WO2013020274A1 - 安全速断型漏电保护器 - Google Patents

安全速断型漏电保护器 Download PDF

Info

Publication number
WO2013020274A1
WO2013020274A1 PCT/CN2011/078171 CN2011078171W WO2013020274A1 WO 2013020274 A1 WO2013020274 A1 WO 2013020274A1 CN 2011078171 W CN2011078171 W CN 2011078171W WO 2013020274 A1 WO2013020274 A1 WO 2013020274A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
control circuit
test
resistor
sampling
Prior art date
Application number
PCT/CN2011/078171
Other languages
English (en)
French (fr)
Inventor
王钟宇
Original Assignee
深圳市良辉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市良辉科技有限公司 filed Critical 深圳市良辉科技有限公司
Priority to US14/235,798 priority Critical patent/US9219360B2/en
Priority to PCT/CN2011/078171 priority patent/WO2013020274A1/zh
Publication of WO2013020274A1 publication Critical patent/WO2013020274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/162Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for ac systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/334Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • H02H1/063Arrangements for supplying operative power primary power being supplied by fault current
    • H02H1/066Arrangements for supplying operative power primary power being supplied by fault current and comprising a shunt regulator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/10Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection
    • H02H5/105Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection responsive to deterioration or interruption of earth connection

Definitions

  • the invention relates to the technical field of electrical products, in particular to a safety quick-break type leakage protector.
  • Grounding failure may occur. Grounding failure may cause overcurrent, which may cause fire or electric shock. To avoid this risk, a leakage protection plug that prevents grounding failure is widely used.
  • the leakage protection plug is installed between the power supply and the load, and its function is to determine whether there is a risk of leakage of the application appliance by detecting the potential difference between the phase line and the neutral line. Once a leak is detected in the circuit, it immediately trips and cuts off the connection between the power supply and the load to avoid the risk of fire or electric shock due to leakage.
  • ground fault leakage protection plugs there are many kinds of existing ground fault leakage protection plugs, most of which are composed of a detection circuit packaged in a square casing, a main control circuit, an on/off mechanism control circuit, a power supply circuit and a detection circuit.
  • the working principle is that when the reset button is pressed in the on-off mechanism, if the load terminal is normal, the detection circuit, the main control circuit, the on-off mechanism control circuit, the power supply circuit, and the detection circuit all enter the working state, at this time, the detection The measuring circuit can not detect the leakage current, the main control circuit does not energize the switching mechanism control circuit, the switching mechanism control circuit always closes its disconnect switch, and the load works normally.
  • the detecting circuit detects a potential difference between the phase line and the neutral line
  • the detecting circuit outputs a grounding failure signal to the main control circuit
  • the main control circuit amplifies the signal and makes the switching mechanism
  • the control circuit is energized, causing the on/off mechanism to open its disconnect switch, cutting off the current between the power supply and the load to prevent the risk of fire or electric shock due to leakage.
  • the main object of the present invention is to provide a safe quick-break type leakage protector, which aims to enhance the safety of leakage protection of electrical products.
  • the present invention provides a safe quick-break type leakage protector, comprising:
  • the sampling circuit is connected between the live line and the neutral line of the external power input end, and is used for collecting the leakage current signal between the live line and the neutral line and outputting;
  • a main control circuit configured to receive a leakage current signal output by the sampling circuit, and perform amplification processing on the leakage current signal, and output a ground failure control signal when the leakage current reaches a predetermined value
  • the switching mechanism control circuit is configured to receive a ground fault control signal output by the main control circuit; and control the single-pole single-throw switch to disconnect the load from the external power source according to the ground fault control signal;
  • the test circuit is connected to the sampling circuit for providing an analog failure current signal for the sampling circuit to test whether the safety quick-break type leakage protector works normally.
  • the sampling circuit comprises: a current transformer, a sampling capacitor, a first filter capacitor and a current voltage conversion resistor; the live line and the neutral line respectively pass through or surround the current transformer, and the first end of the current transformer Connecting the test circuit; the second end is connected to the main control circuit through the sampling capacitor; one end of the first filter capacitor is connected to one end of the second end of the current transformer, and the other end is grounded; the current voltage conversion resistor is connected in parallel at the second end of the current transformer Between the ends of the line.
  • the sampling circuit further includes a current limiting resistor, and the current limiting resistor is connected in series between the first filter capacitor and the main control circuit.
  • the main control circuit comprises: a chip, a feedback circuit, a second filter capacitor and a driving reverse voltage protection resistor, wherein an input end of the chip is connected to the sampling circuit and a power supply circuit; and an output end of the chip is connected
  • the switching mechanism is connected to the control circuit; the feedback circuit is connected between the input end and the output end of the chip; one end of the second filter capacitor is connected to the output end of the chip, and the other end is grounded; the drive reverse voltage protection resistor string Connected between the output of the chip and the on-off mechanism control circuit.
  • the switching mechanism control circuit comprises a thyristor, a first varistor and a coil
  • the anode of the thyristor is connected to the power circuit
  • the cathode is grounded, and the gate is reversed from the driving of the main control circuit.
  • the voltage protection resistor is connected;
  • the first varistor is connected in parallel between the anode and the cathode of the thyristor; one end of the coil is connected to the power supply circuit, and the other end is connected to the live line.
  • the main control circuit further comprises a sampling filter capacitor connected between the input end of the chip and the sampling circuit.
  • the power supply circuit comprises: a diode, a third filter capacitor, a voltage regulating resistor and a rectifier bridge stack, wherein a cathode of the diode is connected to an output end of the chip, a positive pole of the diode and the voltage regulating resistor After being connected in series, it is connected to the anode of the thyristor; the anode of the DC output of the rectifier bridge stack is connected to the anode of the thyristor, the DC output of the rectifier bridge stack is grounded, and the AC input end of the rectifier bridge stack is connected to the power source.
  • the rectifier bridge stack converts the received AC to DC to the switching mechanism control circuit.
  • the power supply circuit comprises: two voltage drop resistors, wherein the two voltage drop resistors are connected in series with one end connected to the output end of the chip, and the other end is respectively connected to the anode and the coil of the thyristor.
  • the test circuit includes: a test resistor and a test switch, the test switch is connected in series with the test resistor and connected between a neutral line and a live line; and the test resistor is connected in parallel by a plurality of current limiting resistors having the same resistance value. to make.
  • the test circuit comprises: a test resistor, a test switch and a second varistor, wherein the test resistor, the test switch and the second varistor are connected in series and connected to the first end of the current transformer.
  • the invention provides a safe quick-break type leakage protector, which provides power for a safe quick-break type leakage protector through a power supply circuit; a sampling circuit collects a leakage current signal between a live line and a neutral line and outputs the same; the main control circuit receives the output of the sampling circuit Leakage current signal, and amplification processing of the leakage current signal, when the leakage current reaches a predetermined value, output a ground failure control signal; the on-off mechanism control circuit receives the ground failure control signal output by the main control circuit; and controls according to the ground failure control signal
  • the single-pole single-throw switch disconnects the load from the external power source to protect the load and improve the safety of leakage protection of the electrical product.
  • the present invention provides a simulated failure current signal to the sampling circuit through the test circuit to test the safe quick-breaking leakage current.
  • the protector works normally or not, improves the working efficiency of the safe quick-break type leakage protector;
  • the on-off switch of the present invention is designed as a single-pole single-throw switch at the power supply end, so that after the load and the power supply are disconnected, the safe quick-break type leakage protector does not Recharged, avoiding the actual power supply and load is broken
  • the circuit at the power supply is still in working state, which causes the risk of damage to the electronic components and the damage caused by secondary leakage.
  • the IV conversion stabilization resistor is used in the sampling circuit to convert the current into a voltage, which makes the sampling signal more stable.
  • a reverse voltage protection resistor is designed in the output part of the chip to prevent the reverse voltage from impacting on the chip and the thyristor, thereby greatly reducing the failure rate of the chip and the thyristor, and improving the stability of the whole product.
  • a filter capacitor with anti-clutter effect is implanted, which can filter out the influence of the clutter on the product, so that the anti-interference ability of the product is greatly enhanced, and the performance is greatly improved;
  • the product features clear functions, compact structure and easy maintenance.
  • FIG. 1 is a schematic structural view of a first embodiment of a safety quick-break type leakage protector according to the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of the safe quick-break type leakage protector of the present invention.
  • FIG. 1 is a schematic structural view of a first embodiment of a safe quick-break type leakage protector according to the present invention.
  • the first embodiment of the present invention provides a safe quick-break type leakage protector, comprising: a power supply circuit 14, a sampling circuit 11, a main control circuit 12, a pair of single-pole single-throw switches K12, K13, an on-off mechanism control circuit 13, and a test circuit. 15; where:
  • the sampling circuit 11 is connected between the live line L of the external power source and the neutral line N, and is used for collecting and outputting a leakage current signal between the live line L and the neutral line N;
  • the main control circuit 12 is configured to receive the leakage current signal output by the sampling circuit 11, and amplify the leakage current signal, and output a ground failure control signal when the leakage current reaches a predetermined value;
  • a pair of single-pole single-throw switches K12, K13 are respectively connected in series between the input line of the external power source and the sampling circuit 11 on the live line L and the zero line N;
  • the switching mechanism control circuit 13 is configured to receive the ground fault control signal output by the main control circuit 12, and control the single-pole single-throw switch K12, K13 to disconnect the load from the external power source according to the ground fault control signal;
  • the test circuit 15 is connected to the sampling circuit 11 for providing an analog failure current signal to the sampling circuit 11 to test whether the safe quick-break type leakage protector works normally.
  • the sampling circuit 11 includes: a current transformer ZCT made of ultra-micro crystal or permalloy, a sampling capacitor C1, a current limiting resistor R6, a first filter capacitor C4, and a current-voltage conversion resistor R3;
  • the live line L and the zero line N pass through or surround the current transformer ZCT, respectively.
  • the current transformer ZCT has a first end and a second end formed by a coil winding, the first end is connected to the test circuit 15; the second end is connected to the main control circuit 12 through the sampling capacitor C1 and the current limiting resistor R6; one end of the sampling capacitor C1 The second line terminal LX2 of the second end of the current transformer ZCT is connected, and the other end of the sampling capacitor C1 is connected to the main control circuit 12 after being connected in series with the current limiting resistor R6.
  • One end of the first filter capacitor C4 is connected to the first line end LX1 of the second end of the current transformer ZCT, and the other end is connected to the main control circuit 12; the current voltage conversion resistor R3 is connected in parallel at the two ends of the second end of the current transformer ZCT. Between LX1 and LX2.
  • the sampling circuit 11 is configured to continuously detect whether the current flowing between the live line L and the neutral line N is equal, and immediately transmit the collected leakage current signal to the main control circuit 12.
  • the phase line L and the neutral line N pass or wrap around the current transformer ZCT and provide a possible unbalanced leakage current, while the current transformer ZCT senses a possible unbalanced leakage current and passes the induced leakage current through the current
  • the voltage conversion resistor R3 is converted into a voltage, and then fed back to the main control circuit 12 through the sampling capacitor C1 and the current limiting resistor R6 that are connected to each other.
  • the function of the sampling capacitor C1 is to couple the leakage current signal obtained from the current transformer ZCT and transmit the leakage current signal to the chip U1 in the main control circuit 12.
  • the function of the current limiting resistor R6 is to filter out the clutter in the leakage current signal from the sampling capacitor C1, so that the entire sampled signal is stable and reliable.
  • the main control circuit 12 includes: a chip U1, a feedback circuit, a second filter capacitor C2 and a driving reverse voltage protection resistor R5, a feedback filter capacitor C5, and a sampling filter capacitor composed of two capacitors C6 and C7.
  • the input end of the chip U1 is connected to the sampling.
  • the circuit 11 and the power supply circuit 14; the output end of the chip U1 is connected to the on/off mechanism control circuit 13; the feedback circuit is connected between the input end and the output end of the chip U1; one end of the second filter capacitor C2 is connected to the output end of the chip U1, and One end is grounded; the driving reverse voltage protection resistor R5 is connected in series between the output end of the chip U1 and the on-off mechanism control circuit 13.
  • the chip U1 in the embodiment includes five input PIN pins 1, 2, 3, 4, 6 and three output PIN pins 5, 7, 8 , wherein the first input PIN pin 1 is connected to the sampling circuit 11 Current limiting resistor R6; the second input PIN pin is empty; the third input PIN pin 3 is connected to the first line end LX1 of the second end of the current transformer ZCT; the fourth input PIN pin 4 is grounded; the first output PIN pin 5 is driven
  • the reverse voltage protection resistor R5 is connected to the on/off mechanism control circuit 13; the fifth input PIN pin 6 is connected to the power supply circuit 14; the feedback resistor and the feedback filter capacitor C5 are connected in parallel and connected to the second output PIN pin 7 and the first input PIN pin 1
  • the third output PIN pin 8 is blanked; the two capacitors C6 and C7 of the sampling filter capacitor are respectively connected in parallel between the first and third input PIN pins 1, 3 and the third and fourth input PIN pins 3, 4; One end of the second filter capacitor C2 is connected to the first
  • the main control circuit 12 receives the leakage current signal detected by the sampling circuit 11 through the first input PIN pin 1 of the chip U1, and amplifies the leakage current signal. When the leakage current exceeds a certain predetermined value, the main control circuit 12 passes through the chip.
  • the first output PIN pin 5 of U1 outputs a control signal to the switching mechanism control circuit 13 to cause the switching mechanism control circuit 13 to be energized.
  • the feedback circuit is composed of a feedback resistor R4 and a feedback filter capacitor C5.
  • the feedback circuit is also a gain circuit, and the sensitivity of the input signal is further adjusted by the gain.
  • the function of driving the reverse voltage protection resistor R5 is to prevent the reverse voltage from impacting on the chip U1; the second filter device C2 is for filtering the clutter of the thyristor SCR flowing to the on/off mechanism control circuit 13, and the protection is controllable. Silicon SCR is not affected by clutter.
  • the switching mechanism control circuit 13 includes a thyristor SCR, a first varistor ZR1 and a coil RYX.
  • the anode of the thyristor SCR is connected to the power supply circuit 14, the cathode is grounded, and the gate and the main control circuit 12 are driven to reverse voltage protection.
  • the resistor R5 is connected; the first varistor ZR1 is connected in parallel between the anode and the cathode of the thyristor SCR; one end of the coil RYX is connected to the power supply circuit 14, and the other end is connected to the live line L.
  • the on-off mechanism control circuit 13 is used to control the on/off of the single-pole single-throw switches K12 and K13 to control the on-off between the power source and the load.
  • the thyristor SCR is connected to the coil RYX and the sampling circuit 11.
  • the sampling circuit 11 transmits control through its first output PIN pin 5 when no leakage current is detected or the leakage current is less than a predetermined value.
  • the signal is sent to the thyristor SCR, so that the thyristor SCR maintains the power-off state of the coil RYX.
  • the safe quick-break type leakage protector is in the load-on state and the power state; and once the chip U1 finds the sampling circuit 11 detects When the leakage current value reaches a certain predetermined value, the chip U1 immediately instructs the thyristor SCR to energize the coil RYX, and after the coil RYX is energized, it will generate a sufficiently large magnetic force to force the on-off mechanism by the electromagnetic action principle.
  • the control circuit 13 controls the single-pole single-throw switch K12, K13 to disconnect the power source from the load to prevent fire or electric shock.
  • the first varistor ZR1 is connected in parallel with the thyristor SCR, and is mainly used to prevent the impact of the reverse voltage on the thyristor SCR, so that the performance of the thyristor SCR is more stable and reliable.
  • the power supply circuit 14 is configured to provide a stable and reliable power supply to the safety quick-disconnect type leakage protector of the embodiment.
  • the power supply circuit 14 includes a diode D5, a third filter capacitor C3, a voltage-regulating resistor R2, and a rectifier bridge stack D1-D4.
  • the cathode of the diode D5 is connected to the output end of the chip U1.
  • the anode of the diode D5 is connected in series with the voltage regulating resistor R2 and connected to the anode of the thyristor SCR; the anode of the rectifier bridge stack D1-D4 is connected to the anode of the thyristor SCR.
  • the anode is connected, the DC output terminal of the rectifier bridge stack D1-D4 is grounded to the negative pole, and the anode of the AC input terminal of the rectifier bridge stack D1-D4 is connected to the live line through the coil RYX; the anode of the AC input terminal of the rectifier bridge stack D1-D4 passes through the coil RYX and zero.
  • the line connection, the rectifier bridge stack D1-D4 converts the received AC voltage into a DC voltage, and supplies it to the switching mechanism control circuit 13.
  • the third filter capacitor C3 is used to filter out the ripple voltage of the coil RYX; the voltage regulator resistor R2 is used to adjust the voltage in the circuit to prevent the reverse voltage from impacting on the chip U1, and the diode D5 is used to prevent the surge voltage pair.
  • the function of the bridge stacks D1-D4 is to convert the AC power to the DC power required by the switching mechanism control circuit 13.
  • the test circuit 15 is used to give a simulated ground fault current, which includes: a test resistor R1, a test switch K11 and a second varistor ZR2, and the test resistor R1, the test switch K11 and the second varistor ZR2 are connected in series and connected The first end of the current transformer ZCT.
  • test resistor R1 belongs to a current limiting resistor, and a test failure current signal is provided by the test resistor R1 in the test circuit 15, and the varistor ZR1 is connected in series with the test resistor R1 to filter the power grid clutter. To avoid failure or change of the test circuit 15.
  • the single-pole single-throw switches K12 and K13 are disposed at the power supply end, and the single-pole single-throw switches K12 and K13 are respectively located on the live line L and the neutral line N to control the connection between the power source and the load.
  • Single-pole single-throw switches K12 and K13 can also be placed at the load end and between the load and the power supply.
  • the single-pole single-throw switches K12 and K13 are in a normally closed state; when the sampling circuit 11 detects a leakage current, the coil RYX is energized to generate a sufficiently large magnetic force, and the single-pole single-throw switch K12 is forced by the electromagnetic action principle. K13 disconnects the power supply from the load. Once the power is turned off, it needs to be manually pressed before it can be reclosed.
  • the single-pole single-throw switches K12 and K13 are disposed at the power supply end, and the advantage is that once the power is turned off, the sampling circuit 11, the main control circuit 12, the on-off mechanism control circuit 13, and the power supply after the single-pole single-throw switches K12 and K13 are turned off. Both the circuit 14 and the test circuit 15 are immediately de-energized.
  • this embodiment not only saves energy but also avoids the actual power supply and load being disconnected, but The control circuit of the power supply terminal is still in working state, which is very likely to damage electronic components and cause damage to secondary leakage.
  • the current between the live line L and the neutral line N is equal.
  • the safe quick-break type leakage protector of this embodiment it is detected whether there is a difference between the current between the live line L and the neutral line N, and if the current difference between the two is found to exceed At a predetermined value, the power supply is disconnected from the load immediately to prevent fire or electric shock.
  • FIG. 2 is a schematic structural view of a second embodiment of the safe quick-break type leakage protector of the present invention.
  • the safety quick-breaking type leakage protection device of the present embodiment is based on the FM2140 chip design.
  • the safety quick-break type leakage protection device of the present embodiment also includes a sampling circuit 21 and a main control circuit 22.
  • An on/off mechanism control circuit 23 a power supply circuit 24, a test circuit 25, and a pair of single pole single throw switches K22, K23.
  • the safe quick-break type leakage protector immediately cuts off the current in the live line L and the neutral line N, and disconnects the power supply from the load to prevent the risk of fire or electric shock.
  • the sampling circuit 21 is composed of a sampling capacitor C1', a filter capacitor C3', and a current transformer ZCT made of ultrafine crystal or permalloy, and two wires connected to the second end of the current transformer ZCT.
  • the current and voltage conversion resistors R2' of the terminals LX1 and LX2 are composed.
  • the sampling capacitor C1' is used to couple the AC signal generated by the current transformer ZCT before the signal reaches the chip U1' of the main control circuit 22, and the filter capacitor C3' is used to filter out the clutter signal before the signal reaches the chip U1'. .
  • the difference between the sampling circuit 21 and the sampling circuit 11 is that one of the sampling resistors 21 of the present embodiment is missing, because the chip U1' used by the main control circuit 22 of the present embodiment is different.
  • the main control circuit 22 consists of a chip U1' of FM2140, a feedback resistor R1' with a value of 100K-470K, a driving reverse voltage protection resistor R3' with a value of 1K, and a timing capacitor C2' and a filter capacitor.
  • the C4' composition, the feedback resistor R1' and the timing capacitor C2' constitute the feedback circuit of the main control circuit 22 of this embodiment.
  • the chip U1' of the embodiment includes six input PIN pins 1, 2, 3, 4, 5, 6 and two output PIN pins 7, 8, wherein the feedback resistor R1' and the feedback circuit
  • the timing capacitor C2' is connected in series between the first input PIN pin 1 and the second output PIN pin 8 of the chip U1'; the second input PIN pin is connected to the sampling capacitor C1' in the sampling circuit 21, and the third input PIN pin 3 is connected to the second line end LX2 of the second end of the current transformer in the sampling circuit; the fourth input PIN pin 4 is connected to the filter capacitor C3' in the sampling circuit.
  • the fifth input PIN pin 5 is connected to the power supply circuit 24, the sixth input PIN pin 6 is connected to the neutral line, and the first output PIN pin 7 is connected to the on/off mechanism control circuit 23 by driving the reverse voltage protection resistor R3'.
  • the feedback resistor R1' is used to eliminate the minimum ground fault condition threshold, if not eliminated, this threshold will erroneously send the ground failure signal to the on/off mechanism control circuit 23 through the first output PIN pin 7 of the chip U1';
  • the driving reverse voltage protection resistor R3' is the same as the resistor R5 in the main control circuit 12, and is also used to prevent the reverse voltage from impacting on the chip U1', and the timing capacitor C2' is used together with the feedback resistor R1 to determine the minimum ground failure. Condition settings.
  • the filter capacitor C4' is used to filter the clutter flowing to the thyristor SCR in the on/off mechanism control circuit 23, and protects the thyristor SCR from clutter.
  • the on-off mechanism control circuit 23 is composed of the same thyristor SCR, varistor ZR1, and coil RYX as in the on-off mechanism control circuit 13, and the functions and functions of the components are the same, and will not be described in detail herein.
  • the power supply circuit 24 is composed of two step-down resistors R4', R5' having the same value and connected in series, and is mainly used to provide an appropriate AC voltage for the chip U1'.
  • the two voltage drop resistors R4' and R5' are connected in series with one end connected to the output end of the chip U1', and the other end is connected to the anode of the thyristor SCR and the coil RYX, respectively.
  • the power supply circuit 24 of the present embodiment is simplified a lot, and the simplification can be achieved because the chips used by the two are different.
  • the test circuit 25 is composed of two resistors R6 and R7 having the same value and connected in parallel, and a test switch K21.
  • the resistors R6 and R7 constitute a test resistor.
  • the test switch K21 is connected in series with the test resistor and connected to the neutral line and the live line. between.
  • test resistor, the test switch K21 and the test resistor R1 and the test switch K11 in the test circuit 15 have the same function, and the test circuit 25 is different from the test circuit 15 in that the test circuit 25 is missing in this embodiment.
  • the pair of single-pole single-throw switches K22 and K23 in this embodiment are also disposed at the power supply end.
  • the switching mechanism is controlled by the on-off mechanism. Control a pair of single-pole single-throw switches K22, K23 to quickly disconnect the power supply from the load to prevent the risk of fire or electric shock.
  • the functional modules of the above-mentioned two embodiments of the safe quick-break type leakage protector are the same, and all include the sampling circuit, the main control circuit, the on-off mechanism control circuit, the power supply circuit, the test circuit and a pair of single-pole single-throw switches, Different control chips, in the specific implementation, the second embodiment of the safe quick-break type leakage protector structure is relatively simpler.
  • the safe quick-break type leakage protector embodiment of the present invention provides power for the safe quick-break type leakage protector through the power circuit;
  • the sampling circuit collects the leakage current signal between the live line and the neutral line and outputs;
  • the main control circuit receives the sampling circuit The leakage current signal is output, and the leakage current signal is amplified, and when the leakage current reaches a predetermined value, the ground failure control signal is output;
  • the switching mechanism control circuit receives the ground failure control signal output by the main control circuit; and according to the ground failure control
  • the signal control single-pole single-throw switch disconnects the load from the external power source to achieve the purpose of protecting the load, and improves the safety of leakage protection of the electrical product.
  • the present invention provides a simulated failure current signal for the sampling circuit through the test circuit, and tests the safety quick-break. Whether the type of leakage protector works normally improves the working efficiency of the safe quick-break type leakage protector; in addition, the on-off switch of the invention is designed as a single-pole single-throw switch at the power supply end, so that the load and the power supply are disconnected, and the safe quick-break type leakage protection The device is no longer energized, avoiding the actual power and load Disconnected, but the circuit at the power supply is still in working state, which causes the risk of damage to the electronic components and the damage caused by secondary leakage; the IV conversion stabilizing resistor is used in the sampling circuit to convert the current into voltage and make the sampling signal More stable and reliable; in the output part of the chip is designed to drive a reverse voltage protection resistor to prevent reverse voltage on the chip, thyristor impact, thereby greatly reducing the failure rate of the control chip, thyristor, and improve the entire product The stability of the energy; in the sampling circuit,
  • the single-pole single-throw switch is set on the live line and the zero line of the power supply end, and is normally closed in normal conditions. Once the ground fault condition is found, the current in the line connecting the power supply and the load is cut off to prevent fire or electric shock. Risk; and because the switch is designed at the power supply end, the entire control system is not energized after the switch is disconnected, thereby avoiding the actual power supply and load being disconnected, while the power supply circuit is still in operation, thereby causing damage to the electronic components. Risk, and the hazard of causing secondary leakage. Moreover, the product of the invention has clear functions, compact structure and simple and convenient maintenance.

Abstract

一种安全速断型漏电保护器,包括:电源电路(14)、采样电路(11)、主控电路(12)、一对单刀单掷开关(K12,K13)、通断机构控制电路(13)以及测试电路(15)。电源电路(14)为安全速断型漏电保护器提供电源。采样电路(11)采集火线(L)与零线(N)之间的漏电流信号并输出。主控电路(12)接收采样电路(11)输出的漏电流信号,并对漏电流信号进行放大处理,当漏电流达到预定值时,输出接地失效控制信号。通断机构控制电路(13)根据接地失效控制信号控制单刀单掷开关(K12,K13)断开负载与外部电源的连接,达到保护负载的目的,提高电器产品漏电保护的安全性。通过测试电路(15)为采样电路(11)提供一个模拟失效电流信号,测试安全速断型漏电保护器工作是否正常,提高了安全速断型漏电保护器的工作有效性。

Description

安全速断型漏电保护器
技术领域
本发明涉及电器产品技术领域,尤其涉及一种安全速断型漏电保护器。
背景技术
在实际生活中,电器产品电气回路中的带电导体——零线与火线、大地、电气设备外壳以及各种接地金属管道或其他导体之间的短路,或者导体对地绝缘电阻小于规定值时都可能发生接地失效,接地失效会引起过流,从而会引起火灾或电击风险,为了避免这种风险,一种防止接地失效的漏电保护插头被广泛地运用。
这种漏电保护插头被安装于供电电源与负载之间,其作用是通过检测相线与零线之间的电位差来判定应用电器是否存在漏电的风险。一旦侦测到电路中存在漏电情况,立即跳闸,切断电源与负载间的连接,以避免由于漏电引起火灾或电击的风险。
现有的接地失效漏电保护插头有很多种,大都由封装在方形外壳中的一个侦测电路、一个主控电路、一个通断机构控制电路、一个电源电路及一个检测电路组成。其工作原理是,当按下通断机构中复位按扭时,如果负载端正常,侦测电路、主控电路、通断机构控制电路、电源电路、检测电路均进入工作状态,此时,侦测电路侦测不到漏电流情况,主控电路不给通断机构控制电路通电,通断机构控制电路始终闭合它的断路开关,负载正常工作。在工作过程中,一旦侦测电路侦测到相线与零线之间存在电位差,侦测电路输出一个接地失效信号给主控电路,主控电路对此信号加以放大处理并使通断机构控制电路通电,从而引起通断机构断开它的断路开关,切断电源与负载间的电流,以达到防止由于漏电引起火灾或电击风险。
当负载端存在漏电流时,虽然现有的漏电保护插头能很好地断开电源与负载的连接,但是错误率通常比较高,常发生一些不该通断的跳开;同时,现有的漏电保护插头产品性能不稳定,经常存在异响、过热直至烧毁插头的现象。
发明内容
本发明的主要目的在于提供一种安全速断型漏电保护器,旨在增强电器产品的漏电保护的安全性。
为了达到上述目的,本发明提出一种安全速断型漏电保护器,包括:
电源电路,用于为所述安全速断型漏电保护器提供电源;
采样电路,连接在外部电源输入端的火线与零线之间,用于采集火线与零线之间的漏电流信号并输出;
主控电路,用于接收所述采样电路输出的漏电流信号,并对所述漏电流信号进行放大处理,当漏电流达到预定值时,输出接地失效控制信号;
一对单刀单掷开关,分别串接在所述外部电源的输入端与所述采样电路之间的火线和零线上;
通断机构控制电路,用于接收所述主控电路输出的接地失效控制信号;并根据所述接地失效控制信号控制所述单刀单掷开关断开负载与所述外部电源的连接;
测试电路,与所述采样电路连接,用于为所述采样电路提供一个模拟失效电流信号,测试所述安全速断型漏电保护器工作是否正常。
优选地,所述采样电路包括:电流互感器、采样电容、第一滤波电容以及电流电压转换电阻;所述火线与零线分别穿过或环绕于电流互感器上,该电流互感器第一端连接测试电路;第二端通过采样电容与主控电路连接;第一滤波电容的一端与电流互感器第二端的一线端连接,另一端接地;电流电压转换电阻并联在电流互感器第二端的两线端之间。
优选地,所述采样电路还包括限流电阻,所述限流电阻串联在所述第一滤波电容与所述主控电路之间。
优选地,所述主控电路包括:芯片、反馈电路、第二滤波电容及驱动反向电压保护电阻,所述芯片的输入端连接所述采样电路及电源电路;所述芯片的输出端连接所述通断机构控制电路;所述反馈电路连接在所述芯片的输入端与输出端之间;第二滤波电容的一端接芯片的输出端,另一端接地;所述驱动反向电压保护电阻串接在所述芯片的输出端与所述通断机构控制电路之间。
优选地,所述通断机构控制电路包括可控硅、第一压敏电阻及线圈,所述可控硅的阳极与电源电路连接,阴极接地,门极与所述主控电路的驱动反向电压保护电阻连接;第一压敏电阻并联在所述可控硅的阳极与阴极之间;线圈一端与电源电路连接,另一端接火线。
优选地,所述主控电路还包括采样滤波电容器,连接在所述芯片的输入端与所述采样电路之间。
优选地,所述电源电路包括:二极管、第三滤波电容、调压电阻及整流桥堆,其中,所述二极管的负极与所述芯片的输出端连接,该二极管的正极与所述调压电阻串联后与可控硅的阳极连接;整流桥堆的直流输出端正极与所述可控硅的阳极连接,整流桥堆的直流输出端负极接地,整流桥堆的交流输入端与电源连接,该整流桥堆将接受的交流转换为直流提供给所述通断机构控制电路。
优选地,所述电源电路包括:两电压降电阻,所述两电压降电阻串联后一端连接所述芯片的输出端,另一端分别与可控硅的阳极和线圈连接。
优选地,所述测试电路包括:测试电阻及测试开关,所述测试开关与所述测试电阻串联后连接在零线与火线之间;所述测试电阻由若干阻值相同的限流电阻并联而成。
优选地,所述测试电路包括:测试电阻、测试开关及第二压敏电阻,所述测试电阻、测试开关及第二压敏电阻串联后连接在所述电流互感器的第一端。本发明提出的一种安全速断型漏电保护器,通过电源电路为安全速断型漏电保护器提供电源;采样电路采集火线与零线之间的漏电流信号并输出;主控电路接收采样电路输出的漏电流信号,并对漏电流信号进行放大处理,当漏电流达到预定值时,输出接地失效控制信号;通断机构控制电路接收主控电路输出的接地失效控制信号;并根据接地失效控制信号控制单刀单掷开关断开负载与外部电源的连接,达到保护负载的目的,提高电器产品漏电保护的安全性;同时,本发明通过测试电路为采样电路提供一个模拟失效电流信号,测试安全速断型漏电保护器工作是否正常,提高了安全速断型漏电保护器的工作有效性;此外,本发明通断开关即单刀单掷开关设计在电源端,使得负载与电源分断后,安全速断型漏电保护器不再带电,避免了实际电源与负载已断开,但电源端的电路却仍然处于工作状态,由此造成电子元器件损坏的风险,及至造成二次漏电的危害;在采样电路中采用IV转换稳定电阻,将电流转换成电压,使采样信号更稳定可靠;在芯片的输出部分设计有一个驱动反向电压保护电阻,防止反向电压对芯片、可控硅的冲击,从而大大降低了芯片、可控硅的故障率,提高了整个产品的稳定性能;在采样电路、测试电路中都植入有防杂波影响的滤波电容器,可很好地过滤掉杂波对产品的影响,使产品的抗干扰能力大大增强,性能大大提高;而且,本发明产品功能清晰、结构紧凑、维护简单方便。
附图说明
图1是本发明安全速断型漏电保护器第一实施例的结构示意图;
图2是本发明安全速断型漏电保护器第二实施例的结构示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请照图1所示,图1是本发明安全速断型漏电保护器第一实施例的结构示意图。
本发明第一实施例提出一种安全速断型漏电保护器,包括:电源电路14、采样电路11、主控电路12、一对单刀单掷开关K12、K13、通断机构控制电路13以及测试电路15;其中:
电源电路14,用于为安全速断型漏电保护器提供电源;
采样电路11,连接在外部电源的火线L与零线N之间,用于采集火线L与零线N之间的漏电流信号并输出;
主控电路12,用于接收采样电路11输出的漏电流信号,并对漏电流信号进行放大处理,当漏电流达到预定值时,输出接地失效控制信号;
一对单刀单掷开关K12、K13,分别串接在外部电源的输入端与采样电路11之间的火线L和零线N上;
通断机构控制电路13,用于接收主控电路12输出的接地失效控制信号;并根据接地失效控制信号控制单刀单掷开关K12、K13断开负载与外部电源的连接;
测试电路15,与采样电路11连接,用于为采样电路11提供一个模拟失效电流信号,测试安全速断型漏电保护器工作是否正常。
具体地,本实施例中,采样电路11包括:一个超微晶或坡莫合金制成的电流互感器ZCT、采样电容C1、限流电阻R6、第一滤波电容C4以及电流电压转换电阻R3;火线L与零线N分别穿过或环绕于电流互感器ZCT上。电流互感器ZCT具有由线圈绕组构成的第一端及第二端,第一端连接测试电路15;第二端通过采样电容C1及限流电阻R6与主控电路12连接;采样电容C1的一端与电流互感器ZCT的第二端的第二线端LX2连接,采样电容C1的另一端串联限流电阻R6后与主控电路12连接。
第一滤波电容C4的一端与电流互感器ZCT的第二端的第一线端LX1连接,另一端与主控电路12连接;电流电压转换电阻R3并联在电流互感器ZCT的第二端的两线端LX1、LX2之间。
采样电路11用来不断侦测流经火线L与零线N间的电流是否相等,并即时将采集到的漏电流信号传递给主控电路12。
相线L与零线N穿过或环绕到电流互感器ZCT上,并且提供可能的不平衡漏电流,而电流互感器ZCT则感应可能的不平衡漏电流,并将感应到的漏电流通过电流电压转换电阻R3转换为电压,再经过隔直通交的采样电容C1、限流电阻R6后反馈给主控电路12。
采样电容C1的作用是耦合从电流互感器ZCT得到的漏电流信号,并将该漏电流信号传递给主控电路12中的芯片U1。限电流电阻R6的作用是过滤掉来自采样采样电容C1的漏电流信号中的杂波,使整个采样到的信号稳定可靠。
主控电路12包括:芯片U1、反馈电路、第二滤波电容C2及驱动反向电压保护电阻R5、反馈滤波电容C5以及由两电容C6、C7组成的采样滤波电容器,芯片U1的输入端连接采样电路11及电源电路14;芯片U1的输出端连接通断机构控制电路13;反馈电路连接在芯片U1的输入端与输出端之间;第二滤波电容C2的一端接芯片U1的输出端,另一端接地;驱动反向电压保护电阻R5串接在芯片U1的输出端与通断机构控制电路13之间。
具体地,本实施例中芯片U1包括五个输入PIN脚1、2、3、4、6和三个输出PIN脚5、7、8,其中,第一输入PIN脚1连接采样电路11中的限流电阻R6;第二输入PIN脚置空;第三输入PIN脚3连接电流互感器ZCT的第二端的第一线端LX1;第四输入PIN脚4接地;第一输出PIN脚5通过驱动反向电压保护电阻R5与通断机构控制电路13连接;第五输入PIN脚6连接电源电路14;反馈电阻及反馈滤波电容C5并联后连接在第二输出PIN脚7与第一输入PIN脚1之间;第三输出PIN脚8置空;采样滤波电容器的两电容C6、C7分别并联在第一、三输入PIN脚1、3之间及第三、四输入PIN脚3、4之间;第二滤波电容C2的一端与第一输出PIN脚5连接,另一端接地。
主控电路12通过芯片U1的第一输入PIN脚1接受采样电路11侦测到的漏电流信号,并对该漏电流信号进行放大处理,一旦发现漏电流超过某个预定值时,便通过芯片U1的第一输出PIN脚5对通断机构控制电路13输出一个控制信号,促使通断机构控制电路13通电。
反馈电路由反馈电阻R4与反馈滤波电容C5一起构成,该反馈电路也为增益电路,通过增益后进一步调节输入信号的灵敏度。而驱动反向电压保护电阻R5的作用是防止反向电压对芯片U1的冲击;第二滤波电器C2则是用来过滤流向通断机构控制电路13中可控硅SCR的杂波,保护可控硅SCR不受杂波的影响。
通断机构控制电路13包括可控硅SCR、第一压敏电阻ZR1及线圈RYX,可控硅SCR的阳极与电源电路14连接,阴极接地,门极与主控电路12的驱动反向电压保护电阻R5连接;第一压敏电阻ZR1并联在可控硅SCR的阳极与阴极之间;线圈RYX一端与电源电路14连接,另一端接火线L。
通断机构控制电路13用来控制单刀单掷开关K12、K13的通断进而控制电源与负载之间的通断。
可控硅SCR与线圈RYX及采样电路11相连,采样电路11在没有侦测到漏电流的情况或漏电流小于某个预定值的情况下,芯片U1通过它的第一输出PIN脚5传达控制信号给可控硅SCR,让可控硅SCR保持对线圈RYX的断电状态,此种情况下,安全速断型漏电保护器处于接通负载与电源状态;而一旦芯片U1发现采样电路11侦测到的漏电流值达到了某个预定值的情况下,芯片U1立即指示可控硅SCR对线圈RYX通电,线圈RYX通电后,它将产生足够大的磁力,通过电磁作用原理,迫使通断机构控制电路13控制单刀单掷开关K12、K13断开电源与负载的连接,达到预防火灾或被电击的目的。
其中,第一压敏电阻ZR1与可控硅SCR并联在一起,主要用来防止反向电压对可控硅SCR的冲击,使可控硅SCR的性能更稳定可靠。
电源电路14用来对本实施例安全速断型漏电保护器提供一个稳定可靠的电源,该电源电路14包括:二极管D5、第三滤波电容C3、调压电阻R2及整流桥堆D1-D4,其中,二极管D5的负极与芯片U1的输出端连接,该二极管D5的正极与调压电阻R2串联后与可控硅SCR的阳极连接;整流桥堆D1-D4的直流输出端正极与可控硅SCR的阳极连接,整流桥堆D1-D4的直流输出端负极接地,整流桥堆D1-D4的交流输入端的正极通过线圈RYX与火线连接;整流桥堆D1-D4的交流输入端的负极通过线圈RYX与零线连接,整流桥堆D1-D4将接受的交流电压转换为直流电压,提供给通断机构控制电路13。
其中,第三滤波电容C3用来过滤掉对线圈RYX的脉动电压;调压电阻R2用来调节电路中的电压,防止反向电压对芯片U1的冲击,而二极管D5用来防止浪涌电压对线圈RYX的影响。桥堆D1-D4的作用是将AC电源转换成通断机构控制电路13所需要的DC电源。
测试电路15用来给出一个模拟的接地失效电流,其包括:测试电阻R1、测试开关K11及第二压敏电阻ZR2,测试电阻R1、测试开关K11及第二压敏电阻ZR2串联后连接在电流互感器ZCT的第一端。
当按下开关K11时,其作用相当于触发测试电路15产生一个接地失效电流,以此使通断机构控制电路13控制单刀单掷开关K12、K13跳断,达到断开电源与负载之间的连接的目的。
其中,测试电阻R1属于一个限流电阻,在测试电路15中由该测试电阻R1提供一个模拟的失效电流信号,而压敏电阻ZR1与测试电阻R1串联在一起,起到过滤电网杂波的作用,避免测试电路15失灵或异动。
本实施例中,单刀单掷开关K12、K13设置在电源端,单刀单掷开关K12与K13分别位于火线L与零线N上,控制着电源与负载之间的连接,在其他实施例中,单刀单掷开关K12、K13也可以设置在负载端,并位于负载与电源之间。
在正常情况下,单刀单掷开关K12与K13处于常闭状态;当采样电路11侦测到有漏电流时,线圈RYX通电,产生足够大的磁力,通过电磁作用原理,迫使单刀单掷开关K12、K13断开电源与负载的连接,一旦断电后,需要经过手动按压后才可重新闭合。
本实施例将单刀单掷开关K12与K13设置于电源端,其优点是一旦断电,位于单刀单掷开关K12、K13之后的采样电路11、主控电路12、通断机构控制电路13、电源电路14、测试电路15都会立即失电,与将单刀单掷开关K12、K13布置在负载端的设计思想相比,本实施例不但节省了能源,而且还避免了实际电源与负载已断开,但电源端的控制电路却仍然处于工作状态,极有可能损坏电子元器件,及至造成二次漏电的危害。
正常情况下,火线L与零线N间的电流相等,通过本实施例安全速断型漏电保护器,侦测火线L与零线N间的电流是否存在差异,一旦发现两者间的电流差超过某个预定值时,则会立即断开电源与负载的连接,达到预防火灾或被电击的风险。
如图2所示,图2是本发明安全速断型漏电保护器第二实施例的结构示意图。
本实施例提出的一种安全速断型漏电保护器,基于FM2140芯片设计,与上述第一实施例同理,本实施例安全速断型漏电保护器也包含有一个采样电路21、一个主控电路22、一个通断机构控制电路23,一个电源电路24、一个测试电路25及一对单刀单掷开关K22、K23。一旦侦测到接地失效条件,安全速断型漏电保护器立即截断火线L与零线N中的电流,断开电源与负载的连接,达到预防火灾或被电击的风险。
其中,采样电路21由采样电容C1`、滤波电容C3`以及与采样电路11一样的一个由超微晶或坡莫合金制成的电流互感器ZCT、接在电流互感器ZCT第二端的两线端LX1、LX2的电流电压转换电阻R2`组成。采样电容C1`用来耦合信号到达主控电路22芯片U1`之前的、由电流互感器ZCT产生的AC信号;而滤波电容C3`则用来滤除掉信号到达芯片U1`之前的杂波信号。采样电路21与采样电路11的不同点在于本实施例的采样电路21中少了一个滤波电阻,其原因在于本实施例主控电路22采用的芯片U1`不同。
主控电路22由一个型号为FM2140的芯片U1`、一个值为100K-470K的反馈电阻R1`,一个值为1K的驱动反向电压保护电阻R3`,以及一个定时电容C2`及一个滤波电容C4`组成,反馈电阻R1`与定时电容C2`构成本实施例主控电路22的反馈电路。
与上述实施例相比,本实施例芯片U1`包括六个输入PIN脚1、2、3、4、5、6和二个输出PIN脚7、8,其中,反馈电路中反馈电阻R1`与定时电容C2`串联后连接在芯片U1`的第一输入PIN脚1与第二输出PIN脚8之间;第二输入PIN脚与采样电路21中的采样电容C1`连接,第三输入PIN脚3与采样电路中电流互感器的第二端的第二线端LX2连接;第四输入PIN脚4与采样电路中的滤波电容C3`连接。第五输入PIN脚5与电源电路24连接,第六输入PIN脚6接零线,第一输出PIN脚7通过驱动反向电压保护电阻R3`与通断机构控制电路23连接。
反馈电阻R1`用来消除最小的接地失效条件阀值,如果不消除,这种阀值将会错误地通过芯片U1`的第一输出PIN脚7发送接地失效信号给通断机构控制电路23;驱动反向电压保护电阻R3`与主控电路12中的电阻R5一样,也是用来防止反向电压对芯片U1`的冲击,而定时电容C2`则与反馈电阻R1一起用来测定最小接地失效条件设置。
滤波电容C4`是用来过滤流向通断机构控制电路23中可控硅SCR的杂波,保护可控硅SCR不受杂波的影响。
本实施例中通断机构控制电路23由与通断机构控制电路13中一样的可控硅SCR、压敏电阻ZR1以及线圈RYX组成,各部件的作用与功能一样,在此不作详述。
本实施例中电源电路24由两个数值一样、串联在一起的降压电阻R4`、R5`组成,主要是用来为芯片U1`提供适当的AC电压。两电压降电阻R4`、R5`串联后一端连接芯片U1`的输出端,另一端分别与可控硅SCR的阳极和线圈RYX连接。
与上述第一实施例中的电源电路14相比,本实施例电源电路24简化了很多,能实现这种简化是由于两者采用的芯片不同。
本实施例中测试电路25由两个数值相同且并联在一起的电阻R6、R7以及一个测试开关K21组成,电阻R6、R7构成测试电阻,测试开关K21与测试电阻串联后连接在零线与火线之间。
本实施例测试电阻、测试开关K21与测试电路15中的测试电阻R1及测试开关K11的作用一样,测试电路25与测试电路15的不同点之处在于:本实施例中测试电路25中少了一个压敏电阻ZR1。其中,构成测试电阻的阻值相同的电阻可以为多个,根据需要设定。
与上述第一实施例相同,本实施例中的一对单刀单掷开关K22、K23也设置在电源端,当采样电路侦测到接地失效电流超过某个预定值时,由通断机构控制电路控制一对单刀单掷开关K22、K23快速断开电源与负载的连接,达到预防火灾或电击的风险。
通过比较可知,上述两实施例安全速断型漏电保护器的功能模块均一样,都包含采样电路、主控电路、通断机构控制电路、电源电路、测试电路及一对单刀单掷开关,由于采用了不同的控制芯片,在具体实现上第二实施例安全速断型漏电保护器结构相对更加简单。
综上所述,本发明安全速断型漏电保护器实施例通过电源电路为安全速断型漏电保护器提供电源;采样电路采集火线与零线之间的漏电流信号并输出;主控电路接收采样电路输出的漏电流信号,并对漏电流信号进行放大处理,当漏电流达到预定值时,输出接地失效控制信号;通断机构控制电路接收主控电路输出的接地失效控制信号;并根据接地失效控制信号控制单刀单掷开关断开负载与外部电源的连接,达到保护负载的目的,提高电器产品漏电保护的安全性;同时,本发明通过测试电路为采样电路提供一个模拟失效电流信号,测试安全速断型漏电保护器工作是否正常,提高了安全速断型漏电保护器的工作有效性;此外,本发明通断开关即单刀单掷开关设计在电源端,使得负载与电源分断后,安全速断型漏电保护器不再带电,避免了实际电源与负载已断开,但电源端的电路却仍然处于工作状态,由此造成电子元器件损坏的风险,及至造成二次漏电的危害;在采样电路中采用IV转换稳定电阻,将电流转换成电压,使采样信号更稳定可靠;在芯片的输出部分设计有一个驱动反向电压保护电阻,防止反向电压对芯片、可控硅的冲击,从而大大降低了控制芯片、可控硅的故障率,提高了整个产品的稳定性能;在采样电路、测试电路中都植入有防杂波影响的滤波电容器,可很好地过滤掉杂波对产品的影响,使产品的抗干扰能力大大增强,性能大大提高。
同时将单刀单掷开关设置于电源端的火线与零线上,在正常情况下处于常闭状态,一旦发现存在接地失效情况,立即切断连接电源与负载间电线中的电流来预防火灾或被电击的风险;而且由于开关被设计在电源端,在开关分断后整个控制系统不带电,从而避免了实际电源与负载已断开,而电源端的电路却仍然处于工作状态,由此造成电子元器件损坏的风险,及至造成二次漏电的危害。而且,本发明产品功能清晰、结构紧凑、维护简单方便。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种安全速断型漏电保护器,其特征在于,包括:
    电源电路,用于为所述安全速断型漏电保护器提供电源;
    采样电路,连接在外部电源输入端的火线与零线之间,用于采集火线与零线之间的漏电流信号并输出;
    主控电路,用于接收所述采样电路输出的漏电流信号,并对所述漏电流信号进行放大处理,当漏电流达到预定值时,输出接地失效控制信号;
    一对单刀单掷开关,分别串接在所述外部电源的输入端与所述采样电路之间的火线和零线上;
    通断机构控制电路,用于接收所述主控电路输出的接地失效控制信号;并根据所述接地失效控制信号控制所述单刀单掷开关断开负载与所述外部电源的连接;
    测试电路,与所述采样电路连接,用于为所述采样电路提供一个模拟失效电流信号,测试所述安全速断型漏电保护器工作是否正常。
  2. 根据权利要求1所述的安全速断型漏电保护器,其特征在于,所述采样电路包括:电流互感器、采样电容、第一滤波电容以及电流电压转换电阻;所述火线与零线分别穿过或环绕于电流互感器上,该电流互感器第一端连接测试电路;第二端通过采样电容与主控电路连接;第一滤波电容的一端与电流互感器第二端的一线端连接,另一端接地;电流电压转换电阻并联在电流互感器第二端的两线端之间。
  3. 根据权利要求2所述的安全速断型漏电保护器,其特征在于,所述采样电路还包括限流电阻,所述限流电阻串联在所述第一滤波电容与所述主控电路之间。
  4. 根据权利要求2或3所述的安全速断型漏电保护器,其特征在于,所述主控电路包括:芯片、反馈电路、第二滤波电容及驱动反向电压保护电阻,所述芯片的输入端连接所述采样电路及电源电路;所述芯片的输出端连接所述通断机构控制电路;所述反馈电路连接在所述芯片的输入端与输出端之间;第二滤波电容的一端接芯片的输出端,另一端接地;所述驱动反向电压保护电阻串接在所述芯片的输出端与所述通断机构控制电路之间。
  5. 根据权利要求4所述的安全速断型漏电保护器,其特征在于,所述通断机构控制电路包括可控硅、第一压敏电阻及线圈,所述可控硅的阳极与电源电路连接,阴极接地,门极与所述主控电路的驱动反向电压保护电阻连接;第一压敏电阻并联在所述可控硅的阳极与阴极之间;线圈一端与电源电路连接,另一端接火线。
  6. 根据权利要求5所述的安全速断型漏电保护器,其特征在于,所述主控电路还包括采样滤波电容器,连接在所述芯片的输入端与所述采样电路之间。
  7. 根据权利要求6所述的安全速断型漏电保护器,其特征在于,所述电源电路包括:二极管、第三滤波电容、调压电阻及整流桥堆,其中,所述二极管的负极与所述芯片的输出端连接,该二极管的正极与所述调压电阻串联后与可控硅的阳极连接;整流桥堆的直流输出端正极与所述可控硅的阳极连接,整流桥堆的直流输出端负极接地,整流桥堆的交流输入端与电源连接,该整流桥堆将接受的交流转换为直流提供给所述通断机构控制电路。
  8. 根据权利要求5所述的安全速断型漏电保护器,其特征在于,所述电源电路包括:两电压降电阻,所述两电压降电阻串联后一端连接所述芯片的输出端,另一端分别与可控硅的阳极和线圈连接。
  9. 根据权利要求8所述的安全速断型漏电保护器,其特征在于,所述测试电路包括:测试电阻及测试开关,所述测试开关与所述测试电阻串联后连接在零线与火线之间;所述测试电阻由若干阻值相同的限流电阻并联而成。
  10. 根据权利要求7所述的安全速断型漏电保护器,其特征在于,所述测试电路包括:测试电阻、测试开关及第二压敏电阻,所述测试电阻、测试开关及第二压敏电阻串联后连接在所述电流互感器的第一端。
PCT/CN2011/078171 2011-08-09 2011-08-09 安全速断型漏电保护器 WO2013020274A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/235,798 US9219360B2 (en) 2011-08-09 2011-08-09 Safe quick disconnect leakage protector
PCT/CN2011/078171 WO2013020274A1 (zh) 2011-08-09 2011-08-09 安全速断型漏电保护器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078171 WO2013020274A1 (zh) 2011-08-09 2011-08-09 安全速断型漏电保护器

Publications (1)

Publication Number Publication Date
WO2013020274A1 true WO2013020274A1 (zh) 2013-02-14

Family

ID=47667857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078171 WO2013020274A1 (zh) 2011-08-09 2011-08-09 安全速断型漏电保护器

Country Status (2)

Country Link
US (1) US9219360B2 (zh)
WO (1) WO2013020274A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487699A (zh) * 2013-09-25 2014-01-01 浙江大学 漏电保护器的数字式检测系统和高精度的检测方法
CN103760782A (zh) * 2013-12-31 2014-04-30 山西汾西机电有限公司 煤矿井下矿用隔爆兼本质安全型冷却干燥机控制电路
CN104993452A (zh) * 2015-08-03 2015-10-21 刘圣平 一种稳安定效的漏电保护器
CN109342827A (zh) * 2018-11-22 2019-02-15 湖南恩智测控技术有限公司 一种通过电容交流充放电测量电容值的电路及方法
CN110011273A (zh) * 2019-03-27 2019-07-12 国网浙江绍兴市上虞区供电有限公司 分级漏电保护器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10243350B2 (en) * 2015-06-11 2019-03-26 Ze Chen Protection circuit and ground fault circuit interrupter
CN105490262B (zh) * 2016-01-15 2018-02-06 史晓平 一种用于智能家居的负载监控的系统及方法
CN105811367A (zh) * 2016-05-06 2016-07-27 广州市博达电子科技有限公司 一种漏电保护墙壁开关
WO2018203859A2 (en) * 2016-12-29 2018-11-08 T.C. Erci̇yes Üni̇versi̇tesi̇ Stray current protection device
CN106773994B (zh) * 2017-01-09 2023-08-04 浙江新涛电子科技有限公司 一种时序控制pe地线的电路及控制方法
CN106771532B (zh) * 2017-02-15 2023-08-22 许良炎 一种漏电保护器瞬时电流测试方法及测试电路
CN107255953A (zh) * 2017-08-11 2017-10-17 过成康 一种供水器自动化控制电路
CN109546618B (zh) * 2018-12-25 2024-02-02 中山市开普电器有限公司 带上电自动复位、断电自动脱扣功能的漏电保护电路
CN109962459B (zh) * 2019-03-27 2024-02-23 德力西电气有限公司 具有宽电压范围的a型漏电保护电路
WO2021098871A1 (zh) * 2019-11-24 2021-05-27 邝继伍 一种漏电保护开关

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2244397A (en) * 1990-05-25 1991-11-27 Mk Electric Ltd Residual current protective device
CN101227074A (zh) * 2007-11-23 2008-07-23 上海市电力公司 一种使漏电保护无动作死区的方法及其断路器
CN201178218Y (zh) * 2008-04-02 2009-01-07 王钟宇 一种全能三极漏电保护插头

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349345C (zh) * 2006-02-21 2007-11-14 通领科技集团有限公司 漏电保护装置寿命终止智能检测方法及其设备
US7911746B2 (en) * 2006-06-01 2011-03-22 Leviton Manufacturing Co., Inc. GFCI with self-test and remote annunciation capabilities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2244397A (en) * 1990-05-25 1991-11-27 Mk Electric Ltd Residual current protective device
CN101227074A (zh) * 2007-11-23 2008-07-23 上海市电力公司 一种使漏电保护无动作死区的方法及其断路器
CN201178218Y (zh) * 2008-04-02 2009-01-07 王钟宇 一种全能三极漏电保护插头

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487699A (zh) * 2013-09-25 2014-01-01 浙江大学 漏电保护器的数字式检测系统和高精度的检测方法
CN103487699B (zh) * 2013-09-25 2016-06-15 浙江大学 漏电保护器的数字式检测系统和高精度的检测方法
CN103760782A (zh) * 2013-12-31 2014-04-30 山西汾西机电有限公司 煤矿井下矿用隔爆兼本质安全型冷却干燥机控制电路
CN104993452A (zh) * 2015-08-03 2015-10-21 刘圣平 一种稳安定效的漏电保护器
CN109342827A (zh) * 2018-11-22 2019-02-15 湖南恩智测控技术有限公司 一种通过电容交流充放电测量电容值的电路及方法
CN109342827B (zh) * 2018-11-22 2024-03-29 湖南恩智测控技术有限公司 一种通过电容交流充放电测量电容值的电路及方法
CN110011273A (zh) * 2019-03-27 2019-07-12 国网浙江绍兴市上虞区供电有限公司 分级漏电保护器

Also Published As

Publication number Publication date
US20140177111A1 (en) 2014-06-26
US9219360B2 (en) 2015-12-22

Similar Documents

Publication Publication Date Title
WO2013020274A1 (zh) 安全速断型漏电保护器
US9568532B2 (en) Wind turbine fault detection circuit and method
CN202167827U (zh) 安全速断型漏电保护器
WO2013013415A1 (zh) 地线安全电压控制系统
EP2315328A2 (en) String and system employing direct current electrical generating modules and a number of string protectors
CA2506007A1 (en) Overcurrent protection for circuit interrupting devices
CN101976815B (zh) 负载的多功能保护电路
WO2020159026A1 (ko) 누전 차단기 및 그 누설 전류 검출 방법
WO2015093838A1 (ko) 디지털 누전차단기
CN112531642B (zh) 一种剩余电流保护电路及剩余电流保护装置
CN116454826A (zh) 一种电路故障紧急保护电路装置
KR100501419B1 (ko) 동작테스트 기능을 갖는 저압 1상용 과전압 누전차단기
CN108418173A (zh) 一种电弧故障断路器
KR100836779B1 (ko) 아크 결함 차단기
CN107727991A (zh) 一种ct防开路监测电路及ct防开路监测装置
CN2626107Y (zh) 电子式电机保护器
CN219065556U (zh) 光伏逆变器的afci电流采样装置及afci系统
KR102445966B1 (ko) 아크 방지 차단기
CN103091544A (zh) 直流漏电检测电路
CN211293134U (zh) 一种电动机绝缘监测装置
CN1140949C (zh) 一种用于剩余电流保护的电子控制报警装置
CN216530519U (zh) 一种可无功补偿的浸水防触电用电保护器
CN211790736U (zh) 一种独立电源脱扣的漏电保护器电路
KR102537629B1 (ko) 아크 방지 스위치 차단기
CN215378426U (zh) 一种零地线失常保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14235798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870759

Country of ref document: EP

Kind code of ref document: A1