WO2013021334A1 - Metodo mejorado para la obtencion de diesel a partir de fuentes renovables mediante el control del nivel de insaturacion - Google Patents

Metodo mejorado para la obtencion de diesel a partir de fuentes renovables mediante el control del nivel de insaturacion Download PDF

Info

Publication number
WO2013021334A1
WO2013021334A1 PCT/IB2012/053998 IB2012053998W WO2013021334A1 WO 2013021334 A1 WO2013021334 A1 WO 2013021334A1 IB 2012053998 W IB2012053998 W IB 2012053998W WO 2013021334 A1 WO2013021334 A1 WO 2013021334A1
Authority
WO
WIPO (PCT)
Prior art keywords
mpa
hydrogenation
oil
hydrotreatment
carried out
Prior art date
Application number
PCT/IB2012/053998
Other languages
English (en)
French (fr)
Inventor
MONSALVE Alexander GUZMAN
FUENTES Laura Liliana GARZON
MACIAS Juan Esteban TORRES
Original Assignee
Ecopetrol S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopetrol S.A. filed Critical Ecopetrol S.A.
Publication of WO2013021334A1 publication Critical patent/WO2013021334A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • This invention relates to a process for producing renewable Diesel by two stages.
  • a hydrogenation stage in which the oil of vegetable, animal, algal or other triglyceride-rich sources, or mixtures thereof, is totally or partially saturated and a second hydrotreatment stage, where the product of the hydrogenation stage is hydrotreated to produce renewable diesel.
  • the product passes through a gas-liquid separator to eliminate the gases generated as monoxide of carbon (CO), carbon dioxide (C0 2 ), ammonia (NH 3 ) and water (H 2 0), formed during the first stage.
  • the second stage (HDT2) is carried out at temperature conditions of 453.15 K - 723.15 K -, total pressure of 0.5 MPa-30 MPa, LHSV of 0.1 h "1 -20 h " 1 and a ratio of 50 LN-2000 LN of hydrogen / charge.
  • US201 10047862A1 proposes the use of two reactors or beds where the first bed is exclusive for diesel hydrotreatment in a temperature range of 613.15 K- 673.15 K, and a second bed or reactor for incorporation of vegetable oil, which is hydrotreated at a temperature of 553.15 K-623.15 K.
  • This process seeks to guarantee hydrodesulfurization reactions for oil loads and avoid the inhibition of this reaction due to the high rates of hydrodeoxygenation that occurred during the hydrotreatment of vegetable oils.
  • oils used in the biodiesel industry are those of soy, rapeseed and palm, whose percentages of unsaturated fatty acids are around 85%, 90% and 50%, respectively.
  • the content of tri-unsaturated linolenic fatty acid is about 6%, 25% and 0.5% respectively; the linoleic di-unsaturated fatty acid content is about 56%, 32% and 10% respectively; and the content of the mono-unsaturated oleic fatty acid is respectively around 23%, 32% and 39%.
  • oils of algal origin which due to the large number of species have a wide range of fatty acid compositions.
  • the content of tri-unsaturated linolenic acid may be of the order of up to 30%.
  • patent application US 201 1 / 0094149A1 describes a method of hydrotreatment of oils of vegetable or animal origin such as: rapeseed, palm, sunflower, soybean, cabbage, olive, coconut, jatropha, lard, residues of The food industry also mentions that it is suitable for algal oil.
  • the process contemplates a hydrotreatment stage (a) and Stage (b) comprises the separation of the gas and the liquid produced in the hydrotreatment stage.
  • Step (a) comprises at least two catalytic zones where the first bed is fed with a stream in a temperature range of 423.15 K-533.15 K, preferably at 473.15 K.
  • the stream consists of vegetable oil with a mixture of fresh hydrogen and an effluent recycle from stage (b).
  • the effluent from the first zone is introduced into the second catalytic zone and is mixed with fresh hydrogen and with an effluent residue from step (b) that has been previously heated in an oven.
  • the temperature conditions of the second zone are between 533.15 K -593.15 K.
  • the product that is not recirculated from the second catalytic bed is sent to an isomerization process for kerosene production.
  • the invention is based on the use of a catalytic bed that allows selectively favoring the hydrodeoxygenation (HDO) reactions and decreasing the decarboxylation and decarbonylation reactions that produce CO and C0 2 , which cause corrosion in the reactors. At the same time they claim the control of the exothermicity of the reactions allowing to increase the useful life of the catalyst.
  • HDO hydrodeoxygenation
  • the present invention incorporates an improvement in the control of the exothermicity generated by the hydrogenation of unsaturated fatty acids in the raw material, since by the inclusion of a hydrogenation stage prior to hydrotreatment unwanted cracking reactions are decreased, oligomerization / polymerization that oils used as raw material undergo hydrotreatment conditions.
  • the process disclosed here reduces the hydrogen consumption associated with these reactions, prevents the formation of carbonaceous residues and the generation of acidity in the heat exchangers before the hydrotreatment reactor, which can affect the integrity of the equipment, COx gas production is minimized and the yields and quality of renewable diesel produced are improved.
  • the total or partial hydrogenation of the present invention leads to a significant decrease in the generation of C0 2 and CO which can occur in both the preheating stage oil, as in step hidrotatmiento the process of the invention, the which favors the purification of the recycle gas.
  • the heat of reaction generated by each saturation of a double bond of a fatty acid of a triglyceride is of the order of 105 kJ / mol, so in the case highly unsaturated oils, such as those of algal or vegetable origin, such as soybean oil and rapeseed among others, whose fatty acid composition unsaturated C18: 1 oleic, C18: 2 linoleic and C18: 3 linolenic is respectively around 85% and 90% or in terms of average double bond numbers per mole are respectively around 4.6 and 5.0, the generated heat of reaction would be respectively around 480 kJ / mol and 550 kJ / mol.
  • the total consumption of hydrogen observed in the results of the present invention is less when the oil is partially hydrogenated, which means that despite producing less amounts of C0 2, the lower consumption of hydrogen is determined by the balance the reactions of decarbonylation, hydrodeoxygenation and the consumption of hydrogen spent on the saturation of the products of the cracking, oligomerization / polymerization reactions experienced by the oils in the hydrotreatment stage, which are a function of the degree of unsaturation of the fatty acids oil components and especially the higher content of di- and tri-unsaturated fatty acids.
  • a process for the production of diesel from renewable sources of vegetable, animal, algal or other biological sources which is carried out in two stages carried out in different reactors.
  • the raw materials are hydrogenated with the purpose of totally or partially reducing the degree of unsaturation of the fatty acids that constitute the triglycerides of the oil.
  • This hydrogenation is carried out using porous silica-supported nickel catalysts at temperatures between 373K and 483K, pressures in the range of 0.25 MPa to 10 MPa, LHSV space velocities between 1 h "1 and 500 h " 1 , a ratio H 2 / oil between 4 LN / L and 500 LN / L in which a reduction of the degree of unsaturation is achieved up to 90%, expressed as an iodine index.
  • the hydrogenated oil is hydrotreated using a porous catalyst of Ni and Mo or Ni and Co supported on alumina, at temperatures between 553 K and 723 K, pressures in the range of 5 MPa to 15 MPa, speeds LHSV space between 1 h "1 and 9 h " 1 and H 2 / oil ratios between 178 LN / L and 534.3 LN / L.
  • FIG 1 shows the process diagram according to the present invention.
  • Figure 2 shows the distillations performed under the ASTM D-86 standard for the two products from hydrotreatment.
  • Figure 3 shows the monitoring of the iodine and C0 2 index produced during the hydrogenation of palm oil at different reaction temperatures
  • Figure 4 shows the evaluation of thermal decomposition of palm oil at different temperatures
  • the process for the production of renewable Diesel from sources of vegetable, animal, algal or other biological sources rich in triglycerides consists of two main stages: a stage of partial or total hydrogenation of the unsaturated fatty acids that make up the raw material followed of a hydrotreatment stage, in which the hydrogenated oil totally or partially in the hydrogenation stage generates a higher quality product in terms of specifications such as distillation temperature according to ASTM D-86 or ASTM D-7213 standards, greater stability to the oxidation (EN-141 12 standard), lower color (ASTM D-1500), among others.
  • the process of the present invention also leads to higher yields of diesel in the liquid product, lower hydrogen consumption and lower production of C0 2 and CO in the gaseous outflow.
  • the process begins by determining the hydrogenation conditions that are used for the total or partial saturation of the fatty acids that make up the oil used as a load, establishing the iodine index and the fatty acid profile of the starting oil.
  • the oil from the tank (1) is carried by the stream (101) to a pump (2), where it is mixed with a stream rich in hydrogen (1 13) from a tank (1 1) to form the stream 102 that it is sent to a preheating zone or stage (3) that operates at temperatures between 373 K and 483 K; Then the hydrogen-oil mixture is sent by the stream (103) to the hydrogenation reactor (4).
  • Hydrogenation is carried out using porous silica-supported nickel catalysts at temperatures between 373 K and 483 K, preferably at 423 K and 483 K pressures in the range of 0.25 MPa to 10 MPa, preferably at 0.25 MPa and 3 MPa, LHSV space velocities between 1 h "1 and 500 h ⁇ preferably in 1 h " 1 and 6 h ⁇ an H 2 / oil ratio between 4 LN / L and 500 LN / L, preferably in 200 LN / L and 500 LN / I in This stage achieves a reduction in the degree of unsaturation of up to 90%, expressed as an iodine index.
  • the hydrogenated oils leave the hydrogenation reactor (4) by the stream (104) and are preheated in an exchanger (5) at temperatures between 553 K and 723., preferably between 583 Ky and 643 K.
  • the stream (105) leaving the preheater (5) is mixed with recycle hydrogen from the stream (1 1 1) and fed to the hydrotreatment reactor (6), where the production of renewable Diesel is carried at temperatures preferably between 583 K and 643 K, pressures between 5 MPa and 15 MPa, LHSV space velocities between 1 h "1 and 9 h " 1 and H 2 / oil ratios between 178 LN / L and 534.3 LN / L.
  • the product exits the stream (106) and is cooled in the exchanger (5); from where it is sent to a gas-liquid separation stage (7).
  • the gas is sent to a purifier (9) via stream (108), and then goes i ld ác
  • Heterotrophic microalgae refined oil was hydrogenated and hydrotrate according to the parameters set forth in the present invention.
  • the main characteristics of the oil used as a filler are presented in Table 1.
  • Palmitic C16 0 7.84
  • Palmitoleic C16 l 0.35
  • C18 linolenic 3 1.1 Heterotrophic microalgae refined oil was hydrogenated at two reaction temperatures: 393 Ky and 423 K, under H 2 pressure conditions of 9.0 MPa, LHSV space velocity of 2h ⁇ 1 and H 2 / oil ratio of 474 LN / L.
  • the iodine index obtained after hydrogenation at these two temperatures was respectively 62.3 gl 2 / 100g and 57.2 gl 2 / 100g.
  • Figure 2 shows how the refined oil when partially hydrogenated, until its iodine index is reduced from the initial value of 90.1 gl 2 / 100g to 57.2 gl 2 / 100g, generates a product with a boiling temperature of 95% v / v distillate less than 633 K, while the oil that did not undergo the partial hydrogenation stage had a boiling temperature of 95% v / v distillate greater than 633 K, so it does not meet this specification established for diesel
  • the autotrophic microalgae oil of the species Chlorella vulgaris was obtained by mixing vegetable oils in the proportions necessary to obtain the composition shown in Table 2.
  • the proportions and types of oil used to obtain said mixture were: flaxseed oil 72, 9% m / m, sunflower oil 24.0% m / m, olive oil 0.9% m / m and oil of palm superestearin 2.2% m / m.
  • the fatty acid composition of the mixture was obtained from the literature and was also verified by lipid extraction of microalgae biomass of the species Chlorella vulgaris UTEX 1803, belonging to Phylum Chlorophyta, Order Chlorellales obtained from the culture collection of algae at the University of Texas (Austin, Tex, USA), grown and harvested on a laboratory scale, obtaining values very close to those reported in the literature.
  • the microalgae oil of the Chiorella vulgaris species was partially hydrogenated at the reaction temperature of 423 K.
  • the iodine index after this first stage of hydrogenation was 153 gl 2 / 100g.
  • the partially hydrogenated oil and the oil without this previous stage were hydrotreated under the same reaction conditions: space velocity of 2h "1 , a pressure of 9.0 MPa and an H 2 / oil ratio of 474 LN / L and a temperature of 623 K.
  • Table 3 shows the results obtained for the hydrotreatment of the synthetic oil of the species Chiorella vulgaris from hydrogenated oil at 423 Ky without prior hydrogenation treatment.
  • Table 3 Hydrotreatment results of synthetic algae oil of the species Chiorella vulgaris
  • Palm oil was partially hydrogenated at the reaction temperature of 423 K.
  • the iodine number after this first hydrogenation stage was 43.3 g 2 / 100g.
  • the partially hydrogenated oil and the oil without this previous stage were hydrotreated under the same reaction conditions: space velocity of 2h ⁇ 1 , a pressure of 9.0 MPa and an H 2 / oil ratio of 474 LN / L and a temperature of 623 K.
  • Table 6 shows the results obtained for the hydrotreatment of hydrogenated palm oil at 423 Ky without any previous hydrogenation treatment. Table 6. Palm oil hydrotreatment results
  • the temperature of the hydrogenation must be that in which a substantial reduction in the degree of unsaturation of the oil that constitutes the raw material is achieved, without its decomposition being initiated.
  • This can be observed by the monitoring of C0 2 in the outgoing gases of the hydrogenation process.
  • this temperature is around 483 K, at this point a decrease in the iodine index of approximately 90% of the initial value is achieved. From this temperature the production of C0 2 increases exponentially so this would be the maximum temperature for hydrogenation in the case of palm oil.
  • Unhydrogenated palm oil was evaluated in a reactor that simulates the conditions in a typical heat exchanger, which is before the reactors in the hydrotreatment process. The evaluation was done in a tubular reactor operating continuously, with residence times of 15 minutes and pressures of 0.7 MPa. The heating of the unhydrogenated palm oil was carried out in the temperature range between 523 K and 623 K.
  • Figure 4 shows the results of acid number measured under ASTM D-665 and Conradson Coal Residue measured under ASTM D-4530 standard, depending on temperature.
  • the acid number of palm oil without hydrogenation and without any heat treatment is 4 mgKOH / g. At a temperature of 523 K this value increases around 5.5 mgKOH / g and from this temperature up to 573 Ka gradually increases up to 6.5 mgKOH / g. From this temperature value the growth is exponential.
  • the oil without hydrogenation and without any heat treatment is 0.05% m / m. After subjecting the oil to conditions that simulate the conditions of a heat exchanger, this value rises around 0.27% in the temperature range of 523 Ka 603 Ky and thereafter it starts to grow exponentially.

Abstract

Proceso para producir Diesel renovable mediante dos etapas, una primera etapa de hidrogenación en la que el aceite de origen vegetal, animal, algal u otras fuentes ricas en triglicéridos, o mezclas de los mismos, es saturado total o parcialmente y una segunda etapa de hidrotratamiento, donde el producto de la etapa de hidrogenación es hidrotratado para producir Diesel renovable.

Description

MÉTODO MEJORADO PARA LA OBTENCIÓN DE DIESEL A PARTIR DE FUENTES RENOVABLES MEDIANTE EL CONTROL DEL NIVEL DE
INSATURACION
CAMPO TECNOLÓGICO
Esta invención se relaciona con un proceso para producir Diesel renovable mediante dos etapas. Una etapa de hidrogenación en la que el aceite de origen vegetal, animal, algal u otras fuentes ricas en triglicéridos, o mezclas de los mismos, es saturado total o parcialmente y una segunda etapa de hidrotratamiento, donde el producto de la etapa de hidrogenación es hidrotratado para producir Diesel renovable.
ESTADO DE LA TÉCNICA
Debido a los requerimientos de calidad más exigentes para los combustibles de fuentes fósiles se han planteado soluciones basadas en fuentes renovables, las cuales buscan disminuir el impacto ambiental ocasionado por el uso de los combustibles derivados del petróleo. Los productores de biocombustibles y refinadores se han encargado de mejorar la calidad de combustibles y de evitar la dependencia total de los combustibles fósiles con la incorporación de biocombustibles en refinería. Uno de los principales estudios se ha enfocado en el coprocesamiento de aceites vegetales con productos del petróleo. Sin embargo, este coprocesamiento ha generado diferentes cambios en refinería por el aumento en consumo de hidrógeno, la disminución de vida útil del catalizador y el aumento en emisiones de CO y C02 en los sistemas de tratamiento de gases, los cuales han limitado el uso de esta alternativa.
Existen diferentes reportes de hidrotratamiento de aceites vegetales, entre ellos se encuentra la patente US2007872165B2, la cual describe un proceso de hidrotratamiento de aceites vegetales con diesel en dos etapas efectuadas a diferentes condiciones y con un separador intermedio. En la primera etapa (HDT1 ) es hidrotratado el aceite (1 %-99%) mezclado con diesel (99%- 1 %) e hidrógeno en presencia de un catalizador. Esta etapa está diseñada para favorecer reacciones de los aceites vegetales a condiciones de 453.15 K- 633.15 K; presión entre 0.5 MPa-30 MPa; velocidad espacial (LHSV) de 0.1 h~1- 20 h"1 y una relación de 50 LN-2000 LN de hidrógeno / carga. Seguido del HDT1 , el producto pasa por un separador gas-líquido para eliminar los gases generados como monóxido de carbono (CO), dióxido de carbono (C02), amoniaco (NH3) y agua (H20), formados durante la primera etapa. La segunda etapa (HDT2) se realiza a condiciones de temperatura de 453.15 K - 723.15 K-, presión total de 0.5 MPa-30 MPa, LHSV de 0.1 h"1-20 h"1 y una relación de 50 LN-2000 LN de hidrógeno/carga. Los autores evidencian que la calidad del producto, el tiempo de vida útil del catalizador, las propiedades en frió y la disminución del consumo de hidrógeno se ven favorecidos por la incorporación de un separador líquido-gas que permite separar los gases generados durante el HDT de aceites vegetales, responsables del envenenamiento en el catalizador.
Otras patentes como US20100155296, EP1681337, US4992605, EP1396531 , relacionan la obtención de combustibles a partir del hidrotratamiento e isomerización de aceites vegetales con fracciones del petróleo. Estos métodos buscan obtener un combustible con alto número de cetano y buenas propiedades en frió. El control de temperatura debido a la alta exotermicidad de las reacciones involucradas es realizado con incorporaciones de enfriamiento súbito y recirculaciones del producto para evitar la coquización dentro del reactor. A pesar de que estos procesos presentan algunas ventajas, ellos no logran garantizar el control de cargas con altas insaturaciones, lo que conllevan a altos consumos de hidrógeno, altas generaciones de CO y C02, y posibles reacciones de cracking, oligomerización y polimerización, lo que finalmente podría conducir a taponamientos en los lechos catalíticos.
La patente US201 10047862A1 propone el uso de dos reactores o lechos donde el primer lecho es exclusivo para el hidrotratamiento de diesel en un rango de temperatura de 613.15 K- 673.15 K, y un segundo lecho o reactor para incorporación de aceite vegetal, que es hidrotratado a una temperatura de 553.15 K-623.15 K . Este proceso busca garantizar las reacciones de hidrodesulfurización para las cargas del petróleo y evitar la inhibición de esta reacción por las altas velocidades de la hidrodesoxigenación ocurridas durante el hidrotratamiento de aceites vegetales. Sin embargo, este proceso al igual que los anteriormente descritos, no evidencia el control de reacciones de cracking, oligomerización y polimerización inherentes a la naturaleza del aceite, así como ocasionados por el incremento de temperatura debido a las reacciones exotérmicas involucradas que llevan a aumentos en consumos de hidrógeno, menor rendimiento en diesel y mayores generaciones de CO y C02.
Entre las fuentes más importantes de aceites usados en la industria del biodiesel están los de soya, colza y palma, cuyos porcentajes de ácidos grasos insaturados están alrededor de 85%, 90% y 50%, respectivamente. El contenido del ácido graso linolénico tri-insaturado está respectivamente alrededor de 6%, 25% y 0.5%; el contenido de ácido graso di-insaturado linoleico esta respectivamente alrededor de 56%, 32% y 10%; y el contenido del ácido graso mono-insaturado oleico esta respectivamente alrededor de 23%, 32% y 39%.
Otras fuentes alternativas de aceites y que se encuentran en fase de desarrollo a gran escala son los aceites de origen algal, que debido al gran número de especies tienen un intervalo amplio de composiciones de ácidos grasos. Por ejemplo, en el caso de algas ampliamente estudiadas como la Chlorella vulga s el contenido del ácido tri-insaturado linolénico puede ser del orden de hasta un 30%. De tal manera la estabilidad térmica esperada de los aceites con contenidos altos de ácidos grasos insaturados y en especial de los tri- y di- insaturados como lo son los aceites de soya, colza y algas es baja por lo que al ser sometidos a un proceso de hidrotratamiento en una sola etapa bien sea en una planta dedicada o de co-procesamiento con fracciones del petróleo, las reacciones indeseadas de cracking, oligomerización/polimerización llevarán a un mayor consumo de hidrógeno y a una mayor concentración de C02 y CO en la corriente gaseosa a la salida del reactor.
Con este enfoque la solicitud patente US 201 1/0094149A1 describe un método de hidrotratamiento de aceites de origen vegetal o animal tales como: semillas de colza, palma, girasol, soja, col, oliva, coco, jatropha, manteca de cerdo, residuos de la industria alimentaria y también menciona que es adecuado para aceite algal. El proceso contempla una etapa de hidrotratamiento (a) y La etapa (b) comprende la separación del gas y el líquido producido en la etapa de hidrotratamiento. La etapa (a) comprende por los menos dos zonas catalíticas donde el primer lecho es alimentado con una corriente en un intervalo de temperatura de 423.15 K-533.15 K, preferiblemente a 473.15 K. La corriente consiste de aceite vegetal con una mezcla de hidrógeno fresco y un reciclo de efluente proveniente de la etapa (b). El efluente de la primera zona es introducido a la segunda zona catalítica y es mezclado con hidrógeno fresco y con un residuo del efluente de la etapa (b) que ha sido previamente calentado en un horno. Las condiciones de temperatura de la segunda zona está comprendida entre 533.15 K -593.15 K.
Finalmente, el producto que no es recirculado del segundo lecho catalítico es enviado a un proceso de isomerización para producción de kerosene. La invención se encuentra sustentada en el uso de un lecho catalítico que permite favorecer selectivamente las reacciones de hidrodeoxigenacion (HDO) y disminuir las reacciones de descarboxilación y descarbonilación que producen CO y C02, los cuales son causantes de la corrosión en los reactores. A su vez reivindican el control de la exotermicidad de las reacciones permitiendo aumentar la vida útil del catalizador.
Aún cuando han sido muchos los esfuerzos para implementar metodologías más eficientes, existe la necesidad en el estado de la técnica de contar con nuevos procesos que reduzcan el consumo de hidrógeno, aumenten el rendimiento y la calidad del producto final, y minimicen la generación de COx. La presente invención incorpora una mejora al control de la exotermicidad generada por la hidrogenación de los ácidos grasos insaturados en la materia prima, ya que por medio de la inclusión de una etapa de hidrogenación previa a la de hidrotratamiento se disminuyen las reacciones indeseadas de cracking, oligomerización/polimerización que los aceites usados como materia prima experimentan a las condiciones de hidrotratamiento. Igualmente, el proceso que acá se divulga reduce el consumo de hidrógeno asociado a estas reacciones, evita la formación de residuos carbonosos y la generación de acidez en los intercambiadores de calor antes del reactor de hidrotratamiento, los cuales pueden afectar la integridad de los equipos, se minimiza la producción de gases COx y mejora los rendimientos y calidad del Diesel renovable producido.
Del mismo modo la hidrogenación total o parcial de la presente invención lleva a una disminución significativa en la generación de C02 y CO que pueden producirse tanto en la etapa de precalentamiento del aceite, como en la etapa de hidrotatmiento del proceso de la invención, lo cual favorece la purificación del gas de reciclo.
Asociado a la mayor estabilidad térmica que la etapa de hidrogenación total o parcial de la invención aporta, en especial a los aceites con contenidos altos de ácidos grasos di- y tri-insaturados, está la reducción de las variaciones en la temperatura del proceso durante la etapa de hidrotratamiento; ya que el balance de calor esta determinado también por las reacciones de hidrodesoxigenación, descarboxilación y decarbonilacón, que son igualmente exotérmicas.
El calor de reacción generado por cada saturación de un enlace doble de un ácido graso de un triglicérido es del orden de 105 kJ/mol, por lo que en el caso se aceites altamente insaturados, como los de origen algal o vegetal, tales como el aceite de soya y colza entre otros, cuya composición en ácidos grasos insaturados oleico C18:1 , linoleico C18:2 y linolénico C18:3 está respectivamente alrededor del 85% y 90% o en términos de números de enlaces dobles promedio por mol están respectivamente alrededor de 4.6 y 5.0, el calor de reacción generado estaría respectivamente alrededor de 480 kJ/mol y 550 kJ/mol. Se ha reportado que el calor generado en la saturación de un enlace doble, alrededor de 105kJ/mol, es suficiente para incrementar la temperatura en 1 ,65 K en promedio, por lo que para el caso del aceite de soya la hidrogenación total puede llevar a un incremento en la temperatura de hasta aproximadamente 10 K. De otra parte el calor de reacción generado por las reacciones de descarboxilación y decarbonilación son del orden de 44 kJ/mol y 530 kJ/mol, respectivamente, por lo que la disminución en estas reacciones resulta en un mejor control en la temperatura del proceso de hidrotratamiento que lleva a la producción de Diesel renovable.
En términos de consumo de hidrógeno de los procesos de hidrotratamiento de aceites de origen vegetal, animal, algal o de otras fuentes ricas en triglicéridos, éste está determinado principalmente por las reacciones de saturación de ácidos grasos, hidrodesoxigenación, descarboxilación y decarbonilación. Las dos primeras necesariamente llevan a un mayor consumo de hidrógeno, mientras que las dos últimas entran en una secuencia de reacciones que pueden conducir a un aumento en el consumo de hidrógeno, especialmente la de metanación en la que el producto de la decarbonilación, es decir CO, reacciona con el hidrógeno presente en las condiciones del proceso para formar CH4.
Asumiendo que todo el C02 en la corriente gaseosa de la etapa de hidrotratamiento proviene únicamente de la descarboxilación y que éste no interviene en las reacciones de metanación y no reacciona con el hidrógeno según la reacción de Shift, se tiene que por cada mol de C02 generado por la descarboxilación, tres moles de H2 dejan de ser consumidos por la reacción de hidrodesoxigenación directa de los triglicéridos, por lo que es de esperar un mayor consumo de hidrógeno cuando se desfavorece la ruta de descarboxilación para la producción de Diesel renovable.
No obstante, el consumo de hidrógeno total observado en los resultados de la presente invención es menor cuando el aceite se hidrogena parcialmente, lo que significa que a pesar de producir menos cantidades de C02, el menor consumo de hidrógeno queda determinado por el balance de las reacciones de decarbonilación, hidrodesoxigenación y el consumo de hidrógeno gastado en la saturación de los productos de las reacciones de cracking, oligomerización/polimerización que experimentan los aceites en la etapa de hidrotratamiento, las cuales están en función del grado de insaturación de los ácidos grasos componentes del aceite y en especial del mayor contenido de ácidos grasos di- y tri-insaturados.
RESUMEN DE LA INVENCIÓN
En la presente invención se describe un proceso para la producción de diesel a partir de fuentes renovables de origen vegetal, animal, algal u otras fuentes biológicas el cual se lleva a cabo en dos etapas efectuadas en reactores diferentes. En la primera etapa, las materias primas son hidrogenadas con el propósito de reducir total o parcialmente el grado de insaturación de los ácidos grasos que constituyen los triglicéridos del aceite.
Esta hidrogenación se lleva a cabo utilizando catalizadores porosos de níquel soportado en sílica a temperaturas entre 373K y 483 K, presiones en el rango de 0.25 MPa a 10 MPa, velocidades espaciales LHSV de entre 1 h"1 y 500 h"1 , una relación H2/aceite de entre 4 LN/L y 500 LN/L en la que se logra una reducción del grado de insaturación hasta un 90%, expresada como índice de yodo. En la segunda etapa, el aceite hidrogenado es hidrotratado utilizando un catalizador poroso de Ni y Mo o Ni y Co soportados en alúmina, a temperaturas entre 553 K y 723 K, presiones en el rango de 5 MPa a 15 MPa, velocidades espaciales LHSV de entre 1 h"1 y 9 h"1 y relaciones de H2/aceite de entre 178 LN/L y 534.3 LN/L.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra el diagrama del proceso de acuerdo con la presente invención.
La Figura 2 muestra las destilaciones realizadas bajo la norma ASTM D-86 para los dos productos provenientes del hidrotratamiento.
La Figura 3 muestra el monitoreo del índice de yodo y del C02 producido durante la hidrogenacón de aceite de palma a diferentes temperaturas de reacción
La Figura 4 muestra la evaluación de la descomposición térmica de aceite de palma a diferentes temperaturas
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El proceso para la producción de Diesel renovable a partir de fuentes de origen vegetal, animal, algal u otras fuentes biológicas ricas en triglicéridos consta de dos etapas principales: una etapa de hidrogenación parcial o total de los ácidos grasos insaturados que componen la materia prima seguida de una etapa de hidrotratamiento, en la que el aceite hidrogenado total o parcialmente en la etapa de hidrogenación genera un producto de mayor calidad en términos de especificaciones como temperatura de destilación según normas ASTM D-86 o ASTM D-7213, mayor estabilidad a la oxidación (norma EN- 141 12), menor color (ASTM D-1500), entre otras. El proceso de la presente invención lleva también a mayores rendimientos de diesel en el producto líquido, menor consumo de hidrógeno y menor producción de C02 y CO en la corriente gaseosa de salida. El proceso inicia determinando las condiciones de hidrogenación que se usan para la saturación total o parcial de los ácidos grasos que componen el aceite usado como carga, estableciendo el índice de yodo y el perfil de ácidos grasos del aceite de partida. El aceite proveniente del depósito (1 ) es llevado por la corriente (101 ) hacia una bomba (2), donde es mezclado con una corriente rica en hidrógeno (1 13) proveniente de un depósito (1 1 ) para formar la corriente 102 que es enviada a una zona o etapa de precalentamiento (3) que opera a temperaturas entre 373 K y483 K ; luego la mezcla hidrógeno-aceite, es enviada mediante la corriente (103), al reactor de hidrogenación (4).
La hidrogenación se lleva a cabo utilizando catalizadores porosos de níquel soportado en sílica a temperaturas entre 373 K y483 K, preferiblemente a 423 Ky 483 Ky presiones en el rango de 0.25 MPa a 10 MPa, preferiblemente en 0.25 MPa y 3 MPa, velocidades espaciales LHSV de entre 1 h"1 y 500 h \ preferiblemente en 1 h"1 y 6 h \ una relación H2/aceite de entre 4 LN/L y 500 LN/L, preferiblemente en 200 LN/L y 500 LN/I en esta etapa se logra una reducción del grado de insaturación de hasta un 90%, expresada como índice de yodo. Los aceites hidrogenados salen del reactor de hidrogenación (4) mediante la corriente (104) y son precalentados en un intercambiador (5) a temperaturas entre 553 K y 723., preferiblemente entre 583 Ky 643 K.
La corriente (105) que sale del precalentador (5) es mezclada con hidrógeno de reciclo de la corriente (1 1 1 ) y alimentada al reactor de hidrotratamiento (6), donde se lleva la producción de Diesel renovable a temperaturas preferiblemente entre 583 K y643 K, presiones de entre 5 MPa y 15 MPa, velocidades espaciales LHSV de entre 1 h"1 y 9 h"1 y relaciones H2/aceite de entre 178 LN/L y 534.3 LN/L. El producto sale por la corriente (106) y es enfriado en el intercambiador (5); desde donde es enviado a una etapa de separación de gas-líquido (7). El gas es enviado a un purificador (9) mediante la corriente (108), luego pasa il de ác
por un compresor (10) y es devuelto al sistema, mientras el líquido es llevado a una torre de destilación (8) mediante la corriente (107), donde se obtiene diesel renovable (B) y livianos en el rango de ebullición menor a 483 K y gases condensables (C).
A continuación se presentan varios ejemplos donde se comparan los beneficios del proceso desarrollado de la presente invención.
EJEMPLO 1
Hidrogenación e hidrotratamiento de aceite de microalgas heterotrofas con índice de yodo de 90
Se hidrogenó e hidrotrato aceite refinado de microalgas heterotrofas según los parámetros establecidos en la presente invención. Las caracterisiticas principales del aceite usado como carga se presentan en la Tabla 1 .
Tabla 1. Propiedades del aceite de microalgas heterotrofas.
Aceite refinado de microalgas
Propiedad heterotrofas
Densidad a 15 °C, g/mL 0.915 índice de yodo, gl2/100g 90.1
Laúrico C12:0 0.03
Mirístico C14:0 0.74
C15:0 0.04
Palmítico C16:0 7.84
Palmitoleico C16:l 0.35
C17:0 0.16 o Esteárico C18:0 3.1
Oleico C18:l 72.12
O
Linoleico C18:2 13.44
Linolénico C18:3 1.1 El aceite refinado de microalgas heterotrofas fue hidrogenado a dos temperaturas de reacción: 393 Ky 423 K, bajo condiciones de presión de H2 de 9.0 MPa, velocidad espacial LHSV de 2h~1 y relación H2/aceite de 474 LN/L. El índice de yodo obtenido después de la hidrogenación a estas dos temperaturas fue respectivamente 62.3 gl2/100g y 57.2 gl2/100g. Posteriormente se realizaron dos corridas: una con el aceite hidrogenado parcialmente a 423 Ky otra con el aceite refinado sin ningún tratamiento previo, bajo las misma condiciones de reacción: velocidad espacial LHSV de 2h"1 , una presión de 9.0 MPa, una relación de H2/aceite de 474 LN/L y una temperatura de623 K.
La Figura 2 muestra como el aceite refinado al ser hidrogenado parcialmente, hasta reducir su índice de yodo desde el valor inicial de 90.1 gl2/100g hasta 57.2 gl2/100g, genera un producto con una temperatura de ebullición al 95%v/v destilado menor a633 K, mientras que el aceite que no se sometió a la etapa de hidrogenación parcial presentó una temperatura de ebullición al 95%v/v destilado mayor de633 K, por lo que no cumple con esta especificación establecida para el diesel
EJEMPLO 2
Hidrogenación e hidrotratamiento de aceite sintético de microalgas de la especie autotrofa Chlorella vulgaris con índice de yodo de 166 gl2/100g
El aceite de microalgas autótrofas de la especie Chlorella vulgaris fue obtenido por mezcla de aceites vegetales en las proporciones necesarias para obtener la composición que aparece en la Tabla 2. Las proporciones y tipos de aceite usados para obtener dicha mezcla fueron: aceite de linaza 72,9%m/m, aceite de girasol 24,0%m/m, aceite de oliva 0,9%m/m y aceite de superestearina de palma 2,2%m/m. La composición de ácidos grasos de la mezcla fue obtenida de la literatura e igualmente fue verificada por extracción lípidica de biomasa de microalgas de la especie Chlorella vulgaris UTEX 1803, perteneciente a Phylum Chlorophyta, Orden Chlorellales obtenida de la colección de cultivo de algas en la Universidad de Texas (Austin, Tex, USA), cultivada y cosechada a escala de laboratorio, obteniéndose valores muy cercanos a los reportados en la literatura.
Tabla 2. Propiedades y perfil de ácidos grasos del aceite sintético de microalgas de la especie Chiorella vulgaris
Figure imgf000013_0001
El aceite de microalgas de la especie Chiorella vulgaris fue hidrogenado parcialmente a la temperatura de reacción de423 K. El índice de yodo después de esta primera etapa de hidrogenación fue de 153 gl2/100g. El aceite hidrogenado parcialmente y el aceite sin esta etapa previa fueron hidrotratados bajo iguales condiciones de reacción: velocidad espacial de 2h"1 , una presión de 9.0 MPa y una relación de H2/aceite de 474 LN/L y una temperatura de623 K.
En la Tabla 3 se presentan los resultados obtenidos para el hidrotratamiento del aceite sintético de la especie Chiorella vulgaris a partir de aceite hidrogenado a 423 Ky sin tratamiento previo de hidrogenación. Tabla 3. Resultados hidrotratamiento de aceite de algas sintético de la especie Chiorella vulgaris
Figure imgf000014_0001
Los resultados de la Tabla 3 muestran una disminicion significativa después del hidrotratamiento tanto en los flujos de C02, CO a la salida del reactor como en el consumo de hidrógeno para el aceite hidrogenado, a pesar de sólo haber logrado una reducción en el grado de insaturación después de la etapa de hidrogenación de 13 unidades de índice de yodo.
Los resultados de caracterización de los productos de hidrotratamiento respectivos para los aceites hidrogenado parcialmente y no hidrogenado obtenidos con el aceite sintético de microalgas de la especie Chiorella vulgaris se presentan en la Tabla 4.
Tabla 4. Resultados de hidrotratamiento de aceite sintético de microalgas de la especie Chiorella vulgarls
Figure imgf000015_0001
Considerando la información de la tabla 4, es evidente que el producto obtenido de hidrotratamiento de aceite de microalgas hidrogenado parcialmente presenta una mayor estabilidad a la oxidación y mejor color como resultado de la hidrogenación parcial.
EJEMPLO 3
Hidrogenación e hidrotratamiento de aceite de palma con índice de yodo de 53.3 gl2/100g
Las propiedades del aceite de palma utilizado se presentan en la Tabla 5.
Tabla 5 Propiedades y perfil de ácidos grasos del aceite palma
Figure imgf000016_0001
El aceite de palma fue hidrogenado parcialmente a la temperatura de reacción de423 K. El índice de yodo después de esta primera etapa de hidrogenación fue de 43.3 gl2/100g. El aceite hidrogenado parcialmente y el aceite sin esta etapa previa fueron hidrotratados bajo iguales condiciones de reacción: velocidad espacial de 2h ~1 , una presión de 9.0 MPa y una relación de H2/aceite de 474 LN/L y una temperatura de623 K.
En la Tabla 6 se presentan los resultados obtenidos para el hidrotratamiento de aceite de palma hidrogenado a 423 Ky sin ningún tratamiento previo de hidrogenación. Tabla 6. Resultados hidrotratamiento de aceite de palma
Figure imgf000017_0001
De manera similar al caso del aceite sintético de microalgas de la especie Chlorella vulgaris, los resultados de la Tabla 6 muestran una disminicion después del hidrotratamiento tanto en los flujos de C02 y CO a la salida del reactor, como en el consumo de hidrógeno para el aceite de palma hidrogenado, a pesar de sólo haber logrado una reducción en el grado de insaturación después de la etapa de hidrogenación de 10.2 unidades de índice de yodo.
EJEMPLO 4
Hidrogenación de aceite de palma a diferentes temperaturas de reacción
Con el proposito de obtener el rango de temperaturas óptima para lograr un mayor grado de saturación del aceite de palma se realizaron corridas bajo iguales condiciones de presión, velocidad espacial y relación hidrógeno/aceite.
En la Figura 3 se presentan los resultados obtenidos durante la hidrogenación de aceite de palma a diferentes temperaturas de reacción. El propósito de la hidrogenación parcial o total del aceite, previa al hidrotratamiento, es disminuir el grado de insaturación para d impartirle mayor estabilidad térmica a la materia prima, lo cual disminuye las reacciones no deseadas de cracking, oligomerización/polimerización que pueden experimentar los ácidos grasos insaturados componentes del aceite, así como también para evitar la generación de altas concentraciones de COx que pueden afectar los procesos de purificación de los gases de salida, requeridos para la recirculación del hidrógeno al proceso.
De tal manera que la temperatura de la hidrogenación debe ser aquella en la que se logra una reducción substancial en el grado de insaturación del aceite que constituye la materia prima, sin que se inicie su descomposición. Esto puede ser observado por el monitoreo de C02 en los gases de salida del proceso de hidrogenación. En la Figura 3 se observa que para el caso del aceite de palma esta temperatura se encuentra alrededor de los483 K, en este punto se logra una disminución del índice de yodo de aproximadamente 90% del valor inicial. A partir de esta temperatura la producción de C02 incrementa de manera exponencial por lo que esta sería la temperatura máxima para la hidrogenación en el caso de aceite de palma.
Esta situación pueden ser aún más crítica en el caso de que el aceite no se hidrogene antes del hidrotratamiento con lo que aumenta el riesgo de descomposición no controlada del aceite, la cual no solamente lleva a generar altas concentraciones de gases COx, sino también a la generación de acidez y productos de las reacciones de cracking, oligomerización/polimerización, que pueden afectar la integridad de los equipos, especialmente en el intercambiador de calor (5), que está antes del reactor de hidrotratamiento (6), y en el que no hay catalizador presente EJEMPLO 5
Evaluación de las propiedades del aceite de palma después de tratamientos térmicos en ausencia de catalizador
En el siguiente ejemplo se muestran resultados de estudios de calentamiento de aceite de palma sin hidrogenar a condiciones que simulan las que se presentan en un intercambiador de calor típico.
Se evaluó aceite de palma sin hidrogenar en un reactor que simula las condiciones en un intercambiador de calor típico, que está antes de los reactores en el proceso de hidrotratamiento. La evaluación se hizo en un reactor tubular operando en modo continuo, con tiempos de residencia de 15 minutos y presiones de 0.7 MPa. El calentamiento del aceite de palma sin hidrogenar se realizó en el rango de temperaturas entre 523 Ky 623 K. En la Figura 4 se presentan los resultados de número de ácido medido bajo la norma ASTM D-665 y de Residuo de carbón Conradson medido bajo la norma ASTM D-4530, en función de la temperatura.
El número ácido del aceite de palma sin hidrogenar y sin ningún tratamiento térmico es de 4 mgKOH/g. A una temperatura de 523 Keste valor se incrementa alrededor de 5.5 mgKOH/g y desde de esta temperatura y hasta 573 Kaumenta gradualmente hasta 6.5 mgKOH/g. A partir de este valor de temperatura el crecimiento es exponencial. Para el caso del carbón Conradson el aceite sin hidrogenar y sin ningún tratamiento térmico es de 0.05%m/m. Después de someter el aceite a condiciones que simulan las condiciones de un intercambiador de calor este valor sube alrededor de 0.27% en el rango de temperaturas de 523 Ka 603 Ky a partir de ahí empieza a crecer exponencialmente. Estos resultados son un indicativo de que las especies precursoras de formación de residuos de carbón se han incrementado en el producto líquido de la reacción posiblemente ocasionado por reacciones de oligomerización/polimerización.

Claims

REIVINDICACIONES
1 . Un método para la obtención de diesel renovable a partir de fuentes de origen animal, vegetal, algal u otras fuentes biológicas ricas en triglicéridos, o mezclas de los mismos, que comprende las siguientes etapas llevadas a cabo en reactores independientes:
a. Una etapa de hidrogenación total o parcial de los ácidos grasos constituyentes de los aceites usados como materia prima.
b. Una etapa de hidrotratamiento en la que el aceite total o parcialmente hidrogenado es convertido en diesel renovable.
caracterizado porque la etapa a) reduce el grado de insaturación de los aceites empleados en al menos un 70%
2. El método de acuerdo con la reivindicación 1 , caracterizado porque comprende el paso de determinar el nivel de instauración de la materia prima antes de la etapa de hidrogenación.
3. El método de acuerdo con las reivindicaciones 1 y 2, caracterizado porque la materia prima es mezclada con una corriente rica en hidrógeno antes de la etapa de hidrogenación.
4. El método de acuerdo con las reivindicaciones 1 a 3, caracterizado porque la corriente de materia prima e hidrógeno es precalentada hasta una temperatura de entre 373 K y 483 K antes de ser alimentada a la unidad de hidrogenación.
5. El método de acuerdo con las reivindicaciones 1 a 4, caracterizado porque la hidrogenación se lleva a cabo a una temperatura de entre 373 K y 483 K, preferiblemente entre 423 K y 483 K, y más preferiblemente entre 453 K y473 K.
6. El método de acuerdo con las reivindicaciones 1 a 4, caracterizado porque la hidrogenación se lleva a cabo a una presión de entre
0.25 MPa y 10 MPa, preferiblemente entre 4 MPA y 10 MPa, y más preferiblemente entre 4 MPa y 9 MPa.
7. El método de acuerdo con las reivindicaciones 1 a 4, caracterizado porque se lleva a cabo a velocidades espaciales de entre 1 h~1 y 500 h~1 , preferiblemente entre 0.5 h~1 y 6h~1 , y más preferiblemente entrel h~1 y 3h_1.
8. El método de acuerdo con cualquiera de las reivindicaciones anteriores, caracterizado porque el producto de la etapa de hidrogenación es llevado a un intercambiador de calor antes de pasar a la etapa b), para elevar la temperatura.
9. El método de acuerdo con la reivindicación 8, caracterizado porque en el intercambiador la temperatura del producto de la etapa de hidrogenación es elevada hasta entre 553 K y 723 K, preferiblemente entre 573 K y 693 K, y más preferiblemente entre 583 K y 643 K.
10. El método de acuerdo con la reivindicación 9, caracterizado porque el aceite hidrogenado caliente se combina con una corriente de hidrógeno de reciclo y alimentado a un reactor de hidrotratamiento para llevar a cabo el paso b)
1 1 . El método de acuerdo con la reivindicación 1 , caracterizado porque la etapa de hidrotratamiento se lleva a cabo a una temperatura entre 583 K y 673 K, preferiblemente entre 583 K y 653 K, y más preferiblemente entre 583 K y 633 K.
12. El método de acuerdo con la reivindicación 1 1 , caracterizado porque el hidrotratamiento se lleva a cabo a una presión de entre 5 MPa y 15 MPa, preferiblemente entre 5 MPA y 10MPa, y más preferiblemente entre 6 MPa y 9 MPa.
13. El método de acuerdo con la reivindicación 1 1 , caracterizado porque la etapa de hidrotratamiento se lleva a cabo a velocidades espaciales de entre 0.5 h~1 y 9 h~1 , preferiblemente entre 0.5 h~1 y 6h~1 , y más preferiblemente entre 1 h~1 y 2 h~1.
14. El método de acuerdo con cualquiera de las reivindicaciones precedentes, caracterizado porque el producto es enfriado en un intercambiador (5) y luego enviado a un separados gas-líquido (7).
15. El método de acuerdo con la reivindicación 15, caracterizado porque la corriente de líquido que sale del separador (7) es llevada a una torre de destilación donde se obtiene diesel.
PCT/IB2012/053998 2011-08-09 2012-08-04 Metodo mejorado para la obtencion de diesel a partir de fuentes renovables mediante el control del nivel de insaturacion WO2013021334A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO11-100839 2011-08-09
CO11100839A CO6620012A1 (es) 2011-08-09 2011-08-09 Método mejorado para la obtención de diesel a partir de fuentes renovables mediante el control del nivel de insaturación

Publications (1)

Publication Number Publication Date
WO2013021334A1 true WO2013021334A1 (es) 2013-02-14

Family

ID=47667945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/053998 WO2013021334A1 (es) 2011-08-09 2012-08-04 Metodo mejorado para la obtencion de diesel a partir de fuentes renovables mediante el control del nivel de insaturacion

Country Status (2)

Country Link
CO (1) CO6620012A1 (es)
WO (1) WO2013021334A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316727A (zh) * 2016-08-30 2017-01-11 许畅 一种多孔粒状铵油炸药及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090253948A1 (en) * 2008-04-06 2009-10-08 Mccall Michael J Fuel and Fuel Blending Components from Biomass Derived Pyrolysis Oil
US20100292518A1 (en) * 2007-06-12 2010-11-18 Ifp Two-step hydrotreatment of a feed derived from a renewable source using a first, metallic, catalyst and a second, sulphurized, catalyst
US20110098494A1 (en) * 2009-10-27 2011-04-28 IFP Energies Nouvelles Method of hydrotreating feeds from renewable sources with indirect heating using a catalyst based on nickel and molybdenum having a particular atomic ratio
US7982077B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100292518A1 (en) * 2007-06-12 2010-11-18 Ifp Two-step hydrotreatment of a feed derived from a renewable source using a first, metallic, catalyst and a second, sulphurized, catalyst
US7982077B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US20090253948A1 (en) * 2008-04-06 2009-10-08 Mccall Michael J Fuel and Fuel Blending Components from Biomass Derived Pyrolysis Oil
US20110098494A1 (en) * 2009-10-27 2011-04-28 IFP Energies Nouvelles Method of hydrotreating feeds from renewable sources with indirect heating using a catalyst based on nickel and molybdenum having a particular atomic ratio

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106316727A (zh) * 2016-08-30 2017-01-11 许畅 一种多孔粒状铵油炸药及其制备方法
CN106316727B (zh) * 2016-08-30 2018-10-02 许畅 一种多孔粒状铵油炸药及其制备方法

Also Published As

Publication number Publication date
CO6620012A1 (es) 2013-02-15

Similar Documents

Publication Publication Date Title
US9556387B2 (en) Process for the hydrotreatment of a gas-oil feedstock, reactor for implementing said process, and corresponding hydrorefining unit
ES2550259T5 (es) Proceso para la fabricación de hidrocarburos en el intervalo del diésel
Shrirame et al. Bio diesel from castor oil-a green energy option
BRPI0720497A2 (pt) Processo de hidrotratamento de uma mistura constituída de óleo de origem animal ou vegetal e de cortes petrolíferos com retirada intermediária
ES2550244T3 (es) Proceso para la fabricación de hidrocarburos en el intervalo del diésel
ES2437998T3 (es) Proceso de hidrogenación
ES2697648T3 (es) Método para la cetonización de material biológico
BRPI0720688B1 (pt) processos de hidrotratamento de uma mistura constituída de óleos de origem vegetal ou animal e de cortes petrolíferos com injeção dos óleos em têmpera sobre a última camada catalítica
ES2447066T3 (es) Procedimiento para la hidrogenación de ácidos carboxílicos y derivados hasta hidrocarburos
US7989671B2 (en) Process for the conversion of renewable oils to liquid transportation fuels
AU2012269637B2 (en) Method for preparing fuel from biological oil and fat
ES2906240T3 (es) Procedimiento integrado para producir hidrocarburos
US20120157734A1 (en) Process for the conversion of renewable oils to liquid transportation fuels
Choo et al. Recent progress in catalytic conversion of microalgae oil to green hydrocarbon: a review
BRPI0900789B1 (pt) Processo de hidrotratamento de óleo de biomassa diluído em corrente de refino de petróleo
RU2011116284A (ru) Углеводородная композиция, используемая в качестве топлива и горючего, полученная из компонентов нефти и биологического компонента
Martinez-Villarreal et al. Drop-in biofuels production from microalgae to hydrocarbons: Microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation
ES2397556T3 (es) Procedimiento de hidrotratamiento de cargas procedentes de fuentes renovables con calentamiento indirecto
Krishnakumar et al. Physico-chemical properties of the biodiesel extracted from rubber seed oil using solid metal oxide catalysts
WO2013021334A1 (es) Metodo mejorado para la obtencion de diesel a partir de fuentes renovables mediante el control del nivel de insaturacion
ES2373750T3 (es) Procedimiento de hidroconversión en lecho burbujeante de cargas de origen biorrenovable para la producción de bases carburantes.
ITMI20132221A1 (it) Processo per la produzione di composti olefinici e di un carburante idrocarburico o sua frazione
CA2842684A1 (en) Improved hydroprocessing of biorenewable feedstocks
EP1911735A1 (en) Process for hydrogenation of carboxylic acids and derivatives to hydrocarbons
US20160289070A1 (en) Processes for producing hydrogen gas stream from an offgas stream

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822884

Country of ref document: EP

Kind code of ref document: A1