WO2013020349A1 - 利用堆肥发酵热量为沼气发酵物料增温装置 - Google Patents

利用堆肥发酵热量为沼气发酵物料增温装置 Download PDF

Info

Publication number
WO2013020349A1
WO2013020349A1 PCT/CN2012/000256 CN2012000256W WO2013020349A1 WO 2013020349 A1 WO2013020349 A1 WO 2013020349A1 CN 2012000256 W CN2012000256 W CN 2012000256W WO 2013020349 A1 WO2013020349 A1 WO 2013020349A1
Authority
WO
WIPO (PCT)
Prior art keywords
biogas
temperature
fermentation
evaporator
condenser
Prior art date
Application number
PCT/CN2012/000256
Other languages
English (en)
French (fr)
Inventor
郑炜
Original Assignee
Zheng Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zheng Wei filed Critical Zheng Wei
Publication of WO2013020349A1 publication Critical patent/WO2013020349A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/60Heating or cooling during the treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the technical scheme relates to a temperature increasing device, in particular to a method for warming up a biogas fermentation material by using fermenting heat.
  • Biogas is a kind of combustible gas produced by various microorganisms, which is isolated from air and subjected to microbial fermentation under suitable temperature and humidity. Biogas fermentation is greatly affected by the temperature of the material. Generally, the biogas fermentation is divided into three fermentation temperature zones, that is, the normal temperature fermentation zone is 10 ⁇ 26 °C ; the medium temperature fermentation zone is 28 ⁇ 38 °C, and the optimum temperature is 35 °C; The area is 46 ° C ⁇ 60 ° C, commercial biogas projects using medium temperature and high temperature fermentation. In order to ensure the continuous and stable supply of biogas all the year round, it is not affected by the season.
  • the object of the present invention is to provide a method for warming up a biogas fermentation material by utilizing the heat of composting to solve the above problems, and solving the problem that an exogenous heat source is required for heating the current biogas material.
  • using the composting fermentation heat for the biogas fermentation material warming device comprises a composting fermentation device and a biogas fermentation device, an evaporator is installed around the composting fermentation device, and a condenser is installed in the biogas fermentation device, the evaporator
  • the condenser and the condenser are respectively connected to the compressor through a pipe, and the evaporator and the condenser and the connecting pipe have a thermal phase change working medium.
  • the composting fermentation device and the biogas fermentation device are respectively equipped with temperature sensors, and the temperature sensors are connected to the compressor power controller.
  • the technical scheme combines the composting fermentation device with the biogas fermentation device, the evaporator is installed around the composting fermentation device, the condenser is installed in the biogas fermentation device, the evaporator and the condenser and the connecting pipe have a thermal phase Variable working fluid, using the reverse Carnot cycle, that is, the thermal phase change working medium changes phase between liquid and gaseous state, transferring heat from the evaporator to the condenser, and transferring the heat energy generated by the compost to the biogas fermentation material.
  • the biogas residue and biogas slurry can be put into the compost dry material to adjust the moisture of the compost material. Since the composting fermentation device and the biogas fermentation device are equipped with temperature sensors, the temperature change can be monitored in real time, and whether the heat pump heating system is turned on according to the temperature in the biogas fermentation device is determined.
  • FIG. 1 is a schematic structural view of the technical solution.
  • the heat of composting is used to heat the biogas fermentation material, including a composting fermentation device 1 and a biogas fermentation device 2, and an evaporator 3 is installed around the composting fermentation device 1, biogas.
  • a condenser 4 is installed in the fermentation apparatus 2, and the evaporator 3 and the condenser 4 are respectively connected to the compressor 5 through a pipe, and the evaporator 3 and the condenser 4 and the connecting pipe have a thermal phase change working medium.
  • the thermal phase change medium is responsible for absorbing heat from the composting fermentation apparatus 1, and in the condenser 4, the hot phase change working medium releases heat to the biogas fermentation apparatus 2.
  • the evaporator 3 and the condenser 4 are respectively connected to the compressor 5 through a pipeline, and the compressor 5 is responsible for sucking the low-temperature low-pressure hot phase change working gas in the evaporator 3, and after being pressed by the piston, it becomes a hot phase change working medium of high temperature and high pressure.
  • the high temperature and high pressure hot phase change working gas is condensed into a liquid, which is released during the condensation process.
  • the heat is used to warm the biogas material; the condensed hot phase change working fluid enters the evaporator 3 in the composting fermentation device 1 again, and is heated to vaporize under the high temperature of the compost, and enters the next cycle.
  • the heat generated in the compost fermentation device 1 is transferred to the biogas fermentation device 2 by a phase change between the liquid and the gas through the hot phase change working medium.
  • the composting fermentation apparatus 1 is equipped with a temperature sensor 6a
  • the biogas fermentation apparatus 2 is equipped with a temperature sensor 6b
  • the temperature sensor 6a and the temperature sensor 6b are respectively connected to the compressor power supply controller 7.
  • the vertical distance of the temperature sensor 6a from the compost surface is not less than 5 cm, and the distance from the evaporator 3 is not less than 50 cm; the distance between the temperature sensor 6b and the condenser 4 is not less than 10 cm, and the distance from the inner wall of the container is not more than 10 cm.
  • the temperature of the composting fermentation apparatus 1 and the biogas fermentation apparatus 2 is sensed by the temperature sensor 6a and the temperature sensor 6b, and it is determined whether or not the biogas material in the biogas fermentation apparatus 2 is heated.
  • the temperature sensor 6a and the temperature sensor 6b transmit signals to the compressor power controller 7, plus
  • the temperature system is started to warm the biogas material; when the temperature of the biogas fermentation material is higher than 36 °C, the temperature sensor 6a and the temperature sensor 6b transmit the signal to the compressor power controller 7, and the heating device stops heating the biogas material. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Abstract

一种利用堆肥发酵热量为沼气发酵物料增温装置,包括堆肥发酵装置(1)和沼气发酵装置(2),堆肥发酵装置(1)周围安装有蒸发器(3),沼气发酵装置(2)内安装有冷凝器(4),蒸发器(3)和冷凝器(4)分别通过管道与压缩机(5)相连,蒸发器(3)和冷凝器(4)以及连接管道内有热相变工质。

Description

利用堆肥发酵热量为沼气发酵物料增温装置
一、 技术领域
本技术方案涉及的是增温装置, 具体的是一种利用堆肥发酵热量为沼气发 酵物料增温装置。
二、 背景技术
沼气是各种有机物质, 在隔绝空气, 并在适宜的温度、 湿度下, 经过微生 物的发酵作用产生的一种可燃烧气体。 沼气发酵受物料温度影响大, 通常沼气 发酵分为三个发酵温度区间, 即常温发酵区为 10〜26°C ; 中温发酵区为 28〜 38°C , 最适温度为 35°C ; 高温发酵区为 46°C〜60°C, 商业化沼气工程使用中温 和高温发酵。 为保证沼气常年持续稳定供应, 不受季节影响, 除对沼气池 (灌) 保温外, 还需要为发酵物料补充因热传递而损失的热能。 目前, 为沼气物料加 热一般来源于外源性热源, 对能源造成很大的浪费。 因此, 需要发明一种为沼 气物料增温的装置。
三、 发明内容
本技术方案的发明目的是针对上述问题提供一种利用堆肥发酵热量为沼气 发酵物料增温装置, 解决目前沼气物料加热还需外源性热源的问题。
本技术方案通过以下技术方案来实现: 利用堆肥发酵热量为沼气发酵物料 增温装置包括堆肥发酵装置和沼气发酵装置, 堆肥发酵装置周围安装有蒸发器, 沼气发酵装置内安装有冷凝器, 蒸发器和冷凝器分别通过管道与压缩机相连, 蒸发器和冷凝器以及连接管道内有热相变工质。
堆肥发酵装置和沼气发酵装置分别装有温度传感器, 温度传感器与压缩机 电源控制器相连接。 采用上述技术方案的积极效果: 本技术方案将堆肥发酵装置与沼气发酵装 置联合建设, 堆肥发酵装置周围安装蒸发器, 沼气发酵装置内安装冷凝器, 蒸 发器和冷凝器以及连接管道中有热相变工质, 利用逆向卡诺循环, 即热相变工 质在液态和气态之间发生相变, 将热量从蒸发器中传递到冷凝器中, 即将堆肥 产生的热能传递给沼气发酵物料, 来维持沼气发酵所需要的恒定发酵温度; 另 外, 堆肥发酵过程如有渗沥液, 可由沼气处理, 沼气的沼渣和沼液可以放入堆 肥干物料中, 调节堆肥物料水分, 两者可以互相补充利用; 由于堆肥发酵装置 与沼气发酵装置均安装有温度传感器, 可实时监控温度的变化, 根据沼气发酵 装置内的温度高低决定是否开启热泵加温系统。
四、 附图说明
图 1是本技术方案的结构示意图。
图中: 1堆肥发酵装置, 2沼气发酵装置, 3蒸发器, 4冷凝器, 5压縮机, 6a、 6b温度传感器, 7压缩机电源控制器。
五、 具体实施方式: 下面结合附图对本技术方案作进一步说明:
图 1 是本技术方案的结构示意图, 如图所示, 利用堆肥发酵热量为沼气发 酵物料增温装置, 包括堆肥发酵装置 1和沼气发酵装置 2, 堆肥发酵装置 1周围 安装有蒸发器 3, 沼气发酵装置 2内安装有冷凝器 4, 蒸发器 3和冷凝器 4分别 通过管道与压缩机 5相连, 蒸发器 3和冷凝器 4以及连接管道内有热相变工质。 在蒸发器 3中, 热相变工质负责从堆肥发酵装置 1 中吸收热量, 而在冷凝器 4 中, 热相变工质向沼气发酵装置 2释放热量。 蒸发器 3和冷凝器 4分别通过管 道与压缩机 5相连, 压缩机 5负责吸入蒸发器 3中的低温低压的热相变工质气 体, 经过活塞打压后, 成为高温高压的热相变工质气体, 循环到沼气发酵装置 2 中的冷凝器 4后, 高温高压的热相变工质气体冷凝成液体, 冷凝的过程中释放 热量, 为沼气物料进行加温; 冷凝后的热相变工质液体再次进入堆肥发酵装置 1 中的蒸发器 3, 在堆肥高温的驱使下吸热汽化, 进入下一个循环。通过热相变工 质不停地在液体和气体之间发生相变, 将堆肥发酵装置 1 中产生的热量传递给 沼气发酵装置 2。
为了在加热时能够对温度进行控制, 堆肥发酵装置 1装有温度传感器 6a, 沼气发酵装置 2装有温度传感器 6b, 温度传感器 6a和温度传感器 6b分别与压 缩机电源控制器 7相连接。 实际应用时, 温度传感器 6a距离堆肥表面垂直距离 不低于 5cm, 与蒸发器 3的距离不少于 50cm; 温度传感器 6b与冷凝器 4的距 离不低于 10cm, 与容器内壁距离不大于 10cm。 通过温度传感器 6a和温度传感 器 6b感应堆肥发酵装置 1和沼气发酵装置 2的温度, 决定是否对沼气发酵装置 2中的沼气物料进行加热。例如, 在中温沼气工程中, 当沼气发酵物料温度低于 32°C且堆肥发酵装置周边温度高于 10°C时, 温度传感器 6a和温度传感器 6b将 信号传给压缩机电源控制器 7, 加温系统启动, 为沼气物料加温; 当沼气发酵物 料温度高于 36°C时, 温度传感器 6a和温度传感器 6b再次将信号传给压缩机电 源控制器 7, 加温装置停止为沼气物料加温。

Claims

1、 一种利用堆肥发酵热量为沼气发酵物料增温装置, 其特征在于: 该装置 包括堆肥发酵装置 (1) 和沼气发酵装置 (2), 堆肥发酵装置 (1) 周围安装有 蒸发器 (3), 沼气发酵装置 (2) 内安装有冷凝器 (4), 蒸发器 (3) 和冷凝器
(4) 分别通过管道与压縮机 (5) 相连, 蒸发器 (3) 和冷凝器 (4) 以及连接 管道内有热相变工质。
2、 根据权利要求 1所述的利用堆肥发酵热量为沼气发酵物料增温装置, 其 特征在于: 所述的堆肥发酵装置 (1) 和沼气发酵装置 (2) 分别装有温度传感 器 (6a、 6b), 温度传感器 (6a、 6b) 与压缩机电源控制器 (7) 相连接。
PCT/CN2012/000256 2011-08-05 2012-02-28 利用堆肥发酵热量为沼气发酵物料增温装置 WO2013020349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120281908.6 2011-08-05
CN2011202819086U CN202187002U (zh) 2011-08-05 2011-08-05 利用堆肥发酵热量为沼气发酵物料增温装置

Publications (1)

Publication Number Publication Date
WO2013020349A1 true WO2013020349A1 (zh) 2013-02-14

Family

ID=45918463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000256 WO2013020349A1 (zh) 2011-08-05 2012-02-28 利用堆肥发酵热量为沼气发酵物料增温装置

Country Status (2)

Country Link
CN (1) CN202187002U (zh)
WO (1) WO2013020349A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997405A (en) * 1974-03-26 1976-12-14 Hans Muller Method and arrangement for use with biochemical reactions
CN2651250Y (zh) * 2003-07-02 2004-10-27 武绍之 垃圾堆肥发电装置
CN201175584Y (zh) * 2008-02-19 2009-01-07 李相斌 沼液真空浓缩装置
CN101603001A (zh) * 2009-07-20 2009-12-16 北京科技大学 一种污水源热泵恒温型沼气池
CN101628778A (zh) * 2009-07-28 2010-01-20 刘犇 污泥热干化与污泥消化发酵联合应用的方法
CN101899384A (zh) * 2009-05-31 2010-12-01 北京智慧剑科技发展有限责任公司 一种太阳能热管发酵设备及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997405A (en) * 1974-03-26 1976-12-14 Hans Muller Method and arrangement for use with biochemical reactions
CN2651250Y (zh) * 2003-07-02 2004-10-27 武绍之 垃圾堆肥发电装置
CN201175584Y (zh) * 2008-02-19 2009-01-07 李相斌 沼液真空浓缩装置
CN101899384A (zh) * 2009-05-31 2010-12-01 北京智慧剑科技发展有限责任公司 一种太阳能热管发酵设备及方法
CN101603001A (zh) * 2009-07-20 2009-12-16 北京科技大学 一种污水源热泵恒温型沼气池
CN101628778A (zh) * 2009-07-28 2010-01-20 刘犇 污泥热干化与污泥消化发酵联合应用的方法

Also Published As

Publication number Publication date
CN202187002U (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
CN102210249B (zh) 一种食用菌工厂化栽培节能控温系统
CN104180635A (zh) 一种变温交变气流的厚层中药材干燥系统和方法
CN204983132U (zh) 一种环保智能建筑装置
CN101633940B (zh) 连续固态发酵与产物气提热泵耦合分离的方法及设备
CN102660454A (zh) 厌氧干发酵设备以及利用其的厌氧干发酵工艺
WO2013020349A1 (zh) 利用堆肥发酵热量为沼气发酵物料增温装置
CN206404057U (zh) 一种活性炭过滤器消毒装置
MY187861A (en) Method and system for drying biomass
CN201976524U (zh) 食用菌工厂化栽培节能控温系统
CN210512512U (zh) 一种用于烘干的分体式双动力空气源热泵
CN205046129U (zh) 一种乳酸菌发酵罐
CN202152322U (zh) 增加好氧堆肥通气量同时进行热能回收的装置
CN202912769U (zh) 一种太阳能微生物反应罐
CN202902720U (zh) 冰浆水源热泵
CN207933446U (zh) 一种沼气池保温加热系统
CN205690805U (zh) 一种利用机组冷凝热作为真空升华热源的真空冻干设备
CN103521506A (zh) 双加热式餐厨垃圾处理机
CN202598647U (zh) 用于厌氧干发酵设备的地热及壁热采暖系统
CN202219095U (zh) 蒸发器热量循环系统
CN206247342U (zh) 一种生活垃圾焚烧发电厂冬季垃圾解冻系统
CN207639283U (zh) 一种太阳能蔬菜大棚保温装置
CN206121193U (zh) 芪龙胶囊酶粉带式干燥机温控装置
CN204665741U (zh) 太阳能吸附式制冷实验系统
CN201180132Y (zh) 太阳能沼气发酵装置
CN102901325B (zh) 纸质文件真空干燥机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822309

Country of ref document: EP

Kind code of ref document: A1