WO2013020392A1 - 3g网络和4g网络载波聚合方法及系统 - Google Patents

3g网络和4g网络载波聚合方法及系统 Download PDF

Info

Publication number
WO2013020392A1
WO2013020392A1 PCT/CN2012/074613 CN2012074613W WO2013020392A1 WO 2013020392 A1 WO2013020392 A1 WO 2013020392A1 CN 2012074613 W CN2012074613 W CN 2012074613W WO 2013020392 A1 WO2013020392 A1 WO 2013020392A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
resource
lte
control anchor
rrc control
Prior art date
Application number
PCT/CN2012/074613
Other languages
English (en)
French (fr)
Inventor
余波
杨立
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013020392A1 publication Critical patent/WO2013020392A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the present invention relates to a carrier aggregation technology, and in particular, to a 3G network and 4G network carrier aggregation method and system. Background technique
  • a Universal Terrestrial Radio Access Network In a Wideband Code Division Multiple Access (WCDMA) network, a Universal Terrestrial Radio Access Network (UTRAN) includes a Radio Network Controller (RNC) and a Base Station (NodeB). Two basic network elements, commonly known as the third generation (3G, 3rd Generation) communication network.
  • RNC Radio Network Controller
  • NodeB Base Station
  • 3G, 3rd Generation Three basic network elements, commonly known as the third generation (3G, 3rd Generation) communication network.
  • an LTE (Long Time Evolution) network an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) includes an evolved base station (eNB), which is a basic network element.
  • eNB evolved base station
  • High-speed downlink receive link packet access HSDPA, High Speed Downlink Packet Access
  • high-speed uplink link packet access HSUPA, High Speed Uplink Packet Access
  • dual-carrier high-speed downlink packet access DC-HSDPA, Dual Carrier-High Speed Downlink Packet Access
  • Dual Band-Dual Carrier-High Speed Downlink Packet Access DB-DC-HSDPA
  • Dual-Carrier High-Speed Uplink Packet Access DC-HSUPA (Dual Carrier-High Speed Downlink Packet Access)
  • 4C-HSDPA Four Carrier-High Speed Downlink Packet Access
  • 8C-HSDPA Eight-carrier high-speed downlink packet access
  • Multi-carrier aggregation technologies in these 3G systems have been introduced, enabling user equipment (UE, User Equipment)
  • the uplink and downlink data transmission rates continue to increase.
  • the UE must be equipped with multiple 3G-related receive data processing chains (3G-Receiver Chain), which can receive and process simultaneously from the same
  • 3G-Receiver Chain 3G-Receiver Chain
  • the base station transmits the 3G data block of the uplink and downlink of several carriers in the same sector (sector).
  • the WCDMA system that has evolved to today is also known as the HSPA + (High Speed Packet Access+) system.
  • the LTE network With the development of the LTE network, the technology similar to the WCDMA multi-carrier aggregation concept (CA, Carrier Aggregation) is gradually generated.
  • CA Carrier Aggregation
  • the following line direction is taken as an example.
  • the LTE system can perform up to five carriers with a downlink bandwidth of 20 MHz. polymerization.
  • the basic characteristics of carrier aggregation are:
  • the UE must be equipped with multiple 4G-related receive data processing chains (4G-Receiver Chain), which can simultaneously receive 4G data sent from multiple carriers in the same sector of the same base station. Piece.
  • FIG. 1 is a schematic structural diagram of a 7G network.
  • an eNB of an LTE in a 7G network architecture serves as a primary control anchor and a data offload control point of a UE RRC (Radio Resource Connection).
  • the UE controls the scheduling command (such as resource allocation, HARQ (Hybrid Automatic Repeat ReqUEst) operation information) in the Physical Downlink Control Channel (PDCCH) on a certain working carrier of the eNB.
  • PDSCH Physical Downlink Shared Channel
  • the UE receives the High Speed-Downlink Shared Channel (HS-DSCH) under the control of the scheduling command of the High Speed Shared Control Channel (HS-SCCH) on a working carrier of the NodeB.
  • HS-DSCH High Speed-Downlink Shared Channel
  • HS-SCCH High Speed Shared Control Channel
  • the anchor eNB is responsible for allocating upper layer protocol packets generated by the eNB, and in a certain manner, determining which part is transmitted from the LTE air interface and which part is transmitted from the HSPA+ air interface.
  • the protocol packet allocated to the part of the NodeB needs to be transmitted through a new interface between the eNB and the NodeB, and the NodeB transmits according to the characteristics of the protocol and the HSPA + air interface.
  • the UE sends a Physical Uplink Control Channel (PUCCH) on the uplink frequency point paired with the eNB working downlink frequency point, and carries information such as HARQ operation in the PUCCH (correct reception acknowledgement ACK/ NACK), scheduling request, receiving channel quality indication, etc., to feed back the necessary information related to LTE downlink high-speed data transmission.
  • PUCCH Physical Uplink Control Channel
  • HARQ operation in the PUCCH correct reception acknowledgement ACK/ NACK
  • scheduling request scheduling request
  • receiving channel quality indication etc.
  • the UE tends to perform single-system uplink feedback only on the HSPA+ air interface instead of simultaneous feedback across the system.
  • the 7G technology does not conflict with the carrier aggregation technology in the HSPA+ or LTE system.
  • the UE may receive data on the M carriers of the HSPA+ and receive data on the N carriers of the LTE system.
  • the basic principle is the same as above. , can be extended to a higher dimension.
  • 3G and 4G systems can share different types of services such as voice as far as possible in the HSPA + system CS domain.
  • High-speed data services should go as far as possible to the LTE system, or they can simultaneously undertake the same services as the data industry. Services are assigned to both systems for simultaneous transmission. Summary of the invention
  • the main object of the present invention is to provide a 3G network and 4G network carrier aggregation method and system, which can implement carrier aggregation of a 3G network and a 4G network through a primary RRC control anchor point.
  • a 3G network and 4G network carrier aggregation method includes:
  • the secondary RRC control anchor is notified to allocate 4G network resources to the UE.
  • the method further includes:
  • the primary RRC control anchor acquires 4G network resource information allocated by the secondary RRC control anchor to the UE.
  • the method further includes:
  • the primary RRC control anchor or the secondary RRC control anchor performs 4G network resource configuration on the UE through an air interface.
  • the 3G network is UMTS
  • the primary RRC control anchor is an RNC in UMTS
  • the 4G network is LTE
  • the secondary RRC control anchor is an eNB in LTE.
  • the acquiring the UMTS resource information allocated by the secondary RRC control anchor to the UE is:
  • the eNB allocates an LTE resource to the UE, and sends a resource setup response message to the RNC.
  • the resource setup response message carries the LTE resource allocated by the eNB for the UE.
  • the primary RRC control anchor or the secondary RRC control anchor performs UMTS resource configuration on the UE by using an air interface:
  • the RNC allocates the LTE resource allocated to the UE to the UE through an air interface.
  • the RNC sends a physical channel reconfiguration message, a transport channel reconfiguration message, or a radio bearer reconfiguration message to the UE by using an air interface to implement LTE resource configuration for the UE; where the physical channel reconfiguration message
  • the transport channel reconfiguration message or the radio bearer reconfiguration message carries the LTE resource allocated for the UE.
  • the primary RRC control anchor or the secondary RRC control anchor performs UMTS resource configuration on the UE by using an air interface:
  • the eNB allocates the LTE resource allocated to the UE to the UE through an air interface.
  • the eNB sends an RRC connection reconfiguration message to the UE by using an air interface to implement LTE resource configuration for the UE.
  • the RRC connection reconfiguration message carries an LTE resource allocated for the UE.
  • the method further includes:
  • the UE When the RNC determines to release the LTE resource of the UE, the UE sends a reconfiguration message to the UE through the air interface, and after the UE releases the LTE resource, sends a resource deletion request message to the eNB; An LTE resource, and a resource deletion response message sent to the RNC.
  • the method further includes:
  • the eNB After receiving the resource deletion request message, the eNB sends an RRC connection reconfiguration message to the UE through an air interface, and after the UE releases the LTE resource, the resource deletion response message sent to the RNC.
  • a 3G network and a 4G network carrier aggregation system including a secondary RRC control anchor in a 3G network and a primary RRC control anchor in a 4G network;
  • the primary RRC control anchor is configured to notify the secondary RRC control anchor to allocate 4G network resources to the UE when the UE allocates 4G network resources.
  • the primary RRC control anchor is further configured to acquire 4G network resource information allocated by the secondary RRC control anchor to the UE.
  • the primary RRC control anchor or the secondary RRC control anchor is configured to perform UMTS resource configuration on the UE by using an air interface.
  • the 3G network is a UMTS
  • the primary RRC control anchor is a radio network controller RNC in the UMTS
  • the 4G network is a long term evolution system LTE
  • the secondary RRC control anchor is an evolved base station in LTE eNB.
  • the eNB is further configured to: allocate an LTE resource to the UE, and send a resource setup response message to the RNC; where the resource setup response message carries the LTE resource allocated by the eNB to the UE.
  • the RNC is further configured to allocate, by the air interface, the LTE resource allocated to the UE to the UE.
  • the eNB is further configured to allocate, by the air interface, the LTE resource allocated to the UE to the UE.
  • the primary RRC control anchor determines that the UE that has accessed the 4G network needs to configure the 3G resource, and then notifies the secondary RRC control anchor to configure the 4G network resource for the UE, and after completing the configuration of the 4G network resource of the UE, The primary RRC is notified to control the anchor point, so that the primary RRC control anchor forwards the user data to the secondary RRC control anchor or the base station in the 3G network after receiving the user data of the 3G core network side.
  • the UE can simultaneously use the carrier resources of the 3G network and the 4G network to implement carrier aggregation of the 3G network and the 4G network, and also greatly improve the UE rate and resource usage efficiency.
  • Figure 1 is a schematic diagram showing the structure of a 7G network
  • FIG. 2 is a flowchart of a 3G network and a 4G network carrier aggregation method according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of a 3G network and a 4G network carrier aggregation method according to Embodiment 2 of the present invention
  • FIG. 4 is a 3G of Embodiment 3 of the present invention
  • FIG. 5 is a flowchart of a method for a 3G network and a 4G network carrier aggregation according to Embodiment 4 of the present invention.
  • the basic idea of the present invention is to use the RNC in the UMTS system as the primary RRC control anchor point, so that the UE can simultaneously access the UMTS and the LTE system, and simultaneously use the cell resources in the two network systems, thereby greatly improving the UE rate and resources. Use efficiency.
  • the RNC is the primary RRC control anchor point, and as the serving node of the UE, only the RNC maintains the IU interface signaling connection with the CN, and the SI between the eNB and the evolved packet core network (EPC, Evolved Packet Core) The interface has no signaling connection, and the eNB is a secondary RRC control anchor.
  • EPC Evolved Packet Core
  • the following message is added between the RNC and the eNB:
  • the resource establishment request message is mainly used by the RNC to request the eNB to allocate resources for the UE, where the radio capability information of the UE in the LTE system is included.
  • the resource establishment response message is mainly used by the eNB to allocate resources allocated for the UE to the RNC.
  • the resource deletion request message is mainly used by the RNC to request the eNB to delete the allocated resources of the UE.
  • the resource deletion response message is mainly used for the eNB to delete the successfully allocated response to the RNC after deleting the resources allocated to the UE.
  • the UE can simultaneously use the radio resources of the LTE and UMTS systems, thereby improving the rate and resource utilization efficiency.
  • FIG. 2 is a flowchart of a 3G network and a 4G network carrier aggregation method according to Embodiment 1 of the present invention.
  • the specific implementation manner of the 3G network and the 4G network carrier aggregation method in this example is as follows: After being connected to the UU interface of the UMTS system, both the UE and the eNB support When the 3G carrier and the 4G carrier are simultaneously aggregated, the subsequent RNC determines that the UE needs to allocate resources of the cell in the LTE system, and the RNC sends a resource setup request message to the eNB, requesting the LTE system to allocate resources for the UE, and the eNB allocates resources for the UE.
  • the RNC configures the message allocated by the eNB to the UE through the UU interface signaling, where the signaling may be a physical channel reconfiguration message, and the transport channel reconfiguration message
  • the UE uses the resources configured at this time, and uses the 3G and 4G network resources allocated by the eNB and the RNC to send a reconfiguration complete message to the RNC, and then the RNC will use the IU port.
  • Some or all of the delivered data is forwarded to the eNB. Through this process, the UE aggregates the 3G carrier and the 4G carrier at the same time, which improves the uplink and downlink rates.
  • FIG. 3 is a flowchart of a 3G network and a 4G network carrier aggregation method according to Embodiment 2 of the present invention.
  • the specific implementation manner of the 3G network and the 4G network carrier aggregation method in this example is as follows: After the UU interface of the UMTS system is accessed, when the UE and the eNB support the 3G carrier and the 4G carrier simultaneous aggregation capability, the subsequent RNC determines that the UE needs to allocate the resource of the cell in the LTE system, and the RNC sends a resource establishment request message to the eNB.
  • the LTE system is requested to allocate resources to the UE, and the eNB allocates resources for the UE, and allocates the newly allocated resources to the UE through the UU interface signaling (RRC connection reconfiguration message), and the UE receives the air interface signaling (RRC connection reconfiguration message).
  • RRC connection reconfiguration message the UU interface signaling
  • RRC connection reconfiguration message the air interface signaling
  • resources allocated by the eNB and the RNC are simultaneously used, and a reconfiguration complete message is sent to the eNB.
  • the eNB sends a resource setup response message to the RNC, so that the RNC can forward part or all of the user plane data sent by the IU port to the eNB.
  • the UE aggregates the 3G carrier and the 4G carrier at the same time, which improves the uplink and downlink rates.
  • FIG. 4 is a flowchart of a 3G network and a 4G network carrier aggregation method according to Embodiment 3 of the present invention.
  • the specific implementation manner of the 3G network and the 4G network carrier aggregation method in this example is as follows: Simultaneous connection with the UU interface of the LTE system and the UU interface of the UMTS The UMTS system and the LTE system are integrated, and the wireless resources of the two communication systems are simultaneously aggregated.
  • the retransmission message is sent to the UE through the UU interface, and the eNB resource used by the UE is released, and the reconfiguration message may be a physical channel reconfiguration message or a transport channel reconfiguration message, or
  • the UE sends the reconfiguration complete message to the RNC, and the RNC sends a resource deletion request message to the eNB, requesting the eNB to release the resources used by the UE.
  • the eNB sends a resource deletion response message to the RNC. After that, the RNC no longer forwards the user plane data sent by the IU port to the eNB.
  • FIG. 5 is a flowchart of a method for a 3G network and a 4G network carrier aggregation according to Embodiment 4 of the present invention.
  • the specific implementation manner of the 3G network and the 4G network carrier aggregation method in this example is as follows: Simultaneously accessing the UMTS system and the LTE system with the UU interface of the LTE system and the UU interface of the UMTS, and simultaneously aggregating the radio resources of the two communication systems.
  • the RNC When the RNC decides to release the LTE system resources used by the UE, the RNC sends a resource deletion request message to the eNB, and then the RNC does not forward the user plane data sent by the IU port to the eNB.
  • the eNB After receiving the resource deletion request message, the eNB notifies the UE to release the resources allocated by the LTE system that is used by the RRC connection reconfiguration message. After the UE releases the related resources, the UE sends a reconfiguration complete message to the eNB, and the eNB resources are released. After the success, the eNB sends a resource deletion response to the RNC.
  • the embodiment of the present invention further describes a 3G network and a 4G network carrier aggregation system, including a secondary RRC control anchor in the 3G network and a primary RRC control anchor point in the 4G network. among them:
  • the primary RRC control anchor is configured to notify the secondary RRC control anchor to allocate 4G network resources to the UE when the UE allocates 4G network resources.
  • the 3G network and the 4G network carrier aggregation system of the present invention are implemented on the existing 7G network architecture, and there is no improvement on the 7G network architecture itself, mainly related to the relevant network elements in the 7G network architecture. And its processing flow has been improved accordingly. Therefore, the present invention
  • the 3G network and 4G network carrier aggregation system can be understood with reference to the structure shown in FIG. 1. In the following, the main improvements will be described in detail.
  • the primary RRC control anchor is further configured to acquire, by the secondary RRC control anchor, 4G network resource information allocated by the UE.
  • the primary RRC control anchor or the secondary RRC control anchor is configured to perform UMTS resource configuration on the UE by using an air interface.
  • the primary RRC control anchor is an RNC in the UMTS; the 4G network is LTE, and the secondary RRC control anchor is an eNB in LTE.
  • the eNB is further configured to: allocate an LTE resource to the UE, and send a resource setup response message to the RNC; where the resource setup response message carries the LTE resource allocated by the eNB to the UE.
  • the RNC is further configured to allocate, by using an air interface, the LTE resource allocated to the UE to the
  • the eNB is further configured to configure, by using an air interface, the LTE resource allocated to the UE to the UE.
  • the UE When the RNC determines to release the LTE resource of the UE, the UE sends a reconfiguration message to the UE through the air interface, and after the UE releases the LTE resource, sends a resource deletion request message to the eNB; An LTE resource, and a resource deletion response message sent to the RNC.
  • the RNC determines to release the LTE resource of the UE, sending a resource deletion request message to the eNB;
  • the eNB After receiving the resource deletion request message, the eNB sends an RRC connection reconfiguration message to the UE through an air interface, and after the UE releases the LTE resource, the resource deletion response message sent to the RNC.
  • the primary RRC control anchor of the embodiment of the present invention determines that the UE that has accessed the 4G network needs to configure the 3G resource, and then notifies the secondary RRC control anchor to configure the 4G network resource for the UE, and completes the 4G network resource configuration for the UE. Afterwards, the primary RRC is notified to control the anchor, so that the primary RRC control anchor forwards the user data to the secondary RRC control anchor or the base station in the 3G network after receiving the user data of the 3G core network side. In this way, the UE can simultaneously use the carrier resources of the 3G network and the 4G network to implement carrier aggregation of the 3G network and the 4G network, and also greatly improve the UE speed and resource usage efficiency.

Abstract

本发明公开了一种3G网络和4G网络载波聚合方法,一种3G网络和4G网络载波聚合方法,包括:主无线资源连接RRC控制锚点确定为用户设备UE分配4G网络的资源时,通知辅RRC控制锚点为所述UE分配4G网络资源。所述主RRC控制锚点获取所述辅RRC控制锚点为所述UE分配的4G网络资源信息。本发明同时公开了一种实现上述方法的3G网络和4G网络载波聚合系统。本发明能使UE同时使用3G网络和4G网络的载波资源,实现了3G网络和4G网络的载波聚合,还极大地提高了UE速率和资源使用效率。

Description

3G网络和 4G网络载波聚合方法及系统 技术领域
本发明涉及一种载波聚合技术, 尤其涉及一种 3G网络和 4G网络载波 聚合方法及系统。 背景技术
在宽带码分多址( WCDMA, Wideband Code Division Multiple Access ) 网络中, 通用陆地无线接入网 (UTRAN, Universal Terrestrial Radio Access Network ) 包括无线网络控制器(RNC, Radio Network Controller )和基站 ( NodeB ) 两种基本网元, 俗称第三代(3G, 3rd Generation )通信网络。 在长期演进 ( LTE, Long Time Evolution ) 网络中, 演进型的通用陆地无线 接入网 (E-UTRAN, Evolved Universal Terrestrial Radio Access Network ) 包 括演进型基站(eNB )这一种基本网元, 俗称第四代(4G, 4th Generation ) 通信网络。
随着 WCDMA网络的发展,高速下行接收链路分组接入( HSDPA, High Speed Downlink Packet Access ),高速上行发送链路分组接入( HSUPA, High Speed Uplink Packet Access ), 双载波高速下行分组接入 ( DC-HSDPA, Dual Carrier-High Speed Downlink Packet Access )、 双频段双载波高速下行分组接 入( DB-DC-HSDPA, Dual band-Dual Carrier-High Speed Downlink Packet Access ), 双载波高速上行分组接入 ( DC-HSUPA, Dual Carrier- High Speed Downlink Packet Access ), 四载波高速下行分组接入 ( 4C-HSDPA, Four Carrier- High Speed Downlink Packet Access ), 八载波高速下行分组接入 ( 8C-HSDPA, Eight Carrier- High Speed Downlink Packet Access )这些 3G 系统内的多载波聚合技术陆续被引入,使得用户设备( UE, User Equipment ) 的上下行数据传输率不断提高。 对于上述不同维数的多载波技术, 以下行 方向为例, 一个重要的基本特征是: UE必须配备有多条 3G相关的接收数 据处理链( 3G-Receiver Chain ), 可以同时接收处理来自同一个基站同一个 扇区 (sector ) 若干个载波上下行发送来的 3G 数据块。 演进到今天的 WCDMA系统又称为 HSPA + ( High Speed Packet Access+ ) 系统。
随着 LTE网络的发展, 类似 WCDMA多载波聚合概念的技术 ( CA, Carrier Aggregation )也逐渐产生, 以下行方向为例, 截至到目前, LTE系 统内最大可以对 5个下行带宽为 20MHz的载波进行聚合。 载波聚合重要的 基本特征是: UE必须配备有多条 4G相关的接收数据处理链( 4G-Receiver Chain ), 可以同时接收处理来自同一个基站同一个扇区若干个载波上下行 发送来的 4G数据块。
HSPA+网络朝 LTE网络演进的长期过程中, 必然有很长一段时间, 两 种系统同时存在并且协同工作, 共同 担着来自或者面向核心网一侧的数 据传输的任务。 比如, 某运营商有两个载波频点资源 Fl、 F2, 将 F1 分配 给 HSPA +网络运营使用, 而将 F2分配给 LTE网络运营使用。 只有 3G功 能的 UE只能在 F1上工作, 只有 4G功能的 UE只能在 F2上工作, 同时具 备 3G、 4G功能的终端, 在同一个时间, 只能在 F1或者 F2上工作, 不能 同时在 F1和 F2上工作。 为了充分利用这一类 UE的接收能力和提高下行 峰值速率, 业界提出了第七代(7G, 7th Generation )通信技术( 3G+4G ) 又称跨 HSPA +、 LTE系统的载波聚合技术。
图 1为 7G网络的组成结构示意图, 如图 1所示, 7G网络架构中 LTE 的 eNB作为 UE无线资源连接 ( RRC, Radio Resource Connection ) 的主控 制锚点和数据分流控制点。 UE在 eNB某工作载波上的物理下行控制信道 ( PDCCH, Physical Downlink Control Channel )中的调度命令(如资源分配, HARQ ( Hybrid Automatic Repeat ReqUEst )操作相关信息)控制下, 从物 理下行共享信道(PDSCH, Physical Downlink Shared Channel )接收一部分 用户数据。 同时, UE 在 NodeB 某工作载波上的高速共享控制信道 ( HS-SCCH, High Speed Shared Control channel )的调度命令控制下, 从高 速下行共享信道(HS-DSCH, High Speed-Downlink Shared Channel )上接 收另一部分用户数据。锚点 eNB负责将 eNB产生的上层协议数据包进行分 配,按照一定的方式, 决定哪部分从 LTE的空中接口发送,哪部分从 HSPA +的空中接口发送。 被分配到 NodeB的那一部分的协议数据包, 需要通过 eNB和 NodeB之间一个新接口传输, 由 NodeB根据自身协议特点和 HSPA +空中接口的方式进行发送。
在上行方向, UE至少要在与 eNB工作下行频点配对的上行频点上发 送物理上行链路控制信道(PUCCH, Physical Uplink Control Channel ), PUCCH中承载如 HARQ操作相关信息(正确接收确认 ACK/NACK ),调度 请求, 接收信道质量指示等, 以反馈 LTE下行高速数据传输相关的必要信 息。 而 UE是否要在与 NodeB工作下行频点配对的上行频点上发送高速专 用物理控制信道 (HS-DPCCH , High Speed-Dedicated Physical Control channel ), 以反馈 HSPA +下行高速数据传输相关的必要信息, 现有技术尚 未涉及。 通常为了减少 UE 的上行发射功率, 以及减少上行干扰, 倾向于 UE只在 HSPA +空口进行单系统上行反馈, 而非跨系统同时反馈。 7G技术 和 HSPA +或 LTE系统内的载波聚合技术并不沖突, UE有可能在 HSPA + 的 M个载波上做数据接收,又同时在 LTE 系统的 N个载波上做数据接收, 工作基本原理同上, 可以向更高的维数进行扩展。
7G技术能够充分且灵活地利用 3G、 4G系统资源不同的分布特点, 实 现跨系统负荷均衡、 切换等, 还能更深层次地实现 3G、 4G 系统的协同工 作。 3G、 4G系统既可以分担不同类型的业务如语音尽量走 HSPA +系统 CS 域, 高速数据业务尽量走 LTE系统, 也可以同时承担相同的业务如数据业 务被分配到两个系统同时传输。 发明内容
有鉴于此, 本发明的主要目的在于提供一种 3G网络和 4G网络载波聚 合方法及系统, 能通过主 RRC控制锚点实现 3G网络和 4G网络的载波聚 合。
为达到上述目的, 本发明的技术方案是这样实现的:
一种 3G网络和 4G网络载波聚合方法, 包括:
主 RRC控制锚点确定为 UE分配 4G网络的资源时, 通知辅 RRC控制 锚点为所述 UE分配 4G网络资源。
优选地, 所述方法还包括:
所述主 RRC控制锚点获取所述辅 RRC控制锚点为所述 UE分配的 4G 网络资源信息。
优选地, 所述方法还包括:
所述主 RRC控制锚点或所述辅 RRC控制锚点通过空口对所述 UE进行 4G网络资源配置。
优选地, 所述 3G网络为 UMTS, 所述主 RRC控制锚点为 UMTS中的 RNC; 所述 4G网络为 LTE, 所述辅 RRC控制锚点为 LTE中的 eNB。
优选地,所述获取所述辅 RRC控制锚点为所述 UE分配的 UMTS资源 信息为:
所述 eNB为所述 UE分配 LTE资源 , 向所述 RNC发送资源建立响应 消息; 所述资源建立响应消息中携带有所述 eNB为所述 UE分配的 LTE资 源。
优选地, 所述主 RRC控制锚点或所述辅 RRC控制锚点通过空口对所 述 UE进行 UMTS资源配置为:
所述 RNC将为所述 UE分配的 LTE资源通过空口配置给所述 UE。 优选地, 所述 RNC通过空口向所述 UE发送物理信道重配消息、 传输 信道重配消息或无线承载重配消息, 实现对所述 UE的 LTE资源配置; 其 中, 所述物理信道重配消息、 传输信道重配消息或无线承载重配消息中携 带有为所述 UE分配的 LTE资源。
优选地, 所述主 RRC控制锚点或所述辅 RRC控制锚点通过空口对所 述 UE进行 UMTS资源配置为:
所述 eNB将为所述 UE分配的 LTE资源通过空口配置给所述 UE。 优选地, 所述 eNB通过空口向所述 UE发送 RRC连接重配消息, 实现 对所述 UE的 LTE资源配置; 其中, 所述 RRC连接重配消息中携带有为所 述 UE分配的 LTE资源。
优选地, 所述方法还包括:
所述 RNC确定释放 UE的 LTE资源时 , 通过空口向所述 UE发送重配 消息,并在所述 UE释放 LTE资源后,向所述 eNB发送资源删除请求消息; 所述 eNB释放所述 UE的 LTE资源, 并向所述 RNC发送的资源删除 响应消息。
优选地, 所述方法还包括:
所述 RNC确定释放 UE的 LTE资源时, 向所述 eNB发送资源删除请 求消息;
所述 eNB接收到资源删除请求消息后, 通过空口向所述 UE发送 RRC 连接重配消息, 并在所述 UE释放 LTE资源后, 向所述 RNC发送的资源删 除响应消息。
一种 3G网络和 4G网络载波聚合系统, 包括 3G网络中的辅 RRC控制 锚点和 4G网络中的主 RRC控制锚点; 其中:
所述主 RRC控制锚点, 用于确定为 UE分配 4G网络资源时, 通知辅 RRC控制锚点为所述 UE分配 4G网络资源。 优选地, 所述主 RRC控制锚点还用于, 获取所述辅 RRC控制锚点为 所述 UE分配的 4G网络资源信息。
优选地, 所述主 RRC控制锚点或所述辅 RRC控制锚点, 用于通过空 口对所述 UE进行 UMTS资源配置。
优选地, 所述 3G网络为 UMTS, 所述主 RRC控制锚点为 UMTS中的 无线网络控制器 RNC; 所述 4G网络为长期演进系统 LTE, 所述辅 RRC控 制锚点为 LTE中的演进基站 eNB。
优选地, 所述 eNB还用于, 为所述 UE分配 LTE资源, 向所述 RNC 发送资源建立响应消息; 所述资源建立响应消息中携带有所述 eNB为所述 UE分配的 LTE资源。
优选地, 所述 RNC还用于, 将为所述 UE分配的 LTE资源通过空口配 置给所述 UE。
优选地, 所述 eNB还用于, 将为所述 UE分配的 LTE资源通过空口配 置给所述 UE。
本发明中,主 RRC控制锚点确定已接入 4G网络的 UE需要配置 3G资 源时, 将会通知辅 RRC控制锚点为 UE配置 4G网络资源, 并在完成对 UE 的 4G网络资源配置后, 通知主 RRC控制锚点, 以便主 RRC控制锚点在接 收到 3G核心网侧的用户数据后转发给辅 RRC控制锚点或 3G网络中的基 站。 这样, UE可以同时使用 3G网络和 4G网络的载波资源, 实现了 3G网 络和 4G网络的载波聚合, 还极大地提高了 UE速率和资源使用效率。 附图说明
图 1为 7G网络的组成结构示意图;
图 2为本发明实施例一的 3G网络和 4G网络载波聚合方法流程图; 图 3为本发明实施例二的 3G网络和 4G网络载波聚合方法流程图; 图 4为本发明实施例三的 3G网络和 4G网络载波聚合方法流程图; 图 5为本发明实施例四的 3G网络和 4G网络载波聚合方法流程图。 具体实施方式
本发明的基本思想为:使用 UMTS系统下的 RNC为主 RRC控制锚点, 使得 UE可以同时接入 UMTS和 LTE系统, 同时使用两个网络系统下的小 区资源, 极大地提高了 UE速率和资源使用效率。
本发明中, RNC为主 RRC控制锚点, 作为 UE的服务节点, 仅 RNC 保持与 CN之间的 IU接口信令连接, eNB 与演进的分组核心网 (EPC, Evolved Packet Core )之间的 SI接口没有信令连接, eNB为辅 RRC控制锚 点。
本发明中, 在 RNC与 eNB之间新增了以下消息:
资源建立请求消息, 主要用于, RNC向 eNB请求为 UE分配资源, 其 中包括 UE在 LTE系统的无线能力信息。
资源建立响应消息, 主要用于, eNB将为 UE分配的资源配置给 RNC。 资源删除请求消息, 主要用于, RNC向 eNB请求将 UE分配资源的删 除。
资源删除响应消息, 主要用于, eNB删除已分配给 UE分配的资源后 给 RNC的成功应答。
通过新增上述消息实现了 UE同时使用 LTE和 UMTS系统的无线资源, 从而提高了速率和资源利用效率。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
实施例一
图 2为本发明实施例一的 3G网络和 4G网络载波聚合方法流程图, 如 图 2所示, 并结合图 1 , 本示例的 3G网络和 4G网络载波聚合方法具体实 现方式为: UE在通过与 UMTS系统的 UU接口接入后, 在 UE、 eNB都支 持 3G载波和 4G载波同时聚合能力时,后续 RNC判断需要为 UE分配 LTE 系统下小区的资源, 则 RNC向 eNB发送资源建立请求消息, 请求 LTE系 统为此 UE分配资源, eNB为此 UE分配资源, 并向 RNC发送资源建立响 应消息, RNC收到该资源建立响应消息后, 将 eNB分配的消息通过 UU口 信令配置给 UE, 其信令可以为物理信道重配消息, 传输信道重配消息, 无 线承载重配消息等, UE接收到上述空口信令后, 使用此时配置的资源, 同 时使用 eNB和 RNC分配的 3G及 4G网络资源,向 RNC发送重配完成消息, 此后 RNC将 IU口下发的部分或全部数据转发给 eNB。通过此过程, UE同 时聚合 3G载波和 4G载波, 提高了上下行速率。
实施例二
图 3为本发明实施例二的 3G网络和 4G网络载波聚合方法流程图, 如 图 3所示, 并结合图 1 , 本示例的 3G网络和 4G网络载波聚合方法具体实 现方式为: UE在通过与 UMTS系统的 UU接口接入后, 在 UE、 eNB都支 持 3G载波和 4G载波同时聚合能力时,后续 RNC判断需要为 UE分配 LTE 系统下小区的资源, 则 RNC向 eNB发送资源建立请求消息, 请求 LTE系 统为此 UE分配资源, eNB为此 UE分配资源, 并通过 UU口信令( RRC 连接重配消息)将新分配的资源配置给 UE, UE接收到空口信令(RRC连 接重配消息)后, 同时使用 eNB和 RNC分配的资源, 并向 eNB发送重配 完成消息。 eNB向 RNC发送资源建立响应消息,使得 RNC可以将 IU口发 送的用户面数据部分或全部转发给 eNB。 通过此过程, UE同时聚合 3G载 波和 4G载波, 提高了上下行速率。
实施例三
图 4为本发明实施例三的 3G网络和 4G网络载波聚合方法流程图, 如 图 4所示, 并结合图 1 , 本示例的 3G网络和 4G网络载波聚合方法具体实 现方式为: UE在通过与 LTE系统的 UU接口和 UMTS的 UU接口同时接 入 UMTS系统和 LTE系统, 同时聚合这两个通信系统的无线资源。 当 RNC 判决需要释放 UE使用的 LTE系统资源时,通过 UU口向 UE发送重配消息, 释放此 UE使用的 eNB资源, 该重配消息可以为物理信道重配消息或者传 输信道重配消息, 或者为无线承载重配消息, UE释放掉相关资源后, 在 UU口向 RNC发送重配完成消息, RNC再向 eNB发送资源删除请求消息, 请求 eNB释放此 UE使用的资源, 当资源释放成功后, eNB向 RNC发送资 源删除响应消息。 此后 RNC不再将 IU口下发的用户面数据转发给 eNB。
实施例四
图 5为本发明实施例四的 3G网络和 4G网络载波聚合方法流程图, 如 图 4所示, 并结合图 1 , 本示例的 3G网络和 4G网络载波聚合方法具体实 现方式为: UE在通过与 LTE系统的 UU接口和 UMTS的 UU接口同时接 入 UMTS系统和 LTE系统, 同时聚合这两个通信系统的无线资源。 当 RNC 判决需要释放 UE使用的 LTE系统资源时, RNC再向 eNB 发送资源删除 请求消息, 此后 RNC不再将 IU口下发的用户面数据转发给 eNB。 eNB收 到该资源删除请求消息后, 通过 RRC连接重配消息通知 UE释放原来使用 的 LTE系统分配的资源, UE释放掉相关资源后, 在 UU口向 eNB发送重 配完成消息, 当 eNB资源释放成功后, eNB向 RNC发送资源删除响应消 本发明实施例还记载了一种 3G网络和 4G网络载波聚合系统,包括 3G 网络中的辅 RRC控制锚点和 4G网络中的主 RRC控制锚点; 其中:
所述主 RRC控制锚点, 用于确定为 UE分配 4G网络资源时, 通知辅 RRC控制锚点为所述 UE分配 4G网络资源。
本领域技术人员应当理解, 本发明的 3G网络和 4G网络载波聚合系统 是在现有的 7G网络架构上实现的, 对 7G网络架构本身并无改进, 主要是 对 7G网络架构中的相关网元及其处理流程进行了相应改进。 因此, 本发明 的 3G网络和 4G网络载波聚合系统可参照图 1所示的结构而理解。 以下, 将对主要改进之处进行详细描述。
其中, 所述主 RRC控制锚点还用于, 获取所述辅 RRC控制锚点为所 述 UE分配的 4G网络资源信息。
其中, 所述主 RRC控制锚点或所述辅 RRC控制锚点, 用于通过空口 对所述 UE进行 UMTS资源配置。
其中, 所述 3G网络为 UMTS, 所述主 RRC控制锚点为 UMTS中的 RNC; 所述 4G网络为 LTE, 所述辅 RRC控制锚点为 LTE中的 eNB。
其中, 所述 eNB还用于, 为所述 UE分配 LTE资源, 向所述 RNC发 送资源建立响应消息;所述资源建立响应消息中携带有所述 eNB为所述 UE 分配的 LTE资源。
所述 RNC还用于,将为所述 UE分配的 LTE资源通过空口配置给所述
UE。
或者, 所述 eNB还用于, 将为所述 UE分配的 LTE资源通过空口配置 给所述 UE。
所述 RNC确定释放 UE的 LTE资源时, 通过空口向所述 UE发送重配 消息,并在所述 UE释放 LTE资源后,向所述 eNB发送资源删除请求消息; 所述 eNB释放所述 UE的 LTE资源, 并向所述 RNC发送的资源删除 响应消息。
或者, 所述 RNC确定释放 UE的 LTE资源时, 向所述 eNB发送资源 删除请求消息;
所述 eNB接收到资源删除请求消息后, 通过空口向所述 UE发送 RRC 连接重配消息, 并在所述 UE释放 LTE资源后, 向所述 RNC发送的资源删 除响应消息。
本发明的 3G网络和 4G网络载波聚合系统中相关网元功能及网元间的 连接关系, 可参见前述实施例一至实施例四的相关描述而理解。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。
工业实用性
本发明的实施例的主 RRC控制锚点确定已接入 4G网络的 UE需要配 置 3G资源时,将会通知辅 RRC控制锚点为 UE配置 4G网络资源, 并在完 成对 UE的 4G网络资源配置后, 通知主 RRC控制锚点, 以便主 RRC控制 锚点在接收到 3G核心网侧的用户数据后转发给辅 RRC控制锚点或 3G网 络中的基站。 这样, UE可以同时使用 3G网络和 4G网络的载波资源, 实 现了 3G网络和 4G网络的载波聚合, 还极大地提高了 UE速率和资源使用 效率。

Claims

权利要求书
1、 一种 3G网络和 4G网络载波聚合方法, 其中, 所述方法包括: 主无线资源连接 RRC控制锚点确定为用户设备 UE分配 4G网络的资 源时, 通知辅 RRC控制锚点为所述 UE分配 4G网络资源; 并获取所述辅 RRC控制锚点为所述 UE分配的 4G网络资源信息。
2、 根据权利要求 1所述的方法, 其中, 所述方法还包括:
所述主 RRC控制锚点或所述辅 RRC控制锚点通过空口对所述 UE进行 4G网络资源配置。
3、 根据权利要求 1或 2所述的方法, 其中, 所述 3G网络为通用移动 通信系统 UMTS ,所述主 RRC控制锚点为 UMTS中的无线网络控制器 RNC; 所述 4G网络为长期演进系统 LTE, 所述辅 RRC控制锚点为 LTE中的演进 基站 eNB。
4、 根据权利要求 3所述的方法, 其中, 所述获取所述辅 RRC控制锚 点为所述 UE分配的 UMTS资源信息为:
所述 eNB为所述 UE分配 LTE资源 , 向所述 RNC发送资源建立响应 消息; 所述资源建立响应消息中携带有所述 eNB为所述 UE分配的 LTE资 源。
5、 根据权利要求 4所述的方法, 其中, 所述主 RRC控制锚点或所述 辅 RRC控制锚点通过空口对所述 UE进行 UMTS资源配置为:
所述 RNC将为所述 UE分配的 LTE资源通过空口配置给所述 UE。
6、 根据权利要求 5所述的方法, 其中, 所述 RNC通过空口向所述 UE 发送物理信道重配消息、 传输信道重配消息或无线承载重配消息, 实现对 所述 UE的 LTE资源配置; 其中, 所述物理信道重配消息、 传输信道重配 消息或无线承载重配消息中携带有为所述 UE分配的 LTE资源。
7、 根据权利要求 4所述的方法, 其中, 所述主 RRC控制锚点或所述 辅 RRC控制锚点通过空口对所述 UE进行 UMTS资源配置为: 所述 eNB将为所述 UE分配的 LTE资源通过空口配置给所述 UE。
8、 根据权利要求 7所述的方法, 其中, 所述 eNB通过空口向所述 UE 发送 RRC连接重配消息, 实现对所述 UE的 LTE资源配置; 其中, 所述 RRC连接重配消息中携带有为所述 UE分配的 LTE资源。
9、根据权利要求 1至 8中任一项所述的方法, 其中, 所述方法还包括: 所述 RNC确定释放 UE的 LTE资源时, 通过空口向所述 UE发送重配 消息,并在所述 UE释放 LTE资源后,向所述 eNB发送资源删除请求消息; 所述 eNB释放所述 UE的 LTE资源, 并向所述 RNC发送的资源删除 响应消息。
10、 根据权利要求 1至 8中任一项所述的方法, 其中, 所述方法还包 括:
所述 RNC确定释放 UE的 LTE资源时, 向所述 eNB发送资源删除请 求消息;
所述 eNB接收到资源删除请求消息后, 通过空口向所述 UE发送 RRC 连接重配消息, 并在所述 UE释放 LTE资源后, 向所述 RNC发送的资源删 除响应消息。
11、 一种 3G网络和 4G网络载波聚合系统, 包括 3G网络中的辅 RRC 控制锚点和 4G网络中的主 RRC控制锚点; 其中:
所述主 RRC控制锚点, 用于确定为 UE分配 4G网络资源时, 通知辅 RRC控制锚点为所述 UE分配 4G网络资源; 以及, 获取所述辅 RRC控制 锚点为所述 UE分配的 4G网络资源信息。
12、 根据权利要求 10或 11所述的系统, 其中,
所述主 RRC控制锚点或所述辅 RRC控制锚点, 用于通过空口对所述 UE进行 UMTS资源配置。
13、 根据权利要求 12所述的系统, 其中, 所述 3G网络为 UMTS, 所 述主 RRC控制锚点为 UMTS中的无线网络控制器 RNC;所述 4G网络为长 期演进系统 LTE, 所述辅 RRC控制锚点为 LTE中的演进基站 eNB。
14、 根据权利要求 13所述的系统, 其中,
所述 eNB还用于, 为所述 UE分配 LTE资源, 向所述 RNC发送资源 建立响应消息; 所述资源建立响应消息中携带有所述 eNB为所述 UE分配 的 LTE资源。
15、 根据权利要求 14所述的系统, 其中,
所述 RNC还用于,将为所述 UE分配的 LTE资源通过空口配置给所述 UE。
16、 根据权利要求 14所述的系统法, 其中,
所述 eNB还用于, 将为所述 UE分配的 LTE资源通过空口配置给所述
UE。
PCT/CN2012/074613 2011-08-11 2012-04-24 3g网络和4g网络载波聚合方法及系统 WO2013020392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110229760.6 2011-08-11
CN201110229760.6A CN102932923B (zh) 2011-08-11 2011-08-11 3g网络和4g网络载波聚合方法及系统

Publications (1)

Publication Number Publication Date
WO2013020392A1 true WO2013020392A1 (zh) 2013-02-14

Family

ID=47647580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074613 WO2013020392A1 (zh) 2011-08-11 2012-04-24 3g网络和4g网络载波聚合方法及系统

Country Status (2)

Country Link
CN (1) CN102932923B (zh)
WO (1) WO2013020392A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070374A1 (zh) * 2013-11-12 2015-05-21 华为技术有限公司 一种载波聚合方法及基站
CN104955151A (zh) * 2014-03-24 2015-09-30 中兴通讯股份有限公司 调度请求处理方法、通信节点及通信系统
ES2890804T3 (es) * 2016-07-29 2022-01-24 Guangdong Oppo Mobile Telecommunications Corp Ltd Método y dispositivo para establecer conexión secundaria
CN113170370A (zh) * 2019-09-23 2021-07-23 Oppo广东移动通信有限公司 系统互操作的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040114552A1 (en) * 2002-11-27 2004-06-17 Lim Kwang Jae Apparatus and method for transmitting packet in forward link of multibeam satellite communication system
CN101278515A (zh) * 2005-10-05 2008-10-01 诺基亚公司 对共享信道用户透明的下行链路同步信道
JP2010258898A (ja) * 2009-04-27 2010-11-11 Ntt Docomo Inc 移動通信方法及び無線アクセスネットワーク装置
CN102076055A (zh) * 2009-11-23 2011-05-25 中国移动通信集团公司 跨载波下行控制信道指示方法、系统及演进基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227749A (zh) * 2008-01-22 2008-07-23 中兴通讯股份有限公司 一种无线通信系统中捆绑基站的资源管理方法
CN101932111B (zh) * 2009-06-26 2015-04-01 中兴通讯股份有限公司 一种在增强型基站之间进行资源调度的方法及系统
US20110134831A1 (en) * 2009-12-03 2011-06-09 Nokia Corporation Architecture Providing Multi-System Carrier Aggregation
CN102843723B (zh) * 2011-06-23 2017-09-12 中兴通讯股份有限公司 一种联合传输的方法、系统及锚点网元

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040114552A1 (en) * 2002-11-27 2004-06-17 Lim Kwang Jae Apparatus and method for transmitting packet in forward link of multibeam satellite communication system
CN101278515A (zh) * 2005-10-05 2008-10-01 诺基亚公司 对共享信道用户透明的下行链路同步信道
JP2010258898A (ja) * 2009-04-27 2010-11-11 Ntt Docomo Inc 移動通信方法及び無線アクセスネットワーク装置
CN102076055A (zh) * 2009-11-23 2011-05-25 中国移动通信集团公司 跨载波下行控制信道指示方法、系统及演进基站

Also Published As

Publication number Publication date
CN102932923A (zh) 2013-02-13
CN102932923B (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
EP3580986B1 (en) Method, terminal and base station for supporting multiple scheduling requests in next-generation mobile communication system
US10631296B2 (en) Resource allocation method, apparatus, and wireless access system
US20210092719A1 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
JP6980836B2 (ja) データ送信方法、ユーザ機器、および基地局
CN108270540B (zh) 多点载波聚合配置以及数据转发方法
US8498666B2 (en) Carrier aggregation for two radio systems
US9136990B2 (en) Method and apparatus for multiple carrier utilization in wireless communications
US9629125B2 (en) Network node and method for allocating uplink radio resources
JP5931828B2 (ja) ユーザ端末、基地局及び無線通信方法
JP6208337B2 (ja) 簡単化されたfdd−tddキャリアアグリゲーション
US7969948B2 (en) Method for implementing HSDPA for TD-SCDMA
WO2015141478A1 (ja) ユーザ装置及びアップリンクデータ送信方法
WO2007000095A1 (en) A operating method of a user terminal supporting high speed downlink packet access
JP6235174B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2012065319A (ja) 二次セルの設定方法および関連する通信装置
CN101690378A (zh) 移动通信系统中的用户装置、基站装置和通信控制方法
WO2015039416A1 (zh) 混合自动重传请求确认的传输方法、用户设备和基站
WO2015098583A1 (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
EP3247148B1 (en) Rlc data packet offloading method, and base station
WO2013020392A1 (zh) 3g网络和4g网络载波聚合方法及系统
WO2012155770A1 (zh) 3g网络和4g网络载波聚合方法及系统
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
JP6410779B2 (ja) ユーザ端末及び無線通信方法
WO2014110690A1 (en) Method, apparatus and computer program product for determining uplink resources for transmitting harqack in tdd ul-dl reconfiguration
WO2012019481A1 (zh) 一种hsupa物理资源的配置方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821848

Country of ref document: EP

Kind code of ref document: A1