WO2013021434A1 - Internal combustion engine fuel supply apparatus - Google Patents

Internal combustion engine fuel supply apparatus Download PDF

Info

Publication number
WO2013021434A1
WO2013021434A1 PCT/JP2011/067957 JP2011067957W WO2013021434A1 WO 2013021434 A1 WO2013021434 A1 WO 2013021434A1 JP 2011067957 W JP2011067957 W JP 2011067957W WO 2013021434 A1 WO2013021434 A1 WO 2013021434A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
internal combustion
combustion engine
combustion chamber
control mode
Prior art date
Application number
PCT/JP2011/067957
Other languages
French (fr)
Japanese (ja)
Inventor
道川内亮
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013527758A priority Critical patent/JP5772958B2/en
Priority to PCT/JP2011/067957 priority patent/WO2013021434A1/en
Publication of WO2013021434A1 publication Critical patent/WO2013021434A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder

Definitions

  • the present invention relates to a fuel supply device for an internal combustion engine.
  • Patent Document 1 An internal combustion engine that can be operated with gas fuel is known.
  • the 1st injection valve which injects gaseous fuel toward an ignition plug
  • the 2nd injection valve which injects gaseous fuel avoiding an ignition plug
  • the 1st according to the load condition of an internal combustion engine There is disclosed a gas fuel internal combustion engine comprising a control means for operating one or both of the injection valve and the second injection valve.
  • Patent Document 2 discloses a technique that is considered to be related to the present invention in that different fuels are supplied to the combustion chamber.
  • Hydrogen fuel and hydrocarbon fuel can be supplied independently to the combustion chamber of the internal combustion engine as different fuels. In this case, it is necessary to consider the properties of each fuel in order to obtain good combustion.
  • An object of the present invention is to provide a fuel supply device for an internal combustion engine capable of obtaining good combustion when hydrogen fuel and hydrocarbon fuel are independently supplied to a combustion chamber of the internal combustion engine.
  • the present invention is configured so that hydrogen fuel and hydrocarbon fuel can be supplied independently to a combustion chamber of an internal combustion engine, and is provided to the combustion chamber in the radial center of the combustion chamber or in the combustion chamber.
  • An internal combustion engine having a first combustion control mode for supplying hydrocarbon fuel to a peripheral portion of a spark plug and supplying hydrogen fuel around a space in the combustion chamber to which hydrocarbon fuel is supplied It is a fuel supply device.
  • the present invention supplies hydrogen fuel to the radial center of the combustion chamber or to the periphery of the spark plug in the combustion chamber, and around the space in the combustion chamber to which hydrogen fuel is supplied. It can be set as the structure which further has the 2nd combustion control mode which supplies hydrocarbon fuel.
  • the present invention may further include a third combustion control mode that promotes mixing of hydrogen fuel in the combustion chamber.
  • the present invention may be configured to switch between valid and invalid in each of the first, second and third combustion control modes according to the operating state of the internal combustion engine.
  • the present invention may be configured to enable the first combustion control mode when the internal combustion engine is started.
  • the present invention is configured so that hydrogen fuel and hydrocarbon fuel can be supplied independently to a combustion chamber of an internal combustion engine, and is provided to the combustion chamber in the radial center of the combustion chamber or in the combustion chamber.
  • a fuel supply device for an internal combustion engine having a combustion control mode for supplying hydrogen fuel to a peripheral portion of a spark plug and supplying hydrocarbon fuel around a space in the combustion chamber to which hydrogen fuel is supplied is there.
  • FIG. 1 is an overall view of each configuration including a fuel supply device for an internal combustion engine. It is a schematic block diagram of an internal combustion engine.
  • FIG. 3A is a diagram showing a first fuel supply state
  • FIG. 3B is a diagram showing a second fuel supply state
  • FIG. 3C is a diagram showing a third fuel supply state. It is a figure which shows a 1st control operation with a flowchart. It is a figure which shows a 2nd control operation with a flowchart. It is a figure which shows a 3rd control action with a flowchart. It is a figure which shows the modification of an internal combustion engine.
  • FIG. 1 is an overall view of each configuration including a fuel supply device (hereinafter simply referred to as a fuel supply device) 1A for an internal combustion engine.
  • the intake system 10 circulates air supplied to the internal combustion engine 50.
  • the intake system 10 is provided with an air flow meter 11 for measuring the intake air amount of the internal combustion engine 50 and a throttle valve 12 for adjusting the intake air amount of the internal combustion engine 50.
  • the exhaust system 20 circulates exhaust discharged from the internal combustion engine 50.
  • the exhaust system 20 is provided with a catalyst 21 for purifying the exhaust gas.
  • the exhaust gas recirculation system 30 recirculates exhaust gas from the exhaust system 20 to the intake system 10.
  • the exhaust gas recirculation system 30 is provided with an EGR cooler 31 for cooling the exhaust gas that circulates, and a flow rate adjustment valve 32 for adjusting the amount of the exhaust gas that circulates.
  • the internal combustion engine 50 is a multi-cylinder (four cylinders in this case) spark ignition internal combustion engine.
  • the internal combustion engine 50 is provided with a fuel injection device 60.
  • the fuel injection device 60 includes a first fuel injection valve 61 and a second fuel injection valve 62. Each of the fuel injection valves 61 and 62 is provided in the internal combustion engine 50 for each cylinder. Hydrogen fuel is supplied from the first tank 63 to each of the first fuel injection valves 61. A hydrocarbon fuel is supplied from the second tank 64 to each of the second fuel injection valves 62. For this reason, the fuel injection device 60 is configured to be able to independently supply hydrogen fuel and hydrocarbon fuel to each combustion chamber E of the internal combustion engine 50.
  • hydrogen fuel is supplied to each of the first fuel injection valves 61 from the first tank 63 via the first pressure adjusting device 65.
  • the first pressure adjusting device 65 is provided to adjust the pressure of the supplied hydrogen fuel.
  • each of the second fuel injection valves 62 is supplied with hydrocarbon fuel from the second tank 64 via the second pressure regulator 66.
  • the second pressure adjusting device 66 is provided for adjusting the pressure of the hydrocarbon fuel to be supplied.
  • gas fuel such as natural gas can be applied as the hydrocarbon fuel.
  • FIG. 2 is a schematic configuration diagram of the internal combustion engine 50.
  • FIG. 2 shows a cross section of one cylinder of the internal combustion engine 50.
  • the internal combustion engine 50 includes a cylinder block 51, a cylinder head 52, a piston 53, an intake valve 54, an exhaust valve 55, and a spark plug 56.
  • the combustion chamber Ec indicates any one of the combustion chambers E of the internal combustion engine 50.
  • the cylinder block 51 is formed with a cylinder 51a.
  • a piston 53 is accommodated in the cylinder 51a.
  • a cylinder head 52 is fixed to the upper surface of the cylinder block 51.
  • the combustion chamber Ec is formed as a space surrounded by the cylinder block 51, the cylinder head 52 and the piston 53.
  • the cylinder head 52 is formed with an intake port 52a that guides intake air to the combustion chamber Ec and an exhaust port 52b that discharges gas from the combustion chamber Ec.
  • An intake valve 54 for opening and closing the intake port 52a and an exhaust valve 55 for opening and closing the exhaust port 52b are provided.
  • the spark plug 56 is provided in the cylinder head 52 in a state where an electrode protrudes from the center of the top dead center side of the combustion chamber Ec.
  • the fuel injection valves 61 and 62 are specifically provided to inject fuel into the intake port 52a. And thereby, it is provided so that fuel can be supplied to the combustion chamber Ec.
  • the fuel injection valves 61 and 62 are more specifically, for example, of the intake port 52a. Among these, it can be provided in a portion before branching toward the combustion chamber Ec.
  • the arrangement and quantity of the fuel injection valves 61 and 62 for each cylinder are not necessarily limited to this, and may be any appropriate arrangement and quantity that can supply fuel to the combustion chamber Ec.
  • the intake port 52a introduces intake air so as to generate a tumble flow in the combustion chamber Ec.
  • the internal combustion engine 50 is an internal combustion engine that generates a tumble flow in the combustion chamber Ec.
  • the internal combustion engine 50 may include, for example, an airflow control valve for generating the tumble flow in the intake port 52a.
  • the ECU 70A shown in FIG. 1 is an electronic control device and includes a microcomputer including a CPU, a ROM, a RAM, and the like.
  • the ECU 70A includes an air flow meter 11, a water temperature sensor 81 for detecting the cooling water temperature of the internal combustion engine 50, an exhaust temperature sensor 82 for detecting the exhaust temperature, and a crank angle at which the rotational speed NE of the internal combustion engine 50 can be detected.
  • Various sensors and switches such as the sensor 83 are electrically connected.
  • the fuel injection valves 61 and 62 and the pressure adjusting devices 65 and 66 are electrically connected as control targets.
  • ROM is a configuration for storing programs, map data, and the like in which various processes executed by the CPU are described.
  • the ECU 70A executes various processes such as the injection condition calculation unit and the injection condition setting unit shown below by executing processing while using the temporary storage area of the RAM as required based on the program stored in the ROM. Part is realized.
  • the injection condition calculation unit calculates the fuel injection conditions from the fuel injection valves 61 and 62.
  • the injection condition calculation unit supplies hydrocarbon fuel to the central portion in the radial direction of the combustion chamber Ec in the internal combustion engine 50, and supplies hydrogen fuel around the space to which the hydrocarbon fuel is supplied in the combustion chamber Ec.
  • the first injection condition that is the injection condition is calculated.
  • the hydrocarbon fuel is supplied to a portion at the center in the radial direction of the combustion chamber Ec and a portion on the top dead center side. This portion is a peripheral portion of the spark plug 56.
  • the hydrocarbon fuel supply destination is not necessarily the peripheral portion of the spark plug 56 as long as it is a portion in the center in the radial direction of the combustion chamber Ec.
  • FIG. 3 is an explanatory diagram of the first injection condition.
  • FIG. 3A shows a first fuel supply state based on the first injection condition.
  • FIG. 3B shows a second fuel supply state based on the first injection condition.
  • FIG. 3C shows a third fuel supply state based on the first injection condition.
  • first hydrocarbon fuel is supplied to the combustion chamber Ec in the first half of the intake stroke.
  • FIG. 3 (a) after the intake valve 54 is closed in the previous combustion cycle, the injection of hydrocarbon fuel is started while the intake valve 54 is in the closed state. Can be disposed in the vicinity of the intake valve 54. By injecting in this way, it is possible to secure a fuel injection period of gas fuel having a larger injection volume than that of liquid fuel.
  • hydrogen fuel is then injected into the combustion chamber Ec by injecting hydrogen fuel as shown in FIG.
  • the hydrocarbon fuel is supplied to the central portion in the radial direction of the combustion chamber Ec (specifically, the central portion on the top dead center side). Can be supplied.
  • hydrogen fuel can be supplied to the space around the portion of the fuel chamber Ec to which hydrocarbon fuel is supplied.
  • the injection condition specifically includes the injection start timing and the injection pressure.
  • the injection condition calculation unit calculates the injection start timing of each fuel according to the strength of the tumble flow (for example, the tumble ratio that is the number of revolutions of the tumble flow per reciprocation of the piston 53). be able to. Further, the injection pressure of each fuel can be calculated according to the operating state of the internal combustion engine 50 (for example, the rotational speed NE and the load).
  • the fuel injection period of each fuel cannot be completed within a predetermined period, for example, when the internal combustion engine 50 is under high rotation and high load. May overlap.
  • the fuel injection can be terminated within a predetermined period by increasing the injection pressure of the fuel to be injected first among the fuels.
  • the injection condition setting unit sets the first injection condition according to the operating state of the internal combustion engine 50. Specifically, the injection condition setting unit determines that the cooling water temperature is lower than the first predetermined value ⁇ and the exhaust temperature is lower than the second predetermined value ⁇ (specifically, here the cooling water temperature is the first predetermined value ⁇ ). The first injection condition is set to a value ⁇ or lower and the exhaust temperature is equal to or lower than a second predetermined value ⁇ . On the other hand, the injection condition setting unit prohibits the setting of the first injection condition when the coolant temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ .
  • the injection condition calculation unit similarly calculates the first injection condition when the coolant temperature is lower than the first predetermined value ⁇ and the exhaust temperature is lower than the second predetermined value ⁇ . Further, the calculation of the first injection condition is prohibited when the cooling water temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ .
  • the first predetermined value ⁇ is a determination value for determining whether or not the internal combustion engine 50 is warmed up
  • the second predetermined value ⁇ is the bed temperature of the catalyst 21 reaching the activation temperature. This is a determination value for determining whether or not.
  • the fuel supply device 1A includes a fuel injection device 60, pressure adjusting devices 65 and 66, and an ECU 70A.
  • the fuel supply device 1A includes the ECU 70A that calculates and sets the first injection condition, thereby having the first combustion control mode. Then, when the coolant temperature is lower than the first predetermined value ⁇ and the exhaust temperature is lower than the second predetermined value ⁇ , the ECU 70A calculates and sets the first injection condition, thereby starting the internal combustion engine 50. Sometimes the first combustion control mode is enabled.
  • the ECU 70A prohibits the setting of the first injection condition, whereby the internal combustion engine 50 is The first combustion control mode is invalidated when the engine is warmed up and the bed temperature of the catalyst 21 has reached the activation temperature.
  • the fuel supply device 1A detects the cooling water temperature and the exhaust gas temperature (step S1). Subsequently, the fuel supply device 1A determines whether or not the cooling water temperature is equal to or lower than the first predetermined value ⁇ and the exhaust gas temperature is equal to or lower than the second predetermined value ⁇ (step S2). If an affirmative determination is made in step S2, the fuel supply device 1A calculates and sets the first injection condition (step S3). This enables the first combustion control mode.
  • step S2 the fuel supply device 1A prohibits the calculation and setting of the first injection condition (step S4).
  • step S4 the fuel supply device 1A prohibits the calculation and setting of the first injection condition.
  • the fuel supply device 1A can enable combustion control modes other than the first combustion control mode.
  • step S5 the fuel supply device 1A performs fuel injection control according to the combustion control mode that is enabled.
  • the function and effect of the fuel supply device 1A will be described.
  • the gas temperature in the combustion chamber Ec when the temperature is low, the gas temperature in the combustion chamber Ec also becomes low. As a result, combustion becomes slow. Further, when the temperature is low, the wall surface temperature of the combustion chamber Ec is also low. As a result, the flame extinction easily occurs on the wall surface of the combustion chamber Ec. For this reason, in the internal combustion engine 50 using the hydrocarbon fuel, the amount of unburned hydrocarbons increases when the temperature is low. Further, when the temperature of the catalyst 21 is low (when the bed temperature of the catalyst 21 does not reach the activation temperature), the exhaust purification performance cannot be sufficiently exhibited. For this reason, when the temperature of the internal combustion engine 50 and the catalyst 21 is low, the amount of unburned hydrocarbon emissions increases.
  • the fuel supply device 1A supplies hydrocarbon fuel to the central portion in the radial direction of the combustion chamber Ec, and supplies hydrogen fuel around the space where the hydrocarbon fuel is supplied in the combustion chamber Ec. 1 combustion control mode.
  • the amount of unburned hydrocarbons generated can be reduced by enabling the first combustion control mode even when the engine temperature is low and combustion is slow and flame extinction tends to occur on the wall of the combustion chamber Ec.
  • the increase can be suppressed.
  • even when the catalyst 21 does not sufficiently exhibit the exhaust purification performance at a low temperature it is possible to suppress an increase in the external emission amount of unburned hydrocarbons by enabling the first combustion control mode. As a result, it is possible to obtain suitable combustion in that the external emission amount of unburned hydrocarbon can be suppressed.
  • the fuel supply device 1A enables the first combustion control mode when the internal combustion engine 50 is started. That is, specifically, it is possible to suppress an increase in the external emission amount of unburned hydrocarbons when the internal combustion engine 50 and the catalyst 21 are at a low temperature.
  • the fuel supply device 1A makes the first combustion control mode effective when the coolant temperature is lower than the first predetermined value ⁇ and the exhaust temperature is lower than the second predetermined value ⁇ .
  • the first combustion control mode can be made effective at the time of cold start when the internal combustion engine 50 is not warmed up and the bed temperature of the catalyst 21 does not reach the activation temperature.
  • Fuel supply device 1A disables the first combustion control mode when the temperatures of internal combustion engine 50 and catalyst 21 are sufficiently high.
  • the temperatures of the internal combustion engine 50 and the catalyst 21 are sufficiently high, flame extinguishing is difficult to occur on the wall surface of the combustion chamber Ec, and the catalyst 21 can also exhibit the original exhaust purification performance. In this case, even if the setting of the first combustion control mode is prohibited, the discharge amount of unburned hydrocarbons can be suppressed.
  • the cooling loss of the internal combustion engine 50 may increase due to the combustion of hydrogen fuel. This is because the combustion speed of the hydrogen fuel is high, the combustion temperature of the hydrogen fuel is high, the flame extinguishing distance of the hydrogen fuel is short, and so on, so that the hydrogen fuel burns even near the wall surface of the combustion chamber Ec. This is because the heat transfer on the wall surface of Ec increases.
  • the fuel supply device 1A invalidates the first combustion control mode when the internal combustion engine 50 is in a warmed-up state and the bed temperature of the catalyst 21 has reached the activation temperature.
  • the fuel supply device 1A specifically disables the first combustion control mode when the coolant temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ .
  • the first combustion control mode can be disabled when the internal combustion engine 50 is in a warmed-up state and the bed temperature of the catalyst 21 has reached the activation temperature.
  • the fuel supply device 1B according to the present embodiment is substantially the same as the fuel supply device 1A except that the ECU 70B is provided instead of the ECU 70A.
  • the ECU 70B is substantially the same as the ECU 70A except that the injection condition calculation unit and the injection condition setting unit are further realized as described below. Therefore, the illustration of the fuel supply device 1B and the ECU 70B is omitted.
  • the injection condition calculation unit further supplies hydrogen fuel to the central portion in the radial direction of the combustion chamber Ec, and supplies hydrocarbon fuel around the space in the combustion chamber Ec to which hydrogen fuel is supplied.
  • the injection condition is calculated.
  • the injection condition setting unit further sets the second injection condition according to the operating state of the internal combustion engine 50. Specifically, the hydrogen fuel is supplied to a portion at the center in the radial direction of the combustion chamber Ec and a portion on the top dead center side. This portion is a peripheral portion of the spark plug 56.
  • the hydrogen fuel supply destination is not necessarily the peripheral portion of the spark plug 56 as long as it is the central portion in the radial direction of the combustion chamber Ec.
  • the injection condition setting unit sets the second injection condition when the coolant temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ .
  • the cooling water temperature is lower than the first predetermined value ⁇ and the exhaust gas temperature is lower than the second predetermined value ⁇ (specifically, the cooling water temperature is the first predetermined value ⁇ in this case).
  • the exhaust temperature is equal to or lower than the second predetermined value ⁇
  • the setting of the second injection condition is prohibited.
  • the injection condition calculation unit that calculates the second injection condition and prohibits the calculation.
  • the fuel supply device 1B includes an ECU 70B that calculates and sets the second injection condition, and thus further includes a second combustion control mode in addition to the first combustion control mode.
  • the ECU 70B calculates and sets the second injection condition, so that the internal combustion engine 50 is warmed.
  • the second combustion control mode is activated when the engine is in the activated state and the bed temperature of the catalyst 21 has reached the activation temperature.
  • the ECU 70B prohibits the setting of the second injection condition, whereby the internal combustion engine 50 Disable the second combustion control mode at start-up.
  • the fuel supply device 1B detects the cooling water temperature and the exhaust gas temperature (step S11). Subsequently, the fuel supply device 1B determines whether the coolant temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ (step S12).
  • step S12 determines and sets the second injection condition (step S13). This enables the second combustion control mode.
  • step S14 prohibits the calculation and setting of the second injection condition.
  • the fuel supply device 1B can validate combustion control modes other than the second combustion control mode (specifically, the first combustion control mode here). After steps S13 and S14, the fuel supply device 1B performs fuel injection control according to the combustion control mode that is enabled (step S15).
  • the fuel supply device 1B supplies the hydrogen fuel to the central portion in the radial direction of the combustion chamber Ec, and the second combustion control mode supplies the hydrocarbon fuel around the space in the combustion chamber Ec to which the hydrogen fuel is supplied. have. For this reason, by enabling the second combustion control mode, the fuel supply device 1B can suitably suppress an increase in cooling loss in the internal combustion engine 50 as a result of the hydrogen fuel burning near the wall surface of the combustion chamber Ec. In this respect, suitable combustion can be obtained.
  • the fuel supply device 1B enables the second combustion control mode when the internal combustion engine 50 is in a warmed-up state and the bed temperature of the catalyst 21 reaches the activation temperature. And thereby, it can suppress that the cooling loss increases in the internal combustion engine 50, suppressing the external discharge
  • the fuel supply device 1B specifically enables the second combustion control mode when the coolant temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ .
  • the second combustion control mode can be made effective when the internal combustion engine 50 is in a warmed-up state and the bed temperature of the catalyst 21 has reached the activation temperature.
  • the injection condition calculation unit and the injection condition setting unit can be realized so as to calculate and set the second injection condition without specially calculating and setting the first injection condition in the ECU 70B.
  • the fuel supply apparatus 1B can have the second combustion control mode without having the first combustion control mode. Even in this case, the fuel supply apparatus 1B can achieve the same effects as described above.
  • the fuel supply apparatus 1C is substantially the same as the fuel supply apparatus 1B except that the ECU 70C is provided instead of the ECU 70B.
  • the ECU 70C is substantially the same as the ECU 70B except that the injection condition calculation unit and the injection condition setting unit are further realized as described below. For this reason, illustration of the fuel supply device 1C and the ECU 70C is omitted.
  • the injection condition calculation unit further calculates a third injection condition for promoting the mixing of the hydrogen fuel in the combustion chamber Ec.
  • the injection condition setting unit further sets a third injection condition according to the operating state of the internal combustion engine 50.
  • the injection condition setting unit is a case where the cooling water temperature is higher than the first predetermined value ⁇ and the exhaust gas temperature is higher than the second predetermined value ⁇ , and the operating state of the internal combustion engine 50 is a high load. If so, the third injection condition is set.
  • the cooling water temperature is lower than the first predetermined value ⁇ and the exhaust temperature is lower than the second predetermined value ⁇ (specifically, the cooling water temperature is equal to or lower than the first predetermined value ⁇ , and Even when the exhaust temperature is equal to or lower than the second predetermined value ⁇ ) and the cooling water temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ .
  • the operation state of 50 is an operation state other than a high load
  • the setting of the third injection condition is prohibited. The same applies to the injection condition calculation unit that calculates and prohibits the third injection condition.
  • the third injection condition is an injection condition for promoting the mixing of the hydrogen fuel and the hydrocarbon fuel in the combustion chamber Ec.
  • the fuel can be injected from the fuel injection valves 61 and 62 so that the respective fuels are simultaneously supplied to the combustion chamber Ec under the third injection condition.
  • fuel can be injected so that the fuel injection periods of the fuel injection valves 61 and 62 overlap.
  • the third injection condition may be a condition that promotes the mixing of hydrogen fuel and air while maintaining the supply mode of each fuel based on the second injection condition. In this regard, for example, the earlier the fuel is injected, the easier it is to mix with the air.
  • the injection condition setting unit further sets each of the first, second, and third injection conditions according to the operating state of the internal combustion engine 50, and prohibits the setting.
  • the injection condition setting unit specifically sets the third injection condition in preference to the second injection condition when the operating state of the internal combustion engine 50 is a high load. That is, even when the cooling water temperature is higher than the first predetermined value ⁇ and the exhaust gas temperature is higher than the second predetermined value ⁇ , when the operating state of the internal combustion engine 50 is a high load, The setting of the second injection condition is prohibited, and the third injection condition is set.
  • the injection condition calculation unit that calculates and prohibits the calculation of each injection condition.
  • the fuel supply device 1C includes an ECU 70C that calculates and sets the third injection condition, and thus further includes a third combustion control mode in addition to the first and second combustion control modes. Further, by calculating and setting each of the first, second and third injection conditions according to the operating state of the internal combustion engine 50 and prohibiting the calculation and setting, the first and second injection conditions are set according to the operating state of the internal combustion engine 50. The validity, invalidity of each of the first, second and third combustion control modes is switched.
  • the fuel supply device 1C is, for example, a case where the coolant temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ , and the operating state of the internal combustion engine 50 is further high load. If so, the third combustion control mode is enabled.
  • the fuel supply device 1C detects the cooling water temperature and the exhaust gas temperature (step S21). Subsequently, the fuel supply apparatus 1C determines whether or not the coolant temperature is equal to or lower than the first predetermined value ⁇ and the exhaust gas temperature is equal to or lower than the second predetermined value ⁇ (step S22). If a negative determination is made in step S22, the fuel supply device 1C determines whether or not the operating state of the internal combustion engine 50 is a high load (step S23).
  • step S24 the fuel supply apparatus 1C calculates and sets the first injection condition, and prohibits the calculation and setting of the second and third injection conditions.
  • step S24 the first combustion control mode is enabled, and the second and third combustion control modes are disabled.
  • step S23 the third injection condition is calculated and set, and the calculation and setting of the first and second injection conditions are prohibited (step S25).
  • step S26 the second injection condition is calculated and set, and the calculation and setting of the first and third injection conditions are prohibited.
  • the second combustion control mode is enabled and the first and third combustion control modes are disabled.
  • the combustion temperature becomes particularly high during high-load operation after completion of warm-up.
  • hydrogen fuel having a high combustion speed is supplied to the central portion in the radial direction of the combustion chamber Ec, particularly the peripheral portion of the ignition plug 56 in the combustion chamber Ec during high load operation after the warm-up is completed, the combustion speed becomes excessive.
  • abnormal combustion may occur.
  • the fuel supply device 1C has a third combustion control mode that promotes the mixing of hydrogen fuel in the combustion chamber Ec. For this reason, the fuel supply device 1C enables the third combustion control mode to make hydrogen in the periphery of the spark plug 56 in the combustion chamber Ec as compared to the case where the second combustion control mode is enabled.
  • the fuel can be diluted. As a result, the occurrence of abnormal combustion of hydrogen fuel can be suppressed.
  • the fuel supply device 1 ⁇ / b> C switches between valid and invalid in each of the first, second and third combustion control modes according to the operating state of the internal combustion engine 50. Thereby, it is possible to obtain good combustion in consideration of the properties of each fuel throughout the operation of the internal combustion engine 50.
  • the third combustion control mode may be realized by the ECU 70A.
  • the ECU 70A activates the third combustion control mode when the cooling water temperature is higher than the first predetermined value ⁇ and the exhaust gas temperature is higher than the second predetermined value ⁇ , and the cooling water temperature is set to the first predetermined value ⁇ .
  • the third combustion control mode can be disabled when the value ⁇ is lower and the exhaust temperature is lower than the second predetermined value ⁇ .
  • the internal combustion engine is compared with the case where the second combustion control mode is enabled when the coolant temperature is higher than the first predetermined value ⁇ and the exhaust temperature is higher than the second predetermined value ⁇ .
  • the internal combustion engine may be an internal combustion engine that generates a swirl flow in the combustion chamber.
  • FIG. 7 is a view showing an internal combustion engine 50 ′ which is a modification of the internal combustion engine 50.
  • the internal combustion engine 50 ′ includes a cylinder head 52 ′ instead of the cylinder head 52.
  • the cylinder head 52 ' is provided with intake ports In1 and In2 instead of the intake port 52a.
  • the intake port In1 is a helical port
  • the intake port In2 is a tangential port.
  • the intake ports In1 and In2 introduce intake air so as to generate a swirl flow in the combustion chamber Ec.
  • fuel injection valves 61 and 62 are provided for the intake ports In1 and In2, respectively.
  • the fuel supply apparatus of the present invention also provides the hydrocarbon fuel from the second fuel injection valve 62 to the internal combustion engine 50 'so that the hydrocarbon fuel can be supplied to the combustion chamber Ec in the first half of the intake stroke on the intake port In1 side, for example. And injecting hydrogen fuel from the first fuel injection valve 61 so that hydrogen fuel can be supplied to the combustion chamber Ec in the latter half of the intake stroke on the intake port In2 side, thereby having the first combustion control mode. Can do. Further, for example, at each intake port In1, In2, the second combustion control is performed by injecting fuel from the fuel injection valve 61, 62 opposite to the case where the first combustion control mode is realized. Can have modes. Further, for example, the third combustion control mode can be provided by injecting fuel from the fuel injection valves 61 and 62 so that the respective fuels are simultaneously supplied to the combustion chamber Ec.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

An internal combustion engine fuel supply apparatus (1A) is configured to supply hydrogen fuel and hydrocarbon fuel separately from each other to a combustion chamber (E) of an internal combustion engine (50). The internal combustion engine fuel supply apparatus (1A) has a first combustion control mode in which hydrocarbon fuel is supplied to a radially central portion of the combustion chamber (E) and hydrogen fuel is supplied around the space in the combustion chamber (E) to which hydrocarbon fuel is supplied. The internal combustion engine fuel supply apparatus (1A) activates the first combustion control mode at the start of the internal combustion engine (50).

Description

内燃機関の燃料供給装置Fuel supply device for internal combustion engine
 本発明は内燃機関の燃料供給装置に関する。 The present invention relates to a fuel supply device for an internal combustion engine.
 ガス燃料で運転可能な内燃機関が知られている。例えば特許文献1では、点火プラグに向けてガス燃料を噴射する第1の噴射弁と、点火プラグを避けてガス燃料を噴射する第2の噴射弁と、内燃機関の負荷状況に応じて第1の噴射弁と第2の噴射弁の何れか一方或いは双方を作動させる制御手段とを備えるガス燃料内燃機関が開示されている。このほか、異なる燃料を燃焼室に供給する点で本発明と関連性があると考えられる技術が例えば特許文献2で開示されている。 An internal combustion engine that can be operated with gas fuel is known. For example, in patent document 1, the 1st injection valve which injects gaseous fuel toward an ignition plug, the 2nd injection valve which injects gaseous fuel avoiding an ignition plug, and the 1st according to the load condition of an internal combustion engine. There is disclosed a gas fuel internal combustion engine comprising a control means for operating one or both of the injection valve and the second injection valve. In addition, for example, Patent Document 2 discloses a technique that is considered to be related to the present invention in that different fuels are supplied to the combustion chamber.
特開2007-198275号公報JP 2007-198275 A 特開2010-190042号公報JP 2010-190042 A
 内燃機関の燃焼室には異なる燃料として水素燃料と炭化水素燃料とを独立して供給することができる。この場合、良好な燃焼を得るためには各燃料の性質を考慮する必要がある。 Hydrogen fuel and hydrocarbon fuel can be supplied independently to the combustion chamber of the internal combustion engine as different fuels. In this case, it is necessary to consider the properties of each fuel in order to obtain good combustion.
 本発明は上記課題に鑑み、内燃機関の燃焼室に水素燃料と炭化水素燃料とを独立して供給する場合に良好な燃焼を得ることが可能な内燃機関の燃料供給装置を提供することを目的とする。 An object of the present invention is to provide a fuel supply device for an internal combustion engine capable of obtaining good combustion when hydrogen fuel and hydrocarbon fuel are independently supplied to a combustion chamber of the internal combustion engine. And
 本発明は内燃機関の燃焼室に水素燃料と炭化水素燃料とを独立して供給可能に構成され、前記燃焼室の径方向中央の部分、或いは前記燃焼室のうち、前記燃焼室に対して設けられている点火プラグの周辺部に炭化水素燃料を供給し、且つ前記燃焼室のうち、炭化水素燃料が供給される空間の周囲に水素燃料を供給する第1の燃焼制御モードを有する内燃機関の燃料供給装置である。 The present invention is configured so that hydrogen fuel and hydrocarbon fuel can be supplied independently to a combustion chamber of an internal combustion engine, and is provided to the combustion chamber in the radial center of the combustion chamber or in the combustion chamber. An internal combustion engine having a first combustion control mode for supplying hydrocarbon fuel to a peripheral portion of a spark plug and supplying hydrogen fuel around a space in the combustion chamber to which hydrocarbon fuel is supplied It is a fuel supply device.
 本発明は前記燃焼室の径方向中央の部分、或いは前記燃焼室のうち、前記点火プラグの周辺部に水素燃料を供給し、且つ前記燃焼室のうち、水素燃料が供給される空間の周囲に炭化水素燃料を供給する第2の燃焼制御モードをさらに有する構成とすることができる。 The present invention supplies hydrogen fuel to the radial center of the combustion chamber or to the periphery of the spark plug in the combustion chamber, and around the space in the combustion chamber to which hydrogen fuel is supplied. It can be set as the structure which further has the 2nd combustion control mode which supplies hydrocarbon fuel.
 本発明は前記燃焼室における水素燃料の混合を促進する第3の燃焼制御モードをさらに有する構成とすることができる。 The present invention may further include a third combustion control mode that promotes mixing of hydrogen fuel in the combustion chamber.
 本発明は前記内燃機関の運転状態に応じて、前記第1、第2および第3の燃焼制御モードそれぞれの有効、無効を切り替える構成とすることができる。 The present invention may be configured to switch between valid and invalid in each of the first, second and third combustion control modes according to the operating state of the internal combustion engine.
 本発明は前記内燃機関の始動時に前記第1の燃焼制御モードを有効にする構成とすることができる。 The present invention may be configured to enable the first combustion control mode when the internal combustion engine is started.
 本発明は内燃機関の燃焼室に水素燃料と炭化水素燃料とを独立して供給可能に構成され、前記燃焼室の径方向中央の部分、或いは前記燃焼室のうち、前記燃焼室に対して設けられている点火プラグの周辺部に水素燃料を供給し、且つ前記燃焼室のうち、水素燃料が供給される空間の周囲に炭化水素燃料を供給する燃焼制御モードを有する内燃機関の燃料供給装置である。 The present invention is configured so that hydrogen fuel and hydrocarbon fuel can be supplied independently to a combustion chamber of an internal combustion engine, and is provided to the combustion chamber in the radial center of the combustion chamber or in the combustion chamber. A fuel supply device for an internal combustion engine, having a combustion control mode for supplying hydrogen fuel to a peripheral portion of a spark plug and supplying hydrocarbon fuel around a space in the combustion chamber to which hydrogen fuel is supplied is there.
 本発明によれば、内燃機関の燃焼室に水素燃料と炭化水素燃料とを独立して供給する場合に良好な燃焼を得ることができる。 According to the present invention, good combustion can be obtained when hydrogen fuel and hydrocarbon fuel are separately supplied to the combustion chamber of the internal combustion engine.
内燃機関の燃料供給装置を含む各構成の全体図である。1 is an overall view of each configuration including a fuel supply device for an internal combustion engine. 内燃機関の概略構成図である。It is a schematic block diagram of an internal combustion engine. 図3(a)は第1の燃料供給状態を示す図、図3(b)は第2の燃料供給状態を示す図、図3(c)は第3の燃料供給状態を示す図である。FIG. 3A is a diagram showing a first fuel supply state, FIG. 3B is a diagram showing a second fuel supply state, and FIG. 3C is a diagram showing a third fuel supply state. 第1の制御動作をフローチャートで示す図である。It is a figure which shows a 1st control operation with a flowchart. 第2の制御動作をフローチャートで示す図である。It is a figure which shows a 2nd control operation with a flowchart. 第3の制御動作をフローチャートで示す図である。It is a figure which shows a 3rd control action with a flowchart. 内燃機関の変形例を示す図である。It is a figure which shows the modification of an internal combustion engine.
 図面を用いて本発明の実施例について説明する。 Embodiments of the present invention will be described with reference to the drawings.
 図1は内燃機関の燃料供給装置(以下、単に燃料供給装置と称す)1Aを含む各構成の全体図である。吸気系10は内燃機関50に供給する空気を流通させる。吸気系10には内燃機関50の吸入空気量を計測するエアフロメータ11や、内燃機関50の吸入空気量を調節するスロットル弁12が設けられている。排気系20は内燃機関50から排出される排気を流通させる。排気系20には排気を浄化するための触媒21が設けられている。排気還流系30は排気系20から吸気系10に排気を還流する。排気還流系30には還流する排気を冷却するためのEGRクーラ31や、還流する排気の量を調節するための流量調節弁32が設けられている。 FIG. 1 is an overall view of each configuration including a fuel supply device (hereinafter simply referred to as a fuel supply device) 1A for an internal combustion engine. The intake system 10 circulates air supplied to the internal combustion engine 50. The intake system 10 is provided with an air flow meter 11 for measuring the intake air amount of the internal combustion engine 50 and a throttle valve 12 for adjusting the intake air amount of the internal combustion engine 50. The exhaust system 20 circulates exhaust discharged from the internal combustion engine 50. The exhaust system 20 is provided with a catalyst 21 for purifying the exhaust gas. The exhaust gas recirculation system 30 recirculates exhaust gas from the exhaust system 20 to the intake system 10. The exhaust gas recirculation system 30 is provided with an EGR cooler 31 for cooling the exhaust gas that circulates, and a flow rate adjustment valve 32 for adjusting the amount of the exhaust gas that circulates.
 内燃機関50は多気筒(ここでは4気筒)の火花点火式内燃機関となっている。内燃機関50には燃料噴射装置60が設けられている。燃料噴射装置60は第1の燃料噴射弁61と第2の燃料噴射弁62とを備えている。燃料噴射弁61、62それぞれは内燃機関50に気筒毎に設けられている。第1の燃料噴射弁61それぞれには、第1のタンク63から水素燃料が供給される。第2の燃料噴射弁62それぞれには、第2のタンク64から炭化水素燃料が供給される。このため、燃料噴射装置60は内燃機関50の各燃焼室Eに水素燃料と炭化水素燃料とを独立して供給可能に構成されている。 The internal combustion engine 50 is a multi-cylinder (four cylinders in this case) spark ignition internal combustion engine. The internal combustion engine 50 is provided with a fuel injection device 60. The fuel injection device 60 includes a first fuel injection valve 61 and a second fuel injection valve 62. Each of the fuel injection valves 61 and 62 is provided in the internal combustion engine 50 for each cylinder. Hydrogen fuel is supplied from the first tank 63 to each of the first fuel injection valves 61. A hydrocarbon fuel is supplied from the second tank 64 to each of the second fuel injection valves 62. For this reason, the fuel injection device 60 is configured to be able to independently supply hydrogen fuel and hydrocarbon fuel to each combustion chamber E of the internal combustion engine 50.
 第1の燃料噴射弁61それぞれには、具体的には第1のタンク63から第1の圧力調整装置65を介して水素燃料が供給される。第1の圧力調整装置65は供給する水素燃料の圧力を調整するために設けられている。第2の燃料噴射弁62それぞれには、具体的には第2のタンク64から第2の圧力調整装置66を介して炭化水素燃料が供給される。第2の圧力調整装置66は供給する炭化水素燃料の圧力を調整するために設けられている。かかる構成では、炭化水素燃料として例えば天然ガスなどのガス燃料を適用できる。 Specifically, hydrogen fuel is supplied to each of the first fuel injection valves 61 from the first tank 63 via the first pressure adjusting device 65. The first pressure adjusting device 65 is provided to adjust the pressure of the supplied hydrogen fuel. Specifically, each of the second fuel injection valves 62 is supplied with hydrocarbon fuel from the second tank 64 via the second pressure regulator 66. The second pressure adjusting device 66 is provided for adjusting the pressure of the hydrocarbon fuel to be supplied. In such a configuration, gas fuel such as natural gas can be applied as the hydrocarbon fuel.
 図2は内燃機関50の概略構成図である。図2は内燃機関50の一気筒につき、その断面を示している。内燃機関50はシリンダブロック51とシリンダヘッド52とピストン53と吸気弁54と排気弁55と点火プラグ56とを備えている。燃焼室Ecは内燃機関50の各燃焼室Eのうち、いずれか1つの特定の燃焼室であることを示す。 FIG. 2 is a schematic configuration diagram of the internal combustion engine 50. FIG. 2 shows a cross section of one cylinder of the internal combustion engine 50. The internal combustion engine 50 includes a cylinder block 51, a cylinder head 52, a piston 53, an intake valve 54, an exhaust valve 55, and a spark plug 56. The combustion chamber Ec indicates any one of the combustion chambers E of the internal combustion engine 50.
 シリンダブロック51には、シリンダ51aが形成されている。シリンダ51a内にはピストン53が収容されている。シリンダブロック51の上面にはシリンダヘッド52が固定されている。燃焼室Ecはシリンダブロック51、シリンダヘッド52及びピストン53に囲まれた空間として形成されている。シリンダヘッド52には燃焼室Ecに吸気を導く吸気ポート52aと、燃焼室Ecからガスを排出する排気ポート52bとが形成されている。また、吸気ポート52aを開閉する吸気弁54と、排気ポート52bを開閉する排気弁55とが設けられている。点火プラグ56は燃焼室Ecの上死点側中央の部分に電極を突出させた状態でシリンダヘッド52に設けられている。 The cylinder block 51 is formed with a cylinder 51a. A piston 53 is accommodated in the cylinder 51a. A cylinder head 52 is fixed to the upper surface of the cylinder block 51. The combustion chamber Ec is formed as a space surrounded by the cylinder block 51, the cylinder head 52 and the piston 53. The cylinder head 52 is formed with an intake port 52a that guides intake air to the combustion chamber Ec and an exhaust port 52b that discharges gas from the combustion chamber Ec. An intake valve 54 for opening and closing the intake port 52a and an exhaust valve 55 for opening and closing the exhaust port 52b are provided. The spark plug 56 is provided in the cylinder head 52 in a state where an electrode protrudes from the center of the top dead center side of the combustion chamber Ec.
 燃料噴射弁61、62は具体的には吸気ポート52aに燃料を噴射するように設けられている。そしてこれにより、燃焼室Ecに燃料を供給できるように設けられている。吸気ポート52aが一気筒あたりの吸気弁54を2弁とする構造に対応して燃焼室Ecに向かって分岐している場合、燃料噴射弁61、62はさらに具体的には例えば吸気ポート52aのうち、燃焼室Ecに向かって分岐する前の部分に設けることができる。なお、気筒毎の燃料噴射弁61、62の配置や数量は必ずしもこれに限られず、燃焼室Ecに燃料を供給可能な適宜の配置および数量であってよい。 The fuel injection valves 61 and 62 are specifically provided to inject fuel into the intake port 52a. And thereby, it is provided so that fuel can be supplied to the combustion chamber Ec. When the intake port 52a branches toward the combustion chamber Ec corresponding to the structure in which the intake valve 54 per cylinder is two valves, the fuel injection valves 61 and 62 are more specifically, for example, of the intake port 52a. Among these, it can be provided in a portion before branching toward the combustion chamber Ec. The arrangement and quantity of the fuel injection valves 61 and 62 for each cylinder are not necessarily limited to this, and may be any appropriate arrangement and quantity that can supply fuel to the combustion chamber Ec.
 吸気ポート52aは燃焼室Ecにタンブル流を生成するように吸気を導入する。このため、内燃機関50は燃焼室Ecにタンブル流を生成する内燃機関となっている。燃焼室Ecにタンブル流を生成するにあたり、内燃機関50は例えば吸気ポート52aにタンブル流を生成するための気流制御弁を備えてもよい。 The intake port 52a introduces intake air so as to generate a tumble flow in the combustion chamber Ec. For this reason, the internal combustion engine 50 is an internal combustion engine that generates a tumble flow in the combustion chamber Ec. In generating the tumble flow in the combustion chamber Ec, the internal combustion engine 50 may include, for example, an airflow control valve for generating the tumble flow in the intake port 52a.
 図1に示すECU70Aは電子制御装置であり、CPU、ROM、RAM等からなるマイクロコンピュータを備えている。ECU70Aにはエアフロメータ11や、内燃機関50の冷却水温を検出するための水温センサ81や、排気温を検出するための排気温センサ82や、内燃機関50の回転数NEを検出可能なクランク角センサ83など各種のセンサ・スイッチ類が電気的に接続されている。また、燃料噴射弁61、62や圧力調整装置65、66が制御対象として電気的に接続されている。 The ECU 70A shown in FIG. 1 is an electronic control device and includes a microcomputer including a CPU, a ROM, a RAM, and the like. The ECU 70A includes an air flow meter 11, a water temperature sensor 81 for detecting the cooling water temperature of the internal combustion engine 50, an exhaust temperature sensor 82 for detecting the exhaust temperature, and a crank angle at which the rotational speed NE of the internal combustion engine 50 can be detected. Various sensors and switches such as the sensor 83 are electrically connected. Further, the fuel injection valves 61 and 62 and the pressure adjusting devices 65 and 66 are electrically connected as control targets.
 ROMはCPUが実行する種々の処理が記述されたプログラムやマップデータなどを格納するための構成である。CPUがROMに格納されたプログラムに基づき、必要に応じてRAMの一時記憶領域を利用しつつ処理を実行することで、ECU70Aでは例えば以下に示す噴射条件算出部や噴射条件設定部など各種の機能部が実現される。 ROM is a configuration for storing programs, map data, and the like in which various processes executed by the CPU are described. The ECU 70A executes various processes such as the injection condition calculation unit and the injection condition setting unit shown below by executing processing while using the temporary storage area of the RAM as required based on the program stored in the ROM. Part is realized.
 噴射条件算出部は燃料噴射弁61、62からの燃料の噴射条件を算出する。噴射条件算出部は内燃機関50において燃焼室Ecの径方向中央の部分に炭化水素燃料を供給し、且つ燃焼室Ecのうち、炭化水素燃料が供給される空間の周囲に水素燃料を供給するための噴射条件である第1の噴射条件を算出する。炭化水素燃料は具体的には燃焼室Ecの径方向中央の部分であって、且つ上死点側の部分に供給される。そしてこの部分は点火プラグ56の周辺部となっている。この点、炭化水素燃料の供給先は燃焼室Ecの径方向中央の部分であれば、必ずしも点火プラグ56の周辺部でなくてもよい。 The injection condition calculation unit calculates the fuel injection conditions from the fuel injection valves 61 and 62. The injection condition calculation unit supplies hydrocarbon fuel to the central portion in the radial direction of the combustion chamber Ec in the internal combustion engine 50, and supplies hydrogen fuel around the space to which the hydrocarbon fuel is supplied in the combustion chamber Ec. The first injection condition that is the injection condition is calculated. Specifically, the hydrocarbon fuel is supplied to a portion at the center in the radial direction of the combustion chamber Ec and a portion on the top dead center side. This portion is a peripheral portion of the spark plug 56. In this regard, the hydrocarbon fuel supply destination is not necessarily the peripheral portion of the spark plug 56 as long as it is a portion in the center in the radial direction of the combustion chamber Ec.
 図3は第1の噴射条件の説明図である。図3(a)は第1の噴射条件に基づく第1の燃料供給状態を示す。図3(b)は第1の噴射条件に基づく第2の燃料供給状態を示す。図3(c)は第1の噴射条件に基づく第3の燃料供給状態を示す。第1の噴射条件ではまず吸気行程前半に燃焼室Ecに炭化水素燃料を供給する。このためには、図3(a)に示すように前回の燃焼サイクルで吸気弁54が閉弁した後、閉弁した状態にある間に炭化水素燃料の噴射を開始することで、噴射した燃料を吸気弁54の近傍に配置することができる。このように噴射することで、噴射容積が液体燃料の場合よりも大きいガス燃料の燃料噴射期間を確保できる。 FIG. 3 is an explanatory diagram of the first injection condition. FIG. 3A shows a first fuel supply state based on the first injection condition. FIG. 3B shows a second fuel supply state based on the first injection condition. FIG. 3C shows a third fuel supply state based on the first injection condition. Under the first injection condition, first, hydrocarbon fuel is supplied to the combustion chamber Ec in the first half of the intake stroke. For this purpose, as shown in FIG. 3 (a), after the intake valve 54 is closed in the previous combustion cycle, the injection of hydrocarbon fuel is started while the intake valve 54 is in the closed state. Can be disposed in the vicinity of the intake valve 54. By injecting in this way, it is possible to secure a fuel injection period of gas fuel having a larger injection volume than that of liquid fuel.
 第1の噴射条件ではその後、図3(b)に示すように水素燃料を噴射することで、燃焼室Ecに水素燃料を供給する。そしてこれにより、タンブル流の流通と相俟って、図3(c)に示すように燃焼室Ecの径方向中央の部分(具体的には上死点側中央の部分)に炭化水素燃料を供給することができる。また、燃料室Ecのうち、炭化水素燃料が供給される部分の周囲の空間に水素燃料を供給することができる。 In the first injection condition, hydrogen fuel is then injected into the combustion chamber Ec by injecting hydrogen fuel as shown in FIG. As a result, in combination with the flow of the tumble flow, as shown in FIG. 3C, the hydrocarbon fuel is supplied to the central portion in the radial direction of the combustion chamber Ec (specifically, the central portion on the top dead center side). Can be supplied. Moreover, hydrogen fuel can be supplied to the space around the portion of the fuel chamber Ec to which hydrocarbon fuel is supplied.
 噴射条件は具体的には噴射開始時期や噴射圧力を含む。この点、噴射条件を算出するにあたって、噴射条件算出部はタンブル流の強さ(例えばピストン53一往復当たりのタンブル流の回転数であるタンブル比)に応じて各燃料の噴射開始時期を算出することができる。また、内燃機関50の運転状態(例えば回転数NEおよび負荷)に応じて各燃料の噴射圧力を算出することができる。 The injection condition specifically includes the injection start timing and the injection pressure. In this regard, when calculating the injection conditions, the injection condition calculation unit calculates the injection start timing of each fuel according to the strength of the tumble flow (for example, the tumble ratio that is the number of revolutions of the tumble flow per reciprocation of the piston 53). be able to. Further, the injection pressure of each fuel can be calculated according to the operating state of the internal combustion engine 50 (for example, the rotational speed NE and the load).
 各燃料のうち、少なくともいずれかの燃料の噴射圧力を調整する場合としては、例えば内燃機関50の高回転高負荷時など所定の期間内に燃料噴射を終了できなくなる結果、各燃料の燃料噴射期間が重なってしまう場合がある。そしてこの場合には各燃料のうち、先に噴射する燃料の噴射圧力を高めることで、所定の期間内に燃料噴射を終了させることができる。 In the case of adjusting the injection pressure of at least one of the fuels, for example, the fuel injection period of each fuel cannot be completed within a predetermined period, for example, when the internal combustion engine 50 is under high rotation and high load. May overlap. In this case, the fuel injection can be terminated within a predetermined period by increasing the injection pressure of the fuel to be injected first among the fuels.
 噴射条件設定部は内燃機関50の運転状態に応じて第1の噴射条件を設定する。具体的には噴射条件設定部は冷却水温が第1の所定値αよりも低く、且つ排気温が第2の所定値βよりも低い場合(具体的にはここでは冷却水温が第1の所定値α以下であり、且つ排気温が第2の所定値β以下である場合)に第1の噴射条件を設定する。一方、噴射条件設定部は冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合に第1の噴射条件の設定を禁止する。 The injection condition setting unit sets the first injection condition according to the operating state of the internal combustion engine 50. Specifically, the injection condition setting unit determines that the cooling water temperature is lower than the first predetermined value α and the exhaust temperature is lower than the second predetermined value β (specifically, here the cooling water temperature is the first predetermined value α). The first injection condition is set to a value α or lower and the exhaust temperature is equal to or lower than a second predetermined value β. On the other hand, the injection condition setting unit prohibits the setting of the first injection condition when the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β.
 この点、噴射条件算出部も同様に冷却水温が第1の所定値αよりも低く、且つ排気温が第2の所定値βよりも低い場合に第1の噴射条件を算出する。また、冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合に第1の噴射条件の算出を禁止する。第1の所定値αは内燃機関50が暖機された状態にあるか否かを判定するための判定値であり、第2の所定値βは触媒21の床温が活性温度に達しているか否かを判定するための判定値となっている。 In this regard, the injection condition calculation unit similarly calculates the first injection condition when the coolant temperature is lower than the first predetermined value α and the exhaust temperature is lower than the second predetermined value β. Further, the calculation of the first injection condition is prohibited when the cooling water temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β. The first predetermined value α is a determination value for determining whether or not the internal combustion engine 50 is warmed up, and the second predetermined value β is the bed temperature of the catalyst 21 reaching the activation temperature. This is a determination value for determining whether or not.
 燃料供給装置1Aは燃料噴射装置60と圧力調整装置65、66とECU70Aとを備えている。この点、燃料供給装置1Aは第1の噴射条件を算出および設定するECU70Aを備えることで、第1の燃焼制御モードを有している。そして、冷却水温が第1の所定値αよりも低く、且つ排気温が第2の所定値βよりも低い場合にECU70Aが第1の噴射条件を算出および設定することで、内燃機関50の始動時に第1の燃焼制御モードを有効にする。また、冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合に、ECU70Aが第1の噴射条件の設定を禁止することで、内燃機関50が暖機された状態にあり、且つ触媒21の床温が活性温度に達している場合に第1の燃焼制御モードを無効にする。 The fuel supply device 1A includes a fuel injection device 60, pressure adjusting devices 65 and 66, and an ECU 70A. In this regard, the fuel supply device 1A includes the ECU 70A that calculates and sets the first injection condition, thereby having the first combustion control mode. Then, when the coolant temperature is lower than the first predetermined value α and the exhaust temperature is lower than the second predetermined value β, the ECU 70A calculates and sets the first injection condition, thereby starting the internal combustion engine 50. Sometimes the first combustion control mode is enabled. Further, when the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β, the ECU 70A prohibits the setting of the first injection condition, whereby the internal combustion engine 50 is The first combustion control mode is invalidated when the engine is warmed up and the bed temperature of the catalyst 21 has reached the activation temperature.
 次に第1の制御動作である燃料供給装置1Aの動作について図4に示すフローチャートを用いて説明する。燃料供給装置1Aは冷却水温および排気温を検出する(ステップS1)。続いて燃料供給装置1Aは冷却水温が第1の所定値α以下であり、且つ排気温が第2の所定値β以下であるか否かを判定する(ステップS2)。ステップS2で肯定判定であれば、燃料供給装置1Aは第1の噴射条件を算出および設定する(ステップS3)。そしてこれにより、第1の燃焼制御モードを有効にする。 Next, the operation of the fuel supply device 1A as the first control operation will be described with reference to the flowchart shown in FIG. The fuel supply device 1A detects the cooling water temperature and the exhaust gas temperature (step S1). Subsequently, the fuel supply device 1A determines whether or not the cooling water temperature is equal to or lower than the first predetermined value α and the exhaust gas temperature is equal to or lower than the second predetermined value β (step S2). If an affirmative determination is made in step S2, the fuel supply device 1A calculates and sets the first injection condition (step S3). This enables the first combustion control mode.
 一方、ステップS2で否定判定であれば、燃料供給装置1Aは第1の噴射条件の算出および設定を禁止する(ステップS4)。そしてこれにより、第1の燃焼制御モードを無効にする。この場合、燃料供給装置1Aは第1の燃焼制御モード以外の燃焼制御モードを有効にすることができる。ステップS3、S4の後、燃料供給装置1Aは有効になっている燃焼制御モードに応じた燃料噴射制御を行う(ステップS5)。 On the other hand, if a negative determination is made in step S2, the fuel supply device 1A prohibits the calculation and setting of the first injection condition (step S4). Thus, the first combustion control mode is invalidated. In this case, the fuel supply device 1A can enable combustion control modes other than the first combustion control mode. After steps S3 and S4, the fuel supply device 1A performs fuel injection control according to the combustion control mode that is enabled (step S5).
 次に燃料供給装置1Aの作用効果について説明する。ここで、内燃機関50では温度が低い場合に燃焼室Ecのガス温度も低くなる。結果、燃焼が緩慢になる。また、温度が低い場合に燃焼室Ecの壁面温度も低くなる。結果、燃焼室Ecの壁面で消炎が発生し易くなる。このため、炭化水素燃料を使用する内燃機関50では、温度が低い場合に未燃炭化水素の発生量が増加する。さらに触媒21は温度が低い場合(触媒21の床温が活性温度に達していない場合)には排気浄化性能を十分に発揮できない。このため、内燃機関50および触媒21の温度が低い場合には未燃炭化水素の排出量が増加する。 Next, the function and effect of the fuel supply device 1A will be described. Here, in the internal combustion engine 50, when the temperature is low, the gas temperature in the combustion chamber Ec also becomes low. As a result, combustion becomes slow. Further, when the temperature is low, the wall surface temperature of the combustion chamber Ec is also low. As a result, the flame extinction easily occurs on the wall surface of the combustion chamber Ec. For this reason, in the internal combustion engine 50 using the hydrocarbon fuel, the amount of unburned hydrocarbons increases when the temperature is low. Further, when the temperature of the catalyst 21 is low (when the bed temperature of the catalyst 21 does not reach the activation temperature), the exhaust purification performance cannot be sufficiently exhibited. For this reason, when the temperature of the internal combustion engine 50 and the catalyst 21 is low, the amount of unburned hydrocarbon emissions increases.
 これに対し、燃料供給装置1Aは燃焼室Ecの径方向中央の部分に炭化水素燃料を供給し、且つ燃焼室Ecのうち、炭化水素燃料が供給される空間の周囲に水素燃料を供給する第1の燃焼制御モードを有している。このため、燃焼が緩慢になるとともに燃焼室Ecの壁面で消炎が発生し易くなる機関低温時であっても、第1の燃焼制御モードを有効にすることで、未燃炭化水素の発生量が増加することを抑制できる。また、排気浄化性能が十分に発揮されない触媒21低温時であっても、第1の燃焼制御モードを有効にすることで、未燃炭化水素の外部排出量が増加することを抑制できる。結果、未燃炭化水素の外部排出量を抑制できる点で好適な燃焼を得ることができる。 On the other hand, the fuel supply device 1A supplies hydrocarbon fuel to the central portion in the radial direction of the combustion chamber Ec, and supplies hydrogen fuel around the space where the hydrocarbon fuel is supplied in the combustion chamber Ec. 1 combustion control mode. For this reason, the amount of unburned hydrocarbons generated can be reduced by enabling the first combustion control mode even when the engine temperature is low and combustion is slow and flame extinction tends to occur on the wall of the combustion chamber Ec. The increase can be suppressed. Further, even when the catalyst 21 does not sufficiently exhibit the exhaust purification performance at a low temperature, it is possible to suppress an increase in the external emission amount of unburned hydrocarbons by enabling the first combustion control mode. As a result, it is possible to obtain suitable combustion in that the external emission amount of unburned hydrocarbon can be suppressed.
 燃料供給装置1Aは内燃機関50の始動時に第1の燃焼制御モードを有効にする。すなわち、具体的にはこれにより内燃機関50および触媒21の低温時に未燃炭化水素の外部排出量が増加することを抑制できる。この点、燃料供給装置1Aはさらに具体的には冷却水温が第1の所定値αよりも低く、且つ排気温が第2の所定値βよりも低い場合に第1の燃焼制御モードを有効にすることで、内燃機関50が暖機された状態になく、且つ触媒21の床温が活性温度に達していない冷間始動時に第1の燃焼制御モードを有効にすることができる。 The fuel supply device 1A enables the first combustion control mode when the internal combustion engine 50 is started. That is, specifically, it is possible to suppress an increase in the external emission amount of unburned hydrocarbons when the internal combustion engine 50 and the catalyst 21 are at a low temperature. In this regard, more specifically, the fuel supply device 1A makes the first combustion control mode effective when the coolant temperature is lower than the first predetermined value α and the exhaust temperature is lower than the second predetermined value β. Thus, the first combustion control mode can be made effective at the time of cold start when the internal combustion engine 50 is not warmed up and the bed temperature of the catalyst 21 does not reach the activation temperature.
 燃料供給装置1Aは内燃機関50および触媒21の温度が十分高まっている場合に第1の燃焼制御モードを無効にする。この点、内燃機関50および触媒21の温度が十分高まっている場合には、燃焼室Ecの壁面で消炎が発生し難くなるとともに、触媒21も本来の排気浄化性能を発揮することができる。そして、この場合には第1の燃焼制御モードの設定を禁止しても、未燃炭化水素の排出量を抑制できる。 Fuel supply device 1A disables the first combustion control mode when the temperatures of internal combustion engine 50 and catalyst 21 are sufficiently high. In this regard, when the temperatures of the internal combustion engine 50 and the catalyst 21 are sufficiently high, flame extinguishing is difficult to occur on the wall surface of the combustion chamber Ec, and the catalyst 21 can also exhibit the original exhaust purification performance. In this case, even if the setting of the first combustion control mode is prohibited, the discharge amount of unburned hydrocarbons can be suppressed.
 一方、この場合には水素燃料の燃焼によって内燃機関50の冷却損失が増大することがある。これは、水素燃料の燃焼速度が速いことや、水素燃料の燃焼温度が高いことや、水素燃料の消炎距離が短いことなどから、水素燃料が燃焼室Ecの壁面近傍でも燃焼する結果、燃焼室Ecの壁面での熱伝達が大きくなるためである。 On the other hand, in this case, the cooling loss of the internal combustion engine 50 may increase due to the combustion of hydrogen fuel. This is because the combustion speed of the hydrogen fuel is high, the combustion temperature of the hydrogen fuel is high, the flame extinguishing distance of the hydrogen fuel is short, and so on, so that the hydrogen fuel burns even near the wall surface of the combustion chamber Ec. This is because the heat transfer on the wall surface of Ec increases.
 これに対し、燃料供給装置1Aは内燃機関50が暖機された状態にあり、且つ触媒21の床温が活性温度に達している場合に、第1の燃焼制御モードを無効にする。そしてこれにより、未燃炭化水素の外部排出量が増加することを抑制しつつ、内燃機関50の冷却損失が増大することも抑制できる。この点、燃料供給装置1Aは具体的には冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合に第1の燃焼制御モードを無効にすることで、内燃機関50が暖機された状態にあり、且つ触媒21の床温が活性温度に達している場合に第1の燃焼制御モードを無効にすることができる。 On the other hand, the fuel supply device 1A invalidates the first combustion control mode when the internal combustion engine 50 is in a warmed-up state and the bed temperature of the catalyst 21 has reached the activation temperature. Thus, it is possible to suppress an increase in the cooling loss of the internal combustion engine 50 while suppressing an increase in the external emission amount of unburned hydrocarbons. In this regard, the fuel supply device 1A specifically disables the first combustion control mode when the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β. Thus, the first combustion control mode can be disabled when the internal combustion engine 50 is in a warmed-up state and the bed temperature of the catalyst 21 has reached the activation temperature.
 本実施例にかかる燃料供給装置1BはECU70Aの代わりにECU70Bを備える点以外、燃料供給装置1Aと実質的に同一である。ECU70Bは噴射条件算出部と噴射条件設定部とがさらに以下に示すように実現される点以外、ECU70Aと実質的に同一である。このため燃料供給装置1BおよびECU70Bについては図示省略する。 The fuel supply device 1B according to the present embodiment is substantially the same as the fuel supply device 1A except that the ECU 70B is provided instead of the ECU 70A. The ECU 70B is substantially the same as the ECU 70A except that the injection condition calculation unit and the injection condition setting unit are further realized as described below. Therefore, the illustration of the fuel supply device 1B and the ECU 70B is omitted.
 ECU70Bでは、噴射条件算出部がさらに燃焼室Ecの径方向中央の部分に水素燃料を供給し、且つ燃焼室Ecのうち、水素燃料が供給される空間の周囲に炭化水素燃料を供給する第2の噴射条件を算出する。また、噴射条件設定部がさらに内燃機関50の運転状態に応じて第2の噴射条件を設定する。水素燃料は具体的には燃焼室Ecの径方向中央の部分であって、且つ上死点側の部分に供給される。そしてこの部分は点火プラグ56の周辺部となっている。この点、水素燃料の供給先は燃焼室Ecの径方向中央の部分であれば、必ずしも点火プラグ56の周辺部でなくてもよい。 In the ECU 70B, the injection condition calculation unit further supplies hydrogen fuel to the central portion in the radial direction of the combustion chamber Ec, and supplies hydrocarbon fuel around the space in the combustion chamber Ec to which hydrogen fuel is supplied. The injection condition is calculated. The injection condition setting unit further sets the second injection condition according to the operating state of the internal combustion engine 50. Specifically, the hydrogen fuel is supplied to a portion at the center in the radial direction of the combustion chamber Ec and a portion on the top dead center side. This portion is a peripheral portion of the spark plug 56. In this regard, the hydrogen fuel supply destination is not necessarily the peripheral portion of the spark plug 56 as long as it is the central portion in the radial direction of the combustion chamber Ec.
 噴射条件設定部は具体的には冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合に第2の噴射条件を設定する。一方、噴射条件設定部は冷却水温が第1の所定値αよりも低く、且つ排気温が第2の所定値βよりも低い場合(具体的にはここでは冷却水温が第1の所定値α以下であり、且つ排気温が第2の所定値β以下である場合)に第2の噴射条件の設定を禁止する。これは、第2の噴射条件の算出、算出の禁止を行う噴射条件算出部についても同様である。 Specifically, the injection condition setting unit sets the second injection condition when the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β. On the other hand, when the cooling water temperature is lower than the first predetermined value α and the exhaust gas temperature is lower than the second predetermined value β (specifically, the cooling water temperature is the first predetermined value α in this case). And when the exhaust temperature is equal to or lower than the second predetermined value β), the setting of the second injection condition is prohibited. The same applies to the injection condition calculation unit that calculates the second injection condition and prohibits the calculation.
 燃料供給装置1Bは第2の噴射条件を算出および設定するECU70Bを備えることで、第1の燃焼制御モードに加えて第2の燃焼制御モードをさらに有している。そして、冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合にECU70Bが第2の噴射条件を算出および設定することで、内燃機関50が暖機された状態にあり、且つ触媒21の床温が活性温度に達している場合に第2の燃焼制御モードを有効にする。また、冷却水温が第1の所定値αよりも低く、且つ排気温が第2の所定値βよりも低い場合に、ECU70Bが第2の噴射条件の設定を禁止することで、内燃機関50の始動時に第2の燃焼制御モードを無効にする。 The fuel supply device 1B includes an ECU 70B that calculates and sets the second injection condition, and thus further includes a second combustion control mode in addition to the first combustion control mode. When the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β, the ECU 70B calculates and sets the second injection condition, so that the internal combustion engine 50 is warmed. The second combustion control mode is activated when the engine is in the activated state and the bed temperature of the catalyst 21 has reached the activation temperature. Further, when the coolant temperature is lower than the first predetermined value α and the exhaust temperature is lower than the second predetermined value β, the ECU 70B prohibits the setting of the second injection condition, whereby the internal combustion engine 50 Disable the second combustion control mode at start-up.
 次に第2の制御動作である燃料供給装置1Bの動作について図5に示すフローチャートを用いて説明する。図5に示すフローチャートは図4に示すフローチャートと並行して行うことができる。燃料供給装置1Bは冷却水温および排気温を検出する(ステップS11)。続いて燃料供給装置1Bは冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高いか否かを判定する(ステップS12)。 Next, the operation of the fuel supply device 1B, which is the second control operation, will be described using the flowchart shown in FIG. The flowchart shown in FIG. 5 can be performed in parallel with the flowchart shown in FIG. The fuel supply device 1B detects the cooling water temperature and the exhaust gas temperature (step S11). Subsequently, the fuel supply device 1B determines whether the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β (step S12).
 ステップS12で肯定判定であれば、燃料供給装置1Bは第2の噴射条件を算出および設定する(ステップS13)。そしてこれにより、第2の燃焼制御モードを有効にする。一方、否定判定であれば、燃料供給装置1Bは第2の噴射条件の算出および設定を禁止する(ステップS14)。そしてこれにより、第2の燃焼制御モードを無効にする。この場合、燃料供給装置1Bは第2の燃焼制御モード以外の燃焼制御モード(具体的にはここでは第1の燃焼制御モード)を有効にすることができる。ステップS13、S14の後、燃料供給装置1Bは有効になっている燃焼制御モードに応じた燃料噴射制御を行う(ステップS15)。 If the determination in step S12 is affirmative, the fuel supply device 1B calculates and sets the second injection condition (step S13). This enables the second combustion control mode. On the other hand, if the determination is negative, the fuel supply device 1B prohibits the calculation and setting of the second injection condition (step S14). Thus, the second combustion control mode is invalidated. In this case, the fuel supply device 1B can validate combustion control modes other than the second combustion control mode (specifically, the first combustion control mode here). After steps S13 and S14, the fuel supply device 1B performs fuel injection control according to the combustion control mode that is enabled (step S15).
 次に燃料供給装置1Bの作用効果について説明する。燃料供給装置1Bは燃焼室Ecの径方向中央の部分に水素燃料を供給し、且つ燃焼室Ecのうち、水素燃料が供給される空間の周囲に炭化水素燃料を供給する第2の燃焼制御モードを有している。このため、燃料供給装置1Bは第2の燃焼制御モードを有効にすることで、水素燃料が燃焼室Ecの壁面近傍で燃焼する結果、内燃機関50で冷却損失が増大することを好適に抑制できる点で、好適な燃焼を得ることができる。 Next, the function and effect of the fuel supply device 1B will be described. The fuel supply device 1B supplies the hydrogen fuel to the central portion in the radial direction of the combustion chamber Ec, and the second combustion control mode supplies the hydrocarbon fuel around the space in the combustion chamber Ec to which the hydrogen fuel is supplied. have. For this reason, by enabling the second combustion control mode, the fuel supply device 1B can suitably suppress an increase in cooling loss in the internal combustion engine 50 as a result of the hydrogen fuel burning near the wall surface of the combustion chamber Ec. In this respect, suitable combustion can be obtained.
 燃料供給装置1Bは内燃機関50が暖機された状態にあり、且つ触媒21の床温が活性温度に達している場合に第2の燃焼制御モードを有効にする。そしてこれにより、未燃炭化水素の外部排出量を抑制しつつ、内燃機関50で冷却損失が増大することを抑制できる。この点、燃料供給装置1Bは具体的には冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合に第2の燃焼制御モードを有効にすることで、内燃機関50が暖機された状態にあり、且つ触媒21の床温が活性温度に達している場合に第2の燃焼制御モードを有効にすることができる。 The fuel supply device 1B enables the second combustion control mode when the internal combustion engine 50 is in a warmed-up state and the bed temperature of the catalyst 21 reaches the activation temperature. And thereby, it can suppress that the cooling loss increases in the internal combustion engine 50, suppressing the external discharge | emission amount of unburned hydrocarbon. In this regard, the fuel supply device 1B specifically enables the second combustion control mode when the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β. Thus, the second combustion control mode can be made effective when the internal combustion engine 50 is in a warmed-up state and the bed temperature of the catalyst 21 has reached the activation temperature.
 なお、ECU70Bにおいて第1の噴射条件を特段算出および設定することなく、第2の噴射条件を算出および設定するように噴射条件算出部および噴射条件設定部を実現することもできる。この場合、燃料供給装置1Bは第1の燃焼制御モードを特段有することなく、第2の燃焼制御モードを有することができる。そしてこの場合でも、燃料供給装置1Bは上述したのと同様の効果を奏することができる。 It should be noted that the injection condition calculation unit and the injection condition setting unit can be realized so as to calculate and set the second injection condition without specially calculating and setting the first injection condition in the ECU 70B. In this case, the fuel supply apparatus 1B can have the second combustion control mode without having the first combustion control mode. Even in this case, the fuel supply apparatus 1B can achieve the same effects as described above.
 本実施例にかかる燃料供給装置1CはECU70Bの代わりにECU70Cを備える点以外、燃料供給装置1Bと実質的に同一である。ECU70Cは噴射条件算出部と噴射条件設定部とがさらに以下に示すように実現される点以外、ECU70Bと実質的に同一である。このため燃料供給装置1CおよびECU70Cについては図示省略する。ECU70Cでは、噴射条件算出部がさらに燃焼室Ecにおける水素燃料の混合を促進する第3の噴射条件を算出する。また、噴射条件設定部がさらに内燃機関50の運転状態に応じて第3の噴射条件を設定する。 The fuel supply apparatus 1C according to the present embodiment is substantially the same as the fuel supply apparatus 1B except that the ECU 70C is provided instead of the ECU 70B. The ECU 70C is substantially the same as the ECU 70B except that the injection condition calculation unit and the injection condition setting unit are further realized as described below. For this reason, illustration of the fuel supply device 1C and the ECU 70C is omitted. In the ECU 70C, the injection condition calculation unit further calculates a third injection condition for promoting the mixing of the hydrogen fuel in the combustion chamber Ec. The injection condition setting unit further sets a third injection condition according to the operating state of the internal combustion engine 50.
 噴射条件設定部は具体的には冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合であって、さらに内燃機関50の運転状態が高負荷である場合に、第3の噴射条件を設定する。また、冷却水温が第1の所定値αよりも低く、且つ排気温が第2の所定値βよりも低い場合(具体的にはここでは冷却水温が第1の所定値α以下であり、且つ排気温が第2の所定値β以下である場合)と、冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合であっても、内燃機関50の運転状態が高負荷以外の運転状態である場合に第3の噴射条件の設定を禁止する。これは、第3の噴射条件を算出、禁止する噴射条件算出部についても同様である。 Specifically, the injection condition setting unit is a case where the cooling water temperature is higher than the first predetermined value α and the exhaust gas temperature is higher than the second predetermined value β, and the operating state of the internal combustion engine 50 is a high load. If so, the third injection condition is set. When the cooling water temperature is lower than the first predetermined value α and the exhaust temperature is lower than the second predetermined value β (specifically, the cooling water temperature is equal to or lower than the first predetermined value α, and Even when the exhaust temperature is equal to or lower than the second predetermined value β) and the cooling water temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β. When the operation state of 50 is an operation state other than a high load, the setting of the third injection condition is prohibited. The same applies to the injection condition calculation unit that calculates and prohibits the third injection condition.
 第3の噴射条件は具体的には燃焼室Ecにおける水素燃料と炭化水素燃料との混合を促進する噴射条件となっている。水素燃料と炭化水素燃料との混合を促進するにあたり、第3の噴射条件では各燃料が同時に燃焼室Ecに供給されるように燃料噴射弁61、62から燃料を噴射することができる。このためには、例えば燃料噴射弁61、62の燃料噴射期間が重なるように燃料を噴射することができる。第3の噴射条件は例えば第2の噴射条件に基づく各燃料の供給態様を維持しつつ、水素燃料と空気との混合を促進する条件であってもよい。この点、燃料は例えば早い時期に噴射されるほど空気との混合が促進される傾向がある。 Specifically, the third injection condition is an injection condition for promoting the mixing of the hydrogen fuel and the hydrocarbon fuel in the combustion chamber Ec. In promoting the mixing of the hydrogen fuel and the hydrocarbon fuel, the fuel can be injected from the fuel injection valves 61 and 62 so that the respective fuels are simultaneously supplied to the combustion chamber Ec under the third injection condition. For this purpose, for example, fuel can be injected so that the fuel injection periods of the fuel injection valves 61 and 62 overlap. For example, the third injection condition may be a condition that promotes the mixing of hydrogen fuel and air while maintaining the supply mode of each fuel based on the second injection condition. In this regard, for example, the earlier the fuel is injected, the easier it is to mix with the air.
 ECU70Cでは、噴射条件設定部がさらに内燃機関50の運転状態に応じて第1、第2および第3の噴射条件それぞれの設定と、設定の禁止とを行う。この点、噴射条件設定部は具体的には内燃機関50の運転状態が高負荷である場合には第2の噴射条件に優先させて第3の噴射条件を設定する。すなわち、冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合であっても、内燃機関50の運転状態が高負荷である場合には、第2の噴射条件の設定を禁止し、第3の噴射条件を設定する。これは、各噴射条件の算出、算出の禁止を行う噴射条件算出部についても同様である。 In ECU 70C, the injection condition setting unit further sets each of the first, second, and third injection conditions according to the operating state of the internal combustion engine 50, and prohibits the setting. In this regard, the injection condition setting unit specifically sets the third injection condition in preference to the second injection condition when the operating state of the internal combustion engine 50 is a high load. That is, even when the cooling water temperature is higher than the first predetermined value α and the exhaust gas temperature is higher than the second predetermined value β, when the operating state of the internal combustion engine 50 is a high load, The setting of the second injection condition is prohibited, and the third injection condition is set. The same applies to the injection condition calculation unit that calculates and prohibits the calculation of each injection condition.
 燃料供給装置1Cは第3の噴射条件を算出および設定するECU70Cを備えることで、第1および第2の燃焼制御モードに加えて第3の燃焼制御モードをさらに有している。また、内燃機関50の運転状態に応じて第1、第2および第3の噴射条件それぞれの算出および設定と、算出および設定の禁止とを行うことで、内燃機関50の運転状態に応じて第1、第2および第3の燃焼制御モードそれぞれの有効、無効を切り替える。この点、燃料供給装置1Cは例えば冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合であって、さらに内燃機関50の運転状態が高負荷である場合に第3の燃焼制御モードを有効にする。 The fuel supply device 1C includes an ECU 70C that calculates and sets the third injection condition, and thus further includes a third combustion control mode in addition to the first and second combustion control modes. Further, by calculating and setting each of the first, second and third injection conditions according to the operating state of the internal combustion engine 50 and prohibiting the calculation and setting, the first and second injection conditions are set according to the operating state of the internal combustion engine 50. The validity, invalidity of each of the first, second and third combustion control modes is switched. In this regard, the fuel supply device 1C is, for example, a case where the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β, and the operating state of the internal combustion engine 50 is further high load. If so, the third combustion control mode is enabled.
 次に第3の制御動作であるECU70Cの動作を図6に示すフローチャートを用いて説明する。燃料供給装置1Cは冷却水温および排気温を検出する(ステップS21)。続いて燃料供給装置1Cは冷却水温が第1の所定値α以下であり、且つ排気温が第2の所定値β以下であるか否かを判定する(ステップS22)。ステップS22で否定判定であれば、燃料供給装置1Cは内燃機関50の運転状態が高負荷であるか否かを判定する(ステップS23)。 Next, the operation of the ECU 70C as the third control operation will be described using the flowchart shown in FIG. The fuel supply device 1C detects the cooling water temperature and the exhaust gas temperature (step S21). Subsequently, the fuel supply apparatus 1C determines whether or not the coolant temperature is equal to or lower than the first predetermined value α and the exhaust gas temperature is equal to or lower than the second predetermined value β (step S22). If a negative determination is made in step S22, the fuel supply device 1C determines whether or not the operating state of the internal combustion engine 50 is a high load (step S23).
 燃料供給装置1CはステップS22で肯定判定であれば、第1の噴射条件を算出および設定するとともに、第2および第3の噴射条件の算出および設定を禁止する(ステップS24)。そしてこれにより、第1の燃焼制御モードを有効にするとともに、第2および第3の燃焼制御モードを無効にする。また、ステップS23で肯定判定であれば、第3の噴射条件を算出および設定するとともに、第1および第2の噴射条件の算出および設定を禁止する(ステップS25)。そしてこれにより、第3の燃焼制御モードを有効にするとともに、第1および第2の燃焼制御モードを無効にする。また、ステップS23で否定判定であれば、第2の噴射条件を算出および設定するとともに、第1および第3の噴射条件の算出および設定を禁止する(ステップS26)。そしてこれにより、第2の燃焼制御モードを有効にするとともに、第1および第3の燃焼制御モードを無効にする。ステップS24、S25、S26の後、燃料供給装置1Cは有効になっている燃焼制御モードに応じた燃料噴射制御を行う(ステップS27)。 If the determination in step S22 is affirmative, the fuel supply apparatus 1C calculates and sets the first injection condition, and prohibits the calculation and setting of the second and third injection conditions (step S24). As a result, the first combustion control mode is enabled, and the second and third combustion control modes are disabled. If the determination in step S23 is affirmative, the third injection condition is calculated and set, and the calculation and setting of the first and second injection conditions are prohibited (step S25). As a result, the third combustion control mode is validated and the first and second combustion control modes are invalidated. If the determination is negative in step S23, the second injection condition is calculated and set, and the calculation and setting of the first and third injection conditions are prohibited (step S26). As a result, the second combustion control mode is enabled and the first and third combustion control modes are disabled. After Steps S24, S25, and S26, the fuel supply device 1C performs fuel injection control according to the effective combustion control mode (Step S27).
 次に燃料供給装置1Cの作用効果について説明する。ここで、内燃機関50では暖機完了後の高負荷運転時に燃焼温度が特に高くなる。このため、暖機完了後の高負荷運転時に燃焼速度の速い水素燃料を燃焼室Ecの径方向中央の部分、とりわけ燃焼室Ecのうち点火プラグ56の周辺部に供給すると、燃焼速度が過大になる結果、異常燃焼が発生する虞がある。そして、異常燃焼による燃焼室Ecの圧力上昇で騒音が発生したり、場合によっては内燃機関50が破損したりする虞がある。 Next, the function and effect of the fuel supply device 1C will be described. Here, in the internal combustion engine 50, the combustion temperature becomes particularly high during high-load operation after completion of warm-up. For this reason, if hydrogen fuel having a high combustion speed is supplied to the central portion in the radial direction of the combustion chamber Ec, particularly the peripheral portion of the ignition plug 56 in the combustion chamber Ec during high load operation after the warm-up is completed, the combustion speed becomes excessive. As a result, abnormal combustion may occur. Then, there is a risk that noise is generated due to an increase in pressure in the combustion chamber Ec due to abnormal combustion, and the internal combustion engine 50 may be damaged in some cases.
 これに対し、燃料供給装置1Cは燃焼室Ecにおける水素燃料の混合を促進する第3の燃焼制御モードを有している。このため、燃料供給装置1Cは第3の燃焼制御モードを有効にすることで、第2の燃焼制御モードを有効にする場合と比較して、燃焼室Ecのうち点火プラグ56の周辺部において水素燃料を希釈することができる。結果、さらに水素燃料の異常燃焼が発生することを抑制できる。 In contrast, the fuel supply device 1C has a third combustion control mode that promotes the mixing of hydrogen fuel in the combustion chamber Ec. For this reason, the fuel supply device 1C enables the third combustion control mode to make hydrogen in the periphery of the spark plug 56 in the combustion chamber Ec as compared to the case where the second combustion control mode is enabled. The fuel can be diluted. As a result, the occurrence of abnormal combustion of hydrogen fuel can be suppressed.
 燃料供給装置1Cは内燃機関50の運転状態に応じて第1、第2および第3の燃焼制御モードそれぞれの有効、無効を切り替える。そしてこれにより、内燃機関50の運転全般に亘って各燃料の性質を考慮した良好な燃焼を得ることができる。 The fuel supply device 1 </ b> C switches between valid and invalid in each of the first, second and third combustion control modes according to the operating state of the internal combustion engine 50. Thereby, it is possible to obtain good combustion in consideration of the properties of each fuel throughout the operation of the internal combustion engine 50.
 なお、第3の燃焼制御モードはECU70Aで実現されてもよい。この場合、ECU70Aは冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合に第3の燃焼制御モードを有効にし、冷却水温が第1の所定値αよりも低く、且つ排気温が第2の所定値βよりも低い場合に第3の燃焼制御モードを無効にすることができる。この場合、例えば冷却水温が第1の所定値αよりも高く、且つ排気温が第2の所定値βよりも高い場合に第2の燃焼制御モードを有効にする場合と比較して、内燃機関50の冷却損失は増大するものの、この場合でも水素燃料の異常燃焼が発生することを抑制できる。 Note that the third combustion control mode may be realized by the ECU 70A. In this case, the ECU 70A activates the third combustion control mode when the cooling water temperature is higher than the first predetermined value α and the exhaust gas temperature is higher than the second predetermined value β, and the cooling water temperature is set to the first predetermined value α. The third combustion control mode can be disabled when the value α is lower and the exhaust temperature is lower than the second predetermined value β. In this case, for example, the internal combustion engine is compared with the case where the second combustion control mode is enabled when the coolant temperature is higher than the first predetermined value α and the exhaust temperature is higher than the second predetermined value β. Although the cooling loss of 50 increases, even in this case, the occurrence of abnormal combustion of hydrogen fuel can be suppressed.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.
 例えば内燃機関は燃焼室にスワール流を生成する内燃機関であってもよい。図7は内燃機関50の変形例である内燃機関50´を示す図である。内燃機関50´はシリンダヘッド52の代わりにシリンダヘッド52´を備えている。シリンダヘッド52´には吸気ポート52aの代わりに吸気ポートIn1、In2が設けられている。吸気ポートIn1はヘリカルポート、吸気ポートIn2はタンジェンシャルポートであり、これら吸気ポートIn1、In2は燃焼室Ecにスワール流を生成するように吸気を導入する。内燃機関50´では、燃料噴射弁61、62が吸気ポートIn1、In2それぞれに対して設けられている。 For example, the internal combustion engine may be an internal combustion engine that generates a swirl flow in the combustion chamber. FIG. 7 is a view showing an internal combustion engine 50 ′ which is a modification of the internal combustion engine 50. The internal combustion engine 50 ′ includes a cylinder head 52 ′ instead of the cylinder head 52. The cylinder head 52 'is provided with intake ports In1 and In2 instead of the intake port 52a. The intake port In1 is a helical port, and the intake port In2 is a tangential port. The intake ports In1 and In2 introduce intake air so as to generate a swirl flow in the combustion chamber Ec. In the internal combustion engine 50 ', fuel injection valves 61 and 62 are provided for the intake ports In1 and In2, respectively.
 本発明の燃料供給装置はかかる内燃機関50´に対しても、例えば吸気ポートIn1側で吸気行程前半に燃焼室Ecに炭化水素燃料を供給できるように第2の燃料噴射弁62から炭化水素燃料を噴射するとともに、吸気ポートIn2側で吸気行程後半に燃焼室Ecに水素燃料を供給できるように第1の燃料噴射弁61から水素燃料を噴射することで、第1の燃焼制御モードを有することができる。また、例えば各吸気ポートIn1、In2において、燃料噴射弁61、62のうち、第1の燃焼制御モードを実現する場合とは逆の燃料噴射弁から燃料を噴射することで、第2の燃焼制御モードを有することができる。また、例えば各燃料が同時に燃焼室Ecに供給されるように燃料噴射弁61、62から燃料を噴射することで、第3の燃焼制御モードを有することができる。 The fuel supply apparatus of the present invention also provides the hydrocarbon fuel from the second fuel injection valve 62 to the internal combustion engine 50 'so that the hydrocarbon fuel can be supplied to the combustion chamber Ec in the first half of the intake stroke on the intake port In1 side, for example. And injecting hydrogen fuel from the first fuel injection valve 61 so that hydrogen fuel can be supplied to the combustion chamber Ec in the latter half of the intake stroke on the intake port In2 side, thereby having the first combustion control mode. Can do. Further, for example, at each intake port In1, In2, the second combustion control is performed by injecting fuel from the fuel injection valve 61, 62 opposite to the case where the first combustion control mode is realized. Can have modes. Further, for example, the third combustion control mode can be provided by injecting fuel from the fuel injection valves 61 and 62 so that the respective fuels are simultaneously supplied to the combustion chamber Ec.
  燃料供給装置      1A、1B、1C
  触媒          21
  内燃機関        50、50´
  燃料噴射装置      60
  第1の燃料噴射弁    61
  第2の燃料噴射弁    62
  ECU         70A、70B、70C
Fuel supply device 1A, 1B, 1C
Catalyst 21
Internal combustion engine 50, 50 '
Fuel injection device 60
First fuel injection valve 61
Second fuel injection valve 62
ECU 70A, 70B, 70C

Claims (6)

  1. 内燃機関の燃焼室に水素燃料と炭化水素燃料とを独立して供給可能に構成され、
     前記燃焼室の径方向中央の部分、或いは前記燃焼室のうち、前記燃焼室に対して設けられている点火プラグの周辺部に炭化水素燃料を供給し、且つ前記燃焼室のうち、炭化水素燃料が供給される空間の周囲に水素燃料を供給する第1の燃焼制御モードを有する内燃機関の燃料供給装置。
    It is configured to be able to supply hydrogen fuel and hydrocarbon fuel independently to the combustion chamber of the internal combustion engine,
    Hydrocarbon fuel is supplied to a radial center portion of the combustion chamber or a peripheral portion of a spark plug provided to the combustion chamber in the combustion chamber, and hydrocarbon fuel is supplied to the combustion chamber. A fuel supply device for an internal combustion engine having a first combustion control mode for supplying hydrogen fuel around a space to which fuel is supplied.
  2. 前記燃焼室の径方向中央の部分、或いは前記燃焼室のうち、前記点火プラグの周辺部に水素燃料を供給し、且つ前記燃焼室のうち、水素燃料が供給される空間の周囲に炭化水素燃料を供給する第2の燃焼制御モードをさらに有する請求項1記載の内燃機関の燃料供給装置。 Hydrogen fuel is supplied to a central portion in the radial direction of the combustion chamber or to a peripheral portion of the spark plug in the combustion chamber, and hydrocarbon fuel is provided around a space in the combustion chamber to which hydrogen fuel is supplied. The fuel supply device for an internal combustion engine according to claim 1, further comprising a second combustion control mode for supplying fuel.
  3. 前記燃焼室における水素燃料の混合を促進する第3の燃焼制御モードをさらに有する請求項1または2記載の内燃機関の燃料供給装置。 The fuel supply device for an internal combustion engine according to claim 1 or 2, further comprising a third combustion control mode for promoting mixing of hydrogen fuel in the combustion chamber.
  4. 前記内燃機関の運転状態に応じて、前記第1、第2および第3の燃焼制御モードそれぞれの有効、無効を切り替える請求項3記載の内燃機関の燃料供給装置。 The fuel supply device for an internal combustion engine according to claim 3, wherein the first, second and third combustion control modes are switched between valid and invalid according to an operating state of the internal combustion engine.
  5. 前記内燃機関の始動時に前記第1の燃焼制御モードを有効にする請求項1から4いずれか1項記載の内燃機関の燃料供給装置。 The fuel supply device for an internal combustion engine according to any one of claims 1 to 4, wherein the first combustion control mode is made effective when the internal combustion engine is started.
  6. 内燃機関の燃焼室に水素燃料と炭化水素燃料とを独立して供給可能に構成され、
     前記燃焼室の径方向中央の部分、或いは前記燃焼室のうち、前記燃焼室に対して設けられている点火プラグの周辺部に水素燃料を供給し、且つ前記燃焼室のうち、水素燃料が供給される空間の周囲に炭化水素燃料を供給する燃焼制御モードを有する内燃機関の燃料供給装置。

     
    It is configured to be able to supply hydrogen fuel and hydrocarbon fuel independently to the combustion chamber of the internal combustion engine,
    Hydrogen fuel is supplied to a central portion in the radial direction of the combustion chamber or to a peripheral portion of a spark plug provided for the combustion chamber in the combustion chamber, and hydrogen fuel is supplied to the combustion chamber. Supply device for an internal combustion engine having a combustion control mode for supplying hydrocarbon fuel around the space to be produced

PCT/JP2011/067957 2011-08-05 2011-08-05 Internal combustion engine fuel supply apparatus WO2013021434A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013527758A JP5772958B2 (en) 2011-08-05 2011-08-05 Fuel supply device for internal combustion engine
PCT/JP2011/067957 WO2013021434A1 (en) 2011-08-05 2011-08-05 Internal combustion engine fuel supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067957 WO2013021434A1 (en) 2011-08-05 2011-08-05 Internal combustion engine fuel supply apparatus

Publications (1)

Publication Number Publication Date
WO2013021434A1 true WO2013021434A1 (en) 2013-02-14

Family

ID=47667987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067957 WO2013021434A1 (en) 2011-08-05 2011-08-05 Internal combustion engine fuel supply apparatus

Country Status (2)

Country Link
JP (1) JP5772958B2 (en)
WO (1) WO2013021434A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130471A (en) * 2015-01-14 2016-07-21 マツダ株式会社 Fuel control device of multi-fuel engine
DE102018109939A1 (en) 2017-04-28 2018-10-31 Toyota Jidosha Kabushiki Kaisha internal combustion engine
JP2018193913A (en) * 2017-05-17 2018-12-06 株式会社Ihi Engine controller
US11873749B2 (en) 2020-02-06 2024-01-16 Noble Drilling A/S Method and apparatus for controlling temperature in selective catalytic reduction systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024071940A (en) * 2022-11-15 2024-05-27 株式会社日立製作所 Control device for engine power generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036538A (en) * 2002-07-04 2004-02-05 Toyota Motor Corp Internal combustion engine compressing and self-igniting mixture, and controlling method for the internal combustion engine
JP2007113535A (en) * 2005-10-24 2007-05-10 Nissan Motor Co Ltd Auxiliary chamber type internal combustion engine and its control method
JP2008267267A (en) * 2007-04-20 2008-11-06 Nissan Motor Co Ltd Internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10211122A1 (en) * 2002-03-14 2003-09-25 Bosch Gmbh Robert Process and device to operate a combustion engine, especially in a motor vehicle using multiple fuels, leads at least two fuels simultaneously into the combustion chamber
JP2006125267A (en) * 2004-10-28 2006-05-18 Toyota Motor Corp Hydrogen-added internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036538A (en) * 2002-07-04 2004-02-05 Toyota Motor Corp Internal combustion engine compressing and self-igniting mixture, and controlling method for the internal combustion engine
JP2007113535A (en) * 2005-10-24 2007-05-10 Nissan Motor Co Ltd Auxiliary chamber type internal combustion engine and its control method
JP2008267267A (en) * 2007-04-20 2008-11-06 Nissan Motor Co Ltd Internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016130471A (en) * 2015-01-14 2016-07-21 マツダ株式会社 Fuel control device of multi-fuel engine
DE102018109939A1 (en) 2017-04-28 2018-10-31 Toyota Jidosha Kabushiki Kaisha internal combustion engine
US10415512B2 (en) 2017-04-28 2019-09-17 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
DE102018109939B4 (en) 2017-04-28 2021-09-16 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2018193913A (en) * 2017-05-17 2018-12-06 株式会社Ihi Engine controller
US11873749B2 (en) 2020-02-06 2024-01-16 Noble Drilling A/S Method and apparatus for controlling temperature in selective catalytic reduction systems

Also Published As

Publication number Publication date
JPWO2013021434A1 (en) 2015-03-05
JP5772958B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP4148233B2 (en) Engine fuel injection control device
JP2006291903A (en) Control device for internal combustion engine
JP5772958B2 (en) Fuel supply device for internal combustion engine
JP2007247522A (en) Fuel injection control device for internal combustion engine
JP5453942B2 (en) Fuel injection control device for spark ignition direct injection engine
JP2009085169A (en) Control device for internal combustion engine
JP2010285906A5 (en)
JP5929051B2 (en) Spark ignition direct injection engine
JP2013133792A (en) Control device for internal combustion engine
JP2010203414A (en) Control device for internal combustion engine
JP7288585B2 (en) engine system
JP7496066B2 (en) Vehicle internal combustion engine
JP4968206B2 (en) INTERNAL COMBUSTION ENGINE AND FUEL INJECTION CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP5994987B2 (en) Fuel injection control device for internal combustion engine
JP2012163082A (en) Exhaust gas recirculation device of internal combustion engine
JP6544418B2 (en) Engine control device
JP6210744B2 (en) Control device for internal combustion engine
JP4374721B2 (en) Control device for internal combustion engine
JP2015102024A (en) Fuel injection control device for engine
JP5892311B2 (en) Knock control device for internal combustion engine
JP6167659B2 (en) Fuel injection control device for internal combustion engine
JP2010209843A (en) Control device for internal combustion engine
JP2010138720A (en) Ignition control device for engine
JP7086728B2 (en) Internal combustion engine control device
JP2004197674A (en) Catalyst temperature rise device for cylinder injection internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870780

Country of ref document: EP

Kind code of ref document: A1