WO2013020276A1 - Analyseur optique de brillouin en domaine temporel d'un amplificateur raman laser intégré à fibre optique chaotique - Google Patents

Analyseur optique de brillouin en domaine temporel d'un amplificateur raman laser intégré à fibre optique chaotique Download PDF

Info

Publication number
WO2013020276A1
WO2013020276A1 PCT/CN2011/078179 CN2011078179W WO2013020276A1 WO 2013020276 A1 WO2013020276 A1 WO 2013020276A1 CN 2011078179 W CN2011078179 W CN 2011078179W WO 2013020276 A1 WO2013020276 A1 WO 2013020276A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
laser
time domain
brillouin
circulator
Prior art date
Application number
PCT/CN2011/078179
Other languages
English (en)
Chinese (zh)
Inventor
张在宣
王剑锋
金永兴
余向东
龚华平
李裔
金尚忠
Original Assignee
中国计量学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国计量学院 filed Critical 中国计量学院
Priority to PCT/CN2011/078179 priority Critical patent/WO2013020276A1/fr
Publication of WO2013020276A1 publication Critical patent/WO2013020276A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/319Reflectometers using stimulated back-scatter, e.g. Raman or fibre amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the invention belongs to the technical field of distributed optical fiber sensors, and in particular relates to a Brillouin optical time domain analyzer for a chaotic laser related integrated fiber Raman amplifier.
  • the fiber Brillouin optical time domain analyzer in order to improve the spatial resolution of the sensor, a narrow pulse light source is used, but due to the nonlinear effect of the fiber, the incident power of the fiber is limited, so that long distance and high are realized.
  • the spatial resolution of the fiber Brillouin optical time domain analyzer is very difficult.
  • the traditional method of compressing the pulse width of the laser, the method of double pulse pair, is difficult to achieve long-distance spatial resolution of less than 1 meter, and the book
  • the spatial resolution is related to the measured length, and the system's signal-to-noise ratio is also low.
  • the laser light time domain reflectometer has achieved remarkable results, achieving a centimeter-level spatial resolution that is not limited by distance, in order to apply the chaotic laser correlation principle to the distribution.
  • Fiber optic sensors create the conditions.
  • T. Horiguchi et al. invented the Brillouin optical time domain analyzer, adding a coherent pump laser at the other end of the fiber to realize Brillouin amplification, using coherence.
  • Amplified stimulated Brillouin scattering enhances the signal and improves the signal-to-noise ratio of the system.
  • the object of the present invention is to provide a Brillouin optical time domain analyzer for a chaotic laser-related integrated fiber Raman amplifier according to the deficiencies of the prior art.
  • the invention has the characteristics of ultra-long-range, high spatial resolution and high measurement accuracy.
  • the chaotic laser-related fiber Brillouin optical time domain analyzer of the present invention utilizes the chaotic laser correlation principle, the fiber stimulated Raman amplification effect, and the coherently amplified Brillouin scattered light.
  • Fiber Brillouin light time made by strain, temperature effect and optical time domain reflection principle Domain analyzer including semiconductor LD laser, first polarization controller, first fiber circulator, first fiber splitter, dimmable attenuator, second polarization controller, one-way device, erb-doped fiber amplifier EDFA, Second fiber splitter, optical modulator, second fiber circulator, optical heterodyne receiver module, digital signal processor, third fiber circulator, narrowband reflection filter, pump-signal coupler, fiber pull Man pump laser, sensing fiber, fourth fiber circulator, fiber grating reflection filter and computer.
  • the semiconductor LD laser is connected to an input port of the first fiber circulator via a first polarization controller, and the other output end of the first fiber circulator is connected to the input end of the first fiber splitter, the first fiber splitter An output end is connected to the input end of the tunable optical attenuator, and the output end of the tunable optical attenuator is connected to an input end of the optical circulator through a second polarization controller, and then fed back to the semiconductor LD laser via the first polarization controller;
  • the other output end of the first fiber optic splitter is connected to the EDFA with a doped fiber amplifier via a one-way device, the output of the EDFA of the doped fiber amplifier is connected to the input of the second fiber splitter, and one of the second fiber splitters
  • the output end is connected to the optical modulator, one output end of the optical modulator is connected to the input end of the second optical fiber circulator, and the other output end of the second optical fiber splitter is connected to the input end of the third optical fiber circul
  • the optical heterodyne receiving module, the digital signal processor and the computer will heterodise the chaotic laser signal of the sensing fiber and the local reference light, and perform autocorrelation processing and fast Fourier transform demodulation to obtain a high field of the 100 km sensing fiber.
  • the strain and temperature information with a spatial resolution of the order of centimeters is transmitted to the remote monitoring network via a wireless network or the Internet; the other output of the optical modulator 19 is connected to the computer 30.
  • the chaotic laser is a semiconductor LD laser, a first polarization controller, a first fiber circulator, a first fiber splitter,
  • the tunable optical attenuator consists of a second polarization controller.
  • the semiconductor LD laser is a DFB laser with an operating wavelength of 1550. Onrn, the output power is 10dBm.
  • the branch ratio of the first fiber splitter is 20:80.
  • the light modulator is a Mach-Zehnder modulator (MZM).
  • MZM Mach-Zehnder modulator
  • a computer controlled light modulator reduces the frequency of the laser by l lGHz.
  • the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer is a photodetector with a frequency response of 2 Ghz or more, low noise broadband front
  • the amplifier is integrated with a chip and a main amplifier.
  • the chaotic laser-related integrated fiber Raman amplifier has a Brillouin optical time domain analyzer, and the sensing fiber is a 100 km single mode communication G652 fiber or a 100 km LEAF fiber.
  • the fiber Raman laser is a fiber Raman laser with a power ranging from 100 mW to 1200 mw and a wavelength of 1450 nm continuous operation.
  • Back-to-pumped fiber Raman amplifier with sensing fiber (Fig. 1) Since the fiber Raman amplifier has bidirectional amplification characteristics and different unidirectional amplification characteristics of the fiber Brillouin amplifier, back pump or forward pump can be used. Way of working.
  • the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer has a center wavelength of 1450 nm, a spectral bandwidth of 0.3 nm, and an isolation greater than 35 dB. Suppressed fiber Raman laser 1450nm backscattered light.
  • the chaotic laser-related integrated fiber Raman amplifier Brillouin optical time domain analyzer has a center wavelength of 1550.08 nm and a spectral bandwidth of 0.1 nm. Other light is filtered out, allowing the Stokes Brillouin scattering signal light of the sensing fiber to be received by the fourth fiber circulator and the local optical heterodyne.
  • the digital signal processor uses a high-speed 5G sampling rate with autocorrelation processing and fast Fourier transform software 500MHz bandwidth digital signal processor.
  • the semiconductor laser continuously generates a random undulating chaotic laser when it receives optical feedback.
  • the correlation curve has a ⁇ function shape.
  • the bandwidth of the nonlinear chaotic oscillation of the semiconductor laser can be greater than 15 GHz, achieving high resolution and high precision independent of the measurement length. Measurement.
  • the cross-correlation peak is related to the intensity of the probe light.
  • the signal and the reference light are collected, accumulated and correlated by a digital signal processor and a computer to obtain information on strain and temperature on the sensing fiber.
  • the signal-to-noise ratio of the system determines the measurement length.
  • the detecting laser of the incident fiber interacts with the nonlinear wave of the acoustic wave in the optical fiber, and the optical wave generates acoustic waves by electrostriction, causing periodic modulation of the refractive index of the optical fiber (refractive index grating), generating Brillouin scattering with frequency downshift Light, the frequency shift ⁇ ⁇ of the back Brillouin scattering produced in the fiber is:
  • n is the refractive index at the wavelength ⁇ of the incident light
  • V is the speed of sound in the fiber
  • the Brillouin scattered light frequency shift in the fiber V 8 has strain and temperature effects:
  • the phonon frequency of the fiber molecule is 13.2 ⁇ .
  • the beneficial effects of the invention are as follows:
  • the Brillouin optical time domain analyzer of the chaotic laser-related integrated fiber Raman amplifier proposed by the invention adopts the chaotic laser correlation principle, and the chaotic laser has a wide bandwidth, and passes the signal light and the local light.
  • Correlated processing achieves high spatial resolution, effectively improves sensor reliability and spatial resolution, increases the number of pump photons entering the sensing fiber, improves the signal-to-noise ratio of the sensor system, and increases the measurement length of the sensor;
  • Continuously operating high power fiber Raman lasers The pump source of the new Brillouin optical time domain analyzer replaces the coherently pumped narrowband laser, overcoming the difficulty of requiring the rigorous locking of the probe laser and pump laser frequencies in the fiber Brillouin optical time domain analyzer.
  • the high-power fiber Raman laser produces a strong laser that achieves stimulated Raman scattered light amplification in a single-mode fiber instead of narrow-band Brillouin amplification, increasing the gain of stimulated Brillouin scattered light that is back-coherently amplified.
  • the signal-to-noise ratio of the system is increased, the measurement length is increased, and the accuracy of simultaneous measurement of strain and temperature is improved.
  • Figure 1 is a schematic block diagram showing the structure of the present invention.
  • a Brillouin optical time domain analyzer of a chaotic laser-related integrated fiber Raman amplifier of the present invention includes a semiconductor LD laser 10, a first polarization controller 11, a first fiber circulator 12, and a first fiber splitter. 13.
  • the semiconductor LD laser 10 is connected to an input port of the first fiber circulator 12 via the first polarization controller 11, and the output end of the first fiber circulator 12 is connected to the input end of the first fiber splitter 13, the first fiber is divided into An output of the illuminator 13 is connected to the input of the tunable optical attenuator 14, and the output of the tunable optical attenuator 14 is connected to the other input of the first optical circulator 12 via a second polarization controller 15, and
  • the first polarization controller 11 feeds back the semiconductor LD laser 10; the other output end of the first fiber splitter 13 is connected to the erbium-doped fiber amplifier EDFA17 via the one-way device 16, and the output of the EDFA17 is coupled with the second and second.
  • An input end of the optical fiber splitter 18 is connected, an output end of the second optical fiber splitter 18 is connected to the optical modulator 19, and an output end of the optical modulator 19 is connected to an input end of the second optical fiber circulator 20;
  • the other output of the splitter 18 is connected to the third fiber circulator 23, and one output of the third fiber circulator 23 is connected to the narrow band reflection filter 24, and the other end of the narrow band reflection filter 24 is pump-signal Coupler 25
  • the input is connected, the output of the pump-signal coupler 25 is connected to the sensing fiber 27; the other input of the pump-signal coupler 25 is connected to the fiber Raman pump laser 26, and the third fiber circulator 23 is The other output is connected to one end of the fourth fiber circulator 28, the fourth fiber circulator 28 is connected to the fiber grating reflection filter 29, and the output end of the fourth fiber circulator 28 is connected to the other end of the second fiber circulator 20.
  • the output of the second fiber circulator 20 is connected to the optical heterodyne receiver module 21, the optical heterodyne receiver module 21 is connected to the computer 30 via a digital signal processor 22, and the other output of the optical modulator 19 is connected to the computer 30.
  • the chaotic laser is amplified by the fiber amplifier EDFA 17 and split into two turns.
  • One chaotic laser passes through the optical modulator 19, which reduces the frequency of the laser by 11 GHz as the local reference light, and the other chaotic laser passes through the pump-signal coupler.
  • ⁇ v B passes through the fiber grating reflection filter, filtering out v. , v 0 + v B , obtain V 0-V B signal light, and the local reference light is passed through the optical heterodyne receiving module, the digital signal processor 22 and the computer 30 demodulate and perform autocorrelation processing and fast Fourier transform,
  • the optical time domain reflection principle is located to obtain high spatial resolution strain and temperature information on each segment of the sensing fiber.
  • the invention is made by using chaotic laser correlation principle, fiber stimulated Raman scattering light amplification effect and coherent amplified Brillouin scattering light strain, temperature effect and optical time domain reflection principle; the invention adopts chaotic laser correlation principle in time domain
  • the random fluctuation of the optical pulse sequence improves the spatial resolution of the sensor system by the correlation processing of the back-detected light of the sensing fiber and the local reference light; and the continuous operation of the high-power fiber Raman laser as the Brillouin light
  • the domain analyzer's pumping source overcomes the difficulty of fiber-optic Brillouin optical time domain analyzers requiring tight locking of the probe laser and pump laser frequencies, replacing the narrowband fiber Brillouin amplifier with a wideband fiber Raman amplifier, adding back
  • the gain of the stimulated Brillouin scattered light, which is amplified increases the signal-to-noise ratio of the sensor system, and accordingly increases the measurement length and measurement accuracy of the sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

L'invention concerne un analyseur optique de Brillouin en domaine temporel d'un amplificateur Raman laser intégré à fibre optique chaotique, fabriqué en utilisant un principe de chaos laser, un effet d'amplification lumineuse par diffusion Raman stimulée par fibre optique, une portion de lumière diffusée de Brillouin amplifiée de façon cohérente, un effet de température et un principe de réflexion optique en domaine temporel. Dans l'analyseur optique de Brillouin en domaine temporel de l'amplificateur Raman laser intégré à fibre optique chaotique, la résolution spatiale d'un système de détection est améliorée par un traitement de corrélation d'une lumière de rétro-sondage d'une fibre optique de détection avec une lumière de référence locale. La difficulté engendrée par le fait que l'analyseur optique de Brillouin en domaine temporel à fibre optique nécessite un verrouillage rigoureux sur la fréquence d'un laser de sondage et d'un laser de pompage est résolue en employant un laser Raman à fibre optique de forte puissance à fonctionnement continu en tant que source de lumière de pompage pour l'analyseur optique de Brillouin en domaine temporel. En utilisant un amplificateur Raman à fibre optique à large bande en replacement d'un amplificateur de Brillouin à fibre optique à bande étroite, le gain de la lumière diffusée stimulée de Brillouin amplifiée avec corrélation arrière est accru, le rapport signal-bruit du système de détection est amélioré et, de façon correspondante, la longueur de mesure et la précision de mesure du système de détection sont améliorées.
PCT/CN2011/078179 2011-08-10 2011-08-10 Analyseur optique de brillouin en domaine temporel d'un amplificateur raman laser intégré à fibre optique chaotique WO2013020276A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078179 WO2013020276A1 (fr) 2011-08-10 2011-08-10 Analyseur optique de brillouin en domaine temporel d'un amplificateur raman laser intégré à fibre optique chaotique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078179 WO2013020276A1 (fr) 2011-08-10 2011-08-10 Analyseur optique de brillouin en domaine temporel d'un amplificateur raman laser intégré à fibre optique chaotique

Publications (1)

Publication Number Publication Date
WO2013020276A1 true WO2013020276A1 (fr) 2013-02-14

Family

ID=47667859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078179 WO2013020276A1 (fr) 2011-08-10 2011-08-10 Analyseur optique de brillouin en domaine temporel d'un amplificateur raman laser intégré à fibre optique chaotique

Country Status (1)

Country Link
WO (1) WO2013020276A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158587A (zh) * 2014-07-07 2014-11-19 太原理工大学 基于周期开关键控混沌信号的光时域反射方法
CN104655185A (zh) * 2015-01-04 2015-05-27 西南交通大学 一种基于强度调制探测光的相干布里渊光时域分析传感系统
CN107727122A (zh) * 2017-08-14 2018-02-23 闽南师范大学 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
CN108180853A (zh) * 2017-12-22 2018-06-19 太原理工大学 一种基于混沌调制的布里渊光时域反射应变检测装置
CN108827175A (zh) * 2018-05-02 2018-11-16 太原理工大学 基于宽频混沌激光的分布式光纤动态应变传感装置及方法
CN110600973A (zh) * 2019-08-16 2019-12-20 太原理工大学 基于非线性光纤有源光反馈产生宽带混沌激光装置及方法
CN111637910A (zh) * 2020-05-26 2020-09-08 太原理工大学 时域差分高速混沌布里渊光相干域监测装置及方法
CN112880865A (zh) * 2021-03-25 2021-06-01 太原理工大学 超长距离的高空间分辨率拉曼光纤双参量传感系统和方法
CN113483914A (zh) * 2021-05-25 2021-10-08 太原理工大学 基于少模光纤的混沌bocda温度应变测量装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209577B2 (ja) * 1992-06-12 2001-09-17 安藤電気株式会社 Botdaの自動検査回路
US20050213869A1 (en) * 2004-03-26 2005-09-29 Anthony Brown System and method for resolution enhancement of a distributed sensor
CN1831560A (zh) * 2006-04-21 2006-09-13 太原理工大学 基于半导体激光器的混沌激光测距方法及装置
CN101162158A (zh) * 2007-11-15 2008-04-16 中国计量学院 超远程分布式光纤拉曼与布里渊光子传感器
CN101226100A (zh) * 2008-01-31 2008-07-23 太原理工大学 混沌光时域反射仪及其测量方法
CN201104243Y (zh) * 2007-11-15 2008-08-20 中国计量学院 一种超远程分布式光纤拉曼与布里渊光子传感器
CN101762290A (zh) * 2010-02-03 2010-06-30 电子科技大学 基于分布式拉曼放大的布里渊光时域分析系统
WO2011022829A1 (fr) * 2009-08-27 2011-03-03 University Of New Brunswick Système et procédé d’analyse brillouin
CN102109362A (zh) * 2010-11-26 2011-06-29 中国计量学院 融合光纤布里渊频移器的分布式光纤布里渊传感器
CN201885732U (zh) * 2010-11-26 2011-06-29 中国计量学院 一种融合光纤布里渊频移器的分布式光纤布里渊传感器
CN102322810A (zh) * 2011-08-10 2012-01-18 中国计量学院 混沌激光相关集成光纤拉曼放大器的布里渊光时域分析器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209577B2 (ja) * 1992-06-12 2001-09-17 安藤電気株式会社 Botdaの自動検査回路
US20050213869A1 (en) * 2004-03-26 2005-09-29 Anthony Brown System and method for resolution enhancement of a distributed sensor
CN1831560A (zh) * 2006-04-21 2006-09-13 太原理工大学 基于半导体激光器的混沌激光测距方法及装置
CN101162158A (zh) * 2007-11-15 2008-04-16 中国计量学院 超远程分布式光纤拉曼与布里渊光子传感器
CN201104243Y (zh) * 2007-11-15 2008-08-20 中国计量学院 一种超远程分布式光纤拉曼与布里渊光子传感器
CN101226100A (zh) * 2008-01-31 2008-07-23 太原理工大学 混沌光时域反射仪及其测量方法
WO2011022829A1 (fr) * 2009-08-27 2011-03-03 University Of New Brunswick Système et procédé d’analyse brillouin
CN101762290A (zh) * 2010-02-03 2010-06-30 电子科技大学 基于分布式拉曼放大的布里渊光时域分析系统
CN102109362A (zh) * 2010-11-26 2011-06-29 中国计量学院 融合光纤布里渊频移器的分布式光纤布里渊传感器
CN201885732U (zh) * 2010-11-26 2011-06-29 中国计量学院 一种融合光纤布里渊频移器的分布式光纤布里渊传感器
CN102322810A (zh) * 2011-08-10 2012-01-18 中国计量学院 混沌激光相关集成光纤拉曼放大器的布里渊光时域分析器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
WANG, ANBANG ET AL.: "Chaotic laser correlation method for optical time-domain reflectometry.", SCIENTIA SINICA(INFORMATIONIS)., vol. 40, no. 3, 2010, pages 512 - 518 *
WANG, YUNCAI ET AL.: "Correlation range finding with chaotic laser signal.", JOURNAL OF SHENZHEN UNIVERSITY SCIENCE AND ENGINEERING., vol. 27, no. 4, October 2010 (2010-10-01), pages 379 - 385 *
Y.T.CHO ET AL.: "50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification.", OPTICS LETTERS., vol. 28, no. 18, 15 September 2003 (2003-09-15), pages 1651 - 1653, XP002451610, DOI: doi:10.1364/OL.28.001651 *
ZHANG, CHAO ET AL.: "Brillouin optical time domain analyzer based on bi-directional Raman amplification.", ACTAPHYSICA SINICA., vol. 59, no. 8, August 2010 (2010-08-01), pages 5523 - 5527 *
ZHANG, ZAIXUAN ET AL.: "Distributed optical fiber Raman photon sensor research review.", CHINESE JOURNAL OF LASERS., vol. 37, no. 11, November 2010 (2010-11-01), pages 2749 - 2761 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158587B (zh) * 2014-07-07 2017-02-15 太原理工大学 基于周期开关键控混沌信号的光时域反射方法
CN104158587A (zh) * 2014-07-07 2014-11-19 太原理工大学 基于周期开关键控混沌信号的光时域反射方法
CN104655185A (zh) * 2015-01-04 2015-05-27 西南交通大学 一种基于强度调制探测光的相干布里渊光时域分析传感系统
CN107727122B (zh) * 2017-08-14 2023-05-02 闽南师范大学 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
CN107727122A (zh) * 2017-08-14 2018-02-23 闽南师范大学 双端探测的联合拉曼和布里渊散射的分布式光纤传感装置
CN108180853A (zh) * 2017-12-22 2018-06-19 太原理工大学 一种基于混沌调制的布里渊光时域反射应变检测装置
CN108180853B (zh) * 2017-12-22 2020-04-03 太原理工大学 一种基于混沌调制的布里渊光时域反射应变检测装置
CN108827175A (zh) * 2018-05-02 2018-11-16 太原理工大学 基于宽频混沌激光的分布式光纤动态应变传感装置及方法
CN110600973A (zh) * 2019-08-16 2019-12-20 太原理工大学 基于非线性光纤有源光反馈产生宽带混沌激光装置及方法
CN110600973B (zh) * 2019-08-16 2021-01-08 太原理工大学 基于非线性光纤有源光反馈产生宽带混沌激光装置及方法
CN111637910B (zh) * 2020-05-26 2021-10-22 太原理工大学 时域差分高速混沌布里渊光相干域监测装置及方法
CN111637910A (zh) * 2020-05-26 2020-09-08 太原理工大学 时域差分高速混沌布里渊光相干域监测装置及方法
CN112880865A (zh) * 2021-03-25 2021-06-01 太原理工大学 超长距离的高空间分辨率拉曼光纤双参量传感系统和方法
CN112880865B (zh) * 2021-03-25 2022-05-13 太原理工大学 超长距离的高空间分辨率拉曼光纤双参量传感系统和方法
CN113483914A (zh) * 2021-05-25 2021-10-08 太原理工大学 基于少模光纤的混沌bocda温度应变测量装置

Similar Documents

Publication Publication Date Title
WO2013020276A1 (fr) Analyseur optique de brillouin en domaine temporel d'un amplificateur raman laser intégré à fibre optique chaotique
WO2013016888A1 (fr) Analyseur de domaine temporel optique de brillouin associé à une lumière laser chaotique
CN102322810B (zh) 混沌激光相关集成光纤拉曼放大器的布里渊光时域分析器
CN103152097B (zh) 一种采用随机激光放大的偏振及相位敏感光时域反射计
CN102109362B (zh) 融合光纤布里渊频移器的分布式光纤布里渊传感器
WO2011127705A1 (fr) Capteur à fibre optique distribuée basé sur la diffusion de roman et brillouin
CN101324424B (zh) 光纤布里渊光时域分析器
CN108180853B (zh) 一种基于混沌调制的布里渊光时域反射应变检测装置
CN110220470B (zh) 基于瑞利散射的单端混沌布里渊动态应变测量装置及方法
WO2009097736A1 (fr) Réflectomètre temporel optique chaotique et son procédé de mesure
CN101634571B (zh) 光纤脉栅分布传感装置
CN104180833A (zh) 温度和应变同时传感的光时域反射计
CN102322808B (zh) 超远程脉冲编码分布式光纤拉曼与布里渊光子传感器
CN108760080B (zh) 一种基于ase噪声的分布式光纤拉曼测温装置及方法
CN104697558A (zh) 光纤分布式多参量传感测量系统
WO2022042759A1 (fr) Amplificateur optique à impulsions distribuées basé sur une amplification paramétrique à fibre optique et procédés d'amplification et de caractérisation de performance
CN108801305B (zh) 基于阶梯脉冲自放大的布里渊光时域反射仪的方法及装置
CN111896138B (zh) 一种长距离高空间分辨率的分布式混沌拉曼光纤传感装置
CN104390723A (zh) 基于多波长布里渊光纤激光器的光纤温度传感器
CN202188857U (zh) 一种混沌激光集成光纤拉曼放大器的布里渊光时域分析器
CN202195825U (zh) 一种超远程脉冲编码分布式光纤拉曼与布里渊光子传感器
CN202182702U (zh) 混沌激光相关布里渊光时域分析器
CN102359830B (zh) 多拉曼散射效应融合的超远程光纤测温传感器
CN103727969B (zh) 基于延时脉冲拉曼放大分布式传感系统
CN201885732U (zh) 一种融合光纤布里渊频移器的分布式光纤布里渊传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870572

Country of ref document: EP

Kind code of ref document: A1