WO2013019088A2 - Method for setting an mtc terminal search area in a wireless communication system and an apparatus for same - Google Patents

Method for setting an mtc terminal search area in a wireless communication system and an apparatus for same Download PDF

Info

Publication number
WO2013019088A2
WO2013019088A2 PCT/KR2012/006197 KR2012006197W WO2013019088A2 WO 2013019088 A2 WO2013019088 A2 WO 2013019088A2 KR 2012006197 W KR2012006197 W KR 2012006197W WO 2013019088 A2 WO2013019088 A2 WO 2013019088A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
terminal
control information
region
pdcch
Prior art date
Application number
PCT/KR2012/006197
Other languages
French (fr)
Korean (ko)
Other versions
WO2013019088A3 (en
Inventor
김학성
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020137029723A priority Critical patent/KR102052375B1/en
Publication of WO2013019088A2 publication Critical patent/WO2013019088A2/en
Publication of WO2013019088A3 publication Critical patent/WO2013019088A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2612Arrangements for wireless medium access control, e.g. by allocating physical layer transmission capacity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for setting a search space of a machine type communication (MTC) terminal in a wireless communication system.
  • MTC machine type communication
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • an E-UMTS is located at an end of a user equipment (UE), a base station (eNode B; Enb), and a network (E-UTRAN) and connected to an external network (Access Gateway (AG)). It includes.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • the base station transmits downlink scheduling information for downlink (DL) data and informs the user equipment of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • HARQ Hybrid Automatic Repeat and reQuest
  • the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the user equipment of time / frequency domain, encoding, data size, HARQ related information, and the like.
  • the core network may be composed of an AG and a network node for user registration of the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • the following is a method for setting a search area of an MTC terminal in a wireless communication system and an apparatus therefor.
  • a method for receiving downlink control information by a terminal in a wireless communication system includes: receiving, in a first region of a subframe, control information masked with an identifier of a group to which the terminal belongs; Setting a group specific search region of a group to which the terminal belongs in the second region of the subframe according to the first control information; And receiving, in the group specific search region, group specific downlink control information of a group to which the terminal belongs, wherein the group specific downlink control information includes resource allocation information for each of the terminals belonging to the group. Characterized in that.
  • the first control information includes information about a start point of the group specific search region, and the start point is changed by a predefined rule for each subframe based on an identifier of a group to which the terminal belongs. It is done.
  • the method may further include receiving an index of the terminal from the group through an upper layer, wherein the group specific downlink control information includes the resource allocation information for each of the terminals belonging to the group. Characterized in the order of the index.
  • resources for each of the terminals belonging to the group may be regularly allocated in a predetermined size unit.
  • the terminal device in a wireless communication system in the first region of the subframe, a wireless communication module for receiving control information masked with the identifier of the group to which the terminal device belongs; And a processor for setting a group specifying search region of a group to which the terminal apparatus belongs in the second region of the subframe according to the first control information, wherein the processor is configured to display the terminal apparatus in the group specifying search region.
  • a wireless communication module for receiving control information masked with the identifier of the group to which the terminal device belongs
  • a processor for setting a group specifying search region of a group to which the terminal apparatus belongs in the second region of the subframe according to the first control information, wherein the processor is configured to display the terminal apparatus in the group specifying search region.
  • the receiving module receives an index of the terminal device in the group through an upper layer, and the group specific downlink control information includes the terminal index of the resource allocation information for each of the terminal devices belonging to the group. Characterized in order.
  • the resource for each of the terminal devices belonging to the group is characterized in that it is constantly allocated in a predetermined size unit.
  • the first region is a control region of the subframe
  • the second region is a data region of the subframe.
  • a search area for a machine type communication (MTC) terminal may be set more effectively in a wireless communication system.
  • FIG. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • FIG. 5 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
  • FIG. 6 is a diagram illustrating a resource unit used to configure a control channel.
  • FIG. 7 is a diagram illustrating an example of distributing CCEs in a system band.
  • MTC 8 is a view for explaining the structure of the machine type communication (MTC).
  • FIG. 9 is a flowchart illustrating a method of receiving control information by an MTC terminal according to an embodiment of the present invention.
  • FIG. 10 is a diagram for one example of mapping an E-PDCCH for an MTC terminal according to an embodiment of the present invention.
  • FIG. 11 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition.
  • the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306).
  • RACH random access procedure
  • the UE may transmit a specific sequence to the preamble through a Physical Random Access Channel (PRACH) (S303) and receive a response message for the preamble through the PDCCH and the corresponding PDSCH (S304).
  • PRACH Physical Random Access Channel
  • S304 receive a response message for the preamble through the PDCCH and the corresponding PDSCH
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S308) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE system.
  • a radio frame has a length of 10 ms (327200 ⁇ Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • the slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • one resource block includes 12 subcarriers x 7 (6) OFDM symbols.
  • Transmission time interval which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
  • a subframe consists of 14 OFDM symbols.
  • the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region.
  • R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3.
  • the RS is fixed in a constant pattern in a subframe regardless of the control region and the data region.
  • the control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region.
  • Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
  • the PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe.
  • the PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH.
  • the PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity).
  • One REG is composed of four resource elements (REs).
  • the RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol.
  • the PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted.
  • the PHICH consists of one REG and is scrambled cell-specifically.
  • ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK).
  • BPSK binary phase shift keying
  • a plurality of PHICHs mapped to the same resource constitutes a PHICH group.
  • the number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes.
  • the PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
  • the PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe.
  • n is indicated by the PCFICH as an integer of 1 or more.
  • the PDCCH consists of one or more CCEs.
  • the PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information.
  • PCH paging channel
  • DL-SCH downlink-shared channel
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
  • Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted.
  • a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A”, a radio resource (eg, frequency location) of "B” and a transmission type information of "C” (eg, It is assumed that information on data transmitted using a transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe.
  • RTI Radio Network Temporary Identity
  • the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
  • FIG. 6 shows a resource unit used to configure a control channel.
  • FIG. 6A illustrates a case where the number of transmit antennas of a base station is one or two
  • FIG. 6B illustrates a case where the number of transmit antennas of a base station is four. Only the RS (Reference Signal) pattern is different according to the number of transmitting antennas, and the method of setting a resource unit associated with the control channel is the same.
  • RS Reference Signal
  • the basic resource unit of the control channel is REG.
  • the REG is composed of four neighboring resource elements (REs) in the state excluding the RS. REG is shown in bold in the figures.
  • PCFICH and PHICH include 4 REGs and 3 REGs, respectively.
  • the PDCCH is composed of CCE (Control Channel Elements) units, and one CCE includes nine REGs.
  • the UE is configured to check M (L) ( ⁇ L) CCEs arranged in a continuous or specific rule in order to confirm whether a PDCCH composed of L CCEs is transmitted to the UE.
  • the CCE sets that the UE needs to check for PDCCH reception are called a search space.
  • the LTE system defines a search area as shown in Table 1.
  • the CCE aggregation level L represents the number of CCEs constituting the PDCCH
  • S k (L) represents a search region of the CCE aggregation level L
  • M (L) represents a candidate PDCCH to be monitored in the search region of the aggregation level L. Is the number of.
  • the search area may be divided into a UE-specific search space that allows access to only a specific terminal and a common search space that allows access to all terminals in a cell.
  • the UE monitors a common search region with CCE aggregation levels of 4 and 8, and monitors a UE-specific search region with CCE aggregation levels of 1, 2, 4, and 8.
  • the common search area and the terminal specific search area may overlap.
  • PDCCH search region hashing the position of the first (with the smallest index) CCE in the PDCCH search region given to any UE for each CCE aggregation level value is changed every subframe according to the UE. This is called PDCCH search region hashing.
  • FIG. 7 shows an example of distributing CCEs in a system band.
  • a plurality of logically continuous CCEs are input to an interleaver.
  • the interleaver performs a function of mixing input CCEs in REG units. Therefore, frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe.
  • the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
  • MTC machine type communication
  • MTC means communication between a machine and a machine without human intervention
  • the terminal used for the MTC is an MTC device.
  • MTC is also called M2M (Machine to Machine).
  • the services provided through the MTC are different from those in the existing human communication, and there are various categories of services as follows. For example, services such as tracking, metering, payment systems, healthcare services, remote control, and the like are provided by the MTC.
  • MTC 8 is a view for explaining the structure of the machine type communication (MTC).
  • the MTC terminal communicates with another MTC terminal or MTC server through a mobile communication network.
  • the MTC server may provide the MTC user with metering, road information, water level measurement, utilization of a surveillance camera, inventory reporting of a vending machine, adjustment of a user electronic device, and the like, which are services provided through an MTC terminal. .
  • the MTC terminal may be referred to as a delay tolerant access support terminal.
  • a method of reducing the control channel overhead burden may be considered by grouping a plurality of MTC terminals and performing uplink / downlink scheduling in units of such MTC groups.
  • scheduling in a group unit applies the same control information to a plurality of MTC terminals, thereby limiting scheduling flexibility.
  • control information for a plurality of MTC devices should be transmitted to a limited control region, for example, a PDCCH region, which may cause a shortage of PDCCH capacity.
  • the discovery region is set in the PDSCH region through the higher layer signaling due to the capacity shortage problem of the PDCCH.
  • the area does not reflect mobility.
  • the present invention is to propose a method that can flexibly cope with the mobility of the MTC terminal without causing a lack of PDCCH capacity.
  • a plurality of MTC terminals for example, 100 to 1000 MTC terminals are divided into one MTC group, each MTC terminal group specific PDCCH is placed in a PDSCH region, and the position of the PDSCH region is grouped.
  • a method of indicating using a PDCCH masked with -RNTI may be considered.
  • the PDCCH masked with the group-RNTI is obtained through blind decoding in a search region configured in the conventional PDCCH region.
  • the MTC UE group specific PDCCH located in the PDSCH region may be referred to as an E-PDCCH (Enhanced-PDCCH).
  • the MTC terminal since the MTC terminal can know in advance the group-RNTI of the group to which it belongs (which can be obtained through system information or a random access procedure), the MTC terminal group specific PDCCH is determined in the conventional PDCCH region using the corresponding group-RNTI. Decode and use this to determine the location of an E-PDCCH (Enhanced-PDCCH) region.
  • the E-PDCCH region means the E-PDCCH search region of the MTC group including the MTC terminal.
  • the E-PDCCH search region can be varied by differently setting the value of the group PDCCH transmitted through the existing PDCCH region (that is, the control information transmitted through the group PDCCH). Can be sent to. That is, it may support dynamic configuration of the search area, and may work advantageously when the MTC terminal (or relay node) has mobility.
  • the position of the E-PDCCH of each MTC terminal in the MTC group in advance RRC Informed signaling may also be considered. Accordingly, the position indicated by the group PDCCH is configured to be a logical or physical (starting) position of the E-PDCCHs for the plurality of MTC terminals, and a few E-PDCCHs among the E-PDCCHs for the plurality of MTC terminals are themselves.
  • the scheduling information of through an upper layer signal such as an RRC signal
  • it can be implemented without separate blind decoding for its E-PDCCH in the E-PDCCH region.
  • a method of signaling candidate sets that may be its own E-PDCCH in the E-PDCCH region is also possible.
  • PDCCH search region hashing may be equally applied to the E-PDCCH region.
  • the position of the first (smallest index) resource allocated to the MTC group in the E-PDCCH region, that is, the search region of the E-PDCCH may change every subframe according to the MTC group identifier.
  • FIG. 9 is a flowchart illustrating a method of receiving control information by an MTC terminal according to an embodiment of the present invention.
  • the MTC terminal first performs blind decoding on a search region configured in a conventional PDCCH region as in step 901 to obtain a PDCCH masked with a group-RNTI.
  • the PDCCH masked with the group-RNTI may signal the location of the search region for the E-PDCCH configured in the PDSCH region as described above, or may signal the location itself of the E-PDCCH for only one MTC terminal. It may be.
  • the location of the search region for the E-PDCCH is signaled.
  • the MTC terminal may blindly decode the search region for the E-PDCCH to obtain E-PDCCHs of the MTC group to which the MTC terminal belongs.
  • the MTC terminal since the location of the E-PDCCH of each MTC terminal in the MTC group may be defined in advance through a higher layer, the MTC terminal determines which of the E-PDCCHs acquired in step 902 is its E-PDCCH. Able to know.
  • the MTC terminal performs uplink signal transmission and downlink signal reception according to scheduling information included in its E-PDCCH, that is, resource allocation information.
  • a method of reducing the size of the E-PDCCH itself may also be considered. For example, if resource allocation (for downlink signal reception or uplink signal transmission) of grouped MTC terminals is performed in a specific pattern, the bit size of resource allocation information included in the E-PDCCH may be reduced. For example, if you allocate a resource for every MTC only in a specified size unit (such as 1 RB or 1 subcarrier) or an integer multiple of it and configure it as a continuous index, it will tell you the location of the first resource region and only signal the offset value from it. In this way, the bit size of the resource allocation information can be significantly reduced.
  • a specified size unit such as 1 RB or 1 subcarrier
  • each MTC terminal may recognize only the location in its own group and recognize the location of resources scheduled to it without additional resource allocation information.
  • the MCS of each of the MTC terminals included in the MTC group has a high probability of being a fixed value, the MCS value transmitted through the E-PDCCH may be omitted. Therefore, the E-PDCCH for the MTC group according to the present invention can be designed to be much smaller than the size of the R-PDCCH for the relay node, a number of E-PDCCH can be multiplexed in one RB.
  • it may be configured as a PUCCH format (PUCCH format 3 of the LTE-A system) for transmitting uplink feedback information for a plurality of carriers at once.
  • FIG. 10 is a diagram for one example of mapping an E-PDCCH for an MTC terminal according to an embodiment of the present invention.
  • the UE performs blind decoding on a search region configured in a conventional PDCCH region to obtain a PDCCH 1001 masked with a group-RNTI.
  • a search region configured in a conventional PDCCH region
  • a group-RNTI a group-RNTI
  • the location 1002 of the search region for the E-PDCCH is signaled.
  • the position of the first resource (with the smallest index) of the search region 1002 of the E-PDCCH may change every subframe according to the MTC group identifier.
  • the MTC terminal may blindly decode the search region 1002 for the E-PDCCH to obtain the E-PDCCHs 1003 of the MTC group to which the MTC terminal belongs. As described above, since the location of the E-PDCCH of each MTC terminal in the MTC group may be defined in advance through an upper layer, the MTC terminal may know which of its E-PDCCHs is the E-PDCCH in the E-PDCCHs 1003. have.
  • FIG. 11 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • the communication device 1100 includes a processor 1110, a memory 1120, an RF module 1130, a display module 1140, and a user interface module 1150.
  • the communication device 1100 is illustrated for convenience of description and some modules may be omitted. In addition, the communication device 1100 may further include necessary modules. In addition, some modules in the communication device 1100 may be classified into more granular modules.
  • the processor 1110 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1110 may refer to the contents described with reference to FIGS. 1 to 10.
  • the memory 1120 is connected to the processor 1110 and stores an operating system, an application, program code, data, and the like.
  • the RF module 1130 is connected to the processor 1110 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1130 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof.
  • the display module 1140 is connected to the processor 1110 and displays various information.
  • the display module 1140 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED).
  • the user interface module 1150 is connected to the processor 1110 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • embodiments of the present invention have been mainly described based on data transmission / reception relations between a terminal and a base station.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the method for setting a search area of the MTC terminal and an apparatus therefor have been described with reference to the example applied to the 3GPP LTE system.
  • the present invention can be applied to various wireless communication systems in addition to the 3GPP LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method in which a terminal receives downlink control information in a wireless communication system. The method includes the steps of: receiving control information masked with an identifier of a group to which the terminal belongs in a first area of a subframe; setting a group-specified search area of the group to which the terminal belongs in a second area of the subframe according to first control information; and receiving group-specified downlink control information on the group to which the terminal belongs, wherein the group-specified downlink control information includes resource allocation information for each terminal belonging to the group.

Description

무선 통신 시스템에서 MTC 단말의 검색 영역 설정 방법 및 이를 위한 장치 Method for setting search area of MTC terminal in wireless communication system and apparatus for same
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게는, 무선 통신 시스템에서 MTC (Machine Type Communication) 단말의 검색 영역 (Search Space) 설정 방법 및 이를 위한 장치에 관한 것이다.The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for setting a search space of a machine type communication (MTC) terminal in a wireless communication system.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution; 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.As an example of a wireless communication system to which the present invention can be applied, a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 현재 3GPP에서 기초적인 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템이라고 할 수도 있다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7과 Release 8을 참조할 수 있다.1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system. The Evolved Universal Mobile Telecommunications System (E-UMTS) system is an evolution from the existing Universal Mobile Telecommunications System (UMTS), and is currently undergoing basic standardization in 3GPP. In general, the E-UMTS may be referred to as a Long Term Evolution (LTE) system. For details of technical specifications of UMTS and E-UMTS, refer to Release 7 and Release 8 of the "3rd Generation Partnership Project; Technical Specification Group Radio Access Network", respectively.
도 1을 참조하면, E-UMTS는 단말(User Equipment; UE)과 기지국(eNode B; Enb), 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다. Referring to FIG. 1, an E-UMTS is located at an end of a user equipment (UE), a base station (eNode B; Enb), and a network (E-UTRAN) and connected to an external network (Access Gateway (AG)). It includes. The base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정돼 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink; DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink; UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network; CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.One or more cells exist in one base station. The cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20Mhz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths. The base station controls data transmission and reception for a plurality of terminals. The base station transmits downlink scheduling information for downlink (DL) data and informs the user equipment of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information. In addition, the base station transmits uplink scheduling information to uplink UL data for uplink (UL) data and informs the user equipment of time / frequency domain, encoding, data size, HARQ related information, and the like. An interface for transmitting user traffic or control traffic may be used between base stations. The core network (CN) may be composed of an AG and a network node for user registration of the terminal. The AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
무선 통신 기술은 WCDMA를 기반으로 LTE까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.Wireless communication technology has been developed to LTE based on WCDMA, but the demands and expectations of users and operators are continuously increasing. In addition, as other radio access technologies continue to be developed, new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 MTC 단말의 검색 영역 설정 방법 및 이를 위한 장치를 제안하고자 한다. Based on the above discussion, the following is a method for setting a search area of an MTC terminal in a wireless communication system and an apparatus therefor.
본 발명의 일 양상인, 무선 통신 시스템에서 단말이 하향링크 제어 정보를 수신하는 방법은, 서브프레임의 제 1 영역에서, 상기 단말이 속한 그룹의 식별자로 마스킹된 제어 정보를 수신하는 단계; 상기 제 1 제어 정보에 따라, 상기 서브프레임의 제 2 영역에서 상기 단말이 속한 그룹의 그룹 특정 검색 영역을 설정하는 단계; 및 상기 그룹 특정 검색 영역에서, 상기 단말이 속한 그룹의 그룹 특정 하향링크 제어 정보를 수신하는 단계를 포함하고, 상기 그룹 특정 하향링크 제어 정보는 상기 그룹에 속하는 단말들 각각에 대한 자원 할당 정보를 포함하는 것을 특징으로 한다.In one aspect of the present invention, a method for receiving downlink control information by a terminal in a wireless communication system includes: receiving, in a first region of a subframe, control information masked with an identifier of a group to which the terminal belongs; Setting a group specific search region of a group to which the terminal belongs in the second region of the subframe according to the first control information; And receiving, in the group specific search region, group specific downlink control information of a group to which the terminal belongs, wherein the group specific downlink control information includes resource allocation information for each of the terminals belonging to the group. Characterized in that.
여기서, 상기 제 1 제어 정보는 상기 그룹 특정 검색 영역의 시작 지점에 관한 정보를 포함하고, 상기 시작 지점은 상기 단말이 속한 그룹의 식별자에 기반하여 서브프레임마다 미리 정의된 규칙에 의하여 변경되는 것을 특징으로 한다.Here, the first control information includes information about a start point of the group specific search region, and the start point is changed by a predefined rule for each subframe based on an identifier of a group to which the terminal belongs. It is done.
바람직하게는, 상위 계층을 통하여, 상기 그룹에서 상기 단말의 인덱스를 수신하는 단계를 더 포함할 수 있으며, 상기 그룹 특정 하향링크 제어 정보는 상기 그룹에 속하는 단말들 각각에 대한 상기 자원 할당 정보가 단말 인덱스 순으로 구성된 것을 특징으로 한다. 또한, 상기 그룹에 속하는 단말들 각각에 대한 자원은 기 설정된 크기 단위로 일정하게 할당될 수 있다. Preferably, the method may further include receiving an index of the terminal from the group through an upper layer, wherein the group specific downlink control information includes the resource allocation information for each of the terminals belonging to the group. Characterized in the order of the index. In addition, resources for each of the terminals belonging to the group may be regularly allocated in a predetermined size unit.
한편, 본 발명의 다른 양상인 무선 통신 시스템에서의 단말 장치는, 서브프레임의 제 1 영역에서, 상기 단말 장치가 속한 그룹의 식별자로 마스킹된 제어 정보를 수신하기 위한 무선 통신 모듈; 및 상기 제 1 제어 정보에 따라, 상기 서브프레임의 제 2 영역에서 상기 단말 장치가 속한 그룹의 그룹 특정 검색 영역을 설정하기 위한 프로세서를 포함하고, 상기 프로세서는 상기 그룹 특정 검색 영역에서, 상기 단말 장치가 속한 그룹의 그룹 특정 하향링크 제어 정보를 획득하며, 상기 그룹 특정 하향링크 제어 정보는 상기 그룹에 속하는 단말 장치들 각각에 대한 자원 할당 정보를 포함하는 것을 특징으로 한다.On the other hand, the terminal device in a wireless communication system according to another aspect of the present invention, in the first region of the subframe, a wireless communication module for receiving control information masked with the identifier of the group to which the terminal device belongs; And a processor for setting a group specifying search region of a group to which the terminal apparatus belongs in the second region of the subframe according to the first control information, wherein the processor is configured to display the terminal apparatus in the group specifying search region. Acquiring group specific downlink control information of a group to which the group belongs, wherein the group specific downlink control information includes resource allocation information for each of the terminal devices belonging to the group.
바람직하게는, 상기 수신 모듈은 상위 계층을 통하여, 상기 그룹에서 상기 단말 장치의 인덱스를 수신하며, 상기 그룹 특정 하향링크 제어 정보는 상기 그룹에 속하는 단말 장치들 각각에 대한 상기 자원 할당 정보가 단말 인덱스 순으로 구성된 것을 특징으로 한다. 또한, 상기 그룹에 속하는 단말 장치들 각각에 대한 자원은 기 설정된 크기 단위로 일정하게 할당되는 것을 특징으로 한다.Preferably, the receiving module receives an index of the terminal device in the group through an upper layer, and the group specific downlink control information includes the terminal index of the resource allocation information for each of the terminal devices belonging to the group. Characterized in order. In addition, the resource for each of the terminal devices belonging to the group is characterized in that it is constantly allocated in a predetermined size unit.
보다 바람직하게는, 상기 제 1 영역은 상기 서브프레임의 제어 영역이고, 상기 제 2 영역은 상기 서브프레임의 데이터 영역인 것을 특징으로 한다.More preferably, the first region is a control region of the subframe, and the second region is a data region of the subframe.
본 발명의 실시예에 따르면 무선 통신 시스템에서 MTC (Machine Type Communication) 단말을 위한 검색 영역을 보다 효과적으로 설정할 수 있다. According to an embodiment of the present invention, a search area for a machine type communication (MTC) terminal may be set more effectively in a wireless communication system.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. 1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다.FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.4 is a diagram illustrating a structure of a radio frame used in an LTE system.
도 5는 LTE 시스템에서 사용되는 하향 링크 무선 프레임의 구조를 예시하는 도면이다.5 is a diagram illustrating a structure of a downlink radio frame used in an LTE system.
도 6은 제어 채널을 구성하는데 사용되는 자원 단위를 나타내는 도면이다.6 is a diagram illustrating a resource unit used to configure a control channel.
도 7는 시스템 대역에 CCE를 분산시키는 예를 나타내는 도면이다.7 is a diagram illustrating an example of distributing CCEs in a system band.
도 8은 MTC(Machine type communication)의 구조를 설명하기 위한 도면이다. 8 is a view for explaining the structure of the machine type communication (MTC).
도 9는 본 발명의 실시예에 따라 MTC 단말이 제어 정보를 수신하는 방법을 예시하는 순서도이다.9 is a flowchart illustrating a method of receiving control information by an MTC terminal according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따라 MTC 단말을 위한 E-PDCCH가 맵핑되는 예를 도시하는 도면이다.10 is a diagram for one example of mapping an E-PDCCH for an MTC terminal according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 통신 장치의 블록 구성도를 예시한다.11 illustrates a block diagram of a communication device according to an embodiment of the present invention.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.The construction, operation, and other features of the present invention will be readily understood by the embodiments of the present invention described with reference to the accompanying drawings. The embodiments described below are examples in which technical features of the present invention are applied to a 3GPP system.
본 명세서는 LTE 시스템 및 LTE-A 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다. 또한, 본 명세서는 FDD 방식을 기준으로 본 발명의 실시예에 대해 설명하지만, 이는 예시로서 본 발명의 실시예는 H-FDD 방식 또는 TDD 방식에도 용이하게 변형되어 적용될 수 있다.Although the present specification describes an embodiment of the present invention using an LTE system and an LTE-A system, this as an example may be applied to any communication system corresponding to the above definition. In addition, the present specification describes an embodiment of the present invention on the basis of the FDD scheme, but this is an exemplary embodiment of the present invention can be easily modified and applied to the H-FDD scheme or the TDD scheme.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard. The control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted. The user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Transport Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.The physical layer, which is the first layer, provides an information transfer service to an upper layer by using a physical channel. The physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel. The physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다.제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.The medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel. The RLC layer of the second layer supports reliable data transmission. The function of the RLC layer may be implemented as a functional block inside the MAC. The PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane. The RRC layer is responsible for control of logical channels, transport channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers (RBs). RB means a service provided by the second layer for data transmission between the terminal and the network. To this end, the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. The non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
기지국(eNB)을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.One cell constituting the base station (eNB) is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 15, 20Mhz to provide a downlink or uplink transmission service to multiple terminals. Different cells may be configured to provide different bandwidths.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.The downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message. have. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. It is located above the transport channel, and the logical channel mapped to the transport channel is a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.FIG. 3 is a diagram for describing physical channels used in a 3GPP system and a general signal transmission method using the same.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S301). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향 링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향 링크 채널 상태를 확인할 수 있다.When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S301). To this end, the terminal may receive a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may receive a downlink reference signal (DL RS) in an initial cell search step to check the downlink channel state.
초기 셀 탐색을 마친 단말은 물리 하향 링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향 링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S302).After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S302).
한편, 기지국에 최초로 접속하거나 신호 전송을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S303 내지 단계 S306). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 전송하고(S303), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.On the other hand, if the first access to the base station or there is no radio resource for signal transmission, the terminal may perform a random access procedure (RACH) for the base station (steps S303 to S306). To this end, the UE may transmit a specific sequence to the preamble through a Physical Random Access Channel (PRACH) (S303) and receive a response message for the preamble through the PDCCH and the corresponding PDSCH (S304). . In the case of contention-based RACH, a contention resolution procedure may be additionally performed.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향 링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S307) 및 물리 상향 링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향 링크 제어 채널(Physical Uplink Control Channel; PUCCH) 전송(S308)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다. After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S307) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure. Control Channel (PUCCH) transmission (S308) may be performed. In particular, the terminal receives downlink control information (DCI) through the PDCCH. Here, the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
한편, 단말이 상향 링크를 통해 기지국에 전송하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향 링크/상향 링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 전송할 수 있다.Meanwhile, the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like. In the 3GPP LTE system, the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
도 4는 LTE 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.4 is a diagram illustrating a structure of a radio frame used in an LTE system.
도 4를 참조하면, 무선 프레임(radio frame)은 10ms(327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임(subframe)으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯(slot)으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block; RB)을 포함한다. LTE 시스템에서 하나의 자원블록은 12개의 부반송파×7(6)개의 OFDM 심볼을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.Referring to FIG. 4, a radio frame has a length of 10 ms (327200 × Ts) and consists of 10 equally sized subframes. Each subframe has a length of 1 ms and consists of two slots. Each slot has a length of 0.5 ms (15360 x Ts). Here, Ts represents a sampling time and is represented by Ts = 1 / (15 kHz × 2048) = 3.2552 × 10 −8 (about 33 ns). The slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. In the LTE system, one resource block includes 12 subcarriers x 7 (6) OFDM symbols. Transmission time interval (TTI), which is a unit time for transmitting data, may be determined in units of one or more subframes. The structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
도 5는 하향 링크 무선 프레임에서 하나의 서브프레임의 제어 영역에 포함되는 제어 채널을 예시하는 도면이다.FIG. 5 is a diagram illustrating a control channel included in a control region of one subframe in a downlink radio frame.
도 5를 참조하면, 서브프레임은 14개의 OFDM 심볼로 구성되어 있다. 서브프레임 설정에 따라 처음 1 내지 3개의 OFDM 심볼은 제어 영역으로 사용되고 나머지 13~11개의 OFDM 심볼은 데이터 영역으로 사용된다. 도면에서 R1 내지 R4는 안테나 0 내지 3에 대한 기준 신호(Reference Signal(RS) 또는 Pilot Signal)를 나타낸다. RS는 제어 영역 및 데이터 영역과 상관없이 서브프레임 내에 일정한 패턴으로 고정된다. 제어 채널은 제어 영역 중에서 RS가 할당되지 않은 자원에 할당되고, 트래픽 채널도 데이터 영역 중에서 RS가 할당되지 않은 자원에 할당된다. 제어 영역에 할당되는 제어 채널로는 PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid-ARQ Indicator CHannel), PDCCH(Physical Downlink Control CHannel) 등이 있다.Referring to FIG. 5, a subframe consists of 14 OFDM symbols. According to the subframe configuration, the first 1 to 3 OFDM symbols are used as the control region and the remaining 13 to 11 OFDM symbols are used as the data region. In the drawings, R1 to R4 represent reference signals (RSs) or pilot signals for antennas 0 to 3. The RS is fixed in a constant pattern in a subframe regardless of the control region and the data region. The control channel is allocated to a resource to which no RS is allocated in the control region, and the traffic channel is also allocated to a resource to which no RS is allocated in the data region. Control channels allocated to the control region include PCFICH (Physical Control Format Indicator CHannel), PHICH (Physical Hybrid-ARQ Indicator CHannel), PDCCH (Physical Downlink Control CHannel).
PCFICH는 물리 제어 포맷 지시자 채널로서 매 서브프레임 마다 PDCCH에 사용되는 OFDM 심볼의 개수를 단말에게 알려준다. PCFICH는 첫 번째 OFDM 심볼에 위치하며 PHICH 및 PDCCH에 우선하여 설정된다. PCFICH는 4개의 REG(Resource Element Group)로 구성되고, 각각의 REG는 셀 ID(Cell IDentity)에 기초하여 제어 영역 내에 분산된다. 하나의 REG는 4개의 RE(Resource Element)로 구성된다. RE는 하나의 부반송파×하나의 OFDM 심볼로 정의되는 최소 물리 자원을 나타낸다. PCFICH 값은 대역폭에 따라 1 내지 3 또는 2 내지 4의 값을 지시하며 QPSK(Quadrature Phase Shift Keying)로 변조된다.The PCFICH is a physical control format indicator channel and informs the UE of the number of OFDM symbols used for the PDCCH in every subframe. The PCFICH is located in the first OFDM symbol and is set in preference to the PHICH and PDCCH. The PCFICH is composed of four Resource Element Groups (REGs), and each REG is distributed in a control region based on a Cell ID (Cell IDentity). One REG is composed of four resource elements (REs). The RE represents a minimum physical resource defined by one subcarrier x one OFDM symbol. The PCFICH value indicates a value of 1 to 3 or 2 to 4 depending on the bandwidth and is modulated by Quadrature Phase Shift Keying (QPSK).
PHICH는 물리 HARQ(Hybrid - Automatic Repeat and request) 지시자 채널로서 상향 링크 전송에 대한 HARQ ACK/NACK을 나르는데 사용된다. 즉, PHICH는 UL HARQ를 위한 DL ACK/NACK 정보가 전송되는 채널을 나타낸다. PHICH는 1개의 REG로 구성되고, 셀 특정(cell-specific)하게 스크램블(scrambling) 된다. ACK/NACK은 1 비트로 지시되며, BPSK(Binary phase shift keying)로 변조된다. 변조된 ACK/NACK은 확산인자(Spreading Factor; SF) = 2 또는 4로 확산된다. 동일한 자원에 매핑되는 복수의 PHICH는 PHICH 그룹을 구성한다. PHICH 그룹에 다중화되는 PHICH의 개수는 확산 코드의 개수에 따라 결정된다. PHICH (그룹)은 주파수 영역 및/또는 시간 영역에서 다이버시티 이득을 얻기 위해 3번 반복(repetition)된다. The PHICH is a physical hybrid automatic repeat and request (HARQ) indicator channel and is used to carry HARQ ACK / NACK for uplink transmission. That is, the PHICH indicates a channel through which DL ACK / NACK information for UL HARQ is transmitted. The PHICH consists of one REG and is scrambled cell-specifically. ACK / NACK is indicated by 1 bit and modulated by binary phase shift keying (BPSK). The modulated ACK / NACK is spread with Spreading Factor (SF) = 2 or 4. A plurality of PHICHs mapped to the same resource constitutes a PHICH group. The number of PHICHs multiplexed into the PHICH group is determined according to the number of spreading codes. The PHICH (group) is repeated three times to obtain diversity gain in the frequency domain and / or the time domain.
PDCCH는 물리 하향 링크 제어 채널로서 서브프레임의 처음 n개의 OFDM 심볼에 할당된다. 여기에서, n은 1 이상의 정수로서 PCFICH에 의해 지시된다. PDCCH는 하나 이상의 CCE로 구성된다. PDCCH는 전송 채널인 PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)의 자원할당과 관련된 정보, 상향 링크 스케줄링 그랜트(Uplink Scheduling Grant), HARQ 정보 등을 각 단말 또는 단말 그룹에게 알려준다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. 따라서, 기지국과 단말은 일반적으로 특정한 제어 정보 또는 특정한 서비스 데이터를 제외하고는 PDSCH를 통해서 데이터를 각각 전송 및 수신한다. The PDCCH is a physical downlink control channel and is allocated to the first n OFDM symbols of a subframe. Here, n is indicated by the PCFICH as an integer of 1 or more. The PDCCH consists of one or more CCEs. The PDCCH informs each UE or UE group of information related to resource allocation of a paging channel (PCH) and a downlink-shared channel (DL-SCH), an uplink scheduling grant, and HARQ information. Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. Accordingly, the base station and the terminal generally transmit and receive data through the PDSCH except for specific control information or specific service data.
PDSCH의 데이터가 어떤 단말(하나 또는 복수의 단말)에게 전송되는 것이며, 상기 단말들이 어떻게 PDSCH 데이터를 수신하고 디코딩(decoding)을 해야하는지에 대한 정보 등은 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 서브프레임을 통해 전송된다고 가정한다. 이 경우, 셀 내의 단말은 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A" RNTI를 가지고 있는 하나 이상의 단말이 있다면, 상기 단말들은 PDCCH를 수신하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다.Data of the PDSCH is transmitted to which UE (one or a plurality of UEs), and information on how the UEs should receive and decode the PDSCH data is included in the PDCCH and transmitted. For example, a specific PDCCH is CRC masked with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, frequency location) of "B" and a transmission type information of "C" (eg, It is assumed that information on data transmitted using a transport block size, modulation scheme, coding information, etc.) is transmitted through a specific subframe. In this case, the terminal in the cell monitors the PDCCH using the RNTI information it has, and if there is at least one terminal having an "A" RNTI, the terminals receive the PDCCH, and through the information of the received PDCCH " Receive the PDSCH indicated by B " and " C ".
도 6은 제어 채널을 구성하는데 사용되는 자원 단위를 나타낸다. 특히, 도 6의 (a)는 기지국의 송신 안테나의 개수가 1 또는 2개인 경우를 나타내고, 6의 (b)는 기지국의 송신 안테나의 개수가 4개인 경우를 나타낸다. 송신 안테나의 개수에 따라 RS(Reference Signal) 패턴만 상이할 뿐 제어 채널과 관련된 자원 단위의 설정 방법은 동일하다. 6 shows a resource unit used to configure a control channel. In particular, FIG. 6A illustrates a case where the number of transmit antennas of a base station is one or two, and FIG. 6B illustrates a case where the number of transmit antennas of a base station is four. Only the RS (Reference Signal) pattern is different according to the number of transmitting antennas, and the method of setting a resource unit associated with the control channel is the same.
도 6을 참조하면, 제어 채널의 기본 자원 단위는 REG이다. REG는 RS를 제외한 상태에서 4개의 이웃한 자원요소(RE)로 구성된다. REG는 도면에 굵은 선으로 도시되었다. PCFICH 및 PHICH는 각각 4개의 REG 및 3개의 REG를 포함한다. PDCCH는 CCE(Control Channel Elements) 단위로 구성되며 하나의 CCE는 9개의 REG를 포함한다.Referring to FIG. 6, the basic resource unit of the control channel is REG. The REG is composed of four neighboring resource elements (REs) in the state excluding the RS. REG is shown in bold in the figures. PCFICH and PHICH include 4 REGs and 3 REGs, respectively. The PDCCH is composed of CCE (Control Channel Elements) units, and one CCE includes nine REGs.
단말은 자신에게 L개의 CCE로 이루어진 PDCCH가 전송되는지를 확인하기 위하여 M(L)(≥L)개의 연속되거나 특정 규칙으로 배치된 CCE를 확인하도록 설정된다. 단말이 PDCCH 수신을 위해 고려해야 하는 L 값은 복수가 될 수 있다. 단말이 PDCCH 수신을 위해 확인해야 하는 CCE 집합들을 검색 영역(search space)이라고 한다. 일 예로, LTE 시스템은 검색 영역을 표 1과 같이 정의하고 있다.The UE is configured to check M (L) (≥ L) CCEs arranged in a continuous or specific rule in order to confirm whether a PDCCH composed of L CCEs is transmitted to the UE. There may be a plurality of L values to be considered by the UE for PDCCH reception. The CCE sets that the UE needs to check for PDCCH reception are called a search space. For example, the LTE system defines a search area as shown in Table 1.
표 1
Figure PCTKR2012006197-appb-T000001
Table 1
Figure PCTKR2012006197-appb-T000001
여기에서, CCE 집성 레벨 L은 PDCCH를 구성하는 CCE 개수를 나타내고, Sk (L)은 CCE 집성 레벨 L의 검색 영역을 나타내며, M(L)은 집성 레벨 L의 검색 영역에서 모니터링해야 하는 후보 PDCCH의 개수이다.Here, the CCE aggregation level L represents the number of CCEs constituting the PDCCH, S k (L) represents a search region of the CCE aggregation level L, and M (L) represents a candidate PDCCH to be monitored in the search region of the aggregation level L. Is the number of.
검색 영역은 특정 단말에 대해서만 접근이 허용되는 단말 특정 검색 영역(UE-specific search space)과 셀 내의 모든 단말에 대해 접근이 허용되는 공통 검색 영역(common search space)로 구분될 수 있다. 단말은 CCE 집성 레벨이 4 및 8인 공통 검색 영역을 모니터하고, CCE 집성 레벨이 1, 2, 4 및 8인 단말-특정 검색 영역을 모니터한다. 공통 검색 영역 및 단말 특정 검색 영역은 오버랩될 수 있다.The search area may be divided into a UE-specific search space that allows access to only a specific terminal and a common search space that allows access to all terminals in a cell. The UE monitors a common search region with CCE aggregation levels of 4 and 8, and monitors a UE-specific search region with CCE aggregation levels of 1, 2, 4, and 8. The common search area and the terminal specific search area may overlap.
또한, 각 CCE 집성 레벨 값에 대하여 임의의 단말에게 부여되는 PDCCH 검색 영역에서 첫 번째(가장 작은 인덱스를 가진) CCE의 위치는 단말에 따라서 매 서브프레임마다 변화하게 된다. 이를 PDCCH 검색 영역 해쉬(hashing)라고 한다.In addition, the position of the first (with the smallest index) CCE in the PDCCH search region given to any UE for each CCE aggregation level value is changed every subframe according to the UE. This is called PDCCH search region hashing.
도 7은 시스템 대역에 CCE를 분산시키는 예를 나타낸다. 도 7을 참조하면, 논리적으로 연속된 복수의 CCE가 인터리버(interleaver)로 입력된다. 상기 인터리버는 입력된 복수의 CCE를 REG 단위로 뒤섞는 기능을 수행한다. 따라서, 하나의 CCE를 이루는 주파수/시간 자원은 물리적으로 서브프레임의 제어 영역 내에서 전체 주파수/시간 영역에 흩어져서 분포한다. 결국, 제어 채널은 CCE 단위로 구성되지만 인터리빙은 REG 단위로 수행됨으로써 주파수 다이버시티(diversity)와 간섭 랜덤화(interference randomization) 이득을 최대화할 수 있다.7 shows an example of distributing CCEs in a system band. Referring to FIG. 7, a plurality of logically continuous CCEs are input to an interleaver. The interleaver performs a function of mixing input CCEs in REG units. Therefore, frequency / time resources constituting one CCE are physically dispersed in the entire frequency / time domain in the control region of the subframe. As a result, the control channel is configured in units of CCE, but interleaving is performed in units of REGs, thereby maximizing frequency diversity and interference randomization gain.
이하 MTC(Machine type communication)에 대해 설명한다. Hereinafter, machine type communication (MTC) will be described.
MTC란 사람의 개입 없이 기계(Machine)와 기계 사이에 통신이 이루어지는 것을 의미하며, MTC에 사용되는 단말이 MTC 단말(MTC device)이다. MTC는 다른 말로 M2M(Machine to Machine)으로도 불린다. MTC를 통해 제공되는 서비스는 기존의 사람이 개입하는 통신에서의 서비스와는 차별성을 가지며, 다음과 같은 다양한 범주의 서비스가 존재한다. 예를 들면, 추적(Tracking), 계량(Metering), 지불 시스템(Payment), 의료 분야 서비스, 원격 조정 등의 서비스가 MTC에서 제공된다. MTC means communication between a machine and a machine without human intervention, and the terminal used for the MTC is an MTC device. MTC is also called M2M (Machine to Machine). The services provided through the MTC are different from those in the existing human communication, and there are various categories of services as follows. For example, services such as tracking, metering, payment systems, healthcare services, remote control, and the like are provided by the MTC.
도 8은 MTC(Machine type communication)의 구조를 설명하기 위한 도면이다. 8 is a view for explaining the structure of the machine type communication (MTC).
MTC 단말은 다른 MTC 단말이나 MTC 서버와 이동 통신망을 통해서 통신을 한다. 상기 MTC 서버는 도 8과 같이 MTC 단말을 통해서 제공되는 서비스인 계량, 도로 정보, 수위 측정, 감시 카메라의 활용, 자판기의 재고 보고, 사용자 전자 장치 조정 등을 MTC 사용자(User)에게 제공할 수 있다. The MTC terminal communicates with another MTC terminal or MTC server through a mobile communication network. As illustrated in FIG. 8, the MTC server may provide the MTC user with metering, road information, water level measurement, utilization of a surveillance camera, inventory reporting of a vending machine, adjustment of a user electronic device, and the like, which are services provided through an MTC terminal. .
상기 MTC 서비스를 효율적으로 지원하기 위해서, MTC 단말의 적은 움직임(low mobility), 시간 지연성(Time tolerant 또는 Delay tolerant), 지연 내성, 작은 데이터 전송(Small data transmission)등과 같은 특성을 고려해 볼 수 있다. 이와 같은 이유로, 상기 MTC 단말은 지연 내성 접속(Delay tolerant access) 지원 단말이라고 지칭할 수도 있다. In order to efficiently support the MTC service, characteristics such as low mobility, time tolerant or delay tolerant, delay tolerance, and small data transmission of the MTC terminal may be considered. . For this reason, the MTC terminal may be referred to as a delay tolerant access support terminal.
MTC 서비스의 경우 전송 데이터 양이 적고 한 셀에 속하여 동작하는 MTC 단말의 수가 많기 때문에, 각 MTC 단말의 매 순간 상/하향링크 데이터 전송을 위해 일일이 스케줄링하는 것은 기지국 또는 eNB 입장에서는 부담이 매우 크게 된다. 이에, 복수의 MTC 단말을 그룹핑(grouping)하고, 이러한 MTC 그룹 단위로 상항향크/하향링크 스케줄링을 수행함으로써 제어 채널 오버헤드 부담을 줄이는 방식을 고려할 수 있다. 하지만 그룹 단위의 스케줄링은 동일한 제어 정보를 다수의 MTC 단말에 적용하기 때문에 스케줄링 유연성에 제약이 따르게 된다. 또한, MTC 그룹 단위의 스케줄링을 하지 않는다면, 다수의 MTC 기기들에 대한 제어 정보를 한정된 제어 영역, 예를 들어 PDCCH 영역에 전송하여야 하며 이로써 PDCCH 용량 부족을 초래할 수 있다. In case of MTC service, since the amount of transmission data is small and the number of MTC terminals operating in one cell is large, the scheduling of each MTC terminal for uplink / downlink data transmission at each moment becomes very burdensome for the base station or eNB. . Accordingly, a method of reducing the control channel overhead burden may be considered by grouping a plurality of MTC terminals and performing uplink / downlink scheduling in units of such MTC groups. However, scheduling in a group unit applies the same control information to a plurality of MTC terminals, thereby limiting scheduling flexibility. In addition, if the scheduling of the MTC group is not performed, control information for a plurality of MTC devices should be transmitted to a limited control region, for example, a PDCCH region, which may cause a shortage of PDCCH capacity.
한편, LTE-A 시스템에서 제안된 릴레이 노드의 경우, PDCCH의 용량 부족 문제로 인하여 검색 영역이 상위 계층 시그널링을 통하여 PDSCH 영역에 설정되는데, 이는 고정 릴레이가 아닌 이동성을 지닌 릴레이인 경우라면 실제 설정된 검색 영역이 이동성을 반영하지 못한다는 문제점이 있다. Meanwhile, in the case of the relay node proposed in the LTE-A system, the discovery region is set in the PDSCH region through the higher layer signaling due to the capacity shortage problem of the PDCCH. There is a problem that the area does not reflect mobility.
따라서, 본 발명에서는, PDCCH 용량 부족을 야기하지 않으면서 MTC 단말이 이동성을 가진 경우에도 유연하게 대처할 수 있는 방법을 제안하고자 한다. Accordingly, the present invention is to propose a method that can flexibly cope with the mobility of the MTC terminal without causing a lack of PDCCH capacity.
우선, 본 발명에서는, 다수의 MTC 단말, 예를 들어 100 개 내지 1000개의 MTC 단말을 하나의 MTC 그룹으로 구분하고, 각 MTC 단말 그룹 특정 PDCCH를 PDSCH 영역에 위치시키며, 그 PDSCH 영역의 위치를 그룹-RNTI로 마스킹된 PDCCH를 이용하여 지시하는 방법을 고려할 수 있다. 여기서, 그룹-RNTI로 마스킹된 PDCCH는 종래의 PDCCH 영역에 구성된 검색 영역에서 블라인드 디코딩을 통하여 획득한다. 또한, PDSCH 영역에 위치하는 MTC 단말 그룹 특정 PDCCH는 E-PDCCH (Enhanced-PDCCH)로 지칭할 수도 있다. First, in the present invention, a plurality of MTC terminals, for example, 100 to 1000 MTC terminals are divided into one MTC group, each MTC terminal group specific PDCCH is placed in a PDSCH region, and the position of the PDSCH region is grouped. A method of indicating using a PDCCH masked with -RNTI may be considered. Here, the PDCCH masked with the group-RNTI is obtained through blind decoding in a search region configured in the conventional PDCCH region. In addition, the MTC UE group specific PDCCH located in the PDSCH region may be referred to as an E-PDCCH (Enhanced-PDCCH).
따라서, MTC 단말 입장에서는 자신이 속한 그룹의 그룹-RNTI를 미리 알 수 있으므로 (시스템 정보 또는 랜덤 액세스 절차 등을 통하여 획득 가능하다), 해당 그룹-RNTI로 종래의 PDCCH 영역에서 MTC 단말 그룹 특정 PDCCH를 디코딩하며, 이를 이용하여 E-PDCCH (Enhanced-PDCCH) 영역의 위치를 파악할 수 있다. 여기서 E-PDCCH 영역이란 MTC 단말이 포함된 MTC 그룹의 E-PDCCH 검색 영역을 의미한다.  Therefore, since the MTC terminal can know in advance the group-RNTI of the group to which it belongs (which can be obtained through system information or a random access procedure), the MTC terminal group specific PDCCH is determined in the conventional PDCCH region using the corresponding group-RNTI. Decode and use this to determine the location of an E-PDCCH (Enhanced-PDCCH) region. Here, the E-PDCCH region means the E-PDCCH search region of the MTC group including the MTC terminal.
이러한 방법에 따르면, 기존 PDCCH 영역을 통하여 전송되는 그룹 PDCCH의 값(즉, 그룹 PDCCH를 통하여 전송되는 제어 정보)을 다르게 설정함으로써 E-PDCCH 검색 영역이 가변할 수 있고, 결국 E-PDCCH를 다양한 위치에 전송할 수 있도록 할 수 있다. 즉, 검색 영역의 동적(dynamic) 설정을 지원할 수 있으며, MTC 단말 (또는 릴레이 노드)가 이동성을 지닌 경우 유리하게 작용할 수 있다. According to this method, the E-PDCCH search region can be varied by differently setting the value of the group PDCCH transmitted through the existing PDCCH region (that is, the control information transmitted through the group PDCCH). Can be sent to. That is, it may support dynamic configuration of the search area, and may work advantageously when the MTC terminal (or relay node) has mobility.
또는, MTC 단말의 경우 그룹 구성 및 그 멤버의 변화가 거의 없을 것으로 가정하면, 한 번 구성된 MTC 그룹은 오랜 시간 동안 변하지 않을 것이기 때문에, MTC 그룹 내 각 MTC 단말의 E-PDCCH의 위치를 사전에 RRC 시그널링으로 알려주는 것도 고려할 수 있다. 따라서, 그룹 PDCCH가 지시하는 위치를, 다수의 MTC 단말을 위한 E-PDCCH들의 논리적 또는 물리적 (시작) 위치가 되도록 구성하고, 다수의 MTC 단말을 위한 E-PDCCH들 중에 몇 번째 E-PDCCH가 자신의 스케줄링 정보라는 것을 RRC 신호와 같은 상위 계층 신호를 통하여 시그널링함으로써, E-PDCCH 영역에서 자신의 E-PDCCH에 대한 별도의 블라인드 디코딩 없이 구현할 수 있다. 물론, E-PDCCH 영역에서 자신의 E-PDCCH가 될 수 있는 후보 집합들을 시그널링하는 방법 역시 가능하다. Or, in the case of the MTC terminal, if there is almost no change in the group configuration and its members, since once configured MTC group will not change for a long time, the position of the E-PDCCH of each MTC terminal in the MTC group in advance RRC Informed signaling may also be considered. Accordingly, the position indicated by the group PDCCH is configured to be a logical or physical (starting) position of the E-PDCCHs for the plurality of MTC terminals, and a few E-PDCCHs among the E-PDCCHs for the plurality of MTC terminals are themselves. By signaling that the scheduling information of through an upper layer signal such as an RRC signal, it can be implemented without separate blind decoding for its E-PDCCH in the E-PDCCH region. Of course, a method of signaling candidate sets that may be its own E-PDCCH in the E-PDCCH region is also possible.
또한, E-PDCCH 영역에서도 PDCCH 검색 영역 해쉬(hashing)이 동일하게 적용될 수 있다. 예를 들어, E-PDCCH 영역, 즉 E-PDCCH의 검색 영역에서 MTC 그룹에게 부여되는 첫 번째(가장 작은 인덱스를 가진) 자원의 위치는 MTC 그룹 식별자에 따라 매 서브프레임마다 변화할 수 있다. In addition, PDCCH search region hashing may be equally applied to the E-PDCCH region. For example, the position of the first (smallest index) resource allocated to the MTC group in the E-PDCCH region, that is, the search region of the E-PDCCH may change every subframe according to the MTC group identifier.
도 9는 본 발명의 실시예에 따라 MTC 단말이 제어 정보를 수신하는 방법을 예시하는 순서도이다.9 is a flowchart illustrating a method of receiving control information by an MTC terminal according to an embodiment of the present invention.
도 9를 참조하면, 우선 MTC 단말은 단계 901과 같이 종래의 PDCCH 영역에서 구성된 검색 영역에 대하여 블라인드 디코딩을 수행하여, 그룹-RNTI로 마스킹된 PDCCH를 획득한다. 여기서 그룹-RNTI로 마스킹된 PDCCH는, 상술한 바와 같이, PDSCH 영역에 구성된 E-PDCCH를 위한 검색 영역의 위치를 시그널링할 수 있고, 또는 상기 MTC 단말 하나만을 위한 E-PDCCH의 위치 자체를 시그널링할 수도 있다. 이하에서는, 설명의 편의를 위하여, E-PDCCH를 위한 검색 영역의 위치를 시그널링하는 것으로 가정한다.Referring to FIG. 9, the MTC terminal first performs blind decoding on a search region configured in a conventional PDCCH region as in step 901 to obtain a PDCCH masked with a group-RNTI. Here, the PDCCH masked with the group-RNTI may signal the location of the search region for the E-PDCCH configured in the PDSCH region as described above, or may signal the location itself of the E-PDCCH for only one MTC terminal. It may be. Hereinafter, for convenience of description, it is assumed that the location of the search region for the E-PDCCH is signaled.
계속하여, 단계 902에서 MTC 단말은 E-PDCCH를 위한 검색 영역을 블라인드 디코딩하여, MTC 단말이 속한 MTC 그룹의 E-PDCCH들을 획득할 수 있다. 상술한 바와 같이 MTC 그룹 내 각 MTC 단말의 E-PDCCH의 위치는 상위 계층을 통하여 사전에 정의될 수 있으므로, MTC 단말은 단계 902에서 획득한 E-PDCCH들 중 어느 것이 자신의 E-PDCCH인지를 알 수 있다.Subsequently, in step 902, the MTC terminal may blindly decode the search region for the E-PDCCH to obtain E-PDCCHs of the MTC group to which the MTC terminal belongs. As described above, since the location of the E-PDCCH of each MTC terminal in the MTC group may be defined in advance through a higher layer, the MTC terminal determines which of the E-PDCCHs acquired in step 902 is its E-PDCCH. Able to know.
마지막으로, 단계 903에서 MTC 단말은 자신의 E-PDCCH에 포함된 스케줄링 정보, 즉 자원 할당 정보에 따라 상향링크 신호 송신 및 하향링크 신호 수신을 수행한다. Finally, in step 903, the MTC terminal performs uplink signal transmission and downlink signal reception according to scheduling information included in its E-PDCCH, that is, resource allocation information.
한편, E-PDCCH의 크기 자체를 줄이는 방법도 고려할 수 있다. 일 예로, 그룹핑된 MTC 단말들의 (하향링크 신호 수신 또는 상향링크 신호 송신을 위한) 자원 할당이 특정 패턴으로 이루어진다면, E-PDCCH에 포함되는 자원 할당 정보의 비트 사이즈를 감소시킬 수 있다. 예를 들어, 모든 MTC에 대하여 자원을 지정된 크기 단위 (1 RB 또는 1 부반송파 등) 또는 그것의 정수 배만큼만 할당하고 이를 연속적 인덱스로 구성한다면, 첫 번째 자원 영역의 위치를 알려주고 이로부터의 오프셋 값만 시그널링하는 형태로 자원 할당 정보의 비트 사이즈를 현저하게 줄일 수 있다. 또는, 모든 MTC 단말에 1 RB 씩만 연속적으로 할당한다면, 각 MTC 단말은 자신의 그룹 내 위치만 파악하여 별도의 자원 할당 정보 없이 자신에게 스케줄링된 자원의 위치를 인지할 수 있다. 추가적으로, MTC 그룹에 포함된 MTC 단말들 각각의 MCS는 고정된 값일 확률이 높기 때문에, E-PDCCH를 통하여 전송되는 MCS 값은 생략할 수 있다. 따라서, 본 발명에 따른 MTC 그룹을 위한 E-PDCCH는 릴레이 노드를 위한 R-PDCCH의 크기보다 매우 작게 설계될 수 있으며, 1 RB에 다수의 E-PDCCH가 다중화 될 수 있다. 또는 복수의 반송파에 대한 상향링크 피드백 정보를 한번에 송신하기 위한 PUCCH 포맷 (LTE-A 시스템의 PUCCH 포맷 3)과 같이 구성될 수 도 있다.Meanwhile, a method of reducing the size of the E-PDCCH itself may also be considered. For example, if resource allocation (for downlink signal reception or uplink signal transmission) of grouped MTC terminals is performed in a specific pattern, the bit size of resource allocation information included in the E-PDCCH may be reduced. For example, if you allocate a resource for every MTC only in a specified size unit (such as 1 RB or 1 subcarrier) or an integer multiple of it and configure it as a continuous index, it will tell you the location of the first resource region and only signal the offset value from it. In this way, the bit size of the resource allocation information can be significantly reduced. Alternatively, if only one RB is continuously allocated to all MTC terminals, each MTC terminal may recognize only the location in its own group and recognize the location of resources scheduled to it without additional resource allocation information. In addition, since the MCS of each of the MTC terminals included in the MTC group has a high probability of being a fixed value, the MCS value transmitted through the E-PDCCH may be omitted. Therefore, the E-PDCCH for the MTC group according to the present invention can be designed to be much smaller than the size of the R-PDCCH for the relay node, a number of E-PDCCH can be multiplexed in one RB. Or it may be configured as a PUCCH format (PUCCH format 3 of the LTE-A system) for transmitting uplink feedback information for a plurality of carriers at once.
위에서는, MTC 그룹에 복수의 MTC 단말이 포함되는 경우만을 가정하였으나, MTC 그룹이 하나의 MTC 단말로 구성되는 경우를 배제하는 것은 아님은 당업자에게 자명하다. In the above, it is assumed that only a case in which a plurality of MTC terminals are included in the MTC group, but it is obvious to those skilled in the art that the case in which the MTC group is composed of one MTC terminal is not excluded.
도 10은 본 발명의 실시예에 따라 MTC 단말을 위한 E-PDCCH가 맵핑되는 예를 도시하는 도면이다.10 is a diagram for one example of mapping an E-PDCCH for an MTC terminal according to an embodiment of the present invention.
도 10을 참조하면, 단말은 종래의 PDCCH 영역에서 구성된 검색 영역에 대하여 블라인드 디코딩을 수행하여, 그룹-RNTI로 마스킹된 PDCCH (1001)를 획득한다. 도 10에서는 설명의 편의를 위하여, E-PDCCH를 위한 검색 영역의 위치 (1002)를 시그널링하는 것으로 가정한다. 물론, E-PDCCH의 검색 영역(1002)의 첫 번째(가장 작은 인덱스를 가진) 자원의 위치는 MTC 그룹 식별자에 따라 매 서브프레임마다 변화할 수 있다.Referring to FIG. 10, the UE performs blind decoding on a search region configured in a conventional PDCCH region to obtain a PDCCH 1001 masked with a group-RNTI. In FIG. 10, for convenience of description, it is assumed that the location 1002 of the search region for the E-PDCCH is signaled. Of course, the position of the first resource (with the smallest index) of the search region 1002 of the E-PDCCH may change every subframe according to the MTC group identifier.
MTC 단말은 E-PDCCH를 위한 검색 영역(1002)을 블라인드 디코딩하여, MTC 단말이 속한 MTC 그룹의 E-PDCCH들(1003)을 획득할 수 있다. 상술한 바와 같이 MTC 그룹 내 각 MTC 단말의 E-PDCCH의 위치는 상위 계층을 통하여 사전에 정의될 수 있으므로, MTC 단말은 E-PDCCH들(1003)에서 어느 것이 자신의 E-PDCCH인지를 알 수 있다.The MTC terminal may blindly decode the search region 1002 for the E-PDCCH to obtain the E-PDCCHs 1003 of the MTC group to which the MTC terminal belongs. As described above, since the location of the E-PDCCH of each MTC terminal in the MTC group may be defined in advance through an upper layer, the MTC terminal may know which of its E-PDCCHs is the E-PDCCH in the E-PDCCHs 1003. have.
도 11은 본 발명의 실시예에 따른 통신 장치의 블록 구성도를 예시한다. 11 illustrates a block diagram of a communication device according to an embodiment of the present invention.
도 11을 참조하면, 통신 장치(1100)는 프로세서(1110), 메모리(1120), RF 모듈(1130), 디스플레이 모듈(1140) 및 사용자 인터페이스 모듈(1150)을 포함한다.Referring to FIG. 11, the communication device 1100 includes a processor 1110, a memory 1120, an RF module 1130, a display module 1140, and a user interface module 1150.
통신 장치(1100)는 설명의 편의를 위해 도시된 것으로서 일부 모듈은 생략될 수 있다. 또한, 통신 장치(1100)는 필요한 모듈을 더 포함할 수 있다. 또한, 통신 장치(1100)에서 일부 모듈은 보다 세분화된 모듈로 구분될 수 있다. 프로세서(1110)는 도면을 참조하여 예시한 본 발명의 실시예에 따른 동작을 수행하도록 구성된다. 구체적으로, 프로세서(1110)의 자세한 동작은 도 1 내지 도 10에 기재된 내용을 참조할 수 있다. The communication device 1100 is illustrated for convenience of description and some modules may be omitted. In addition, the communication device 1100 may further include necessary modules. In addition, some modules in the communication device 1100 may be classified into more granular modules. The processor 1110 is configured to perform an operation according to the embodiment of the present invention illustrated with reference to the drawings. In detail, the detailed operation of the processor 1110 may refer to the contents described with reference to FIGS. 1 to 10.
메모리(1120)는 프로세서(1110)에 연결되며 오퍼레이팅 시스템, 어플리케이션, 프로그램 코드, 데이터 등을 저장한다. RF 모듈(1130)은 프로세서(1110)에 연결되며 기저대역 신호를 무선 신호를 변환하거나 무선신호를 기저대역 신호로 변환하는 기능을 수행한다. 이를 위해, RF 모듈(1130)은 아날로그 변환, 증폭, 필터링 및 주파수 상향 변환 또는 이들의 역과정을 수행한다. 디스플레이 모듈(1140)은 프로세서(1110)에 연결되며 다양한 정보를 디스플레이한다. 디스플레이 모듈(1140)은 이로 제한되는 것은 아니지만 LCD(Liquid Crystal Display), LED(Light Emitting Diode), OLED(Organic Light Emitting Diode)와 같은 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스 모듈(1150)은 프로세서(1110)와 연결되며 키패드, 터치 스크린 등과 같은 잘 알려진 사용자 인터페이스의 조합으로 구성될 수 있다.The memory 1120 is connected to the processor 1110 and stores an operating system, an application, program code, data, and the like. The RF module 1130 is connected to the processor 1110 and performs a function of converting a baseband signal into a radio signal or converting a radio signal into a baseband signal. To this end, the RF module 1130 performs analog conversion, amplification, filtering and frequency up-conversion, or a reverse process thereof. The display module 1140 is connected to the processor 1110 and displays various information. The display module 1140 may use well-known elements such as, but not limited to, a liquid crystal display (LCD), a light emitting diode (LED), and an organic light emitting diode (OLED). The user interface module 1150 is connected to the processor 1110 and may be configured with a combination of well-known user interfaces such as a keypad and a touch screen.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. In this document, embodiments of the present invention have been mainly described based on data transmission / reception relations between a terminal and a base station. Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is apparent that various operations performed for communication with a terminal in a network including a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station. A base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of a hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above. The software code may be stored in a memory unit and driven by a processor. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
상술한 바와 같은 무선 통신 시스템에서 MTC 단말의 검색 영역 설정 방법 및 이를 위한 장치는 3GPP LTE 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.In the above-described wireless communication system, the method for setting a search area of the MTC terminal and an apparatus therefor have been described with reference to the example applied to the 3GPP LTE system. However, the present invention can be applied to various wireless communication systems in addition to the 3GPP LTE system.

Claims (10)

  1. 무선 통신 시스템에서 단말이 하향링크 제어 정보를 수신하는 방법에 있어서, A method for receiving downlink control information by a terminal in a wireless communication system,
    서브프레임의 제 1 영역에서, 상기 단말이 속한 그룹의 식별자로 마스킹된 제어 정보를 수신하는 단계;Receiving control information masked with an identifier of a group to which the terminal belongs in the first region of the subframe;
    상기 제 1 제어 정보에 따라, 상기 서브프레임의 제 2 영역에서 상기 단말이 속한 그룹의 그룹 특정 검색 영역을 설정하는 단계; 및Setting a group specific search region of a group to which the terminal belongs in the second region of the subframe according to the first control information; And
    상기 그룹 특정 검색 영역에서, 상기 단말이 속한 그룹의 그룹 특정 하향링크 제어 정보를 수신하는 단계를 포함하고,Receiving, in the group specific search region, group specific downlink control information of a group to which the terminal belongs;
    상기 그룹 특정 하향링크 제어 정보는,The group specific downlink control information,
    상기 그룹에 속하는 단말들 각각에 대한 자원 할당 정보를 포함하는 것을 특징으로 하는,Characterized in that the resource allocation information for each of the terminals belonging to the group,
    하향링크 제어 정보 수신 방법.Receiving downlink control information.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 제어 정보는,The first control information,
    상기 그룹 특정 검색 영역의 시작 지점에 관한 정보를 포함하고,Including information about a starting point of the group specific search area,
    상기 시작 지점은,The starting point is,
    상기 단말이 속한 그룹의 식별자에 기반하여 서브프레임마다 미리 정의된 규칙에 의하여 변경되는 것을 특징으로 하는,Characterized in accordance with the predefined rule for each subframe based on the identifier of the group to which the terminal belongs,
    하향링크 제어 정보 수신 방법.Receiving downlink control information.
  3. 제 1 항에 있어서,The method of claim 1,
    상위 계층을 통하여, 상기 그룹에서 상기 단말의 인덱스를 수신하는 단계를 더 포함하고,Receiving the index of the terminal in the group through a higher layer,
    상기 그룹 특정 하향링크 제어 정보는,The group specific downlink control information,
    상기 그룹에 속하는 단말들 각각에 대한 상기 자원 할당 정보가 단말 인덱스 순으로 구성된 것을 특징으로 하는,The resource allocation information for each of the terminals belonging to the group, characterized in that configured in the terminal index order,
    하향링크 제어 정보 수신 방법.Receiving downlink control information.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 그룹에 속하는 단말들 각각에 대한 자원은,Resources for each of the terminals belonging to the group,
    기 설정된 크기 단위로 일정하게 할당되는 것을 특징으로 하는,Characterized in that it is constantly assigned to a predetermined size unit,
    하향링크 제어 정보 수신 방법.Receiving downlink control information.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 영역은,The first region,
    상기 서브프레임의 제어 영역이고,A control region of the subframe,
    상기 제 2 영역은,The second area is,
    상기 서브프레임의 데이터 영역인 것을 특징으로 하는,Characterized in that the data area of the subframe,
    하향링크 제어 정보 수신 방법.Receiving downlink control information.
  6. 무선 통신 시스템에서의 단말 장치로서, A terminal device in a wireless communication system,
    서브프레임의 제 1 영역에서, 상기 단말 장치가 속한 그룹의 식별자로 마스킹된 제어 정보를 수신하기 위한 무선 통신 모듈; 및In a first area of the subframe, a wireless communication module for receiving control information masked with the identifier of the group to which the terminal device belongs; And
    상기 제 1 제어 정보에 따라, 상기 서브프레임의 제 2 영역에서 상기 단말 장치가 속한 그룹의 그룹 특정 검색 영역을 설정하기 위한 프로세서를 포함하고, A processor for setting a group specific search region of a group to which the terminal apparatus belongs in a second region of the subframe according to the first control information,
    상기 프로세서는,The processor,
    상기 그룹 특정 검색 영역에서, 상기 단말 장치가 속한 그룹의 그룹 특정 하향링크 제어 정보를 획득하며,Obtaining group specific downlink control information of a group to which the terminal device belongs in the group specific search region,
    상기 그룹 특정 하향링크 제어 정보는,The group specific downlink control information,
    상기 그룹에 속하는 단말 장치들 각각에 대한 자원 할당 정보를 포함하는 것을 특징으로 하는,Characterized in that the resource allocation information for each of the terminal devices belonging to the group,
    단말 장치.Terminal device.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 제 1 제어 정보는,The first control information,
    상기 그룹 특정 검색 영역의 시작 지점에 관한 정보를 포함하고,Including information about a starting point of the group specific search area,
    상기 시작 지점은,The starting point is,
    상기 단말 장치가 속한 그룹의 식별자에 기반하여 서브프레임마다 미리 정의된 규칙에 의하여 변경되는 것을 특징으로 하는,Characterized in accordance with the predefined rule for each subframe based on the identifier of the group to which the terminal device belongs,
    단말 장치.Terminal device.
  8. 제 6 항에 있어서,The method of claim 6,
    상기 수신 모듈은,The receiving module,
    상위 계층을 통하여, 상기 그룹에서 상기 단말 장치의 인덱스를 수신하며,Receive an index of the terminal device in the group through a higher layer,
    상기 그룹 특정 하향링크 제어 정보는,The group specific downlink control information,
    상기 그룹에 속하는 단말 장치들 각각에 대한 상기 자원 할당 정보가 단말 인덱스 순으로 구성된 것을 특징으로 하는,The resource allocation information for each of the terminal devices belonging to the group is configured in the order of the terminal index,
    단말 장치.Terminal device.
  9. 제 6 항에 있어서,The method of claim 6,
    상기 그룹에 속하는 단말 장치들 각각에 대한 자원은,Resources for each of the terminal devices belonging to the group,
    기 설정된 크기 단위로 일정하게 할당되는 것을 특징으로 하는,Characterized in that it is constantly assigned to a predetermined size unit,
    단말 장치.Terminal device.
  10. 제 6 항에 있어서,The method of claim 6,
    상기 제 1 영역은,The first region,
    상기 서브프레임의 제어 영역이고,A control region of the subframe,
    상기 제 2 영역은,The second area is,
    상기 서브프레임의 데이터 영역인 것을 특징으로 하는,Characterized in that the data area of the subframe,
    단말 장치.Terminal device.
PCT/KR2012/006197 2011-08-04 2012-08-03 Method for setting an mtc terminal search area in a wireless communication system and an apparatus for same WO2013019088A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137029723A KR102052375B1 (en) 2011-08-04 2012-08-03 Method for setting an mtc terminal search area in a wireless communication system and an apparatus for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161515313P 2011-08-04 2011-08-04
US61/515,313 2011-08-04

Publications (2)

Publication Number Publication Date
WO2013019088A2 true WO2013019088A2 (en) 2013-02-07
WO2013019088A3 WO2013019088A3 (en) 2013-04-04

Family

ID=47629818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006197 WO2013019088A2 (en) 2011-08-04 2012-08-03 Method for setting an mtc terminal search area in a wireless communication system and an apparatus for same

Country Status (2)

Country Link
KR (1) KR102052375B1 (en)
WO (1) WO2013019088A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2508595A (en) * 2012-12-03 2014-06-11 Sony Corp A group-based PDCCH capability for machine type communication (MTC) devices
GB2508593A (en) * 2012-12-03 2014-06-11 Sony Corp A group-based PDCCH capability for machine type communication (MTC) devices
WO2014185660A1 (en) * 2013-05-12 2014-11-20 엘지전자 주식회사 Method for receiving information by mtc device located in cell coverage-expanded area
WO2015050339A1 (en) * 2013-10-04 2015-04-09 주식회사 케이티 Method for transmitting and receiving downlink control channel, and apparatus therefor
WO2015093851A1 (en) * 2013-12-18 2015-06-25 엘지전자 주식회사 Method and terminal for receiving bundle of epdcchs
CN105659514A (en) * 2013-10-04 2016-06-08 株式会社Kt Method for transmitting and receiving downlink control channel, and apparatus therefor
WO2016175486A1 (en) * 2015-04-29 2016-11-03 엘지전자 주식회사 Method and lc apparatus for receiving downlink control channel
US9872123B2 (en) 2012-12-03 2018-01-16 Sony Corporation Group based PDCCH capability for LTE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102452865B1 (en) * 2016-02-05 2022-10-11 주식회사 아이티엘 METHOD AND APPARATUS of RESOURCE ALLOCATION for NB-IoT DL TRANSMISSION

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089770A (en) * 2008-02-19 2009-08-24 엘지전자 주식회사 Method for transmitting and receiving control information through pdcch
WO2009118705A1 (en) * 2008-03-26 2009-10-01 Koninklijke Philips Electronics N.V. A method for communicating in mobile system
KR20100110272A (en) * 2009-04-02 2010-10-12 엘지전자 주식회사 Method and apparatus for monitoring control channel in multiple carrier system
KR20100123657A (en) * 2009-05-15 2010-11-24 엘지전자 주식회사 Method for transmitting sounding reference signal in wireless communication system and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090089770A (en) * 2008-02-19 2009-08-24 엘지전자 주식회사 Method for transmitting and receiving control information through pdcch
WO2009118705A1 (en) * 2008-03-26 2009-10-01 Koninklijke Philips Electronics N.V. A method for communicating in mobile system
KR20100110272A (en) * 2009-04-02 2010-10-12 엘지전자 주식회사 Method and apparatus for monitoring control channel in multiple carrier system
KR20100123657A (en) * 2009-05-15 2010-11-24 엘지전자 주식회사 Method for transmitting sounding reference signal in wireless communication system and apparatus therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10659939B2 (en) 2012-12-03 2020-05-19 Sony Corporation Telecommunications apparatus and methods
US10206078B2 (en) 2012-12-03 2019-02-12 Sony Corporation Group based PDCCH capability for LTE
US9872123B2 (en) 2012-12-03 2018-01-16 Sony Corporation Group based PDCCH capability for LTE
GB2508593B (en) * 2012-12-03 2020-08-26 Sony Corp Telecommunications apparatus and methods
GB2508593A (en) * 2012-12-03 2014-06-11 Sony Corp A group-based PDCCH capability for machine type communication (MTC) devices
GB2508595B (en) * 2012-12-03 2020-08-26 Sony Corp Telecommunications apparatus and methods
GB2508595A (en) * 2012-12-03 2014-06-11 Sony Corp A group-based PDCCH capability for machine type communication (MTC) devices
US10856277B2 (en) 2013-05-12 2020-12-01 Lg Electronics Inc. Method for receiving information by MTC device located in cell coverage-expanded area
WO2014185660A1 (en) * 2013-05-12 2014-11-20 엘지전자 주식회사 Method for receiving information by mtc device located in cell coverage-expanded area
CN105659514A (en) * 2013-10-04 2016-06-08 株式会社Kt Method for transmitting and receiving downlink control channel, and apparatus therefor
US9998269B2 (en) 2013-10-04 2018-06-12 Kt Corporation Method for transmitting and receiving downlink control channel, and apparatus therefor
CN105659514B (en) * 2013-10-04 2018-06-01 株式会社Kt It is used for transmission and receives the method and its equipment of downlink control channel
WO2015050339A1 (en) * 2013-10-04 2015-04-09 주식회사 케이티 Method for transmitting and receiving downlink control channel, and apparatus therefor
US9860890B2 (en) 2013-12-18 2018-01-02 Lg Electronics Inc. Method and terminal for receiving bundle of EPDCCHs
WO2015093851A1 (en) * 2013-12-18 2015-06-25 엘지전자 주식회사 Method and terminal for receiving bundle of epdcchs
WO2016175486A1 (en) * 2015-04-29 2016-11-03 엘지전자 주식회사 Method and lc apparatus for receiving downlink control channel
US10952209B2 (en) 2015-04-29 2021-03-16 Lg Electronics Inc. Method and LC apparatus for receiving downlink control channel

Also Published As

Publication number Publication date
KR20140044321A (en) 2014-04-14
KR102052375B1 (en) 2019-12-05
WO2013019088A3 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
KR102011821B1 (en) Method for enabling terminal to transmit ack/nack response in wireless communication system and apparatus therefor
WO2017179784A1 (en) Dynamic subband-based signal transceiving method and apparatus therefor in wireless communication system
WO2010117239A2 (en) Control information receiving method in wireless communication system and apparatus therefor
WO2018080184A1 (en) Method for sensing resource for direct communication between terminals in wireless communication system and device therefor
WO2010117225A2 (en) Downlink control information receiving method in wireless communication system and apparatus therefor
WO2013019088A2 (en) Method for setting an mtc terminal search area in a wireless communication system and an apparatus for same
WO2012150793A2 (en) Method for transmitting/receiving downlink control information in wireless communication system and device therefor
WO2010126259A2 (en) Method for receiving control information in a wireless communication system, and apparatus for same
WO2011083983A2 (en) Method and apparatus for receiving a downlink signal in a wireless communication system supporting carrier aggregation
WO2017155324A1 (en) Method for performing random access procedure for single tone transmission in wireless communication system and apparatus therefor
WO2012150773A2 (en) Method for transmitting/receiving downlink control information in wireless communication system and device therefor
WO2011025195A2 (en) Transmission method of downlink signal in wireless communication system and transmission apparatus therefor
WO2012150772A2 (en) Method for terminal to receive downlink signal from base station in wireless communication system and device therefor
WO2012148076A1 (en) Method for transmitting and receiving downlink control information in a wireless communication system and apparatus for the same
WO2012169756A2 (en) Multiplexing method for signals related to a plurality of terminals in a wireless communication system applying carrier aggregation techniques and apparatus therefor
US9319196B2 (en) Method of operating an HARQ buffer for a dynamic sub-frame change and an apparatus for same
WO2013055173A2 (en) Method in which a terminal transceives a signal in a wireless communication system and apparatus for same
WO2017069559A1 (en) Method for transmitting ack/nack response for broadcast signal/multicast signal in wireless communication system, and device therefor
WO2012064076A2 (en) Rrc connection method and device therefor in wireless communication system
WO2012144763A2 (en) Method for controlling power in a wireless communication system adopting a carrier aggregation technique, and apparatus for same
WO2013095041A1 (en) Method for transmitting and receiving signal based on dynamic change of wireless resource in wireless communication system and apparatus therefor
WO2013137582A1 (en) Method for setting start symbol of downlink channel in wireless communication system and apparatus for same
WO2012108640A2 (en) Method for signaling a subframe pattern for preventing inter-cell interference from occurring in a heterogeneous network system and appartus for the same
WO2012141490A2 (en) Method for sending and receiving signals for alleviating inter-cell interference in a wireless communication system and a device therefor
WO2017155332A2 (en) Method for receiving multicast signal in wireless communication system and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819946

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20137029723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819946

Country of ref document: EP

Kind code of ref document: A2