WO2013019005A2 - 이상유동을 이용하는 태양광 발전설비의 효율향상설비 - Google Patents

이상유동을 이용하는 태양광 발전설비의 효율향상설비 Download PDF

Info

Publication number
WO2013019005A2
WO2013019005A2 PCT/KR2012/005708 KR2012005708W WO2013019005A2 WO 2013019005 A2 WO2013019005 A2 WO 2013019005A2 KR 2012005708 W KR2012005708 W KR 2012005708W WO 2013019005 A2 WO2013019005 A2 WO 2013019005A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
coolant
unit
efficiency
rotation
Prior art date
Application number
PCT/KR2012/005708
Other languages
English (en)
French (fr)
Other versions
WO2013019005A3 (ko
Inventor
유상필
정성대
Original Assignee
(주)하이레벤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110077672A external-priority patent/KR101283878B1/ko
Priority claimed from KR1020110077673A external-priority patent/KR101282739B1/ko
Application filed by (주)하이레벤 filed Critical (주)하이레벤
Publication of WO2013019005A2 publication Critical patent/WO2013019005A2/ko
Publication of WO2013019005A3 publication Critical patent/WO2013019005A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/0409Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
    • B05B3/0418Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine
    • B05B3/0422Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements
    • B05B3/0431Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements the rotative movement of the outlet elements being reversible
    • B05B3/0436Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements the rotative movement of the outlet elements being reversible by reversing the direction of rotation of the rotor itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device
    • B05B7/262Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device a liquid and a gas being brought together before entering the discharge device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a facility for improving efficiency of a photovoltaic power generation facility, and more particularly, to improve the cooling and cleaning performance of a photovoltaic module and to reduce the amount of cooling water by allowing external air to be injected and sprayed with cooling water.
  • the present invention relates to a facility for improving efficiency of photovoltaic facilities.
  • the method of using solar energy is largely divided into a method using solar heat and a method using solar light.
  • the method of using solar heat is to heat and generate electricity using water heated by the sun, and the method of using solar light can generate electricity by using the light of the sun to operate various machines and appliances. It is called solar power.
  • a solar cell for condensing sunlight a photovoltaic module that is an assembly of solar cells, and a solar array in which the solar cells are constantly arranged are required.
  • EHP electron-hole pair
  • sunlight is a clean energy source without the risks of greenhouse gas emissions, noise, and environmental degradation that cause global warming, and there is no fear of exhaustion.
  • solar power plants have the advantage of free installation and low maintenance costs.
  • the photovoltaic module has a disadvantage that dirt may easily accumulate on the solar panel due to a weather phenomenon such as yellow sand or bad weather. If dirt accumulates on the photovoltaic module, the light absorption rate of the photovoltaic module is remarkably decreased, and thus, power generation efficiency may also be reduced.
  • the efficiency improvement facility of solar power generation facilities is designed to cool the solar module's temperature and to clean and remove dirt, snow, and rain accumulated on the solar panel so that the solar module can generate a constant output. It functions to maintain and maintain photovoltaic power generation facilities.
  • Such efficiency improvement equipment of photovoltaic power generation equipment uses enormous amounts of water (functional water, cooling water, snow removal, etc., but may be collectively referred to as cooling water) for cooling and cleaning solar modules. .
  • cooling water functional water, cooling water, snow removal, etc., but may be collectively referred to as cooling water
  • groundwater, tap water, and river water are used as cooling water.
  • the present invention is to solve this problem, by allowing the external air to be injected with the coolant in the cooling water injection means to improve the cooling and cleaning performance of the photovoltaic module by two phase flow and to reduce the amount of cooling water used It is an object of the present invention to provide a facility for improving efficiency of photovoltaic power generation facilities.
  • the present invention by increasing the efficiency of the photovoltaic power generation facilities to maintain or improve the efficiency by spraying the cooling water to the photovoltaic power generation facilities comprising a solar module for collecting electricity to generate electricity
  • An apparatus comprising: a storage tank for storing cooling water: cooling water spraying means for spraying cooling water on the solar module; And a pump for pumping the cooling water stored in the storage tank and supplying the cooling water to the cooling water injection means through a cooling water supply pipe, wherein the cooling water injection means includes a venturi tube generating negative pressure therein to introduce external air. It provides a facility for improving efficiency of solar power generation facilities.
  • the venturi tube may include a cooling water moving path through which the cooling water moves, and the cooling water moving path may include an inlet part through which the coolant is introduced and an outlet part which is narrowed and then widened again in the inlet part.
  • the venturi tube may have an air inlet hole through which external air is introduced, and the air inlet hole may communicate with an outlet of the coolant movement path.
  • the venturi tube is an inner tube formed with the cooling water movement path and the air inlet hole; And coupled to the inner tube to surround the inner tube from the outside, it may include an appearance that is coupled with the injection cap is formed with an injection hole for cooling water is injected to the outside.
  • the inner tube may include a fastening part inserted and fastened to a side into which the coolant is introduced, and the fastening part may have the inlet part.
  • the inlet portion formed in the fastening portion may have a narrower inner diameter than the outlet portion, and may include a transmission portion for delivering cooling water to the outlet portion.
  • the exterior is formed with a hole through which the outside air is introduced, the air introduced through the hole may be transmitted to the cooling water movement path through the air inlet hole.
  • a space part communicating with the hole and the air inlet hole may be formed between the inner tube and the outer tube.
  • the efficiency improving apparatus of the solar power generation facility may further include a valve for controlling the cooling water injection of the cooling water injection means by opening and closing the cooling water supply pipe.
  • the efficiency improving apparatus of the solar power generation facility may further include a control unit controlling the driving of the pump and the opening and closing of the valve to control the cooling water injection of the cooling water injection means.
  • the control unit may cause the cooling water spraying unit to spray cooling water for a set driving time.
  • the control unit may cause the coolant spray means to spray coolant according to the temperature of the solar module.
  • the control unit may cause the coolant spraying means to spray coolant according to the coolant storage amount of the storage tank.
  • the cooling water injection means further comprises a rotation means for rotating the left and right reciprocating by the flow of the cooling water.
  • the rotating means may include a housing having inlets and outlets formed at both sides such that cooling water is introduced into and discharged from the outside; Separating diaphragm through which the first and second flow holes having a flow path in different directions so as to pass through the cooling water flows through the inlet is formed in the housing and opposite flow direction components are formed; A rotation aberration rotatably mounted in the housing to reciprocally rotate in both directions by cooling water flow in different directions formed as cooling water passes through the first or second flow holes; A rotation opening / closing unit which reciprocates in both directions in association with the reciprocating rotation of the rotational aberration and alternately opens and closes the first and second flow holes; And it may include a link unit for interlocking the rotation aberration and the rotation opening and closing unit.
  • the separating diaphragm is fixedly mounted in the transverse direction inside the housing in a flat plate shape, the first and second flow holes are each formed at least one or more so as to have a straight flow path formed inclined with respect to the thickness direction of the separating diaphragm,
  • the inclined directions of the first and second flow holes may be formed to be symmetrical with respect to the thickness direction of the separating diaphragm.
  • the rotation opening and closing unit, the rotation block portion is coupled to the link unit to rotate; And an opening / closing clutch unit engaged with the separating diaphragm so as to be engaged with the rotary block unit and rotate and alternately open and close the first and second flow holes.
  • the rotation means is disposed on the outside of the housing and in communication with the inner space through the discharge port comprises a spraying unit for injecting the coolant discharged from the housing, the spraying unit is coupled to the rotation opening and closing unit to rotate the It rotates with the switchgear unit and can spray coolant.
  • the outside air is injected with the coolant using a venturi tube to improve the cooling and cleaning performance of the solar module through two phase flow. Can reduce the amount of cooling water used
  • FIG. 1 is a view schematically showing a configuration of an efficiency improving apparatus of a solar power plant according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a venturi tube according to an embodiment of the present invention.
  • FIG 3 is an exploded view showing a venturi tube according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view showing a venturi tube according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a spray cap according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the principle that the outside air flows through the venturi tube.
  • FIG. 7 is a perspective view showing the cooling water injection means according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing the coolant spray means according to an embodiment of the present invention.
  • FIG. 9 is a perspective view showing a rotating means according to an embodiment of the present invention.
  • FIG. 10 is an exploded perspective view showing the configuration of a rotating means according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing the internal structure of the rotating means according to an embodiment of the present invention.
  • FIG. 12 is a perspective view showing a connection relationship between the internal components of the rotating means according to an embodiment of the present invention.
  • FIG. 13 and 14 are perspective views illustrating a rotation operation structure of the rotation aberration according to the embodiment of the present invention.
  • FIG. 15 is a bottom view illustrating an opening and closing state of first and second flow holes according to an exemplary embodiment of the present invention.
  • FIG. 1 is a view schematically showing a configuration of an efficiency improving apparatus of a solar power plant according to an embodiment of the present invention.
  • solar modules 7 for concentrating sunlight to generate electricity are listed, and an efficiency improving facility is installed as a facility for maintaining and managing solar modules 7 by spraying cooling water. It is.
  • the photovoltaic module 7 is an assembly of a plurality of solar cells. When light enters the photovoltaic module 7 from the outside, the photovoltaic module 7 is housed by the light energy in which electrons of the conduction band of the p-type semiconductor are incident. The excited electrons are excited in a valence band, and the excited electrons form an electron hole pair (EHP) inside the p-type semiconductor, and the electrons in the electron-hole pair thus generated are interposed between the pn junctions. The existing electric field (electron field) is transferred to the n-type semiconductor to supply the current to the outside.
  • EHP electron hole pair
  • the solar module 7 since the solar module 7 is installed outside to collect sunlight, it is exposed to the external environment as it is, and contaminants such as scattering dust, algae secretions, and yellow sand are attached, thereby reducing the amount of light collected, thereby reducing power generation efficiency. Done. In addition, by being continuously exposed to sunlight and heated by solar heat, the internal resistance of the photovoltaic module is increased, which is also a factor for lowering the power generation efficiency.
  • the present invention relates to an efficiency improving apparatus capable of maintaining and improving the efficiency of photovoltaic power generation by cooling and washing the photovoltaic module 7 using cooling water.
  • the efficiency improving apparatus of the solar power plant includes a storage tank 1, a coolant spray means 6, a coolant supply pipe 5, a pump 25, and a valve. 20 and the control part 3 are included.
  • Cooling water injection means (6) is installed to correspond to each of the solar modules (7) is a means for injecting the coolant to spray the coolant to the solar module (7).
  • cooling water is poured into the solar module 7 or sprayed weakly, it is difficult to obtain sufficient cooling and cleaning effects.
  • the impingement jet of cooling water is sprayed on the solar module 7.
  • the impingement jet has excellent heat and fluid transfer effects from the fluid to the impingement surface, thereby improving the cooling and cleaning effects and reducing the generation of scale.
  • the speed of the coolant is 30 m / s or more and the pressure is 1.6 kg / cm 2 or more based on the inlet of the coolant injection means 6 for injecting the coolant into the solar module 7.
  • the inlet of the coolant spray means 6 refers to the end of the coolant spray means 6 through which coolant is injected to the outside.
  • the cooling water supply pipe 5 serves to deliver the cooling water supplied from the storage tank 1 to the injection means 6 through the pump 25.
  • the cooling water supply pipe 5 is preferably embedded in the ground to maintain the temperature of the cooling water.
  • the pump 25 pumps the cooling water stored in the storage tank 1 to supply the cooling water to the cooling water injection means 6 through the cooling water supply pipe 5, and the valve 20 opens and closes the cooling water supply pipe 5 to spray the cooling water.
  • the means 6 controls the cooling water injection.
  • the control part 3 is a part which controls the drive part 9 including the pump 25 and the valve 20, drives or stops the pump 25, and opens or closes the valve 20.
  • control unit 3 controls the pump 25 and the valve 20 is not particularly limited, but is preferably designed to maximize the use efficiency of the cooling water.
  • An example of a control method for improving the use efficiency of the cooling water will be described.
  • the first example is time-based control. Specifically, the control unit 3 determines whether the drive start time, and if the drive start time drive the pump 25, and opens and closes the valve 20 for a set time sequentially.
  • the start time of the driving and the opening time of the valve 20 may be set in consideration of the region of the solar power generation facility and the characteristics of the facility.
  • Another example is temperature control. Specifically, it is determined whether the measured temperature difference between the temperature of the module 7 and the cooling water is equal to or greater than the set temperature difference between the temperature of the module 7 and the cooling water, and the measured temperature difference between the temperature of the module 7 and the cooling water is determined. If the temperature difference between the temperature of the module 7 and the cooling water is greater than or equal to the set value, the pump 25 is driven and the valve 20 is sequentially opened and closed until it is less than that.
  • the temperature difference setting value of the temperature of the module 7 and the cooling water may be set in consideration of the region where the solar power generation facility is installed and the characteristics of the facility.
  • the cooling water supply pipe 5 it is preferable to measure the pressure in the cooling water supply pipe 5 and to terminate the start of the efficiency improving equipment when the pressure is out of the predetermined pressure range. If the measured pressure exceeds the maximum value of the set pressure range, a problem such as freezing of the coolant occurs in the coolant supply pipe 5, and if the measured pressure does not reach the minimum value of the set pressure range, the coolant supply pipe Since a problem such as water leakage occurs in (5), start-up is stopped to prevent the failure of the equipment and to efficiently use the cooling water.
  • the injection amount of the cooling water may be controlled to be sprayed at the same speed every hour, or may be controlled to be sprayed at different time intervals.
  • the operation is terminated, and it is determined whether the temperature of the module 7 is equal to or higher than the temperature of the cooling water. Can be used more efficiently.
  • Cooling water injection means 6 to increase the injection pressure of the cooling water to generate the two-phase flow by introducing the outside air into the cooling water by using the Venturi effect, for this purpose includes a venturi tube.
  • the impingement flow that is, the collision jet using a mixture of air and water has a much better heat transfer and momentum transfer effect than the collision jet using only the coolant.
  • the above configuration can improve the cooling and cleaning efficiency and reduce the amount of cooling water used. have.
  • FIGS. 2 to 6 are perspective views showing a venturi tube according to an embodiment of the present invention
  • Figure 3 is an exploded view showing a venturi tube according to an embodiment of the present invention
  • Figure 4 is a venturi tube according to an embodiment of the present invention 5 is a cross-sectional view of the injection cap fastened to the venturi tube
  • Figure 6 is a view for explaining the principle that the outside air flows through the venturi tube.
  • a venturi tube according to an embodiment of the present invention will be described with reference to FIGS. 2 to 6.
  • Venturi tube according to an embodiment of the present invention is composed of an inner tube 70 is formed with a cooling water flow path and the outer tube 60 is coupled to the inner tube 70 to surround the inner tube 70 from the outside.
  • the cooling water moving path is a path through which the cooling water received from the cooling water supply pipe 5 moves, and the cooling water moved through the cooling water moving path is injected to the outside through the injection hole of the cooling water injection means 6.
  • the cooling water moving path is composed of an inlet 75 at the side into which the coolant flows and an outlet 77 at the side at which the coolant is discharged.
  • the inlet 75 has an inner diameter at a point connected to the outlet 77. It is formed smaller than the inner diameter of the outlet portion 77.
  • the inflow portion 75 has a structure that maintains a constant inner diameter while maintaining a constant inner diameter when the inner diameter becomes narrower and narrower when the inlet portion 75 is viewed based on the traveling direction of the coolant.
  • the inner tube 70 further includes a fastening portion 80 inserted and inserted into the side into which the coolant flows, and the fastening portion 80 has a cooling water traveling direction.
  • the inner diameter becomes narrower and then the inlet portion 75 having a structure for maintaining the constant inner diameter is formed.
  • a portion connected to the outlet portion 77 while maintaining a narrow inner diameter of the inlet portion 75 is called a transfer portion 76.
  • the inner pipe 70 is formed with an air inlet hole 71 so that external air can flow into a portion of the cooling water movement path communicating with the outlet 77.
  • a hole 61 is formed to allow external air to flow therein, and the air introduced through the hole 61 is transferred to the outlet 77 of the coolant movement path through the air inlet hole 71.
  • the space portion 63 is formed between the exterior 60 and the inner tube 70 so as to be possible.
  • a thread 68 is formed on the outer side of the exterior 60 to be combined with the injection cap 90 having the injection hole 91 formed therein, and the injection cap 90 is inward for screwing with the exterior 60. Thread 93 is formed.
  • a thread is formed on the lower outer side of the inner tube 70 and may be screwed to the cooling water supply pipe 5.
  • the cooling water delivered from the cooling water supply pipe 5 flows into the inlet 75 of the venturi tube and passes through the delivery unit 76 having a narrow inner diameter, and the cooling water passing through the delivery unit 76 has an outlet portion 77 having a wide inner diameter. Squirts).
  • the cooling water sprayed to the outlet 77 is ejected in the longitudinal direction of the outlet 77 by the ejection pressure, the negative pressure is generated in the portion connected to the air inlet hole 71 of the outlet 77.
  • the outside air is introduced through the hole 61 by the negative pressure generated in the outlet 77, and mixed with the coolant while being introduced into the outlet 77 through the space 63 and the air inlet hole 71. Abnormal flow occurs.
  • Cooling water injection means 6 may further include a rotating means for reciprocating left and right by the flow of the cooling water.
  • the rotating means may reciprocately rotate the coolant jetting means 6 through a mechanical mechanism using a flow of coolant without additional power, thereby allowing the front surface of the solar module 7 to be uniformly cooled and washed, and greatly reducing operating costs. Can be.
  • FIG. 7 and 8 are a perspective view and a cross-sectional view showing a cooling water injection means according to another embodiment of the present invention
  • the cooling water injection means in this embodiment includes a rotary means 40 together with the venturi tube 30.
  • FIG. 9 is a perspective view showing a rotating means 40 according to an embodiment of the present invention
  • Figure 10 is an exploded perspective view showing the configuration of the rotating means 40 according to an embodiment of the present invention
  • Figure 11 is a view of the present invention
  • Figure 12 is a perspective view showing the connection of the internal components of the rotating means 40 according to an embodiment of the present invention
  • Figure 13 and Figure 14 is a perspective view showing a rotation operation structure of the rotation aberration according to an embodiment of the present invention
  • Figure 15 is a bottom view showing the opening and closing state of the first and second flow holes according to an embodiment of the present invention.
  • the rotating means 40 discharges the cooling water (ideal flow) supplied from the venturi tube 30 to the outside through the injection unit 600, and rotates reciprocally by the flow of the cooling water.
  • a housing 100 receiving cooling water from the venturi tube 30 and an injection unit 600 mounted on an outer side of the housing 100 are configured to include an injection unit for spraying cooling water.
  • 600 is configured to be rotatable through a mechanical mechanism without a separate electric power.
  • Rotating means 40 is a component for making the injection unit 600 rotatable as shown in FIGS. 10 and 11, separating plate 200 in the housing 100, The rotary aberration 300, the rotation opening and closing unit 400, and the link unit 500 are mounted.
  • the housing 100 has an inlet 121 and an outlet 111 formed at both sides in the longitudinal direction so that an accommodation space is formed therein and coolant is introduced into and discharged from the interior space.
  • the shape of the housing 100 is formed in a hollow cylindrical shape in which both sides are closed, and a separate cylindrical support barrel 130 may be provided inside the housing 100 so that the above components can be stably mounted.
  • the support barrel 130 has a fixed support shaft 131 is formed to rotatably mount the rotation aberration 300 and the opening and closing clutch unit 430 to be described later, the separation plate 200 is formed on the fixed support shaft 131 It can be fixedly mounted.
  • the support barrel 130 is fixedly coupled to one side inner surface of the housing 100 in communication with the inlet 121 to be configured to allow the cooling water introduced into the inlet 121 to pass through the interior of the support barrel 130.
  • the support barrel 130 is according to an embodiment of the present invention, and may be configured in such a manner that the fixed support shaft 131 is formed on the inner surface of the housing 100 without the support barrel 130.
  • the housing 100 is coupled to the open body of the housing body 110 and the housing body 110, the outlet 111 is formed on one side of the hollow cylindrical shape of which one surface is open, the housing body 110 and the inlet 121 It may be formed separated into the housing cover 120 is formed.
  • the separating plate 200 may be formed in a circular plate shape to be coupled to the inside of the housing 100 in the transverse direction.
  • the first and second flow holes 210 and 220 having flow paths in different directions such that the coolant introduced into the housing 100 through the inlet 121 pass through the separation plate 200 to form flow direction components in opposite directions. ) Is formed through. That is, the first and second flow holes 210 and 220 are formed such that a direction component, for example, an X-direction component and a -X-direction component, in which the flow directions of the coolant passing therethrough are opposite to each other, is generated. It will be described later.
  • the rotation aberration 300 is formed in a shape in which a plurality of rotating blades 310 are spaced at equal intervals along the circumferential direction, and the central axis C is inserted into the coupling groove 415 formed in the fixed support shaft 131. And rotatably coupled to each other and disposed adjacent to one side of the separating diaphragm 200 to rotate by the flow force of the coolant passing through the first and second flow holes 210 and 220 of the separating diaphragm 200. Is configured to.
  • the flow direction of the coolant passing through the first and second flow holes 210 and 220 has components opposite to each other as described above, wherein the first and second flow holes 210 and 220 are rotated open / close unit 400 to be described later.
  • the rotation aberration 300 is reciprocally rotated in both directions by the flow force of the coolant having the components in the opposite direction passed through the first flow hole 210 or the second flow hole 220 so as to be alternately opened and closed by.
  • the rotation opening / closing unit 400 is rotatably mounted in the housing 100 to reciprocally rotate in conjunction with the reciprocating rotation of the rotation aberration 300, and alternately alternately rotate the first and second flow holes 210 and 220 according to the rotation. It is configured to open and close.
  • the rotation opening and closing unit 400 is interlocked with the rotary aberration 300 by a separate link unit 500, the link unit 500 is a variety of ways through a variety of power transmission mechanical elements, such as a plurality of link plates, chains, belts It may be configured as, can be configured using a plurality of gears as shown in FIG.
  • the injection unit 600 is disposed on the outside of the housing 100 and communicates with the inner space of the housing 100 through the discharge port 111 is configured to spray the coolant discharged from the housing 100.
  • the injection unit 600 is coupled to the rotation opening and closing unit 400 inside the housing 100 rotates integrally with the rotation opening and closing unit 400 and injects coolant. Therefore, since the injection unit 600 rotates and injects the coolant, the coolant is evenly sprayed on the entire area of the solar module 7.
  • the rotating means 40 is supplied with cooling water, and the rotary aberration 300 reciprocates and rotates by the flow force of the cooling water alternately passing through the first and second flow holes 210 and 220. ) Rotates and sprays coolant. Therefore, the injection unit 600 is configured to be rotatable through a mechanical mechanism without using an additional electric power, so that the energy efficiency is excellent and the size of the solar module 7 can be smoothly performed. to be.
  • the separating diaphragm 200 is fixedly mounted to the inside of the housing 100 in a flat shape as described above, and the first and second flow holes 210 and 220 are formed in the separating diaphragm 200.
  • At least one first and second flow holes 210 and 220 are each formed to have a straight flow path formed to be inclined with respect to the thickness direction of the separation plate 200, and at least one first and second flow holes 210 and 220 are inclined directions of the first and second flow holes 210 and 220.
  • Silver may be formed symmetrically with respect to the thickness direction of the separation plate 200.
  • the first flow hole 210 is formed to be inclined to form a cooling water flow force for rotating the rotation aberration 300 in a counterclockwise direction with reference to FIG.
  • the second flow hole 220 is a rotation aberration ( It may be inclined to form a coolant flow force for rotating the clockwise 300. Accordingly, the coolant passing through the first flow hole 210 has a flow direction component formed along the inclined direction of the first flow hole 210 to rotate the rotation aberration 300 counterclockwise, and the second flow hole ( The coolant passing through 220 forms a flow direction component along the inclination direction of the first flow hole 210 and the second flow hole 220 which are symmetrical with each other, thereby rotating the rotation aberration 300 clockwise.
  • first and second flow holes (210, 220) are each other along the circumferential direction to the separation diaphragm 200, as shown in Figures 13 to 15 for reinforcement of the coolant flow force for rotating the rotary aberration (300)
  • Each of the first and second flow holes 210 and 220 may be formed in alternating positions of 180 degrees, and the number of the first and second flow holes 210 and 220 may be alternating with each other along the circumferential direction. And so on.
  • the rotation opening and closing unit 400 is reciprocating in both directions in conjunction with the reciprocating rotation of the rotary aberration 300 and alternately open and close the first and second flow holes (210, 220). Accordingly, the first and second flow holes 210 and 220 are alternately opened and closed by the reciprocating rotation of the rotary opening and closing unit 400, and the coolant flows through the first and second flow holes 210 and 220 alternately.
  • the power has components opposite to each other, so that the rotation aberration 300 reciprocates, and the reciprocation of the rotation aberration 300 again generates a circulation mechanism for reciprocating the rotation opening and closing unit 400. By this circulation mechanism, the reciprocating rotation of the rotary aberration 300 and the rotary opening / closing unit 400 is continuously repeated as long as cooling water is supplied into the housing 100.
  • the rotation opening and closing unit 400 is directly connected and coupled to the link unit 500 according to an embodiment of the present invention to rotate in conjunction with the rotation aberration 300
  • the rotary block unit 410 and the rotary block unit 410 are engaged with the rotary block unit 410 to rotate integrally with the rotary block unit 410 and to the separation plate 200 to open and close the first and second flow holes 210 and 220 alternately. It is configured to include an opening and closing clutch portion 430 is contacted.
  • the rotary block 410 is connected to the link unit 500 in accordance with an embodiment of the present invention so as to communicate with the circular rotary plate 411, the through-hole 416 formed in the center portion, the through-hole 416 A connecting sleeve 412 protruding from one surface of the rotating plate 411 to be coupled to the injection unit 600 and the outer side of the rotating plate 411 to be engaged with the opening / closing clutch unit 430 along the longitudinal direction of the housing 100.
  • It may be configured to include an extended formed locking bar 413, the rotating plate 411, the connecting sleeve 412 and the locking bar 413 is preferably formed integrally, but each formed separately and coupled to each other It can also be produced.
  • the connecting sleeve 412 is configured to be detachably coupled to the injection unit 600, the detachable coupling method may be applied to the screw coupling method as shown in Figure 11, in addition to the fitting method or separate It can be changed in various ways such as bolt fastening method.
  • the opening and closing clutch unit 430 is in contact with one side of the separating diaphragm 200 in accordance with an embodiment of the present invention so as to rotate integrally with the operating plate 431, the operating plate 431 It is coupled to engage the engaging bar 413 of the rotary block 410, and includes an operation locking plate 432 formed to protrude to the outside of the separation plate 200 to rotate, the operating plate 431 is rotated
  • the first and second flow holes 210 and 220 may be configured to be opened and closed alternately, and the operating plate 431 and the operating stopping plate 432 may be integrally formed with each other.
  • the opening and closing clutch unit 430 may further include an elastic spring 433 for elastically biasing the operating plate 431 such that the operating plate 431 rotates in the direction of closing the first flow hole 210. have.
  • the rotation opening / closing unit 400 is formed of the rotation block part 410 and the opening / closing clutch part 430 to be combined with the injection unit 600 to perform the function of rotating the injection unit 600 and the first and the same.
  • the rotation block unit 410 is rotated by the link unit 500 ( Rotate in conjunction with 300). More specifically, as shown in FIG. 12, when the rotary aberration 300 reciprocates, the circular rotary plate 411 and the connecting sleeve 412 which are directly coupled to the link unit 500 reciprocate, and thus The injection unit 600 coupled to the connecting sleeve 412 is reciprocated. In addition, when the connecting sleeve 412 reciprocally rotates, the catching bar 413 extending to the outer side of the connecting sleeve 412 is also reciprocally rotated.
  • the operation stopping plate 432 Since the engaging plate 432 is engaged, the operation stopping plate 432 is reciprocally rotated together with the locking bar 413.
  • the operation plate 431 integrally coupled thereto rotates reciprocally, and the first and second flow holes 210 and 220 alternately according to the reciprocating rotation of the operation plate 431. It is opened and closed. Selective opening and closing of the first and second flow holes 210 and 220 induces reciprocation of the rotation aberration 300 again as described above, and as a result, the rotation opening and closing unit 400 continuously reciprocates.
  • the locking bar 413 of the rotary block 410 and the operation locking plate 432 of the opening and closing clutch unit 430 may be formed to be engaged when both of the locking bar 413 rotates in both directions, as shown in FIG.
  • the engagement bar 413 may be configured to be engaged only in one direction rotation and to be disengaged in the opposite direction.
  • FIG. 15A in the state in which the operating plate 431 and the operating stopping plate 432 are rotated with the first flow hole 210 closed, the locking bar 413 is provided.
  • the rotation in one direction is engaged with the operation locking plate 432 is rotated so as to rotate the operating plate 431 to close the second flow hole 220 as shown in (b) of FIG.
  • the operation locking plate 432 is connected to the locking bar 413. Since the engagement plate 432 and the operation plate 431 do not rotate, the second flow hole 220 is kept closed because it is not engaged. Therefore, in this case, as shown in FIG. 15, the operating plate 431 rotates to close the first flow hole 210 by a separate elastic spring 433 for elastically biasing the operating plate 431.
  • the rotation opening and closing unit 400 is to be reciprocated in accordance with the operation principle described above, such a rotation opening and closing unit 400 is a separate rotation stopper so that the reciprocating rotation angle can be adjusted according to an embodiment of the present invention ( 420 may be mounted. That is, as shown in FIG. 12, the rotary stopper 420 protruding outward from the rotary block 410 is coupled to the upper surface of the rotary plate 411 of the rotary block 410, and the inner circumferential surface of the housing 100. On one side, as the rotary stopper 420 rotates, a fixing protrusion 132 that may be engaged with the rotary stopper 420 may be formed.
  • the maximum rotation angle of the rotation block 410 is limited by the rotation stopper 420 and the fixing protrusion 132.
  • the rotary stopper 420 may be coupled to the connection sleeve 412 through the coupling hole 421 to be penetrated, and the coupling protrusion 422 is formed on the inner circumferential surface of the coupling hole 421.
  • the outer circumferential surface of the connecting sleeve 412 is formed with a plurality of coupling grooves 415 which can be inserted into the coupling protrusion 422 spaced along the circumferential direction, by the coupling protrusion 422 and the coupling groove 415
  • the rotary stopper 420 may be detachably coupled to the rotary block 410.
  • the coupling position of the rotary stopper 420 is changed to have various relative positions with respect to the rotating plate 411 according to the position of the coupling groove 415 to which the coupling protrusion 422 is coupled among the plurality of coupling grooves 415, According to the change of the coupling position, the maximum rotation angle of the rotation block part 410 limited by the rotation stopper 420 is adjusted.
  • the link unit 500 may be configured to include a plurality of gears that are engaged to the rotation opening and closing unit 400. That is, the link unit 500 is coupled to the central axis C of the rotational aberration 300, the driving gear 510 rotates, and the reduction gear is engaged with the driving gear 510 and transmits the rotational force of the driving gear 510.
  • It may be configured to include a gear unit 520 and a driven gear 530 that is meshed with the reduction gear unit 520 to which the rotational force of the driving gear 510 is transmitted.
  • the driven gear 530 is mounted to mesh with the gear teeth 414 of the rotation opening and closing unit 400. Therefore, when the rotation aberration 300 rotates, the driving gear 510 coupled to the central axis C of the rotation aberration 300 rotates, and the reduction gear unit 520 according to the rotation of the driving gear 510. ) And the driven gear 530 is rotated accordingly the rotation opening and closing unit 400 is rotated.
  • the reduction gear unit 520 may be configured through a plurality of compound gears 521 so that the rotational speed of the drive gear 510 can be reduced, by the reduction gear unit 520 rotation opening and closing unit 400 It is preferable that the rotational speed of Rx is relatively slower than the rotational speed of the rotational aberration 300.
  • the link unit 500 is engaged with the gear tooth 414 to support the rotation opening and closing unit 400 meshed with the driven gear 530 in accordance with one embodiment of the present invention (at least one idle gear ( It is preferably configured to further comprise 540.
  • the link unit 500 may be mounted through a separate gear box 550 provided inside the housing 100 as shown in FIGS. 10 to 12.
  • the gear box 550 is separated into a hollow cylindrical gear box body 551 and a flat gear box cover 553 that closes one surface of the gear box body 551, and is formed inside the gear box body 551.
  • the reduction gear unit 520 may be seated on the gear support 552, and the driven gear 530 and the idle gear 540 may be seated on an upper surface of the gear box cover 553.
  • the injection unit 600 may be configured in various ways to inject the coolant using the injection nozzle
  • the injection unit 600 according to an embodiment of the present invention is a rotary opening and closing unit ( It is detachably coupled to 400 and the injection case 610 is formed in the injection passage 611 is formed in communication with the interior of the housing 100 so that the coolant passes therein, and detachably coupled to the outlet of the injection passage 611 It may be configured to include a spray nozzle (620). That is, the injection unit 600 may be detachably coupled to the connection sleeve 412 of the rotation opening and closing unit 400 as shown in FIG. 11, as described above, the connection sleeve 412 and the injection case 610.
  • Screws corresponding to each other can be screwed in a way that is formed, through which the various types of injection unit 600 can be easily exchanged as necessary.
  • the injection nozzle 620 may be detachably coupled to the injection flow path 611 as shown in Figure 11, this coupling method may be variously changed, such as bolt coupling method, screw coupling method, According to this structure, various types of spray nozzles 620 may be easily combined and used.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nozzles (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양광 발전설비의 효율향상설비에 관한 것이다. 본 발명에 따른 태양광 발전설비의 효율향상설비는, 태양광을 집광하여 전기를 발생시키는 태양광 모듈을 포함하여 구성되는 태양광 발전설비에 냉각수를 분사하여 효율을 유지 또는 향상시키는 태양광 발전설비의 효율향상설비에 있어서, 냉각수를 저장하는 저장탱크: 상기 태양광 모듈에 냉각수를 분사하는 냉각수 분사수단; 및 상기 저장탱크에 저장된 냉각수를 펌핑하여 냉각수 공급관을 통해 상기 냉각수 분사수단으로 공급하는 펌프를 포함하며, 상기 냉각수 분사수단은 내부에 부압을 발생시켜 외부 공기를 유입시키는 벤추리관을 포함하는 것을 특징으로 한다. 상기한 본 발명에 따른 태양광 발전설비의 효율향상설비에 따르면, 벤추리관을 이용하여 외부 공기가 냉각수와 함께 분사되도록 함으로써 이상유동(Two phase flow)을 통해 태양광 모듈의 냉각 및 세척 성능을 향상시키고 냉각수의 사용량을 절감시킬 수 있다.

Description

이상유동을 이용하는 태양광 발전설비의 효율향상설비
본 발명은 태양광 발전설비의 효율향상설비에 관한 것으로, 보다 상세하게는 외부 공기가 유입되어 냉각수와 함께 분사되도록 함으로써 태양광 모듈의 냉각 및 세척 성능을 향상시키고 냉각수의 사용량을 절감시킬 수 있는 태양광 발전설비의 효율향상설비에 관한 것이다.
일반적으로 태양에너지를 이용하는 방법은 크게 태양열을 이용하는 방법과 태양광을 이용하는 방법으로 구분된다. 태양열을 이용하는 방법은 태양에 의해 데워진 물 등을 이용하여 난방 및 발전을 하는 방법이며, 태양광을 이용하는 방법은 태양의 빛을 이용하여 전기를 발생시킴으로써 이 전기로 각종 기계 및 기구를 작동시킬 수 있도록 하는 방법으로 태양광 발전이라고 한다.
상술한 방법 중 태양광 발전은 실리콘 결정 위에 n형 도핑을 하여 p-n접합을 한 태양광 전지판에 태양광을 조사하면 광 에너지에 의해 전자-정공에 의한 기전력이 발생하게 되는 광기전력 효과(photovoltaic effect)를 이용하여 전기를 발생시킨다.
이를 위하여 태양광을 집광하기 위한 태양전지(solar cell), 태양전지의 집합체인 태양광 모듈(photovoltaic module) 및 태양전지를 일정하게 배열한 태양광 어레이(solar array) 등이 요구된다.
일례로, 외부에서 빛이 태양광 모듈에 입사되면 p형 반도체의 전도대(conduction band)의 전자(electron)가 입사된 광에너지에 의해 가전자대(valance band)로 여기되고, 이렇기 여기된 전자는 p형 반도체 내부에 한 개의 전자-정공쌍(electron hole pair; EHP)을 형성하게 되며, 이렇게 발생된 전자-정공쌍 중 전자는 p-n 접합 사이에 존재하는 전기장(electron field)에 의해 n형 반도체로 넘어가게 되어 외부에 전류를 공급하게 된다.
태양광은 화석원료 등의 기존 에너지원과는 달리 지구 온난화를 유발하는 온실가스 배출, 소음, 환경파괴 등의 위험성이 없는 청정 에너지원이며 고갈의 염려도 없다. 또한 여타 풍력이나 해수력과 달리 태양광 발전설비는 설치가 자유롭고 유지비용이 저렴하다는 장점을 갖는다.
하지만, 가장 널리 사용되고 있는 실리콘 태양전지의 경우 태양광 모듈의 온도가 올라갈 경우 1 당 0.5%의 출력 감소가 발생한다. 이러한 특성에 따라 태양광 발전의 출력은 태양이 가장 긴 여름이 아닌 봄과 가을에 최고치를 기록한다. 이러한 온도 상승은 태양광 발전의 발전 효율을 저하시키는 주요 원인이 되고 있다.
또한, 이러한 태양광 모듈은 태양 전지판에 황사, 악천후 등의 기상현상 등에 의해 오물이 쉽게 쌓일 수 있다는 단점을 갖는다. 태양광 모듈에 오물이 쌓일 경우 태양광 모듈은 광흡수율이 현저히 떨어지므로 따라서 발전효율 또한 저하될 수 있다.
또한, 겨울철에 비나 눈 등이 태양 전지판에 내릴 경우 발전효율의 저하가 발생할 수 있다. 이러한 오물, 눈, 비로 인한 발전효율의 저하의 방지를 위해 태양광 발전설비의 효율향상설비(유지설비)가 사용된다.
태양광 발전설비의 효율향상설비는 태양광 모듈의 온도를 식혀주는 냉각 작용과 태양 전지판에 쌓인 오물, 눈, 비 등을 세척, 제설 등을 함으로써 태양광 모듈이 일정한 출력의 발전을 수행할 수 있도록 태양광 발전설비를 유지관리하는 기능을 한다.
이와 같은 태양광 발전설비의 효율향상설비는 태양광 모듈의 냉각 및 세척을 위하여 막대한 양의 물(기능상 냉각수, 세척수, 제설수 등으로 표현될 수 있으나, 이하 통칭하여 냉각수라 함)을 사용하게 된다. 입지에 따라 지하수, 수돗물, 강물 등을 냉각수로 사용하게 되는데, 충분한 냉각수의 공급이 어려운 지역이 많고, 냉각수의 공급 및 분사를 위해 사용되는 전기 또한 전체적으로 태양광 발전설비의 효율을 감소시키는 요인이 된다. 따라서, 냉각수의 효율적인 사용은 태양광 발전설비의 효율향상장치의 설계에 있어 가장 중요한 요인 중의 하나이다.
본 발명은 이러한 문제점을 해결하기 위한 것으로서, 냉각수 분사수단에서 외부 공기가 냉각수와 함께 분사되도록 함으로써 이상유동(Two phase flow)에 의해 태양광 모듈의 냉각 및 세척 성능을 향상시키고 냉각수의 사용량을 절감시킬 수 있는 태양광 발전설비의 효율향상설비를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명은, 태양광을 집광하여 전기를 발생시키는 태양광 모듈을 포함하여 구성되는 태양광 발전설비에 냉각수를 분사하여 효율을 유지 또는 향상시키는 태양광 발전설비의 효율향상설비에 있어서, 냉각수를 저장하는 저장탱크: 상기 태양광 모듈에 냉각수를 분사하는 냉각수 분사수단; 및 상기 저장탱크에 저장된 냉각수를 펌핑하여 냉각수 공급관을 통해 상기 냉각수 분사수단으로 공급하는 펌프를 포함하며, 상기 냉각수 분사수단은 내부에 부압을 발생시켜 외부 공기를 유입시키는 벤추리관을 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비를 제공한다.
상기 벤추리관은 냉각수가 이동하는 냉각수 이동로를 포함하며, 상기 냉각수 이동로는 냉각수가 유입되는 유입부와 상기 유입부에서 내경이 좁아졌다가 다시 넓어지는 유출부를 포함할 수 있다.
상기 벤추리관은 외부 공기가 유입되는 공기 유입홀이 형성되며, 상기 공기 유입홀은 상기 냉각수 이동로의 유출부와 연통될 수 있다.
상기 벤추리관은 상기 냉각수 이동로 및 공기 유입홀이 형성된 내관; 및 상기 내관을 외측에서 감싸도록 상기 내관과 결합되며, 냉각수가 외부로 분사되는 분사구가 형성된 분사캡과 체결되는 외관을 포함할 수 있다.
상기 내관은 냉각수가 유입되는 측에 삽입 체결된 체결부를 포함하며, 상기 체결부에는 상기 유입부가 형성될 수 있다.
상기 체결부에 형성된 유입부는, 상기 유출부보다 내경이 좁게 형성되어 상기 유출부로 냉각수를 전달하는 전달부를 포함할 수 있다.
상기 외관에는 외부 공기가 유입되는 홀이 형성되며, 상기 홀을 통해 유입된 공기는 상기 공기 유입홀을 통해 상기 냉각수 이동로로 전달될 수 있다.
상기 내관과 외관 사이에는 상기 홀 및 공기 유입홀과 연통되는 공간부가 형성될 수 있다.
상기 태양광 발전설비의 효율향상설비는, 상기 냉각수 공급관을 개폐하여 상기 냉각수 분사수단의 냉각수 분사를 조절하는 밸브를 더 포함할 수 있다.
상기 태양광 발전설비의 효율향상설비는, 상기 펌프의 구동 및 상기 밸브의 개폐를 조절하여 상기 냉각수 분사수단의 냉각수 분사를 제어하는 제어부를 더 포함할 수 있다.
상기 제어부는, 상기 냉각수 분사수단이 설정된 구동시간 동안 냉각수를 분사하게 할 수 있다.
상기 제어부는, 상기 냉각수 분사수단이 상기 태양광 모듈의 온도에 따라 냉각수를 분사하게 할 수 있다.
상기 제어부는, 상기 냉각수 분사수단이 상기 저장탱크의 냉각수 저장량에 따라 냉각수를 분사하게 할 수 있다.
상기 냉각수 분사수단은 냉각수의 흐름에 의해 좌우 왕복 회전하는 회전수단을 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
상기 회전수단은, 외부로부터 냉각수가 유입되어 배출되도록 양측에 인입구 및 배출구가 형성된 하우징; 상기 하우징 내부에 장착되어 상기 인입구를 통해 유입된 냉각수가 통과하며 서로 반대의 유동 방향 성분이 형성되도록 서로 다른 방향의 유로를 갖는 제 1 및 제 2 유동홀이 관통 형성되는 분리 격판; 상기 하우징 내부에 회전 가능하게 장착되어 냉각수가 상기 제 1 유동홀 또는 제 2 유동홀을 통과함에 따라 형성된 서로 다른 방향의 냉각수 유동력에 의해 양방향으로 왕복 회전하는 회전 수차; 상기 회전 수차의 왕복 회전에 연동하여 양방향으로 왕복 회전하며 상기 제 1 및 제 2 유동홀을 교대로 개폐하는 회전 개폐 유닛; 및 상기 회전 수차와 회전 개폐 유닛을 연동시키는 링크 유닛을 포함할 수 있다.
상기 분리 격판은 평판형으로 상기 하우징 내부에 횡방향으로 고정 장착되고, 상기 제 1 및 제 2 유동홀은 상기 분리 격판의 두께 방향에 대해 경사지게 형성되는 직선 유로를 갖도록 각각 적어도 하나 이상씩 형성되고, 상기 제 1 및 제 2 유동홀의 경사 방향은 상기 분리 격판의 두께 방향에 대해 서로 대칭되게 형성될 수 있다.
상기 회전 개폐 유닛은, 상기 링크 유닛과 연결 결합되어 회전하는 회전 블록부; 및 상기 회전 블록부에 맞물림되어 회전하며 상기 제 1 및 제 2 유동홀을 교대로 개폐하도록 상기 분리 격판에 접촉 결합되는 개폐 클러치부를 포함할 수 있다.
상기 회전수단은 상기 하우징의 외측에 배치되며 상기 배출구를 통해 상기 하우징 내부 공간과 연통되어 상기 하우징으로부터 배출되는 냉각수를 분사하는 분사 유닛을 포함하고, 상기 분사 유닛은 상기 회전 개폐 유닛에 결합되어 상기 회전 개폐 유닛과 함께 회전하며 냉각수를 분사할 수 있다.
상기한 본 발명에 따른 태양광 발전설비의 효율향상설비에 따르면, 벤추리관을 이용하여 외부 공기가 냉각수와 함께 분사되도록 함으로써 이상유동(Two phase flow)을 통해 태양광 모듈의 냉각 및 세척 성능을 향상시키고 냉각수의 사용량을 절감시킬 수 있다
도 1은 본 발명의 일 실시예에 따른 태양광 발전설비의 효율향상설비의 구성을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 벤추리관을 나타낸 사시도이다.
도 3은 본 발명의 일 실시예에 따른 벤추리관을 나타낸 분해도이다.
도 4는 본 발명의 일 실시예에 따른 벤추리관을 나타낸 단면도이다.
도 5는 본 발명의 일 실시예에 따른 분사캡을 도시한 단면도이다.
도 6은 벤추리관을 통해 외부 공기가 유입되는 원리를 설명하기 위한 도면이다.
도 7은 본 발명의 일 실시예에 따른 냉각수 분사수단을 나타낸 사시도이다.
도 8은 본 발명의 일 실시예에 따른 냉각수 분사수단을 나타낸 단면도이다.
도 9는 본 발명의 일 실시예에 따른 회전수단을 나타낸 사시도이다
도 10은 본 발명의 일 실시예에 따른 회전수단의 구성을 도시한 분해사시도이다.
도 11은 본 발명의 일 실시예에 따른 회전수단의 내부 구조를 도시한 단면도이다.
도 12는 본 발명의 일 실시예에 따른 회전수단의 내부 구성요소의 연결 관계를 도시한 사시도이다.
도 13 및 도 14는 본 발명의 일 실시예에 따른 회전 수차의 회전 동작 구조를 도시한 사시도이다.
도 15는 본 발명의 일 실시예에 따른 제 1 및 제 2 유동홀의 개폐 상태를 도시한 저면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 명세서 및 특허청구범위에 사용된 용어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.
도 1은 본 발명의 일 실시예에 따른 태양광 발전설비의 효율향상설비의 구성을 개략적으로 나타낸 도면이다.
도 1을 참조하면, 태양광을 집광하여 전기를 발생시키는 태양광 모듈들(7)이 나열되어 있으며, 냉각수를 분사하여 태양광 모듈들(7)을 유지, 관리하는 설비로서 효율향상설비가 설치되어 있다.
태양광 모듈(7)은 다수의 태양전지의 집합체로서, 외부에서 빛이 태양광 모듈(7)에 입사되면 p형 반도체의 전도대(conduction band)의 전자(electron)가 입사된 광에너지에 의해 가전자대(valance band)로 여기되고, 여기된 전자는 p형 반도체 내부에 한 개의 전자-정공쌍(electron hole pair; EHP)을 형성하게 되며, 이렇게 발생된 전자-정공쌍 중 전자는 p-n 접합 사이에 존재하는 전기장(electron field)에 의해 n형 반도체로 넘어가게 되어 외부에 전류를 공급하게 된다.
그런데, 태양광 모듈(7)은 태양광을 집광하기 위해 외부에 설치되므로 외부 환경에 그대로 노출되어 비산먼지, 조류 분비물, 황사 등의 오염물질이 부착되고 이에 의해 집광량이 감소하여 발전 효율이 감소하게 된다. 또한, 태양광에 계속 노출되어 태양열에 의해 가열됨으로써 태양광 모듈의 내부 저항을 증가시키며, 이 역시 발전 효율을 저하시키는 요인이 된다.
본 발명은 태양광 모듈(7)을 냉각수를 이용하여 냉각 및 세척함으로써 태양광 발전의 효율을 유지, 향상시킬 수 있는 효율향상설비에 관한 것이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 태양광 발전설비의 효율향상설비는 저장탱크(1), 냉각수 분사수단(6), 냉각수 공급관(5), 펌프(25), 밸브(20) 및 제어부(3)를 포함한다.
냉각수 분사수단(6)은 태양광 모듈(7) 각각에 대응하도록 설치되어 냉각수를 공급 받아 태양광 모듈(7)로 냉각수를 분사하는 수단이다. 냉각수를 태양광 모듈(7)에 흘려 주거나 약하게 분사하면 충분한 냉각 및 세정 효과를 얻기 어려우므로, 본 실시예에서는 냉각수의 충돌제트를 태양광 모듈(7)에 분사하도록 한다.
충돌제트는 유체로부터 충돌면으로의 열전달과 물질전달 효과가 뛰어나므로, 냉각 및 세정 효과를 향상시킬 수 있으며, 물때의 발생도 감소시킬 수 있다. 다만, 충돌제트를 발생시키기 위해서는 태양광 모듈(7)에 냉각수를 분사하는 냉각수 분사수단(6)의 입구를 기준으로 냉각수의 속도가 30m/s 이상이고 압력이 1.6kg/cm2 이상이 되는 것이 바람직하다. 여기서 냉각수 분사수단(6)의 입구란 외부로 냉각수가 분사되는 냉각수 분사수단(6)의 끝부분을 말한다.
냉각수 공급관(5)은 펌프(25)를 통하여 저장탱크(1)에서 공급 받은 냉각수를 분사수단(6)까지 전달하는 역할을 한다. 냉각수 공급관(5)은 냉각수의 온도를 유지시키기 위하여 지중에 매설되는 것이 바람직하다.
펌프(25)는 저장탱크(1)에 저장된 냉각수를 펌핑하여 냉각수 공급관(5)을 통해 냉각수를 냉각수 분사수단(6)으로 공급하며, 밸브(20)는 냉각수 공급관(5)을 개폐하여 냉각수 분사수단(6)을 통해 냉각수 분사를 조절한다.
제어부(3)는 펌프(25) 및 밸브(20)를 포함한 구동부(9)를 제어하는 부분으로, 펌프(25)를 구동 또는 정지시키고, 밸브(20)를 개방 또는 폐쇄시킨다.
제어부(3)가 펌프(25) 및 밸브(20)를 제어하는 방식은 특별히 제한되지 않으나, 냉각수의 사용 효율을 최대화할 수 있도록 설계되는 것이 바람직하다. 냉각수의 사용 효율을 향상시킬 수 있는 제어 방식을 예를 들어 설명하도록 한다.
첫 번째 예로서 시간에 따른 제어 방식이다. 구체적으로, 제어부(3)는 구동개시시간인지를 판단하고, 구동개시시간이면 펌프(25)를 구동하고, 밸브(20)를 순차적으로 설정된 시간 동안 개방하고 폐쇄한다. 태양광 발전설비가 설치된 지역 및 설비의 특성 등을 고려하여 구동개시시간 및 밸브(20)의 개방 시간을 설정할 수 있다.
다른 예로서 온도 제어 방식이다. 구체적으로, 모듈(7)의 온도와 냉각수의 온도 차이 측정값이 모듈(7)의 온도와 냉각수의 온도 차이 설정값 이상인지를 판단하고, 모듈(7)의 온도와 냉각수의 온도 차이 측정값이 모듈(7)의 온도와 냉각수의 온도 차이 설정값 이상이면 그 미만이 될 때까지 펌프(25)를 구동하고 밸브(20)를 순차적으로 개방하고 폐쇄한다. 태양광 발전설비가 설치된 지역 및 설비의 특성 등을 고려하여 모듈(7)의 온도와 냉각수의 온도 차이 설정값을 설정할 수 있다.
어떠한 제어 방식을 선택하더라도 냉각수 공급관(5) 내의 압력을 측정하고 그 압력이 설정된 소정 압력 범위를 벗어날 경우 효율향상설비의 기동을 종료하는 것이 바람직하다. 측정된 압력이 설정된 압력 범위의 최대값을 초과하는 경우는 냉각수 공급관(5) 내에 냉각수의 동결이 발생하는 등의 문제가 발생한 경우이고, 측정된 압력이 설정된 압력 범위의 최소값에 미달하는 경우 냉각수 공급관(5)에 누수가 발생하는 등의 문제가 발생한 경우이므로, 설비의 고장을 막고 냉각수의 효율적 사용을 위해 기동을 종료하게 된다.
또한, 저장탱크(1)에 저장된 냉각수의 양 및 저장탱크(1)로 공급되는 냉각수의 공급 속도를 고려하여 냉각수를 구동시간 동안 적절히 분배되도록 냉각수의 분사량을 제어하는 것이 바람직하다. 이때 냉각수의 분사량은 매 시간 동일한 속도로 분사되도록 제어할 수도 있고, 시간대 별로 차등을 두어 분사되도록 제어할 수도 있다.
또한, 레인센서(43)의 온오프유무를 판단하여 강우 중이라고 판단되면 기동을 종료하고, 모듈(7)의 온도가 냉각수의 온도 이상인지를 판단하여 그 온도 미만일 경우에도 설비의 기동을 종료하여 냉각수의 사용을 더욱 효율화할 수 있다.
본 발명에 따른 냉각수 분사수단(6)은 벤추리 효과를 이용하여 외부 공기를 냉각수로 유입시켜 냉각수의 분사 압력을 증대시키고 이상유동(Two phase flow)을 발생시키며, 이를 위하여 벤추리관을 포함한다. 이상유동 즉 공기와 물의 혼합 유체를 이용한 충돌제트는 냉각수만을 이용한 충돌체트에 비해 열전달 및 모멘텀 전달 효과가 훨씬 우수하므로, 위와 같은 구성을 통해 냉각 및 세척 효율을 향상시키고, 냉각수의 사용량을 절감할 수 있다.
도 2는 본 발명의 일 실시예에 따른 벤추리관을 나타낸 사시도이고, 도 3은 본 발명의 일 실시예에 따른 벤추리관을 나타낸 분해도이고, 도 4는 본 발명의 일 실시예에 따른 벤추리관을 나타낸 단면도이고, 도 5는 벤추리관에 체결되는 분사캡의 절단 사시도이며, 도 6은 벤추리관을 통해 외부 공기가 유입되는 원리를 설명하기 위한 도면이다. 이하, 도 2 내지 도 6을 참조하여 본 발명의 일 실시예에 따른 벤추리관을 설명한다.
본 발명의 일 실시예에 따른 벤추리관은 냉각수 이동로가 형성된 내관(70) 및 상기 내관(70)을 외측에서 감싸도록 상기 내관(70)과 결합되는 외관(60)으로 구성된다.
냉각수 이동로는 냉각수 공급관(5)으로부터 전달 받은 냉각수가 이동되는 통로로서 냉각수 이동로를 통해 이동된 냉각수는 냉각수 분사수단(6)의 분사구를 통해 외부로 분사된다.
냉각수 이동로는 냉각수가 유입되는 측의 유입부(75) 및 냉각수가 배출되는 측의 유출부(77)로 구성되며, 유입부(75)는 유출부(77)와 연결되는 지점에서 그 내경이 유출부(77)의 내경보다 작게 형성된다. 바람직하게는, 유입부(75)는 냉각수의 진행 방향을 기준으로 볼 때, 일정한 내경을 유지하다가 내경이 점점 좁아지다가 좁아진 길이로 일정한 내경을 유지하는 구조를 갖는다.
위와 같은 구조의 유입부(75)를 보다 용이하게 형성하기 위하여 내관(70)은 냉각수가 유입되는 측에 삽입 체결된 체결부(80)를 더 포함하며, 체결부(80)에는 냉각수 진행 방향을 기준으로 볼 때, 일정한 내경을 유지하다가 내경이 점점 좁아지다가 다시 일정한 내경을 유지하는 구조의 유입부(75)가 형성된다. 유입부(75) 중 좁은 내경을 유지하면서 유출부(77)와 연결되는 부분을 전달부(76)라 한다.
내관(70)에는 냉각수 이동로 중 유출부(77)와 연통되는 부분에 외부 공기가 유입될 수 있도록 공기 유입홀(71)이 형성된다.
외관(60)에는 외부 공기가 유입될 수 있도록 홀(61)이 형성되며, 홀(61)을 통해 유입된 공기가 공기 유입홀(71)을 통해 냉각수 이동로의 유출부(77)로 전달될 수 있도록 외관(60) 및 내관(70) 사이에는 공간부(63)가 형성된다.
외관(60)의 상측 외부에는 나사산(68)이 형성되어 분사구(91)가 형성된 분사캡(90)과 결합될 수 있으며, 분사캡(90)에는 외관(60)과의 나사 결합을 위하여 내측으로 나사산(93)이 형성된다.
또한, 내관(70)의 하측 외부에는 나사산이 형성되어 냉각수 공급관(5)과 나사 결합될 수 있다.
벤추리관에서 이상유동이 발생하는 과정을 도 6을 참조하여 설명하면 다음과 같아.
냉각수 공급관(5)에서 전달된 냉각수는 벤추리관의 유입부(75)로 유입되어 내경이 좁은 전달부(76)를 거치게 되며, 전달부(76)를 통과한 냉각수는 내경이 넓어진 유출부(77)로 분출된다.
이때, 유출부(77)로 분출되는 냉각수는 분출 압력에 의해 유출부(77)의 길이 방향으로 분출되며, 유출부(77)의 공기 유입홀(71)과 연결된 부분에서는 부압이 발생된다.
결국, 유출부(77)에 발생된 부압에 의해 외부 공기는 홀(61)을 통해 유입되며, 공간부(63) 및 공기 유입홀(71)을 거쳐 유출부(77)로 유입되면서 냉각수와 혼합되어 이상유동이 발생한다.
본 발명에 따른 냉각수 분사수단(6)은 냉각수의 흐름에 의해 좌우 왕복 회전하는 회전수단을 더 포함할 수 있다. 회전수단은 별도의 동력 없이 냉각수의 흐름을 이용한 기계적 메카니즘을 통해 냉각수 분사수단(6)을 왕복 회전시킴으로써 태양광모듈(7)의 전면을 고르게 냉각 및 세척하도록 할 수 있고, 운용 비용을 크게 절감시킬 수 있다.
도 7 및 도 8은 본 발명의 다른 실시예에 따른 냉각수 분사수단을 나타낸 사시도 및 단면도로서, 본 실시예에서 냉각수 분사수단은 벤추리관(30)과 함께 회전수단(40)을 포함한다.
본 실시예의 회전수단(40)과 관련하여 도 9 내지 도 15를 참고하여 설명한다. 도 9는 본 발명의 일 실시예에 따른 회전수단(40)을 나타낸 사시도, 도 10은 본 발명의 일 실시예에 따른 회전수단(40)의 구성을 도시한 분해사시도, 도 11은 본 발명의 일 실시예에 따른 회전수단(40)의 내부 구조를 도시한 단면도, 도 12는 본 발명의 일 실시예에 따른 회전수단(40)의 내부 구성요소의 연결 관계를 도시한 사시도, 도 13 및 도 14는 본 발명의 일 실시예에 따른 회전 수차의 회전 동작 구조를 도시한 사시도, 도 15는 본 발명의 일 실시예에 따른 제 1 및 제 2 유동홀의 개폐 상태를 도시한 저면도이다.
회전수단(40)은 벤추리관(30)으로부터 공급 받은 냉각수(이상유동)를 분사 유닛(600)을 통해 외부로 배출하며, 냉각수의 흐름에 의해 왕복 회전한다.
도 9에 도시된 바와 같이 벤추리관(30)으로부터 냉각수를 공급받는 하우징(100)과, 하우징(100)의 외측에 장착되는 분사 유닛(600)을 포함하여 구성되며, 냉각수를 분사하는 분사 유닛(600)이 별도의 전기 동력 없이 기계적인 메카니즘을 통해 회전 가능하도록 구성된다.
본 발명의 일 실시예에 따른 회전수단(40)은 도 10 및 도 11에 도시된 바와 같이 분사 유닛(600)을 회전 가능하게 하기 위한 구성요소로 하우징(100) 내부에 분리 격판(200), 회전 수차(300), 회전 개폐 유닛(400) 및 링크 유닛(500)이 장착된다.
하우징(100)은 내부에 수용 공간이 형성되고 내부 공간에 냉각수가 유입되어 배출되도록 길이 방향의 양측에 인입구(121) 및 배출구(111)가 형성된다. 하우징(100)의 형상은 양측면이 폐쇄된 중공의 원통형으로 형성되며, 하우징(100)의 내부에는 상기한 구성요소들이 안정적으로 장착될 수 있도록 별도의 원통형 지지 경통(130)이 구비될 수 있다. 지지 경통(130)에는 후술할 회전 수차(300) 및 개폐 클러치부(430)가 회전 가능하게 장착되도록 고정 지지축(131)이 형성되며, 이러한 고정 지지축(131)에 분리 격판(200)이 고정 장착될 수 있다. 이러한 지지 경통(130)은 인입구(121)와 연통되게 하우징(100)의 일측 내측면에 고정 결합되어 인입구(121)로 유입된 냉각수가 지지 경통(130)의 내부를 통과하며 진행할 수 있도록 구성될 수 있다. 그러나 이러한 지지 경통(130)은 본 발명의 일 실시예에 따른 것으로, 이러한 지지 경통(130) 없이 고정 지지축(131)이 하우징(100) 내측면에 형성되는 방식으로 구성될 수도 있을 것이다. 한편, 하우징(100)은 일면이 개방된 중공의 원통형상으로 폐쇄된 일측면에 배출구(111)가 형성된 하우징 본체(110)와, 하우징 본체(110)의 개방된 일면에 결합되며 인입구(121)가 형성되는 하우징 덮개(120)로 분리 형성될 수 있다.
분리 격판(200)은 하우징(100) 내부에 횡방향으로 결합되도록 원형 플레이트 형상으로 형성될 수 있다. 분리 격판(200)에는 인입구(121)를 통해 하우징(100) 내부로 유입된 냉각수가 통과하며 서로 반대 방향의 유동 방향 성분이 형성되도록 서로 다른 방향의 유로를 갖는 제 1 및 제 2 유동홀(210,220)이 관통 형성된다. 즉, 제 1 및 제 2 유동홀(210,220)은 이를 통과한 냉각수의 유동 방향이 각각 서로 반대인 방향 성분, 예를 들어 X방향 성분 및 -X방향 성분이 발생되도록 형성되는데, 이에 대한 자세한 설명은 후술한다.
회전 수차(300)는 다수개의 회전 날개(310)가 원주 방향을 따라 등간격으로 이격 배치된 형태로 형성되며, 중심축(C)이 고정 지지축(131)에 형성된 결합홈(415)에 삽입되어 회전 가능하게 결합되는 방식으로 구성되며, 분리 격판(200)의 일측면에 인접하게 배치되어 분리 격판(200)의 제 1 및 제 2 유동홀(210,220)을 통과한 냉각수의 유동력에 의해 회전하도록 구성된다. 제 1 및 제 2 유동홀(210,220)을 통과한 냉각수의 유동 방향은 전술한 바와 같이 서로 반대 방향 성분을 가지는데, 이때 제 1 및 제 2 유동홀(210,220)은 후술할 회전 개폐 유닛(400)에 의해 교대로 개폐되므로 제 1 유동홀(210) 또는 제 2 유동홀(220)을 통과한 서로 반대 방향 성분을 갖는 냉각수의 유동력에 의해 회전 수차(300)는 양방향으로 왕복 회전하게 된다.
회전 개폐 유닛(400)은 회전 수차(300)의 왕복 회전에 연동하여 왕복 회전하도록 하우징(100) 내부에 회전 가능하게 장착되며, 이러한 회전에 따라 제 1 및 제 2 유동홀(210,220)을 교대로 개폐하도록 구성된다. 이러한 회전 개폐 유닛(400)은 별도의 링크 유닛(500)에 의해 회전 수차(300)와 연동되는데, 링크 유닛(500)은 다수개의 링크 플레이트, 체인, 벨트 등 다양한 동력 전달 기계 요소를 통해 다양한 방식으로 구성될 수 있으며, 도 10 및 도 11에 도시된 바와 같이 다수개의 기어를 이용하여 구성될 수 있다.
한편, 분사 유닛(600)은 하우징(100)의 외측에 배치되며 배출구(111)를 통해 하우징(100) 내부 공간과 연통되어 하우징(100)으로부터 배출되는 냉각수를 분사하도록 구성된다. 또한 분사 유닛(600)은 하우징(100) 내부의 회전 개폐 유닛(400)에 결합되어 회전 개폐 유닛(400)과 일체로 회전하며 냉각수를 분사한다. 따라서, 분사 유닛(600)이 회전하며 냉각수를 분사하기 때문에, 태양광 모듈(7) 전체 면적에 고르게 냉각수가 분사된다.
이러한 구조에 따라 회전수단(40)은 냉각수가 공급되며 제 1 및 제 2 유동홀(210,220)을 교대로 통과한 냉각수의 유동력에 의해 회전 수차(300)가 왕복 회전하고 이에 따라 분사 유닛(600)이 회전하며 냉각수를 분사하는 구조이다. 따라서, 별도의 전기 동력을 사용하지 않고 기계적 메카니즘을 통해서 분사 유닛(600)이 회전 가능하도록 구성되어 에너지 효율이 우수하며 크기가 상대적으로 태양광 모듈(7)의 세척 기능을 원활히 수행할 수 있는 구조이다.
다음으로 본 발명의 일 실시예에 따른 분사 유닛(600)이 양방향으로 회전하는 메카니즘에 대해 도다 상세히 살펴본다.
분리 격판(200)은 전술한 바와 같이 평판형으로 하우징(100) 내부에 횡방향으로 고정 장착되며, 이러한 분리 격판(200)에는 제 1 및 제 2 유동홀(210,220)이 형성된다. 제 1 및 제 2 유동홀(210,220)은 분리 격판(200)의 두께 방향에 대해 경사지게 형성되는 직선 유로를 갖도록 각각 적어도 하나 이상씩 형성되며, 이때 제 1 및 제 2 유동홀(210,220)의 경사 방향은 분리 격판(200)의 두께 방향에 대해 서로 대칭되게 형성될 수 있다. 예를 들어, 제 1 유동홀(210)은 도 13을 기준으로 회전 수차(300)를 반시계 방향으로 회전시키는 냉각수 유동력이 형성되도록 경사지게 형성되고, 제 2 유동홀(220)은 회전 수차(300)를 시계 방향으로 회전시키는 냉각수 유동력이 형성되도록 경사지게 형성될 수 있다. 따라서, 제 1 유동홀(210)을 통과한 냉각수는 제 1 유동홀(210)의 경사 방향에 따른 유동 방향 성분이 형성되어 회전 수차(300)를 반시계 방향으로 회전시키고, 제 2 유동홀(220)을 통과한 냉각수는 제 1 유동홀(210)과 서로 대칭인 제 2 유동홀(220)의 경사 방향에 따른 유동 방향 성분이 형성되어 회전 수차(300)를 시계 방향으로 회전시킨다. 이때, 제 1 및 제 2 유동홀(210,220)은 회전 수차(300)를 회전시키는 냉각수 유동력의 강화를 위해 도 13 내지 도 15에 도시된 바와 같이 분리 격판(200)에 원주 방향을 따라 각각 서로 180각도의 위치에 2개씩 형성될 수 있으며, 제 1 및 제 2 유동홀(210,220)의 개수는 제 1 및 제 2 유동홀(210,220)이 원주 방향을 따라 서로 교번하는 형태로 3개, 4개 등등 다양하게 변경 가능할 것이다.
한편, 회전 개폐 유닛(400)은 회전 수차(300)의 왕복 회전에 연동하여 양방향으로 왕복 회전하며 제 1 및 제 2 유동홀(210,220)을 교대로 개폐한다. 따라서, 회전 개폐 유닛(400)의 왕복 회전에 의해 제 1 및 제 2 유동홀(210,220)이 교대로 개폐되며, 제 1 및 제 2 유동홀(210,220)이 교대로 개폐됨에 따라 이를 통과하는 냉각수 유동력이 서로 반대 방향 성분을 갖게 되며 이에 따라 회전 수차(300)가 왕복 회전하게 되고, 이러한 회전 수차(300)의 왕복 회전은 다시 회전 개폐 유닛(400)을 왕복 회전시키는 순환 메카니즘이 발생된다. 이러한 순환 메카니즘에 의해 회전 수차(300) 및 회전 개폐 유닛(400)의 왕복 회전은 하우징(100) 내부로 냉각수가 공급되는 한 계속적으로 반복된다.
이와 같은 회전 개폐 유닛(400)의 구성을 좀 더 자세히 살펴보면, 회전 개폐 유닛(400)은 본 발명의 일 실시예에 따라 링크 유닛(500)과 직접 연결 결합되어 회전 수차(300)와 연동하여 회전하는 회전 블록부(410)와, 회전 블록부(410)에 맞물림되어 회전 블록부(410)와 일체로 회전하며 제 1 및 제 2 유동홀(210,220)을 교대로 개폐하도록 분리 격판(200)에 접촉 결합되는 개폐 클러치부(430)를 포함하여 구성된다.
이때, 회전 블록부(410)는 본 발명의 일 실시예에 따라 링크 유닛(500)과 연결 결합되며 중앙부에 관통홀(416)이 형성된 원형 회전판(411)과, 관통홀(416)에 연통되도록 회전판(411)의 일면에 돌출 형성되어 분사 유닛(600)과 결합되는 연결 슬리브(412)와, 개폐 클러치부(430)와 맞물림되도록 회전판(411)의 외측부에 하우징(100)의 길이 방향을 따라 연장 형성된 걸림바(413)를 포함하여 구성될 수 있으며, 이러한 회전판(411), 연결 슬리브(412) 및 걸림바(413)는 일체로 형성되는 것이 바람직하나, 각각 별개로 형성되어 상호 결합되는 방식으로 제작될 수도 있다. 이때, 연결 슬리브(412)는 분사 유닛(600)이 탈착 가능하게 결합되도록 구성되는데, 이러한 탈착 가능한 결합 방식으로는 도 11에 도시된 바와 같이 나사 결합 방식이 적용될 수 있으며, 이외에도 끼워맞춤 방식 또는 별도의 볼트 체결 방식 등 다양한 방식으로 변경 가능하다.
또한, 개폐 클러치부(430)는 본 발명의 일 실시예에 따라 분리 격판(200)의 일측면에 접촉되어 회전 가능하게 장착되는 작동판(431)과, 작동판(431)과 일체로 회전하도록 결합되고 회전 블록부(410)의 걸림바(413)와 맞물림되며 회전하도록 분리 격판(200)의 외측으로 돌출되게 형성되는 작동 걸림판(432)을 포함하며, 작동판(431)이 회전하며 제 1 및 제 2 유동홀(210,220)을 교대로 개폐하도록 구성될 수 있으며, 작동판(431)과 작동 걸림판(432)은 서로 일체로 형성될 수도 있을 것이다. 한편, 개폐 클러치부(430)는 작동판(431)이 제 1 유동홀(210)을 폐쇄하는 방향으로 회전하도록 작동판(431)을 탄성 편의시키는 탄성 스프링(433)을 더 포함하여 구성될 수 있다.
따라서, 회전 개폐 유닛(400)은 회전 블록부(410)와 개폐 클러치부(430)로 형성되어 분사 유닛(600)과 결합되어 분사 유닛(600)이 회전하도록 하는 기능을 수행함과 동시에 제 1 및 제 2 유동홀(210,220)을 교대로 개폐하는 기능을 수행한다.
이러한 회전 개폐 유닛(400)의 동작 상태를 회전 블록부(410)와 개폐 클러치부(430)로 분리하여 좀 더 자세히 살펴보면, 먼저 회전 블록부(410)는 링크 유닛(500)에 의해 회전 수차(300)에 연동하여 회전한다. 좀 더 구체적으로는, 도 12에 도시된 바와 같이 회전 수차(300)가 왕복 회전하면 링크 유닛(500)에 직접 연결 결합되는 원형 회전판(411) 및 연결 슬리브(412)가 왕복 회전하고, 이에 따라 연결 슬리브(412)에 결합된 분사 유닛(600)이 왕복 회전하게 된다. 또한, 연결 슬리브(412)가 왕복 회전하는 경우 연결 슬리브(412)의 외측부에 연장 형성된 걸림바(413) 또한 왕복 회전하게 되는데, 이때 걸림바(413)가 개폐 클러치부(430)의 작동 걸림판(432)과 맞물림되기 때문에 작동 걸림판(432)은 걸림바(413)와 함께 왕복 회전하게 된다. 작동 걸림판(432)이 왕복 회전하면 이와 일체로 결합된 작동판(431)이 왕복 회전하게 되고, 이러한 작동판(431)의 왕복 회전에 따라 제 1 및 제 2 유동홀(210,220)이 교대로 개폐된다. 이러한 제 1 및 제 2 유동홀(210,220)의 선택적 개폐는 전술한 바와 같이 다시 회전 수차(300)의 왕복 회전을 유도하게 되며, 결국 회전 개폐 유닛(400)이 계속적으로 왕복 회전하게 된다.
이때, 회전 블록부(410)의 걸림바(413)와 개폐 클러치부(430)의 작동 걸림판(432)은 걸림바(413)의 양방향 회전시 모두 맞물림되도록 형성될 수도 있으나, 도 12에 도시된 바와 같이 걸림바(413)의 일방향 회전시에만 맞물림되고 반대 방향 회전시에는 맞물림 해제되는 방식으로 구성될 수도 있다. 예를 들어, 도 15의 (a)에 도시된 바와 같이 작동판(431) 및 작동 걸림판(432)이 제 1 유동홀(210)을 폐쇄한 상태로 회전한 상태에서, 걸림바(413)가 일방향으로 회전하면 작동 걸림판(432)이 이에 맞물림되어 회전하여 도 15의 (b)에 도시된 바와 같이 작동판(431)이 제 2 유동홀(220)을 폐쇄하도록 회전하게 된다. 이와 같이 작동판(431)이 제 2 유동홀(220)을 폐쇄한 상태에서 다시 걸림바(413)가 반대 방향으로 회전하게 되면, 이 경우에는 작동 걸림판(432)이 걸림바(413)에 맞물림되지 않기 때문에 작동 걸림판(432) 및 작동판(431)이 회전하지 않고 제 2 유동홀(220)을 폐쇄한 상태로 유지된다. 따라서, 이 경우에는 도 15에 도시된 바와 같이 작동판(431)을 탄성 편의시키는 별도의 탄성 스프링(433)에 의해 작동판(431)이 제 1 유동홀(210)을 폐쇄하도록 회전하게 된다.
한편, 회전 개폐 유닛(400)은 이상에서 설명한 동작 원리에 따라 왕복 회전하게 되는데, 이러한 회전 개폐 유닛(400)은 본 발명의 일 실시예에 따라 왕복 회전 각도가 조절될 수 있도록 별도의 회전 스토퍼(420)가 장착될 수 있다. 즉, 도 12에 도시된 바와 같이 회전 블록부(410)의 외측 방향으로 돌출되는 회전 스토퍼(420)가 회전 블록부(410)의 회전판(411) 상부면에 결합되고, 하우징(100)의 내주면 일측에는 이러한 회전 스토퍼(420)가 회전함에 따라 회전 스토퍼(420)와 맞물림될 수 있는 고정 돌기(132)가 형성될 수 있다. 따라서, 회전 블록부(410)는 회전 스토퍼(420) 및 고정 돌기(132)에 의해 최대 회전 각도가 제한된다. 이때, 회전 스토퍼(420)는 결합홀(421)을 통해 도 12에 도시된 바와 같이 연결 슬리브(412)에 관통되게 결합될 수 있는데, 결합홀(421)의 내주면에는 결합 돌기(422)가 형성되고 연결 슬리브(412)의 외주면에는 결합 돌기(422)가 삽입될 수 있는 결합홈(415)이 원주 방향을 따라 이격되게 다수개 형성되며, 이러한 결합 돌기(422) 및 결합홈(415)에 의해 회전 스토퍼(420)가 회전 블록부(410)에 탈착 가능하게 결합될 수 있다. 따라서, 회전 스토퍼(420)의 결합 위치는 다수개의 결합홈(415) 중 결합 돌기(422)가 결합되는 결합홈(415)의 위치에 따라 회전판(411)에 대한 다양한 상대 위치를 갖도록 변경되며, 이러한 결합 위치의 변경에 따라 회전 스토퍼(420)에 의해 제한되는 회전 블록부(410)의 최대 회전 각도가 조절된다.
다음으로, 회전 개폐 유닛(400)과 회전 수차(300)를 연동시키는 링크 유닛(500)에 대해 좀 더 자세히 살펴보면, 회전 개폐 유닛(400)의 내주면에 기어의 치형(G)이 형성되는 중공 원통형의 기어 치형부(414)가 형성되고, 링크 유닛(500)은 이러한 회전 개폐 유닛(400)에 치합되는 다수개의 기어를 포함하여 구성될 수 있다. 즉, 링크 유닛(500)은 회전 수차(300)의 중심축(C)에 결합되어 회전하는 구동 기어(510)와, 구동 기어(510)에 치합되며 구동 기어(510)의 회전력을 전달하는 감속 기어부(520)와, 감속 기어부(520)에 치합되어 구동 기어(510)의 회전력이 전달되는 종동 기어(530)를 포함하여 구성될 수 있다. 이때, 종동 기어(530)가 회전 개폐 유닛(400)의 기어 치형부(414)와 치합되게 장착된다. 따라서, 회전 수차(300)가 회전하게 되면, 회전 수차(300)의 중심축(C)에 결합된 구동 기어(510)가 회전하게 되고, 구동 기어(510)의 회전에 따라 감속 기어부(520) 및 종동 기어(530)가 회전하며 이에 따라 회전 개폐 유닛(400)이 회전하게 된다. 이때, 감속 기어부(520)는 구동 기어(510)의 회전 속도가 감속될 수 있도록 다수개의 컴파운드 기어(521)를 통해 구성될 수 있으며, 이러한 감속 기어부(520)에 의해 회전 개폐 유닛(400)의 회전 속도가 회전 수차(300)의 회전 속도보다 상대적으로 느리게 형성되는 것이 바람직하다. 또한, 링크 유닛(500)은 본 발명의 일 실시예에 따라 종동 기어(530)에 치합되어 회전하는 회전 개폐 유닛(400)을 지지하도록 기어 치형부(414)에 치합되는 적어도 하나 이상의 아이들 기어(540)를 더 포함하여 구성되는 것이 바람직하다.
이러한 링크 유닛(500)은 도 10 내지 도 12에 도시된 바와 같이 하우징(100) 내부에 구비된 별도의 기어 박스(550)를 통해 장착될 수 있다. 기어 박스(550)는 중공의 원통형 기어 박스 본체(551)와 기어 박스 본체(551)의 일면을 폐쇄하는 평판형 기어 박스 덮개(553)로 분리 형성되며, 기어 박스 본체(551)의 내부에 형성된 기어 지지부(552)에 감속 기어부(520)가 안착되고, 기어 박스 덮개(553)의 상면에 종동 기어(530) 및 아이들 기어(540)가 안착되는 형태로 구성될 수 있다.
한편, 분사 유닛(600)은 분사 노즐을 이용하여 냉각수를 분사하는 다양한 방식으로 구성될 수 있는데, 본 발명의 일 실시예에 따른 분사 유닛(600)은 도 11에 도시된 바와 같이 회전 개폐 유닛(400)에 탈착 가능하게 결합되며 내부에는 냉각수가 통과하도록 하우징(100) 내부와 연통되는 분사 유로(611)가 형성되는 분사 케이스(610)와, 분사 유로(611)의 출구에 탈착 가능하게 결합되는 분사 노즐(620)을 포함하여 구성될 수 있다. 즉, 분사 유닛(600)은 도 11에 도시된 바와 같이 회전 개폐 유닛(400)의 연결 슬리브(412)에 탈착 가능하게 결합될 수 있는데, 전술한 바와 같이 연결 슬리브(412) 및 분사 케이스(610)에 서로 대응되는 나사산이 형성되는 방식으로 나사 결합될 수 있으며, 이를 통해 다양한 형태의 분사 유닛(600)을 필요에 따라 용이하게 교환할 수 있다. 또한, 분사 노즐(620)은 도 11에 도시된 바와 같이 분사 유로(611)에 끼워맞춤 방식으로 탈착 가능하게 결합될 수 있으며, 이러한 결합 방식은 볼트 결합 방식, 나사 결합 방식 등 다양하게 변경 가능하며, 이러한 구조에 따라 다양한 형태의 분사 노즐(620)을 용이하게 결합하여 사용할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (18)

  1. 태양광을 집광하여 전기를 발생시키는 태양광 모듈을 포함하여 구성되는 태양광 발전설비에 냉각수를 분사하여 효율을 유지 또는 향상시키는 태양광 발전설비의 효율향상설비에 있어서,
    냉각수를 저장하는 저장탱크:
    상기 태양광 모듈에 냉각수를 분사하는 냉각수 분사수단; 및
    상기 저장탱크에 저장된 냉각수를 펌핑하여 냉각수 공급관을 통해 상기 냉각수 분사수단으로 공급하는 펌프를 포함하며,
    상기 냉각수 분사수단은 내부에 부압을 발생시켜 외부 공기를 유입시키는 벤추리관을 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  2. 제1항에 있어서,
    상기 벤추리관은 냉각수가 이동하는 냉각수 이동로를 포함하며,
    상기 냉각수 이동로는 냉각수가 유입되는 유입부와 상기 유입부에서 내경이 좁아졌다가 다시 넓어지는 유출부를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  3. 제2항에 있어서,
    상기 벤추리관은 외부 공기가 유입되는 공기 유입홀이 형성되며,
    상기 공기 유입홀은 상기 냉각수 이동로의 유출부와 연통되는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  4. 제3항에 있어서,
    상기 벤추리관은 상기 냉각수 이동로 및 공기 유입홀이 형성된 내관; 및
    상기 내관을 외측에서 감싸도록 상기 내관과 결합되며, 냉각수가 외부로 분사되는 분사구가 형성된 분사캡과 체결되는 외관을 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  5. 제4항에 있어서,
    상기 내관은 냉각수가 유입되는 측에 삽입 체결된 체결부를 포함하며,
    상기 체결부에는 상기 유입부가 형성된 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  6. 제5항에 있어서,
    상기 체결부에 형성된 유입부는, 상기 유출부보다 내경이 좁게 형성되어 상기 유출부로 냉각수를 분사하는 전달부를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  7. 제4항에 있어서,
    상기 외관에는 외부 공기가 유입되는 홀이 형성되며,
    상기 홀을 통해 유입된 공기는 상기 공기 유입홀을 통해 상기 냉각수 이동로로 전달되는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  8. 제7항에 있어서,
    상기 내관과 외관 사이에는 상기 홀 및 공기 유입홀과 연통되는 공간부가 형성되는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  9. 제1항에 있어서,
    상기 냉각수 공급관을 개폐하여 상기 냉각수 분사수단의 냉각수 분사를 조절하는 밸브를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  10. 제9항에 있어서,
    상기 펌프의 구동 및 상기 밸브의 개폐를 조절하여 상기 냉각수 분사수단의 냉각수 분사를 제어하는 제어부를 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  11. 제10항에 있어서,
    상기 제어부는, 상기 냉각수 분사수단이 설정된 구동시간 동안 냉각수를 분사하게 하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  12. 제10항에 있어서,
    상기 제어부는, 상기 냉각수 분사수단이 상기 태양광 모듈의 온도에 따라 냉각수를 분사하게 하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  13. 제10항에 있어서,
    상기 제어부는, 상기 냉각수 분사수단이 상기 저장탱크의 냉각수 저장량에 따라 냉각수를 분사하게 하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  14. 제1항에 있어서,
    상기 냉각수 분사수단은 냉각수의 흐름에 의해 좌우 왕복 회전하는 회전수단을 더 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  15. 제14항에 있어서,
    상기 회전수단은,
    외부로부터 냉각수가 유입되어 배출되도록 양측에 인입구 및 배출구가 형성된 하우징;
    상기 하우징 내부에 장착되어 상기 인입구를 통해 유입된 냉각수가 통과하며 서로 반대의 유동 방향 성분이 형성되도록 서로 다른 방향의 유로를 갖는 제 1 및 제 2 유동홀이 관통 형성되는 분리 격판;
    상기 하우징 내부에 회전 가능하게 장착되어 냉각수가 상기 제 1 유동홀 또는 제 2 유동홀을 통과함에 따라 형성된 서로 다른 방향의 냉각수 유동력에 의해 양방향으로 왕복 회전하는 회전 수차;
    상기 회전 수차의 왕복 회전에 연동하여 양방향으로 왕복 회전하며 상기 제 1 및 제 2 유동홀을 교대로 개폐하는 회전 개폐 유닛; 및
    상기 회전 수차와 회전 개폐 유닛을 연동시키는 링크 유닛
    을 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  16. 제15항에 있어서,
    상기 분리 격판은 평판형으로 상기 하우징 내부에 횡방향으로 고정 장착되고, 상기 제 1 및 제 2 유동홀은 상기 분리 격판의 두께 방향에 대해 경사지게 형성되는 직선 유로를 갖도록 각각 적어도 하나 이상씩 형성되고, 상기 제 1 및 제 2 유동홀의 경사 방향은 상기 분리 격판의 두께 방향에 대해 서로 대칭되게 형성되는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  17. 제15항에 있어서,
    상기 회전 개폐 유닛은,
    상기 링크 유닛과 연결 결합되어 회전하는 회전 블록부; 및
    상기 회전 블록부에 맞물림되어 회전하며 상기 제 1 및 제 2 유동홀을 교대로 개폐하도록 상기 분리 격판에 접촉 결합되는 개폐 클러치부를 포함하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
  18. 제15항에 있어서,
    상기 회전수단은 상기 하우징의 외측에 배치되며 상기 배출구를 통해 상기 하우징 내부 공간과 연통되어 상기 하우징으로부터 배출되는 냉각수를 분사하는 분사 유닛을 포함하고,
    상기 분사 유닛은 상기 회전 개폐 유닛에 결합되어 상기 회전 개폐 유닛과 함께 회전하며 냉각수를 분사하는 것을 특징으로 하는 태양광 발전설비의 효율향상설비.
PCT/KR2012/005708 2011-08-04 2012-07-17 이상유동을 이용하는 태양광 발전설비의 효율향상설비 WO2013019005A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110077672A KR101283878B1 (ko) 2011-08-04 2011-08-04 이상유동을 이용하는 태양광 발전설비의 효율향상설비
KR10-2011-0077673 2011-08-04
KR1020110077673A KR101282739B1 (ko) 2011-08-04 2011-08-04 태양광 발전설비의 효율향상설비
KR10-2011-0077672 2011-08-04

Publications (2)

Publication Number Publication Date
WO2013019005A2 true WO2013019005A2 (ko) 2013-02-07
WO2013019005A3 WO2013019005A3 (ko) 2013-04-04

Family

ID=47629760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005708 WO2013019005A2 (ko) 2011-08-04 2012-07-17 이상유동을 이용하는 태양광 발전설비의 효율향상설비

Country Status (1)

Country Link
WO (1) WO2013019005A2 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725242B1 (ko) * 2004-05-31 2007-06-04 주식회사 케이씨텍 표면세정용 승화성 고체입자 분사용 노즐 및 이를 이용한세정방법
KR100832673B1 (ko) * 1998-09-25 2008-05-27 유.에스. 필터 웨이스트워터 그룹, 인크. 여과 시스템, 박막 세척 방법 및 박막 모듈
KR100986706B1 (ko) * 2010-03-16 2010-10-08 (주)하이레벤 태양광 발전설비의 효율향상설비
JP2011100782A (ja) * 2009-11-04 2011-05-19 Toyota Home Kk 太陽光パネル冷却装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832673B1 (ko) * 1998-09-25 2008-05-27 유.에스. 필터 웨이스트워터 그룹, 인크. 여과 시스템, 박막 세척 방법 및 박막 모듈
KR100725242B1 (ko) * 2004-05-31 2007-06-04 주식회사 케이씨텍 표면세정용 승화성 고체입자 분사용 노즐 및 이를 이용한세정방법
JP2011100782A (ja) * 2009-11-04 2011-05-19 Toyota Home Kk 太陽光パネル冷却装置
KR100986706B1 (ko) * 2010-03-16 2010-10-08 (주)하이레벤 태양광 발전설비의 효율향상설비

Also Published As

Publication number Publication date
WO2013019005A3 (ko) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2011059172A2 (ko) 태양광 발전설비의 효율향상설비
KR100914965B1 (ko) 태양광 발전설비의 효율향상장치
KR20130007069A (ko) 태양광 발전 시스템의 냉각 및 세정장치
KR100986706B1 (ko) 태양광 발전설비의 효율향상설비
KR102263858B1 (ko) 태양광 패널 세정장치
WO2013105700A1 (ko) 수면부상식 태양광 발전장치
KR101311891B1 (ko) 태양광 발전설비의 효율향상설비
KR101443040B1 (ko) 태양광 모듈의 난류형 냉각수 분사노즐
WO2012011634A1 (ko) 태양광 발전설비의 효율향상설비
CN112676219A (zh) 光伏组件降温清洁增效系统
WO2013019005A2 (ko) 이상유동을 이용하는 태양광 발전설비의 효율향상설비
KR101243176B1 (ko) 태양광 모듈의 냉각수 분사노즐
KR100983783B1 (ko) 태양광 발전설비의 효율향상설비
KR101395048B1 (ko) 태양광 발전설비의 효율향상설비
KR101086210B1 (ko) 공냉식 태양광 발전기 냉각시스템
WO2011037347A2 (ko) 태양광 발전설비의 효율향상장치
WO2016167422A1 (ko) 태양광 발전설비의 효율향상설비
KR101282739B1 (ko) 태양광 발전설비의 효율향상설비
KR101263242B1 (ko) 냉각수 분사장치 및 그를 이용한 태양광 발전 설비의 출력향상설비
KR20130076326A (ko) 태양광 발전설비의 효율향상설비
KR101326240B1 (ko) 이상 유동 발생 노즐 및 그를 이용한 태양광 발전설비의 효율향상설비
KR101410909B1 (ko) 태양광 모듈의 냉각수 분사용 회전식 노즐 및 그를 채용한 태양광 발전설비의 효율향상설비
KR101088773B1 (ko) 경사지에 설치된 태양광 발전설비의 냉각장치
KR101283878B1 (ko) 이상유동을 이용하는 태양광 발전설비의 효율향상설비
WO2016143929A1 (ko) 이상 유동 발생 노즐이 구비된 태양광 발전설비의 효율 향상 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819950

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (27.03.14)

122 Ep: pct application non-entry in european phase

Ref document number: 12819950

Country of ref document: EP

Kind code of ref document: A2