intake pipe 1, the intake manifold 7 and the intake port 9.
 一方、シリンダーヘッド8には、気筒毎に、排気ポート12がそれぞれ形成されている。排気ポート12は、各気筒の排気を合流させるエキゾーストマニホールド11を介して排気管10に接続されている。そして排気管10には、吹き付けられる排気の流勢でコンプレッサー4を回転させるターボチャージャー3の排気タービン13が設けられ、またその下流には、排気を浄化する触媒コンバーター14が配設されている。なお、この過給エンジンでは、排気ポート12、エキゾーストマニホールド11及び排気管10により排気通路が構成されている。 On the other hand, the cylinder head 8 is formed with an exhaust port 12 for each cylinder. The exhaust port 12 is connected to the exhaust pipe 10 via an exhaust manifold 11 that joins the exhaust gases of the cylinders. The exhaust pipe 10 is provided with an exhaust turbine 13 of a turbocharger 3 for rotating the compressor 4 by the flow of exhaust gas to be blown, and a catalytic converter 14 for purifying exhaust gas is disposed downstream thereof. In this supercharged engine, an exhaust passage is constituted by the exhaust port 12, the exhaust manifold 11 and the exhaust pipe 10.
 こうした過給エンジンのシリンダーヘッド8及びシリンダーブロック15には、クランクケース16とヘッドカバー17とを連通するブローバイガス通路18が形成されている。またヘッドカバー17には、第1PCV(Positive Crankcase Ventilation)バルブ19を介して第1PCVホース20が接続されている。そしてこの第1PCVホース20によって、ヘッドカバー17の内部とインテークマニホールド7とが連通されている。 A blow-by gas passage 18 for communicating the crankcase 16 and the head cover 17 is formed in the cylinder head 8 and the cylinder block 15 of the supercharged engine. A first PCV hose 20 is connected to the head cover 17 via a first PCV (Positive Crankcase Ventilation) valve 19. The first PCV hose 20 communicates the inside of the head cover 17 with the intake manifold 7.
 更に本実施の形態のブローバイガス還元装置では、吸気管1におけるインタークーラー6の下流側の部位と、吸気管1におけるコンプレッサー4の上流側の部位とを繋ぐバイパス通路21が設けられている。そしてこのバイパス通路21上には、負圧発生器としてのエゼクターポンプ22が設置されている。このエゼクターポンプ22には、更に第2PCVホース24が接続されている。そしてその第2PCVホース24の先端は、第2PCVバルブ23を介してヘッドカバー17に接続されている。 Furthermore, in the blow-by gas reduction device of the present embodiment, a bypass passage 21 that connects a portion of the intake pipe 1 downstream of the intercooler 6 and a portion of the intake pipe 1 upstream of the compressor 4 is provided. An ejector pump 22 as a negative pressure generator is installed on the bypass passage 21. A second PCV hose 24 is further connected to the ejector pump 22. The tip of the second PCV hose 24 is connected to the head cover 17 via the second PCV valve 23.
 次に、図2を参照してエゼクターポンプ22の構成を説明する。同図に示すように、エゼクターポンプ22は、バイパス通路21を介して吸気管1におけるインタークーラー6の下流側の部位に接続される、略筒形状のノズル部25を備えている。ノズル部25の先端部には、ノズル26が形成され、その先端は減圧室27内に開口されている。減圧室27は、バイパス通路21を介して吸気管1におけるコンプレッサー4の上流側の部位に接続されている。また減圧室27の側部には、吸込口28が開口されている。この吸込口28は、第2PCVホース24を介してヘッドカバー17の内部に、ひいてはブローバイガス通路18を通ってクランクケース16に接続されている。 Next, the configuration of the ejector pump 22 will be described with reference to FIG. As shown in the figure, the ejector pump 22 includes a substantially cylindrical nozzle portion 25 that is connected to a downstream portion of the intercooler 6 in the intake pipe 1 via a bypass passage 21. A nozzle 26 is formed at the tip of the nozzle portion 25, and the tip is opened in the decompression chamber 27. The decompression chamber 27 is connected to a portion of the intake pipe 1 upstream of the compressor 4 via the bypass passage 21. A suction port 28 is opened at the side of the decompression chamber 27. The suction port 28 is connected to the inside of the head cover 17 through the second PCV hose 24, and thus to the crankcase 16 through the blow-by gas passage 18.
 続いて、以上のように構成された本実施の形態の作用を説明する。 Subsequently, the operation of the present embodiment configured as described above will be described.
 ターボチャージャー3による過給が行われていないときには、吸気通路におけるスロットルバルブ5の下流側の部位には、負圧が形成される。このときのブローバイガスは、その負圧による吸引で、クランクケース16からブローバイガス通路18、ヘッドカバー17の内部、第1PCVホース20を通ってインテークマニホールド7に導入される。 When the turbocharger 3 is not supercharged, a negative pressure is formed at the downstream side of the throttle valve 5 in the intake passage. At this time, the blow-by gas is sucked by the negative pressure and introduced from the crankcase 16 into the intake manifold 7 through the blow-by gas passage 18, the inside of the head cover 17, and the first PCV hose 20.
 一方、ターボチャージャー3による過給時には、吸気通路において、コンプレッサー4の下流側の部位の圧力が高くなり、コンプレッサー4の上流側の部位には負圧が発生する。そしてコンプレッサー4の上流とインタークーラー6の下流との差圧により、インタークーラー6の下流側の吸気管1の部位からバイパス通路21を通ってコンプレッサー4の上流側の吸気管1の部位へと吸気(フレッシュエア)が流れるようになる。 On the other hand, at the time of supercharging by the turbocharger 3, the pressure in the downstream portion of the compressor 4 increases in the intake passage, and the negative pressure is generated in the upstream portion of the compressor 4. Then, due to the differential pressure between the upstream side of the compressor 4 and the downstream side of the intercooler 6, intake air (fresh) passes from the portion of the intake pipe 1 downstream of the intercooler 6 through the bypass passage 21 to the portion of the intake pipe 1 upstream of the compressor 4. Air) starts to flow.
 こうしてバイパス通路21を通って吸気が流れると、インタークーラー6の下流から流入した吸気がエゼクターポンプ22のノズル26から噴出される。そしてノズル26から噴出された吸気の流勢で、減圧室27内が減圧されるようになる。こうして減圧室27内に負圧が形成されると、その負圧による吸引で、クランクケース16からブローバイガス通路18、ヘッドカバー17の内部、第2PCVホース24、吸込口28を通って減圧室27にブローバイガスが導入される。そして減圧室27に導入されたブローバイガスは、バイパス通路21を流れる吸気と共に、コンプレッサー4の上流側の吸気管1の部位へと流れるようになる。 Thus, when the intake air flows through the bypass passage 21, the intake air flowing from the downstream of the intercooler 6 is ejected from the nozzle 26 of the ejector pump 22. Then, the inside of the decompression chamber 27 is decompressed by the flow of the intake air ejected from the nozzle 26. Thus, when a negative pressure is formed in the decompression chamber 27, suction by the negative pressure causes the crankcase 16 to pass through the blow-by gas passage 18, the inside of the head cover 17, the second PCV hose 24, and the suction port 28 to the decompression chamber 27. Blow-by gas is introduced. The blow-by gas introduced into the decompression chamber 27 flows along with the intake air flowing through the bypass passage 21 to the portion of the intake pipe 1 on the upstream side of the compressor 4.
 このときのバイパス通路21には、吸気を冷却するインタークーラー6の下流から吸気が導入されるため、エゼクターポンプ22には、低温の吸気が導入されるようになる。またバイパス通路21には、複雑に入り組んだラビリンス構造となったインタークーラー6を通過して吸気が導入されており、吸気に混入したオイルミストの多くがインタークーラー6内で捕集されるため、バイパス通路21へのオイル分の流入が限定されるようにもなる。 Since the intake air is introduced into the bypass passage 21 at this time from the downstream of the intercooler 6 that cools the intake air, low-temperature intake air is introduced into the ejector pump 22. In addition, intake air is introduced into the bypass passage 21 through the intercooler 6 having a complicated labyrinth structure, and most of the oil mist mixed in the intake air is collected in the intercooler 6, so that the bypass passage Inflow of oil into 21 is limited.
 なお、こうした本実施の形態では、過給率が高くなるほど、バイパス通路21前後の差圧が大きくなり、同バイパス通路21を流れる吸気の流勢が強くなる。そしてその結果、エゼクターポンプ22によって吸引されるブローバイガスの流量が増大するようになる。そのため、例えばインテークマニホールド7の吸気圧と大気圧との差圧が「0」のときに必要流量のブローバイガスが確保されるようにエゼクターポンプ22を設計すると、次のような問題が発生する。すなわち、この場合に成り行きでブローバイガスの導入を行うと、図3に点線で示すように、過給率が高くなったときには、エゼクターポンプ22の形成する負圧が過大となって、還元されるブローバイガスの流量が多くなり過ぎてしまうようになる。そしてその結果、大量のオイルミストがブローバイガスと共に吸気に導入されてしまうなど、適切に換気を行えないようになってしまう。 In this embodiment, as the supercharging rate increases, the differential pressure across the bypass passage 21 increases, and the flow of intake air flowing through the bypass passage 21 increases. As a result, the flow rate of blow-by gas sucked by the ejector pump 22 increases. Therefore, for example, if the ejector pump 22 is designed so that a blow-by gas having a required flow rate is secured when the differential pressure between the intake pressure of the intake manifold 7 and the atmospheric pressure is “0”, the following problem occurs. That is, if blow-by gas is introduced in this case, the negative pressure formed by the ejector pump 22 is excessively reduced when the supercharging rate becomes high, as shown by the dotted line in FIG. The flow rate of blow-by gas becomes excessive. As a result, a large amount of oil mist is introduced into the intake air together with blow-by gas, so that proper ventilation cannot be performed.
 その点、本実施の形態では、第2PCVバルブ23によって、第2PCVホース24を通じてエゼクターポンプ22の減圧室27に吸入されるブローバイガスの流量を調整可能としている。そのため、過給率が高いときには、第2PCVバルブ23を絞り、第2PCVホース24を通じてエゼクターポンプ22の減圧室27に吸入されるブローバイガスの流量を制限することで、換気に適したように、過給エンジンに還元されるブローバイガスの流量を適宜に調整することができる。 In that respect, in the present embodiment, the flow rate of blow-by gas sucked into the decompression chamber 27 of the ejector pump 22 through the second PCV hose 24 can be adjusted by the second PCV valve 23. Therefore, when the supercharging rate is high, the second PCV valve 23 is throttled, and the flow rate of blow-by gas sucked into the decompression chamber 27 of the ejector pump 22 through the second PCV hose 24 is limited, so that it is suitable for ventilation. The flow rate of blow-by gas returned to the feed engine can be appropriately adjusted.
 以上説明した本実施の形態によれば、次の効果を奏することができる。 According to the present embodiment described above, the following effects can be achieved.
 (1)本実施の形態では、吸気通路におけるインタークーラー6の下流側の部位と同吸気通路におけるコンプレッサー4の上流側の部位とを繋ぐバイパス通路21と、そのバイパス通路21を流れる吸気の流勢で発生される負圧によりブローバイガスを吸引するエゼクターポンプ22とを備えている。こうした本実施の形態では、インタークーラー6によって冷却された吸気がバイパス通路21に導入されるため、エゼクターポンプ22には、高い耐熱性が要求されないようになる。また流れる吸気の温度が低く、第2PCVホース24が高温とならないため、その周辺に配置されるワイヤーハーネス等への遮熱対策が不要となる。また複雑に入り組んだラビリンス構造となったインタークーラー6の下流からバイパス通路21に吸気を導入しており、吸気に含まれるオイル分がインタークーラー6で捕集されるため、ブローバイガスと共に導入されるオイル分のバイパス通路21への流入も限定されるようになる。したがって、本実施の形態によれば、過給中の好適なブローバイガスの還元を可能としながらも、耐久性の確保やデポジット堆積の抑制を容易とすることができる。 (1) In the present embodiment, the bypass passage 21 connecting the downstream portion of the intercooler 6 in the intake passage and the upstream portion of the compressor 4 in the intake passage, and the flow rate of the intake air flowing through the bypass passage 21 And an ejector pump 22 that sucks blow-by gas by the generated negative pressure. In this embodiment, since the intake air cooled by the intercooler 6 is introduced into the bypass passage 21, the ejector pump 22 is not required to have high heat resistance. In addition, since the temperature of the flowing intake air is low and the second PCV hose 24 does not reach a high temperature, it is not necessary to take measures against heat shielding to a wire harness or the like disposed in the vicinity thereof. Further, intake air is introduced into the bypass passage 21 from the downstream side of the intercooler 6 having a complicated labyrinth structure, and the oil content contained in the intake air is collected by the intercooler 6, so that the oil content introduced together with the blow-by gas Inflow to the bypass passage 21 is also limited. Therefore, according to the present embodiment, it is possible to easily ensure durability and suppress deposit deposition while enabling reduction of the preferred blow-by gas during supercharging.
 (2)本実施の形態では、エゼクターポンプ22により吸引されるブローバイガスの量を調整する第2PCVバルブ23を備えるようにしている。そのため、過給率が高いときにも、換気に適したように、過給エンジンに還元されるブローバイガスの流量を適宜に調整することができる。 (2) In the present embodiment, the second PCV valve 23 for adjusting the amount of blow-by gas sucked by the ejector pump 22 is provided. Therefore, even when the supercharging rate is high, the flow rate of blow-by gas returned to the supercharged engine can be appropriately adjusted so as to be suitable for ventilation.
 なお、上記実施の形態は、次のように変更して実施することもできる。 Note that the above embodiment can be implemented with the following modifications.
 ・上記実施の形態では、エゼクターポンプ22により吸引されるブローバイガスの量を調整する第2PCVバルブ23を備えていたが、エゼクターポンプ22により吸引されるブローバイガスの量を制御する必要がない場合には、第2PCVバルブ23を省略しても良い。 In the above embodiment, the second PCV valve 23 that adjusts the amount of blow-by gas sucked by the ejector pump 22 is provided. However, when it is not necessary to control the amount of blow-by gas sucked by the ejector pump 22 The second PCV valve 23 may be omitted.
 ・上記実施の形態では、エゼクターポンプ22を使用していたが、バイパス通路を流れる吸気の流勢で負圧を発生する負圧発生器であれば、任意の負圧発生器をエゼクターポンプ22の代わりに採用することができる。例えば吸気を渦巻状に旋回して流し、その渦流の中心に形成される負圧を利用してブローバイガスを吸引する機器などが、負圧発生器として採用可能である。 In the above-described embodiment, the ejector pump 22 is used. However, any negative pressure generator of the ejector pump 22 may be used as long as it is a negative pressure generator that generates negative pressure by the flow of intake air flowing through the bypass passage. Can be adopted instead. For example, a device that swirls the intake air in a spiral shape and sucks blow-by gas using the negative pressure formed at the center of the vortex can be used as the negative pressure generator.
 1…吸気管、2…エアクリーナー、3…ターボチャージャー、4…コンプレッサー、5…スロットルバルブ、6…インタークーラー、7…インテークマニホールド、8…シリンダーヘッド、9…吸気ポート、10…排気管、11…エキゾーストマニホールド、12…排気ポート、13…排気タービン、14…触媒コンバーター、15…シリンダーブロック、16…クランクケース、17…ヘッドカバー、18…ブローバイガス通路、19…第1PCVバルブ、20…第1PCVホース、21…バイパス通路、22…エゼクターポンプ、23…第2PCVバルブ、24…第2PCVホース、25…ノズル部、26…ノズル、27…減圧室、28…吸込口。 DESCRIPTION OF SYMBOLS 1 ... Intake pipe, 2 ... Air cleaner, 3 ... Turbocharger, 4 ... Compressor, 5 ... Throttle valve, 6 ... Intercooler, 7 ... Intake manifold, 8 ... Cylinder head, 9 ... Intake port, 10 ... Exhaust pipe, 11 ... Exhaust manifold, 12 ... exhaust port, 13 ... exhaust turbine, 14 ... catalytic converter, 15 ... cylinder block, 16 ... crankcase, 17 ... head cover, 18 ... blow-by gas passage, 19 ... first PCV valve, 20 ... first PCV hose, DESCRIPTION OF SYMBOLS 21 ... Bypass passage, 22 ... Ejector pump, 23 ... 2nd PCV valve, 24 ... 2nd PCV hose, 25 ... Nozzle part, 26 ... Nozzle, 27 ... Decompression chamber, 28 ... Suction port.

Claims (3)

  1.  排気タービンにより回転されるコンプレッサーと、そのコンプレッサーから吐出された吸気を冷却するインタークーラーとが吸気通路に設けられた過給エンジンに適用されて、その過給エンジンで発生するブローバイガスを、吸気を通じて同過給エンジンに還元するブローバイガス還元装置であって、
     前記吸気通路における前記インタークーラーの下流側の部位と、同吸気通路における前記コンプレッサーの上流側の部位とを繋ぐバイパス通路と、
     そのバイパス通路を流れる吸気の流勢で負圧を発生し、その負圧により前記ブローバイガスを吸引する負圧発生器と、
     を備えることを特徴とする過給エンジンのブローバイガス還元装置。
    A compressor rotated by an exhaust turbine and an intercooler for cooling intake air discharged from the compressor are applied to a supercharged engine provided in the intake passage, and blow-by gas generated in the supercharged engine is shared through the intake air. A blow-by gas reduction device that returns to a supercharged engine,
    A bypass passage connecting a portion of the intake passage downstream of the intercooler and a portion of the intake passage upstream of the compressor;
    A negative pressure generator that generates a negative pressure by a flow of intake air flowing through the bypass passage, and sucks the blow-by gas by the negative pressure;
    A blow-by gas reduction device for a supercharged engine.
  2.  前記負圧発生器により吸引される前記ブローバイガスの量を調整するバルブを備える
     請求項1に記載の過給エンジンのブローバイガス還元装置。
    The blow-by gas reduction device for a supercharged engine according to claim 1, further comprising a valve that adjusts an amount of the blow-by gas sucked by the negative pressure generator.
  3.  前記負圧発生器はエゼクターポンプである
     請求項1又は2に記載の過給エンジンのブローバイガス還元装置。
    The blow-by gas reduction device for a supercharged engine according to claim 1, wherein the negative pressure generator is an ejector pump.
PCT/JP2011/068121 2011-08-09 2011-08-09 Blow-by gas return device for supercharged engine WO2013021456A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068121 WO2013021456A1 (en) 2011-08-09 2011-08-09 Blow-by gas return device for supercharged engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068121 WO2013021456A1 (en) 2011-08-09 2011-08-09 Blow-by gas return device for supercharged engine

Publications (1)

Publication Number Publication Date
WO2013021456A1 true WO2013021456A1 (en) 2013-02-14

Family

ID=47668008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068121 WO2013021456A1 (en) 2011-08-09 2011-08-09 Blow-by gas return device for supercharged engine

Country Status (1)

Country Link
WO (1) WO2013021456A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161180A (en) * 2014-02-26 2015-09-07 トヨタ自動車株式会社 Control device for engine system
DE102014013714A1 (en) 2014-09-17 2016-03-17 Daimler Ag Internal combustion engine, in particular for a motor vehicle
CN106032764A (en) * 2015-03-12 2016-10-19 日立汽车系统(苏州)有限公司 An engine system with a piston air leakage collection function
DE102016206616A1 (en) * 2016-04-19 2017-10-19 Elringklinger Ag Ejector device and combination of a cylinder head cover and an ejector device
EP3290667A1 (en) 2016-09-05 2018-03-07 MAHLE Filter Systems Japan Corporation Blowby gas treatment device for internal combustion engine with supercharger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094557A (en) * 2009-09-30 2011-05-12 Aisan Industry Co Ltd Blow-by gas refluxing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094557A (en) * 2009-09-30 2011-05-12 Aisan Industry Co Ltd Blow-by gas refluxing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161180A (en) * 2014-02-26 2015-09-07 トヨタ自動車株式会社 Control device for engine system
DE102014013714A1 (en) 2014-09-17 2016-03-17 Daimler Ag Internal combustion engine, in particular for a motor vehicle
CN106032764A (en) * 2015-03-12 2016-10-19 日立汽车系统(苏州)有限公司 An engine system with a piston air leakage collection function
CN106032764B (en) * 2015-03-12 2019-02-15 日立汽车系统(苏州)有限公司 Engine system with piston air leakage collecting function
DE102016206616A1 (en) * 2016-04-19 2017-10-19 Elringklinger Ag Ejector device and combination of a cylinder head cover and an ejector device
US10982575B2 (en) 2016-04-19 2021-04-20 Elringklinger Ag Ejector device and combination of a cylinder head cover and an ejector device
EP3290667A1 (en) 2016-09-05 2018-03-07 MAHLE Filter Systems Japan Corporation Blowby gas treatment device for internal combustion engine with supercharger
US10337398B2 (en) 2016-09-05 2019-07-02 Mahle Filter Systems Japan Corporation Blowby gas treatment device for internal combustion engine with supercharger

Similar Documents

Publication Publication Date Title
JP5047352B2 (en) Exhaust turbocharger housing structure
JP5321852B2 (en) Engine blow-by gas recirculation system
CN103534457B (en) The intake structure of internal combustion engine
JP5813017B2 (en) Turbocharger
JP6765260B2 (en) Blow-by gas processing device for internal combustion engine with supercharger
WO2013021456A1 (en) Blow-by gas return device for supercharged engine
JP2009524775A (en) Unit for reintroducing low-pressure EGR condensate at / before the compressor
JP2009024692A (en) Exhaust gas recirculation device of internal combustion engine
JP6112046B2 (en) Evaporative fuel processing device for supercharged engine
JP6051881B2 (en) Internal combustion engine and EGR gas mixing device
US7584748B2 (en) Exhaust gas recirculation system for an internal combustion engine
US20150345515A1 (en) Turbocharger
US9951723B2 (en) Turbocharging system for use with internal combustion engine
JP2017008873A5 (en)
JP2011140922A (en) Exhaust recirculation device for internal combustion engine
JP4916380B2 (en) Intake manifold for internal combustion engines
JP5310367B2 (en) Exhaust gas recirculation device
JP6094514B2 (en) Evaporative fuel processing device for supercharged engine
JP2016084716A (en) Internal combustion engine
GB2504096A (en) Turbocharger compressor housing with EGR inlet and mixer
JP2000018108A (en) Intake system of internal combustion engine
JP2015045317A (en) Intake system structure of engine
JP5814537B2 (en) Blowby gas recirculation system
JP5761135B2 (en) Internal combustion engine with a supercharger
JP5979080B2 (en) Blow-by gas processing device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP